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Abstract

The Double Mutation (DM) I479V/A485E has been reported (Servatius et al.,
2018) to determine a loss of function of the funny current (I f ), which is a key
player of the onset of the action potential in the Sinoatrial Node (SAN). Thus, the
DM can result in bradycardia. This work presents a multiscale study that links the
DM (i.e. genotype) to the bradycardia (i.e. phenotype). To do this, first a tool to
display and analyse electrophysiological data was developed. Thanks to it, the de-
crease in I f conductance was quantified and used as an input for a computational
model of a human SAN cell. The simulation of the action potential of this model
gave a Cycle Length (CL) of 1019 ms (compared to 814 ms of the Wild Type con-
dition, +20.1 %). After this, a 1D and 2D model of the SAN were implemented,
in order to test the behaviour of more complex systems (fibre and tissue), since
these can show phenomena not present at the channel or single cell level. Several
values of cellular heterogeneity (σ ) and coupling (ρ) were considered, in order
to investigate the most physiologic degree of these properties. This was assessed
relying on the most realistic results obtained for CL, Action Potential Amplitude
(APA) and Conduction Velocity (CV). The results show that:1) increasing σ leads
to shorter mean CLs and wider CL and APA distributions; 2) increasing ρ pro-
vides wider CL and APA distributions, whereas their mean values are the highest
for ρ = 1000 MΩ ·m. A complete synchronization is therefore a trade-off be-
tween σ and ρ; 3) for physiological values of σ (0.1873) and ρ (∼ 100 MΩ ·m)
cells manage to synchronize their pacing frequency and show a conduction veloc-
ity similar to that reported in literature (∼ 11 cm/s) in both 1D and 2D models.
This is true for both WT and DM but, in the last case, the mean CL is significantly
shorter. This fact proves the detrimental effect of these mutations: in 2D, the heart
rate drops from 75.6 bpm (WT) to 60.2 bpm (DM, -18.3 %).
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Introduction

The sinoatrial node (SAN) has been known to be the spot from which the electrical
pulse originates in the heart for a very long time ([1], [2] and [3]). In physiological
conditions indeed, the SAN is able to deliver a stimulus to the right atrium and,
through it, to the entire heart. This is possible since the cells found in the sinoatrial
node present autorhythmicity, i.e. they can depolarize - up to the threshold value
at which the action potential is triggered - without any external stimulus. Other
kinds of cardiomyocytes (e.g. atrioventricular node cells, His bundle cells and
Purkinje fibers cells) also present autorhythmicity, but at a lower frequency. For
this reason, the stimulus coming from the SAN prevails, making the latter the
responsible for the normal heart rate.

The self-pacing ability in the SAN is guaranteed by the sum of many mech-
anisms that underlie the onset of the action potential (AP), which is a change in
the membrane voltage, Vm. The start of this mechanism is given by the activation
of the funny current (I f ) at low potentials, that causes the SAN cells to depolarize
(by the intake of Na+ ions) without any external inputs. The growth in membrane
potential makes the Ca2+ channels (first the T-types, then the L-type) to open,
letting calcium ions enter the cell and further depolarize it. The outward K+ cur-
rent will at the end hyperpolarize the cell, bringing it at low potentials, where the
cycle restarts. Unlike other types of cardiomyocytes, the role of the Na+ current
(INa) was thought to be secondary in the SAN because of the slower rise in the AP
upstroke. However, a recent work by Li et al. [4], resized this belief by proving
that a block of this current impairs the functioning of the SAN, especially in dis-
eased hearts. Therefore INa seems to be fundamental also in the sinoatrial node,
particularly for what it concerns the AP conduction.

In the heart, the conduction of the AP is guaranteed thanks to the connection
among the cells through the intercalated discs. The electrical coupling is provided
by the gap junctions through which ions can flow, thus propagating the stimulus
from one cell to the other. As already said indeed, the electrical pulse originates
in the SAN and travels through the atria up to the AV node, the only excitable
path connecting the atria to the ventricles. From here, and through the His bun-
dle, the stimulus arrives to the Purkinje fibers, from which it is delivered to the
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whole ventricles. Indeed, the action potential (in the heart but also in neurons) is
the mechanism that nature has developed in order to deliver information at long
distances. In this case, the propagation of the change of the membrane potential
(the aforementioned information) is coupled with the release of calcium from the
sarcoplasmic reticulum, that makes possible the binding of the filaments of actine
and myosine and thus the contraction of cardiac tissue.

Despite of the complexity of the mentioned mechanism and the specializa-
tion of the tissues involved, the normal function of the heart can in some cases
be altered by many diseases, such as arrhythmias. In order to predict and treat
these pathologies, a deep understanding of the physiology of the SAN is neces-
sary. Unluckily however, few structural and physiological experimental data are
available for the human SAN, since few studies explanted and analysed this very
small (12-29.5 mm in length, 3.3-6.7 mm in width and 1-1.8 mm in depth [5])
and complex-shaped tissue. This is because, apart from the technical difficulties
of explanting and preserving an intact SAN, it is hard to have available such a
precious human tissue in a good condition.

Computational models and computer simulations can therefore provide a valu-
able solution to this deficiency, since they allow to test hypothesis and to suggest
new ones, without the necessity of handling human tissue. This was demonstrated
by Joyner et al. [6], who used a computational model to explain how a small
number of SAN cells can drive all the atrium by keeping a balanced source-sink
relationship. From the very first work of Hodgkin and Huxley [7], which opened
the era of the mathematical description of ionic currents, many steps forward have
been made in the direction of an accurate mathematical modeling of the electro-
physiology of the heart. The history of this progress, and what has been so far
understood, can be found in the works of Denis Noble [8] and Yoram Rudy [9],
respectively. Many models have indeed been proposed in the past for every type
of cardiomyocytes (sinoatrial, atrial, ventricular, Purkinje fibers), especially for
animal APs (since there are more electrophysiological data available). The single
cell models have also been extended to 1D and 2D models, in order to study the
propagation between different cells and the effects of both gap junction coupling
and cellular heterogeneity. Very importantly indeed, the main aspect of the action
potential is that it is not a phenomenon driven by a single factor. Instead, it ap-
pears as a complex mechanism to which lower-level events participate in different
extent. This concept is known as emergent behaviour: only at higher levels (i.e.:
tissue or organ level) it is possible to appreciate phenomena not present at smaller
scales (e.g.: channel or cell level), since they are the result of many combined
factors. The AP and its conduction are examples of emergent behavior as all of
the cellular currents contribute to the functioning of the first one and the second
one is the result of the interaction between many different cells.
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The starting point of this thesis is the study by Servatius, Porro et al. [10].
This work presented the case of a patient with a double HCN4 channel isoform
mutation, which provided an almost complete loss of function of the I f current in
a HEK-293 cellular line (that only expressed this type of channel). As it is known
from literature, a loss of function in I f determines a decrease in the heart rate; the
patient reported in the study showed indeed a deep bradycardia. The aim of this
thesis is therefore to assess this bradycardic effect on systems of increasing com-
plexity: single channel, single human SAN cell, SAN fiber (1D model) and SAN
tissue (2D model). This is in order to study the mutations in more physiologic
conditions, taking for example into account the cellular heterogeneity at the fiber
and tissue level, to see if their consequences are different from those observed in
a single cell. Indeed, the interaction between cells with different properties can
show phenomena that are not predictable at the single cell level.

This work therefore started from the assessment of the effects at the channel
level, by developing a Graphical User Interface (GUI) that could serve as a tool
for analysing electrophysiological data. The data of the cited study were anal-
ysed in order to obtain the parameters (specifically the conductance of the funny
current, g f ) with which to feed a computational model of the human SAN cell.
The single cell model by Fabbri et al. [11] was used to evaluate the consequences
of the mutations on the whole cell. Finally, starting from the single cell model,
1D and 2D human SAN models were implemented in MATLAB and simulated
(at several levels of cellular heterogeneity and coupling) taking advantage of the
computational power offered by the GPUs.

The thesis is divided in two parts: Part I illustrates the building of the graphical
user interface (GUI) and the analysis of in vitro data regarding the characteriza-
tion of loss of function of HCN4 channels. Part II reports the in silico experiments
carried out to observe the effects of the HCN4 at tissue level. In Part I, Chapter
1 will discuss the SAN anatomy and physiology, the HCN4 channel structure and
the mathematical modeling of the SAN. Chapter 2 will present the Elements Read
GUI tool, realized during an internship at Elements srl, and the results that could
be achieved thanks to it (in terms of the evaluation of the effects of the mutations
on the I f current). The effects of the mutation at the single cell level are also
presented. In Part II, Chapter 3 will explain how the 1D and 2D models were
designed and obtained, whereas in Chapter 4 the results of these models will be
shown and discussed. Finally, Chapter 5 will summarize and highlight the most
interesting results of the whole work.
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Chapter 1

The sinoatrial node

In this Chapter the anatomy and physiology of the sinoatrial node, with special
attention to its structure-function relationship, will be briefly presented. Also, the
mathematical description of SAN cells will be discussed, with reference to the
work of Fabbri et al. [11]. Finally, the structure and the importance of the HCN
channel family (and specifically of the HCN4 isoform) will be discussed.

1.1 Structure-function relationship of the SAN

The sinoatrial node "is a compact mass of specialized cardiomyocytes enmeshed
in a dense matrix of collagen, fibroblasts and fatty tissue" [5]. It is located in the
intercaval region of the right atrium, adjacent to the crista terminalis, a muscular
tissue. Its dimensions (12-29.5 mm in length, 3.3-6.7 mm in width and 1-1.8
mm in depth), and its banana-like shape, are quite agreed upon, but many micro-
structural aspects are still debated [5].

The main dispute concerns the way the SAN is electrically connected to the
right atrium: some researchers think that the stimulus is delivered thanks to dis-
crete SinoAtrial Conduction Pathways (SACPs) , whereas other state that the SAN
is entirely connected to the atrial tissue through diffuse interdigitations. This is a
crucial topic, since the structure of the SAN deeply influences its function, namely
its pacemaking activity. Evidence of both hypotheses have been proposed in the
past ([13]), but lately many works ([5], [17]) provided proofs in favour of a dis-
crete conduction system. In the study of Csepe et al. [5], an integrative approach
combining functional and structural analysis at high resolution, allowed them to
identify different SACPs in the SAN of two human hearts - one healthy and one
diseased. This was achieved thanks to high-resolution optical mapping and 3D
computer reconstruction of the SAN complex. As can be seen from Figure 1.2a,
these evidences are both histological and functional, since the existence of SACPs
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4 CHAPTER 1. THE SINOATRIAL NODE

Figure 1.1: Histological section of the SAN [12].

allows to explain the different sites through which the electrical stimulus is deliv-
ered by the SAN to the atrium. Despite this, the authors report how the functional
block zone correlates to the anatomical border (made of fibrosis, fat, discontinuous
myofiber) in a degree dependent from the region considered. Therefore, the alter-
native hypothesis of an extensive connection between sinoatrial node and atrium
can not be discarded, as precisely no evidence of the complete insulation of the
structural border has been obtained so far. Nevertheless, for Li et al [17] SACPs
allow to explain how the SAN maintains its pacemaking function even in patho-
logical condition: by blocking signals coming from the atrium during fibrillation,
they protect the SAN from overdrive suppression.

Another important characteristic of the SAN, for what it concerns its function,
is its heterogeneity: this highly specialized tissue is not homogeneous, but on the
contrary presents a transition from central SAN cells to atrial ones. Also in this
case, two theories have been proposed, as can be seen in Figure 1.3. The first
hypothesis, called the "mosaic" model (Figure 1.3a), suggests that the density of
SAN cells decreases away from the center, while at the same time the number
of atrial ones grows. For the second hypothesis, known as the "gradient" model
(Figure 1.3b), there is a progressive transition in cellular properties from the SAN
center to the crista terminalis [18].

A study from Inada et al. [14], reports these trends in the rabbit SAN according
to the gradient model:

• Dimensions: central cells are smaller (∼ 63 µm in length, Cm ∼ 40 pF),
whereas peripheral ones are bigger (∼ 101 µm, Cm ∼ 64 pF);
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(a) 3D reconstruction of the SAN, functional and histological SACPs evidences of a healthy heart.

(b) Zooming of the SACP complex.

(c) Distribution of the Cx43 connexin along the SACP.

Figure 1.2: Results of the study from Csepe et al. [5].

• Maximum upstroke velocity (dVm/dtmax): this parameter is low in central
cells (∼ 2 V/s), but rises in the periphery (∼ 50 V/s);

• Maximum Diastolic Potential (MDP): central cells are more depolarized
(MDP ∼ −60 mV ) with respect to the peripheral ones, which have a more
negative MDP (∼−75 mV ).
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(a) Mosaic model. (b) Gradient model.

Figure 1.3: Main theories for the transition in cellular properties from the SAN to the
atrium: (a) Mosaic model, (b) Gradient model [18].

• Gap junctions: conductance is low (0.5− 25 nS) at the center of the SAN,
compared to that in the atrium (30− 635 nS). This is because electrical
coupling is granted in the atrium by Cx43 and Cx40 connexin isoforms,
which respectively form medium (60− 100 pS) and high conductance gap
junctions. In the center of the SAN, Cx43 and Cx40 are not expressed,
leaving the place for the low conductance Cx45 (20− 40 pS). This also
causes the conduction velocity (CV, in cm/s) to be low in the center (∼
2 cm/s) and high in the atria (∼ 70 cm/s). Peripheral cells are coupled via
both Cx43 and Cx45 and therefore show halfway properties (∼ 30 cm/s).

Regarding human SAN, new CV measures were found in literature: while
Riera et al. [15] and Desplantez et al. [16] reported indicative values of 5 and 3-5
cm/s respectively, Fedorov’s group reported a CV of 11.8 ± 3.1 cm/s in a healthy
heart [5]. This value was obtained thanks to a voltage activation map using a high-
resolution near-infrared optical mapping, and showed a substantial decrease in a
diseased heart: 3.6 ± 1.1 cm/s.

Going back to the transition theories, the fact that central cells show a lower
conductance is because they have to be uncoupled from the atrium, because oth-
erwise the latter would have an inhibitory effect on them: the lower MDP and the
significant load it represents, would cause the SAN to fail in the rhythm genera-
tion ([13], [14]). Thus, in silico simulations show how a transition layer of cells
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with a bigger expression of INa and a stronger cell-to-cell coupling, is needed in
order to supply enough depolarizing current to the whole atrium and to deliver it
efficiently. For these reasons, peripheral cells show a higher expression of Nav1.5
(an INa channel subunit) and Cx43 [14]. This study also proposes a cause to the
absence of INa in central cells: AP of Purkinje fibres relies on INa, and for this
reason they can be subject to overdrive suppression. This means that if a high-
frequency source (such as an ectotopic focus) stimulates them, their activity is
interdicted, since intracellular Na+ concentration grows and therefore Na+−K+

pump current rises. Being this current an outward (hyperpolarizing) current, it
prevents the cells from depolarizing, blocking the onset of the AP. To avoid this
potentially lethal mechanism, pacemaking activity in the SAN centre is entrusted
to ICaL instead of INa [14].

Despite this, the role of INa in the SAN seems to be crucial, especially in
diseased hearts. As reported by a recent study [4] indeed, voltage-gated sodium
channels (Nav) are fundamental in preventing conduction failure. If blocked, both
cardiac and neuronal Nav isoforms (cNav and nNav) lead to beat-to-beat variabil-
ity and reentry by impairing and depressing nodal conduction. These conditions
can bring to Sinus Node Dysfunction (SND), which can only be treated with pace-
maker implantation. This disease has indeed been linked to loss-of-function mu-
tations in SCN5A [14], the gene encoding for the cardiac Nav1.5 channel subunit.
Although this gene is more expressed in the atria (Figure 1.4a) than in the SAN,
its block via tetrodotoxin (TTX) or the administration of adenosine to mimic a
stress condition, caused rhythm generation failure, thus highlighting its roles in
pacemaking and conduction. nNav is more abundant in the SAN instead (Figure
1.4b), and its blocking showed an increased probability of failure in intranodal
conduction.

In conclusion, these facts demonstrate an only suspected importance of INa in
the SAN, even though its implications, and the whole SAN functioning, have not
been fully understood yet.
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(a) cNav expression in the SAN and right atrium.

(b) nNav expression in the SAN and right atrium.

Figure 1.4: INa genes expression in SAN and atrium [4].

1.2 Mathematical modeling of the SAN

The action potential generation is a complex and dynamic phenomenon. In the
sinoatrial node, three phases of the action potential can be distinguished [15], as
shown in Figure 1.5:

• Phase 4: spontaneous diastolic depolarization, due to the slow intake of
Na+ and K+ (I f current) and Ca2+ (ICaT ) ions. This phase ends with the
AP triggering, when Vm is in the range of -40/-30 mV;

• Phase 0: depolarization phase, driven by Ca2+ currents: L-type channels
- which are activated at higher potentials with respect to the T-type ones -
determine the upstroke. In addition, L-type current is also important in the
other types of cardiomyocytes, since it is responsible for the plateau phase.
In working cardiac myocytes (atrial and ventricular), Phase 0 is instead due
to INa which, having faster kinetics and a larger maximum current, deter-
mines a steeper upstroke with respect to that of SAN cells;

• Phase 3: repolarization phase, characterized by the closing of L-type cal-
cium channels, and the rise of rectifying potassium currents (IKr and IKs).
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Figure 1.5: Action potential of the rabbit SAN (red trace) and involved currents for both
membrane clock (green bracket) and calcium clock (dark blue bracket) theories (LCRs:
Local Calcium Releases). The three phases of the sinoatrial AP are also labeled. [19].

The autorithmicity lies in the spontaneous depolarization during phase 4 of
the AP. Two theories have been proposed to explain this phenomenon: one is
called the membrane clock and it is the oldest and most accepted one, even if
it has been lately questioned by a novel hypothesis, named calcium clock. The
first says that: I) all of the involved mechanisms are located in the membrane; II)
diastolic depolarization is mainly due to the I f current, which is responsible of
bringing Vm to the threshold value at which the AP is triggered. For this reason,
I f is believed to determine the heart rate. The latter theory resizes the role of both
the membrane and the funny current, in favour of the rhythmic and spontaneous
Local Calcium Releases (LCRs, mediated by the ryanodine receptors) from the
sarcoplasmic reticulum ([19], [20]). This release brings into play the Na+−Ca2+

(NCX) exchanger, and can therefore change the membrane voltage and trigger
the AP. So far, it is not clear what the predominant mechanism is; however, the
membrane clock and the calcium clock are closely related, since they can both
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modify the membrane potential.
In addition to this still debated issues, many more aspects contribute to the

complexity of the physiology of the SAN. Examples can be: I) the heart rate
modulation from the sympathetic and parasympathetic nervous system and II) the
fail-safe mechanisms that protects the SAN from failure. All these considerations
make a full mathematical description of the SAN very difficult, even because there
is little anatomical and electrophysiological data available for humans. Conse-
quently, many models are based on animal (especially rabbit) data, and therefore
represent more or less good approximations of what happens inside the human
heart.

Thus, the lack of human data make in silico simulations of utmost importance
to advance in our understanding of the physiology of the heart. This work indeed
proposes a new 1D and 2D computational model of the human SAN, based on the
single cell model by Fabbri et al. [11], in order to shed light on the mechanisms
responsible for the generation of the heart rate and the conduction of the electrical
signal.

1.2.1 Fabbri model

Figure 1.6: Schematic diagram of the human SAN Fabbri model [11].
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The human single cell SAN model was based on the Severi-DiFrancesco rabbit
SAN cell model [21] and updated including human data and automatic optimiza-
tion to better reproduce the electrical activity of the human SAN.

The result reproduced indeed the main features of the AP in the SAN, accord-
ing to literature [11]:

– Cycle length: 814 ms compared to 828 ± 21 ms found in literature;

– APD90: 161.5 vs 143.5 ± 49.3 ms;

– DDR100: 48.1 vs 48.9 ± 25.4 mV/s;

The mechanisms of pacemaking are mainly explained thanks to the role of I f ,
which manages to drive the diastolic depolarization and to participate to vagal and
adrenergic stimulation together with IK,ACh and ICaL, respectively. The role of the
calcium clock was considered to be minor, since the work by Himeno et al. [22]
showed how an impairment of this mechanism (through chelation of cytosolic
Ca2+) did not affect the heart rate in guinea pig SANs. Despite the importance
of the funny current, other actors are included in this mathematical description of
the human SAN (see Figure 1.6):

– ICaL, responsible for the upstroke and the sympathetic stimulation;

– ICaT , responsible for the early diastolic depolarization;

– IK,ACh: modulates the parasympathetic stimulation;

– IKr and IKs: repolarizing (outward) currents;

– INa: depolarizing current. Even if it is less expressed in the SAN with
respect to the atria, its importance is still debated (as discussed in section
1.1);

– IKur and Ito: outward potassium currents. Of secondary importance in the
SAN;

– Na+−K+ pump and Na+−Ca2+ exchanger. These complexes help to
repolarize the cells, by restoring the original ionic concentrations;

– Jrel , Jtr and Jup: these calcium current densities take into account respec-
tively: I) the Ca2+ release from the Junctional Sarcoplasmic Reticulum
(JSR); II) the transfer of Ca2+ ions from the Network Sarcoplasmic Retic-
ulum (NSR) to the JSR and III) the uptake of Ca2+ from the cytosol to the
NSR;
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– Cellular compartments: the cell is divided in four compartments, namely:
subsarcolemma, cytosol, junctional sarcoplasmic reticulum (JSR) and net-
work sarcolplasmic reticulum (NSR), that can be physically (e.g.: sarcoplas-
mic reticulum) or virtually (subsarcolemma and cytosol) separated one be-
tween another. The latter case, as for the sub-sarcolemmal space and the
transition from NSR to JSR, reflects a different behaviour in ionic dynam-
ics with respect to other compartments.

To conclude, the model consists of 33 first-order, non-linear differential equa-
tions, which are responsible for the updating of the state variables (such as Vm,
gating variables and ionic concentrations).

1.3 HCN channels

1.3.1 Structure and physiology

Hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channels are
part of the voltage-gated cation channels super-family. Four isoforms constitute
these channels: HCN1, HCN2 and HCN4 have been found in both heart and brain,
whereas HCN3 seems to be specific of neurons. For what it concerns the heart,
HCN channels have shown to be the molecular corresponding of the I f current,
which has been known to have a primary role in autorhythmicity for a long time
[23]. In fact, HCN channels have the properties of the "funny channels" [24]:

1. They open upon membrane hyperpolarization, contrarily to most voltage-
gated channels;

2. They are permeable to both Na+ and K+ ions (with a PNa/Pk ratio of∼ 0.15-
0.4); the glycine-tyrosine-glycine (GYG) sequence (Figures 1.7a and 1.7b
) is indeed shared with potassium channels. This does not mean that they
are non-selective, since they are impermeable to Li+ and to divalent anions
or cations. Furthermore, they can be blocked by extracellular Cs+. Their
reversal potential (that can be computed with the Goldman-Hodgkin-Katz
(GHK) equation) is around -25 mV and the current is therefore inwardly
directed at rest (-65/-75 mV), thus bringing Vm toward threshold;

3. They are modulated by cyclic adenosine monophosphate (cAMP), which
accelerates their activation kinetics and shifts their V50 to more positive po-
tentials, resulting in a faster and deeper opening of the channel and conse-
quently in a higher pacemaking frequency (especially for HCN2 and HCN4).
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HCN channels isoforms are formed by six helices (S1-S6) spanning through
the cellular membrane (Figure 1.7a). Unit S4 is positively charged and acts as a
voltage sensor; S5 and S6 instead, represent the pore-forming helices. Another
important feature is the cyclic nucleotide binding domain (CNBD) in the C ter-
minus, which is responsible for the interaction with cAMP. The central region of
these channels is shared by all the four isoforms, whereas the N and C terminus
vary in a higher measure, thus determining a difference in the properties of the
isoforms. HCN1 has indeed the fastest kinetics (τ between 25-300 ms), followed
by HCN2 and HCN3 (180-500 ms). HCN4 is the slowest isoform: its time con-
stant spans from hundreds of milliseconds at low potentials (-140 mV), to many
seconds at less negative voltages (-70 mV). V50 varies in a wide interval (from
-73 to -103 mV). Also the senstivivity to cAMP is different between the isoforms:
this molecule deeply shifts V50 of HCN2 and HCN4 as already explained, whereas
HCN1 is immune to its action. Despite of this, ion selectivity and pharmacological
response are quite similar between the four isoforms [24].

(a) (b)

Figure 1.7: (a) Structural model of HCN channels [24]; (b) HCN channel filter structure:
weak K+ selective filter [25].

I f channels are made of 4 HCN subunits, thus constituting tetrameric com-
plexes. Potentially, the same isoforms could build an entire channel, but more
probably different isoforms contribute to its structure. This is because, as re-
ported by Altomare et al. [26] for the rabbit, the channels responsible for I f show
properties far from those of specific isoforms (HCN1 and HCN4 in particular,
since they are the more expressed isoforms in the rabbit SAN). However, het-
eromeric channels - formed by both HCN1 and HCN4 - reproduce more faithfully
the electorphysiological features of I f channels, thus suggesting that they are in-
deed heteromeric structures.

Two hypotheses have tried to explain the gating mechanisms of HCN chan-
nels [24]. One states that their function is similar to that of K+ channels (e.g.:
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hERG channel): the opening is the result of the recovery from the inactivation.
The alternative model proposes the activation from a closed state as the expla-
nation. This latter theory suggests that the mechanism is the opposite of what
happens in depolarization-activated channels: the channel is closed at positive
voltages when S4 is in its outermost configuration, whereas it would be open in
depolarization-activated channels. The coupling between S4 and channel gate has
- for this hypotheses - an inverted polarity in HCN channels. Furthermore, the
speed of channel opening seems to be mainly determined by S1 and S1-S2 linker
activity.

HCN4 is the more expressed isoform in murine and rabbit SAN, followed by
HCN1 and HCN2. Regarding humans, similar results were obtained by Chandler
et al. [12], but Li et al [27] highlighted that HCN1 had a major expression ratio
between SAN and atria compared to HCN4 and HCN2, thus suggesting its im-
portance in the SAN. The importance of HCN4 in the spontaneous activity of the
SAN is out of question, since its mutations greatly affect the pacemaking activity
[27], as the next section (1.3.2) will further analyse.

HCN isoforms structure and kinetics are almost identical in all mammals. This
brings to the conclusion that, in order to obtain the wide range of heart rates (from
∼ 600 bpm in mice, to ∼ 70 in humans) seen in mammals, it is necessary to
act on both the expression and up/down-regulation of HCN and other AP-related
channels, rather than on their structure [24].

1.3.2 HCN4 mutations
As already mentioned, HCN4 is the most important HCN channel isoform in the
human SAN, since the funny current (i.e. the main player of autorhythimicity)
flows through it. Mutations in the HCN4 gene are therefore critical, as they may
lead either to a loss or a gain of function in the channel, thus determining brady-
cardia or tachycardia respectively.

The way a mutation can affect a cellular current is dual. On one hand, the
channel structure can be changed, so that it does not work as it should, due to a
functional impairment. On the other hand, the complex process of transcription
from the genes to the 3D channel (trafficking) fails at some point, and as a result
the channel is not even present in the plasmatic membrane. The latter mechanism
is the most frequent.

HCN4 mutations have been linked to pathological conditions such as brady-
cardia and sinus node dysfunction (SND). Verkerk et al. [28] report 22 HCN4
known mutations in humans up to 2015, that can cause insensibility to cAMP,
shift of V50 towards hyperpolarization and reduced expression of the channels.
All this changes resulted in the reduction of I f , thus leading to the mentioned
pathologies.
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In 2018 two new mutations were reported and analyzed by Servatius, Porro et
al. [10]: I479V and A485E, affecting the pore loop region between the S5 and S6
transmembrane helices, which contain the highly conserved CIGYG selectivity
filter sequence of the HCN4 channel (Figures 1.7a and 1.7b). One of the aims
of this thesis work is therefore that of providing more proof of the correlation
between the genotype (these mutations) and the phenotype (the bradycardia of the
patient, in this case).

Chapter 2 will show how electrophysiological data of HCN4 channels were
analyzed in order to obtain parameters for in silico simulations, followed by the
results of these simulations.





Chapter 2

Elements Read GUI: a User
Interface to display and analyze
electrophysiology experimental data

2.1 Introduction

The purpose of the first part of this thesis work was dual. On one hand, the devel-
opment of a Graphical User Interface (GUI) for loading, displaying, analysing and
exporting data coming from cellular electrophysiology experiments. The func-
tioning of the GUI was tested by replicating the experimental results of a study
regarding mutations of the HCN4 channel, which - as explained in the previous
chapter - is responsible for the funny current in the sinoatrial node. On the other
hand, the conductance of the mutated HCN4 channels extracted from this analysis
was used as a parameter of the single cell model by Fabbri et al. [11]. This was
made as a first a step to link the reduced available I f current shown in the study
(channel level) to the bradycardia the patient was affected by (organ level).

The interface was developed for and thanks to Elements Srl - the company
where I carried out the internship for this thesis - which will distribute this tool
as an open source software. The final name of the tool has not been decided yet,
and therefore it could be distributed under another acronym in the next software
release. Anyway, this tool will allow researchers to use the interface to perform
simple analyses on their data, but also modify it or add code to it in order to
implement the functionalities they desire.

17
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2.1.1 Aims
This GUI aims to provide an easy and versatile tool for analysis, which can be
easily adapted to the needs of every electrophysiology laboratory. The interface
was entirely developed in MATLAB (2019b, Mathworks) using App Designer, a
MATLAB tool dedicated to the creation of GUIs. Only the Home license was
used to develop the GUI, so its use does not need any additional toolbox.

The Elements Read GUI owns several functionalities, namely:

− Loading .abf (later described in section 2.2.1) or .mat format files;

− Visualization of basic data information (file name, sampling frequency, num-
ber of samples, number of sweeps);

− Cursors handling to extract portions of signal to be analyzed;

− Data Analysis: I/V and G/V graphs, histograms, power spectral densities
(Welch’s method [29]);

− Fittings (linear, exponential, Gaussian, Boltzmann’s curve) of both raw data
and data coming from analyses;

− Exporting of original data, analyses and fittings in a .mat file.

In this work only some of these functionalities will be presented, namely the
ones that have been used to extract the parameters necessary for this thesis:
I/V graphs, fitting with a Boltzmannn’s curve, plot of parameters (τ [ms] in
this case) againts others (V [mV])

2.2 GUI Implementation

2.2.1 ABF format
(adapted from Unofficial Guide to the ABF File Format [30])

The ABF, which stands for Axon Binary Format, is a file format very common
in cellular electrophysiology, used by the largely diffused Axon Instruments de-
vices. Since it is coded in a proprietary code, to access the data produced by these
instruments the knowledge of the internal structure of the file is needed. This was
known for the first ABF distributed format, but the situation changed with the re-
lease of the new ABF2 format, which was distributed without documentation, if
not for a general user guide [31] from which Figure 2.1 was extracted.
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Figure 2.1: Internal structure of ABF format [31]

Despite this lack, some programmers managed to extract the fundamental in-
formation from the file, and the results are open source software that load data
and their information in many languages: Matlab, Python, ecc. As can be seen in
Figure 2.1, and as reported in the Unofficial guide to the ABF file format [30] in-
deed, ABF files are composed by several sections, where the most important ones
are Header and Data. The first one contains the information about the positions
of the other sections, and it is therefore necessary to find the desired information,
whereas the latter contains the true experimental data. Another useful section is
Sync Array, containing information about the used experimental protocols (e.g.:
number of sweeps, that is the number of acquired episodes such as the onset of
an action potential). Every section is divided in blocks of 512 bytes, indicized
by a block number: to extract data it is therefore necessary to know the starting
position of the section, how much space one data takes (e.g.: a 16 bit integer takes
2 bytes), and how much data are present (i.e. how many bytes must be read). The
problem with ABF2 is that the Header does not have a fixed dimension, so the
positions of the sections are not known a priori; it is this fact that does not allow
the direct access to the data. Nevertheless, the information on the position of the
blocks is always stored in the same position of the Header, so, knowing this, it
is possible to move to the position of the desired block. The work of the above
mentioned programmers, was consequently that of deduce in which position of
the Header the pointer to every section was; for example the information on the
Data section are found in the 236th byte of the Header. In this byte (and in the next
one), the position in which the section starts, the dimension of the data and how
much data are present are saved, namely the three information needed to extract
experimental data.

In order to load ABF files with this interface, the MATLAB script abfload.m
(available open source [32], and which implements all this operations), was used.
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2.2.2 ABF file acquisition modalities
(adapted from AxonTM Binary File Format (ABF) User Guide [31])

Inside ABF files it is possible to find data acquired in many ways, depending
on the type of studied signal. These modes are:

– Gap-Free Mode: the file contains a unique sweep acquired with a uniform
sampling interval; no stimulus waveform is associated to the signal. This
modality is usually employed for continuous acquisitions of data where it is
present a uniform activation in time;

– Event-Driven Mode: the acquisition starts after a specific triggering event,
such as the exceeding of a threshold. In this case also, there is no stimulus
waveform associated to the data. The variable-length mode is usually used
to acquire data with peaks of activity separated by long quiescent periods, of
unknown duration. If the activity has always the same duration, the Fixed-
length mode is preferable, since it is possible to divide the acquisition in
different sweeps (that is, episodes of the same length that could be compared
with each other);

– High-Speed Oscilloscope Mode: similar to Event-Driven Fixed-Length
mode, with the difference that in this case the exceeding of a threshold does
not necessarily trigger an acquisition, so that it is possible for the analog-to-
digital converter (ADC) to operate at its maximum sampling frequency;

Figure 2.2: Examples of data acquisition modes in ABF files [31]

– Episodic Stimulation Mode: in this mode, a certain number of sweeps
of different length is acquired, forming a so-called “run”. If more “runs”
are acquired, the values of the correspondent sweeps are averaged between
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them, so that a “trial” is created and saved in the file. Only one “trial” can
be stored inside an ABF file. The digital-to-analog converter (DAC) can
generate one waveform for every sweep. This waveform can be composed
by up to 10 “epochs”, in turn made up by signals such as steps, ramps and
digital pulses. The length of these signals can be automatically increased
from one sweep to another. It is also possible to use two different sampling
frequencies: the “Fast” one, which is the DAC’s real one, and the “Slow”
one, which is obtained through decimation of the signals, and employed to
reduce the number of samples stored in the file.

2.2.3 Graphic interface functionalities

Figure 2.3: Appearance of Elements Read GUI graphical interface: in the upper graph,
current data are showed, whereas in the bottom graph one can find the voltage steps
of the protocol adopted. Cursor handling is on the high left. Always on the left, other
information can be inserted, such as the Resting Potential and the Capacitance of the cell
and the Experimental condition in which the data were obtained, in order to name the file
to be exported.

The GUI allows one to load files through the drop down menu (Figure 2.3);
this operation brings to the visualization of current data (top graph) and voltage
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data (bottom graph). Every sweep is plotted in a different colour. It is possible
to select up to 10 cursors, in order to define the portion of signal to analyse or fit.
The cursors can be selected and located with the related fields in the top left, or
by dragging them with the mouse. Further fields present in the interface allow to
specify the experimental condition (in order to label the data to be exported) and
to insert the values of the resting potential and of the capacitance of the cell. The
first of these values can be used to calculate the conductance g = I/(V −Ek) of
the cell. This is anyway a risky operation if the resting potential of the cell is in the
range of the voltage steps applied in the experimental protocol, since V −Ek will
be close to 0 and therefore the computed conductance will approach infinity. The
capacitance of the cell can be instead used to normalize current data, in order to
obtain a current density measure. Indeed, bigger cells tend to have more channels,
thus they express higher currents. By normalizing with respect to this parameter,
it is therefore possible to obtain a measure of the current flowing through a single
channel.

Figure 2.4: Example of analysis and fitting performed through the GUI: exponential fitting
of an I/V graph, with fitting parameters highlighted on the left (window in the foreground).

About the analyses, it is possible to perform I/V graphs, G/V graphs (activa-
tion graphs), histograms, power spectral densities or to plot fitting parameters one
against the other (e.g.: time constant of the current curve, obtained through an
exponential fitting, against voltage). In Figure 2.4, an example of the I/V relation-
ship obtained from data showed in Figure 2.3 is depicted. Note how the analysis is
showed in a new window, which first of all presents the possibility to execute fit-
tings on the analysis itself (in this case an exponential fitting was performed), but
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also to change the axes mapping from linear to quadratic, logarithmic or square
root. This can be useful if the data have a particular trend (e.g.: an exponential
curve will appear as a straight line if y axis mapping is set to logarithmic).

Fittings can be performed on raw current data as well, in both cases the fitting
parameters are showed in a table on the left, with the values of the selected curve
highlighted. Finally, the GUI allows one to export raw data, analyses data and
fitting parameters in a .mat file, so that one can perform more complex analyses
directly in MATLAB.

2.3 Results

2.3.1 Current Features Extraction with Elements Read GUI

The purpose of the first part of this thesis work is to develop the graphical inter-
face Elements Read GUI. Then, once this tool was available, it has been used to
replicate the experimental results of Servatius, Porro et al. [10] in order to obtain
parameters with which to feed a single cell computational model of the human
sinoatrial node. This was made to assess the effects of the mention double mu-
tation not only on the HCN4 channel, but on the SAN cell as a more complex
system. In the study by Servatius, Porro et al. [10] indeed, the case of a patient
affected by two different mutations of HCN4 channel was presented. This channel
is well known for having a primary role in the self-excitation of specialized car-
diomyocytes and neurons. Because of these mutations, the patient showed mood
disorders, anxiety, ventricular fibrillation and sick sinus syndrome associated with
a deep bradycardia. For the authors of this study, these symptoms were due to the
fact that the mutations produce a partial loss of function of the funny current. This
is because the mutations reduce the number of available channels, more than to
altered current properties.

This can be assessed in Figure 2.5, where the results of the electrophysiologi-
cal measures in several experimental conditions are shown:

– WT (1 µg): wild type (healthy) condition: all of the expressed channels are
functioning. 1 µg is the plasmid quantity used to transfect the HEK 293
cells [10];

– WT (0.5 µg): only functioning channels are present, but in half the quantity
of the WT (1 µg) condition;

– WT (0.5 µg) + I479V/A485E (0.5 µg): half of the expressed channels are
healthy, half are mutated (heterozygous condition);
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– I479V/A485E (1 µg): all of the expressed channels are mutated (homozy-
gous condition).

The kinetics of the mutated current and of the non-mutated one are basically
the same (Figure 2.5: D, activation graph; E, activation time constant). What
changes is the entity of the current (Figure 2.5: C, I/V relationship), which in
the case of heterozygous mutation (WT (0.5 µg) + I479V/A485E) is the half of
the WT condition, but equal to the current produced by WT (0.5 µg) cells (Figure
2.5: A and B). This means that the mutated channels do not express an appreciable
current.
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Figure 2.5: Results of the study of Servatius, Porro et al. [10]. A) Current data in the
different experimental conditions; B) Comparison between the current data of the WT 0.5
µg condition and the WT 0.5 µg + DM one. C) I/V curves for the different experimental
conditions. D) Activation curves for the wild type, half expressed wild type and WT 0.5
µg + DM conditions. E) Comparison between the activation time costants of WT 0.5 µg
and WT 0.5 µg + DM.
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The same graphs (mean +/- SEM) were obtained thanks to the GUI (Figure
2.6). Also, parameters of the mean Boltzmann curves were obtained, to perform
a validation against the values reported in the study (Table 2.1).

(a) I/V graph (b) Activation curves

(c) Time constants

Figure 2.6: Replication of the results of the study of Servatius, Porro et al. [10] using the
GUI: a) I/V graphs for the 4 experimental conditions and relative linear regressions on
the 4 most negative potentials: -160, -145, -130 and -115 mV; b) Activation curves of the
4 experimental conditions except for I479V/A485E, which does not express any current;
c) Time constants of WT 0.5 µg and WT 0.5 µg + DM.

In Table 2.1, the V50 and Slope factor values for human SAN cells, as measured
by Verkerk et al. [33], are also reported. The differences between these values, the
ones obtained with the tool developed during this work and the ones reported by
Servatius et al., highlight two aspects. First, different experimental conditions and
protocols (ionic solutions, absence of cAMP, amplitude and duration of voltage
steps) were used. Second, and most importantly, there is difference between an
heterologous system (e.g.: HEK-293 cells) and a real human cell, because the
latter presents many mechanisms that are not found in HEK cells (an example



2.3. RESULTS 27

WT 1 µg WT 0.5 µg WT 0.5 µg + DM Human SAN cell
V50 [mV ] -106.2 ± 0.9 -103.9 ± 2.4 -102.2 ± 0.8 -96.9 ± 2.7

-103.1 ± 0.2 -102.1 ± 0.8 -102.6 ± 0.9
Slope [mV−1] -13.3 ± 1.1 -12.1 ±0.8 -11.3 ± 0.7 -8.8 ± 0.5

-11 ± 0.2 -10.7 ± 0.7 -12 ± 0.8

Table 2.1: Comparison between Boltzmann’s fitting parameters extracted with the GUI
from HCN4 activation curves (black) and the same parameters as reported by Servatius,
Porro et al. [10] (grey). In light blue the same features for a human SAN cells, as reported
by Verkerk et al. [33], are presented.

could be the already mentioned cAMP), but have a real effect during patch-clamp
experiments. Human cells also express other HCN isoforms and for this reason
real I f channels can have properties different from channels only formed by the
HCN4 isoform. Moreover, to delete the effect of all types of channels that are
expressed in a human SAN cell, except the I f ones, the curves for human cells are
obtained as follows: first, a patch clamp recording of the whole cell is made (thus
considering every channel); second, Cs+ - which as said in Section 1.3, is able
to block HCN channels - is added and a new recording is performed; finally, the
difference between the two acquisition is computed, and this difference is meant
to provide the effect of I f alone. These operations can clearly involve errors that
contribute to explain the difference between the reported parameters.

2.3.2 Effects of I479V and A485E mutations at the single cell
level

After evaluating the effect that the mutations induces to the I f current, the next
step was that to link the genotype, that is the mutation, to the phenotype, namely
the symptoms expressed by the patient (the bradycardia in particular). It is indeed
known from literature that a knock-out of the funny current, even if partial, leads to
a slowdown of the cardiac frequency [34]. Having indeed less current available,
more time is needed for the triggering of the action potential and therefore the
frequency is reduced.

To assess the correspondence between the mutations and the bradycardia, a
computational model of a human sinoatrial node cell (Fabbri [11]) was used: ac-
tion potentials of this cell were simulated varying the HCN4 channel maximum
conductance. As already mentioned, HCN4 is responsible of the self-pacing cur-
rent of the myocardium, the funny current. The maximum conductance expresses
indeed a measure of the number of available channels, which is strongly reduced
under a mutated condition, according to the above reported experimental data.
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This parameter was obtained as the slope of the straight lines given by the
linear regressions of the last 4 points of the I/V graph (-160, -145, -130 and -
115 mV, Figure 2.6), normalized with respect to the cell capacitance. Since the
cell capacitance values were unfortunately missing, they were estimated for every
cell as the ratio between the charge Q absorbed by the cell during a voltage step
stimulation ∆V, and the voltage step itself. The charge Q was the sum of two
contribution: I) the integral of the current with respect to the steady-state value
after the voltage step, obtained by numerical integration and II) the integral of the
current that flows through the membrane resistance with respect to the steady-state
value. This second term was computed as the product between the current step at
steady-state (difference in current before and after the stimulation) and the time
constant of the response to the stimulus, obtained through an exponential fitting.

Maximum conductances were obtained as the slope of linear regression of
I/V graphs since at low potentials, where there is a high probability that all of
HCN4 channels are opened, the relationship between current and voltage of the
Hodgkin-Huxley model I f = G fmax · n∞ · (V −Einv) becomes a simple linear re-
lationship (Ohm’s law: I f = G fmax · (V −Einv)), because n∞, the gating variable,
is equal to 1. Given however that in the study the experiments were executed
on HEK-293 cells (in order to over-express HCN4 channels), it is not possible
to use the absolute value of the maximum conductance of the cell, but it is nec-
essary to use a relative measure. The values obtained were therefore normalized
with respect to the maximum conductance of the wild type condition (in which
the conductance and therefore the current is maximum), thus getting a percentage
measure of the decrease of the conductance of the funny current with respect to
the healthy condition.

Table 2.2 shows the conductance values used in the single cells simulations,
obtained by scaling the WT 1 µg value respectively of the 45 %, 46 %, 33 %,
8 % and 2.6 %, which represent the residual activations obtained in the different
experimental conditions. In Table 2.2 the results of the simulations are also shown.

WT 1 µg WT 0.5 µg WT 0.5 µg
+ DM

WT 1 µg
+ Amio DM DM

+ Amio
Gfmax/Gfmax(WT1) 100 % 45 % 46 % 33 % 8 % 2.6 %
gf [µS] 0.00427 0.00192 0.00196 0.00141 0.000342 0.00011
CL [ms] 814 907 890 946 1019 1030
HR [bpm] 73.7 66.2 67.4 63.4 58.9 58.3
∆HR - +10.2 % +8.6 % +14 % +20.1 % +20.9 %

Table 2.2: Percentage values of maximum I f conductance with respect to the wild type
condition (G fmax/G fmax(WT 1)) and correspondent absolute g f values; Duration of the
action potential (CL, Cycle Length, in ms); Heart rate (HR, in beats per minute) and HR
percentage variation.
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Figure 2.7: Comparison between the APs of the cells in the different experimental condi-
tions: both the double mutation and the Amiodarone contribute to slow down the beating
frequency. Their combined effect provides the longest CL: 1030 ms.

As it can be seen from the results reported in Table 2.2, at the decrease of the
maximum conductance, the duration of the cycle length (CL) increases from 814
ms of the WT condition to 1019 ms of the case in which only mutated channels are
expressed in the cell (DM condition). This is also visually assessable in Figure 2.7.
Consequently, the heart rate drops from about 74 bpm of the healthy condition,
to the 59 of the pathological one. The simulation gives therefore a confirmation,
regarding the bradycardia, of the study by Servatius, Porro et al. [10], for which
this symptom is due to the reduced current expressed by the cells affected by the
double mutation under investigation.

As reported in the study, the patient was also treated with an anti-arrhythmic
drug, the amiodarone, which it is known to have a bradycardic effect. This was
tested by reducing the conductances for Ikr, Ito, INaL, INa and the permeability of
late calcium current PCaL respectively of the 2.9 %, 6.0 %, 5.1 %, 0.3 % and 2.4
% (Table 2.3).

IKr Ito INaL INa PCaL If

Reduction [%] 2.9 % 6.0 % 5.1 % 0.3 % 2.4 % 66 %

Table 2.3: Effects of Amiodarone on the conductances and permeabilities of a SAN cell at
a concentration of 3 · Free Cmax ([35], [36]).

This is indeed the effect the amiodarone has on these currents at a concentra-
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tion of 2.1 µM, which was considered to be 3 times the maximum concentration
achievable by the drug after its administration (Free Cmax). This data was ex-
tracted from the study of Crumb et al. [35]. This study did not report data about
HCN4 channel and I f current, so the values presented in the work by Tamura et
al. [36] were considered. This study reported an IC50 of 2.1± 1.9 and a Hill
coefficient h = 0.9±0.2. Using the Hill equation,

Activation(%) =
1

1+(IC50 +3 ·FreeCmax)h

and considering the worst case (IC50 = 2.1+1.9 and h = 0.9+0.2), a percent-
age activation of 33% was obtained for the HCN4 channel. This means that I f is
reduced of 2/3.

Considering the consequences of amiodarone only, the AP duration of the sin-
gle cell model changes from 814 ms to 946 ms (HR = 63.4 bpm). Combining
the effects of both mutations and amiodarone instead, a total activation of 2.6% is
achieved, bringing the CL to 1030 ms and the HR to 58.3 bpm. For this human
SAN cell model, the onset of an AP is guaranteed even in the case of complete
block of the funny current (g f = 0), opposite to what happens in the model of
a rabbit sinoatrial node cell [11], from which the human one was derived. This
proves the robustness of the mechanisms at the base of the functioning of the hu-
man heart, although a relevant decrease in the heart rate is still present.

Regarding the replication of the experimental results of the study by Servatius,
Porro et al. [10], some clarification is necessary. First of all, cell capacitance val-
ues, used to normalize the current in I/V graphs (Figure 2.6), were not available.
The normalization is a necessary operation since it allows to obtain a measure
of the current independently from the dimensions of the cell: in fact, the bigger
the cell is, the more channels it owns and therefore the more current it expresses.
The capacitance of the cell provides a measure of its size and consequently of the
number of channels; normalizing with respect to it means to obtain a measure of
current density, specific of a single channel. The estimation of the capacitance
was performed as already described in section 2.3; here, we point out that all the
estimation process can have introduced some errors, that can explain the bigger
variability shown by the replicated graphs with respect to the original ones. This
is anyway a qualitative observation, since the state of the art of the experimen-
tal acquisitions does not reckon on automated methods of feature extraction (e.g.:
steady-state value of the current signal) as the developed tool does. The measure is
entrusted to the researcher, with consequent intra- and inter- operator variability,
which makes the comparison unreliable.

Another critical issue, observable in the conductance graph of Figure 2.6b,
is given by the fact that at high potentials, the current seems not to inactivate
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completely, in contrast with what it should happen. This is because the extraction
of the absolute maximum value of the tail currents is a sensitive operation, that
can introduce a high variability depending on the algorithm used and on the signal
preprocessing.

The experimental protocol used in the study, namely voltage steps with vari-
able durations (just enough to get to a steady-state value, so as not to stress the
cells) is very specific and uncommon. Furthermore, considering that such results
were not used to obtain simulation parameters, it was chosen not to implement a
solution to this issue. The implementation of a more robust algorithm went indeed
beyond the aims that this GUI proposes to satisfy, so it was not undertaken. This
way, on one hand a future development of this tool remains possible, and on the
other hand the user is free to implement specific methods for other protocols.
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Chapter 3

Materials and Methods

The aim of the second part of this thesis work was the development of a 1D and
a 2D models of the human sinoatrial node, and the assessment of the effect of
the mutations reported by Servatius, Porro et al. [10] on the models themselves.
About this, the main question was if the bradycardic effect seen on the single cell
model is of the same entity on more complex systems (i.e. at fiber and tissue
levels). This chapater will therefore explain how these models were designed and
implemented.

3.1 Hardware and software

All the simulations were executed on a workstation running with a 16-core AMD
Ryzen Threadripper 2950x, an NVIDIA Titan V GPU and 64 GB RAM. The
models were entirely developed using Mathwork’s MATLAB, version 2019b. For
the 1D model, 100 cells were considered; given an approximate length of 50 µm
for a human central SAN cell, this mimicked the behaviour of a 5 mm fiber. In
the 2D model, a matrix of 50x50 cells was implemented, simulating a 2.5x2.5
mm tissue. A total of 2500 elements - obtained dividing the dimensions of the
SAN by the dimensions of a single cell - is a good esteem of the magnitude of
the cells composing the rabbit SAN [40]. This qualitative computations surely
underestimates the number of cells in the human SAN, but can be a realistic start.
However, considering them as symmetric and all of the same size is surely an
approximation.

The length of the simulations was 20 s, a time span that allows the cells to get
to a steady-state condition. For the 1D model, this took about 300 s, whereas the
2D model needed around 1100 s to be solved.
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3.2 Connecting the single cell models implementing
gap junctions

The 1D and 2D computational models were first obtained in MATLAB as a multi-
dimensional union of human SAN single cell models from Fabbri [11]. This was
achieved by connecting the models with an equation representing the inter-cellular
linking due to gap junctions. In fact, if two neighbouring cells are at different
potentials, there will be a current flowing from the cell at higher potential to the
one at lower potential. Depending on the resistance offered by the gap junctions,
this coupling can be more or less strong: in an extreme situation (R→∞) the cells
are totally uncoupled and beat at their intrinsic frequency.
In the 1D model, the gap junction current is obtained as the sum of the differences
in voltage between one cell and the cells right before and after this cell, divided
by the resistance of the gap junction. First the voltage difference was calculated:

Vnet =Vm(2 : end,end)−2 ·Vm +Vm(1,1 : end−1)

This reflects a linear relationship between current and voltage (Ohm’s law) in
the gap junctions, as reported by Hagen et al. [38] and generally accepted.

Similarly this is made in the 2D model, but this time another dimension on
which to calculate the difference in voltage must be considered:

Vnet =Voriz +Vvert

where Voriz is:

Voriz =V m(:, [2 : end,end])−2 ·V m(:, :)+V m(:, [1,1 : end−1])

and similarly Vvert is:

Vvert =V m([2 : end,end], :)−2 ·V m(:, :)+V m([1,1 : end−1], :)

To get a current, we divide Vnet by the resistance of the gap junctions between
each cell. In this way the final equation that updates V m at each time step is
achieved:

δVm

δ t
=
−itot

Cm
+

Vnet

Rgap ·Cm

The itot term is the sum of all the currents present in the model:
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itot = i f + iKr + iKs + ito + iNaK + iNaCa + iNa + iCaL + iCaT + iKACh + iKur

whereas Cm is the capacitance of the cell, equal to 57 pF. Either in 1D and 2D,
no-flux boundary conditions were considered.

For both models a main script was designed to:

1. Set the simulation parameters (e.g.: number of cells, duration of the sim-
ulation, integration step, gap junction resistance and standard deviation for
the cell variability. These last two topics will be respectively described in
sections 3.5 and 3.6);

2. Set the initial conditions for every cell. These were obtained by randomly
sampling 2s of a single cell simulation using MATLAB datasample built-
in function. The same random seed was fixed for every simulation so that
comparisons between simulations with different parameters settings could
be made;

3. Set the cellular heterogeneity, as will be discussed in section 3.6;

4. Preallocate the state variables vector on the GPU, through the gpuArray
MATLAB command;

5. Call the function that solves the ODEs system;

6. Save the workspace variables.

In order to integrate the differential equations of the model, a forward Euler’s
method with fixed step was implemented. A function containing this algorithm
was therefore built and called from the main script (the code for this function in
the 2D case can be seen in Figure 3.1).

As shown in Figure 3.1, the states are updated by calling another function,
Model_2D_GPU , which calculates the variation of the state variables for every
cell at every time step. This is made by calling the function which implements
the single cell model by Fabbri et al. [11] and by computing Igap = Vnet/Rgap as
already described at the beginning of this section (Figure 3.2).

For every simulation, a fixed step of 10 µs was used, except for the 2D case
with R → ∞ and σ = 0.4, that required a step of 8 µs to be integrated (both
in WT and DM condition). This small integration steps caused the state vector
to have dimensions equal to 33x50x50x2 ·106 (2.5 ·106, with a time step of 8
µs). 33 is indeed the number of state variables of the single cell model; 50 is
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Figure 3.1: MATLAB code for Euler’s method

Figure 3.2: MATLAB code for Model_2D_GPU

the number of cells considered both on x and y dimensions and 2 ·106 (2.5 ·106)
is the number of time steps necessary to simulate 20s of activity. The 1D model
state vector was 33x100x2 ·106. Such vectors were too big for the GPU memory
(12 GB), so it was necessary to split them in smaller and less memory-consuming
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variables. It was chosen to allocate to the GPU vectors with 1000 time step (so
33x50x50x1000 (1250) and 33x100x1000), representing 10 ms of simulation, and
to execute repeated calls to the Euler function in Figure 3.1 through a for loop in
the main script (Figure 3.3).

Figure 3.3: MATLAB code for the loop in the main script

As can be seen in Figure 3.3, after the call to the integrating function, the last
time step of the updated states is saved in the variable yOld, representing the ini-
tial condition of the next iteration. After this, the membrane voltage signal hosted
in y, the state vector, is first undersampled (1 sample every 100 (125) is kept, in
order to have a step of 1 ms instead of 10µs), then transferred from the GPU to
the local workspace and finally stored in a variable named stateVect of dimensions
2000x33x50x50x10. 10 is the result of the undersampling: at every iteration, of
the 1000 (1250) 10µs-timesteps necessary to simulate 10 ms, only 10 samples are
collected (spaced 1 ms one between the other); 2000 is the number of iterations
the main loop is executed, in order to obtain 20 s of simulation. A sequence of
2000 repetitions of 10 ms give in fact 20 s. The operation of retrieving data from
the GPU is really time-expensive [37]; for this reason, only the voltage signal is
transferred to the workspace at every iteration. All this process was necessary
since it is not possible to use variables bigger than the GPU memory because they
can not be allocated on it. In addition, the converted code (see later in this section)
did not automatically free space when the allocated variables were not necessary
anymore, and this caused the GPU memory to go on overflow every few iteration.
To avoid this, a reset of the GPU memory was done every 10 iterations (variable
gpuRes), after storing all the undersampled state variables in the stateVect array.
Later, the y and yOld vectors, together with the dy vector (which will be filled
with the variations of the state variables, as returned by the single cell model) are
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once again preallocated on the GPU. Since after the reset the simulation restarts
from the final condition of the previous iteration, its first step coincides with this
previous condition and was subsequently removed.

3.3 The Matlab GPU coder
In order to exploit the high computational speed provided by the GPU, the code
was translated to CUDA kernels obtained thanks to MATLAB GPU Coder. This
useful tool allows to convert MATLAB functions to computationally efficient
CUDA code contained inside a MEX file (MATLAB Executable). MEX files are
the MATLAB interface to machine code (in this case the GPU-tailored CUDA,
which is discussed in section 3.4).

Of course the GPU Coder has many restrictions, namely not every MATLAB
built-in function can be translated to CUDA, but its simplicity and the efficiency
that can be achieved without knowing another programming language, make it an
easy and valuable instrument. Furthermore, any kind of C, C++ or CUDA kernel
written by the user can be included inside a MEX file, making up for the lack of
built-in functions that can be directly converted.

In order to use the GPU Coder, some preparation steps are necessary:

1. The CUDA toolkit must be installed ([42]). On MATLAB, it is possible to
check if this is true by running the gpuDevice command. Other requisites
for the use of GPUs on MATLAB, such as the availability of the Parallel
computing toolbox, are explained on Mathwork’s site ([43]);

2. It is necessary to add the directive %#codegen, that enables the error check-
ing specific to code generation, after the function declaration of every func-
tion that is wanted to be converted;

3. To convert the functions to CUDA code, the coder.gpu.kernelfun pragma
must be added in the body of the function;

4. Preallocate all the output variables at the beginning of the functions.

Steps 2 and 3 can be visualized in Figures 3.1, 3.2 and 3.3, whereas the preal-
location step can be appreciated in Figure 3.4.

To sum up, the simulations were obtained by running a script that iteratively
calls the Euler’s method function, which in turn iteratively calls the function that
I) computes the state variable variations by calling the single cell function and II)
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Figure 3.4: Function declaration for the single cell model function by Fabbri et al. [11]

calculates Igap. So there are 3 functions nested one inside the other. All of them
must satisfy steps 2, 3 and 4 of the GPU Coder prerequisites, but only the top level
one (in this case the function implementing Euler’s method) has to be converted,
since the tool automatically translates all the functions called inside the external
one.

The process is quite simple: once opened the GPU Coder tool, from the
"Apps" drop-down menu, it is possible to select the .m file of the function that
is wanted to be converted (Figure 3.5). By clicking on "next", the tool checks if
there are any issues inside the code (such as non-preallocated variables); if every-
thing is fine, the user will be asked to define the function input variables. This
can be made by hand, declaring the variable size and data type, or automatically,
by clicking on "Autodefine Input Types". Anyway, the input variables must exist
in the workspace. The result of this operation is shown in Figure 3.6. The next
step is a check for run-time issues, for which it is necessary to select "GPU" in
the radio button choice (Figure 3.7). The final step allows to actually generate
the CUDA code by selecting "MEX" as the Build Type (Figure 3.8). If this pro-
cess is successful, .cu files containing CUDA kernels are created and stored inside
the "codegen" folder in the current path, the MEX file that calls these kernels is
generated and a success message is displayed. More information, together with a
tutorial, can be found in MATLAB documentation [44].

Now that the MEX file has been built, it is possible to use it as a normal
MATLAB function, with its inputs and outputs: an example is shown in Figure
3.3, where GPU_2D_Euler_mex is called inside the main loop.

The usage of CUDA kernels enables great computational power: even though
the integration of a system of ODEs is a recursive problem, which is not paralleliz-
able, updating the state variables is an operation that can be made independently
for every cell. At every time step the variation of the state variables can be com-
puted simultaneously for every cell, and here lies the possibility of parallelization.
Simplifying, GPUs allow to speed up the integration of the equations since the
calculations are no more executed one after the other, but at the same time on dif-
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Figure 3.5: Step 1. Function selection

Figure 3.6: Step 2. Input definition

ferent cores.

As already mentioned, the very small integration step caused the state vector to
be too big for the GPU, this way forcing to simulate shorter time lapse in sequence.
This is critical because the operations of data transfer to and from the GPU, as
well as the memory reset, are very slow. Being called many times, they increased
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Figure 3.7: Step 3. Run-time errors check

Figure 3.8: Step 4. MEX file generation

the run time of the script, and thus represented the bottleneck of the simulations.
Anyway the performance of this solution was much better compared to solving
the ODEs without the GPU: a 1D 2 second simulation with 10 cell took 30 s to be
solved using the MEX file, but almost 1100 with only the CPU.
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3.4 GPU & CUDA
The "Compute Unified Device Architecture" (CUDA), is a general purpose par-
allel computing platform introduced by NVIDIA in 2006. This platform incor-
porates the architecture with which the GPUs are organized and the program-
ming language owning specific commands to exploit this architecture. Differently
from the CPUs in fact, GPUs are composed of thousands of arithmetic logic units
(ALUs), but lack in data caching and flow control (Figure 3.9). This is because
a GPU is designed to perform billions of repetitive, low-level tasks: the ratio be-
tween arithmetic and memory operations must be very high. This allows to exe-
cute the same routine on many data elements at the same time, namely in parallel,
this way hiding the memory access latency [46].

Figure 3.9: Comparison between CPU and GPU architectures [46]

These basic operations are executed by mini-programs known as "kernels",
which are constituted by "threads" running simultaneously. More threads are or-
ganized in batches called "thread blocks", in a number which is dependent on the
available memory and its access latency. Anyway, in this architecture the max-
imum number of threads per block is 512. More thread blocks, with the same
thread dimensions and executing the same kernel, form a "grid" (Figure 3.10,
left). This is made in order to perform more than 512 threads in parallel; however,
threads of different blocks don not share the same memory and therefore may not
be synchronized with one another. Indeed, the GPU memory is organized on three
different levels, as shown in Figure 3.10:

• Global memory: memory accessible by all the threads and also by the host
(CPU), which can allocate and de-allocate it. It is mainly used to initialize
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the data handled by the GPU;

• Shared memory: memory specific of each thread block. It is accessible by
all the threads inside the block and it is therefore much faster than the global
one. It exists only for the lifetime of the block;

• Local memory: private memory of every thread, assigned for as long as the
thread exists.

• Constant and texture memory: read-only memories accessible by all threads.

Figure 3.10: CUDA architecture [47]

Furthermore, GPUs work well with 1D, 2D and also 3D vectors (since the
thread blocks architecture was designed with this organization [45], Figure 3.10)
which are allocated on its memory. To efficiently use GPUs, all the operations
on data must be performed when they are stored inside the GPU memory. Data
should be transferred back to the local workspace only at the end of these oper-
ations [37]. This is because the transfer relies on the PCI bus, which has a high
bandwidth in terms of moving data from the host memory to other slots, but much
smaller than that of both GPU and CPU (see Figure 3.11). Furthermore, when
collecting data from the GPU to the local workspace, MATLAB waits for the
completion of every pending operation on the device [48].
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Figure 3.11: Comparison between PCI bus, CPU and GPU performances for the work-
station used in this work

This weakens the advantage - in terms of performance - granted by the GPU,
so it is a best practice to limit the transfers to and from the GPU device, if possi-
ble. Obviously, data transfer rate also depends on the hardware in general (moth-
erboard, CPU, chip set) in addition to the specifics of the GPU.

3.5 Cellular coupling
To study the effect that different gap junction conductances had on the coupling
of the cells, and therefore on their synchronization in terms of frequency, several
values of resistance were used: 10, 100, 1000, 10000 and → ∞ MΩ ·m. The
resistance is expressed relatively to meters (and so as ρ , resistivity) since these
models do not consider the dimensions of the cells, only resolving a system of
ODEs. The values used are in accordance to the range reported by Inada et al.
[14] for rabbit SAN cells, since no data about human SAN cells could be found
in the literature. Furthermore, every cell was connected to the other with the same
resistance, simulating an homogeneous conduction system. This is far from the
physiological condition, but allows to simplify the model and to focus on the effect
of other parameters, such as the cellular heterogeneity.

3.6 Cellular heterogeneity
To mimic the physiological variability that can be found inside human tissues, a
certain degree of randomness was considered for the main conductances, perme-
abilities and maximal activities of the cell model by Fabbri et al. [11]. The pa-
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Permeability [nA/mM] Conductance [µS] Current [nA]

PCaL 0.4578 gKACh 0.00345 INaKmax 0.08105
PCaT 0.04132 gKr 0.00424 NaCa 3.343

gKs 0.00065
gKur 1.539 ·10−4

gNa 0.0223
g f 0.00427
gto 3.5 ·10−3

Table 3.1: Nominal values of the model parameter that have been randomized.

rameters considered were: PCaL, PCaT , gKACh, gKr, gKs, gKur, gNa, g f , gto, INaKmax,
KNaCa, since these are the key players in the onset of the action potential in the
sinoatrial node. The standard deviations considered were: 0.05, 0.1, 0.1873, 0.3
and 0.4. The 0.1873 value was used since it has been reported as a physiological
level of heterogeneity in the rabbit SAN [39]. Once again, no data were found for
human SAN, so this value was adopted also because a comparison with the results
of the thesis work of Jonathan Koussis [40] and Chiara Campana [41] could be
made.

Starting from the nominal values in Table 3.1, permeabilities, conductances
and maximum currents were randomized using a log-normal distribution, this way
avoiding negative values. This distribution was achieved by exponentially trans-
forming the random numbers obtained through MATLAB randn built-in function.
Multiplication of this factor by the different standard deviation values, provided
the desired variability of cellular parameters. The same random generator seed
was used among different simulations in order to investigate the effects of cou-
pling and heterogeneity. The code used for this calculation is shown below.

standardConductances = [PCaL,PCaT ,gKACh,gKr,gKs, ...

gKur,gNa,g f ,gto, iNaKmax,KNaCa];
scaling = exp(σ ∗ randn(1, length(standardConductances)));
heterConductances = standardConductances.∗ scaling;

Obviously, another seed would have provided other results, which anyway
would not have been statistically different.

3.7 Features extraction
The main features extracted and analized were the Cycle Length (CL, in ms) and
the Action Potential Amplitude (APA, in mV). The first allows to characterize the
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Cycle Length Action Potential Amplitude
1D 2D 1D 2D

X limits [300, 2700] ms [500, 6000] ms [45, 125] mV [45, 125] mV
Y limits [0, 100] cells [0, 2500] cells [0, 100] cells [0, 2500] cells
Bin width 100 ms 100 ms 5 mV 5 mV

Table 3.2: Histogram properties used to show extracted features.

response of the cells in terms of frequency, that is Heart Rate (HR, in bpm); the
latter gives information about the current available to the cells. This two features
- especially CL - were used to make comparisons between the single cells results
and the 1D and 2D results. CL is computed as the difference in time between the
last two Overshoots (OS) of the AP of every cell, since at the end of the 20 s the
cells are supposed to be in steady-state. APA is obtained as the difference between
the most positive potential (the OS), and the most negative one (MDP: Maximum
Diastolic Potential).

Figure 3.12: Features extracted from the APs. OS, Overshoot: maximum value of the
action potential (in mV); MDP, Maximum Diastolic Potential: maximum absolute value
of the diastolic phase (in mV); APA, Action Potential Amplitude: difference between max-
imum and minimum values of the AP (in mV); CL, Cycle Length: time difference between
two consecutive OS (in ms).

To show the results, histograms for both CL and APA were made, fixing x and
y axes limits and bin width and number, since this allowed to compare WT and
DM condition data (Table 3.2). All the x axes in the 2D case have larger limits
since the dispersion was bigger with respect to 1D. Both in 1D and 2D some y
axes can have instead restricted limits, since in some cases the bins were hardly
visible.

The results coming from these parameter settings were then used as a sensi-
tivity analysis to get the values of ρ and σ that provided the most realistic re-
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sults in terms of CL, particularly. Another important feature, especially in multi-
dimensional models, is the Conduction Velocity (CV, in cm/s), since this feature
is not assessable in 0D. CV was computed as the difference in time between the
occurrence of the zero-crossing of the AP of the cell that triggered the propaga-
tion and that of a cell distant 20 position from it (in the 2D case, x and y velocity
were obtained). To get a value in cm/s, the cells were supposed to be 50µm long
(central SAN cell); the space between 20 of them (1 mm) was then divided by the
time difference that occurred for the 1st and 20th cell to be at the same voltage
(0 mV with a tolerance of 0.5 mV). The 1st cell is the earliest activation point of
the last AP occurrence on the 20 s. CV allowed to evaluate another effect of the
mutations and the most physiologic value of ρ , since this parameter was set in
order to obtain a CV in the range reported in literature (section 1.1).

Therefore, the final part of the results (Chapter 4), will discuss the data coming
from the simulations run with the tuned parameters settings.





Chapter 4

Results

In this chapter, the results of the 1D simulations will be presented first, followed
by the 2D case. In both sections, the data obtained in the control (WT) condi-
tion and then the mutated ones (DM) will be shown; the results at different level
of standard deviation - starting from the homogeneous case - are reported in se-
quence.

4.1 1D Model Analysis

4.1.1 1D Parameter Randomization
In Figure 4.1 it is possible to appreciate the randomized parameters distributions
of the single cell human SAN model. The parameters taken into account were:
PCaL, PCaT , gKACh, gKr, gKs, gKur, gNa, g f , gto, iNaKmax and KNaCa, for increasing
values of standard deviation σ = 0.05, 0.1, 0.1873, 0.3, 0.4. Even if in this case
the cells were few (100), it can be seen that the distributions have a log-normal
trend around the nominal value of the parameters. In addition, the bigger the σ ,
the wider and more dispersed the distribution.

For the two analysed conditions (WT and DM), all the distributions were the
same except the g f one, which in the DM scenario was scaled by a factor 0.08
with respect to the control condition. Consequently, the nominal value went from
0.00427µS to 3.42 ·10−4 µS. The maximum, mean and minimum values for this
conductance are reported in Tables 4.1 and 4.2 respectively for the WT and DM
conditions.

51
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Figure 4.1: Comparison between the distributions of the randomized parameters in the
study for the WT condition at different levels of standard deviation. The DM condition has
the same distribution of the WT one, except for g f which is multiplied by a factor 0.08.
Exact values for g f are reported in Tables 4.1 and 4.2 respectively for the WT and DM
conditions.

σ

gf 0.05 0.1 0.1873 0.3 0.4
mean 0.00429 0.00432 0.00439 0.00455 0.00475
min 0.00377 0.00333 0.00268 0.00203 0.00157
max 0.00511 0.00611 0.08346 0.01249 0.01786

Table 4.1: Conductance values for funny current at different values of standard deviation;
1D WT condition (nominal value g f = 0.00427µS)

σ

gf 0.05 0.1 0.1873 0.3 0.4
mean 3.43 ·10−4 3.46 ·10−4 3.52 ·10−4 3.64 ·10−4 3.80 ·10−4

min 3.02 ·10−4 2.66 ·10−4 2.14 ·10−4 1.62 ·10−4 1.26 ·10−4

max 4.09 ·10−4 4.89 ·10−4 6.68 ·10−4 9.99 ·10−4 0.0014

Table 4.2: Conductance values for funny current at different values of standard deviation;
1D DM condition (nominal value g f = 3.42 ·10−4 µS)
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4.1.2 1D Wild Type condition
The randomization of the parameters led to the expected cellular heterogeneity:
if uncoupled, the cells beat at their own intrinsic frequency, since they do not un-
dergo the influence of the neighbouring cells. Therefore, CL and APA appear dis-
tributed around the control value depending on the standard deviation with which
the model was fed (Figure 4.2). For CL this value was 814 ms, whereas for APA
it was 85.3 mV, namely the values of the single cell model.

The CL distribution has a shape that resembles the log-normal one. However,
being the CLs the output of a highly non-linear system, it can not be stated that
CL and APA have this kind of distribution (as the APA graph in Figure 4.2 on the
right shows). It is only possible to say that the distributions are more dispersed if
the heterogeneity is higher (bigger σ ) and that the CL one is asymmetric.

Figure 4.2: CL (left) and APA (right) distributions for uncoupled cells for different values
of standard deviation (σ = 0.05,0.1,0.1873,0.3,0.4) and nominal values (CL = 814 ms,
APA = 85.3 mV, dashed lines); 1D WT condition.

The behaviour is totally different if the cells are coupled with different values
of resistance: in general lower resistivity (ρ), which means higher conductance in
the gap junctions, allows the cells to synchronize the pacing frequency and phase,
whereas a higher ρ prevents the cells from beating together, providing a dispersion
in terms of frequency and phase between the cells. For intermediate values of ρ ,
the synchronization happens in terms of frequency but not of phase. Generally,
the bigger is the given σ , the larger is the dispersion, but when ρ is under a certain
level, the dispersion is almost zero, since all the cells are synchronized.
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Homogeneous cells (σ = 0)

As can be seen in Figure 4.3, CL is the same for every cell if they are uncoupled.
This is expected, as expected is its value, equal to the one of the single cell case
(814 ms). Also with ρ = 10,100,1000 MΩ ·m all the cells are coupled and no
propagation can be seen between them (814 ± 1 ms, 813 ± 1 ms and 814 ± 1 ms
respectively). For ρ = 10000 MΩ ·m, CLs appear distributed on different values,
but this is only for the fact that some of them are less than 800 ms and therefore fall
inside another bin. The obtained standard deviation (7 ms) does not justify indeed
the presence of two different bins. Anyway, this little dispersion is present even if
the cells are homogeneous because they started from different initial conditions.
They tried to influence each other without completely succeeding in synchronizing
because of the poor coupling.

Figure 4.3: Histograms for 1D WT homogeneous condition: CL (top, bin width =
100 ms) and APA (bottom, bin width = 5 mV) at different gap junctions coupling
(ρ = 10,100,1000,10000 and→ ∞ MΩ ·m from left to right). Vertical orange lines rep-
resent the mean value of the distributions, whose value is displayed on the right.

σ = 0.05

Introducing a variability in the model parameters provides cells with different be-
haviour: some have a higher intrinsic pacing frequency with respect to the others.
This can be appreciated in Figure 4.4 on the right, where the results for uncoupled
cells are shown: in this case indeed, cells do not affect each other and therefore
keep on beating at their own frequency; the values of CL are therefore distributed
around a mean value of 811 ms. Notably, in all the other cases the cells manage to
synchronize, but at higher frequencies: 799 ± 1 (ρ = 10 MΩ ·m), 783 ± 1 (ρ =
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100 MΩ ·m), 771 ± 11 (ρ = 1000 MΩ ·m) and 727 ± 14 (ρ = 10000 MΩ ·m)
ms. Uncoupled cells have a CL of 811 ± 65 ms.

Figure 4.4: Histograms for 1D WT condition with σ = 0.05: CL (top, bin width
= 100 ms) and APA (bottom, bin width = 5 mV) at different gap junctions coupling
(ρ = 10,100,1000,10000 and→ ∞ MΩ ·m from left to right). Vertical orange lines rep-
resent the mean value of the distributions, whose value is displayed on the right.

σ = 0.1

In this case, cellular heterogeneity is already too big to allow cells coupled with
medium-high resistivities (ρ = 1000,10000 MΩ ·m) to completely synchronize
(Figure 4.5, CL = 704 ± 27 and 624 ± 31 ms respectively). This happens despite
the fact that cells that beat at higher frequencies (with respect to the previous
results) are present: CL tends to be shorter, since faster-pacing cells try to drive
all the others, but are still too weak and too few to achieve this driving. For ρ = 10
and 100 MΩ ·m, this does not happen since the role of these high frequency cells is
resized by the better coupling: being the normal-pacing cells in a greater number,
their contribution predominates (CL = 773± 1 and 746± 1 ms). Uncoupled cells
have a mean CL of 820 ± 147 ms.

σ = 0.1873

As already said, this is the degree of heterogeneity that can be found inside the
rabbit SAN [39]. In this case, the effect seen with σ = 0.1 is clearer (Figure
4.6), with the difference that now there are more and stronger fast-pacing cells
that manage for ρ = 1000 MΩ ·m to synchronize all the others. The frequency at
which the cells synchronize is indeed higher (CL = 544 ± 1 ms) than the mean
frequency of the population (uncoupled condition, CL = 808 ± 228 ms). For the
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Figure 4.5: Histograms for 1D WT condition with σ = 0.1: CL (top, bin width =
100 ms) and APA (bottom, bin width = 5 mV) at different gap junctions coupling
(ρ = 10,100,1000,10000 and→ ∞ MΩ ·m from left to right). Vertical orange lines rep-
resent the mean value of the distributions, whose value is displayed on the right.

same reason this happens also for ρ = 100 MΩ ·m (CL = 681 ± 1 ms), and in
a lower extent also for ρ = 10 MΩ ·m (CL = 723 ± 1 ms), since the role of the
normal-pacing cells is still predominant with low ρ . When ρ = 10000 MΩ ·m,
the contribution of the faster cells shifts the CL towards smaller values (581 ± 72
ms), but the coupling is too weak to allow a perfect synchronization.

Figure 4.6: Histograms for 1D WT condition with σ = 0.1873: CL (top, bin width =
100 ms) and APA (bottom, bin width = 5 mV) at different gap junctions coupling (ρ =
10,100,1000,10000 and→ ∞ MΩ ·m from left to right). Vertical orange lines represent
the mean value of the distributions, whose value is displayed on the right.
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σ = 0.3

With this level of heterogeneity, cells still manage to synchronize at medium-low
resistivities, but - especially for ρ = 1000 MΩ ·m - at a higher frequency (CL is
653 ± 1 ms for ρ = 10 MΩ ·m, 589 ± 1 ms for ρ = 100 MΩ ·m, 422 ± 1 ms
for ρ = 1000 MΩ ·m, Figure 4.7). For high resistivity (ρ = 10000 MΩ ·m) CLs
are less spread than if the cells are uncoupled, but no synchronization could be
achieved by far (CL = 570± 136 ms). Uncoupled cells beat at a CL of 790± 328
ms.

Figure 4.7: Histograms for 1D WT condition with σ = 0.3: CL (top, bin width =
100 ms) and APA (bottom, bin width = 5 mV) at different gap junctions coupling
(ρ = 10,100,1000,10000 and→ ∞ MΩ ·m from left to right). Vertical orange lines rep-
resent the mean value of the distributions, whose value is displayed on the right.

σ = 0.4

Even with the maximum variability given as an input to the 1D model, the cells
synchronize in terms of frequency at medium-low resistivities, even if this hap-
pens at a very short mean CL for a human cell (CL is 596 ± 1 ms for ρ =
10 MΩ ·m, 519 ± 1 ms for ρ = 100 MΩ ·m, 370 ± 1 ms for ρ = 1000 MΩ ·m).
For ρ = 10000 MΩ ·m instead, only a very partial coupling can be obtained, lead-
ing to a very large frequency distribution (CL = 582 ± 282 ms), which is anyway
smaller than the one that uncoupled cells have (CL = 732 ± 371 ms), because of
the residual interaction between them.
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Figure 4.8: Histograms for 1D WT condition with σ = 0.4: CL (top, bin width =
100 ms) and APA (bottom, bin width = 5 mV) at different gap junctions coupling
(ρ = 10,100,1000,10000 and→ ∞ MΩ ·m from left to right). Vertical orange lines rep-
resent the mean value of the distributions, whose value is displayed on the right.

4.1.3 1D WT Model Results at a glance

The graphs in Figures 4.9 and 4.10 sum up what it has been shown so far. At the
increase in gap junctions resistance, which reflects a poorer coupling between the
cells, it corresponds an increase in the dispersion and a decrease in the duration
of the CL. The effect on the dispersion is particularly clear for high resistivities
(ρ = 10000 MΩ ·m), for which cells are too poorly coupled to achieve a good
synchronization. For lower values of ρ instead, cells synchronize completely at
every level of heterogeneity (Figure 4.9a). Moreover, the decrease in cellular cou-
pling increases the importance of the cells that have a higher intrinsic frequency.
On one hand, in this condition they are protected from the slower ones - which
would have an inhibitory effect, being them in a more hyperpolarized phase; on
the other hand, they manage to deliver a sufficient depolarizing current to their
neighbouring cells. This role persists as long as the coupling is strong enough,
whereas it ends for high resistivities (ρ = 10000 or ρ =→∞ MΩ ·m), where high
frequency cells are unable to stimulate the other ones. The trends for the APA are
similar (Figure 4.9b), but they surely show a bigger variability also at low resis-
tivities, as it is assessable from the previous histograms. This result highlights the
fact that cells have a minor tendency to couple their APA with the respect to the
above discussed CL.

The effect of the heterogeneity is similar but with some peculiarities (Figure
4.10a): in general, to higher standard deviations corresponds - apart from the
expected larger dispersion in the features - a lower mean CL, since there are more
fast-pacing cells that tend to drive the entire fiber model. Opposite to this, it is the
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(a) (b)

Figure 4.9: Trends of CL and APA (± standard deviation) with respect to resistivity for
different levels of cellular heterogeneity (σ = 0.05,0.1,0.1873,0.3 and 0.4) and nominal
values (CL = 814 ms, APA = 85.3 mV, dashed lines); 1D WT condition.

result for ρ = 10000 MΩ ·m, where at high standard deviations there seems to be
a "saturation" effect: from σ = 0.1873, through σ = 0.3 to σ = 0.4 the mean CL
remains more or less the same (581, 570, 582 ms respectively). This is probably
due to the fact that even if fast-pacing cells are more and faster, the poor coupling
prevents them from delivering the stimulus current to other cells beyond a certain
level. About the APA, Figure 4.10b confirms the previously reported dispersion of
this feature even at low ρ . A notable thing is that for ρ = 10000 MΩ ·m, the curve
has the same trend as the other ones - contrarily to the CL - showing a decrease in
mean APA at the increase in σ . An excessive decrease in APA can be dangerous,
since this could mean that the MDP is too high (i.e. depolarized), leading to a
minor contribution of I f and therefore to a longer CL, being this current activated
at low potentials. A reduced amplitude could also be due to a lower OS, but this
condition is less critical, even if it highlights an increased struggle by the cells.

If the cells are uncoupled, with increasing values of heterogeneity, many cells
progressively stop beating. This is the reason why in an uncoupled condition, CL
is shorter at high σ and this also explains why in some cases the distributions of
CL are less dispersed for bigger values of σ . For example, cell number 26 has a
CL of 1483 ms at σ = 0.1873, but stops beating at σ = 0.3 (Figure 4.11).
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(a) (b)

Figure 4.10: Trends of CL and APA (± standard deviation) with respect to standard
deviation for different values of gap junctions resistivity (ρ = 10,100,1000,10000 and
→ ∞ MΩ ·m) and nominal values (CL = 814 ms, APA = 85.3 mV, dashed lines); 1D WT
condition.

Figure 4.11: Color maps of the 1D WT model (ρ→ ∞ MΩ ·m): the color blue represents
the cells that do not show action potentials, yellow represents cells with electrical activity.
With the increase of cellular heterogeneity, the number of non-excitable cells grows: 0
for σ = 0.05 and 0.1; 6 (6 %) for σ = 0.1873; 13 (13 %) for σ = 0.3; 22 (22 %) for
σ = 0.4. Red squares highlight cell number 26, which stops beating in the transition
between σ = 0.1873 and σ = 0.3.

4.1.4 1D Double Mutant condition

The distributions of the features appear similar to the wild type condition, but with
the difference that in this case the mutation affects the mean duration of the CL.
In Figure 4.12 indeed, it can be noticed that the mode values of the distributions
depart from the dashed line of the nominal control value. For homogeneous cells,
the mean CL is 1019 ms, with respect to 814 ms (+20.1 %) of the healthy con-
dition. This is expected, since it is just the replication of the single cell result.
If the cells are coupled with different conductances instead, the model behaves
similarly to the control condition: the pacing frequency tends to increase propor-
tionally with the growth of heterogeneity. Also the rise in gap junction resistivity
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leads to a faster pacing, but only until this parameter is not too big for the cells to
interact with one another.

Figure 4.12: CL (left) and APA (right) distributions for uncoupled cells for different values
of standard deviation (σ = 0.05,0.1,0.1873,0.3,0.4) and nominal values (CL = 814 ms,
APA = 85.3 mV, dashed lines); 1D DM condition.

Homogeneous cells (σ = 0)

As previously stated, uncoupled cells beat all with a CL of 1019 ms; they do the
same if they are coupled with resistivities of 10, 100 and 1000 MΩ ·m, therefore
in this conditions they are synchronized, even if at a lower frequency with re-
spect to the wild type because of the mutations (Figure 4.13). Instead, if cells are
connected through low-conductance gap junctions (ρ = 10000 MΩ ·m), they are
slightly faster (CL = 1010 ± 9 ms).

σ = 0.05

With this variability uncoupled cells (ρ → ∞ MΩ ·m) have a mean CL of 1017 ±
93 ms; thanks to the coupling, the dispersion and the mean frequency decreases
with the concurrent decrease in resistivity: cells coupled with ρ = 10000 MΩ ·m
have CL = 901 ± 22 ms, for ρ = 1000 MΩ ·m, CL is 966 ± 15 ms and for
ρ = 100 MΩ ·m, CL = 977± 1 ms (Figure 4.14). For ρ = 10 MΩ ·m, CLs appear
distributed on different values, but this is only for the fact that some of them are
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Figure 4.13: Histograms for 1D DM condition homogeneous condition: CL (top, bin
width = 100 ms) and APA (bottom, bin width = 5 mV) at different gap junctions cou-
pling (ρ = 10,100,1000,10000 and→∞ MΩ ·m from left to right). Vertical orange lines
represent the mean value of the distributions, whose value is displayed on the right.

slightly more than 1000 ms and therefore fall inside another bin, being the mean
value 999 ms. The obtained standard deviation (1 ms) does not justify indeed the
presence of two different bins.

Figure 4.14: Histograms for 1D DM condition with σ = 0.05: CL (top, bin width =
100 ms) and APA (bottom, bin width = 5 mV) at different gap junctions coupling (ρ =
10,100,1000,10000 and→ ∞ MΩ ·m from left to right). Vertical orange lines represent
the mean value of the distributions, whose value is displayed on the right.

σ = 0.1

The uncoupled cells distribution (Figure 4.15) highlights that there are very slow
cells (CLmax = 2573 ms) that contribute to extend the duration of the mean cy-
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cle length, which is now 1046 ± 257 ms. Synchronization is reached for ρ <=
1000 MΩ ·m, but at a higher frequency for poorer couplings: CL = 967 ± 1 ms
(ρ = 10 MΩ ·m), CL = 928 ± 1 ms (ρ = 100 MΩ ·m) and CL = 859 ± 1 ms
(ρ = 1000 MΩ ·m). Even if faster cells try to drive all the other ones at a higher
frequency, for ρ = 10000 MΩ ·m a uniform timing is not achieved (CL = 756 ±
46 ms).

Figure 4.15: Histograms for 1D DM condition with σ = 0.1: CL (top, bin width
= 100 ms) and APA (bottom, bin width = 5 mV) at different gap junctions coupling
(ρ = 10,100,1000,10000 and→ ∞ MΩ ·m from left to right). Vertical orange lines rep-
resent the mean value of the distributions, whose value is displayed on the right.

σ = 0.1873

The previous result is emphasized: for ρ <= 1000 MΩ ·m, synchronization is still
achieved, but at higher frequencies because of the heavier role of fast-pacing cells:
CL = 903 ± 1 ms with ρ = 10 MΩ ·m, CL = 845 ± 1 ms with ρ = 100 MΩ ·m
and CL = 662 ± 1 ms with ρ = 10 MΩ ·m. A wide distribution is now present
if the cells are poorly coupled ρ = 10000 MΩ ·m: CL is 689 ± 127 ms. Even if
some cell that had a long CL is "dead" (i.e. it lost his spontaneous activity) now,
for ρ → ∞ MΩ ·m there is still a sufficient number of them able to provide as an
output a mean CL that is longer than the homogeneous case: 1040 ± 463 ms vs
1019 ms. An analysis on non-excitable cells, with the comparison between WT
and DM condition, will be made at the end of Section 4.2.5.

σ = 0.3

Opposite to what just stated for the σ = 0.1873 case, with σ = 0.3 many slow
cells are no more excitable, therefore the mean CL in the uncoupled condition
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Figure 4.16: Histograms for 1D DM condition with σ = 0.1873: CL (top, bin width =
100 ms) and APA (bottom, bin width = 5 mV) at different gap junctions coupling (ρ =
10,100,1000,10000 and→ ∞ MΩ ·m from left to right). Vertical orange lines represent
the mean value of the distributions, whose value is displayed on the right.

is shorter than the homogeneous case: 906 ± 354 ms (Figure 4.17). The ρ <=
10000 MΩ ·m case has, as expected, a shorter and more dispersed CL than be-
fore (645 ± 174), whereas with the other parameters settings, synchronization is
always reached (CL = 814 ± 1 ms for ρ = 10 MΩ ·m, CL = 724 ± 1 ms for
ρ = 100 MΩ ·m and CL = 457 ± 1 ms for ρ = 1000 MΩ ·m).

Figure 4.17: Histograms for 1D DM condition with σ = 0.3: CL (top, bin width
= 100 ms) and APA (bottom, bin width = 5 mV) at different gap junctions coupling
(ρ = 10,100,1000,10000 and→ ∞ MΩ ·m from left to right). Vertical orange lines rep-
resent the mean value of the distributions, whose value is displayed on the right.
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σ = 0.4

Even with the maximum standard deviation imposed, mutated cells achieve a com-
plete synchronization in frequency if the resistivity is less or equal to 1000 MΩ ·m,
just as the healthy ones do (CL = 741 ± 1 ms for ρ = 10 MΩ ·m, CL = 619 ± 1
ms for ρ = 100 MΩ ·m and CL = 384± 1 ms for ρ = 10 MΩ ·m, Figure 4.18). As
usual instead, a resistivity of ρ = 10000 MΩ ·m represents a too poor coupling for
the cells to beat at the same frequency, therefore CL is widely spread (662 ± 554
ms), in this case more than the uncoupled condition (CL = 793 ± 306 ms). This
is interestingly due to the fact that the 52nd cell of the fiber model has a last beat
with a remarkably long CL (5248 ms; in the panel for ρ = 10000 MΩ ·m in Fig-
ure 4.18 x axis limits were expanded to 5400 ms in order to show this spread bin).
If this cell is uncoupled from other cells, it remains silent (Figure 4.19) since its
parameters do not allow the onset of the AP (Table 4.3); if anyway it receives a lit-
tle depolarizing contribution from neighbouring cells, it is able to show an action
potential. The more compact distribution of the uncoupled condition is therefore
explained by the absence of this cell, that acts as an outlier on the distribution of
the ρ = 10000 MΩ ·m case. Without its contribution indeed, the mean CL goes
down to 614 ms (-7.2 %), but mostly its standard deviation becomes 294 ms (-46.9
%).

Figure 4.18: Results for 1D DM condition with σ = 0.4: CL (top, bin width = 100
ms) and APA (bottom, bin width = 5 mV) at different gap junctions coupling (ρ =
10,100,1000,10000 and→ ∞ MΩ ·m from left to right). Vertical orange lines represent
the mean value of the distributions, whose value is displayed on the right.

Figure 4.20 shows the progressive decrease in the number of autorithmic cells
due to increased cellular heterogeneity.
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Permeability [nA/mM] Conductance [µS] Current [nA]

PCaL 0.5538 gKACh 0.00348 INaKmax 0.12257
PCaT 0.07269 gKr 0.00416 NaCa 3.757

gKs 0.000128
gKur 1.255 ·10−3

gNa 0.0223
g f 0.00453
gto 6.1 ·10−3

Table 4.3: Parameters for the 52nd cell of the 1D DM condition (σ = 0.4), with a CL of
5248 ms

Figure 4.19: Activity of the 52nd cell of the fiber model (σ = 0.4, 1D DM condition): if
this cell receives a minimal contribution (ρ = 10000 MΩ ·m, top) from the neighbouring
cells, it is able to achieve an action potential; instead, if it is totally uncoupled, it does not
show any electrical activity (ρ → ∞ MΩ ·m, bottom).

4.1.5 1D DM Model Results at a glance
Similarly to the WT condition, the graphs in Figures 4.21 and 4.22 sum up what
has been told so far for the mutated case. The trends of CL with respect to resis-
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Figure 4.20: Color maps of the 1D DM model (ρ→∞ MΩ ·m): the color blue represents
the cells that do not show action potentials, yellow represents cells with electrical activity.
With the increase of cellular heterogeneity, the number of non-excitable cells grows: 0 for
σ = 0.05; 1 (1 %) for σ = 0.1; 8 (8 %) for σ = 0.1873; 20 (20 %) for σ = 0.3; 30 (30
%) for σ = 0.4.

tivity and standard deviation are similar to that of the wild type condition (Figures
4.21a and 4.22a): I) decreasing the cellular coupling (i.e. increasing ρ) provides a
higher frequency since faster cells are not inhibited by slower ones because of the
protection of the poorer coupling (Figure 4.21a). This is true until ρ is too high
(10000 MΩ ·m), condition in which the coupling is too poor to allow cells to in-
fluence each other. In this case indeed the standard deviation of the parameters is
almost as high as in the uncoupled condition. II) An increase in dispersion of cel-
lular parameters gives as a result a shorter CL, namely a higher pacing frequency
(Figure 4.22a). This is due to the fact that slow cells become non-excitable with
high σ ; furthermore, if the cells are coupled, the main role is played by the faster
ones which stimulate the others. Thus, mean CL decreases for these two reasons.
ρ = 10000 MΩ ·m is an exception also in this condition: this resistivity is too
high to allow fast cells to decrease the mean frequency beyond a certain degree
(689, 645 and 662 ms for σ = 0.1873, 0.3 and 0.4 respectively.): mean CL is
not shortened proportionally, but it "saturates". Regarding APA, nothing different
from the WT condition was obtained with the mutation (Figures 4.21b and 4.22b):
for low or high resistivities, mean APA is more similar to the nominal value than
for ρ = 1000 MΩ ·m, since in those cases the cells are either totally coupled or
can not influence each other in a relevant way. Halfway these two conditions, with
ρ = 1000 MΩ ·m and a high degree of σ , for which the electrical load is highly
heterogeneous, cells influence each other and therefore deliver a big current, thus
reducing the amplitude of the AP.

The main difference with respect to the WT condition, as appears in Fig-
ures 4.21a and 4.22a, is the mean intrinsic CL of the cells, which in this case
is substantially longer due to the mutations, as it was already obtained with the
single cell model. However, high cellular heterogeneity and medium couplings
(ρ = 1000 MΩ ·m), provide even in this case very short mean CLs, up to 384
ms. This value is similar to the maximum value of the mean CL obtained for the
healthy condition (370 ms), meaning that cellular heterogeneity strongly compen-
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(a) (b)

Figure 4.21: Trends of CL and APA (± standard deviation) with respect to resistivity for
different levels of cellular heterogeneity (σ = 0.05,0.1,0.1873,0.3 and 0.4) and nominal
control values (CL = 814 ms, APA = 85.3 mV). 1D DM condition.

(a) (b)

Figure 4.22: Trends of CL and APA (± standard deviation) with respect to standard
deviation for different values of gap junctions resistivity (ρ = 10,100,1000,10000 and
→ ∞ MΩ ·m) and nominal control values (CL = 814 ms, APA = 85.3 mV). 1D DM con-
dition.

sates for the effect of the mutation in both conditions. With this coupling, mean
CL passed from 1019 ms (homogeneous case) to 384 ms (σ = 0.4), with a vari-
ation of −62.3%, bigger than the −54.5% of the WT (from 814 to 370 ms). The
fact that cells have different parameters constitutes, as one would expect, a factor
of robustness of the SAN system, since it reduces the detrimental effect of a loss
of function of a fundamental current as I f is.
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Considering the supposed physiological values of heterogeneity (σ = 0.1873)
and gap junctions resistivity (ρ = 100 MΩ ·m, corresponding to a conductivity
of 10nS/m, which is halfway the interval reported for the rabbit SAN [14]), it
seems that the contribution of fast-pacing cells is too strong, bringing the CL of
the WT condition from 814 to 681 ms and the one of the DM condition from
1019 to 845 ms. This could suggest that the human SAN has a lower degree
of heterogeneity than the rabbit one (σ = 0.1873). Anyway this is unrealistic,
since this feature represents a factor of robustness of the functioning of biological
systems in general, and the human heart is probably more reliable than the rabbit
one (but this is just an hypothesis).

More likely, this phenomenon is due to the simplifications made in the model,
first of all having considered only one dimension instead of a 3D structure with a
complex shape. If indeed the fast-pacing cells are surrounded by normal-pacing
ones (as in a 3D tissue), the latters would have an inhibitory effect on them, since
they would constitute a bigger load. Thus, they would slow fast-pacing cells down
and therefore they would provide a mean CL more similar to the nominal one.

This hypothesis is supported by the results of the 2D simulations, which will
be shown below.
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4.2 2D Model Analysis

4.2.1 2D Parameter Randomization
Figure 4.23 shows the log-normal distributions of the parameters that have been
randomized. Being now the number of cells equal to 2500, the shape of the dis-
tributions appears much smoother than the 1D case. WT and DM condition dis-
tributions coincides except for the g f one, which was in the latter case multiplied
by a factor 0.08 to simulate the effect of the mutations, as already did in 1D. The
maximum, mean and minimum values for this conductance can be found again in
two tables: Table 4.4 and Table 4.5 respectively for the WT and DM conditions.

Figure 4.23: Comparison between the distributions of the parameters randomized in the
study for the WT condition at different standard deviation levels. The DM condition has
the same distribution of the WT one, except for g f which is multiplied by a factor 0.08.
Exact values for g f are reported in Tables 4.4 and 4.5 respectively for the WT and DM
conditions.

4.2.2 2D Wild Type condition
The uncoupled cells distributions for CL and APA are shown in Figure 4.24:
higher levels of standard deviation (heterogeneity) lead to more widely spread
distributions around the nominal values (814 ms for CL and 85.3 mV for APA).
This is because cells have their own intrinsic frequency and with ρ → ∞ MΩ ·m
can not interact with one another to synchronize their pacing or amplitude.
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σ

gf 0.05 0.1 0.1873 0.3 0.4
mean 0.00428 0.00428 0.00438 0.00451 0.00466
min 0.00366 0.00302 0.00233 0.0015 9.22 ·10−4

max 0.00500 0.00609 0.00835 0.01111 0.01516

Table 4.4: Conductance values for funny current at different values of standard deviation;
WT condition (nominal value g f = 0.00427µS)

σ

gf 0.05 0.1 0.1873 0.3 0.4
mean 3.42 ·10−4 3.44 ·10−4 3.49 ·10−4 3.57 ·10−4 3.70 ·10−4

min 2.93 ·10−4 2.51 ·10−4 1.91 ·10−4 1.35 ·10−4 9.88 ·10−5

max 4.00 ·10−4 4.69 ·10−4 6.18 ·10−4 8.83 ·10−4 0.0012

Table 4.5: Conductance values for funny current at different values of standard deviation;
DM condition (Nominal value g f = 3.42 ·10−4 µS)

Figure 4.24: CL (left) and APA (right) distributions for uncoupled cells for different values
of standard deviation (σ = 0.05,0.1,0.1873,0.3,0.4) and nominal values (CL = 814 ms,
APA = 85.3 mV, dashed lines); 2D WT condition.

If on the contrary cells are coupled together, they will show different be-
haviours depending on the resistivity of the gap junction they were connected
with. Similarly to the 1D case indeed, higher ρ hinder synchronization between
cells in terms of frequency and phase. The heterogeneity has a dual effect in-
stead: on one hand it provides more fast-pacing cells which are able to drive the
other ones; on the other hand it spreads the distributions of CL and APA (Figure
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4.24), thus making it more difficult for the cell to couple. Therefore the final result
depends both on ρ and σ .

The results for the specific cases, at different levels of standard deviation, will
be now shown and discussed.

Homogeneous cells (σ = 0)

The uncoupled condition presents as expected a mean CL of 814 ms, as every
cell was set with the nominal values of all the model parameters. For ρ = 10,100
and 1000 MΩ ·m CL has a slightly different duration (815 ± 1 ms, 813 ± 1 ms
and 813 ± 1 ms respectively) because of the different initial conditions. An al-
most complete synchronization is achieved even with ρ = 10000 MΩ ·m, but at a
surprisingly high frequency: CL = 547 ± 19 ms (Figure 4.25).

Figure 4.25: Histograms for 2D WT homogeneous condition: CL (top, bin width =
100 ms) and APA (bottom, bin width = 5 mV) at different gap junctions coupling
(ρ = 10,100,1000,10000 and→ ∞ MΩ ·m from left to right). Vertical orange lines rep-
resent the mean value of the distributions, whose value is displayed on the right.

σ = 0.05

An almost perfect synchronization is reached in all cases (Figure 4.26), only ρ =
10000 MΩ ·m shows few cells not timed to the other ones (even if they all fall
in the same bin): CL = 560 ± 11 ms. For lower resistivities, synchronization is
totally achieved: CL = 813 ± 1 ms (ρ = 10 MΩ ·m), CL = 812 ± 1 ms (ρ =
100 MΩ ·m) and CL = 803 ± 2 ms (ρ = 1000 MΩ ·m, the two bins are again
explained by the fact that the mean CL value is near the threshold - 800 ms -
between two different bins, and therefore some CL fall inside another bin even if
the dispersion is minimal: 2 ms). The duration of the mean CL for ρ→∞ MΩ ·m
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is slightly longer with respect to the nominal value in the homogeneous case: 817
± 58 ms.

Figure 4.26: Histograms for 2D WT condition with σ = 0.05: CL (top, bin width =
100 ms) and APA (bottom, bin width = 5 mV) at different gap junctions coupling (ρ =
10,100,1000,10000 and→ ∞ MΩ ·m from left to right). Vertical orange lines represent
the mean value of the distributions, whose value is displayed on the right.

σ = 0.1

This case is similar to the previous one, with an almost complete synchronization
in all cases (Figure 4.27): CL = 811 ± 1 ms (ρ = 10 MΩ ·m), CL = 808 ± 1 ms
(ρ = 100 MΩ ·m), CL = 764± 3.9 ms (ρ = 1000 MΩ ·m) and CL = 558± 19 ms
(ρ = 10000 MΩ ·m). This demonstrates that in 2D, being there more connections
between the cells, they can interact more and therefore can more easily lead to
synchronism. With ρ = 10000 MΩ ·m for example, the 2D model has a standard
deviation for CL of 19 ms, smaller than that of the 1D case (31 ms). Finally, the
mean CL value in the uncoupled condition continues on its growing trend, being
now 829 ± 136 ms.

σ = 0.1873

Up to this standard deviation in the parameters (which, as already stated, is the
measure of heterogeneity present in the rabbit SAN), a perfect synchronous timing
is achieved for ρ <= 1000 MΩ ·m (Figure 4.28). Indeed, for ρ = 10 MΩ ·m CL
is 806± 1 ms, for ρ = 100 MΩ ·m CL is 794± 1 ms and for ρ = 1000 MΩ ·m CL
is 666 ± 3 ms. The coupling with ρ = 10000 MΩ ·m begins instead to be more
spread (CL = 530 ± 28 ms), even if less than in the 1D case (CL = 581 ± 72 ms).
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Figure 4.27: Histograms for 2D WT condition with σ = 0.1: CL (top, bin width
= 100 ms) and APA (bottom, bin width = 5 mV) at different gap junctions coupling
(ρ = 10,100,1000,10000 and→ ∞ MΩ ·m from left to right). Vertical orange lines rep-
resent the mean value of the distributions, whose value is displayed on the right.

This represents anyway an extremely poor coupling between the cells (0.1nS/m),
far from the physiologic condition.

The uncoupled condition shows again a duration of the cycle longer than the
nominal case: CL = 856 ± 306 ms, meaning that slow cells are still beating.

Figure 4.28: Histograms for 2D WT condition with σ = 0.1873: CL (top, bin width =
100 ms) and APA (bottom, bin width = 5 mV) at different gap junctions coupling (ρ =
10,100,1000,10000 and→ ∞ MΩ ·m from left to right). Vertical orange lines represent
the mean value of the distributions, whose value is displayed on the right.
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σ = 0.3

In this condition, cells do not reach a good synchronization for high coupling
resistivities anymore: CL = 502 ± 70 ms for ρ = 10000 MΩ ·m. With more
physiological couplings, cells manage to beat at the same frequency: CL = 795
± 1 ms (ρ = 10 MΩ ·m), CL = 762 ± 1 ms (ρ = 100 MΩ ·m) and CL = 513 ±
1 ms (ρ = 10 MΩ ·m). This values show, as supposed in the previous section,
that simulating a tissue with 2D connections between cells provides CLs more
similar to the nominal value, opposed to what happened in 1D (where there were
fewer links between different cells and therefore the role of fast-pacing cells was
stronger). This is not true for ρ = 10000 MΩ ·m, as will be discussed at the end
of this section. Finally, CL is 828 ± 368 ms if the cells are uncoupled.

Figure 4.29: Histograms for 2D WT condition with σ = 0.3: CL (top, bin width
= 100 ms) and APA (bottom, bin width = 5 mV) at different gap junctions coupling
(ρ = 10,100,1000,10000 and→ ∞ MΩ ·m from left to right). Vertical orange lines rep-
resent the mean value of the distributions, whose value is displayed on the right.

σ = 0.4

The maximum variability in the input variables of the model leads to a very spread
distribution in the pacing frequency of the cells. Uncoupled cells have indeed a
mean CL of 773 ± 425 ms, where the fastest cell has a CL of 247 ms and the
slowest one of 6259 ms (in Figure 4.31 are showed the trends of their action
potentials). This wide range of values is not reduced in the case of poor couplings
even if the mean frequency rises (CL = 493 ± 174 ms with ρ = 10000 MΩ ·m),
whereas for lower resistivities a perfect synchronization is still achieved, even
if at higher frequencies. Indeed, with ρ = 10 MΩ ·m CL is 784 ± 1 ms, for
ρ = 100 MΩ ·m CL is 718 ± 1 ms and for ρ = 1000 MΩ ·m CL is 427 ± 1 ms.
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Figure 4.30: Histograms for 2D WT condition with σ = 0.4: CL (top, bin width
= 100 ms) and APA (bottom, bin width = 5 mV) at different gap junctions coupling
(ρ = 10,100,1000,10000 and→ ∞ MΩ ·m from left to right). Vertical orange lines rep-
resent the mean value of the distributions, whose value is displayed on the right.

(a) (b)

Figure 4.31: Comparison between the fastest (top) and slowest (bottom) cells with σ = 0.4
for the uncoupled 2D WT condition. (a) activity for the entire 20 s of the simulation. (b)
zoom on 1 s of activity. In this plot it can be seen that the fastest cell has a negligible
diastolic depolarization phase (< 100 ms), whereas the slowest one has a remarkably
long one (∼ 6 s). Nevertheless, it is notable that the AP is longer (> 200 ms) in the fastest
cell, meaning that in this case repolarizing currents are particularly weak with respect to
the depolarizing ones, as also the OS values highlight (almost +40 mV).

4.2.3 2D WT Model Results at a glance
Figures 4.32 and 4.33 sum up the results of the 2D wild type condition. High
coupling resistivities (ρ = 10000 and ρ→∞ MΩ ·m) prevent cells from synchro-
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nizing; on the opposite, with ρ ≤ 1000 MΩ ·m cells manage to beat at the same
frequency, even if with ρ = 1000 MΩ ·m this is only possible with very short CLs
because of the effect of fast-pacing cells (Figure 4.32a). APA has similar trends,
but with a higher dispersion even with good cellular couplings, reflecting a bigger
difficulty for the cells to homogenize this feature (Figure 4.32b).

(a) (b)

Figure 4.32: Trends of CL and APA (± standard deviation) with respect to resistivity for
different levels of cellular heterogeneity (σ = 0.05,0.1,0.1873,0.3 and 0.4) and nominal
values (CL = 814 ms, APA = 85.3 mV, dashed lines); 2D WT condition.

Regarding the trends of the CL with respect to heterogeneity, two results are
worth of mention (Figure 4.33a). The first one is that for uncoupled cell, CL
is longer than the nominal value for σ = 0.1,0.1873 and 0.3, meaning that with
these distributions of parameters, there are many slow-pacing cells that contribute
to stretch the duration of the mean CL. The second noteworthy result is that with
ρ = 10000 MΩ ·m, CL tends to be very short at low σ and even with homoge-
neous cells. This is probably due to the particular random initial condition and
the particular distribution of parameters with which the simulation started. Fur-
thermore, this case does not have the same trend as ρ = 1000 MΩ ·m, because
of the effect of "saturation" that a poor coupling has on the shortening of the CL:
starting from an already short CL, increasing σ does not provide a faster pacing.
This is also true for the APA, in which the purple curve in Figure 4.33b starts from
a value clearly detached from that of the curves representing the other ρ . In the
same graph it is possible to asses that even with ρ = 10 MΩ ·m, cells do not show
the same amplitude of the action potential.

The principal aspect to note for this 2D WT case, is the stretching of the CL
with respect to the 1D case (apart from the ρ = 10000 MΩ ·m case). In particular,
for physiological levels of gap junction couplings (ρ = 10/100 MΩ ·m, purple
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(a) (b)

Figure 4.33: Trends of CL and APA (± standard deviation) with respect to standard
deviation for different values of gap junctions resistivity (ρ = 10,100,1000,10000 and
→ ∞ MΩ ·m) and nominal values (CL = 814 ms, APA = 85.3 mV, dashed lines); 2D WT
condition.

trace in 4.32a) and variability of the parameters (σ = 0.1873), CL is much more
similar (∼ 800 ms) to the nominal value (814 ms), with respect to the 1D case (∼
700 ms).

4.2.4 2D Double Mutant condition

As in the 1D case, the modal values of the uncoupled CL distributions differ from
the nominal value of 814 ms (Figure, 4.34) because of the effect of the mutations.
The mean CL for uncoupled homogeneous cells is still 1019 ms, as it is just the 2D
extension of the 0D and 1D model. Being there more cells now, the distributions
appear wider and smoother.

Next paragraphs will show the results for different degrees of heterogeneity
and cellular couplings.

Homogeneous cells (σ = 0)

As in the wild type condition, the case with ρ = 10000 MΩ ·m presents a short
CL with a quite high dispersion for a homogeneous condition: CL = 640± 17 ms.
With all the other couplings instead, CL is 1019± 1 ms: as usual, synchronization
is easily reached with this settings. In addition, mean CL for the uncoupled set up
is 1019 ms, as one would expect (Figure 4.35).
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Figure 4.34: CL (left) and APA (right) distributions for uncoupled cells for different values
of standard deviation (σ = 0.05,0.1,0.1873,0.3,0.4) and nominal values (CL = 814 ms,
APA = 85.3 mV, dashed lines); 2D DM condition. Vertical orange lines represent the
mean value of the distributions, whose value is displayed on the right.

Figure 4.35: Histograms for 2D DM homogeneous condition: CL (top, bin width =
100 ms) and APA (bottom, bin width = 5 mV) at different gap junctions coupling
(ρ = 10,100,1000,10000 and→ ∞ MΩ ·m from left to right).

σ = 0.05

Frequency is minimally increased: CL = 1017 ± 1 ms (ρ = 10 MΩ ·m), CL =
1017 ± 1 ms (ρ = 100 MΩ ·m), CL = 1005 ± 1 ms (ρ = 10 MΩ ·m), CL = 636
± 24 ms (ρ = 10 MΩ ·m). With respect to the previous condition, for σ = 0.05
the uncoupled cell condition shows a spread distribution: CL = 1025 ± 86 ms
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(Figure 4.36). Once again, the mean value is bigger than the nominal one, for the
contribution of slow-pacing cells.

Figure 4.36: Histograms for 2D DM condition with σ = 0.05: CL (top, bin width =
100 ms) and APA (bottom, bin width = 5 mV) at different gap junctions coupling (ρ =
10,100,1000,10000 and→ ∞ MΩ ·m from left to right). Vertical orange lines represent
the mean value of the distributions, whose value is displayed on the right.

σ = 0.1

The behavior of the 2D tissue for σ = 0.1 is consistent with the results obtained
with σ = 0.05 (CL = 1014 ± 1 ms with ρ = 10 MΩ ·m; CL = 1012 ± 1 ms
with ρ = 100 MΩ ·m), only emphasized for ρ = 1000 MΩ ·m in terms of cycle
duration: CL = 954 ± 2 ms. For ρ = 10000 MΩ ·m the obtained mean CL is 626
ms, with a standard deviation of 37 ms, whereas uncoupled cells have a CL of
1050 ± 216 ms (Figure 4.37).

σ = 0.1873

With the degree of heterogeneity consistent with physiological conditions, the ef-
fect of the mutation is minimally compensated with low resistivities (i.e. good
couplings, which are also the most similar to the physiologic ones that have
been simulated): for ρ = 10 MΩ ·m the resulting CL is 1009 ± 1 ms and for
ρ = 100 MΩ ·m CL is 997± 1 ms. A more physiological cycle length is obtained
with a worse coupling: CL = 838 ± 1 ms with ρ = 1000 MΩ ·m, which anyway
represents a quite poor cellular coupling relying on the values reported in liter-
ature (corresponding to 1nS, it is at the lower boundary of the interval reported
by Inada et al. [14] for the rabbit SAN). This means that even if the simulations
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Figure 4.37: Histograms for 2D DM condition with σ = 0.1: CL (top, bin width
= 100 ms) and APA (bottom, bin width = 5 mV) at different gap junctions coupling
(ρ = 10,100,1000,10000 and→ ∞ MΩ ·m from left to right). Vertical orange lines rep-
resent the mean value of the distributions, whose value is displayed on the right.

give a good result, it is unlike to find the same behaviour in a real SAN. More-
over, further increasing the resistivity leads to higher frequencies: CL is 601 ±
46 ms with ρ = 10000 MΩ ·m, a gap junction coupling that again does not allow
the cells to synchronize. The mean CL (1056 ± 379 ms) is still longer than the
nominal mutated value if the cells are not linked together, meaning that - with this
parameters settings - there still are slow-pacing cells beating (Figure 4.38).

Figure 4.38: Histograms for 2D DM condition with σ = 0.1873: CL (top, bin width =
100 ms) and APA (bottom, bin width = 5 mV) at different gap junctions coupling (ρ =
10,100,1000,10000 and→ ∞ MΩ ·m from left to right). Vertical orange lines represent
the mean value of the distributions, whose value is displayed on the right.
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σ = 0.3

Contrarily to the previous case, the mean CL of the uncoupled cells is less than
the mutated single-cell one: 973 ± 429 ms with respect to 1019 ms, meaning that
some slow-pacing cell is no more excitable with this parameters setting. Anyway,
cells with very long CL are still present: CLmax is indeed 5017 ms. Synchroniza-
tion is achieved for ρ < 1000 MΩ ·m: CL = 998 ± 1 ms (ρ = 10 MΩ ·m), CL =
958 ± 1 ms (ρ = 10 MΩ ·m) and CL = 629 ± 1 ms (ρ = 10 MΩ ·m). As usual,
ρ = 10000 MΩ ·m prevents cells from beating with the same pace even if this
greatly increases: CL = 571 ± 100 ms (Figure 4.39).

Figure 4.39: Histograms for 2D DM condition with σ = 0.3: CL (top, bin width
= 100 ms) and APA (bottom, bin width = 5 mV) at different gap junctions coupling
(ρ = 10,100,1000,10000 and→ ∞ MΩ ·m from left to right). Vertical orange lines rep-
resent the mean value of the distributions, whose value is displayed on the right.

σ = 0.4

In this case the uncoupled condition has a shorter CL than the previous case: CL
= 905 ± 483 ms; nevertheless there are cells with an incredibly low frequency:
CLmax is up to 7920 ms for the cell in position [9,9] (Figure 4.41). The coupling
with ρ = 10000 MΩ ·m only allows a partial synchronization, thus cells with a
long CL do not undergo the influence of fast-pacing cells and are therefore still
present (CLmax = 6976 ms); despite of the presence of very slow cells the mean
CL is almost half the nominal mutated value: 568 ± 319 ms. The x axes of
the ρ = 10000 and→ ∞ MΩ ·m subplots were stretched in order to visualize the
bins of this very long CLs. Lower coupling resistivities guarantee a complete
synchronization instead (Figure 4.40): CL = 985 ± 1 ms (ρ = 10 MΩ ·m), CL =
906 ± 1 ms (ρ = 100 MΩ ·m), CL = 470 ± 1 ms (ρ = 1000 MΩ ·m).
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Figure 4.40: Histograms for 2D DM condition with σ = 0.4: CL (top, bin width
= 100 ms) and APA (bottom, bin width = 5 mV) at different gap junctions coupling
(ρ = 10,100,1000,10000 and→ ∞ MΩ ·m from left to right). Vertical orange lines rep-
resent the mean value of the distributions, whose value is displayed on the right.

Figure 4.41: Action potential over the 20 s of simulation for the slowest cells with ρ =
10000 MΩ ·m (top) and ρ → ∞ MΩ ·m (bottom), σ = 0.4 2D DM condition.

4.2.5 2D DM Model Results at a glance
The previous results are summarized in Figures 4.42 and 4.43. The first shows
how the mutations affect the mean CL of the 2D model (Figure 4.43a): at low re-
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sistivities it can be seen that the slowdown in frequency due to the I f loss of func-
tion is not recovered, being the curve above the red dashed line. On the contrary,
unlikely cellular couplings and standard deviations of the ionic conductances pro-
vide an excessive increase of frequency. As usual, poor cellular couplings do not
allow the cells to synchronize their pacing frequency, resulting in a high disper-
sion of this feature. As the WT case, APA has a trend similar to CL, only with a
higher dispersion (as can be appreciated in Figure 4.43b).

(a) (b)

Figure 4.42: Trends of CL and APA (± standard deviation) with respect to resistivity for
different levels of cellular heterogeneity (σ = 0.05,0.1,0.1873,0.3 and 0.4) and nominal
values (CL = 814 ms, APA = 85.3 mV, dashed lines); 2D DM condition.

About the effect of σ in the input parameters, the degree of heterogeneity
mainly affects the ability of the cells to synchronize: the larger the dispersion of
the conductances is, the larger the one of the features (CL and APA). In addition,
at the increase of σ , the mean pacing frequency tends to increase.

Another aspect of the mutations is the increase in the number of non-excitable
cells present in the model: 578 (23.1%) do not beat in the 2D WT condition, with
respect to the 709 (28.4%) of the double mutated case (bot with ρ → ∞ MΩ ·m
and σ = 0.4). Nevertheless, even if with very poor couplings, almost every cell
starts beating again, as it is shown in Figure 4.44.
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(a) (b)

Figure 4.43: Trends of CL and APA (± standard deviation) with respect to standard
deviation for different values of gap junctions resistivity (ρ = 10,100,1000,10000 and
→ ∞ MΩ ·m) and nominal values (CL = 814 ms, APA = 85.3 mV, dashed lines); 2D WT
condition.

(a)

(b)

Figure 4.44: Color maps of the 2D models: the color blue represents the cells that do
not show action potentials, yellow represent cells with electrical activity. (a) Comparison
between the color maps of 2D WT condition, σ = 0.4, at different gap junction cou-
plings. For ρ → ∞ MΩ ·m 576 cells (23.0%) are not beating. (b) Comparison between
the color maps of 2D DM condition, σ = 0.4, at different gap junction couplings. For
ρ → ∞ MΩ ·m 708 cells (28.3%) are not beating.

Figure 4.45 displays instead the effect of heterogeneity on the ability of the
cells to show an AP.
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(a)

(b)

Figure 4.45: Color maps of the 2D models (ρ→∞ MΩ ·m): the color blue represents the
cells that do not show action potentials, yellow represents cells with electrical activity.
With the increase of cellular heterogeneity, the number of non-excitable cells grows. (a)
2D WT Condition: 0 for σ = 0.05; 1 (0.04 %) for σ = 0.1; 98 (3.9 %) for σ = 0.1873; 351
(14.0 %) for σ = 0.3; 576 (23.0 %) for σ = 0.4; (b) 2D DM Condition: 0 for σ = 0.05; 9
(0.36 %) for σ = 0.1; 209 (8.4 %) for σ = 0.1873; 513 (20.5 %) for σ = 0.3; 708 (28.3
%) for σ = 0.4.
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Finally, Tables 4.6 and 4.7 summarize all the results obtained with the simu-
lations in terms of frequency (in bpm). As already noted while speaking of cycle
lengths, some combination of cellular couplings and heterogeneities provide un-
realistic pacings in 1D and also in 2D, even if to a lesser extent in the latter case.
For example, ρ = 1000 MΩ ·m together with σ = 0.3 or 0.4 provides mean pacing
frequencies of 142 and 162 bpm in 1D respectively, values that slightly decrease
in 2D: 117 and 140 bpm. For lower coupling resistivities, namely more physio-
logic gap junctions conductances, beating rates more similar to the nominal value
are obtained (73.7 bpm), especially in 2D: from 73.8 (σ = 0.05, + 0.1%) to 76.6
(σ = 0.4, + 3.9%).

ρ[MΩ ·m]
σ 10 100 1000 10000 ∞

Homogeneous cells 73.7 (+ 0%) 73.8 (+ 0.1%) 73.7 (+ 0%) 74.4 (+ 0.9%) 73.7 (+ 0%)
58.9 (- 20.1%) 58.9 (- 20.1%) 58.9 (- 20.1%) 59.4 (- 19.4%) 58.9 (- 20.1%)

0.05 75.1 (+ 1.9%) 76.6 (+ 3.9%) 77.9 (+ 5.7%) 82.5 (+ 11.9%) 74 (+ 0.4%)
60.1 (- 19.5%) 61.4 (- 16.7%) 62.1 (- 15.7%) 66.6 (- 9.6%) 59 (- 29.9%)

0.1 77.6 (+ 5.3%) 80.4 (+ 9.1%) 85.2 (+ 15.6%) 96.1 (+ 30.4%) 73.2 (- 0.7%)
62 (- 15.9%) 64.6 (- 12.3%) 69.9 (- 5.2%) 79.4 (+ 7.7%) 57.4 (- 22.1%)

0.1873 83 (+ 12.6%) 88.1 (+ 19.5%) 110.4 (+ 49.8%) 103.3 (+ 40.2%) 74.3 (+ 0.8%)
66.4 (- 9.9%) 71 (- 3.7%) 90.7 (+ 23.1%) 87.1 (+ 18.2%) 57.7 (- 21.7%)

0.3 91.9 (+ 24.7%) 101.9 (+ 38.3%) 142.3 (+ 93.1%) 105.2 (+ 42.7%) 76 (+ 3.1%)
73.7 (+ 0%) 82.9 (+ 12.5%) 131.2 (+ 78%) 93.1 (+ 26.3%) 66.2 (- 10.2%)

0.4 100.6 (+ 36.5%) 115.7 (+ 57%) 162.2 (+ 120.1%) 103.1 (+ 39.9%) 82 (+ 11.3%)
81 (+ 9.9%) 96.9 (+ 31.5%) 156.4 (+ 112.2%) 90.6 (+ 22.9%) 75.7 (+ 2.7%)

Table 4.6: Mean frequency results for 1D WT (black) and 1D DM (grey) condition and
relative percentage variation with respect to the control value: 73.7 bpm (corresponding
to a CL of 814 ms).

ρ[MΩ ·m]
σ 10 100 1000 10000 ∞

Homogeneous cells 73.6 (- 0.1%) 73.8 (+ 0.1%) 73.8 (+ 0.1%) 109.6 (+ 48.7%) 73.7 (+ 0%)
58.9 (- 20.1%) 58.9 (- 20.1%) 58.9 (- 20.1%) 93.8 (+ 27.3%) 58.9 (- 20.1%)

0.05 73.8 (+ 0.1%) 73.9 (+ 0.3%) 74.8 (+ 1.5%) 107.1 (+ 45.3%) 73.5 (- 0.3%)
59 (- 19.9%) 59 (- 19.9%) 59.7 (- 19%) 94.4 (+ 28.1%) 58.6 (- 20.5%)

0.1 74 (+ 0.4%) 74.3 (+ 0.8%) 78.5 (+ 6.5%) 107.4 (+ 45.7%) 72.3 (- 1.9%)
59.1 (- 19.8%) 59.3 (- 19.5%) 62.9 (- 14.7%) 95.8 (+ 30%) 57.1 (- 22.5%)

0.1873 74.5 (+ 1.1%) 75.6 (+ 2.6%) 90.1 (+ 22.3%) 113.2 (+ 53.6%) 70.1 (-4.9%)
59.5 (- 19.3%) 60.2 (- 18.3%) 71.6 (- 2.8%) 99.8 (+ 35.4%) 56.8 (- 22.9%)

0.3 75.5 (+ 2.4%) 78.8 (+ 6.9%) 116.9 (+ 58.6%) 119.6 (+ 62.3%) 72.5 (- 1.6%)
60.1 (-18.5%) 62.7 (-14.9%) 95.4 (+ 29.4%) 105.1 (+ 42.6%) 61.7 (- 16.3%)

0.4 76.6 (+ 3.9%) 83.6(+ 13.4%) 140.4 (+ 90.5%) 121.7 (+ 65.1%) 77.6 (+ 5.3%)
60.9 (- 17.4%) 66.3 (- 10%) 127.7 (73.3%) 105.6 (+ 43.3%) 66.3 (- 10%)

Table 4.7: Mean frequency results for 2D WT (black) and 2D DM (grey) condition and
relative percentage variation with respect to the control value: 73.7 bpm (corresponding
to a CL of 814 ms).
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This indicates that fast pacing cells have the ability to drive the other ones,
but only with medium-high resistivities (ρ = 1000/10000 MΩ ·m): on one hand,
medium-high ρ allow them not to be inhibited by the neighbouring slower cells;
on the other hand, they let enough current flow and stimulate the slow-pacing cells.
Probably in 3D, where fast-pacing cells would be surrounded by more normal-
pacing ones, mean frequency would be more similar to the nominal value also for
ρ = 1000MΩ ·m, since these cells would constitute a much bigger load for the
fast ones and therefore would slow them down in a more relevant way. Another
hypothesis could be that, to account for the higher frequency that was obtained
in these models, the human SAN has a lower degree of heterogeneity than the
rabbit one (σ = 0.1873). However, this is unrealistic since this feature represents
a factor of robustness for biological systems in general, and the human heart is
probably more reliable than the rabbit one. Nevertheless, no data about human
SAN are available, thus this last statement remains only an hypothesis.

4.2.6 Simulations with tuned parameters
The previous results were also used as a sensitivity analysis to forecast what values
of ρ (gap junction couplings) and σ (cellular heterogeneity) provide physiologic
pacing frequencies. A standard deviation in the cellular parameters of 0.1873 was
chosen for it represents the level of heterogeneity found in the rabbit SAN [39].
In multidimensional models, an important parameter is the conduction velocity
(CV, in cm/s). Thus, for ρ it was selected a value that also allows to obtain a
physiologic CV (i.e. in the range reported in literature for the SAN, section 1.1).
About 10 cm/s were considered, since the measures from Csepe et al. [5] seemed
more reliable than the generic values reported in the other cited works ([15], [16]).
In the 2D case, ρ = 100 MΩ ·m was set (10nS), since this value provided phys-
iological values of CV: 10.8 cm/s on the x axis and 12.1 cm/s on y for the WT
condition, 10.3 cm/s on x and 11.1 cm/s on y in case of double mutation. For
the 1D model, the resistivity had to be lowered to 50 MΩ ·m (corresponding to
20nS) in order to get similar values of CV: 12.8 cm/s and 12.2 cm/s for WT and
DM conditions respectively. A lower ρ was necessary since in 1D there are less
connections that lower the total resistivity, as resistors in parallel do.

In all these configurations, a complete synchronization was achieved: CL =
609 ± 1 ms for 1D WT, CL = 928 ± 1 ms for 1D DM, CL = 794 ± 1 ms for 2D
WT and CL = 997 ± 1 ms for 2D DM. Figure 4.46 shows how these results were
obtained.

From these results (summarized in Table 4.8) it can be noticed that the mu-
tations seem not to affect the conduction velocity, even if a single result has no
statistical relevance. Moreover, in case of mutation, the cells manage in any case
to reach a common frequency, but lower than the wild type condition. It must
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1D 2D
CV [cm/s] WT DM WT DM
x 12.8 12.2 10.8 10.3
y 12.1 11.1

Table 4.8: Results for Conduction Velocity (in cm/s). In all the simulations σ = 0.1873
was set, whereas ρ was 50 MΩ ·m in 1D and 100 MΩ ·m, in 2D, for which case CV was
computed on both x and y directions (Figure 4.46).

be highlighted that "same frequency" does not mean that the cells have the same
potential at the same time, but only that they have the same cycle length. Indeed,
they can be out of phase, and this is the reason why a propagation can be seen in
the 1D and 2D models. This is a condition halfway through a too high cellular
coupling (R → 0), where cells have the same potential at the same time and no
propagation can be assessed (CV→∞), and a too low one (R→∞) in which case
the propagation no longer exists (CV→ 0).
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(a)

(b)

(c) (d)

Figure 4.46: Activation maps of SAN tissue: time differences (in ms) for different cells to
reach the same potentials (0 mV); dark red represent the earliest activation zones of the
last AP, used as a reference to compute CV. The yellow star is the breakthrough point;
black arrows indicates the direction on which CV was computed. In all the simulations
σ = 0.1873 was set, whereas ρ was 50 MΩ ·m in 1D and 100 MΩ ·m in 2D. (a) Propa-
gation through a 1D fiber of the SAN, WT condition. (b) Propagation through a 1D fiber
of the SAN, DM condition. (c) Propagation through a 2D fiber of the SAN, WT condition
(x and y velocities were computed). (d) Propagation through a 2D fiber of the SAN, DM
condition (x and y velocities were computed).



Chapter 5

Conclusions

This thesis aimed to test the effects of the I479V/A485E Double Mutation affect-
ing the HCN4 channel isoform reported by Servatius, Porro et al. [10] on a human
sinoatrial computational model at many levels: HCN4 channel, single SAN cell
(0D), SAN fiber (1D) and SAN tissue (2D). The patient presented in the study
showed many symptoms, among which there was the bradycardia. As it is known
from literature, the HCN channels are responsible for the I f current, which is a
key player in the onset of the action potential of the autorhythmic cells in the
sinoatrial node. This anatomical structure governs indeed the rhythm of the heart
under physiological conditions. This work tried to link the effect (bradycardia,
i.e. the phenotype) to its cause (the mutations, i.e. the genotype) by analysing the
results of simulations (run on GPU) of the action potential of human SAN cells
on system of increasing complexity and physiologic resembling.

To achieve this, the work was split in two parts: in the first one a tool to load,
display, analyse, fit and export electrophysiological data was developed during an
internship at Elements Srl (Chapter 2). This was later used to reproduce the results
of the study from Servatius in order to extract the relative decrease of the funny
current conductance (g f ) in case of mutation with respect to the Wild Type con-
dition. This feature was then given as an input to the Fabbri human SAN single
cell model, to asses the decrease in terms of pacing frequency due to the muta-
tions. The result was a Cycle Length of 1019 ms, compared to the 814 ms of a
healthy cell. This translates into a frequency of 58.9 bpm instead of 73.7 (-20.1
%). The effect of an anti-arrhythmic drug to which the patient was subject, the
amiodarone, was also simulated: the combined effect of the mutations and this
drug pushes the CL up to 1030 ms (frequency = 58.3 bpm, -20.9 %), while the ef-
fect of amiodarone alone was lighter (CL = 946 ms, frequency = 63.4 bpm, -14 %).

The second part first presents how the 1D and 2D models were designed

91
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and implemented (Chapter 3) and then shows the obtained results. Particularly,
simulations with increasing values of cellular heterogeneity (σ = 0, 0.05, 0.1,
0.1873, 0.3 and 0.4) and gap junction resistivity (ρ = 10,100,1000,10000 and
→∞ MΩ ·m) were run, in order to test the effect of cellular heterogeneity and cou-
pling. The results (in terms of CL, APA and CV), show many interesting aspects:
at the increase in cellular heterogeneity, the mean CL generally decreases since
fast-pacing cells try to drive all the others. This depends on the strength of the cou-
pling between each cell: if gap junction resistivity is too low (ρ = 10/100 MΩ ·m)
fast cells are slowed down by the slow ones (since the latters constitute a too big
electrical load for them), whereas if it is too high (ρ = 10000 MΩ ·m) a too little
current flow is permitted and the mean CL is longer, since fast cells can not drive
the other ones. For the intermediate values of ρ tested (ρ = 1000 MΩ ·m) at high
σ (0.3/0.4), the shortest CLs are obtained. However, it is necessary to note that
for physiological values of ρ (∼ 100 MΩ ·m) and σ (0.1873), the mean CL is the
most similar to the nominal single cell value (814 ms) both in 1D (746) and 2D
(794), in the WT condition. The fact that these results are lower than the nominal
value (especially the 1D case) can be explained considering that an isolated fiber
or tissue is not the physiologic working condition for a 3D complex-shaped struc-
ture as the SAN. Indeed, in the 1D and 2D models cells have less connections,
therefore fast-pacing cell see a smaller electrical load and achieve to drive other
cells in a greater extent.

Cellular synchronization is again the result of a trade-off between heterogene-
ity and resistivity: the bigger the σ indeed, the wider the dispersion in the param-
eters tends to be, but this is only true for poor couplings, since low resistivities
allow a complete synchronization (in terms of CL) even with σ = 0.3/0.4 both in
1D and 2D.

What has just been said is also true for the DM condition, which anyway pro-
vides a greater relative shortening of the CL (with respect to the WT case) thanks
to cellular heterogeneity: the shortest mean CL obtained is 384 ms (from 1019
ms, -62.3 %) with respect to the 370 ms of the WT condition (from 814, -54.5
%). Both these results were obtained with the maximum cellular heterogeneity
simulated and ρ = 1000 MΩ ·m, that represents a halfway condition in which
fast-pacing cells manage to deliver enough current to drive other cells, but with-
out being slowed down by the huge electrical load they represent. This proves
how cellular heterogeneity is a feature that represents a factor of robustness of
biological system. Nevertheless, for physiological values of ρ and σ , in 2D the
shortening is too weak (CL = 997 ms), thus proving the bradycardic effect of the
mutations. In 1D the shortening is substantial (845 ms), but - as previously dis-
cussed - this result is mainly due to the unrealistic working condition and is there-
fore less reliable than the 2D one. Another effect of the mutation is the tendency
to have - with poor cellular couplings - a more dispersed CL distribution. This is
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due to a "geometric effect" - known in literature - for which longer CLs are more
sensitive to little variation of current and therefore are intrinsically more variable.
In other words, if the MDP and the TOP (i.e. Take-Off Potential, the membrane
voltage value at which the AP is triggered) are fixed, a longer CL implies that the
straight line connecting this two points (which approximates the diastolic depolar-
ization phase) has a lower slope. Being δV/δ t this slope, the equation governing
this phenomenon

δV
δ t

= Σ Iion

tells that a low slope is obtained with a little total current; if the latter has
a variation, this variation is relatively bigger with respect to the one that would
be obtained with a higher slope. Therefore, this higher sensitivity explains the
intrinsically bigger variability of slower cells. One more explanation could be
that a smaller I f (due to the mutations) leads to a weaker mutual driving by the
cells, which in turn find it more difficult to couple with one another. However, this
is not reported in literature and therefore remains only an hypothesis.

About the APA, the results show how cells tend to couple this feature in a
lesser extent with respect to the CL. However, similarly to the CL, the mean APA
is a trade-off between ρ and σ : the higher the cellular heterogeneity, the more
dispersed the APA distribution is, but only for intermediate ranges of ρ . If this
is too low indeed, all the cells are coupled at a value similar to the nominal one;
if this is too high, cells can not influence each other and therefore the AP has an
amplitude similar to 85.3 mV (the nominal value).

The decrease in pacing frequency and the larger dispersion of CL with high
resistivities seem to be the only effects the mutations have on the models. Con-
duction velocity is indeed not affected: in 1D it is 12.8 cm/s for the WT condition
and 12.2 cm/s for the DM one; in 2D it is 10.8 cm/s along the x axis (12.1 cm/s
on the y direction) in the WT case and 10.3 cm/s (11.1 cm/s) in the DM one. It
is necessary to highlight the fact that these results were obtained with physiologic
values of cellular heterogeneity (σ = 0.1873) and ρ . Actually, these values were
defined as "physiologic" precisely because they provide values of CV similar to
the ones reported in literature. For the latter, in the 2D case a value of 100 MΩ ·m
was selected, since it provided a measure of CV similar to the ones reported in
literature. In 1D instead, a lower resistivity (50 MΩ ·m) had to be used, since in
this case there are less cellular connections (2 instead of 4) and thus the signal is
transmitted with less efficacy. Again, this demonstrates that the 1D model lacks
in reproducing the behaviour of a real 3D sinoatrial node, in which ρ could be,
realistically, higher.

The main limitations of this work are indeed due to the fact that the mod-
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els provide a simplified description of many features that can be found inside a
real human sinoatrial node. First of all, the human SAN is a 3D structure with a
complex shape. Here, only a straight fiber or a planar tissue are investigated. Sec-
ond, its cells are not homogeneous but differ in shape, size, electrophysiological
properties and so on; in this work cellular heterogeneity was taken into account
in terms of main electrophysiological properties, but the transition from central
SAN to the atrium was not considered, despite the importance of this character-
istic for the effective functioning of the SAN. Finally, the SAN is not a structure
which stands alone, but is surrounded by - and connected to - the right atrium,
which constitutes an extraordinarily large electrical load. Other limitations could
be the restricted number of cells taken into account, and the absence of fibroblasts
or non-excitable tissue, which can alter the electrical behaviour of the sinoatrial
node.

For these reasons the major improvements that could be carried out to these
models are:

– the extension of the models to the 3D case;

– the increase in the number of simulated cells;

– the implementation of a gradient in the cellular properties from the centre
of the SAN to its periphery;

– adding of the electrical load represented by the atrium;

– the inclusion of fibroblasts, blood vessel or other anatomical structure present
in the SAN.

To conclude, these advances in the mathematical description of the human
SAN could help to understand more deeply the functioning of a structure so im-
portant for our life. Besides this, these improvements could also lead to the pos-
sibility of simulating the effects of pathologies (such as arrhythmias) or other dis-
eased conditions, thus providing a useful tool for the treatment of cardiac patients.

This work proposes itself as a step towards this direction.
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