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Abstract 

 

More than 50% of intervertebral discs in the third and fourth decade of life exhibit 

annular tears and fissures with different orientations and extents. On the other hand, in 

vitro biomechanical investigations of the disc surgery treatment, sometimes requires 

collaterals lesions, such as incision or disc material removal to recreate biological 

injuries, as in discoplastly. These lesions could have a mechanical impact on the spine 

flexibility and in the surrounding tissue and could alter the final outcomes of in vitro 

studies. 

The influence of the presence of lesions on the biomechanics of the segment is still a 

debated research question.  

Thus, this in vitro study aims to evaluate changes in spine biomechanics, in terms of 

stiffness, range of motion and disc height, induced by an increasing damage of human 

disc. In order to assess the impact of the annulus damage on the surrounding tissues, 

principal strain distributions were investigated in the lateral side opposite than the 

damaged region. 

Eight fresh cadaver thoraco-lumbar FSUs were used in this study. The specimens were 

tested sequentially in flexion and extension in five different configurations: a) with the 

intact disc; b) with two vertical cuts; c) with four cuts, forming a square, without 

removing any part of the annulus; d) after having removed the cut part of the AF; e) after 

having removed the nucleus pulposus. Image analysis and surface strain distribution were 

performed on the lateral disc by means of the Digital Image Correlation. 

Results showed that the IVD simulated damage of this study did not alter significantly the 

spine biomechanics: neither bending stiffness nor range of motion. The main effect 

caused by nucleotomy was the disc height reduction due to the lack of support caused by 

the nucleus loss. The strain distribution on the disc surface reflected the different 

vertebrae behavior related to their location in the spine. In both thoracic and lumbar 

segments, strains significantly changed in the last defect configuration, concentrating 

strains on smaller regions such as the mid-height line of the disc or along the endplates. 
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Riassunto 

 

Più del 50% dei soggetti tra i trenta e quaranta anni presenta lesioni nell’anello fibroso dei 

dischi intervertebrali della spina dorsale. Anche studi in vitro, che mirano a valutare gli 

effetti di trattamenti chirurgici del disco intervertebrale sulla biomeccanica del rachide, 

possono richiedere lesioni, come incisioni o l’asportazione di parte del tessuto dell’anello 

fibroso, per ricreare le lesioni biologiche che sono oggetto di investigazione, come nel 

caso della discoplastica. Queste lesioni potrebbero avere un impatto meccanico sulla 

colonna vertebrale e sui tessuti circostanti e potrebbero quindi compromettere i risultati 

finali dello studio in vitro. 

Le conseguenze della presenza di lesioni sul disco intervertebrale sul comportamento 

meccanico della spina dorsale rappresentano ancora oggi una questione di dibattito aperta.  

Questo studio in vitro ha quindi lo scopo di valutare gli effetti biomeccanici della colonna 

vertebrale, in termini di stiffness, range of motion e altezza del disco, come conseguenza 

di un crescente danneggiamento del disco. Inoltre per valutare come il danneggiamento 

dell’anello fibroso del disco si ripercuote sui tessuti circostanti, sono state analizzate le 

mappe di distribuzione delle deformazioni sul lato opposto alla regione danneggiata. 

In questo studio sono stati utilizzati otto segmenti di rachide umano costituiti da vertebre 

toraciche e lombari. I provini sono stati testati sequenzialmente in flessione ed in 

estensione in cinque diverse configurazioni: a) con il disco intervertebrale intatto; b) con 

due tagli verticali nell’anello fibroso; c) con quattro tagli, formando così un quadrilatero, 

lasciando la parte tagliata in situ, d) dopo aver rimosso la parte di anello fibroso 

precedentemente tagliata; e) dopo aver rimosso il nucleo polposo. L’analisi delle 

distribuzioni delle deformazioni è stata eseguita nella regione del disco opposto alle 

lesioni, tramite l’utilizzo della Digital Image Correlation. 

I risultati hanno mostrato come i danneggiamenti del disco, simulati in questo studio, non 

hanno alterato in maniera significativa né la stiffness né il range of motion dei segmenti 

analizzati. Il primo effetto osservato dopo la nucleotomia è stato la riduzione dell’altezza 

del nucleo, a causa della mancanza del supporto interno dovuto alla perdita del nucleo. La 

distribuzione delle deformazioni sulla superficie del nucleo rispecchia il diverso 
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comportamento delle vertebre in relazione alla loro posizione nel rachide. Sia nel caso di 

segmenti toracici che lombari è stato possibile osservare un significativo cambiamento 

della distribuzione delle deformazioni dopo l’esecuzione dell’ultimo difetto, che ha 

portato alla concentrazione delle deformazioni in piccole regioni come il centro del disco 

o lungo gli endplates. 
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Chapter 1 

Introduction 

 

The intervertebral disc impacts significantly in load distribution on the adjacent vertebral 

bodies and in the entire spine motion [Newell et al., 2017]. 

An analysis of midsagittal sections of cadaveric specimens, conducted by Krismer et al, 

1997, showed that more than 50% of intervertebral discs in the third and fourth decade of 

life exhibit annular tears and fissures with different orientation and extents. 

Also, in vitro biomechanical investigation of the disc surgery treatment, requires 

sometimes collateral lesions, such as incision or disc material removal, to recreate a 

particular biological condition, as in Percutaneous Cement Discoplasty. These lesions 

could have a mechanical impact on the spine stability and on the surrounding tissue and 

could alter the final outcomes of the in vitro study. 

The consequences and influence of the presence of lesions on the biomechanics of the 

motion segment are still a debated research question.  

It is generally admitted that the disc disruptions and tears are the main factors responsible 

for the clinical instability [Kirkaldy-Willi et Farfan, 1982] but this statement is not 

supported by available biomechanical studies [Galbusera et al., 2014]. For example, 

Tanaka et al., 2001, showed an increased flexibility of human spine segments exhibiting 

biological radial tears, but the simultaneous presence of other degenerative changes in the 

investigates specimens did not allow to distinguish the specific mechanical effect of tears. 

Thompson et al., 2000, observed a correlation between rim lesions and reduced stiffness 

in flexion and extension which may be linked to a loss of nucleus pulposus pressure. 

Thompson et al, 2004, determined the mechanical effect of individual concentric tears, 

radial tears and rim lesions of the  ovine annulus, but in their study subsequent tears were 

introduced in locations that minimized communication between lesions.  
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Therefore, as Galbusera et al., concluded in their work in 2014, although the literature 

suggested that the degenerative changes of the intervertebral disc and surrounding 

structures lead to subtle alterations of the mechanical properties of the functional spinal 

unit (FSU), supporting a general increase of spinal instability with disc degeneration 

could not be found. 

 

1.1 Anatomy of the human spine 

The spine is the supporting structure of human body and it has three main biomechanical 

functions: 

 It supports loads and transfers weights and resulting bending moments of head, 

trunks and pelvis providing structural support and balance to maintain an upright 

posture; 

 It allows the physiologic movements of head, trunk and pelvis, and, in particular, 

it allows the relative rotation between the vertebral bodies while preventing their 

translation; 

 It protects spinal cord, nerve roots and several of the 

body’s internal organs and it reduces the 

transmission of accelerations from the lower limbs 

to the internal organs. 

The spine consists of 33 vertebrae which according to their 

position are subdivided into cervical (7 vertebrae, C1 . C7), 

thoracic (12 vertebrae, T1 – T12), lumbar ( 5 vertebrae, L1 

– L5), sacrum (5 fused vertebrae) and coccyx (4 fused 

vertebrae) (Figure 1.1). 

 

A vertebra consists in two essential parts: 

 the body, the anterior segment; 

 the vertebral or neural arch, the posterior part, which consists in two pedicles and 

two laminae, and supports seven processes: four articular, two transverse and one 

spinous; 

Figure 1.1- 

Spine sagittal view. 
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These two parts enclose a foramen, called the vertebral foramen. The vertebral foramina 

constitute canals for the protection of the spinal cord. The intervertebral foramina are 

two apertures between every pair of vertebrae, one on either side, for the transmission of 

the spinal nerves and vessels [Gray, 2016], (Figure 1.2). 

Vertebrae are connected by intervertebral disc and ligaments. 

 

 

 

1.1.1 Intervertebral discs 

Intervertebral discs (IVDs) are the main joints of the spinal column and represent one-

third of its height. Their major role is mechanical, as they constantly transmit loads 

arising from body weight and muscle activity through the spinal column. They provide 

flexibility to the spine , allowing spine motion. The intervertebral discs are complex 

structures that consist in a thick outer ring of fibers called the annulus fibrosus (AF), 

which surrounds a more gelatinous core known as the nucleus pulposus (NP); the nucleus 

pulposus is interposed inferiorly and superiorly by cartilage endplates (Figure 1.3). 

 

Figure 1.3 - A cut out portion of an intervertebral disc [Prithvi Raj, 2008]. 

Figure 1.2 - Axial view of a vertebra. 
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The annulus fibrosus is composed of a series of 15 to 25 concentric lamellae of 

fibrocartilage, with the collagen fibers lying parallel within each lamella.  The lamellae 

are approximately 0.05-0.5 mm thick, and the thickness increases from outer to inner 

layer. Approximately 48% of the lamellar layers  are circumferentially incomplete and the 

percentage of incomplete layers increase with age. [Newell et al., 2017]. The fibers are 

oriented approximately 60° to the vertical axis , alternating between the left and right 

orientation in adjacent lamellae. Elastin fibers lie between the lamellae, helping the disc 

to return to its original arrangement following bending [Prithvi Raj, 2008]. 

The nucleus pulposus forms the core of the intervertebral disc and it is located slightly 

posteriorly as the lamellae of the annulus fibrosus are thinner and less numerous in the 

posterior side [Adams et al., 2014]. The NP is a gelatinous structure that accounts for 40-

50% of the volume of the adult disc and 25%-50% of the transverse cross-sectional area. 

The NP has such a high water content that it exhibits a hydrostatic pressure which 

increases in response to compressive loading, and this pressure generates tension in the 

surrounding AF. Its main constituents are proteoglycan, collagen and water [Newell et al., 

2017]. 

The boundary between NP and AF is very distinct in the young individuals; but during 

growth and skeletal maturation, it becomes less obvious, and increasing age the nucleus 

generally becomes more fibrotic and less gel-like [Prithvi Raj, 2008]. 

Finally, the cartilage endplates are a thin horizontal layer of hyaline cartilage. These 

interface the disc and the vertebral bodies. The collagen fibers run horizontal and parallel 

to the vertebral bodies, with the fibers continuing into the disc [Prithvi Raj, 2008]. 

The mechanical functions of the disc are given by the extracellular matrix of the annulus; 

its composition and organization govern the disc’s mechanical responses. The main 

mechanical role is provided by the two major macro-molecular components (Figure 1.4): 

 Collagen, present mostly as type I and type II fibrils; it provides tensile strength to 

the disc and anchors the tissue to the bone; 

 Proteoglycan, which is the responsible for maintaining tissue hydration and gives 

the osmotic pressure to the nucleus. The proteoglycan and water content of the 

nucleus is larger than in the annulus.   
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Figure 1.4 - Biochemical composition of the nucleus [Prithvi Raj, 2008]. 

 

1.2 Intervertebral disc tears 

1.2.1 Types of lesions 

Annular lesions are feature of IVD degeneration and that may precede morphological 

changes in the nucleus (Osti et al., 1990) and instigate changes in cellular activity that are 

consistent with IVD degeneration. 

Annular lesions are defined as disruption of the arrangement of the annular fibers and can 

be distinguished in (Figure 1.5): 

 Concentric tears: circumferential lesions found in the outer layers of the annulus 

which represent splitting between adjacent lamellae of the annulus [Adams et al., 

2014]; they are most prominent in the anterior periphery of the disc [Thompson et 

al., 2004]; 

 Radial tears: irregular radial fissures that begin within the center of the disc (NP) 

and progress in radial direction either in the transverse plane or in a cranio-caudal 

direction [Adams et al., 2014]. They tend to appear in the posterior or postero-

lateral part of disc [Thompson et al., 2004]; 

 Rim lesions: are defined as a separation of the outer annulus from the vertebral rim 

of the adjacent vertebral body. They more commonly happen in the anterior 

annulus [Thompson et al., 2004]. 
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Figure 1.5 - Annular tears [Thompson et al., 2004]. 

 

1.2.2 Intervertebral disc tears: state of the art 

A literary review was performed in order to understand how, in the last years , research 

tried to understand the damaged disc behavior simulating lesions on it.  

Only in vitro human works were taken into account, excluding animal studies and finite 

element models, as shown in details in Appendix A 

The majority of the studies removed partially or totally the nucleus pulposus from the disc 

postero-lateral region, only Goel et al., 1986, incised the posterior side of the disc, and 

Tencer et al., 1982, created staggered horizontal cuts around the disc circumference, near 

both endplates. 

Lee et al., 2018, and Shea et al, 1994, made a circular hole in the annulus; whereas a 

square or a rectangular window was realized by Bostelmann et al., 2015, Kuroki et al, 

2004, Seroussi et al., 1989, and by Panjabi et al., 1984. 

All the other authors impacted the annulus fibrosus with different types of lesions: with a 

cruciform incision (Cleason et al., 2019, Showalter et al., 2014, O’Connell et al., 2011), 

an oblique incision oriented along the fiber direction (Heuer et al. in 2007 and 2008, and 

Krismer et al. in 1996), an horizontal incision (Ivicsics et al., 2014, and Goel et al., 1986) 

or with a vertical cut in Frei et al, 2001,. study. 

In almost all the studies, the spine segment was loaded with an axial compression, or 

under pure bending in flexion and extension in some cases. 

Many studies recorded the intradiscal pressure to register pressure variations inside the 

disc due to annulus fenestration and nucleus removal. 
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Range of motion was computed in six studies (Lee et al., 2018, Bostelmann et al., 2015, 

Heuer et al., 2008, Heuer et al., 2007, Kuroki et al., 2004, and Goel et al., 1986). In all 

cases pins, markers and dial gauges were attached on the vertebral bodies, and their 

displacements were tracked by 3D motion analysis system or laser scanner. Heuer et al, 

2007, used a rotational potentiometers. 

Internal disc deformation field and disc surface strains were both mainly acquired by 

imaging system as MRI (Cleason et al, 2019, Showalter et al., 2014, O’Connell et al., 

2011) and laser scanner (Heuer et al., 2008). Only Frei et al, 2001, used triaxial strain 

gauges. 

Load and displacement data were mainly acquired by displacement sensors, LVDT and 

potentiometers transducers. 

 

1.3 Strains measurement over the disc surface 

Strains analysis over the intervertebral disc surface has been a challenge through the 

years. 

Although strain gauges are not recommended on the intervertebral disc because  the discs 

have a low elastic modulus, few studies in literature used this method [Frei et al, 2001; 

Gustafson et al, 2016]. 

In general, due to the disc composition, studies that have been carried out to measure 

strains have used image-based methods. Heuer et al., 2008, used a laser scanner to 

acquire surface roughness, O’Connell et al., Showalter et al., and Cleason et al., used a 

MRI system. Similarly, Karakolis et Callaghan, 2015, extracted strains distribution by 

means of high resolution images. 

Spera et al, in 2011, proposed a Stereo-Digital image correlation: a full-field 

measurement system recordings over more than 180° of the IVD surface was achieved by 

sequentially moving a single camera through fixed positions in order to cover the desired 

angle of vision. Their method does not seem applicable to segment comprising both hard 

and soft tissue [Ruspi et al., 2017]. 
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Recently, the feasibility of measuring the full-field strain distribution in the vertebrae and 

disc by means of Digital Image Correlation was successfully demonstrated [Palanca et al., 

2018]. 

1.3.1 Digital Image Correlation  

The Digital Image Correlation (DIC) is a contact-less, non invasive optical method for 

measuring surface displacement and strain of materials subjected to mechanical stress 

[Palanca et Brugo, 2015]. The method compares two images of the same specimen before 

and after deformation, acquired by mean of one (to obtain a two-dimensional outcome) or 

two cameras. Through two cameras, a three-dimensional outcome is obtained exploiting 

the concept of stereoscopic view of human vision: the final image is gained by merging 

two projection of the same scene obtained from two different points of view. The 

specimen must be illuminated by white homogeneous lights during the test (Figure 1.6). 

An accurate calibration of the image system prior to the measurements is a crucial point 

for ensuring the reliability of the measured data [Siebert et al., 2007]. 

 

Figure 1.6 - A schematic plot of a DIC testing setup [Liao et al., 2014]. 

 

The correlation of digital images is based on the acquisition of a set of frames of the 

specimen at various stages of deformation (from the unload condition, the reference,  to 

the stressed condition). The specimen surface is covered with a randomized speckle 

pattern, which is applied as a stochastic texture to the object before the measurements. 

After the acquisition, each object point on the specimen surface is identified based on the 

pattern [Siebert et al., 2007]. A correlation algorithm identifies corresponding points in 

the two cameras images by subdividing the first camera image into small sub-images, 

called facet. The correlation algorithm determines a suitable transformation of each of the 
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facets, which matches the homologous area in the second camera image. These 

transformations are determined for every loading step of the specimen under test. The 

displacement field is then computed, and subsequently, the strain filed is obtained by 

derivation. The size and the spacing (grid spacing) of these facets can be varied, 

influencing accuracy and speed of evaluation [Palanca et al., 2016] (Figure 1.7). 

 

Figure 1.7 – Detail of the specimen surface prepare with a random speckle pattern  

with facet parameters highlighted [Palanca et al., 2016]. 

 

1.4 A recent surgical treatment: Percutaneous Cement Discoplasty 

Percutaneous Cement Discoplasty (PCD) is a novel minimally invasive technique fror the 

treatment of ‘vertical instability’ (dynamic foraminal stenosis) in patient who are not 

suitable for a more invasive surgical procedure, such as the gold standard treatment of 

degenerative disc disease.  

Varga et al., presented this technique in 2015, as a surgical treatment to recover the disc 

height and free the nerve after its compression due to the vacuum phenomenon inside the 

intervertebral disc resulting in the collapse of the adjacent vertebra. PCD consists in 

filling the empty disc with an injection of acrylate cement. Varga et al., 2015, reported 

their clinical study on 47 patients showing a significant improvement of their quality of 

life. Sola et al., 2018, presented a surgery of a patient treated with PCD, and the 

following year, Kiss et al., 2019, showed the recovery of the lumbar alignment in 27 

patients after a discoplasty surgery. 

Thus, only few studies in literature report PCD surgery cases, and the impact of this new 

technique on the human spine biomechanics has not yet been investigated. 
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An ongoing study [Techens et al., 2020] assessing mechanical consequences of PCD on 

lumbar spine stability, simulated the vacuum degenerated disc with an annular 

fenestration and a manual nucleus pulposus removal. 

The influence of this disc damage on the AF behavior and the spine biomechanics is 

unknown. 

 

1.5 Aim of the study 

Because of the consequences of lesions presence of on the biomechanics of the motion 

segment are still not clear, this work aimed at enlarging the knowledge about this research 

question. 

The aim of this in vitro study was to evaluate changes in spine flexibility, in terms of 

stiffness, range of motion and disc height, as a consequence of sequentially increasing the 

IVD damage, in order to: 

i. Elucidate if there is a specific degree of damage where the biomechanics 

of the IVD is substantially altered; 

ii. Explore the artifacts induced by simulated disc lesions, e.g. when studying 

discoplasty. 

In addition, the impact of the annulus damage on the surrounding tissues was assessed 

using Digital Image Correlation to study the surface strains. 
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Chapter 2 

Materials and Methods 

 

This in vitro study has been conducted at the laboratory of Biomechanics of the 

Department of Industrial Engineering (University of Bologna). 

For this study eight thoraco-lumbar spine segment were prepared simulating five disc 

defect configurations, starting from the intact disc and increasing the damage until the 

complete removal of the NP. All the specimens were tested sequentially in flexion and 

extension in all configurations with repeated measurements. DIC was used to acquire true 

principal strain distributions on the disc surface. Disc height was measured on the DIC 

images. In addition, Range of Motion and stiffness were computed to analyze the 

flexibility of the spine. Statistical analysis was performed to assess the result significance. 

2.1 Specimens preparation 

Fresh cadaver thoraco-lumbar functional spine units (FSUs) were used in this study, 

under ethical committee approval. A FSU consists of two adjacent vertebrae with the 

intervertebral disc and ligaments intact between them; it is a common specimen length 

used for modeling the mechanical behavior in a given region of the spine [Wilke et al., 

1998]]. 

The spines, coming from six donors aged from 53 to 77years old, were separated into 

eight FSU testing specimens. (Table 2.1). 

Sp. 

N° 

Testing 

Donor 
Level Gender 

Age at 

death 

(years) 

Height 

(cm) 

Body 

Weight 

BW (Kg) 

Cause of Death 

#1 62 T9 - T10 F 77 155 43 Cancer 

#2 62 T11 - T12 F 77 155 43 Cancer 

#3 63 T10 - T11 M 68 173 82 Cardiac failure 

#4 66 L4 - L5 M 79 193 79 Alzheimers dementia 

#5 67 T12 - L1 M 53 183 82 Brain cancer 

#6 68 T10 - T11 M 59 188 101 Pneumonia 

#7 68 T12 - L1 M 59 188 101 Pneumonia 

#8 71 T10 - T11 F 58 158 132 Shoulder and skin cancer 

Table 2.1 - Specimen information. 
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2.1.1 CT scans of the specimens 

Before starting the specimens cleaning, CT scans were performed for all the spines, 

except the #6 and #7. CT scans were performed in a private hospital at Villalba (BO), and 

images were acquired by the scanner Aquilion, ONE, Toshiba, with a current of 200mA, 

a voltage of 120 kV and a 0.5 mm voxel. CT scans were observed to: 

 Assess the initial condition of the specimens; 

 Chose the exact levels for the study; 

 Compute the offset for the load application; 

From the CT images a fusion at the IVD level was seen between the T11 and T12 

vertebrae in the specimen #2 and a fracture of the posterior process was discovered in the 

L5 and T10 vertebrae, on the #4 and #8 spine, respectively. 

2.1.2 Cleaning of the specimens 

The FSUs were prepared in accordance with accepted procedures defined by Wilke et 

al.,1998. All the specimens were stored sealed in a double plastic bags at -28°C; these 

storage conditions do not have any effect on viscoelastic biomechanical properties 

[Panjabi et al., 1985]. 

After having thawed the specimens in water at room temperature, the whole specimens 

were grossly cleaned detaching the most of soft tissues (skin, fat and muscles) covering 

the bone by surgical spoons and pincers (Figure 2.1). At this point, it was easier to 

identify the levels of interest, so the FSUs were separated cutting through the 

intervertebral disc adjacent to the vertebral bodies using the scalpel and the saw (Figure 

2.1). FSUs cleaning war completed detaching the smallest part of soft tissues by scalpel 

and forceps, taking care to leave intact the anterior longitudinal ligament, the posterior 

longitudinal ligament, and the facet joints.  

 
Figure 2.1 – Surgical instruments used for the specimens cleaning: 

   a) surgical spoon, b) scalpel, c)needle holder, d)pincer, e)saw. 
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Because of the broken posterior processes (PP) of two FSUs, the PP were cut in all the 

specimens, to have the same condition for all of them. Posterior processes were cut at the 

facet joints level (Figure 2.2), in this way a small part of the PP and of the interspinous 

ligament kept, while the supraspinous ligament was totally removed. In addition bone 

fusion and ostheophytes were removed in the specimen #1 and #2 without damaging the 

disc. 

 

Figure 2.2- FSU after the cleaning procedure. Left: FSU with the 

posterior process and the supraspinous ligament intact; the yellow line 

is the cut level to remove the PP. Right: FSU after the PP cut. 

2.1.3 Alignment of the specimens 

To ensure that the specimen can be mounted in the testing machine in a repeatable way 

[WIlke et al., 1998] and that mechanical loading is applied appropriately to all the FSUs 

[Newell et al., 2017], it is important for motion segments to be secured in a fixative pot. 

In order to facilitate the anchoring of the specimen to the pot, all the soft tissues were 

removed from the vertebral endplates and cortical surfaced to within at least 1 cm of the 

endplates margins (Figure 2.3). In addition, screws were partially inserted into the 

cortical bone at cranial and caudal extremities (Figure 2.3), so that the screws heads were 

embedded in the cement. One, two or three screws were inserted in each extremity 

according to the size of the vertebral body and the surface of the endplate.  

 

Figure 2.3 - Specimen with screws in the vertebral body extremity;  

soft tissues were totally removed from the vertebral endplate and cortical surface. 
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Indeed, in order to test the specimen under the same conditions of load the FSUs were 

aligned with the intervertebral disc horizontal following a reproducible and suitable 

procedure already existing. 

To obtain a stable alignment with the horizontal disc either in the frontal view either in 

the lateral view a 6 Degree of Freedom (DoF) test system (Figure 2.4) was used. One 

extremity of the FSU was clamped with the anterior side in front of the operator on the 6 

DoF test system. With the help of a caliper the middle line of the disc was marked; that 

was aligned horizontally in the transverse plane. Then it was aligned horizontally also in 

the sagittal plane.; using the set square and the horizontal rules. 

 

Figure 2.4 - Left: 6 DoF system;  

Right: specimen clamped in the 6 DoF and embedded into cement inside a metallic pot. 

Then the specimen was embedded into cement for 20 minutes, inside a metallic pot with a 

square hole (Figure 2.4). After the cement hardened, the specimen was turned clamping 

the cemented extremity on the 6 DoF. The previous procedure was repeated aligning 

upper and lower pots using the square set to be sure to have both pots horizontal and 

parallel. 

Both extremities of the FSUs were potted with radiopaque Tecres cement, by mixing 

cement powder (PMMA) and the related monomer (MMA) in a ratio of 2:1. 

In this way two cemented basis parallel to each other at both extremities of each FSU 

were created, with the horizontal intervertebral disc (Figure 2.5). 
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Figure 2.5 - FSU with the cemented basis at both extremities. 

 

2.1.4 DIC Speckle - Pattern 

In order to measure surface strains of specimens with Digital Image Correlation (DIC) 

system a white-on-black speckle pattern was sprayed on the 

lateral side of the specimens. The side was chosen randomly, but 

attention has been paid to having, finally, half specimens with the 

left side painted and the other half with the pattern on the right 

side (Table 2.2). This was important to avoid that results depend 

on the side where defects were executed or on the side where the 

deformations were acquired. 

The dark background was prepared painting the lateral side of the 

FSUs with a saturated solution of methylene blue, obtained 

mixing 25 ml of water and 1 g of methylene blue powder 

(Farmalabor).  

Three layers of paint were deposited on the specimen with a soft brush to be sure the 

background was dark enough without impacting the properties of the disc [Palanca et al., 

2018] (Figure 2.6). 

 

                                               Figure 2.6 - Specimen with the blue background. 

Sp. N° 
Background 

side 

#1 Left 

#2 Left 

#3 Left 

#4 Right 

#5 Right 

#6 Right 

#7 Right 

#8 Left 

Table 2.2 – Painted side  

of each specimen. 
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In order to apply the speckle-pattern on the specimen’s surface an airbrush gun (AZ3 

THE 2, nozzle 1.8 mm, Antes Iwata, Italy) (Figure 2.7) was used with a solution of 

water-based paint (Q250201 Bianco Opaco, Chrèon, Italy) and 

water.  

Dot size have been previously optimized [Ruspi et al., 2018] in 

order to reach the 50:50 proportion of black-white color ( every 

single dots should have a dimension of 3-5 pixels). According to 

specimen sizes and lenses used: 

 20 ml of white paint were mixed with 8 ml of water; 

 The air pressure was set at 1 bar; 

 The airflow knob of the airbrush gun was opened with 4 

turns (Figure 2.7); 

 The white paint was sprayed holding the airbrush around 30 cm from the 

specimen. 

The optimized pattern resulting is shown in the figure below (Figure 2.8). 

 

Figure 2.8 - Speckle pattern on the lateral side of the specimen. 

 

 

 

 

 

 

Figure 2.7 - Airbrush 

gun; the red circle markes 

the airflow knob. 
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2.1.5 Defects of the disc 

In order to explore how disc defects and lesions impact the spine biomechanics, the IVD 

tears (Figure 2.9) were gradually increased, starting from the intact disc as control 

condition. 

 

 

Figure 2.9 –  

IVD tears in the different configurations; the red parts represent the cuts and the removed materials. 

 

All the specimens were sequentially tested in these five configurations: 

a) With the intact disc; 

b) With two vertical cuts on the annulus fibrosus (Figure 2.10): Two vertical cuts 

were made in the lateral side of the disc with a number 11 scalpel blade, from the 

upper endplate to the lower endplate. The annulus has been cut to reach the 

nucleus. The table shows the size of the cuts; 

 

Figure 2.10 - Specimen with the two vertical cuts. 

 

c) With four cuts, forming a square, without removing any part of the annulus 

(Figure 2.11): Two additional horizontal cuts were made to separate the annulus 

from the endplates between the two previous vertical cuts, with a number 11 

scalpel blade; 

a) b) c) d) e) 
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Figure 2.11 - Specimen with two additional horizontal cuts. 

 

d) With a square hole in the annulus (Figure 2.12): The annulus square plug between 

the four previous cuttings was removed with a rongeur: in this way the nucleus 

was visible through the hole;  

 

Figure 2.12 - Specimen with the square hole in the annulus;  

the nucleus is visible through the hole (white part). 

 

e) Without the nucleus pulposus (Figure2.13): through the annulus window created 

in the previous configuration, as much nucleus as possible was removed with a 

curette and a surgical spoon. Each specimen was weighed before and after the 

nucleotomy to assess the amount of nucleus removed (Table 2.3). 

 
Figure 2.13 - Left: Removing of the nucleus by means a curette; 

Right: specimen without the nucleus pulposus. 
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Sp. N° 
Lenght of 

cuts (cm) 

Distance 

between 

cuts (cm) 

Nucleus 

removed 

(g) 

#1 0,51 0,42 1,80 

#2 0,52 0,62 2,80 

#3 0,66 0,53 3,40 

#4 1,66 1,05 8,90 

#5 0,87 0,54 5,40 

#6 0,50 0,56 2,90 

#7 0,85 0,59 3,50 

#8 0,65 0,59 1,70 

Table 2.3 - Sizes of cuts executed in the configuration b)  

and amount of nucleus removed in the configuration e). 

All the defects were executed manually in the opposite side to that observed by the DIC 

and in order to reduce the variability between different test sessions. The disc lesions 

were produced directly on the testing machine up to configuration d). Removing all the 

nucleus pulposus from the FSU on the testing machine was not possible, so that the 

nucleotomy and the associated tests were performed at a later time. 

2.1.6 CT measurements 

In order to apply the load in a pre-defined and reproducible position, according to the 

protocol described in the following section, anatomical measurements were made on the 

disc under study, in particular the antero-posterior length and the lateral width of the IVD. 

Measurements were taken on CT images, using the free software RadiAnt DICOM 

Viewer 5.5.0. The midplane of the disc was located in the sagittal plane by defining the 

disc height where it appeared the highest. In the transverse plane, at the disc midplane, the 

anterior-posterior length (L) was measured in the center of the disc, and the disc width 

(W) was measured as the lateral length in the center of the disc (Figure 2.14). Each 

quantity was measured three times and means were considered (Table 2.4). 

Sp. N° Level L (cm) W (cm) 

#1 T9 - T10 2,43 3,02 

#2 T11 - T12 2,66 3,55 

#3 T10 - T11 2,99 4,10 

#4 L4 - L5 4,94 6,64 

#5 T12 - L1 3,35 4,87 

#6 T10 - T11 3,74 4,39 

#7 T12 - L1 3,85 4,51 

#8 T10 - T11 2,34 3,41 

                       Table 2.4 –Disc length and width values based on CT images; 

               the bold numbers represent the computed values for the specimens without CT scan. 
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Could not be applied to the specimens number #6 and #7, as CT scans were not available 

for these. For these FSUs the disc width (W) was measured on the specimens with a 

caliper. To obtain the disc length (L), the distance (D), between the anterior part of the 

disc and the posterior one, was manually measured with a caliper; this distance was 

greater than the real disc length. In order to evaluate the discrepancy between L and D, 

both these measures were taken on the CT images (Figure 2.14) of the same levels of the 

#6 and #7 FSUs. An error of 5% was found for the T10-T11 level and an error of 10% 

resulted for the T12-L1 level. So, to obtain a reliable value for the #6 and #7 FSUs disc 

height L,  the 5% and the 10% respectively, was subtracted from the measured values (D) 

(Table 2.4). 

 

 

Figure 2.14– RadiAnt DICOM viewer interface. In the sagittal planele yellow line marks the midplane of 

the disc. In the transverse plane the green lines represent the disc length (L) and the disc width (W), the red 

lines is the distance D. 

 

 

 

 

 

T10 

T11 

SAGITTAL PLANE 

TRANSVERSE PLANE 

L 

W 

D 

FRONTAL PLANE 



Chapter 2 – Materials and Methods 

 

31 

2.2 Mechanical tests  

2.2.1 Testing set-up 

In order to see how the disc defects impact the biomechanics of the spine, all the  

specimens were tested on an uniaxial servo-hydraulic testing machine (8032, Instron, 

UK), equipped with a 100kN load cell. 

Tests were conducted applying a pre-defined load scaled (scaled for each donor body 

weight). The actuator speed was adjusted for each specimen so that the loading time was 

the same for all. During the test, each FSU was anchored with the metallic upper pot to 

the load cell by means of a metallic plate, which had the role to transfer the load between 

the pot and the load cell with an homogeneous distribution. The lower part of the 

specimen was linked to the actuator by means a spherical joint, able to move along the 

antero-posterior direction by means of a low-friction rail. In this way one free rotation of 

the loading plate was allowed only in the rail direction (Figure 2.15). 

 

 

 Figure 2.15 - Testing set up and in yellow the coordinates system.  
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2.2.2 Testing protocol 

All the specimens were tested in flexion and in extension in all the configurations 

described above. The position of the specimen under the testing machine was performed 

taking into account that the spherical joint had to impact the lower pot in its middle right-

to-left direction, and that the lateral side with the speckle pattern had to be seen by the 

cameras. 

The tests were sequentially performed and the disc defects were increased with cuts or 

removing materials after testing both the loading conditions. 

The specimens were tested under an axial load applied with an offset. For this 

combination, a load of 50% of the body weight was applied to be in the range of the in-

vivo-load [x] (Table 2.5). 

Sp. N° Level Load (N) 

Flexion 

offset    

[35%L](cm) 

Extension 

offset 

[70%L](cm) 

#1 T9 - T10 211 0,85 1,70 

#2 T11 - T12 211 0,93 1,86 

#3 T10 - T11 402 1,05 2,1 

#4 L4 - L5 388 1,73 3,46 

#5 T12 - L1 402 1,17 2,34 

#6 T10 - T11 495 1,31 2,62 

#7 T12 - L1 495 1,34 2,68 

#8 T10 - T11 647  300 0,82 1,64 

Table 2.5 - Testing parameters: load and offset values for flexion and extension. 

The estimated load of 647N for the #8 FSU was too high with regard to the size of the 

specimen, so, to avoid to damage the specimen, it has been decided to reach only 300N, 

after having non destructively check that the specimen was able to reach this. To be sure 

to reach the target load during the tests, a 10% increased load was applied. 

Being in displacement control, the displacement needed to reach the targeted load was 

measured and then applied for the tests. 

Specimens were solicited with the same load either in flexion either in extension, but the 

points of application of the load were different (Table 2.5). In particular, in flexion tests 

the load was applied with an anterior offset of 35% of the antero-posterior disc length 

from the center of the IVD; while, the extension offset were 70% of the antero-posterior 

disc length (Figure 2.16). 
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Before starting the tests preconditioning was performed to minimize viscoelastic creep 

effect, applying a sinusoidal loading at 0.5 Hz for 20 cycles, and it was repeated every 

time the loading condition was changed.  

Each test consisted of six cycles of a trapezoidal wave. The amplitude of the wave was 

determined previously to the test by reaching manually the targeted load and recording 

the corresponding displacement. The loading curve lasted 1 second; le load was 

maintained for 0.3 second; le unloading curve lasted 0.5 second and after 0.2 second a 

new wave started. 

This test was repeated five times for each different loading condition and configuration.  

Each test was repeated after 3 minutes from the previous one because it was found to be a 

time needed to recover the properties of the disc (Figure 2.17). 

 

 

OFFSET OFFSET 

FLEXION EXTENSION 

Figure 2.16 - White lines represent the applied offsets between the center of the 

disc and load in flexion (left) and extension (right). 

LOAD 
LOAD 

OFFSET 
OFFSET 
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Figure 2.17 – Block diagram of the testing protocol. 
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2.2.3 Data acquisition 

During the test, the load and the displacement of the actuator were recorded by the PXI 

system. at 500 Hz. 

Disc surface images were recorded by a 3D-DIC system (Q400, Dantec Dynamics, 

Denmark) at 15 Hz. The whole system consisted of: 

 Two monochromatic cameras (5 MegaPixels, 2440 x 2050 pixels, 8-bit) equipped 

with standard 35 mm lenses (Apo-Xenoplan 1.8/35, Schneider-Kreuznach, Bad-

Kreuznac, Germany) for a stereo-scopic view (Figure 2.18); 

 Data acquisition card ( It manages to import images recorded by the cameras, and 

to connect, at the same time it records images, others measurement tools with the 

digital signal output); 

 Source of light (two white LEDs, were used) (Figure 2.18); 

 Computer with the associated DIC software for the images correlation and 

elaboration; 

 Calibration target (Mod. A14-BMB- 9x9, Dantec Dynamics). 

The optimized parameters [Ruspi et al., 2018] used for the images correlations were: 

 Facet Size: 35 pixel; 

 Grid Spacing: 19 pixel. 

All images were filtered using Contour and Displacement Smoothing, filters with a local 

regression with a 07x07 kernel size. 

 

Figure 2.18 - DIC set up with the two cameras (red square) and the source of light (yellow circle). 
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2.3 Data Analysis  

Analyzed data were extracted from the last cycle of each test, the first five cycles 

ensuring that the visco-elastic effect was negligible in the specimens. Indeed, it was 

confirmed that after three cycles, specimens reached an equilibrium. 

Data-processing was performed with Matlab (Mathworks, Inc., Natick, Ma, Usa) 

dedicated scripts.  

Images analysis was performed with the associated DIC software after that the images 

correlations were successfully performed using optimized parameters described above. 

Images processing was performed at the target load frame. 

 

The load – displacement curves were obtained from the PXI data to evaluate the loading 

curve trend between the different configurations. Stiffness was defined as the average 

slope of the second half of the loading phase. 

ROM was defined as the relative rotation between the two vertebral bodies in the sagittal 

plane at the peak load. In order to obtain the ROM, the following steps were performed 

on a Matlab scrip, assuming rigid body motion. 

For each test: 

 The load signal was filtered with a median filter; 

 The signal was segmented into the six cycles of the test; 

 The peak load, the targeted load and their time interval were computed for each 

cycle, since to be sure to reach the target load, a targeted load more 10% was 

applied; 

 On the DIC correlated images, two regions of interest were selected corresponding 

to the upper fixed vertebral body and the lower moving one; 

 The position of the center of the each vertebra was plotted was plotted in order to 

identify the peak load and the unload frame for each cycle of the test; 

 Combining the time gap between the target load and the peak load, with the load 

peak frame allowed to identify the targeted load frame number; 

 Distance between the unload frame and the peak value frame were computed for 

both the centers of the lower vertebra and of the upper vertebra; 
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 Considering vertebrae as rigid bodies, Singular Value Decomposition Algorithm 

[Chung et Teoh, 2002] was applied to take out the main rotation and; 

 The 3D rotations of the FSU resulted by the composition of the upper and lower 

vertebra rotation. 

In order to assess how strain distribution changed in the different tested configurations, 

strain distribution maps were extracted over all the correlated surfaces, either for the 

maximum principal strains either for the minimum principal strains, at the targeted load 

frame. In addition, the mean, the maximum and the minimum value for the principal 

strains on the disc surfaces were extracted using the DIC software. 

In order to assess changes in disc height under load and due to disc lesions, the disc 

height was measured on DIC correlated images following the 3D profile to recognize the 

disc geometry. The disc height was measured in the central lateral side, at the beginning 

(10N) of the last cycle, to have a comparable measures for all the specimens. The disc 

height measure in the postero-lateral of the IVD at the peak load was not always possible 

due to defects in the correlated images. 

To limit the inter-specimen variability influence, stiffness, height and ROM values were 

normalized to the intact condition value. Median of all the outcomes were calculated and 

presented. 

For each outcome, outliers checked and excluded using Peirce’s criterion [Ross, 2003]. 

2.4 Statistical Analysis  

A statistical analysis was performed to evaluate the significance of the changes between 

the disc damage conditions. 

The median stiffness and ROM, both in flexion and in extension, were compared using 

the Friedman One-Way Repeated Measure Analysis of Variance by ranks. Friedman’s 

test is a-non parametric statistical test for paired data used to detect differences in 

treatments across multiple test attempts. 

A statistical significance of 0.05 was used for all statistical tests. A p-value smaller than 

0.05 was considered statistically significant. 
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Chapter 3 

Results 

 

All the tests were successfully implemented without damaging the specimens.  

Correlations and measurements were successfully performed for all the different 

configurations of all specimens. 

3.1 Stiffness 

For each specimen and for each type of motion, load – displacement curves were 

compared in the five conditions. Displacement offset was removed to have the curves 

starting at zero displacement. Being interested in the loading condition, only the loading 

phases until the targeted load were plotted. 

Different behaviors were observed through the load – displacement curves were observed 

in the flexion condition: six specimens showed an increase of slope between 

configuration a) and d) (Figure 3.1), while the other two specimens (#4 and #6) exhibited 

the opposite tendency (Figure 3.2) The nucleotomy curves showed an effect more intense 

than the others in all the spine, except in one specimen. 
 

 

 

Figure 3.1 - Load – displacement plot with a slope increasing between configuration a) and d), in flexion. 
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Figure 3.2 - Load – displacement plot with a slope decreasing between configuration a) and d), in flexion. 

 

In addition, the FSU’s belonging to the upper part of the spine (between T9 and T11) 

presented a linear shape (Figure 3.1) whereas the lower part of the spine (between T12 

and L5) showed an exponential shape (Figure 3.2). 

A common trend among the specimens was the increase of the sigmoid-shape curve in the 

laxity zone (first part of the curve): usually the first curve (blue one, condition a)) was 

linear. Increasing the incision level, this effect was more stressed until the nucleotomy 

step (light blue curve, configuration e)) (Figure 3.3). 

 

Figure 3.3 - Zoom on the initial load-displacement plot; the sigmoid-shape effect increase is visible from 

the blue line (conf. a)) to the last defect simulation (light blue line). 
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In extension, load and displacement were linearly related, except for the lumbar FSU #4 

which exhibited an exponential behavior (Figure 3.4). As in flexion, half of the 

specimens showed an increase of slope between configurations a) and d), while the others 

half exhibited the opposite tendency. In addition nucleotomy condition exhibited an effect 

more intense or comparable to the others, except for FSU #5, which manifested a sharp 

increase of the load – displacement slope after nucleus removal (Figure 3.5). 

 

 

Figure 3.4 – Load – displacement curves with a slope decreasing between configuration a) and d) in 

extension. Nucleotomy curve has a comparable effect to the others. All the curve show an exponential 

behavior. 

 

Figure 3.5 – Load – displacement curves with a linear behavior in extension. Sharp increase of slope in 

nucleotomy condition (light blue curve). 
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Due to these different trends of the loading curves, in order to have a comparable 

parameter between the specimens, stiffness was estimated as the slope of the second half 

of the loading curve, which was more consistent for all specimens.  

The median values of the stiffness normalized by intact state of the last cycle of the five 

repetitions are presented. 

Deleted data on tables were classified as outliers according to Pierce’s criterion [Ross, 

2003] and therefore they were excluded from analysis and plot. 

 

In flexion, specimens presented very different trends among the various configurations 

(Table 3.1) but the dispersion of the values was comparable between the increasing disc 

lesions (Figure 3.6). 

  CRANIAL <==     ==> CAUDAL   

Sp. N° #1 #3 #6 #8 #2 #5 #7 #4 
Median 

Level T9 - T10 T10 - T11 T10 - T11 T10 - T11 T11 - T12 T12 - L1 T12 - L1 L4 - L5 

Conf. a) 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 

Conf. b) 0,98 1,01 1,02 1,13 0,95 1,04 1,00 0,91 1,00 

Conf. c) 1,01 0,96 1,03 1,16 1,02 1,06 1,02 0,87 1,02 

Conf. d) 1,05 0,88 1,01 1,27 1,06 1,08 1,15 0,89 1,05 

Conf. e) 1,01 0,96 0,95 1,13 0,78 1,20 1,58 0,76 0,98 

Table 3.1 - Median stiffness values in flexion. Results have been sorted by levels. 

 

 

Figure 3.6 - Normalized stiffness trend in flexion for each specimen in relation to the increasing degree of 

disc damage from configuration a) (intact) to e) (complete nucleotomy). 
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Median values of all the specimens, were very similar between damage levels (Figure 

3.7). Configuration without nucleus (e) showed a little decrease in the median value of 

stiffness, but the minimal differences between the configurations were not statistically 

significant, with p = 0.86 (Friedman test). 

 

Figure 3.7 - Median normalized stiffness in flexion for each configuration; from configuration b) (two 

incisions) to e) (complete nucleotomy). The blue line represents the intact disc stiffness level. 

 

In extension (Table 3.2), two vertical cuts (configuration b)) seemed not to have any 

effect on the stiffness of the specimens.  

From 4 cuts (configuration c)), the specimens showed a larger variability, with a variation 

of stiffness between 40% reduction and 20% increase. Configuration c) and d) had similar 

stiffness for all specimens. Nucleus removal enhanced inter-specimen variability with a 

decreasing stiffness for half of the specimens and an increasing stiffness for the others 

(Figure 3.8). 

  CRANIAL <==     ==> CAUDAL   

Sp. N° #1 #3 #6 #8 #2 #5 #7 #4 
Median 

Level T9 - T10 T10 - T11 T10 - T11 T10 - T11 T11 - T12 T12 - L1 T12 - L1 L4 - L5 

Conf. a) 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 

Conf. b) 1,08 1,01 0,99 1,05 1,01 0,98 1,09 1,02 1,02 

Conf. c) 0,61 1,15 0,87 1,17 1,11 1,09 1,29 0,99 1,10 

Conf. d) 0,62 1,14 0,88 1,22 1,14 1,12 1,44 0,96 1,13 

Conf. e) 0,54 1,33 0,88 0,88 0,79 3,18 1,53 1,11 0,88 

Table 3.2 - Median stiffness values in extension. Results have been sorted by levels. 

1,00 1,02 1,05 
0,96 

0,00 

0,20 

0,40 

0,60 

0,80 

1,00 

Median normalized STIFFNESS in 

Flexion 

Conf. a) Conf. c) Conf. d) Conf. e) 



Chapter 3 - Results 

 

44 

 

Figure 3.8 - Normalized stiffness trend in extension for each specimen in relation to the increasing degree 

of disc damage from configuration a) (intact) to e) (complete nucleotomy). 

 

Applying defects b) and d) did not affect significantly the stiffness median values (Figure 

3.9) with respect to the cases a) and c). An increment of 10% was obtained after the four 

cuts (configuration c)), while decrease of 12% occurred after nucleus removal with 

respect to the intact state. 

Different configurations did not show statistically significant differences (p = 0.71, 

Friedman test). 

 

Figure 3.9 - Median normalized stiffness in flexion for each configuration; from configuration b) (two 

incisions) to e) (complete nucleotomy). 

The blue line represents the intact disc stiffness level. 
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3.2 Range of Motion 

Only motion in the sagittal direction was taken into account. 

For each configuration, the median of the ROM of all specimens were normalized by the 

intact ROM for each motion.  

Deleted data on tables were classified as outliers according to Pierce’s criterion [Ross, 

2003] and therefore they were excluded from analysis and plot. 

 

In flexion, two vertical cuts (configuration b)) resulted in an increase of the ROM for all 

specimens except two (Table 3.3). 

  CRANIAL <==     ==> CAUDAL   

Sp. N° #1 #3 #6 #8 #2 #5 #7 #4 
Median 

Level T9 - T10 T10 - T11 T10 - T11 T10 - T11 T11 - T12 T12 - L1 T12 - L1 L4 - L5 

Conf. a) 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 

Conf. b) 1,23 1,43 1,48 0,67 1,03 1,07 0,71 1,09 1,08 

Conf. c) 1,22 1,28 1,26 0,62 0,91 1,05 0,79 1,12 1,09 

Conf. d) 1,19 1,17 1,50 0,62 0,73 0,97 0,90 1,26 1,07 

Conf. e) 1,03 0,86 0,81 1,50 0,85 0,70 0,63 1,13 0,85 

Table 3.3 - Median ROM values in flexion. Results have been sorted by levels. 

 

Between the configuration b) and d), no clear common trend was observed in the 

specimens but the ROM values remained in a range of [60%; 150%] for these three 

configurations. Nucleus removal decreased the ROM compared to the previous 

configurations, except in FSU #2; for the majority of the specimens the ROM was lower 

than the intact configuration value (Figure 3.10). 

Differences between all the configurations were found to be not statistically significant, 

with p = 0.20. 
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Figure 3.10 -- Normalized ROM trend in flexion for each specimen in relation to the increasing degree of 

disc damage from configuration a) (intact) to e) (complete nucleotomy). 

 

Looking at the median values among all the specimens (Figure 3.11), the disc lesions 

effect resulted in an increase of the rotation between 7% and 9% configurations b), c) and 

d), compared to the intact case. A 15% ROM decrease was achieved in the nucleotomy 

state (e)). 

 

 

Figure 3.11 - Median normalized ROM in flexion for each configuration; from configuration b) (two 

incisions) to e) (complete nucleotomy).The blue line represents the intact disc ROM level. 
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In extension, specimen #1 was excluded after the ROMs in configuration c), d) and e) 

were found to be outliers  with values three times higher than the other specimens (Table 

3.4). 

  CRANIAL <==     ==> CAUDAL   

Sp. N° #1 #3 #6 #8 #2 #5 #7 #4 
Median 

Level T9 - T10 T10 - T11 T10 - T11 T10 - T11 T11 - T12 T12 - L1 T12 - L1 L4 - L5 

Conf. a) 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 

Conf. b) 0,94 0,99 1,01 0,93 1,23 1,06 0,80 0,92 0,99 

Conf. c) 2,70 0,77 1,49 0,72 0,93 0,95 0,85 0,89 0,89 

Conf. d) 1,97 0,77 1,38 0,66 1,11 0,90 0,80 0,88 0,88 

Conf. e) 4,01 0,49 1,03 0,95 1,50 0,26 0,67 0,84 0,84 

Table 3.4 - Median ROM values in extension. Results have been sorted by levels. 

 

 

Figure 3.12- Normalized ROM trend in extension for each specimen in relation to the increasing degree of 

disc damage from configuration a) (intact) to e) (complete nucleotomy). 

Similarly to flexion, different behaviors between the specimens were observed in 

extension, in particular FSU #2 and #6 showed a completely different behavior from the 
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intact case. After removing the annulus square, no remarkable variations were visible in 

relation to the previous configurations. 

The median values among the specimen revealed no changes in ROM after the first lesion 

confirming the previous observations (Figure 3.13).  

 

Figure 3.13 - Median normalized ROM in extension for each configuration; from configuration b) (two 

incisions) to e) (complete nucleotomy). 

The blue line represents the intact disc ROM level. 

 

There was no statistically significant difference between the five configurations although 

a prevalent trend of range of motion decreasing was observed (p = 0.48, Friedman test). 
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3.3 Strain distribution 

DIC correlation has been successfully performed for all tests in flexion and extension. 

Both in flexion (Figure 3.14) and in extension (Figure 3.15), the highest strain values 

were located in the disc while the vertebra underwent null strain. 

 

In flexion, tensile principal strains were found in the center of disc. From a) up to d), the 

annulus surface was entirely strained, but in configuration e) the strained region 

concentrated along the mid-height plan of the disc. Strains direction showed that 

maximum tensile strains were circumferentially aligned in flexion. Compressive strains 

showed two different trends depending on the specimen level (Figure 3.16). In thoracic 

segments, high compressive strain values were located along the endplates starting from 

the anterior part (a)), propagated back along the endplates until the center of the lateral 

side of the disc. With the increasing damage, strains migrated and concentrated at the 

cranial and caudal borders, ending by covering the entire disc surface in the anterior (e)). 

In lumbar levels, segments with a small defect showed high compressive strains in the 

anterior ligament and along the endplates. The damages reduced the strains in the 

ligament, concentrating the high values along the endplate, propagating to posterior part 

of the disc. 

In extension, thoracic and lumbar levels acted differently (Figure 3.17). In thoracic levels, 

tensile strains spread incrementally on the disc from localized high strain regions on 

intact thoracic discs to continuous distribution over the disc in e). In lumbar segments, not 

only the disc was strained but also the anterior ligament leading to high tensile strains 

covering the anterior part of vertebrae. Contrary to thoracic levels, the strain distribution 

reduced when the disc got more damaged, with a concentration of the strain on the disc 

only. Tensile strains presented an axial alignment for all spine levels. Compressive 

strained regions were observed at the posterior part of the disc. In thoracic segments, the 

strains extended to the anterior of the disc with the damage increase whereas in lumbar 

segment, the distribution reduced incrementally, and concentrated around the endplates 

after nucleotomy. 
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Figure 3.14 –  
True principal strains in FLEXION, between configuration a) and e). 
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Figure 3.15 – 

 True principal strains in EXTENSION, between configuration a) and e). 
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Figure 3.16 – 

True principal strains in FLEXION, in configuration a) and e) 

in a thoracic segment (up) and in a lumbar segment (down). 
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Figure 3.17 – 
True principal strains in EXTENSION, in configuration a) and e) 

in a thoracic segment (up) and in a lumbar segment (down). 
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Median values of average, minimum and maximum values of true principal strain are 

shown in Table 3.5. Because of the inter-specimen variability, details for each specimen 

are in Appendix A. 

Nucleotomy affected more compressive strains either for flexion either for extension, than 

tensile strains. No configuration showed peak of tensile strains values significantly higher 

compared to the other configurations whereas compressive strain values doubled for d) 

and e) compared to intact condition. 

 

ɛ1 
FLEXION EXTENSION 

Mean [ɛ] Max [ɛ] Mean [ɛ] Max [ɛ] 

a) 8550 45770 5150 40258 

b) 8800 41001 6850 39145 

c) 9550 43199 5700 50241 

d) 9500 44281 6060 55377 

e) 8000 47199 5150 48034 

     

ɛ2 
FLEXION EXTENSION 

Mean [ɛ] Min [ɛ] Mean [ɛ] Min [ɛ] 

a) -7000 -42690 -4755 -61289 

b) -5650 -55972 -4400 -74290 

c) -10000 -60316 -3500 -86160 

d) -10900 -85611 -4850 -100874 

e) -30000 -115889 -8700 -95802 

 

Table 3.5- Median values of average, minimum and maximum 

first (Ɛ1) and second (Ɛ2) principal strains over the disc surface for flexion and extension. 
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3.4 Disc height 

Disc heights were measured for each test and normalized to the initial disc condition for 

each specimen. 

Only after the nucleus removal an appreciate decrease in the disc height was observed. 

Table 3.6 shows the median percentage of disc height loss in each configuration, 

compared to the intact state. 

 

Disc height loss 

 
Conf. b) Conf. c) Conf. d) Conf. e) 

Flexion 0,5% 0,8% 2,3% 23,0% 

Extension 0,2% 1,3% 1,9% 20,3% 

Table 3.6 – Disc height loss. Median values in percentage of all specimens. 
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Chapter 4 

Discussion  

 

The main aim of this study was to assess the mechanical stability and strains distribution 

on thoraco-lumbar FSUs  following disc defects. FSUs were tested sequentially in flexion 

and extension with five disc lesions, starting from intact condition to the nucleus removal. 

 

The sequentially execution of disc damage did not significantly impact the spine 

biomechanics in terms of stiffness and range of motion: no statistical differences were 

observed for these outcomes.  

 

The intervertebral disc height was not affected by annulus damages between 

configuration a) and d), but IVD decreased after nucleus removal, confirming the clinical 

observations (Varga et al. 2015). 

Furthermore, some specimens, corresponding to those with the maximum disc height 

reduction due to nucleotomy, showed during the last flexion test an inward bulging of the 

annulus. A possible explanation is that because the hydrostatic pressure of the nucleus 

pushes the annulus outward under compressive loading the absence of nucleus results in 

the abnormal bulging, [Seroussi et al, 1989]. Finally, although the continuity of the 

annulus was interrupted in the postero-lateral side, no leakage of the nucleus was 

observed. 

 

The normalized values of stiffness did not show any statistical difference among the 

different configurations in flexion because of the different specimens presented very 

different trends. In particular, median values between configuration b) and c) did not 

revealed differences but looking at each specimen individually, almost all of them 

presented an increment in stiffness.  

In extension, stiffness in configuration a) and b) and in configuration c) and d) were 

similar attesting that vertical incision did not disturb the disc stability whereas a squared 
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cut made the segment stiffer. Nucleus removal affected the segment stiffness, with a drop 

of the mechanical properties. Alterations in the annulus, like radial and circumferential 

tears, and nucleus removal, did not impact the linear part of the load – displacement plot, 

but had a more visible impact on the laxity zone. Depending on the disc damage the first 

part of the curve showed two macroscopic effects: 

 A different slope which reflected le increasing or decreasing trend among the 

configuration (Figure 3.1 and 3.2); 

 A significant changing from a linear trend to a sigmoid shape increasing the 

defects (Figure 3.3). 

Indeed, the changes occurring in the laxity zone due to the damages were more visible in 

flexion. This is explained by the anatomical function of the facets. In unloaded condition, 

facets are in contact. In extension, the facets are instantly loaded and so a linear trend is 

visible. In flexion, the facets reply first with a stiff behavior until they separate. Once the 

contact between the facet stopped, the load increase stabilizes as long as the facet joints 

stretch, resulting in an almost horizontal curve. Then, when the facets are enough 

separated, the posterior ligaments begin to resist the flexion and the stiffness increases 

again. 

Finally, the sharp increase of the nucleotomy curve slope in the extension load-

displacement plot of specimen #5 was confirmed by a disc height loss of 28%: the facets 

came in contact before and it resulted in a stiffer behavior. 

 

In flexion, ROM changes were visible after the first lesion; it created a median ROM 

increase of 8% compared to the intact state and it remained at the same level for the two 

subsequent configurations. Thus, the first lesion created the fibers gap responsible for the 

segment instability. On the contrary, in extension, ROM variation from the intact state 

was caused by the four cuts.  

In both loading conditions, no differences related to the presence or absence of the 

annulus square plug were observed. It indicates that after the fiber disruption, the nucleus 

behavior is not affected by the interposed materials.  

In extension, a ROM decrease after nucleotomy was hypothesized: the disc height 

reduction, as a consequence of the nucleus removal, led to a proximity of the facet joints 

which obstructed the relative rotation between the vertebral bodies. Despite all this, 

observed differences between the five configurations were no statistically significant.  
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Generally, both in stiffness and in the range of motion, a large variability in the specimen 

behaviors was expressed, leading to non significant differences. Such variability could be 

caused by the spine different levels used and by the nucleus intact condition. 

 

Results showed different strain distributions for thoracic and lumbar segments in flexion 

and extension.  

In flexion, the intact disc is compressed in the anterior part and it is stretched in the 

posterior one. Emptying the disc, vertebrae collapse on each other while the disc bulges in 

the frontal part and tensile strains are then located in the mid-height plan of the disc, both 

for thoracic and lumbar segments. During bulging, compressive strains are located at the 

endplates junction. Thoracic FSUs present a very small disc. Due to that, height loss of 

the disc makes the endplates closer, and combined with a small bulging of the disc, the 

compressive strains located along the endplates cover the entire small disc. On the 

contrary, in lumbar segments with a higher disc and a more pronounced bulging result in 

separated compressive strain distributions in the endplates. 

In extension, tensile strains are located in the anterior part of the disc and in the intact 

anterior ligament. The successive damages and in particular the nucleus removal 

determine the disc fall. In thoracic levels, the anterior ligament is narrow and thin, so the 

strains on the ligament are distributed over a small area. The disc is small and does bulges 

in small proportions which results in an incremental  stretching of the anterior fibers and 

increase of  tensile. On the contrary, in lumbar segment, larger discs determine a largest 

void left inside after nucleus removal. This contributes to the vertebrae collapse, 

associated with a pronounced annulus bulging. Therefore, the tensile strains on the disc 

decrease because the annulus bugles also in the front. Compressive strains are located in 

the posterior part of the disc and at the endplates border, when the disc is intact. In 

thoracic level, in which a small motion is visible, the compressive strains increase after 

nucleotomy, and spread to the anterior part. The lumbar segments, which bulge more after 

the nucleus removal than the thoracic levels, show compressive strains located around the 

endplates. 

For all the FSUs, gradual changes in the strain distribution were observed from 

configuration a) to d), confirming that increasing damages slightly deform the spine 

tissue. On the contrary, in configuration e), high variation of the strain distribution was 
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observed with concentration of strains in a located area of the disc or in the endplates 

which could make the disc more vulnerable to other damages and micro fractures.  

 

To my knowledge very few papers could be found in the literature testing similar defects 

as this study. 

As found in this study, Showalter et al., 2014, and Brickmann et al., 1991, reported a disc 

height reduction after nucleotomy. 

 

Stiffness results of the present study are in agreement with the study of Green et Adams, 

1993; as they reported that collagen fibers does not need to be continuous to reinforce the 

annulus and that the fiber-matrix interactions make a large contribution to stiffness. In 

addition, Michalek et Iatridis, concluded in 2012 that, the lack of stiffness change in 

bending suggests that acute annular tears are not sufficient to induce off-axis  motion and 

instability. On the contrary, large injuries seem to increase the opening of facets and so 

they resulted in a longer laxity zone [Michalek et al, 2012]. 

Thompson et al., 2000, studying the effect of tear type on biomechanical properties of 

human lumbar spinal motion segments, found that flexion stiffness increased with more 

intense severity of concentric tears and rim lesion and extension stiffness increased with 

increased severity of radial tears. 

Stiffness outcomes observed after nucleus removal were different with previous study 

[Cloyd et al., 2007]. This is possibly due to the fact that, thoracic spine segments which 

were mainly involved in this study reacted to loading stresses in a different way than the 

lumbar levels analyzed in literature. 

Similarly to this study, Bostelmann et al., 2015, could not detect any significant 

difference in the flexion and extension range of motion after having created a rectangular 

window in the annulus. Despite the fact that no significantly difference were exhibited 

after the nucleus removal compared to the intact state, Kuroki et al., 2014, observed that 

the effects of cyclic loads after nucleotomy increased ROM and caused spinal instability, 

contrary to this study, where ROM in configuration e) decreased compared to the intact 

case. Lee et al., 2018, observed similar absolute values in the range of motion of FSUs 

after nucleotomy, compared to the ones exhibited in this work, but they found differences 

statistically significant between the intact and the damage disc. 
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Few studies looked into the strain distribution on the disc surface under the same 

configuration. Ruspi et al., 2017 found that different portions of the intervertebral disc 

were subjected to compression or tension with different orientation of the principal strain. 

Same was observed in this study: in the compressed side of the disc the compressive 

strains were axial, while circumferential tensile strains on the stretched side of the disc. 

 

 

Limitations of the study 

 

The small number of specimen used in this study was responsible for the limited 

statistical power. Furthermore, the high variability of the levels involved led to different 

behaviors of the FSUs. However, the results were in accordance with other studies and 

allowed to draw different trends depending on specimen levels. 

Clinically, discoplasty aims at recovering the disc height in order to open the 

neuroforamen and free the nerve. This surgery is mainly used in lumbar spines so the use 

of thoracic levels could integrate some bias. However, the results did not show any 

correlated impact due to the spine level, except for the strain distribution. 

In addition, the vertebrae T9 and T10 are biologically linked to the sternum by means of 

the ribs. This means that these levels undergo a different loading in vivo compared to the 

other vertebrae. The load is also supported in the front and they have a different load 

transmission related to the lower part of the thoracic spine and to the lumbar segments 

[Ignasiak et al., 2016]. Although ribs were removed in this study, upper thoracic levels 

could behave differently from others even if no evidence of this was highlighted in this 

study. 

In this study a combination of compression and bending was applied. Indeed this study is 

related to another work using the same specific setup. Most of the literature applying pure 

bending, it can explain the differences of absolute values of results. 
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Chapter 5 

Conclusions  

 

This in vitro study was performed in order to understand if biological lesions injuries 

occurring in 50% of intervertebral discs, could alter the spine biomechanics. In addition, 

also in vitro biomechanical investigations of the disc surgery treatment, as discoplasty, 

sometimes require collateral lesions which could impact the surrounding tissues and alter 

the final outcome of the study. 

To provide a response to this, eight thoraco-lumbar human spines were tested in flexion 

and extension in five different configurations with an worsening damage. 

 

The sequential execution of axial and circumferential tears in the postero-lateral side on 

the IVD, did not alter significantly the spine biomechanics: neither bending stiffness, 

range of motion nor disc height were significantly changed by scalpel incision. This 

suggested that acute annular tears alone are not sufficient to induce off – axis motion and 

instability. In fact, in these cases, the nucleus pulposus deforms and redistributes the load 

to support the annulus. 

 

Similarly, the annulus plug removal did not show significant effects with respect to the 

configuration with four cuts. It indicates that after the interruption of the fiber continuity, 

the presence or absence of the incised annulus material does not impact the IVD behavior. 

The main effect caused by nucleotomy was the disc height reduction due to the lack of 

support caused by the nucleus loss. 

The strain distribution on the disc surface showed also different pattern after nucleotomy 

for thoracic and lumbar levels in both the flexion and extension configuration. This  

confirmed the different disc behavior related to their location in the spine. In both cases, 

strains significantly changed in the last defect configuration, concentrating strains on 

smaller regions such as the mid-height line of the disc along the endplates. Combined 

with minimum compressive strains twice larger than in intact condition, nucleus removal 
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could make the annulus fibrosus vulnerable to fatigue damage and micro fractures. 

Contrary to previous studies, nucleus removal did not result in significantly different 

mechanical behavior. 

 

This study emphasized the immediate consequences of disc injuries on the spine 

biomechanics and the long term damages the disc could undergo following such loss of 

integrity. This study only looked at the strain distribution over the disc surface but it 

would be also interesting to see if the superficial observation are still valid in the inside 

disc by using DVC to assess the 3D field of strains. Finally it is currently unknown how 

the AF incision site responds to applied load in terms of strains distribution and principal 

strain peaks. So DIC acquisition on the damaged side of the IVD could increase this 

knowledge. 
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Appendix A 

 

 

 

Literature review on annulus tears  
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Reference 
Specimen/      

Spine Levels 

AF Incision 
NP removal 

Type Location 

Cleason et al., 

2019 

Human,        

lumbar FSUs 
Cruciate incision 

Left postero-lateral 

region 
30% of NP volume 

Lee et al., 2018 
Human,        

lumbar FSUs 
Hole,  = 3mm 

Right postero-lateral 

region 
As much as possible 

Bostelmann et 

al., 2015 

Human,        

lumbar FSUs 

Rectangular 

window, 6x8 mm 
Postero-lateral region - 

Ivicsics et al., 

2014 

Human,        

lumbar FSUs 

Horizontal 

incision, 6-8 mm  

Right postero-lateral 

region, in the mid-

plane of the IVD 

Partial NP removal 

and total removal 

Showalter et al., 

2014 

Human,        

lumbar FSUs 

Cruciform 

incision 
Postero-lateral region 30% of NP volume 

O'Connell et al., 

2011 

Human,        

lumbar FSUs 

Cruciform 

incision 
Postero-lateral region 20% of NP volume 

Heuer et al., 

2008 

Human,        

lumbar FSUs 

Oblique incision 

oreinted along a 

fiber direction 

Right postero - lateral 

region 
Total removal 

Heuer et al., 

2007 

Human,        

lumbar FSUs 

Oblique incision 

oreinted along a 

fiber direction 

Right postero - lateral 

region 
Total removal 

Kuroki et al., 

2004 

Human,        

lumbar FSUs 

Square window, 

5x5 mm 
Left posterior region As much as possible 

Frei et al., 2001 
Human,        

lumbar FSUs 
Vertical incision 

Right postero-lateral 

region 
As much as possible 

Shea et al., 1994 
Human,        

lumbar FSUs 
Hole, incision Right side (Not specified) 

Brinckmann et 

al., 1991 

Human,        

lumbar FSUs 
Incision Dorso-lateral region 

Different amount in 

different steps 

Krismer et al., 

1996 

Human,        

lumbar FSUs 

Cut following the 

fibers direction 
- - 

Seroussi et al., 

1989 

Human,        

lumbar FSUs 

Square window, 

5x5 mm 
Lateral region 

A third of NP 

volume 

Brinckmann et 

al, 1986 

Human,        

lumbar FSUs 

Radial incision + 

2 additional 

horizontal cuts 

Left dorso-lateral 

region 
- 

Goel et al., 1986 
Human,        

lumbar FSUs 

Horizontal 

incision 
Posterior region Small amount 

Brinckmann et 

al, 1985 

Human,        

lumbar FSUs 
Incision - 

Part of the NP 

volume 

Panjabi et al., 

1984 

Human,        

lumbar FSUs 

Square window, 

5x5 mm 

Right postero-lateral 

region 
As much as possible 

Tencer et al, 

1982 

Human,        

lumbar FSUs 

staggered 

horizontal cuts 

Around the disc 

circumference, near 

both endplates 

(No nucleus 

removal) 
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Reference 
Test Outcomes 

measurements setup Outcomes Loading nature 

Cleason et al., 

2019 

Internal disc deformation 

field 

Compression, stress - 

relaxation test 
MRI 

 

Lee et al., 2018 Axial stiffness, ROM 
Axial compression and pure 

bending 

3D motion analysis 

system  

Bostelmann et 

al., 2015 

Intradiscal pressure, 

ROM 

Axial compression and 

bending 

Pressure transducer, 

motion tracker system  

Ivicsics et al., 

2014 
Load- displacement plot 

Axial compression, flexion 

and extension 
Displacement sensors 

 

Showalter et 

al., 2014 

Compression modulus, 

strains and disc height 
Compressice cycling loading MRI 

 

O'Connell et 

al., 2011 
Disc internal strains 

Axial compression in flexion, 

neutral and extension position 
MRI 

 

Heuer et al., 

2008 
Disc surface strain, ROM 

Pure bending moments in 

flexion, extension, lateral 

bending and axial rotation 

Pins and laser scanner 
 

Heuer et al., 

2007 
ROM 

Pure bending moments in 

flexion, extension, lateral 

bending and axial rotation 

Rotational 

potentiometers  

Kuroki et al., 

2004 
ROM Pure bending and Fatique test  

Plexiglas markers with 

leds  

Frei et al., 

2001 
Strain, disc pressure 

Series of compression 

combined with F/E/LB and 

shear loads 

Triaxial strain gauge 
 

Shea et al., 

1994 

Intradiscal pressure, 

stiffness and disc 

geometry 

Axial compression LVDT 
 

Brinckmann et 

al., 1991 

Disc height, radial disc 

bulge and intradiscal 

pressure 

Pure axial compression 
Optoelectical 

transducers  

Krismer et al., 

1996 
Load - displacement data Pure axial rotational moments - 

 

Seroussi et al., 

1989 
Intra-disc displacement 

Compression, flexion and 

extension tests 
Stainless steel beads 

 

Brinckmann et 

al, 1986 
Disc Bulge Pure axial compression Transducers 

 

Goel et al., 

1986 

Motionof the geometric 

center of the superior 

vertebra 

Flexion, extension, lateral 

bending and axial torsion 
Dial gauges 

 

Brinckmann et 

al, 1985 
Disc Bulge Pure axial compression 

Potentiometer 

transducers  

Panjabi et al., 

1984 
Load- displacement plot Flexibility and creep test LVDT 

 

Tencer et al, 

1982 
Load - displacement data 

Flexion/extension and lateral 

bending 

Electromechanical 

transducer  
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Appendix B 

 

 

 

Average, minimum and maximum values 

 of tensile and compressive strains  

over the disc surface in flexion and extension 
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FLEXION 

 
True principal strain 1 [ɛ] True principal strain 2 [ɛ] 

  
True principal strain 1 [ɛ] True principal strain 2 [ɛ] 

 
mean min: max: mean min: max: 

  
mean min: max: mean min: max: 

Sp. #1             
 

Sp. #2 
      

a) 4200 -503 19416 900 -5987 3566 
 

a) 2900 -6786 64744 -1800 -27810 12149 

b) 3800 -2641 23183 1000 -17600 7728 
 

b) 3100 -7105 35591 -1300 -38157 6681 

c) 3600 80 23741 1800 -9540 9743 
 

c) 3300 -8239 42604 -800 -30121 7223 

d) 3000 -456 25664 2300 -12976 11414 
 

d) 3300 -7096 26506 -1800 -31363 7171 

e) 5400 -6694 46675 -10000 -52154 7511 
 

e) 3000 -15563 36865 -8600 -69726 4831 

Sp. #3 
       

Sp. #5 
      

a) 4300 -5421 28690 -5600 -50881 4931 
 

a) 20000 -7572 75343 -10000 -80289 9534 

b) 5200 -1546 35119 -10000 -67513 14807 
 

b) 20000 -12873 70744 -20000 -117842 6078 

c) 9100 -2948 43793 -20000 -75932 6944 
 

c) 20000 -7337 89506 -10000 -107576 7324 

d) 9000 -5558 42419 -20000 -86288 3774 
 

d) 20000 -15505 48994 -20000 -147188 8776 

e) 3500 -18570 51057 -30000 -108131 6360 
 

e) 10000 -14197 84142 -40000 -207346 6492 

Sp. #6 
       

Sp. #7 
      

a) 10000 734 41079 -8400 -34498 7125 
 

a) 20000 2807 50460 -30000 -111028 5569 

b) 10000 1576 43646 -10000 -44431 8774 
 

b) 10000 -14114 120199 -1000 -177577 13798 

c) 10000 1229 41911 -10000 -44700 9475 
 

c) 10000 -19863 182885 -10000 -172415 7913 

d) 10000 -4807 46143 -20000 -53610 4601 
 

d) 10000 -3425 136803 -1000 -115122 4286 

e) 8200 -5075 26578 -30000 -101970 2473 
 

e) 7800 -5567 47722 -40000 -227528 2057 

Sp. #8 
       

Sp. #4 
      

a) 7100 -5484 30373 1900 -17807 8055 
 

a) 20000 -12505 117858 -40000 -261868 17484 

b) 7600 -911 38355 2500 -25801 10634 
 

b) 20000 -24658 152714 -40000 -341929 5380 

c) 8200 -2875 40402 2900 54381 11779 
 

c) 10000 -4745 229468 -40000 -526149 17617 

d) 7000 -10075 5147 1600 -84933 11375 
 

d) 20000 -45127 183748 -40000 -369746 12419 

e) 10000 -33022 1043 -7800 -123647 11576 
 

e) 20000 -66679 238396 -30000 -287926 5010 

Average. minimum and maximum values of maximum and minimum strains over the disc surface in flexion.  

Color code gathers the specimens by spine levels: purple: T9 – T10, blue: T10 - T11, yellow: T11 - T12, green: T12 - L1, red: L4 - L5. 
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EXTENSION 

 
True principal strain 1 [ɛ] True principal strain 2 [ɛ] 

  
True principal strain 1 [ɛ] True principal strain 2 [ɛ] 

 
mean min: max: mean min: max: 

  
mean min: max: mean min: max: 

Sp. #1 
       

Sp. #2 
      

a) 2900 -32987 22894 -3500 -49644 6155 
 

a) 3300 -9464 35592 -8700 -143022 5196 

b) 4100 -4106 16697 -900 -16805 5059 
 

b) 2500 -9038 38089 -5800 -137118 4033 

c) 3400 -3668 32958 -1900 -28516 4615 
 

c) 3100 -12486 30322 -4100 -71499 9221 

d) 3300 -5038 43110 -3600 -106345 5397 
 

d) 2500 -12145 33805 -5700 -91775 8566 

e) 4300 -9565 49118 -7700 53639 8683 
 

e) 5400 -27351 86440 -20000 -235012 -5826 

Sp. #3 
       

Sp. #5 
      

a) 5500 -3382 2146 -10000 -67803 5588 
 

a) 8800 -4789 168585 -1900 -54775 15934 

b) 5500 -7141 30617 -10000 -67965 5109 
 

b) 10000 -8414 86895 -900 -35228 13496 

c) 4600 -15331 42606 -10000 -96879 9784 
 

c) 20000 -1745 126811 700 -700 -28084 

d) 4200 -4582 37905 -10000 -9634 9646 
 

d) 20000 -8530 134820 1700 -101890 21992 

e) 1200 -4594 26874 -9700 -93549 6177 
 

e) 4900 -12806 46950 -5160 -98055 5124 

Sp. #6 
       

Sp. #7 
      

a) 2040 -4568 33084 -4510 -73978 993 
 

a) 4800 -6137 71162 2000 -50526 12131 

b) 2600 -3257 32764 -3100 -80614 4065 
 

b) 8500 -3436 74852 3100 -96390 11352 

c) 2100 -2145 38054 -2900 -106808 3265 
 

c) 6800 -505 122905 2200 -85985 155776 

d) 5120 -1695 32232 -2300 -24808 4077 
 

d) 7000 -2633 92944 -4000 -99858 10461 

e) 5900 -3745 27271 -700 -31951 4513 
 

e) 3600 -2864 32681 -2100 -60824 9607 

Sp. #8 
       

Sp. #4 
      

a) 6800 -3059 44924 -5000 -39992 11128 
 

a) 20000 -1658 152210 -9900 -174719 19583 

b) 8200 -3942 40201 -5700 -33577 5995 
 

b) 20000 -15565 273525 -9500 -155148 31238 

c) 9700 -6400 57875 -6900 -86334 4199 
 

c) 30000 -64391 162195 -20000 -217697 29568 

d) 10000 -5081 67643 -10000 -124396 1768 
 

d) 30000 -60760 119849 -10000 -222396 29941 

e) 10000 -5768 86695 -20000 -133228 2876 
 

e) 20000 -72334 141138 -10000 -255796 16833 

Average. minimum and maximum values of maximum and minimum strains over the disc surface in extension.  

Color code gathers the specimens by spine levels: purple: T9 – T10, blue: T10 - T11, yellow: T11 - T12, green: T12 - L1, red: L4 - L5.
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