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Sommario

Nel presente elaborato studiamo un modello fermionico libero ed invariante di scala con

derivate di ordine elevato. In particolare, controlliamo che la simmetria di scala sia estendibile

all’intero gruppo conforme. Essendoci derivate di ordine più alto il modello non è unitario,

ma costituisce un nuovo esempio di teoria conforme libera. Nelle prime sezioni riguardiamo la

teoria generale del bosone libero, partendo dapprima con modelli semplici con derivate di ordine

basso, per poi estenderci a dimensioni arbitrarie e derivate più alte. In questo modo illustriamo

la tecnica che ci permette di ottenere un modello conforme da un modello invariante di scala,

attraverso l’accoppiamento con la gravità e richiedendo l’ulteriore invarianza di Weyl. Se questo è

possibile, il modello originale ammette certamente l’intera simmetria conforme, che emerge come

generata dai vettori di Killing conformi. Nel modello scalare l’accoppiamento con la gravità

necessita di nuovi termini nell’azione, indispensabili affinchè la teoria sia appunto invariante

di Weyl. La costruzione di questi nuovi termini viene ripetuta per un particolare modello

fermionico, con azione contenente l’operatore di Dirac al cubo (∇/ 3), per il quale dimostriamo

l’invarianza conforme. Tale modello descrive equazioni del moto con derivate al terzo ordine.

Dal momento che l’invarianza di Weyl garantisce anche l’invarianza conforme, ci si aspetta

che il tensore energia-impulso corrispondente sia a traccia nulla. Per ogni modello introdotto

controlliamo sistematicamente che tale condizione sia verificata, ed in particolar modo per il

caso della teoria fermionica con ∇/ 3, che rappresenta il contributo originale di questa tesi.
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Abstract

In this work we study a free scale invariant fermionic model with higher order

derivatives. In particular, we verify that scale symmetry can be extended to the full

conformal group. Due to the presence of higher order derivatives the model is not

unitary, nevertheless it establishes a new example of free conformal theory. In the

first sections we review the general free bosonic theory, starting at first with simple

models with lower order derivatives and then extending them to arbitrary dimensions

and higher order derivatives. In particular, we review the technique used to obtain

a conformal model, starting from a scale invariant one, through the coupling with

gravity and the Weyl invariance condition. The conformal symmetry arises as the

one generated by the conformal Killing vectors. In the scalar case the gravity coupling

needs new terms in the action, essential for the theory to be Weyl invariant. The

construction of these new terms are repeated for a particular fermionic model, with

an action containing a cubic Dirac operator (∇/ 3). We demonstrate that this new

fermionic model is conformal invariant. This model describes equations of motion

with third order derivatives. Since the Weyl invariance implies conformal invariance,

we expect that the corresponding stress tensor is traceless. For each model introduced

we systematically make sure that this condition is verified, in particular for the ∇/ 3

fermionic theory, which represents the original contribution of this thesis.
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1 Introduction

Conformal field theories (CFTs) constitute a central topic in modern theoretical

physics and, over the last decades, our understanding of conformal field theories has

advanced significantly. Consequently, conformal field theory is a very broad subject.

By definition, a conformal field theory is a quantum field theory that is invariant un-

der the conformal group. We are all familiar with the Poincarè group as the symmetry

group of relativistic field theory in flat space. Poincarè transformations are isometries

of flat spacetime and are a combination of Lorentz and translation transformations.

In addition to these symmetries, CFTs have extra spacetime symmetries, that com-

bined with those of the Poincarè group form the conformal group. The conformal

group is defined by the set of transformations of spacetime that preserve angles.

Thus, it obviously contains Poincarè transformations and scale transformations, the

latter defined mathematically by x −→ λx and t −→ λt. Scale transformations act

by rescaling, or zooming in and out of some region of spacetime. In additions, the

conformal group contains the so-called conformal boosts. Generally speaking, a con-

formal transformation is a coordinate transformation that produces a local rescaling

of the metric.

Even if we expect that interacting quantum field theories can not be conformally

invariant due to the presence of the running coupling constants, that become functions

of some energy scale, CFTs theories describe critical points (as originally introduced

in statistical physics) and give us a better understanding of the structure of general

quantum field theory (QFT). QFT is the main theoretical framework describing most

of nature, with applications including elementary particle physics, statistical physics,

condensed matter physics and fluid dynamics. The description of a physical system

very much depends on the energy scale one wishes to study and QFT comes equipped

with some ultraviolet cutoff Λ, the energy scale beyond which new degrees of freedom

are necessary. We do not know what is going on past this energy, but we can still

calculate observable results which are applicable to low-energy physics. The program

of the renormalization group in QFT is a way to parametrize this ignorance in terms

of interactions or coupling constants that we measure between low-energy degrees of

freedom. The renormalization group makes use of the renormalization group flow and

the β-functions in order to study theories close to fixed points, where scale invariance

is satisfied, and understand the behaviour of these theories close to these fixed points.

Examples of free CFTs are the scalar and the spin 1/2 fermion fields, which can

be defined in arbitrary dimensions, and the theory of gauge p-forms, which are con-

formally invariant in D = 2p + 2 dimensions. CFTs exhibit scale invariance. In

2 dimensions scale invariance can be promoted to the full conformal symmetry un-

der some very general assumptions, which includes unitarity [1, 2]. In 4 dimensions

similar results have been derived in [3]. The case of the CFT of a free boson in 2

dimensions is of particular relevance: it is a central element of string theory, it is

used to construct free field realizations of interacting conformal field theories (the

so-called Coulomb gas approach [4]), and can be extended to the famous Liouville

theory when an exponential interaction is added to the kinetic term [5, 6, 7]. The free

two-dimensional boson has the peculiar characteristic of having vanishing canonical

dimensions as well as a propagator that behaves logarithmically. An extension to
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higher even dimensions has been investigated recently in [8]. Requiring vanishing di-

mensions and a logarithmic propagator, the scalar field must have a higher derivative

kinetic term in the action. It is a non unitary model, which appears in many contexts

(see [9] [8]) and it is useful to study.

Inspired by these (non-unitary) free bosonic theories with scalar fields of vanishing

canonical dimensions, that exist only in even dimensions, we wish to study similar

theories that have fields with vanishing canonical dimensions in odd dimensions, too.

As scalar fields in odd dimensions contain a non local kinetic term in the action, with

the square root of a differential operator, an option is to study fermionic theories

as natural candidates for free field with vanishing mass dimensions and local kinetic

term. At first we analyze the simplest candidate, a fermion in three dimensions with

a kinetic term given by the cube of the Dirac operator. We show that it is possible

to make this model Weyl invariant in a curved space through the introduction of

non-minimal terms. We also extend our analysis to arbitrary dimensions, where

generically the fermion acquires some canonical mass dimension.

At first we review various relevant models to build up confidence with free CTFs

and present some useful background material, and then we face the study of the cubic

derivative fermion. In the latter case we show that three non minimal terms can be

introduced, and it is possible to fix their dimensionless coupling constants to achieve

the Weyl invariance of the action with the cubic ∇/ 3 operator. We then calculate the

stress-tensor for such a theory, which is known to be a quite laborious task for higher

derivative theories, and verify that it is symmetric and traceless, as expected for a

CFT theory.

In the mathematical literature, there are many results on the Weyl properties of

powers of the Dirac operators. Working on a semi Riemannian spin manifold (MD, g)

mathematicians have studied conformal powers of the Dirac and Laplacian operators.

The cases of the Dirac operator and the Laplacian are known to be conformally covari-

ant, with the Laplacian that has to be modified by a multiple of the scalar curvature

in order to become conformally covariant, to obtain the so-called Yamabe operator

(see [10]). In 1983, having these two examples of conformally covariant operators,

Paneitz constructed a conformally second order power of the Laplacian with explicit

curvature correction terms. This conformal second power of the Laplacian is called

the Paneitz operator. During the first decade after the publication of the Paneitz

operator, the interest in the community has increased and Graham, Jenne, Mason

and Sparling [11] constructed a series of conformally covariant operatos P2N (g) act-

ing on functions with leading part the N -th power of the Laplacian. N=1,2 are of

course the Yamabe and the Paneitz operators. Beside this construction, there is an-

other point of view describing the so-called GJMS operators, which uses the tractor

machinery described by Gover and Peterson [12]. Although all these constructions

are algorithimic, they have very rarely been used to produce explicit formulas due to

their complexity. As for the Laplacian operator, powers of the Dirac operator must be

supplied by lower order curvature correction terms in order to have Weyl covariance.

In particular Fischmann [13] has derived an algorithmic construction in terms of as-

sociated tractor bundles to compute these correction terms. However this language

is not of much practical use for physicists, and the invariance is not of immediate
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comprehension. Our explicit construction in terms of an action principle, allows a

direct derivation of the conformal properties of the cubic Dirac operator, and allows

to identify the stress tensor for the corresponding field theory.

2 Conformal transformation introduction

The conformal symmetry in a D-dimensional space-time is defined as the group of

coordinate transformations x → x′ which leave the metric gµν invariant up to a

conformal factor:

gµν(x) = Ω(x′)g′λσ(x′)
∂x′λ

∂xµ
∂x′σ

∂xν
(1)

If we wish to study the infinitesimal form of the transformations

x′µ = xµ + εµ

the relation (1) leads to the conformal Killing equations

∇µεν +∇νεµ =
2

D
gµν∇σεσ (2)

We denote with ∇ the metric compatible covariant derivative

∇µεν = ∂µεν − Γσµνεσ (3)

We will now focus on theories with scalars. The infinitesimal transformation of a

scalar field φ with scaling dimension ∆ under the full conformal group can be written

as

δcφ = −εµ∇µφ−
∆

D
∇ε φ (4)

We say that a system is conformally invariant if the variation of its action functional

S[gµν , φ] under the full group of conformal transformation (4) is zero

δcS[gµν , φ] =

∫
dDx

δS

δφ
δcφ = 0 (5)

Weyl transformations are different from conformal transformations, they constitute

a pointwise rescaling transformations of the metric and fields. We will indicate this

Weyl transformation as

ĝµν(x) = e2σ(x)gµν(x) and φ̂(x) = e−∆σφ(x) (6)

With their infinitesimal form

δσgµν = 2σgµν , δσφ = −∆σφ (7)

this leads to the following condition for a theory to be Weyl invariant

δσS[gµν , φ] =

∫
dDxσ

(
2
δS

δgµν
gµν −∆

δS

δφ
φ
)

= 0 (8)
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Now we can observe that the two differential δc and δσ are related to each other. In

fact, if we choose σ = ∇ε
D we have

δcφ = δdφ+ δσφ (9)

where δdφ is the usual transformation of the scalar field under general coordinate

transformations

δdφ = −εµ∂µφ

In this way we can rewrite (5) as

0 =

∫
dDx
∇ε
D

(
2
δS

δgµν
gµν −∆

δS

δφ
φ
)

(10)

At this point it is clear that Weyl invariance implies conformal invariance, but not

the other way around, since ∇ε is not an arbitrary function of coordinates. We will

see in the next section that, if a theory is conformally invariant, it is possible to

write all currents corresponding to the conformal group as jµc (14) and that under

several conditions (12)(15) we are able to construct the improved traceless energy

momentum tensor Θµν . However, it is not guaranteed that the theory can be made

Weyl invariant.

2.1 Scale and conformal invariance in QFT: traceless of

the stress-tensor

In this section we aim to investigate the relation between the invariance of a QFT

under a local change of lenght scale and the invariance under a global change of scale.

In particular we are interested in the conditions under which global invariance implies

the local one. Taking a Poincarè invariant quantum field theory in D flat dimensions

we are investigating two transformations:

1. scale transformations: δxµ = εxµ;

2. special conformal transformation: δxµ = εµ(x) with εµ(x) = 2b ·xxµ−x2 bµ and

bµ a constant vector. As we know for D ≥ 3 conformal transformation implies

the assumed Poincarè invariance, the rigid scale transformation and D special

conformal transformations. In D = 2 one sometimes is interested in the smaller

algebra of the Möbius transformations.

From the literature [14] we know that a scale current must be of the form:

Sµ(x) = xνTµν (x) +Kµ(x) (11)

where Tµν is the symmetric stress energy tensor and it follows from the Poincarè

invariance, while Kµ is a local operator contributing to other scaling dimensions of

the fields.

Imposing the conservation of Sµ we find the first necessary condition in order to have

scale invariance :

Tµµ = −∂µKµ(x) (12)
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In general there are many symmetric stess tensors giving rise to the same hamiltonian.

However we know a relation between the difference of two such tensors, namely:

T ′µν(x)− Tµν(x) = ∂σ∂ρYµσνρ (13)

where Yµσνρ is antisymmetric on µσ and on νρ, and symmetric under exchange of

µσ with νρ. The main point is that if Tµν satisfies (12) then so does T ′µν with Kµ

replaced by Kµ − ∂ρY µν
ρν . In this way we have found out that the necessary and

sufficient condition for existence of a conserved scale current is (12). After evaluating

the condition on scale current we can write down the general form of a conserved

conformal current, associated to the special conformal transformations, that we shall

indicate with jµc . This current will have 3 terms; the first one is determined by the

space-time nature of the transformation, the second one will be related to the local

nature of the conformal transformation view as a scale transformation with scale

factor ε∂ · ε, while the third one is a correction due to the position dependence of the

scale factor ∂ · ε.

jµc = ενTµν (x) + ∂ · ε(x)K ′µ(x) + ∂ν∂ · ε(x) + Lνµ (14)

where K ′µ is the same as Kµ up to the possible addition of conserved current, corre-

sponding to an ambiguity in the original choice of scale current, and Lνµ is some local

operator. Imposing the conservation of jµc we obtain other two conditions whether

the dimension of the system are D=2 or D ≥ 3. We find that:

D ≥ 3 : Tµµ = ∂ν∂µL
νµ(x)

D = 2 : Tµµ = ∂2L(x)

D = 2 : Tµν = ∂νµL
νµ (Möbius transf.)

(15)

This is due to the fact that for D ≥ 3 ∂ · ε is a general linear function of xµ so

conservation of jµc implies Tµµ = −∂µK ′µ(x) plus K ′µ(x) = −∂νLνµ(x). Instead in 2

dimension ∂ · ε is a general harmonic function and conservation implies the additional

relation Lνµ = gνµL(x).

Also in this case the form of (15) is independent of the particular choice of Tµν so the

necessary and sufficient condition for the existence of conserved conformal currents

is that the trace of the stress tensore have the form (15).

We can say even more, we can write an equivalent stress tensor Θµν and assert that

conformal invariance is equivalent to the existence of a traceless stress tensor. The

equivalent stress tensor Θµν will have the form:

Θµν =Tµν(x) +
1

D − 2

(
∂µ∂αL

α
ν (x) + ∂ν∂αL

α
µ(x)− ∂2Lµν(x)− gµν∂α∂βLαβ(x)

)
+

1

(D − 2)(D − 1)

(
gµµ∂

2Lαα(x)− ∂µ∂νLαα(x)
)

in D ≥ 3

Θµν(x) =Tµν(x) +
1

D − 1

(
∂µνL(x)− gµν∂2L(x)

)
in D = 2

and is indeed traceless:

Θµ
µ = 0 (16)

8



We see that a system will be scale invariant without being conformally invariant if the

trace of the stress tensor is the divergence of a local operator Kµ which is not itself

a conserved current plus a divergence in D ≥ 3 or a gradient in D = 2. The work

of Zamolodchikov and [2] have shown that for d = 2 under very broad conditions,

namely unitarity plus a discrete spectrum of operator dimensions, scale invariance

implies conformal invariance. However, this is not always the case. So, to recap, we

know that if a theory is Weyl invariant it is also conformal invariant, and if a theory

is conformal invariant we expect a traceless stress-tensor.

This is how we proceed in our thesis, at first we present a theory in flat space-time,

we couple it to gravity and see if it is Weyl invariant through the eventual addition

of non minimal terms in the action. If Weyl invariance can be achieved, we know

that the theory in flat space is conformal invariant. Then we proceed to calculate the

stress-tensor which is expected, and indeed verified, to be traceless.

3 The Klein-Gordon field

The action of a real, massless scalar field φ (the Klein-Gordon field) in D dimensions

is

S[φ] =

∫
dDx

1

2
∂µφ∂

µφ . (17)

For definiteness we use an euclidean signature. Dimensional analysis fixes the mass

dimension of φ to be ∆ = D−2
2 . There are no dimensionful parameters in the action,

and the model enjoys the scale invariance induced by a constant rescaling of the

coordinates:
x′µ = λxµ

φ′(x′) = λ−∆φ(x) = λ
2−D
2 φ(x) .

(18)

The propagator is fixed by Poincarè and scale invariance for D ≥ 3, up to a

normalization constant α

〈φ(x)φ(y)〉 =
α

|x− y|D−2
, (19)

while in D = 2 infrared divergences require an infrared cutoff determined by a mass

scale µ, and the propagator takes the form

〈φ(x)φ(y)〉 = − 1

2π
ln(µ|x− y|) . (20)

The constant α may be found by deducing the two-point function from the path

integral

〈φ(x)φ(y)〉 =
1

Z

∫
Dφφ(x)φ(y) e−S[φ] (21)

where Z =
∫
Dφe−S[φ]. This two-point function is contained in the generating func-

tional of correlation functions

Z[J ] =

∫
Dφe−S[φ]+Jφ (22)
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where we used the shorthand notation Jφ =
∫
dDxJ(x)φ(x), with J(x) an arbitrary

function known as the source. Completing squares one finds (with a similar shorthand

notation)

Z[J ] = Ne−
1
2
J�−1J (23)

where N = Det−
1
2 (−�) is a normalization constant, and �−1 is the Green function

of � = ∂µ∂µ. Then, the second functional derivative produces the two-point function

〈φ(x)φ(y)〉 = −�−1
(x,y) =

∫
dDp

(2π)D
eip·(x−y)

p2
=

α

|x− y|D−2
(24)

with the last result valid for D ≥ 3. The normalization may be fixed by using the

Gauss law in D dimensions, which gives

α =
1

(D − 2)Σ(SD−1)
=

Γ(D2 )

2(D − 2)π
D
2

(25)

where Σ(SD−1) = 2π
D
2

Γ(D
2

)
is the area of a sphere of unit radius in D dimensions.

To verify that the model is conformally invariant, we couple it to background

gravity and study if the coupling can be extended to achieve Weyl invariance. In

order to do so we have to follow the minimal coupling prescription. This consists of

the following three rules:

1. Replace the Minkowski metric ηµν by the spacetime metric tensor gµν

2. Replace each derivative ∂µ by the appropriate covariant derivative ∇µ with con-

nection Γρµν

3. Use the canonical volume form with the square root determinant of the metric

dV = dDx
√
g

These rules incorporate the equivalence principle of general relativity and the prin-

ciple of general covariance. In this way the Lagrangian transforms as a scalar under

coordinate transformations, so the matter action is invariant. The second rule is not

really needed for the scalar case since ∂µφ = ∇µφ. The minimal coupling is standard

and given by the lagrangian

L0 =
1

2

√
ggµν∂µφ∂νφ . (26)

Possible non minimal terms with dimensionless coupling constants are fixed by general

covariance and dimensional analysis. These terms can only depend linearly on the

curvature (two derivatives can be substituted by a curvature), and one finds only a

possible non minimal term of the form

Lnm =
1

2

√
gξRφ2 (27)

where R is the scalar curvature and ξ a dimensionless coupling constant. The value

of ξ is fixed by demanding the Weyl invariance of L0 + Lnm, i.e. of the action

S[φ; g] = S0[φ; g] + Snm[φ; g] =

∫
dDx
√
g

1

2
(gµν∂µφ∂νφ+ ξRφ2) . (28)
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Let us derive its value: under an infinitesimal Weyl transformation

δgµν = 2σgµν , δφ =
(2−D)

2
σφ (29)

with the scaling of φ obtained from the rigid scale invariance in (18), one finds

δS0 =

∫
dDx
√
g

(D − 2)

4
φ2�σ (30)

where 2 = ∇µ∇µ, while using the formulae in appendix for the Weyl variation of R,

see eq. (158), one calculates

δSnm =

∫
dDx
√
g ξ(1−D)φ2�σ . (31)

The sum is invariant for

ξ =
(D − 2)

4(D − 1)
(32)

known as the conformal value. The corresponding Weyl covariant field equation

(−� + ξR)φ = 0 (33)

contains the Weyl covariant scalar operator −�0+ξR, where we inserted the subfix to

remind that the laplacian acts on scalar fields, and is known as the Yamabe operator

in the mathematical literature. Under Weyl transformations it scales as

(−�′0 + ξR′) = e−
D+2
2
σ (−�0 + ξR) e

D−2
2
σ . (34)

An important operator of the theory is the stress tensor (with properties discussed

earlier). It is defined by

Tµν =
2
√
g

δS

δgµν
.

One way to compute it in flat space is to vary the action under δgµν = hµν , while

restricting soon after to flat space, so that it is read off from

δS = −1

2

∫
dDxhµνTµν . (35)

The emerging expression may be simplified by using the equations of motion (eom)

in flat space. Varying S0 we find

δS0 =

∫
dDx

(
− 1

2
hµν∂µφ∂νφ+

1

4
h(∂φ)2

)
= −1

2

∫
dDxhµν

(
∂µφ∂νφ−

1

2
ηµν(∂φ)2

) (36)

while varying R in Snm with the formula in (159), and integrating by parts, gives

δSnm =

∫
dDx

ξ

2
(∂µ∂νhµν −�h)φ2

= −1

2

∫
dDxhµνξ(ηµν�− ∂µ∂ν)φ2

= −1

2

∫
dDxhµν2ξ

(
ηµν(∂φ)2 − ∂µφ∂νφ− φ∂µ∂νφ+ eom

) (37)
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Collecting all terms one finds

Tµν = (1− 2ξ)∂µφ∂νφ− 2ξφ∂µ∂νφ+
1

2
(4ξ − 1)ηµν(∂φ)2 . (38)

It is conserved, ∂µTµν = 0, as verified using the eom, and with an on-shell trace

Tµµ =
1

2

(
2−D + 4ξ(D − 1)

)
(∂φ)2 (39)

that vanishes precisely for the conformal coupling ξ = D−2
4(D−1) , as guaranteed by Weyl

invariance. All general properties of the stress tensor are thus verified by the explicit

expression of Tµν .

4 The higher derivative scalar field

A free scale invariant bosonic theory in even D = 2n dimensions with the boson

having vanishing mass dimension is given by

S[ϕ] =

∫
dDx

1

2
ϕ(−2)nϕ (40)

Because of infrared divergences the propagator is again expected to be logarithmic,

as in D = 2. Scale invariance of the action is manifest.

To prove conformal invariance it is again useful to minimally couple to gravity,

and then study possible nonminimal terms that could allow for Weyl invariance. One

first considers D = 4. From the covariant

S0[ϕ] =

∫
d4x
√
g

1

2
2ϕ2ϕ (41)

one computes the Weyl variation

δS0[ϕ] =

∫
d4x
√
g 2ϕ 2∇µϕ∇µσ (42)

which can be rewritten placing two derivatives on σ

δS0[ϕ] =

∫
d4x
√
g (2σ∇µϕ∇µϕ− 2∇µ∇νσ∇µϕ∇νϕ) . (43)

We want to compensate this variation through the incorporation of non minimal

terms with dimensionless coupling constants, exactly as we have done for the free

boson action given in (17). How do we find this new counter-terms? Looking at our

action we have a total of four derivatives and the first geometrical object formed by

two derivatives is the Riemann tensor Rµνλρ within his contractions: the Ricci tensor

Rµν and the scalar Ricci tensor R. Remember that every index has to be contracted

in the action in order to have Lorentz covariance. So two derivatives can be substited

by a curvature, leading us to the following new possible terms

Rµνλρφφ ∂µ∂νRµνφφ 2Rφφ (44)
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The first improvement terms has too many indices and cannot be contracted properly

with only two derivatives so, he is not a good candidate. If we look at the Ricci tensor

Rµν term we can construct a term like Rµν∂
µφ∂νφ,which is a good candidate. Since

we want only independent terms the construction we disregard Rµνφ∂
µ∂νφ, being

equivalent through integration by parts to Rµν∂
µφ∂νφ. The third option for this

case would be ∇µ∇νRµνφφ, but this case falls within the Ricci tensor R proportional

terms case, since the Bianchi identity provides the relation ∇µ(Rµν − 1
2g
µνR) = 0.

Analogously for the scalar tensor R dependent term we don’t have many choices,

basically only the term gµνR∂µφ∂νφ is truly independent since all other combinations

can be, by integration by parts, be brought back to this case.

We deduce that the variation of S0 is compensated by the Weyl variation of

S1[ϕ] =

∫
d4x
√
g (αRµν + βgµνR)∂µϕ∂νϕ (45)

for α = −1 and β = −1
3 . Thus the complete Weyl invariant action is given by

S[ϕ; g] =

∫
d4x
√
g

(
1

2
2ϕ2ϕ+ (−Rµν − 1

3
gµνR)∂µϕ∂νϕ

)
(46)

also known as the local Riegert action. The resulting equations of motion contains

the so-called Paneitz operator(
22 + 2∇µ(Rµν +

1

3
gµνR)∂ν

)
ϕ = 0 (47)

a Weyl invariant, fourth order, scalar operator (where all derivatives act through till

reaching ϕ).

In order to get familiar with the calculations we can check that the variation of

(45) is indeed related to δS0[φ]. We use the formulas (158) for the variations Rµν and

R and we find that

δS1[φ] =

∫
d4x
√
g
[
(−2α∇µ∂νσ − gµν2σ)∂µφ∂νφ− 6βgµν2σ∂µφ∂νφ

]
(48)

which lead us to the system of equation

−2α∇µ∇νσ∇µφ∇νφ− 2∇µ∇νσ∇µφ∇νφ = 0

(−αgµν2σ − 6β2σ + gµν2σ)∇µφ∇νφ = 0

In this way we have 2 equations for two unknown variables which fix α = −1 and

β = −1
3 .

It might be useful in the next sections to explore more examples of higher deriva-

tive scalar field theories, which are well known in the literature and have been largely

studied.

4.1 Scalar field theory in D dimension with 22 operator

As an example consider the theory in flat space time given by the following action:

S[φ] =

∫
dDx

1

2
2φ2φ (49)

13



where 2 = ηµν∂µ∂ν is the D’Alambertian operator. Imposing the scaling dimen-

sion ∆ = D
2 − 1 we find out that the variation of this action under the conformal

transformation (1) is

δS[φ] = −
∫
dDx ∂µ

[
εµ

1

2
2φ2φ− 2

d
∂ν∂ · ε

(
∂µφ∂νφ−

1

2
ηµν(∂φ)2

)]
(50)

The system is indeed conformally invariant for D 6= 2 since the relations (15) are

satisfied if we use the following definitions

Tµν = ηµν

(
∂λ∂

λ2φ+
1

2
(2φ)2);

Kµ =
1

2
2φ∂µφ+

∆

D
φ∂µ2φ;

Lµν =
1

D

(
2∂νφ∂µφ− ηµν(∂φ)2 + ∆ηµνφ2φ

)
We are now able to couple the (49) theory with gravity in a Weyl invariant way. In

order to do so we use the conformally invariant operator with four derivatives, largely

studied by [15]. As a result we get

S[φ; gµν ] =

∫
dD
√
g

1

2
φP4(g)φ (51)

with P4 being the Paneitz operator.

P4(g) = ∇4+∇µ
[( 4

D − 2
Sµν−Sgµν

)
∇ν
]
− D − 2

2(D − 2)
∇2S− D − 4

(D − 2)2
SµνS

µν+
D(D − 4)

4(D − 2)2
S2

(52)

Remember that Sµν is the Schouten tensor (defined in A) that vanishes for D = 2,

this mean that the case D = 2 has to be treated differently. We remark that this

D = 2 case is the first example of a theory conformally invariant that cannot be

made Weyl invariant. Indeed for the scalar theory, as demonstrated in [18] and [19]

the Weyl covariant analogs of 2n exist unless the number of space-time dimensions

D is even and less than n
2 . Truly, this is due to the presence of divergent terms in

the conformally invariant operators for D = 2, 4, 6, .... We are going to show some

examples of this cases.

We have seen that in the case of the Paneitz operator the coefficients in front of

the Schouten tensor are divergent for D = 2. In this case the general ansatz for the

conformally invariant operator in 2 dimension P(g) has the following form:

P (g) = ∇4 + α1∇µ(R∇µ) + α2∇2R+ α3R
2 (53)

where all the αs are constants. It turns out that the variation of ∇4 cannot be can-

celled by the variations of theR-dependent terms, due to the presence of (∇µ∇νσ)∇µ∇ν ,

this means that in 2 dimension there is no Weyl covariant generalization of the fourth-

order differential operator. The system in two dimension is invariant only under global

conformal transformations.
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4.2 Scalar field theory in D dimension with 23 operator

Here we give another example of a theory that is conformally invariant but not

Weyl invariant. Remember that, according to [19] and [18], for an even number of

dimensions D there are Weyl invariant generalizations of 2n theories only for n ≤ D
2 .

Therefore considering a theory with six derivatives with an action given by:

S[φ] =

∫
dDx

1

2
(∂µ2φ)2 (54)

cannot be made Weyl invariant for D = 2 and D = 4. This impossibility is reflected

in the Weyl covariant analog of the (∂µ2φ)2 that we shall call P6(g). According to

[16] it contains terms proportional the Schouten tensor and the Bach tensor Bµν (this

tensors are defined in A), namely:

P6(g) ∝ 1

(D − 2)(D − 4)
BµνS

µν +
1

D − 4
∇µ(Bµν∇ν) (55)

As we can see this terms are divergent for D = 2 and D = 4.

However this theory is conformal in flat space time, in this case the scaling di-

mension of the field is ∆ = D
2 − 3 and the conformal variation of the action is also a

total derivative:

δS[φ] = −
∫
dDx∂µ

[
εµ

1

2
(∂ν2φ)2− 1

D
∂ν∂ε

(
4∂µ∂νφ2φ−

1

2
(2φ)2(

D

2
+ 3)ηµν

)]
(56)

Moreover one can build the energy-momentum tensor for this theory Tµν along with

the tensors Kµ and Lµν . They appear in a quite long form but the important remark

is that we are able to construct the improved (traceless) energy-momentum tensor

Θµν . We write down the form of this terms

Tµν = �2φ∂µ∂νφ−
(
∂µφ∂ν�

2φ+ ∂νφ∂µ�
2φ
)

+ ∂λφ∂µ∂ν∂λ�φ+ �φ∂µ∂ν�φ+ ∂λ�φ∂µ∂ν∂λφ

− ∂µ�φ∂ν�φ− ηµν
[

1

2
(∂λ�φ)2 + ∂λ∂σφ∂λ∂σ�φ

]
as well as the operators

Kµ = α∂µ∂νφ∂ν�φ− (D + α)∂νφ∂µ∂ν�φ−
(
D

2
+ α

)
∂µ�φ�φ

+

(
α+

D

2
+ 2

)
∂µφ�

2φ+

(
D

2
− 3

)
φ∂µ�

2φ

and

Lµν =

(
α− D − 10

4

)
∂µφ∂ν�φ−

(
α+

3D − 10

4

)
∂νφ∂µ�φ

+
D − 10

4
∂µ∂νφ�φ−

D + 10

4
φ∂µ∂ν�φ+

3D − 2

4
ηµνφ�

2φ

α can take arbitrary values but if we want to have Lµν symmetric we have to set

α = −D
4 .
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4.3 Generalization for 2n scalar field theories

The examples we considered clearly show that not any conformally invariant theory,

both in flat and curved space-time, can be made Weyl invariant. As we have already

mentioned the Weyl covariant generalizations of 2n exist until for an even number of

dimension the relation n ≤ D
2 is provided. We said that the impossibility to construct

the corresponding operators in an even number of dimensions manifest itself through

the presence of terms singular atD = 2, 4, 6, .... However, it seems plausible that those

singular terms vanish, or at least become regular, once the geometry is restricted to

that of Einstein spaces, namely:

Rµν =
R

D
gµν (57)

As a result, the corresponding limit D → 4, 6, ... exists and is invariant under confor-

mal transformations (or only global conformal transformations for D → 2).

Since flat spaces are a particular case of Einstein ones, according to the above argu-

ment, the theories whose dynamics is described by action in flat space-time:

S[φ] =

∫
dDx

1

2
φ2nφ (58)

are conformal for D 6= 2. This has been proven considering the variation of the action

respect to conformal transformations. We can distinguish two cases, one with n = 2m

and the other one with n = 2m+ 1 as:

S2m[φ] =

∫
dDx

1

2
(2mφ)2 (59)

and

S2m+1[φ] =

∫
dDx

1

2
(∂µ2

mφ)2 (60)

with their variations are respectively given by:

δcS2m[φ] =−
∫
dDx∂µ

{
εµ

1

2
(2mφ)2 − 2m2

D
∂ν∂ε

[
∂µ�m−1φ∂ν�m−1φ− 1

2
ηµν

(
∂�m−1φ

)2]}
and

δcS2m+1[φ] =−
∫
dDx∂µ

{
εµ

1

2
(∂µ2

mφ)2 − 1

D
∂ν∂ε

[
2m(m+ 1)∂µ∂ν�m−1φ�mφ

− 1

2
ηµν(

D

2
− 1 + 2m(m+ 1))(�mφ)2

]}

being, as we can see, a total derivative in the action respect to the conformal variation.

4.4 Stress-energy tensor and the coefficient CT for scalar

theories

In any CFT, the coefficient CT is given by the two-point function of the stress tensor,

and plays a crucial role as the measure of the number of degrees of freedom, in the
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sense that it determines the contribution of the energy-momentum tensor in the con-

formal partial-wave expansion, and so is readily determined in bootstrap calculations.

With our conventions the coefficient CT appears in the formula

S2
D 〈Tµν(x)T σρ(0)〉 = CT

1

(x2)D
Iµν,σρ(x) (61)

where SD = 2π
1
2
D/Γ

(
1
2D
)

and I is the inversion tensor for symmetric traceless

tensors, constructed as

Iµν,σρ =
1

2
(IµσIνρ + IµρIνσ)− 1

d
ηµνησρ, Iµν(x) = ηµν − 2

x2
xµxν (62)

Following the work of [16], we calculate the contributions to CT to higher-derivative

scalar theories. The energy-momentum tensor is determined from the corresponding

Weyl-invariant action on curved space. As already seen, the construction of such

actions is equivalent to obtaining conformal differential operators starting from powers

of the Laplacian. The actions for higher-derivative free scalars considered here have

the form

S4[ϕ] = −
∫
dDx

1

2
∂2ϕ∂2ϕ, S6[ϕ] = −

∫
dDx

1

2
∂µ∂2ϕ∂µ∂

2ϕ (63)

We can calculate a symmetric traceless energy-momentum tensor by the usual Noether

procedure or by exteding these actions to a general curved space background, so as

to be invariant under Weyl rescalings of the metric and then reducing to flat space

assuming diffeomorphism invariance. The extension to a Weyl invariant form in a

general curved space is equivalent, as seen in the previous sections, to construct the

Paneitz operator for S4 and the Branson operator for S6. Varying the metric around

flat space we obtain these tensors

Tµνϕ,4 =2∂µ∂νϕ∂2ϕ− 1

2
ηµν∂2ϕ∂2ϕ− ∂µ

(
∂νϕ∂2ϕ

)
− ∂ν

(
∂µϕ∂2ϕ

)
+ ηµν∂ρ

(
∂ρϕ∂2ϕ

)
+ 2Dµνσρ (∂σϕ∂ρϕ)− 1

D − 1

(
∂µ∂ν − ηµν∂2

)(
∂ρϕ∂ρϕ−

1

2
(D − 4)∂2ϕϕ

)
(64)

for

Dµνσρ =
1

D − 2

(
ηµ(σ∂ρ)∂ν + ην(σ∂ρ)∂µ − ηµ(σηρ)ν∂2 − ηµν∂σ∂ρ

)
− 1

(D − 2)(D − 1)

(
∂µ∂ν − ηµν∂2

)
ησρ

(65)

where ∂µDµνσρ = 0, ηµνDµνσρ = −∂σ∂ρ and

Tµνϕ,6 =∂µ∂2ϕ∂ν∂2ϕ− 2∂µ∂νϕ∂2∂2ϕ− 1

2
ηµν∂σ∂2ϕ∂σ∂

2ϕ

+ ∂µ
(
∂νϕ∂2∂2ϕ

)
+ ∂ν

(
∂µϕ∂2∂2ϕ

)
− ηµν∂ρ

(
∂ρϕ∂2∂2ϕ

)
+ 8Dµνσρ

(
∂σ∂ρϕ∂

2ϕ
)
− 1

D − 1

(
∂µ∂ν − ηµν∂2

)
O

+ λDµνσρB (∂σϕ∂ρϕ)

(66)
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where

DµνσρB = Dµνσρ∂2 − 1

D − 1

(
∂µ∂ν − ηµν∂2

)
∂σ∂ρ (67)

The terms in the expressions for Tµνϕ,4, T
µν
ϕ,6 involving the second and higher-order

derivative operators Dµνσρ, σµ∂ν − ηµν∂2 and DµνσρB arise from explicit curvature de-

pendent terms in the curved-space action and represent improvement terms to be

added to the canonical energy-momentum tensor. When we generalise in a gen-

eral curved space-time we obtain various terms. One of them is proportional to

∂µϕ∂νϕB
µν , where Bµν is the Bach tensor. The contribution of DµνσρB comes from

the reduction of Bµν and this gives

λ = − 8

D − 4
(68)

The results (65) and (66) obey the more general conservation and trace conditions,

∂µT
µν
ϕ,2p = (−1)p−1

(
∂2
)p
ϕ∂νϕ, ηµνT

µν
ϕ,2p = (−1)p−1∆2p

(
∂2
)p
ϕϕ, ∆2p =

1

2
(D−2p)

(69)

which vanish on the relevant equations of motion (∂2)pφ = 0. It is worthwhile writing

down the correlators and operator products in these free field theories

〈ϕ(x)ϕ(0)〉4 =
1

2(D − 4)(D − 2)SD

1

(x2)
1
2

(D−4)

〈ϕ(x)ϕ(0)〉6 =
1

8(D − 6)(D − 4)(D − 2)SD

1

(x2)
1
2

(D−6)

(70)

These are respectively singular when D = 4, 6. This singularity is not a problem

when we want to verify the leading term in the operator product

SDT
µν
ϕ,2p(x)ϕ(0) ∼ −D∆2p

D − 1

1

(x2)
1
2
D

(
xµxν

x2
− 1

D
ηµν
)
ϕ(0) (71)

because the only terms in (65) and (66) not involving ∂ϕ have overall factors D −
4, D − 6. Now, to calculate CT for both theories we need the OPE of〈

Tµνϕ,4(x)T σρϕ,4(0)
〉

(72)

and 〈
Tµνϕ,6(x)T σρϕ,6(0)

〉
(73)

but in free field theories any local operator form from ϕ with derivatives at the

same point can be decomposed in terms of conformal primaries and descendants, or

derivatives, of conformal primaries of lower dimension. This ensure that, since Tµν is

a conformal primary the result is unchanged for T σρ → T σρ + ∂τX
σρτ and dropping

terms which vanish on the equations of motion we obtain〈
Tµνϕ,4(x)T σρϕ,4(0)

〉
= 2

〈
Tµνϕ,4(x)∂σ∂ρϕ∂2ϕ(0)

〉〈
Tµνϕ,6(x)T σρϕ,6(0)

〉
= −3

〈
Tµνϕ,6(x)∂σ∂ρϕ∂2∂2ϕ(0)

〉
= 3

〈
Tµνϕ,6(x)∂σ∂2ϕ∂ρ∂2ϕ(0)

〉
(74)
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and remembering the relationships (61) and (68) we obtain

CT,ϕ,4 = − 2D(D + 4)

(D − 2)(D − 1)
, CT,ϕ,6 =

3D(D + 4)(D + 6)

(D − 4)(D − 2)(D − 1)
(75)

The generalisation of this formula for actions with more derivatives, S2p is

CT,ϕ,2p = CT,S
p
(

1
2D + 2

)
p−1(

−1
2D + 1

)
p−1

(76)

5 The Dirac field

In the scalar field case φ we have seen how to construct Weyl invariant actions through

the minimal coupling prescription. We have discussed the presence of new indepen-

dent counter-terms in the curved space action needed to provide Weyl invariance and

presented some examples of scalar field theories in arbitrary dimension with their

stress-tensors. Now we investigate if an analogous model can be introduced with the

spin 1
2 fermion field. At first, we present the easier case of the Dirac field with the ∇/

operator, then we study the higher derivative cubic case ∇/ 3. We prove that the ∇/ 3

case in 3 dimension is Weyl invariant for a fermion that does not scale and with the

right choices of improvement terms in the curved space action. In fact, we directly

promote the ∇/ 3 theory to arbitrary dimension and determine the correct values of

the coupling constants in the non minimal terms which make it Weyl invariant.

The action of a massless Dirac fermion is

S[ψ,ψ] =

∫
dDx ψ∂/ψ (77)

where ∂/ = γa∂a (we use again a euclidean signature for definiteness). The fermion

has mass dimension ∆ = D−1
2 , and the action is scale invariant under

x′µ = λxµ

ψ′(x′) = λ−∆ψ(x) = λ
1−D
2 ψ(x) .

(78)

Scale invariance extends to an invariance under the full conformal group. To see that,

one may couple the model to background gravity and verifies its Weyl invariance. The

coupling to gravity is obtained by using the vielbein eµ
a, and reads

S[ψ,ψ; e] =

∫
dDxeψ∇/ψ (79)

where ∇/ = γµ∇µ, γµ = eµaγ
a are the gamma matrices with curved indices, eµa is the

inverse of the vielbein and e the determinant of the vielbein. The covariant derivative

∇µ when acting on spinors contains the spin connection ωµab only, and reads

∇µ = ∂µ +
1

4
ωµabγ

ab . (80)

The action is invariant under a Weyl rescaling

e′µ
a = eσeµ

a , ψ′ = e
(1−D)

2
σψ (81)
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as the Dirac operator itself scales as

∇/ ′ = e−
(D+1)

2
σ∇/ e

(D−1)
2

σ . (82)

Some useful formulae for the Dirac operator are

∇/ 2 = 2− 1

4
R

∇/ 3 = ∇/ (2− 1

4
R) = ∇/2− 1

4
R∇/ − 1

4
(∂µR)γµ

= (2− 1

4
R)∇/ = 2∇/ − 1

4
R∇/

∇/2−2∇/ =
1

4
(∂µR)γµ

(83)

where here 2 = 2 1
2

is the laplacian acting on spinors.

Let us now deduce the stress tensor, now defined from varying the inverse vielbein

eaµ (or, equivalently, the vielbein eµa with a change of sign for consistency)

δS =

∫
dDxe δeaµ Taµ = −

∫
dDxe δeµa T

µa (84)

i.e.

Taµ =
1

e

δS

δeaµ
, Tµa = −1

e

δS

δeµa
, Tµa = ebµTbνe

aν . (85)

For a review of the Clifford algebra and Gamma matrix manipulation see B. The

energy momentum tensor, or stress tensor, is covariantly conserved, symmetric, and

traceless on-shell, as consequence of diffeomorphisms, local Lorentz invariance, and

Weyl symmetry, respectively

∇µTµa = 0 , T ab = T ba , T aa = 0 (86)

(indices are made “curved” or “flat” by using the vierbein and its inverse). The

derivation is somewhat tricky, so that it is useful to report the various steps leading

to the explicit expression of the stress tensor. One has to vary the vielbein in the

action

S =

∫
dDxeψ∇/ψ =

∫
dDxeψγaea

µ
(
∂µ +

1

4
ωµbcγ

bc
)
ψ (87)

but since the fermion equations of motion can be used to simply the final answer, the

variation of the vielbein determinant e does not contribute, and one is left with

δS =

∫
dDxe

{
δea

µ ψγa∇µψ︸ ︷︷ ︸
δS1

+
1

4
δωµab ψγ

µγabψ︸ ︷︷ ︸
δS2

}
(88)

that can be expressed in terms of the vielbein variation δeµa as

δS1 =

∫
dDxe (−δeµa)ψγµ∇aψ

δS2 =

∫
dDxe

1

4

(
eaν(∇µδeνb −∇νδeµb)− eaνebρ(∇νeρc)eµc

)
ψγµγabψ

=

∫
dDxe

1

4
(∇µδeνa)ψ (γµγνa − γνγµa − γaγµν)︸ ︷︷ ︸

γ̃µνa

ψ
}

=

∫
dDxe

1

4
(−δeνa)

(
∇µψ γ̃µνa ψ + ψ γ̃µνa∇µψ

)
(89)

20



where in the last line we have integrated by parts. Now, one can use the identities

γ̃µνa = γµγνγa − ηµνγa − ηµaγν + ηνaγµ

= γνγaγµ + ηνaγµ + ηνµγa − 3ηµaγν
(90)

where η indicates either the metric or the vielbein depending on the indices it contains.

Then one can use the equations of motion and get

δS2 =

∫
dDxe

1

4
δeνa

(
∇νψ γaψ +∇aψ γνψ − ψ γa∇νψ + 3ψ γν∇aψ

)
(91)

so that adding all pieces

δS = δS1 + δS2 =

∫
dDxe δeµa

1

4

(
∇µψ γaψ +∇aψ γµψ − ψ γµ∇aψ − ψ γa∇µψ

)
=

∫
dDxe δeµa

[
− 1

4
ψ(γµ

↔
∇a +γa

↔
∇µ)ψ

]
= −

∫
dDxe δeµa T

µa

(92)

and the stress tensor is

Tµa =
1

4
ψ(γµ

↔
∇a +γa

↔
∇µ)ψ . (93)

One may check that it is symmetric, conserved and traceless on-shell.

The flat space limit is obvious, but it may be useful to rederive it directly in

flat space, as this procedure could be used in more demanding models with higher

derivatives. One varies the vielbein δeµ
a ≡ cµa, as in the A, and restricts soon after to

flat space. As before we use the equations of motion, so that it is not necessary to vary

the vielbein determinant e. We find (all indices are now equivalent, corresponding to

the cartesian coordinates of flat space)

δS =

∫
dDx

{
(−caµ)ψγa∂µψ +

1

4
δωµab ψγ

µγabψ︸ ︷︷ ︸
δS2

}
(94)

with δS2 calculated using (173) as

δS2 =

∫
dDx

1

4
(∂µcab − ∂acµb − ∂acbµ)ψγµγabψ

=

∫
dDx

1

4
(∂µcab)ψ (γµγab − γaγµb − γbγµa)︸ ︷︷ ︸

γ̃µab

ψ
}

=

∫
dDx

1

4
(−cab)

(
∂µψ γ̃

µab ψ + ψ γ̃µab ∂µψ
)
.

(95)

Now in the first term we use the identity

γ̃µab = γµγaγb − ηµaγb − ηµbγa + ηabγµ , (96)

and in the second one the equivalent identity

γ̃µab = γaγbγµ + ηabγµ + ηaµγb − 3ηµbγa , (97)
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and imposing the equations of motion one is left with

δS2 =

∫
dDx

1

4
cab

(
∂aψ γbψ + ∂bψ γaψ + ψ(3γa∂b − γb∂a)ψ

)
. (98)

Thus, the full action varies as

δS =

∫
dDx

1

4
cab

(
∂aψ γbψ + ∂bψ γaψ − ψ(γa∂b + γb∂a)ψ

)
= −1

4

∫
dDx cab ψ(γa

↔
∂b +γb

↔
∂a )ψ = −

∫
dDx cab T

ab

(99)

so that

T ab =
1

4
ψ(γa

↔
∂b +γb

↔
∂a )ψ (100)

consistently with (93). Evidently, it is conserved, symmetric, and traceless on-shell.

It is useful to report the infinitesimal form of the background local symmetries

that guarantees the above properties, working directly in curved space. They take

the form
δeµ

a = εν∂νeµ
a + (∂µε

ν)eν
a + ωabeµ

b + σeµ
a

δψ = εµ∂µψ +
1

4
ωabγ

abψ +
1−D

2
σψ

(101)

where εµ, ωab, and σ are the infinitesimal local parameters of the Einstein, local

Lorentz, and Weyl symmetries, respectively. Under the Weyl symmetry with local

parameter σ(x), the invariance of the action gives

δσS =

∫
dDx

(
δS

δeµa(x)
δσeµ

a(x) +
δRS

δψ(x)
δσψ(x) + δσψ(x)

δLS

δψ(x)

)
=

∫
dDxe Tµa(x)δσeµ

a(x) =

∫
dDxe Tµa(x)σ(x)eµ

a(x)

=

∫
dDxe T aa(x)σ(x) = 0

(102)

where the equations of motion of the spinor field have been used (employing left

and right derivatives for the Grassmann valued fields). Thus local Weyl invariance

implies tracelessness of the stress tensor (recall that the infinitesimal function σ(x)

is arbitrary). Similarly, the Lorentz symmetry with local parameters ωab(x) implies

δωS =

∫
dDx

(
δS

δeµa(x)
δωeµ

a(x) +
δRS

δψ(x)
δωψ(x) + δωψ(x)

δLS

δψ(x)

)
=

∫
dDxe Tµa(x)δωeµ

a(x) =

∫
dDxe Tµa(x)ωab(x)eµ

b(x)

=

∫
dDxe T ba(x)ωab(x) = 0

(103)

which constrains the antisymmetric part of the stress tensor to vanish on-shell. Fi-

nally, conservation of the stress tensor arises as consequence of the infinitesimal dif-
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feomorphism invariance

δεS =

∫
dDx

(
δS

δeµa(x)
δεeµ

a(x) +
δRS

δψ(x)
δεψ(x) + δεψ(x)

δLS

δψ(x)

)
=

∫
dDxe Tµa(x)Lεeµa(x) =

∫
dDxe Tµa(x)∇µεa(x)

= −
∫
dDxe εa(x)∇µTµa(x) = 0

(104)

where in the second line we have added to the Lie derivative (the transformation

rule of the vierbein) a spin connection term (as it drops out once the stress tensor is

symmetric), and then integrated by parts.

Thus, the stress tensor in flat space in is conserved, symmetric, and traceless

∂aT
ab = 0 , T ab = T ba , T aa = 0 (105)

and can be used to construct the charges of the full conformal group.

The Einstein and local Lorentz invariant of the action are obvious, because of the

tensor formalism used. Invariance under the Weyl symmetry must instead be verified

by direct computation. The Weyl transformation rules are contained in (101) (the σ

dependent terms). On the spin connection they induce the transformation

δωµ
ab = (eµ

aeνb − eµbeνa)∂νσ (106)

that is used to verify the Weyl invariance of the action (note that γµγ
µν = (D−1)γν).

6 The higher derivative Dirac field: the cubic

case

The lagrangian of a free massless higher derivative Dirac fermion is given by

L = ψ∂/nψ . (107)

where n > 1. The choice of n = D is particularly interesting, as then ψ has vanishing

mass dimension, which reminds of the property of the Liouville field and its higher

dimensional extension.

Could these models be conformal? To start with, we may consider the special

case n = D. For n = 1 the model is certainly conformal, while for n = 2 it is not

conformal: eliminating the gamma matrices and using well-known 2D Weyl formulas

one cannot construct a Weyl invariant action, even using non-minimal terms.

The next interesting case concerns n = 3. Let us consider directly the model for

arbitrary D

S[ψ,ψ] =

∫
dDx ψ∂/3ψ (108)

which is covariantized to curved space by

S0[ψ,ψ] =

∫
dDxe ψ∇/ 3ψ . (109)
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We wish to study how it varies under the Weyl symmetry, and test if there exist

improvement terms that make the model Weyl invariant. Iterating (82) one finds the

following Weyl transformation for the n-th power of the Dirac operator

∇/ ′n = e−
D+1
2
σ∇/ e−σ∇/ e−σ · · · ∇/ e−σ∇/ e

D−1
2
σ . (110)

The infinitesimal Weyl symmetry can be written as

δeµa = σeµa , δωµab = eµa∂bσ − eµb∂aσ , δψ = −∆σψ =
(3−D)

2
σψ (111)

Note also that the derivative term on σ from the variation of ∇/ arises from

γµ
1

4
δωµabγ

ab =
1

2
γµeµa(∂bσ)γab =

(D − 1)

2
(∂/σ) . (112)

Then, we compute the following Weyl variations

δψ =
(3−D)

2
σψ

δ∇/ψ =
(1−D)

2
σ∇/ψ + (∂/σ)ψ

δ∇/ 2ψ = −(1 +D)

2
σ∇/ 2ψ +∇/ [(∂/σ)ψ]

δ∇/ 3ψ = −(3 +D)

2
σ∇/ 3ψ − (∂/σ)∇/ 2ψ +∇/ 2[(∂/σ)ψ]

= −(3 +D)

2
σ∇/ 3ψ − (∂/σ)2ψ + 2[(∂/σ)ψ]

= −(3 +D)

2
σ∇/ 3ψ + (2∂/σ)ψ + 2(∇µ∂/σ)∇µψ

(113)

from which we calculate the variation of S0. Despite the dependence on the dimension

D the variation result independent of D.

δS0[ψ,ψ] =

∫
dDxe[(2∂µσ)ψγµψ + 2(∇µ∂νσ)ψγµ∇νψ] (114)

In order to have Weyl invariance we add new terms to the action and calculate their

variations, these new terms have to be a combination of curvature tensor which count

as two derivatives and covariant derivatives with each index contracted, in order to

keep the Lorentz invariance. One finds that the only non minimal terms are given by

the action

Snm =

∫
dDxe[α1Rψ∇/ψ + α2(∇µR)ψγµψ + α3Rµνψγ

µ∇νψ] (115)

The variation of this non minimal terms action is quite complicated and laborious

but we divide it step by step. At first we have the variation of the determinant of

the vielbein term which gives us∫
dDxDσe

[
α1Rψ∇/ψ + α2(∇µR)ψγµψ + α3Rµνψγ

µ∇νψ
]

(116)

24



while each variation of the alphas term can be computed according to the (158) and

the variation for the ψ and ψ given above. For the α1 term we find

δSnm(1) =

∫
dDxeα1

[
(−2σR+ 2(1−D)2σ)ψ∇/ψ +

(3−D)

2
σα1Rψ∇/ψ

+ α1Rψ(
1−D

2
σ∇/ψ + (/∂σ)ψ

] (117)

For the α2 term we have

δSnm(2) =

∫
dDxeα2

[
∇µ(−2σR+2(1−D)2σ)ψγµψ−σ∇µRψγµψ+(3−D)σ∇µRψγµψ

]
(118)

this can be rewritten remembering that ∂µ2σ = 2∂µσ − Rµν∂νσ and the last and

more tricky α3 term

δSnm(3) =

∫
dDxeα3

[
(2−D)∇µ∂νσψγµ∇νψ − gµν2σψγµ∇νψ

+
3−D

2
σRµνψγ

µ∇νψ − σRµνψγµ∇νψ +Rµνψγ
µδ(∇νψ)

] (119)

It is the case to investigate the variation of the last term in the δSnm(3) action

eα3Rµνψγ
µδ(∇νψ) (120)

this can be written using (173) as

eα3Rµνψγ
µδ(∇νψ) = eα3Rµνψγ

µδ(gνρ∇ρψ)

= eα3Rµνψγ
µδ(gνρ)∇ρψ + eα3Rµνψγ

µgνρδ(∂ρψ +
1

4
ωρabγ

abψ)

= −2σeα3Rµνψγ
µ∇νψ +

1

4
eα3Rµνψγ

µgνρ
(
eρa∇bσγabψ − eρb∇aσγabψ

)
+

3−D
2

eα3Rµνψγ
µ(∂νσ)ψ +

3−D
8

σeα3Rµνψγ
µωρabγ

abψ

+
3−D

2
σeα3Rµνψγ

µ∂νψ

(121)

Now, using the relationship for the product of two gamma matrices

γµγab = γbηµa − γaηµb (122)

we finally obtain

eα3Rµνψγ
µδ(∇νψ) = −2σeα3Rµνψγ

µ∇νψ +
1

2
eα3Rψ(∇/ σ)ψ

− 1

2
eα3Rµνψγ

ν(∇µσ)ψ +
3−D

2
eα3Rµνψγ

µ(∂νσ)ψ

+
3−D

2
σeα3Rµνψγ

µ∇νψ

(123)

Now we add all this variations for δSnm to (114) and see if the total variation can

be set to vanish. We get a system of five equations for three unknown coefficients
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α1, α2, α3 [
α12(1−D)σ − α3σ

]
2σψγµψ = 0[

α1 +
1

2
α3 − 2α2

]
Rψ/∂ψ = 0[

1 + α22(1−D)
]
(2∂µσ)ψγµψ = 0[

2 + α3(2−D)
]
∇µ∂νσψγµ∇νψ = 0[

− 1

2
α3 +

3−D
2

α3 − 2(1−D)eα2

]
Rµνψ∂

νσγµψ = 0

We get complete cancellation for

α1 = − 1

(D − 2)(D − 1)
, α2 =

1

2(D − 1)
, α3 =

2

(D − 2)
, D = 3 (124)

The last of the five equations gives us the ratio between α2 and α3, which is

α2

α3
=

(D − 2)

4(D − 1)
(125)

For D = 3 these values reduce to

α1 = −1

2
, α2 =

1

4
, α3 = 2 (126)

so that the action

S =

∫
d3xe

[
ψ∇/ 3ψ − 1

2
Rψ∇/ψ +

1

4
(∂µR)ψγµψ + 2Rµνψγ

µ∇νψ
]

(127)

is Weyl invariant (with ψ that does not scale). The equations of motion are(
∇/ 3 − 1

2
R∇/ +

1

4
(∂/R) + 2Rµνγ

µ∇ν
)
ψ = 0 (128)

In general, for D ≥ 3, one gets the Weyl invariant field equations(
∇/ 3 − 1

(D − 2)(D − 1)
R∇/ +

1

2(D − 1)
(∂/R) +

2

(D − 2)
Rµνγ

µ∇ν
)
ψ = 0 (129)

that follow from the Weyl invariant action

S =

∫
dDxe

[
ψ∇/ 3ψ − 1

(D − 2)(D − 1)
Rψ∇/ψ +

1

2(D − 1)
(∂µR)ψγµψ +

2

(D − 2)
Rµνψγ

µ∇νψ
]
.

(130)

Alternatively, using the identities in (83) one can write the equations (or the action)

as(
2 1

2
∇/ −

(1

4
+

1

(D − 2)(D − 1)

)
R∇/ +

1

2(D − 1)
(∂/R) +

2

(D − 2)
Rµνγ

µ∇ν
)
ψ = 0

(131)

or(
∇/2 1

2
−
(1

4
+

1

(D − 2)(D − 1)

)
R∇/ +

( 1

2(D − 1)
− 1

4

)
(∂/R) +

2

(D − 2)
Rµνγ

µ∇ν
)
ψ = 0 .

(132)

This last form reproduces the D = 4 result of [20] and [21], which appears also in the

supersymmetric version of the D = 4 Liouville theory of [22].
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6.1 Construction method for improvement terms in the

action

Here we aim to explain the construction of non-minimal terms for the action

S0[ψ,ψ] =

∫
dDxeψ∇/ 3ψ (133)

These counter-terms provide Weyl invariance through their variations. Not only these

new terms have to contain, of course, the Dirac matter field and the equivalent of

three derivatives (for scale invariance), but also they have form a scalar under general

coordinate and local Lorentz transformations: this means that every index has to be

properly contracted. Indeed we know that the current-term ψγµψ for the Dirac

field scales as −∆ = 3−D
2 , while the vielbein scales as D. For this reason we need

three derivatives for scale invariance. On a Riemannian manifold, the only useful

geometrical objects containing a pair of derivatives are the Riemann tensor Rµαβγ ,

the Ricci tensor Rµν and the scalar tensor R. Starting from the scalar tensor we can

write down a term like

∇µRψγµψ (134)

where the derivative ∇µ can act on R, ψ and ψ (while covariant derivatives of γµ

vanish), so that we obtain three different terms

R(∇µψ)γµψ , Rψγµ(∇µψ) , (∂µR)ψγµψ (135)

However, one can always perform partial integration in the action and remove the

derivative acting on ψ, leaving us with two possible terms

T1 = Rψγµ∇µψ T2 = (∂µR)ψγµR . (136)

Now we consider the Ricci tensor Rµν , we need two more gamma-matrices to

provide Lorentz invariance. This means that in this case we can write down a term

like

∇λRµν ψγµγνγλψ (137)

where lower indices can be contracted with upper indices also in different ways, and

the derivative can act again on all fields including Rµν . We can again free ψ from

derivatives by partial integration, finding structures of the form

Rµνψγ
µγνγλ∇λψ , (∇λRµν)ψγµγνγλψ (138)

Now, by gamma matrices properties we know that γµγνγλ = γµνλ + gµνγλ− gµλγν +

gνλγµ. The Ricci tensor is symmetric, which means that in the first term, when con-

tracted with the completely antisymmetric matrix γµνλ is zero, while the contractions

with the metric gµν give one term proportional to T1 and a new term

T3 = Rµνψγ
µ∇νψ (139)

Analogously for second structre, we have the contraction of an antisymmetric object

with the Ricci tensor that gives zero, while the contractions with the metric gµν are
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proportional to T2 through the Bianchi identity ∇µ
(
Rµν − 1

2gµνR
)

= 0. The last

possible geometrical object is given by the Riemann tensor Rµνλρ but this case gives

no more independent terms. We have terms from

∇αRµνλρ ψγµγνγλγργαψ (140)

with the derivative that can only on ψ and the Riemann tensor. Again, indices can

be contracted otherwise. The product of five gamma matrices

γµγνγλγργα (141)

can be reduced to linear combinations of

γµνλρα , γµνλgρα , γµgνλgρα (142)

The first term with the totally antisymmetric γµνλρα with five indices vanishes because

of the symmetries of the Riemann tensor, while the terms with a γµ reduces to the

previous structures. Similarly the terms with three indices γµνλ vanish since it is

always reduced to a contraction with the last three indices of the Riemann tensor,

namely Rµ[ναρ] = 0. Analogously, if the derivative had acted on Rµνλρ we would have

not found more independent terms.

6.2 Stress tensor for the higher derivative Dirac field:

cubic case

The action (130) defines in flat space a CFT. Being a higher derivative theory, it is

expected to be non-unitary. Here we wish to identify its stress tensor. It is a very

demanding and laborious calculation, which we simplify a bit by restricting to flat

space. We start considering (109), we vary it and restrict soon after to flat space.

Since the fermion equations of motion can be used to simply the final answer, the

variation of the vielbein determinant e does not contribute, and one is left with

δS =

∫
xDe

{
cµaψγ

a∇a2ψ + ψγµ∂µc
ν
bγ

b∇ν∇/ψ + ψγµ∂µγ
ν∂νc

ρ
cγ

c∇cψ

+
1

4
ψ2δωρabγ

abψ︸ ︷︷ ︸
δSω1

+
1

4
ψγµδωµabγ

ab2ψ︸ ︷︷ ︸
δSω2

+
1

4
ψγµ∂µ(γνδωνabγ

ab∇/ψ)︸ ︷︷ ︸
δSω3

}
(143)

At first we consider the δSω terms. Using the relation (172) for δω, several usages of

integrations by parts and the techique used in the Dirac field for the gamma-matrices

manipulation, we reach the formulas

δSω1 =

∫
dDx

1

4
cab

(
∂aψγb2ψ + ∂bψγa2ψ + 3ψγa∂b2ψ − ψγb∂a2ψ

)
δSω2 =

∫
dDx− 1

4
cab

(
∂a∂µψγ

µγbγρ∂ρψ + ∂b∂µψγ
µγaγρ∂ρψ + 3∂µψγ

µγa∂bγρ∂ρψ

− ∂µψγµγb∂aγρ∂ρψ
)
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δSω3 =

∫
dDx

1

4
cab

(
∂a2ψγbψ + γb2ψγaψ + 32ψγa∂bψ −2ψγb∂aψ

)
Now we need to evaluate the variation of the improvement terms using (157). This

procedure leads us to the formula

δSnm =

∫
dDxα1δRψγ

µ∇νψ + α2(∂µδR)ψγµψ + α3δRµνψγ
µ∇νψ (144)

Eventually, after several integrations by parts, used in order to leave underivated cab,

and omitting terms proportional to the equations of motion, we obtain

δSnm = −
∫
dDx cρσ

{
α1(∂ρ∂σψ)γµ∂µψ + ψ∂ρ∂σγ

µ∂µψ − gρσ2ψγµ∂µψ

− α2(∂ρ∂σψγ
µ∂µψ + ∂µ∂σψγ

µ∂ρψ + ∂σψγ
µ∂µ∂ρψ

+ ∂µ∂ρψγ
µ∂σψ + ∂ρψγ

µ∂µ∂σψ + ∂µψγ
µ∂ρ∂σψ)

+ α2ηρσ

[
∂µ(2ψγµψ + ψγµ2ψ + 2∂µψγ

µ∂νψ)
]

+
α3

2
(∂µ∂ρψγ

µ∇σψ + ∂ρψγ
µ∂µ∂σψ + ∂µψγ

µ∂ρ∂σψ)

+
α3

2
(∂µ∂ρψγσ∂

νψ + ∂νψγ
σ∂ρ∂νψ + ∂ρψγ

σ∂µ∂
µψ)

− α3

2
(2ψγρ∂σψ + 2∂µψγρ∂

µ∂σψ)

− α3

2
ηρσ(∂µ∂νψγ

µ∂νψ + ∂νψγ
µ∂µ∂

νψ + ∂µψγ
µ∂ν∂

νψ)
}

+(ρ↔ σ))
(145)

From the definition of stress tensor

δS =

∫
dDxe δeaµ Taµ = −

∫
dDxe δeµa T

µa (146)
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we find

Tab =− ψγa∂b2ψ + ∂cψγcγa∂bγ
d∂dψ −2ψγa∂bψ

+
1

4

(
∂aψγb2ψ + ∂bψγa2ψ + 3ψγa∂b2ψ − ψγb∂a2ψ

)
− 1

4

(
∂a∂cψγ

cγbγ
d∂dψ + ∂b∂cψγ

cγaγd∂dψ + 3∂cψγ
cγa∂bγd∂dψ

− ∂cψγcγb∂aγd∂dψ
)

+
1

4

(
∂a2ψγbψ + ∂b2ψγaψ + 32ψγb∂aψ −2ψγb∂aψ

)
−
{
α1(∂a∂bψ)γc∂cψ + ψ∂a∂bγ

c∂cψ − gab2ψγc∂cψ

− α2(∂a∂bψγ
c∂cψ + ∂c∂bψγ

c∂aψ + ∂bψγ
c∂c∂aψ

+ ∂c∂aψγ
c∂bψ + ∂aψγ

c∂c∂bψ + ∂cψγ
c∂a∂bψ)

+ α2ηab

[
∂c(2ψγ

cψ + ψγc2ψ + 2∂dψγ
c∂dψ)

]
+
α3

2
(∂c∂aψγ

c∇bψ + ∂aψγ
c∂c∂bψ + ∂cψγ

c∂a∂bψ)

+
α3

2
(∂c∂aψγb∂

cψ + ∂cψγ
b∂a∂cψ + ∂aψγ

b∂c∂
cψ)

− α3

2
(2ψγa∂bψ + 2∂cψγa∂

c∂bψ)

− α3

2
ηab(∂c∂dψγ

c∂dψ + ∂dψγ
c∂c∂

dψ + ∂cψγ
c∂d∂

dψ)
}

+ (a↔ b)

(147)

Reporting the stress-tensor Tab we have decided not to group similar terms; in this

way it is possible to see the form of each single term. This could help the reader,

since the calculation is really long. We note that (147) is symmetric and we wish

to verify that the trace of the stress-tensor vanishes, as we expect from the theory

studied in section 2.1. In order to do so we calculate T aa and compare similar terms.

A lot of them are proportional to the equations of motion when contracted to find

T aa and they will be set to zero. We obtain 4 relations involving the coefficients α1,

α2 and α3, which we expect vanish in order to provide T aa = 0.

(2α1 − 2α1D − 2α2 + 2α2D − α3 − 1)(2ψγa∂aψ)

(4α1 − 4Dα1 − 4α2 + 4α2D −Dα3)(∂aψγ
b∂b∂

bψ)

(−4α2 + 4α2D + 2α3 −Dα3)(∂a∂bψγ
a∂bψ)

(−2α2 + 2α2D + 2α3 −Dα3 + 1)(∂cψγ
c2ψ)

(148)

Doing the calculation every single relation vanishes, and we conclude that the stress-

tensor is traceless. This result was expected from general arguments, of course, but

its verification constitutes a good check on our identification of the stress tensor.

The stress tensor is an important operator in CFT, and one could start studying its

correlation functions.
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7 Conclusions and speculations

We have studied higher derivative fermionic theories, focusing on the case of a model

with cubic derivatives. Our original motivation was inspired by the work of Tom Levi

and Yaron Oz [8], that analyzed a scalar field of vanishing mass dimensions in higher

dimensions, having a kinetic term with higher derivatives in the action, which defines

a conformally invariant field theory. After having revisited Weyl invariant scalar

theories, and described how a scale invariant theory in flat space can be proven to be

conformally invariant, we have focused on fermionic theories with higher derivatives.

In particular, we have noticed how a fermion with vanishing scaling dimension is

scale invariant in three dimensions if it contains a kinetic term cubic in derivatives.

This model can be extended to higher dimensions, maintaining scale invariance by

assigning a scaling transformation also to the fermion fields. Thus, considering the

action

S[ψ,ψ] =

∫
dDx ψ∂/3ψ (149)

we have shown how to couple it to curved space and make it Weyl invariant by finding

appropriate non minimal terms. The resulting action is given by

S =

∫
dDxe

[
ψ∇/ 3ψ − 1

(D − 2)(D − 1)
Rψ∇/ψ +

1

2(D − 1)
(∂µR)ψγµψ

+
2

(D − 2)
Rµνψγ

µ∇νψ

] (150)

The corresponding Weyl invariant field equations are(
∇/ 3 − 1

(D − 2)(D − 1)
R∇/ +

1

2(D − 1)
(∂/R) +

2

(D − 2)
Rµνγ

µ∇ν
)
ψ = 0 (151)

The singularity at D = 2 indicates that such a model is not Weyl invariant in two

dimensions. Restricting this model to flat space, we find a new example of free CFT

that, though non-unitary, might find interesting applications in physics.

In CFT a crucial operator is given by the stress tensor, so that we have calculated

it from the above action obtaining the expression in (147). It contains many terms,

but we have verified its consistency by checking that it is indeed traceless, as required

in CFTs.

It could be useful to extend our work, by computing the two-point functions of

the stress tensor in the quantum theory to identify the central charge coefficient CT
of our theory, as has been done in [16] for analogous scalar field models.
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A Curvatures and variational formulae

A.1 Metric

Given a metric gµν , we define the curvature tensors by

[∇µ,∇ν ]V ρ = Rµν
ρ
σV

σ , Rµν = Rρµ
ρ
ν , R = Rµ

µ (152)

where the covariant derivative is defined on vector fields by

∇µV ρ = ∂µV
ρ + ΓρµνV

ν , ∇µVν = ∂µVν − ΓρµνVρ (153)

with the connection fixed by requiring the metric to be covariantly constant ∇ρgµν =

0. The latter gives

Γρµν =
1

2
gρσ(∂µgνσ + ∂νgµσ − ∂σgµν) (154)

and a useful formula for the Riemann curvature is

Rµν
ρ
σ = ∇µΓρνσ −∇νΓρµσ (155)

where ∇µ contains a connection only for the upper index (the connection is not a

tensor, and thus its covariant derivative is not defined).

These explicit expressions allow to derive variational formulae induced by a metric

deformation δgµν . We consider δgµν = g′µν − gµν as the fundamental variation, and

define the tensor hµν = δgµν on which indices can be raised (and lowered) by the

metric, e.g.

hµν = gµρgνσhρσ = gµρgνσδgρσ (156)

so that, for example, the variation of the inverse metric is δgµν = −hµν .

With this notation, we have the following variations (with � = ∇µ∇µ and h =

hµµ)

δΓρµν =
1

2
(∇µhνρ +∇νhµρ −∇ρhµν)

δRµν
ρ
σ = ∇µδΓρνσ −∇νδΓρµσ

=
1

2
(∇µ∇νhσρ +∇µ∇σhνρ −∇µ∇ρhνσ − (µ↔ ν))

δRµν =
1

2
(∇ρ∇µhνρ +∇ρ∇νhµρ −�hµν −∇µ∇νh)

δR = −hµνRµν +∇µ∇νhµν −�h .

(157)

They may be specialized to a Weyl variation

δgµν ≡ hµν = 2σgµν

δΓρµν = δρµ∂νσ + δρν∂µσ − gµν∇ρσ

δRµν
ρ
σ = δρν∇µ∂σσ + gµσ∇ν∇ρσ − (µ↔ ν)

δRµν = (2−D)∇µ∂νσ − gµν�σ

δR = 2(1−D)�σ − 2σR .

(158)
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Finally, one may restrict the formula in (157) to flat space after variation, which

is useful for example to get the stress tensor directly in flat space (with metric in

cartesian coordinates denoted by ηµν). We find

δΓρµν =
1

2
(∂µhν

ρ + ∂νhµ
ρ − ∂ρhµν)

δRµν
ρ
σ = ∂µδΓ

ρ
νσ − ∂νδΓρµσ

=
1

2
(∂µ∂νhσ

ρ + ∂µ∂σhν
ρ − ∂µ∂ρhνσ − (µ↔ ν))

δRµν =
1

2
(∂µ∂

ρhρν + ∂ν∂
ρhρµ −�hµν − ∂µ∂νh)

δR = ∂µ∂νhµν −�h .

(159)

Let me now define some standard tensor fields useful for the creation of conformally

invariant operators:

1. the Schouten tensor Sµν = 1
D−2(Rµν − R

2(D−1)gµν),

2. the Weyl tensor

Wiklm = Riklm +
1

D − 2
(Rimgkl −Rilgkm +Rklgim −Rkmgil)

+
1

(D − 1)(D − 2)
R (gilgkm − gimgkl)

(160)

3. the Bach tensor

Bab = ScdW
cd
ab +∇c∇cSab −∇c∇aSbc (161)

A.2 Vielbein

Similar formulae can be written down for the vielbein eµ
a, which fixes the metric by

gµν = eµ
aeν

bηab . (162)

One gains a local Lorentz symmetry in tangent space, acting on frame indices (or

flat indices) a, b..., etc. The covariant derivative acting on a generic Lorentz tensor

V requires a connection ωµab, called the spin connection

∇µV = ∂µV +
1

2
ωµabM

abV (163)

where Mab are the generators of the Lorentz group, normalized as

[Mab,M cd] = ηbcMad + . . . (164)

For vectors (Mab)cd = ηacδbd − ηbcδad , while for Dirac spinors Mab = 1
2γ

ab = 1
4 [γa, γb].

We have assumed the tensor V to be a scalar under diffeomorphisms, otherwise

additional connections should be added. The spin connection is fixed by requiring

the vielbein to be covariantly constant (the “vielbein postulate”)

∇µeνa = ∂µeν
a − Γρµνeρ

a + ωµ
a
beν

b = 0 (165)
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form which one derives the explicit formula

ωµ
ab =

1

2
eaν(∂µeν

b − ∂νeµb)− (a↔ b)− 1

2
eaνebρ(∂νeρ

c − ∂ρeνc)eµc . (166)

The corresponding curvature is defined by

[∇µ,∇ν ] =
1

2
Rµνab(ω)Mab (167)

and is equivalent to the Riemann tensor since by the vielbein postulate it follows that

[∇µ,∇ν ]eρ
a = 0 → Rµνρa(Γ) = Rµνρa(ω) (168)

with the nature of indices (flat or curved) transformed as usual by the vielbien and

its inverse.

Let us now derive variational formulae induced by a deformation of the vielbein

δeµ
a. In the same spirit as before, we consider

δeµ
a = e′µ

a − eµa ≡ cµa (169)

as the fundamental variation, whose indices may be raised, lowered and transformed

by the metric and vielbein. In particular, the variation of the inverse vielbein ea
µ is

given by

δea
µ = −caµ . (170)

The metric variation hµν is related to the vielbein variation cµ
a by

hµν = cµν + cνµ (171)

and in addition we find

δωµab =
1

2
(∇µcab −∇acµb −∇acbµ)− (a↔ b) (172)

with an obvious flat space limit. Finally, this formula may be specialized to Weyl

variations as

δeµ
a ≡ cµa = σeµ

a

δωµab = eµa∂bσ − eµb∂aσ
(173)

where ∂a = ea
µ∂µ, of course. For convention we will refer to the determinant of the

metric gµν as g and to the determinant of the vielbein as e, the following relationship

is valid

e := det
(
eaµ
)

=
√
|g| (174)

with their variations given by

δ
√
g =

1

2

√
ggµνδgµν

δe = eδeaµe
µ
a

(175)
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We also define the stress-tensor as

Tµν = − 2√
|g|

δS

δgµν
, Tµν =

2√
|g|

δS

δgµν
(176)

this form fermions is given by the formula

Tµv ≡ δS

δeαµ
evα (177)

B Clifford algebras and spinors

In this section we describe the main features of the Clifford algebra and the most

useful relationships used in this work. The Clifford algebra is generated by a set of

γ-matrices, which satisfies the anti-commutaion relations

γµγν + γvγµ = 2ηµν1 (178)

and which plays an important role in supersymmetric and supergravity theories. We

discuss the Clifford algebra associated with the Lorentz group in D dimensions and

we start with a general and explicit construction of the generating γ-matrices. It is

easier to construct Euclidean γ matrices, which satisfy (178) using the tensor product

⊗
γ1 = σ1 ⊗ 1⊗ 1⊗ . . .
γ2 = σ2 ⊗ 1⊗ 1⊗ . . .
γ3 = σ3 ⊗ σ1 ⊗ 1⊗ . . .
γ4 = σ3 ⊗ σ2 ⊗ 1⊗ . . .
γ5 = σ3 ⊗ σ3 ⊗ σ1 ⊗ . . .

(179)

These matrices are all hermitian with squares equal to the identity matrix and

they mutually anti-commute. If D = 2m is even, then we need m factors in this

construction to obtain γµ. This implies that we obtain a representation of dimension

2
D
2 . If D = 2m + 1 we need one additional matrix and we take γ2m+1 from the list

above, but we keep only the first m factors deleting a σ1. The construction (178)

gives us Euclidean γ-matrices and in order to obtain Lorentzian γ matrices, we just

multiply γ0 it by i. The hermiticity properties of the Lorentzian γ matrices are

summarized by

γµ
†

= γ0γµγ0 (180)

The full Clifford algebra consists of the identity 1, the D generating elements γµ,

plus all independent matrices formed from products of the generators. By (178)

symmetric products of γ-matrices reduce to fewer γ-matrices, so the new elements

must be antysimmetric products. For this reason we define

γµ1...µr = γ[ν1 . . . γ µr] (181)

For example

γµv =
1

2
(γµγν − γνγµ) (182)

Each new product contains an overall factor of 1
r! which is usually factoralized. There

are CDr (binomial coefficients) independent index choices at rank r so that, for even

dimension, the Clifford algebra is of dimension 2D.
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B.1 Practical γ-matrix manipulation

We list some useful tricks to multiply γ-matrices, D will denote the dimension of the

Clifford Algebra. Consider the first products with index contractions

γµνγν = (D − 1)γµ (183)

This is valid because ν runs over all values except µ, so there are D− 1 terms in the

sum. In the same way we have

γµνργρ = (D − 2)γµν (184)

and so on until we recognize the general formula

γµ1...µrν1...νsγνs...ν1 =
(D − r)!|

(D − r − s)!
γµ1...µr (185)

Note that the second γ on the left side has its indices in opposite order,so that no

signs appear when contracting the indices. It is useful to remember the general order

reversal symmetry, which is

γν1...νr = (−)r(r−1)/2γνr...ν1 (186)

In the case of products with indices not contracted we have similar combinatorial

tricks such as

γµ1µ2γν1...,νD = D(D − 1)δµ2µ1[ν1ν2
γν3...νd] (187)

Indeed, the index µ1 and µ2 appear in the sef of {νi}. There are D possibilities for

µ2 and D-1 possibilities for µ1, since µ1 should be different from µ2. δ functions are

always normalized with weight 1, i.e.

δµ2µ1
ν1ν2 =

1

2

(
δµ2ν1 δ

µ1
ν2 − δ

µ1
ν1 δ

µ2
ν2

)
(188)

C Conformal change of the Riemann curvature

In this appendix we derive the basic identities which describe the behaviour of the

Levi-Civita connection ∇ , the Riemann curvature tensor R, the Ricci curvature

tensor Ric and the scalar curvature τ with respect the conformal changes of the metric.

Here we give up on the notation used until now to introduce a new mathematical

one, since it is more pratical. We first recall how the Riemann curvature tensor of a

manifold (MD, g) transforms under g −→ ĝ = e2φg. A torsion-free metric connection

on a Riemannian manifold is necessarily given by the Koszul formula:

2g(∇XY,Z) =X(g(Y, Z)) + Y (g(X,Z))− Z(g(X,Y )) + g([X,Y ], Z) + g([Z,X], Y )

+ g([Z, Y ], X)

(189)

For all vector fields X,Y ∈ χ(M). At this point it is straightforward to demonstrate

the transformation of the curvature:

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z, R(X,Y, Z,W ) = g(R(X,Y )Z,W )

(190)
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It follows that :

R̂(X,Y )Z = R(X,Y )Z + g(∇X(grad φ), Z)Y − g(∇Y (grad φ), Z)X

+∇Y (grad φ)g(X,Z)−∇X(grad φ)g(Y,Z)

+ (Y (φ)Z(φ)− g(Y,Z)|grad φ|2)X

− (X(φ)Z(φ)− g(X,Z)|grad φ|2)Y

+ (X(φ)g(Y,Z)− Y (φ)g(X,Z))grad φ

(191)

Using (191) it is possible to deduce the transformation of objects like Ric or the scalar

curvature τ . In this way we see that :

e−2φR̂(X,Y, Z,W ) = e−2φĝ(R̂(X,Y )Z,W )

= R(X,Y, Z,W ) + ξ(X,Z)g(Y,W )− ξ(Y, Z)g(X,W )

+ ξ(Y,W )g(X,Z)− ξ(X,W )g(Y,Z)

(192)

here ξ is:

ξ(X,Y ) = ξg,φ(X,Y ) ≡ g(∇X(gradφ), Y )−X(φ)Y (φ) +
1

2
|gradφ|2g(X,Y ) (193)

In this way we obtain for the Ricci Tensor:

Ric(X,Y ) =
∑
i

R(X, ei, ei, Y ) =
∑
i

g(R(X, ei)ei, Y )

R̂ic(X,Y ) = Ric(X,Y )− (D − 2)ξ(X,Y )− g(X,Y )
∑
i

χ(ei, ei)

= Ric(X,Y )− (D − 2)g(∇Xgrad φ, Y ) + g(X,Y )∆φ− (D − 2)|grad φ|2g(X,Y )

+ (D − 2)X(φ)Y (φ)

(194)

where:

−∆φ =
∑
i

g(∇ei(grad φ), ei)

(194) yields to the transformation rules of the scalar τ =
∑

iRic(ei, ei):

τ̂ = e−2φ(τ + (2D − 2)∆φ− (D − 2)(D − 1)|grad φ|2) (195)

At this point i can finally introduce the Schouten tensor S

S =
1

D − 2
(Ric− τ

2(D − 1)
g) (196)

and his transformation rule:

Ŝ(X,Y ) = S(X,Y )− 1

2
|grad φ|2g(X,Y )− g(∇X(grad φ), Y ) +X(φ)Y (φ)

= S(X,Y )− ξ(X,Y )
(197)

Let me now define some standard tensor fields, starting from the curvature, useful

for the creation of conformally invariant operators:
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1. Riemann curvature tensor R(X,Y, Z,W ) := g(R(X,Y )Z,W ),

2. the Ricci tensor Ric(X,Y ) := Trg(g(R(X,−)−, Y ),

3. the scalar curvature τ := Trg(Ric(−.−)).

4. the normalized scalar curvature J := τ
2(D−1)

5. the Schouten tensor S(X,Y ),

6. the Weyl tensor W(X,Y,Z,W):=R(X,Y, Z,W ) + (S ⊗ g)(X,Y, Z,W ),

7. the Cotton tensor C(X,Y, Z) := (∇XS)(Y, Z)− (∇Y S)(X,Z),

8. the Bach tensor B(X,Y ) = Trg((∇C)(−, X, Y ) + g(S,W (−, X, Y,−))

where in the definition of the Weyl tensor we have introduced the Kulkarni-Nomizu

product ⊗ of two symmetric (0,2) tensors K1,K2 , defined as:

(K1 ⊗K2) :=K1(X,Z)K2(Y,W ) +K1(Y,W )K2(X,Z)

−K1(X,W )K2(Y,Z)−K1(Y,Z)K2(X,W )

C.1 Conformally covariant operators

Conformal transformations in Riemann geometry preserve angles between tangent

vectors at every point x on a Riemann manifold M . A Riemann metric g1 is confor-

mally equivalent to a metric g0 if :

g1ij(x) = ew(x)g0ij(x) (198)

ew(x) is a positive function on the manifold M and is called a conformal factor.

We define a conformal class [g0] of a metric g0 as the set of all the metrics of the

form {(ew(x)g0 : w(x) ∈ C∞(M))}. As explained in [15] the Uniformization theorem

for compact Riemann surfaces says that on such a surface, in every conformal class

there exists a metric of constant Gauss curvature: the corresponding statement in

dimension D ≥3, known as the Yamabe Problem, stipulates that in every conformal

class there exists a metric of costant scalar curvature.

Conformally covariant differential operators include the Laplacian in dimension

two, as well as the conformal Laplacian, Paneitz operator and other higher order

operators in dimension D ≥3.

Their defining property is the transformation law under a conformal change of

the metric: there exist a,b ∈ R such that if g1 and g0 are related as in (C.1),then :

Pg1 = eawPg0e
bw (199)

These operators have been widely studied and today we know that the Laplace-

Beltrami operator ∆g of a Riemann manifold (M, g) is invariant respect to isometries

and in two dimensions is also invariant respect to conformal changes g → eφg of the

metric.

In dimension D ≥3 this is not true, so we define the Yamabe operator as :

P2(g) = ∆g − (
D

2
− 1)Jg (200)
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The Yamabe operator is conformally invariant , its transformation rule is :

e(D
2

+1)φ ◦ P2(e2φg) = P2(g) ◦ e(D
2
−1)φ (201)

In the 1980’s a conformally covariant operator of the form ∆2 + ... terms with fewer

than four derivatives was discovered by Paneitz,Eastwood-Singer and Riegert.

D Correlation functions for general dimensions

free field theories

Following the work of [23] we aim to review the requirements of conformal invariance

for two point functions of conserved currents for general dimension D. We will review

the main relations between the two point propagator and the coefficients CV and

CT for free field theories in both the scalar and fermionic case. We are looking

for general requirements that a two-point function has to satisfy under conformal

transformations. In order to do so, we remember that conformal transformations

may be defined as coordinate transformations preserving the infinitesimal euclidean

lenght element up to a local scale factor Ωg,

xµ → x′µ(x) = (gx)µ, dx′µdx
′
µ = Ωg(x)−2dxµdxµ (202)

where g is a conformal transformation. Using the language of group theory we note

that for any conformal transformation g we may define a local orthogonal transfor-

mation by

Rgµα(x) = Ωg(x)
∂x′µ
∂xα

, Rgµα(x)Rgνα(x) = δµν (203)

which in D dimensions is an element of O(D),Rg′(gx)Rg(x) = Rg′g(x),Rg(x)−1 =

Rg−1
(gx). The set of conformal transformations {g} forms the conformal group

which is isomorphic to O(D+ 1, 1) and is composed by convential constant rotations

and traslations plus scale transformations and special conformal transformations.

Constant rotations and translations form the group O(D) ∝ TD

x′µ = Rµνxν + aµ, RµαRνα = δµν (204)

Constant scale transformations form the Dilatation group K

x′µ = λxµ, Ωg(x) = λ−1 (205)

and special conformal transformations

x′µ =
xµ + bµx

2

Ωg(x)
, Ωg(x) = 1 + 2b · x+ b2x2 (206)

The full conformal group may be generated by combining rotations and translations

with an inversion through the origin represented by the discrete element i, i2 = 1.

We may write

x′µ = (ix)µ =
xµ
x2
, Riµν(x) = Iµν(x) ≡ δµν − 2

xµxν
x2

, Ωi(x) = x2 (207)

40



Inversions are not elements of the component of the conformal group connected to

the identity since DetI = −1, but special conformal transformations are formed by

an inversion, a translation and another inversion. By definition, for a quasi-primary

quantum field O(x) of scale dimension ∆, a finite dimensional representation under

conformal transformations is induced by a representation of group (O(D)⊗K) ./ TD,

if O → T (g)O where

(T (g)O)i
(
x′
)

= Ωg(x)ηKi
j (Rg(x))Oj(x) (208)

HereRg(x) denotes transformation as (203), while the index i denotes the components

in somme representation of the rotation group O(D) so that, for Rµν any orthogonal

rotation matrix, Ki
j(R) is the corresponding element in this representation acting on

the fields Oi. In this way we are able to define a conformally invariant two point

function by 〈
Oi11 (x1)Oi22 (x2)

〉
=

1(
x2

12

)∆P i1i2 (x12) , x12 = x1 − x2 (209)

if P i1i2(x) is required to satisfy

Ki1
1 (R (x1))Ki2

2 (R (x2))P j1j2 (x12) = P i1i2
(
x′12

)
, P i1i2(λx) = P i1i2(x) (210)

using x′212 = x2
12/ (Ωg (x1) Ωg (x2)). A solution of this condition is provided by

P i1i2 (x12) = Ki1
1 (I (x12)) gj1i2 (211)

where gi1i2 is an invariant tensor for the representations K1 and K2. We can apply

this formalism to cases involving vector fields Vµ(x), of dimension D − 1, and the

energy momentum tensor Tµν(x),which is symmetric and traceless and of dimension

D. Accordingly with the above result the two point functions are.

〈Vµ(x)Vν(0)〉 =
CV

x2(D−1)
Iµν(x)

〈Tµν(x)Tσρ(0)〉 =
CT
x2D
Iµν,σρ(x)

Iµν,σρ(x) =
1

2
(Iµσ(x)Iνρ(x) + Iµρ(x)Iνσ(x))− 1

d
δµνδσρ

(212)

with CV and CT constants determing the overall scale of these two point functions.

Iµν,σρ represents the inversion operator on symmetric traceless tensors. It is possible

to derive an analogous result for the three point functions. For general D dimensions

the only completely explicit conformal field theories are those provided by free scalr

and free fermion fields (38) (100). In the scalar case we may write

Tµν = ∂µφ∂νφ−
1

4

1

D − 1

(
(D − 2)∂µ∂ν + δµν∂

2
)
φ2

V a
µ = φtaφ∂µφ,

(
taφ
)T

= −taφ,
[
taφ, t

b
φ

]
= fabctcφ

(213)

while in the fermion case

Tµν =
1

2
ψ̄

(
γµ
↔
∂ν +γν

↔
∂µ

)
ψ,

↔
∂µ=

1

2

(
∂µ −

←−
∂ µ

)
V a
µ = ψ̄taψγµψ,

(
taψ
)†

= −taψ,
[
taψ, t

b
ψ

]
= fabctcψ

(214)
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The basic two point functions for the massless scalar,fermion fields are

〈φ(x)φ(0)〉 =
1

(D − 2)SD

1

xD−2
, 〈ψ(x)ψ̄(0)〉 =

1

SD

γ · x
xD

(215)

with SD = 2π
1
2
D/Γ

(
1
2D
)
. These results allows us to determine the form of the two

point functions of V a
µ and Tµν which are〈

V a
µ (x)V b

ν (0)
〉

= δab
CV

x2(D−1)
Iµν(x) (216)

In the scalar case, if φ has nφ components and tr
(
taφt

b
φ

)
= −Nφδ

ab,then

CV =
Nφ

D − 2

1

S2
D

, CT = nφ
D

D − 1

1

S2
D

(217)

while in the fermion case, if there are nψ Dirac fields and tr
(
taψ, t

b
ψ

)
= −Nψδ

ab, then

CV = Nψ2
1
2
D 1

S2
D

, CT = nψ
1

2
D2

1
2
D 1

S2
D

. (218)

In our fermion theory given by the action, in the flat space

S[ψ,ψ] =

∫
dDxψ/∂

3
ψ (219)

the propagator in the Fourier space is

〈ψ(x)ψ(0)〉 = −i
∫

dDp

(2π)D
eipx

ip2/p

p6
(220)

while in the configuration space we expect according to the conformal dimension

analysis made above

〈ψ(x)ψ(0)〉 =
1

SD

/x3

xD
=

1

SD

/x

xD−2
(221)
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