

ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA

SCUOLA DI INGEGNERIA E ARCHITETTURA

DIPARTIMENTO di

INGEGNERIA DELL’ENERGIA ELETTRICA E DELL’INFORMAZIONE

“Guglielmo Marconi”

DEI

CORSO DI LAUREA MAGISTRALE IN INGEGNERIA ELETTRONICA

TESI DI LAUREA

in

LAB OF DIGITAL ELECTRONICS

DESIGN OF A CLUSTER-COUPLED HARDWARE

ACCELARATOR FOR FFT COMPUTATION

CANDIDATO RELATORE
Luca Bertaccini Prof. Dr. Davide Rossi

 CORRELATORI

 Prof. Dr. Luca Benini

 Dr. Francesco Conti

 Gianna Paulin

Anno Accademico

2018/2019

Sessione

III

1

Sommario

Il progetto descritto in questa tesi riguarda lo sviluppo di un acceleratore hardware per il

calcolo della Fast Fourier Transform (FFT) da integrare all’interno di un cluster PULP. Il

progetto è stato realizzato in parte all’Università di Bologna ed in parte presso ETH Zurich.

La piattaforma PULP (Parallel Ultra Low Power) è un progetto nato nel 2013 dalla

collaborazione tra il gruppo EEES (Energy-efficient Embedded Systems) dell’Università di

Bologna e l’Integrated Systems Laboratory (IIS) di ETH Zurich [1].

L’interesse verso la FFT trova motivazione nelle sue numerose applicazioni. La FFT infatti

non solo viene utilizzata nell’analisi di dati ma rappresenta anche un front-end per applicazioni

relative a machine learning e reti neurali. L’obiettivo di questo progetto è realizzare un

acceleratore che permetta di calcolare questi tipi di algoritmi più velocemente e consumando

meno potenza rispetto a realizzazioni software.

Per questo progetto è stata implementata la radix-2 DIT (Decimation-in-Time) FFT e l’intero

design è stato realizzato in SystemVerilog sintetizzabile. All’interno della parte

computazionale dell’acceleratore è stata utilizzata l’aritmetica Fixed-point ed il corretto

funzionamento di questa unità è stato validato utilizzando alcuni script MATLAB. Tale

acceleratore, essendo stato concepito per essere integrato nella piattaforma PULP, è stato

progettato in accordo con i protocolli di comunicazione implementati all’interno di tale scheda.

Le performance dell’acceleratore sono poi state stimate in termini di area, timing, flessibilità,

e tempi di esecuzione. L’acceleratore hardware è risultato essere sette volte più veloce di un

software altamente ottimizzato che calcola la FFT su 8 core. In tecnologia 22 nm,

l’acceleratore occupa circa 115000 µm² ed è caratterizzato da una massima frequenza di

funzionamento di 690 MHz.

Per evitare frequenti conflitti nell’accesso alla memoria esterna, un buffer è stato internalizzato

all’interno dell’acceleratore. Tale scelta ha portato a più brevi tempi di esecuzione ma anche

ad un notevole incremento nell’area complessiva.

Infine, è stato studiato un modo per rimuovere il buffer interno e le caratteristiche di questa

architettura alternativa sono state comparate con i risultati ottenuti per la versione

dell’acceleratore implementata in questo progetto di tesi.

2

Abstract

This thesis is related to the design of a hardware accelerator computing the Fast Fourier

Transform (FFT) to be integrated into a PULP cluster. The project has been realized partly at

the University of Bologna and partly at ETH Zurich.

PULP (Parallel Ultra Low Power) platform is a joint project between the Energy-efficient

Embedded Systems (EEES) group of UNIBO and the Integrated Systems Laboratory (IIS) of

ETH Zurich that started in 2013 [1].

The interest in FFT is motivated by its several applications. The FFT not only is used in data

analytics but also represents a front-end for machine learning and neural networks application.

The goal of this accelerator is to speed up these kinds of algorithms and to compute them in

an ultra-low-power manner.

For the project described in this thesis, the radix-2 DIT (Decimation-in-Time) FFT has been

implemented and the whole design has been realized in synthesizable SystemVerilog. Fixed-

point arithmetic has been used within the computational part of the accelerator and the correct

behavior of this unit has been evaluated making use of some MATLAB scripts. Since the

accelerator has been conceived to be integrated into the PULP platform, it has been designed

in compliance with the communication protocols implemented on such a board. The

performance of the hardware accelerator has then been estimated in terms of area, timing,

flexibility, and execution time. It has resulted to be seven times faster than a highly optimized

software running FFT on 8 cores. In 22 nm technology, it occupies around 115000 µm² and it

is characterized by a maximum clock frequency of 690MHz.

To avoid frequent conflicts accessing the external memory, a buffer has been internalized into

the accelerator. Such a choice has led to shorter execution times but has increased considerably

the overall area.

Finally, a way to remove the internal buffer has been studied and the features of this new

possible design have been compared to the results obtained for the implemented version of the

FFT hardware accelerator.

3

Contents

1. Introduction ... 5

1.1 Related Work ... 6

2. Fast Fourier Transform (FFT) ... 8

2.1 From DFT to FFT.. 8

2.2 Radix-2 FFT ... 10

2.3 Radix-4 FFT ... 12

2.4 Radix-8 ... 14

3. Tools.. 15

3.1 PULP platform & HWPEs ... 15

3.2 Protocols ... 17

3.2.1 HWPE-Stream Protocol ... 17

3.2.2 HWPE-Mem Protocol .. 18

3.3 Programming Languages & Software ... 19

3.4 Fixed-Point Arithmetic ... 20

4. FFT HWPE .. 22

4.1 Finite State Machine (FSM) ... 24

4.2 Butterfly Unit ... 26

4.2.1 Radix-2 Butterfly Unit ... 26

4.2.2 Radix-4 Butterfly Unit ... 30

4.2.3 Radix-8 Butterfly Unit ... 33

4.2.5 Butterfly Datapath ... 35

4.3 Index Generator .. 39

4.4 Buffer .. 40

4.5 Streamer ... 45

4.6 Scatter/Gather ... 46

4.7 ROM ... 47

5. Results .. 49

5.1 Hardware Results .. 49

5.2 Design Verification .. 56

5.3 New Implementation Without Internal Buffer ... 59

4

8. Conclusion and Future Work ... 63

References .. 64

5

1. Introduction

The Fast Fourier Transform (FFT) is one of the fundamental blocks necessary to perform

digital signal processing for biomedical, robotic and, in general, sensing applications. It

represents as well a front-end for applications based on neural networks and machine learning.

This function may be realized in software or in hardware. A hardware implementation may

achieve better performance in terms of execution time and energy efficiency. Software

applications are generally constrained to perform instructions serially whereas, in hardware,

many tasks may be executed in parallel. Therefore a hardware implementation may lead to

remarkable improvements in terms of throughput and power consumption, even if it requires

a more complex design.

The aim of this project is to design a hardware accelerator performing FFT to be integrated

into a PULP cluster to enhance the board performance when it is used to perform machine

learning and neural network applications. Therefore the hardware accelerator has been

designed to achieve high performance and flexibility with respect to these kinds of

applications.

First of all, the FFT theory will be presented explaining the reasons to introduce such a

transform and showing different FFT algorithms. Afterward, Hardware Processing Engines

(HWPEs), a particular class of hardware accelerators conceived to be integrated into a PULP

board, and their communication protocols will be described. Then the structure of such FFT

HWPE will be discussed, presenting all the hardware components implemented within the

design and describing their main features. The obtained results in terms of area, timing, and

execution time will be shown and compared to the performance of a highly optimized software

running FFT on 8 cores. Such software was provided by GreenWaves Technology. Finally, an

alternative architecture has been studied and compared to the implemented one.

6

1.1 Related Work

Many implementations of FFT hardware accelerators may be found in the literature. The

particularity of the accelerator described in this thesis is given by the platform addressed. It

has been conceived in compliance with the protocols used within PULP and with the hardware

constraints introduced by such an environment. Moreover, the accelerator has been designed

to be able to work with different data sizes and different numbers of FFT points.

Slade provided an architecture for a FFT FPGA implementation [2]. His design has been taken

as a reference to develop the hardware accelerator. However, the accelerator realized for this

thesis project is an IP conceived to be integrated into a SoC and hence a different design

approach has been considered. Furthermore, Slade’s implementation worked just with 16-bit

complex data (16 bits for the real part and 16 bits for the imaginary part), while this hardware

accelerator may work also with 8/32-bit complex values.

For this accelerator, a buffer has been internalized to store partial results and to avoid several

memory conflicts. This kind of memory-based approach has been inspired by the work of

Wang et al [3]. Their architecture might also handle 2𝑛3𝑚5𝑘 FFT points, while this accelerator

will compute just 2𝑛 FFT points.

At the end of the project, a new possible architecture without the internal buffer has been

proposed. This new solution finds its fundament on the work of Xiao et al [4]. Since the

samples needed for a butterfly are most of the time stored in the same memory bank, the basic

idea is to set one address and read data from multiple memory banks. Afterward, the data are

stored in some registers, waiting for the other samples necessary to compute the correspondent

butterfly. Xiao et al applied this approach to radix-4 FFT, it has then been extended to radix-

2 FFT for the purpose of this project. Another way to avoid memory conflicts without the

implementation of an internal buffer is presented by Johnson [5]. He proposed an in-place

approach that stored the butterfly outputs in a permutation of the memory locations related to

the butterfly inputs.

Within this hardware accelerator, the Cooley-Tuckey algorithm [6] has been implemented.

Radix-2/4/8 FFT [7][8] have been evaluated, as well as a pipeline architecture able to compute

these three different radices [9]. The area/timing trade-off of the related butterfly units and the

computational complexity of such algorithms have been considered. Furthermore, the

7

connections among the various algorithms and the differences in terms of performance have

been highlighted. Finally, the radix-2 approach has been selected.

The butterfly unit has then been realized in fixed-point arithmetic. An overview of the FFT

algorithm computed implementing such arithmetic may be found in [10]. To design this

module Welch’s work [11] and Kabal and Sayar’s study [12] have been fundamental. The

magnitude of the complex values grows by up to a factor of two across a butterfly and Welch

provided some approaches to manage such growth, maintaining the same data size at the input

and at the output of the butterfly unit. For this project, it has been chosen to provide the

butterfly module with complex data less than 0.5 in modulus and to perform a right shift at the

end of the butterfly computation. In this way, since the outputs will represent the inputs in the

next FFT stage, the inputs are always less than 0.5 in modulus across the FFT computation.

Kabal and Sayar studied how different rounding operations inside the butterfly affected the

FFT results, trying to find a way to minimize the error. Since one multiplication is required

for the radix-2 butterfly computation, the result of such an operation should be represented

with two times the number of bits used for the factors. If it is required to maintain the same

word length at input and output, half of the number of bits utilized for the product has to be

discarded and at this point, a rounding operation is implemented to minimize the error

committed.

For the index generator design, some counters have been used, exploiting the regularities that

characterize the FFT. Another manner to compute those indices using one counter and some

logical operation is shown by Cohen [13].

Finally, since this accelerator has been conceived to be integrated into PULP, a hardware

accelerator designed for PULP computing a MAC operation [14] and its testbench [15] have

been studied. When designing an accelerator for the PULP platform some reusable modules,

as the streamer [16], which is basically a specialized DMA unit, and the interface with the

register file [17] may be implemented. Such modules have been studied and adapted for the

design of the FFT accelerator.

8

2. Fast Fourier Transform (FFT)

In this section, the FFT theory is presented. First of all, the reasons to define this kind of

algorithm are discussed, then the Cooley-Tuckey FFT algorithm [6] is presented and some

considerations regarding its inputs and outputs are shown. Finally, three FFT algorithm, the

radix-2/4/8 FFT, are described.

2.1 From DFT to FFT

The Fourier Transform (FT) converts a signal from a continuous-time domain to a continuous-

frequency domain and is defined as:

In digital signal processing, we deal with signals sampled over a finite time interval and thus

we need a transform able to convert a signal from a discrete-time domain to a discrete-frequency

domain. Such a function is called Discrete Fourier Transform (DFT) and it is defined as:

where N is the number of samples and 𝑊𝑁
𝑛𝑚 = 𝑒−𝑖

2𝜋

𝑁
𝑛𝑚

 are the so-called twiddle factors.

Since DFT works on a finite set of data, it may be implemented in computers or dedicated

hardware. Nevertheless, the computational complexity of the DFT, 𝑂(𝑁2), makes it too costly

to compute it applying the definition. Instead of the DFT, the Fast Fourier Transform (FFT) is

normally utilized, which is basically an optimized way of calculating the DFT. The most

common FFT is the Cooley-Tuckey algorithm. This is based on a Divide et Impera approach,

which recursively breaks down a DFT into smaller DFTs.

Radix-r FFT divides the summation recursively in r parts. As r increases more data must be

processed concurrently and the selection of such data becomes more and more complex. The

algorithm is considerably simpler when r is a power-of-two. For all these reasons the most used

Radix-r FFT algorithms are the radix-2, radix-4, and radix-8 FFT. To be effective, a Radix-r

FFT must work on vectors whose sizes are power-of-r. Therefore when this requirement is not

met, a zero-padding operation is performed. Such an operation simply adds some zeros at the

 𝑋(𝑓) = ∫ 𝑥(𝑡)𝑒−𝑖2𝜋𝑓𝑡𝑑𝑡

+∞

−∞

 (2.1.1)

 𝑋𝑚 = ∑ 𝑥𝑛

𝑁−1

𝑛=0

𝑊𝑁
𝑛𝑚 , 𝑚 = 0,1, . . . , 𝑁 (2.1.2)

9

end of the vector of samples to bring its size to a power-of-r. To understand how this procedure

affects the FFT outcome, it is necessary to study in greater detail the meaning of the FFT results.

The “FFT Tutorial” [18] provides a good introduction to the FFT and its meaning. While a good

explanation of the zero-padding effect on the resulting spectrum is available at

http://www.bitweenie.com/listings/fft-zero-padding/ [19].

Two important characteristics of a FFT spectrum must be considered. The first one is the

minimum spacing between two frequencies that can be resolved which is computed as:

where T is the time length of the signal with data. The second one corresponds to the distance

between two FFT bins in the spectrum and it is defined as

which is proportional to the number of FFT points.

Hence, the time length of the signal with data should be large enough that 1 𝑇⁄ is smaller than

the minimum spacing between frequencies of interest. Furthermore, there should be enough

FFT points so that the frequencies of interest are not split between multiple FFT bins.

Therefore, if there are already enough FFT points to show in the spectrum the FFT frequencies

we can solve, adding some zeros does not modify the resulting spectrum. The information

contained in the FFT results is proportional to the time length of the signal with data (it does

not consider the zeros padded).

 ∇𝑊𝐹𝑅 =
1

𝑇
 (2.1.3)

 ∇𝑅 =
𝑓𝑠

𝑁𝐹𝐹𝑇
 (2.1.4)

http://www.bitweenie.com/listings/fft-zero-padding/

10

2.2 Radix-2 FFT

The radix-2 FFT is the most common FFT algorithm. It divides the summation into two parts

recursively. There are two main ways to implement it. The first one is the Decimation-In-

Frequency (DIF) approach and the second one is the Decimation-In-Time (DIT). Both of them

lead to a computation complexity of 𝑂(𝑁𝑙𝑜𝑔2𝑁), which represents a remarkable improvement

if we compare it with the DFT computational cost 𝑂(𝑁2).

The DIF approach divides recursively the summation in the following way:

It is characterized by a processing flow of the following type:

Figure 1: 8-point DIF FFT

As it can be noticed by Figure 1, implementing the DIF algorithm requires to work with inputs

in natural order and outputs in bit-reversed order.

While the DIT approach divides the summation in the following way:

 𝑋𝑚 = ∑ 𝑥𝑛

𝑁
2

−1

𝑛=0

𝑊𝑁
𝑛𝑚 + 𝑊𝑁

𝑚
𝑁
2 ∑ 𝑥

𝑛+𝑁
2

𝑁
2

−1

𝑛=0

𝑊𝑁
𝑛𝑚 , 𝑚 = 0,1, . . . , 𝑁 − 1

(2.2.1)

 𝑋𝑚 = ∑ 𝑥2𝑛

𝑁
2

−1

𝑛=0

𝑊𝑁
2𝑛𝑚 + 𝑊𝑁

𝑚 ∑ 𝑥2𝑛+1

𝑁
2

−1

𝑛=0

𝑊𝑁
2𝑛𝑚 , 𝑚 = 0,1, . . . , 𝑁 − 1 (2.2.2)

11

The DIT FFT diagram for an 8-point input vector is:

Figure 2: 8-point DIT FFT

In this case, the inputs are in bit-reversed order, while the outputs are in natural order. This

second approach has been implemented for the project described in this thesis.

It can be noticed that a basic operation called Butterfly is iterated multiple times within the

processing. Such an operation is made of one complex multiplication, one complex addition,

and one complex subtraction.

Figure 3: Radix-2 Butterfly

 {
𝑦[0] = 𝑥[0] + 𝑤 ∗ 𝑥[1]

𝑦[1] = 𝑥[0] − 𝑤 ∗ 𝑥[1]
 (2.2.3)

12

Some regularities in the processing flow of the DIT approach can also be observed. For a 2𝑛-

point radix-2 FFT:

As regards twiddle factors, it may be noticed that just N/2 different twiddle factors are necessary

thanks to the symmetry of the computation. The value of the twiddle factor exponent also varies

regularly. Starting from the last stage and moving towards the first stage the difference between

one twiddle factor exponent and the following one is 1, 2, 22, 23,…. In the first stage, all the

twiddle factors exponents are zero, which is like having a difference of 2n−1 considering a

(𝑛 − 1)-bit counter and taking into account that we deal with just N/2 different twiddle factors.

2.3 Radix-4 FFT

Radix-4 FFT divides the DFT summation into four parts recursively. Also, in this case, a

Decimation-In-Frequency (DIF) and a Decimation-In-Time (DIT) approach may be

implemented. Just the DIT algorithm will be presented in this section. An overview of such an

algorithm is provided by Douglas L. Jones [7].

Radix-4 FFT leads to a computation complexity of 𝑂(𝑁𝑙𝑜𝑔4𝑁), which represents an even better

improvement than the one introduced by the radix-2. However, it leads to a more complex

butterfly and control unit. Furthermore, Radix-4 FFT requires to work with numbers of FFT

points that are powers-of-4.

The radix-4 DIT algorithm divides recursively the summation in the following way:

Distance

between

butterfly inputs

Butterflies

per stage

Stages Total

Butterflies

Butterfly groups

Butterflies per

group

1, 2 , 22, …, 2n−1 2n−1 n 2n−1 ∗ n 2n−1, …, 22, 2 , 1 1, 2 , 22, …, 2n−1

𝑋𝑚 = ∑ 𝑥4𝑛

𝑁
4

−1

𝑛=0

𝑊𝑁
4𝑛𝑚 + 𝑊𝑁

𝑚 ∑ 𝑥4𝑛+1

𝑁
4

−1

𝑛=0

𝑊𝑁
4𝑛𝑚 + 𝑊𝑁

2𝑚 ∑ 𝑥4𝑛+2

𝑁
4

−1

𝑛=0

𝑊𝑁
4𝑛𝑚

+ 𝑊𝑁
3𝑚 ∑ 𝑥4𝑛+3

𝑁
4

−1

𝑛=0

𝑊𝑁
4𝑛𝑚 , 𝑚 = 0,1, . . . , 𝑁 − 1

(2.3.1)

13

It is characterized by a processing flow of the following type:

Figure 4: DIT Radix-4 FFT

Figure 5: Radix-4 DIT Butterfly

Computing one radix-4 butterfly is like calculating two steps of two radix-2 butterflies, which

are four radix-2 butterflies. However, the radix-4 FFT has a computational advantage because

fewer arithmetic operations are required. Three complex multiplications instead of four are

needed.

14

2.4 Radix-8

Radix-8 FFT divides the DFT summation into eight parts recursively and leads to a computation

complexity of 𝑂(𝑁𝑙𝑜𝑔8𝑁). As the Radix-4 FFT, the Radix-8 FFT improves the computation

complexity but leads also to a more complex design. Furthermore, Radix-8 FFT requires to

work with numbers of FFT points that are powers-of-8.

The radix-8 DIT algorithm divides recursively the summation in the following way:

Computing one radix-8 butterfly is like calculating three steps of four radix-2 butterflies, hence

it is like computing twelve radix-2 butterflies. Also in this case, there is a computational

advantage because fewer arithmetic operations are required.

A comparison of these three different algorithms, radix-2/4/8 FFT, is given by Jayakumar and

Logashanmugam [8].

𝑋𝑚 = ∑ 𝑥8𝑛

𝑁
8

−1

𝑛=0

𝑊𝑁
8𝑛𝑚 + 𝑊𝑁

𝑚 ∑ 𝑥8𝑛+1

𝑁
8

−1

𝑛=0

𝑊𝑁
8𝑛𝑚 + 𝑊𝑁

2𝑚 ∑ 𝑥8𝑛+2

𝑁
8

−1

𝑛=0

𝑊𝑁
8𝑛𝑚

+ 𝑊𝑁
3𝑚 ∑ 𝑥8𝑛+3

𝑁
8

−1

𝑛=0

𝑊𝑁
8𝑛𝑚 + 𝑊𝑁

4𝑚 ∑ 𝑥8𝑛+4

𝑁
8

−1

𝑛=0

𝑊𝑁
8𝑛𝑚

+ 𝑊𝑁
5𝑚 ∑ 𝑥8𝑛+5

𝑁
8

−1

𝑛=0

𝑊𝑁
8𝑛𝑚 + 𝑊𝑁

6𝑚 ∑ 𝑥8𝑛+6

𝑁
8

−1

𝑛=0

𝑊𝑁
8𝑛𝑚

+ 𝑊𝑁
7𝑚 ∑ 𝑥8𝑛+7

𝑁
8

−1

𝑛=0

𝑊𝑁
8𝑛𝑚 , 𝑚 = 0,1, . . . , 𝑁 − 1

(2.4.1)

15

3. Tools

In this section, the Hardware Processing Engines and the protocols implemented within the

PULP board are introduced. Afterward, an overview of the main software and programming

languages utilized for the project is presented. Finally, fixed-point arithmetic is discussed.

3.1 PULP platform & HWPEs

A cluster-coupled Hardware Processing Engine (HWPE) is a hardware accelerator conceived

to be integrated into a PULP cluster, which shares the L1 memory with the cores and which is

software controlled via a memory-mapped peripheral port.

Figure 6: PULP CLUSTER & HWPE

HWPEs, as hardware accelerators are intrinsically application-specific, but since they are meant

to be integrated into a PULP cluster, some blocks can be reused within the design of such

accelerators. These reusable modules are related to the interface with the PULP cluster Tightly-

Coupled Data Memory (data streams) [16] or a core (control) [17]. The datapath is instead

always application-specific.

16

Figure 7: HWPE structure

The PULP platform also introduces some constraints. The accelerator will be interfaced with a

64 KB memory and will be characterized by a bandwidth of 128 bits.

The main reusable blocks used for HWPE design are presented at https://hwpe-

doc.readthedocs.io/en/latest/ [20].

https://hwpe-doc.readthedocs.io/en/latest/
https://hwpe-doc.readthedocs.io/en/latest/

17

3.2 Protocols

The HWPE protocols are briefly discussed in this section. All the details related to such

protocols are available at https://hwpe-doc.readthedocs.io/en/latest/ [20].

3.2.1 HWPE-Stream Protocol

The HWPE-Stream Protocol is a protocol conceived to be used to move data between sub-

components of a HWPE. In Figure 7 such a protocol is employed in the communication between

the datapath and the streamer. HWPE-Stream streams are directional and flow from a source to

a sink, implementing a handshake based on two signals (valid, ready). They carry a data payload

in the signal data. Signal strb indicates valid bytes inside data, while valid and ready are used

to validate the transaction.

Figure 8: HWPE-Stream Protocol

Figure 9: HWPE-Stream Signals

Transactions must respect the following rules:

1. A handshake happens in the cycle when both valid and ready are 1;

2. data and strb can change their value either after a handshake or when valid is 0;

3. The transition 0 to 1 of valid cannot depend combinationally on ready, but the transition

0 to 1 of ready can depend combinationally on valid;

4. Valid can change its value from 1 to 0 only in the cycle after a valid handshake.

https://hwpe-doc.readthedocs.io/en/latest/

18

3.2.2 HWPE-Mem Protocol

HWPE-Mem Protocol is used to move data between the HWPE and the L1/L2 external

memory. It implements a simple request/grant handshake. In Figure 7 such a protocol is utilized

between the streamer and the Tightly-Coupled Data Memory (TCDM).

Figure 10: HWPE-Mem Protocol

The HWPE-Mem protocol is directional and connects a master to a slave. Signal req and gnt

are used for the handshake. Transactions must respect the following rules:

1. A handshake occurs when valid and req are set to 1.

2. r_valid must be set to 1 after a valid handshake and r_data must be valid on that cycle.

3. The transition 0 to 1 of req cannot depend combinationally on gnt, while the transition

from 0 to 1 of gnt can depend combinationally on req.

There is also another version of the HWPE-Mem Protocol called HWPE-MemDecoupled. In

such a protocol rule 2 is substituted by a rule 4:

4. The stream of transactions includes only reads or only writes.

19

Figure 11: HWPE-Mem Signals

3.3 Programming Languages & Software

SystemVerilog: The hardware programming language used for the whole design of the

hardware accelerator is synthesizable SystemVerilog. Sutherland S. and Mills D [21] provide

a manual for basic SystemVerilog that has been taken as a reference.

Git: Git, as a control-version system, has been used to manage the project and its various

versions. Some tutorials related to this tool are available at https://git-scm.com/ [22].

MATLAB: Some scripts have been realized in MATLAB to verify the correct behavior of the

design. In particular, one script has been coded for the FFT computation in double precision to

assess the information loss and another script has been designed for the bit-true implementation

of the FFT, which is a software version of the function realized in hardware.

Synopsys Design Compiler: it has been used to synthesize the design to find some results in

terms of area and timing.

20

3.4 Fixed-Point Arithmetic

The computational part of the hardware accelerator has been realized in fixed-point arithmetic.

Randy Yates [23] and the set of slides provided by the University of Washington [24] provide

an overview of such arithmetic, which is widely employed in Digital Signal Processors (DSPs).

A set of N bits is characterized by 2𝑁 possible states. However, the meaning of a binary word

depends completely on its interpretation.

Fixed-point values are basically integers scaled by an implicit factor. Thus, with this kind of

data, it is possible to represent rational numbers. Once the scaling factor is fixed, a subset of 2𝑁

rational numbers can be expressed. If the binary word is interpreted as a signed two’s

complement fixed-point rational the subset of rational numbers is:

where b is the number of fractional bits. Since we are representing rational values with a finite

set of bits, there may be a difference between the real value and its representation. The

maximum error that may be committed will be half of the smallest non-zero magnitude

representable.

The range of this representation is given by:

Therefore a 8-bit word with three fractional bits will have the form:

where the MSB is employed as a sign bit.

Often a Q-format notation is implemented to give information regarding the number of

fractional and integer bits. Qx.y means that the word is characterized by x integer bits and y

fractional bits. If we are dealing with a signed word, the total number of bits will be x+y+1.

Within this project, the accelerator will work with normalized signed numbers. Hence, the

values will be of the type Q0.y. The multiplication of two Q0.y numbers will lead to a Q0.2y

result where the two MSBs are the sign bit (SB) and the extension sign bit (ESB). Since the

word length will be maintained for input/output, the product will be restored to a Q0.y notation.

 𝑃 = {𝑝/2𝑏 | −2𝑁−1 ≤ 𝑝 ≤ −2𝑁−1 − 1, 𝑝 ∈ 𝑍} (3.4.1)

 −2𝑁−1−𝑏 ≤ 𝑝 ≤ +2𝑁−1−𝑏 − 1/2𝑏 (3.4.2)

 𝑏4𝑏3𝑏2𝑏1𝑏0. 𝑏−1𝑏−2𝑏−3 (3.4.3)

21

To realize that, it is sufficient to discard the extension sign bit and the last y bits. Proceeding in

this way implies a rounding/truncation in the results since the y LSBs are lost.

If we consider the multiplication of two 16-bit words in the format Q0.15, we find:

Figure 12: Fixed-point Arithmetic (Multiplication)

22

4. FFT HWPE

To design this HWPE, the Hardware MAC Engine (https://github.com/pulp-platform/hwpe-

mac-engine [14]), its testbench (https://github.com/pulp-platform/hwpe-tb[15]) and a FPGA

implementation of the FFT [2] have been taken as reference.

This particular HWPE is conceived for the FFT computation. To realize that function the

following hardware blocks have been implemented:

1. STREAMER: a specialized DMA unit, it represents the accelerator interface towards

the memory;

2. SCATTER/GATHER: when data are read from the Tightly Coupled Data Memory

(TCDM) the streamer passes them to the scatter, which decides where to store the data

inside the buffer; when data must be stored into the TCDM, the gather collects the data

from the buffer and passes them to the streamer;

3. BUFFER: an internalized memory is used to store all the FFT samples; when the data

are processed by the butterfly unit, the inputs come from the buffer and the outputs

overwrite the samples in the buffer;

4. BUTTERFLY UNIT: it implements the basic operation that is iterated to compute the

FFT;

5. CONTROLLER (Index Generator, FSM, interface with the register file): the FSM

controls the whole processing. When data are processed using the butterfly unit, the

index generator selects the right samples in the buffer and the right twiddle factors from

the ROM to feed the butterfly unit. The number of FFT points, the data size and the base

address of the vector inside the TCDM are written via software into the register file and

then read by the controller.

6. ROM: Some ROMs have been implemented for the twiddle factor storage.

https://github.com/pulp-platform/hwpe-mac-engine
https://github.com/pulp-platform/hwpe-mac-engine
https://github.com/pulp-platform/hwpe-tb

23

The structural scheme of the accelerator is the following:

Figure 13: FFT HWPE structural scheme

As it can be noticed by Figure 13, all the components that deal with the samples work with two

32-bit complex data per cycle, which means 128 bits. While the ROM provides the Butterfly

Datapath with 64 bits, which represent 4/2/1 twiddle factors, respectively for 8/16/32-bit

complex data.

24

4.1 Finite State Machine (FSM)

Figure 14: FSM

The processing is controlled by a simple Finite State Machine (FSM), composed of nine states:

• IDLE;

• START: in this state the streamer and the scatter are initialized for the load;

• DATA_LOADING: all the FFT samples are read from the TCDM and stored into the

buffer, passing through the scatter;

• PRE_COMPUTING (PRE_CO in Figure 14): in this state, the index generator is

initialized;

• COMPUTING: the controller selects the right samples in the buffer and the right

twiddle factors from the ROM to feed the butterfly unit, which processes the data.

Afterward, its outputs are stored into the buffer overwriting the input samples. Such an

operation is iterated multiple times;

• WAIT_FOR_NEW_STAGE (WAIT_NS in Figure 14): Since the inputs and the outputs

of the butterfly datapath are registered to break the critical path, the results of a butterfly

are stored two cycles after the input samples are read from the butterfly. This state is

used to introduce a two-cycle delay after having read all the input samples from the

buffer. In this way, read after write (RAW) data hazard are avoided because the

25

accelerator waits for all the stage results to be stored into the buffer before starting

reading the new samples;

• WAIT_STORE (WAIT_S in Figure 14): in this state, the gather and the streamer are

initialized for the following store;

• DATA_STORING: all the FFT results are inside the buffer and now the accelerator may

store all of them into the TCDM, passing through the gather and the streamer. In this

state, the gather arranges the data in streams and passes them to the streamer who starts

to store them into the TCDM;

• TERMINATE: The DATA_STORING state ends when all the data are passed to the

streamer by the gather. In this state, the accelerator waits for all the results to be written

into the TCDM.

Figure 15: fft_fsm

The FSM basically receives flags from the other components and sends them back control

signals.

26

4.2 Butterfly Unit

The Butterfly Unit represents the FFT HWPE datapath. Since its bandwidth is 128 bits, which

can represent 8/4/2 complex samples respectively for 8/16/32-bit complex data, the datapath

could be provided with the necessary inputs to compute either 8-bit radix-2/4/8 butterflies or

16-bit radix-2/4 butterflies or 32-bit radix-2 butterfly.

The Decimation-In-Time approach has been implemented within this project.

4.2.1 Radix-2 Butterfly Unit

Figure 16: Radix-2 Butterfly

The main characteristics of the radix-2 butterfly unit are the following:

• The module works with normalized numbers, expressed through fixed-point notation

(Q0.7/15/31 respectively for 8/16/32-bit complex data);

• The magnitude of the complex values grows by up to a factor of two across a butterfly.

To prevent overflow, some solutions are proposed by Peter D. Welch [11]. For this

project, it has been chosen to require the butterfly inputs to be less than 1/2 in modulus.

Proceeding in this way it is ensured that the outputs will be less than 1 and hence that

there will be no overflow;

• At the end of the computation, the butterfly unit right-shifts the outputs by one bit to

scale by 1/2 and ensures that at the next iteration the inputs will still be less than 1/2

(Such scaling is not performed during the last iteration).

• To compute the radix-2 butterfly, one complex multiplication and two complex

additions are performed. Therefore the outputs should be represented with more bits

with respect to inputs, in order not to lose information. However, the outputs of a

butterfly will represent the inputs of another butterfly in the following stage, hence the

same amount of bits has been assigned to inputs and outputs. Some rounding operations

27

have been realized to minimize information loss. A deeper analysis of the possible

rounding operation is provided by P. Kabal and B. Sayar [12].

• Inputs and outputs are registered.

The module was then synthesized with Synopsys to obtain some results in terms of area and

timing, varying the data size of the real and imaginary part (8/16/32).

For 8-bit complex samples, the results are the following:

Figure 17: Area/Timing Tradeoff, 8-bit Radix-2 Butterfly

T_clk f_clk Combinational Area [µm²] Total Cell Area [µm²] Slack [ps]

1000 ps 1 GHz 473 608 MET

750 ps 1,33 GHz 507 643 MET

500 ps 2 GHz 509 646 MET

450 ps 2,22 GHz 547 688 MET

405 ps 2,47 GHz 744 890 MET

400 ps 2,5 GHz 724 873 -3

350 ps 2,86 GHz 757 909 -54

250 ps 4 GHz 844 998 -148

A negative slack informs us that the critical path exceeded the fixed clock cycle. When the slack

is negative, the plotted values correspond to a clock_period = T_clk + |slack|.

500

600

700

800

900

1000

1100

300 400 500 600 700 800 900 1000 1100

To
ta

l C
el

l A
re

a
[µ

m
²]

T_clk [ps]

Area-Timing Tradeoff
Radix-2 Butterfly, DATA_SIZE = 8

28

While for 16-bit complex samples:

Figure 18: Area/Timing Tradeoff, 16-bit Radix-2 Butterfly

T_clk f_clk Combinational Area

[µm²]

Total Cell Area

[µm²]

Slack [ps]

1200 ps 0,83 GHz 1664 1934 MET

1000 ps 1 GHz 1720 1988 MET

750 ps 1,33 GHz 1766 2036 MET

550 ps 1,82 GHz 1885 2168 MET

500 ps 2 GHz 2589 2884 -3

400 ps 2,5 GHz 2914 3216 -97

300 ps 3,33 GHz 2908 3211 -192

1600

1800

2000

2200

2400

2600

2800

3000

3200

3400

300 400 500 600 700 800 900 1000 1100 1200 1300

To
ta

l C
el

l A
re

a
[µ

m
²]

T_clk [ps]

Area-Timing Tradeoff
Radix-2 Butterfly, DATA_SIZE = 16

29

Finally for 32-bit complex data:

Figure 19: Area/Timing Tradeoff, 32-bit Radix-2 Butterfly

T_clk f_clk Combinational

Area [µm²]

Total Cell Area

[µm²]

Slack [ps]

1400 ps 0,7143 GHz 6270 6809 MET

1200 ps 0,833 GHz 6344 6884 MET

1000 ps 1 GHz 6480 7025 MET

750 ps 1,333 GHz 6482 7033 MET

600 ps 1,667 GHz 7397 7982 MET

550 ps 1,818 GHz 9418 10021 -30

400 ps 2,5 GHz 9612 10215 -180

6000

6500

7000

7500

8000

8500

9000

9500

10000

10500

300 500 700 900 1100 1300 1500

To
ta

l C
el

l A
re

a
[µ

m
²]

T_clk [ps]

Area-Timing Tradeoff
Radix-2 Butterfly, DATA_SIZE = 32

30

4.2.2 Radix-4 Butterfly Unit

Radix-4 algorithms have a computational advantage over radix-2 algorithms because one radix-

4 butterfly performs the work of four radix-2 butterflies, and requires only three complex

multiplications instead of the four complex multiplications carried out by four radix-2

butterflies.

The main characteristics of the radix-4 butterfly module are the following:

• The module works with normalized complex numbers, expressed through fixed-point

notation;

• The magnitude of the complex values grows by at most a factor of four across a radix-

4 butterfly. Therefore It was set as a requirement that the radix-4 butterfly will receive

inputs that are lesser than 1/4 in modulus. Proceeding in this way it is ensured that the

outputs will be less than 1 and hence that there will be no overflow;

• At the end of the computation, the radix-4 butterfly unit shifts the outputs by two bits to

scale by 1/4, ensuring that at the next iteration the inputs will still be less than 1/4 (Such

scaling is not performed during the last iteration);

• Also, in this case, the same amount of bits was assigned to inputs and outputs. Some

rounding operations were realized to minimize information loss;

• At the end of the computation, the outputs are shifted by two bits. The results are

rounded before shifting. When the two LSBs of the output are '11’, “output + 1” is

shifted by two bits. Before proceeding in this way, it is checked that the “+1” operation

does not lead to an overflow;

• Inputs and outputs are registered.

31

A Synopsys synthesis was run for 8/16-bit complex data since we need four samples each cycle

to perform the radix-4 and for the 32-bit case four samples would exceed the 128 bits of

bandwidth:

Figure 20: Area/Timing Tradeoff, 8-bit Radix-4 Butterfly

T_clk f_clk Combinational Area

[µm²]

Total Cell Area

[µm²]

Slack [ps]

1200 ps 0,83 GHz 1872 2168 MET

1000 ps 1 GHz 2312 2607 MET

750 ps 1,33 GHz 2359 2656 MET

600 ps 1,67 GHz 2468 2777 MET

550 ps 1,82 GHz 3200 3526 MET

500 ps 2 GHz 3841 4186 -15

400 ps 2,5 GHz 4127 4475 -110

1500

2000

2500

3000

3500

4000

4500

5000

400 500 600 700 800 900 1000 1100 1200 1300

To
ta

l C
el

l A
re

a
[µ

m
²]

T_clk [ps]

Area-Timing Tradeoff
Radix-4 Butterfly, DATA_SIZE = 8

32

Figure 21: Area/Timing Tradeoff, 16-bit Radix-4 Butterfly

T_clk f_clk Combinational Area

[µm²]

Total Cell Area

[µm²]

Slack [ps]

1200 ps 0,83 GHz 6934 7527 MET

1000 ps 1 GHz 6979 7573 MET

850 ps 1,18 GHz 6190 7589 MET

750 ps 1,33 GHz 7398 8002 MET

650 ps 1,54 GHz 9412 10069 MET

600 ps 1,67 GHz 11400 12091 -10

500 ps 2 GHz 11195 11882 -119

5500

6500

7500

8500

9500

10500

11500

12500

400 500 600 700 800 900 1000 1100 1200 1300

To
ta

l C
el

l A
re

a
[µ

m
²]

T_clk [ps]

Area-Timing Tradeoff
Radix-4 Butterfly, DATA_SIZE = 16

33

4.2.3 Radix-8 Butterfly Unit

The radix-8 butterfly unit design and its main features are comparable to the other butterflies

shown above. A Synopsys synthesis was run just for the 8-bit case since it is the only case in

which we can provide the datapath with 8 samples in one cycle.

Figure 22: Area/Timing Tradeoff, 8-bit Radix-8 Butterfly

T_clk f_clk Combinational Area

[µm²]

Total Cell Area

[µm²]

Slack [ps]

1400 ps 0,71 GHz 8053 8671 MET

1200 ps 0,83 GHz 8089 8710 MET

1000 ps 1 GHz 7657 8280 MET

900 ps 1,11 GHz 7422 8053 MET

800 ps 1,25 GHz 8363 9024 MET

750 ps 1,33 GHz 10244 10932 -11.3

650 ps 1,54 GHz 10368 11059 -110

7000

7500

8000

8500

9000

9500

10000

10500

11000

11500

600 700 800 900 1000 1100 1200 1300 1400 1500

To
ta

l C
el

l A
re

a
[µ

m
²]

T_clk [ps]

Area-Timing Tradeoff
Radix-8 Butterfly, DATA_SIZE = 8

34

4.2.4 Pipelined Butterfly Unit

Finally, a pipeline implementation computing radix-2/4/8 using just radix-2 units have been

studied. Such a solution has been introduced by Jungmin Park [9].

Figure 23: Pipeline Implementation of the Butterfly

Twelve radix-2 butterfly units are instantiated for such a solution.

A radix-4 butterfly is computed using two-stage of two radix-2 units:

• The first stage is composed of two radix-2 units which are provided with the four inputs

of the radix-4 butterfly after a permutation. Their outputs will then represent the inputs

of the other two radix-2 modules;

• The second stage is composed of two radix-2 units whose inputs are the outputs of the

first stage of radix-2 units. Their outputs are the outputs of the radix-4 butterfly;

• Since the radix-4 butterfly requires three twiddle factors and four radix-2 are

characterized by four twiddle factors, some simple operations are realized to obtain the

four twiddle factors from three twiddle factors that are provided as inputs.

These two parts of the system may be separated to realize a two-stage pipeline.

While a radix-8 butterfly unit may be realized using twelve radix-2 butterflies:

• Twelve radix-2 modules are organized in three stages of four radix-2 butterflies. Each

stage feeds with its outputs (after a permutation) the following stage. The first-stage

35

inputs are the radix-8 module inputs and the last-stage outputs are the radix-8 unit

outputs.

• Twelve radix-2 modules are characterized by twelve twiddle factors while a radix-8

butterfly requires just seven twiddle factors. Therefore some pre-processing is realized

to obtain the twelve needed twiddle factors from the seven twiddle factors that are

provided as inputs. In this phase, 6 complex multiplications are required.

Therefore we expect this new block to be characterized by worse performance than the other

radix-8 butterfly unit, however, it could be easily pipelined since it reuses radix-2 units.

4.2.5 Butterfly Datapath

After having studied all these possible solutions, the radix-2 implementation was selected and

a module composed of four 8-bit butterflies, two 16-bit butterflies, and one 32-bit butterfly has

been designed. The reasons for such a choice are the following:

• Implementing all the different types of radix would lead to a large area and the majority

of this area will be unused during the processing cycles because all the units related to

different data sizes or radix will be discarded;

• This implementation removes the improvements introduced by radix-4/8 over radix-2

since it uses radix-2 units to compute radix-4/8 butterflies. Furthermore, also in this

case, many modules would be unused. For example, if we need to compute a 32-bit

radix-2 butterfly just one butterfly would be used.

Therefore the FFT HWPE datapath simply performs the radix-2 butterfly.

Figure 24: Radix-2 Butterfly

Three different instantiations of the butterfly unit depending on the data size (Figure 25,26,27)

have been implemented. These three blocks are purely combinational. Since we need to cover

36

the cases of 8/16/32-bit complex data (8/16/32 bits for the real part and 8/16/32 bits for the

imaginary part), the overall datapath interface will be related to the larger case, which is the 32-

bit complex data. Maintaining that interface we can provide the datapath with all the necessary

data for the computation of either one 32-bit butterfly, or two 16-bit butterflies or four 8-bit

butterflies. Therefore, to fully exploit the bandwidth, the datapath will be composed of one 32-

bit butterfly unit, two 16-bit butterfly units, and four 8-bit butterfly units. Another input signal

will be added, data_size, which will communicate to the datapath which data size to consider,

so that it will be able to select the right butterfly units needed for the current computation.

Finally, some registers have been added at the input and at the output of the datapath to break

the combinational path. The structure of the datapath is shown in Figure 28, where x[0] and

x[1] are the output of registers and y[0] and y[1] are input of registers, while end_stage_flag is

propagated to every butterfly unit. In Figure 28, just the management of the input/output

samples is shown, the same operations are applied to the twiddle factors.

Figure 25: 8-bit butterfly unit

Figure 26: 16-bit butterfly unit

37

Figure 27: 32-bit butterfly unit

Basically, the datapath receives two 32-bit complex samples which can contain the information

of either two 32-bit complex samples or two 16-bit complex samples or four 8-bit complex

samples. Based on the data_size value, it rearranges the inputs to words with the right data size

and selects the right butterfly units setting the input of all the other butterflies to zero. Then the

results of the butterflies related to the same data sizes are concatenated to come back to two 32-

bit complex words. Proceeding in this way, the outputs of the butterflies will be all zeros, except

for the selected butterflies. Hence an OR operation on the butterfly outputs is enough to have

the right overall output.

Figure 28: Datapath (input/output registers are not shown in the scheme)

38

The interface of the whole datapath is the following:

Figure 29: Datapath

39

4.3 Index Generator

The index generator is in charge of the selection of the right twiddle factors from the ROMs

and of the right samples from the buffer to feed the datapath every clock cycle. To do that, it

exploits the regularities in the DIT processing flow highlighted in section 2.2. It makes use of

some counters to compute the right indices.

To set the size of the signals carrying the indices, the maximum number of FFT samples had to

be set. We may consider 2048 as the maximum number of FFT samples, resulting in 11 bits

necessary to express all the sample indices.

Figure 30: Index Generator

The index generator requires the number of FFT points and the data size as inputs. The HWPE

can compute either one 32-bit butterfly, or two 16-bit butterflies or four 8-bit butterflies. Each

butterfly requires two samples and one twiddle factor as input and hence the index generator

will generate 8/4/2 sample indices and 4/2/1 twiddle factor indices respectively for the 8/16/32-

bit case. If the enable is set to 1, in every cycle the index generator will generate new samples.

Since the butterfly output will overwrite the butterfly input in the buffer, the indices for the

inputs and outputs will be the same. During the last stage, the last_stage_flag is set to 1 to

communicate to the butterfly unit that the right shift is not necessary anymore. At the end of

the computation done is set to 1 for one cycle.

40

4.4 Buffer

As introduced in section 2.2, the radix-2 DIT algorithm has been implemented. This kind of

approach, but also DIF one, requires to work with samples in bit-reversed order, in one part of

the processing, and with samples in natural order in another part. As regards the DIT approach,

samples are always in bit-reversed order except at the end of the computation, where the FFT

results are in natural order.

Reading samples from the TCDM in bit-reversed order would lead to many conflicts since all

the needed samples are in most cases in the same memory banks. Reordering the data in the

TCDM is also very costly, thus a buffer has been internalized in the HWPE. In such a buffer all

the input samples will first be written and then overwritten with the butterfly results. The design

choice of an internalized memory for an FFT hardware accelerator was also implemented by

Wang et al. [3].

Figure 31: Internal Buffer Employment

Figure 31 shows the way in which the buffer is used during the processing part. First of all,

using the streamer, all the FFT samples are read from the TCDM in natural order, then the

scatter performs a permutation and stores them inside the buffer in bit-reversed order. Therefore

at the end of this process, all the FFT samples will be inside the buffer in the order shown in

the picture. Then, the accelerator processes the data using the butterfly unit and overwrites the

data inside the buffer with the results. At the end, since the DIT approach is implemented, we

find all the results inside the buffer in the natural order. Hence, they may be read in natural

order from the buffer and stored in natural order into the TCDM, resulting in no conflicts.

41

The buffer structure is shown in Figure 32. It is composed of four memory banks of Standard

Cell Memories (SCMs) [25] and each bank is characterized by two read and two write ports.

Every bank is designed to contain 8-bit complex words. SCMs have been chosen because they

consume less power than flip flops, even if they occupy a larger area. Since we would like to

work also with 16/32-bit complex words, in case of data sizes greater than 8 bits, the samples

are spread into respectively 2/4 banks of 8-bit complex words. This means that physically the

buffer is composed of four banks of 8-bit complex data, but it is like having either 4 banks of

8-bit complex data or two banks of 16-bit complex data or one bank of 32-bit complex data. In

this way, the whole buffer can be exploited efficiently.

The maximum number of FFT points that can be allowed varies depending on the data size. If

we consider a 4 KB buffer, 2048/1024/512 samples may be stored into the buffer respectively

for the 8/16/32-bit case.

Figure 32: Buffer structure

The two read and write ports are necessary to be able to access all the data we need for the

computation of 4/2/1 butterflies during the processing respectively for 8/16/32-bit complex

data. To show that an example is presented. Since larger data sizes correspond to less buffer

banks, the 8-bit case is the worst one in terms of possible conflicts accessing the buffer. For the

32-bit case, there is no possibility to find conflicts because we have two read and two write

ports, we read and write two samples each cycle and there is just one 32-bit complex bank.

42

Let’s then consider a 16-point 8-bit FFT.

Figure 33: 16-point FIT FFT

In the following table, how the buffer indices are mapped into the four banks containing 8-bit

complex words is shown. We should keep in mind that we can access two different locations in

each bank every cycle. Conflicts appear just if we try to read more than two samples from the

same buffer bank.

During the first stage the butterflies to be computed each cycle are the following:

Cycle 0 Cycle 1

(0,1) (8,9)

(2,3) (10,11)

(4,5) (12,13)

(6,7) (14,15)

Bank 3 Bank 2 Bank 1 Bank 0

3 2 1 0

7 6 5 4

11 10 9 8

15 14 13 12

43

We can access all of the samples we need in each cycle, hence, so far there are no conflicts. In

this case, in each cycle, we read two samples from every bank. The samples required in each

cycle are shown in the next table. The samples needed during the first cycle are in blue and the

ones needed during the second cycle are in red.

Considering the following stages the butterflies to be processed are:

Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7

(0,2) (8,10) (0,4) (8,12) (0,8) (4,12)

(1,3) (9,11) (1,5) (9,13) (1,9) (5,13)

(4,6) (12,14) (2,6) (10,14) (2,10) (6,14)

(5,7) (13,15) (3,7) (11,15) (3,11) (7,15)

Also in these cases, there are no conflicts. During the second and the third stages we find:

While during the last stage:

Therefore with the internalized buffer and this way of proceeding, we can always work on 128

bits and there will be no conflicts during the butterfly processing.

Bank 3 Bank 2 Bank 1 Bank 0

3 2 1 0

7 6 5 4

11 10 9 8

15 14 13 12

Bank 3 Bank 2 Bank 1 Bank 0

3 2 1 0

7 6 5 4

11 10 9 8

15 14 13 12

Bank 3 Bank 2 Bank 1 Bank 0

3 2 1 0

7 6 5 4

11 10 9 8

15 14 13 12

44

Since during the final store data are read in natural order from the Buffer and then they are

written in natural order into the TCDM, also in this phase, there are no conflicts. While during

the initial load, data are read in natural order from the TCDM, but then they are stored in bit-

reversed order into the buffer. That introduces a constraint because it leads to conflicts, since,

in most of the cases, all of the samples must be written inside the same buffer bank (buffer

banks are made of 1/2/4 banks containing 8-bit complex words, respectively for 8/16/32-bit

case). Since we have two read and two write ports we could store just two words, which means

32/64/128 bit/cycle respectively for 8/16/32-bit complex samples.

Figure 34: buffer

During the computing phase, when the accelerator processes data using the butterfly unit, in

each cycle data are read from the buffer and data are stored into the buffer. Since we have

registers at the input and at the output of the butterfly unit, the processing is the following:

• 1st cycle: data are read from the buffer and passed to the registers at the input of the

datapath;

• 2nd cycle: data are processed by the butterfly unit and stored into the registers at the

output of the datapath;

• 3rd cycle: data are read from the registers and stored into the buffer overwriting the input

samples.

Therefore data are read from the buffer and after two cycles they are overwritten with the

butterfly results. In each processing cycle, the accelerator performs all the operations described

above for different sets of samples. Hence, each cycle data are read and other data are written

into the buffer and that explains the necessity of different read and write ports.

45

4.5 Streamer

As introduced in Section 3.1, the streamer is one of the fundamental blocks that can be reused

when designing a HWPE. The streamer module can be found at https://github.com/pulp-

platform/hwpe-stream [16]. For this HWPE the streamer width in input and in output has been

set to 128 bits. During the initial loading 32/64/128 bits are stored each cycle into the buffer.

Therefore it takes 4/2/1 cycles to consume all the 128 bits. While during the final store, since

we read and write data in natural order we always store 128 bit/cycle.

Figure 35: streamer

We have an input and an output stream and the selector is used to control whether loading or

storing data. The input stream is then passed to the scatter, which stores the data in the right

locations inside the buffer, while the output stream is generated by the gather, which takes the

right samples from the buffer and arranges them into a 128-bit stream.

There are 4 master ports interfaced to the TCDM since the stream width is 32*4=128 bits.

https://github.com/pulp-platform/hwpe-stream
https://github.com/pulp-platform/hwpe-stream

46

4.6 Scatter/Gather

A simple scatter/gather is implemented between the fft_streamer and the buffer. The scatter

takes the 128-bit stream in input, rearranges it in two 32-bit complex words and generates the

right addresses (bit-reversed order) to store them into the buffer. While the gather produces the

addresses to read data (natural order) from the buffer, rearranges them in a 128-bit stream and

passes it to the fft_streamer.

Figure 36: Scatter/Gather

47

4.7 ROM

Some ROMs have been implemented to store the twiddle factors. The twiddle factors are

defined as:

Thanks to the FFT structure, just N/2 different twiddle factors are needed for an N-point FFT.

It can also be noticed that if we have the twiddle factors related to a 𝑁1-point FFT, we can

obtain the twiddle factors needed for the computation of a 𝑁2-point FFT, with 𝑁2 < 𝑁1 (since

we are dealing with radix-2 FFT, 𝑁1 and 𝑁2 are powers of two). For example, if we store in a

ROM the twiddle factors related to a 1024-point FFT, picking just the even twiddle factors, we

obtain the twiddle factors related to a 512-point FFT.

Different ROMs have been implemented for different data sizes (8/16/32 bits). Considering a

4KB buffer, the HWPE may compute up to a 2048/1024/512-point FFT, respectively for

8/16/32-bit complex data, and hence we will need 1024/512/256 8/16/32-bit twiddle factors.

ROMs with just one address port have been employed, therefore, since we need 4/2/1 twiddle

factors each cycle, respectively for the 8/16/32-bit case, four ROMs containing 1024 8-bit

complex words, two ROMs containing 512 16-bit complex words and one ROM containing

256 32-bit complex words may be implemented.

Figure 37: ROMs

 𝑊𝑁
𝑛𝑚 = 𝑒−𝑗

2𝜋
𝑁

𝑛𝑚 , 𝑚, 𝑛 = 0,1, , 𝑁 − 1 (4.7.1)

48

However, this would not be the best solution since we could reuse the data stored in the ROMs

containing larger words to obtain the respective twiddle factors expressed with fewer bits

simply rounding the larger twiddle factor. For example, the twiddle factors stored in the 32-bit

complex ROM correspond to the twiddle factors in the 8-bit complex ROMs with multiple-of-

four indices and to the twiddle factors in the 16-bit complex ROMs with even indices.

Moreover, the twiddle factors stored in the 16-bit complex ROMs correspond to the twiddle

factors in the 8-bit complex ROMs with even indices. Hence, taking advantage of this feature,

we can reduce the ROMs to two 8-bit complex ROMs, one 16-bit complex ROM, and one 32-

bit complex ROM. That was possible also because, in one cycle, for the 8-bit case, we always

need at least two twiddle factors with even indices and one of them with a multiple-of-four

index. Therefore, we can always obtain one twiddle factor from the 32-bit ROM and another

one from the 16-bit ROM. As well, for the 16-bit case, in each cycle, we always need at least

one twiddle factor with even index and hence such a twiddle factor can be obtained from the

32-bit ROM.

Figure 38: Twiddle Factor Storage (ROMs)

The overall ROM size is then:

𝑅𝑂𝑀_𝑠𝑖𝑧𝑒 = 2 ∗ 1024 ∗ (8 + 8) + 512 ∗ (16 + 16) + 256 ∗ (32 + 32) = 8𝐾𝐵

49

5. Results

5.1 Hardware Results

In this section, the obtained results in terms of execution time, area and timing are discussed.

Firstly, the FFT HWPE has been assessed in terms of execution cycles. Such results have then

been compared to the performance of a highly optimized software computing FFT provided by

GreenWaves Technology. Such software makes use of 8 cores and works with 16-bit complex

data. It is also designed to compute up to a 1024-point FFT. While this HWPE may work with

8/16/32-bit complex data. Implementing a 4KB buffer, it could perform up to 2048/1024/512-

point FFT, respectively for 8/16/32-bit complex words. Both the implementations realize radix-

2 FFT.

Figure 39: Execution Times (HW vs SW)

0

5000

10000

15000

20000

25000

16 32 64 128 256 512 1024Ex
ec

u
ti

o
n

 T
im

e
[C

yc
le

s]

Number of FFT Points

HW vs SW

SW Cycles HW Cycles

Number of FFT points SW Execution Time [Cycles] HW Execution Time [Cycles]

16 639 51

32 914 89

64 1617 171

128 3031 349

256 5886 735

512 11947 1569

1024 24622 3363

50

Having a look at the results displayed in the table, it may be observed that the hardware

accelerator is around 7 times faster than the software.

The hardware results in terms of execution time varying the data size are shown in Figure 40.

Figure 40: Execution Times varying data size (HW)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

16 32 64 128 256 512 1024 2048

Ex
ec

u
ti

o
n

 T
im

e
[C

yc
le

s]

Number of FFT Points

HW (8/16/32-bit)

8-bit 16-bit 32-bit

Number of FFT

points

HW Cycles

8-bit

HW Cycles

16-bit

HW Cycles

32-bit

16 41 51 71

32 65 89 137

64 115 171 282

128 221 349 605

256 447 735 1311

512 929 1569 2549

1024 1955 3363 /

2048 4133 / /

51

To better understand these results, we may concentrate on how the execution time is divided

between the three main phases of the processing.

During the initial load, as explained in Section 4.4, we may store into the buffer just two words

per cycle and therefore 32/64/128 bits, respectively for 8/16/32-bit complex data. While during

the processing and the final storing we deal always with 128 bit/cycle, which means 4/2/1

butterfly/cycle during the processing.

Another interesting result is the percentage of butterfly cycles with respect to the overall

execution time.

N points
HW Cycles

8-bit

Butterfly

Cycles

%

8-bit

16 40 8 20,0

32 64 20 31,3

64 114 48 42,1

128 220 112 50,9

256 446 256 57,4

512 928 576 62,1

1024 1954 1280 65,5

2048 4132 2816 68,2

N points
HW Cycles

16-bit

Butterfly

Cycles

%

16-bit

16 51 16 31,4

32 88 40 45,5

64 170 96 56,5

128 348 224 64,4

256 734 512 69,8

512 1568 1152 73,5

1024 3362 2560 76,1

2048 / / /

Load – BW

[bits]

Processing

[Butterfly/Cycle]

Store – BW

[bits]

8-bit 32 bits 4 128 bits

16-bit 64 bits 2 128 bits

32-bit 128 bits 1 128 bits

52

N points
HW Cycles Butterfly %

32-bit used 32-bit

16 70 32 45,7

32 136 80 58,8

64 281 192 68,3

128 604 448 74,2

256 1310 1024 78,2

512 2548 2304 90,4

1024 / / /

2048 / / /

Summarizing:

N points
%

8-bit

%

16-bit

%

32-bit

16 20,0 31,4 45,7

32 31,3 45,5 58,8

64 42,1 56,5 68,3

128 50,9 64,4 74,2

256 57,4 69,8 78,2

512 62,1 73,5 90,4

1024 65,5 76,1 /

2048 68,2 / /

Figure 41: Percentage of butterfly cycles

0,0

10,0

20,0

30,0

40,0

50,0

60,0

70,0

80,0

90,0

100,0

16 32 64 128 256 512 1024 2048

P
er

ce
n

ta
ge

 o
f

b
u

tt
er

fl
y

cy
cl

e
[%

]

Number of FFT points

Percentage of butterfly cycles (8/16/32-bit)

8-bit 16-bit 32-bit

53

Considering the same number of FFT points, the 32-bit case (32 bits for the real part + 32 bits

for the imaginary part) is the one characterized by the highest percentages. Increasing the data

size, the time spent for the initial load decreases (because there are fewer conflicts) and the time

spent processing data through the butterfly unit increases (because fewer butterflies per cycle

are computed).

Therefore, considering the same number of FFT points, we find higher percentages of butterfly

cycles for higher values of the data size.

Furthermore, the design has been synthesized using Synopsis to obtain some results in terms of

area and timing. Global Foundries 22nm has been chosen as reference technology working at

125°C and at 0.72V.

GF22FDX_SC8T_104CPP_BASE_CSC20L_SSG_0P72V_0P00V_0P00V_0P00V_125C

GF22FDX_SC8T_104CPP_BASE_CSC24L_SSG_0P72V_0P00V_0P00V_0P00V_125C

GF22FDX_SC8T_104CPP_BASE_CSC28L_SSG_0P72V_0P00V_0P00V_0P00V_125C

GF22FDX_SC8T_104CPP_BASE_CSC20SL_SSG_0P72V_0P00V_0P00V_0P00V_125C

GF22FDX_SC8T_104CPP_BASE_CSC24SL_SSG_0P72V_0P00V_0P00V_0P00V_125C

GF22FDX_SC8T_104CPP_BASE_CSC28SL_SSG_0P72V_0P00V_0P00V_0P00V_125C

The total cell area of the HWPE occupies around 115 000 µm² and the HWPE may work at

690MHz. The critical path is on the ROMs.

Having a look at the results in terms of area divided per component, we can observe that the

buffer (in this implementation a 4KB buffer is considered) is dominating the HWPE area

occupying around 65% of the whole area.

T_clk [ps] f_clk [MHz] Total Cell Area [µm²] slack

1450 0,69 113559 MET

1400 0,71 114175 -44.5

54

COMPONENT %

Buffer 65.3

Butterfly Unit 10.7

Index Generator 0.7

FSM 0.0

Scatter/Gather 1.0

Streamer 10.7

ROM 9.9

Controller 1.0

Figure 42: FFT HWPE area (4KB buffer)

Where the Controller represents the interface with the register file.

55

Finally, a trial placement has been realized. The chip size is around (1.2 x 1.8) mm.

Figure 43: Placement

The components highlighted are:

• Internal Buffer in light blue;

• Butterfly Unit and other components of the FFT HWPE in blue;

• RISC-V Core in orange;

• Interconnect in red;

• uDMA and peripherals in yellow.

56

5.2 Design Verification

In this section, the design verification is discussed. To validate the correct behavior of the

HWPE, some MATLAB scripts have been employed. In particular, a bit-true implementation

of the butterfly operation and a script computing the butterfly with double precision have been

implemented. Such scripts have then been used to realize an algorithm computing the FFT of a

16-point real cosine. Finally, also the FFT function provided by MATLAB has been utilized to

validate the design.

A real cosine described with 16 points was considered for the validation. The MATLAB script

computing the FFT of such a signal is really simple and can be realized with just three

instructions:

𝑥 = 0: 15;

𝑦 = 𝑐𝑜𝑠 (2𝜋
𝑥

16
) ;

𝑌 = 𝑓𝑓𝑡(𝑦,16)

Index Input (x) Output (Y)

0 1 + j0 0 + j0

1 0,9239 + j0 8 + j0

2 0,7071 + j0 0 + j0

3 0,3827 + j0 0 + j0

4 0 + j0 0 + j0

5 -0,3827 + j0 0 + j0

6 -0,7071 + j0 0 + j0

7 -0,9239 + j0 0 + j0

8 -1 + j0 0 + j0

9 -0,9239 + j0 0 + j0

10 -0,7071 + j0 0 + j0

11 -0,3827 + j0 0 + j0

12 0 + j0 0 + j0

13 0,3827 + j0 0 + j0

14 0,7071 + j0 0 + j0

15 0,9239 + j0 8 +j0

57

As it can be noticed, all the outputs are zero except for the second and the last sample, which

are 8+j0.

In this section, just the 16-bit complex data case is discussed. The same procedure with some

small adjustments has been used to validate also the cases related to 8/32-bit complex data.

First of all, to assess the correct behavior of the HWPE, all the inputs were translated to

hexadecimal notation. As shown in section 2.1, the butterfly unit requires the input to be lesser

than 0.5 in modulus. Therefore, fixed-point arithmetic with the notation Q0.15 has been

implemented, one bit has been used for the sign and 15 bits for the fractional value. To obtain

inputs less than 0.5 in modulus, the inputs listed in the table above were then multiplied by

214=16384 (when the input value was 1, it was multiplied by 16383 to keep it strictly less than

0.5). Afterward, these inputs were used to run a ModelSim simulation for the HWPE and to

feed the MATLAB script computing FFT using butterflies designed as the hardware one but

with double precision instead of fixed-point arithmetic.

As it may be observed, the MATLAB results present some noise due to the approximation made

at the input to represent the samples with 16 bits for the real part and 16 bits for the imaginary

Index Input [hex] HWPE Output [dec] MATLAB output

[double]

0 3FFF + j0000 0 + j0 -0,06 + j0

1 3B21 + j0000 16383 + j0 16383,56 - j0,23

2 2D41 + j0000 0 + j0 -0,06 - j0,2

3 187E + j0000 -1 + j1 0,02 - j0,08

4 0000 + j0000 0 + j0 -0,06 - j0,07

5 E782 + j0000 0 + j0 0,07 - j0,08

6 D2BF + j0000 0 + j0 -0,06 - j0,02

7 C4DF + j0000 0 - j1 -0,4 - j0,02

8 C000 + j0000 0 + j0 -0,06 + j0

9 C4DF + j0000 1 + j0 -0,4 + j0,02

10 D2BF + j0000 0 + j0 -0,06 + j0,02

11 E782 + j0000 0 + j0 0,07 + j0,08

12 0000 + j0000 0 + j0 -0,06 + j0.07

13 187E + j0000 0 + j0 0,02 + j0,08

14 2D41 + j0000 0 + j0 -0,06 + j0,2

15 3B21 + j0000 16383 + j0 16383,56 + j0,02

58

part. The ModelSim simulation results are also characterized by some noise due to the

information lost at the input and at the end of every stage (except the last one) due to the right

shift of one bit made to maintain the outputs less than 0.5 in modulus.

Anyway, these results match the ones obtained with the MATLAB FFT function. The inputs

were multiplied by 214, which is like translating them into the Q0.15 notation (*215) and

dividing them by 2; after every stage, except the last one, the outputs were divided by 2 and,

for a 16-point FFT, there are four stages. Therefore, if we compensate for these operations,

which are not part of the computation but just operations we implement to stay consistent with

the Q0.15 notation and prevent overflow, we obtain:

16383 ∗
2 ∗ 2 ∗ 2 ∗ 2

215
= 7,9995 ≃ 8

Applying the same transformation to the “noise” we find:

1 ∗
2 ∗ 2 ∗ 2 ∗ 2

215
= 0,0005 ≃ 0

Hence the results we obtained are consistent with the MATLAB FFT results.

59

5.3 New Implementation Without Internal Buffer

In this section, a new possible implementation of the FFT HWPE is presented. As shown in

Section 5, the internal buffer allowed us to reach good results in terms of execution cycles but

increased considerably the overall area, around 65% of the HWPE area was occupied by the

buffer. Furthermore, the employment of such a buffer with the related processing flow led to a

constraint in the maximum number of FFT points.

For all these reasons, a new possible version of the accelerator without the internal buffer has

been studied. To understand how the buffer could be removed, we should have a look at the

data organization inside the TCDM. This new solution finds inspiration in the implementation

described by Xiao et al [4].

Let’s consider again a 16-point FFT. Just the case related to 16-bit complex samples will be

analyzed in this section. The same reasoning may be extended to the case of 8/32-bit.

Figure 44: 16-point FFT

The bandwidth towards the TCDM is 128 bits and inside the TCDM the data are organized in

4 banks of 32-bit (non-complex) words. Therefore, since we are considering 16-bit complex

data which occupies 32 bits, we find one complex sample in each cell memory.

60

For a 16-point FFT the natural (non-bit-reversed) indices of the samples to be processed are the

following:

• STAGE 0: (0;8) (4;12) (2;10) (6;14) (1;9) (5;13) (3;11) (7;15)

• STAGE 1: (0;4) (8;12) (2;6) (10;14) (1;5) (9;13) (3;7) (11;15)

• STAGE 2: (0;2) (8;10) (4;6) (12;14) (1;3) (9;11) (5;7) (13;15)

• STAGE 3: (0;1) (8;9) (4;5) (12;13) (2;3) (10;11) (6;7) (14;15)

Since the datapath can compute two 16-bit butterflies per cycle, during the first processing cycle

we would need (0;8), (4;12) and during the second cycle (2;10), (6;14). We are now considering

the TCDM, hence we cannot access to two different cells inside one bank as we did with the

buffer. Therefore, our requests would lead to many conflicts. Since we overwrite the input

samples after a butterfly, the order in which we perform the butterflies within one stage does

not affect the final results. Thus, we could think of reordering the butterflies to be processed in

the following way:

• STAGE 0: (0;8) (1;9) (2;10) (3;11) (4;12) (5;13) (6;14) (7;15)

• STAGE 1: (0;4) (1;5) (2;6) (3;7) (8;12) (9;13) (10;14) (11;15)

• STAGE 2: (0;2) (1;3) (4;6) (5;7) (8;10) (9;11) (12;14) (13;15)

• STAGE 3: (0;1) (2;3) (4;5) (6;7) (8;9) (10;11) (12;13) (14;15)

Proceeding in this way the first two butterflies to be processed are (0;8), (1;9) and the second

ones are (2;10),(3;11). It can now be observed that if we read the first and the third line on the

TCDM, we have all the data needed for the 4 butterflies.

Where all the operations work on 128 bits.

Bank 3 Bank 2 Bank 1 Bank 0

3 2 1 0

7 6 5 4

11 10 9 8

15 14 13 12

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6

LOAD LOAD BUTTERFL

Y

BUTTERFL

Y

STORE STORE

61

A possible structural scheme of this version of the HWPE could be the following:

Figure 45: New structural scheme

Basically, it will work in the following way:

• 1st cycle: the first stream is loaded and stored into the first register;

• 2nd cycle: the second stream is loaded and stored into the second register;

• 3rd cycle: the scatter has access to all the 256 bit needed for the computation of four 16-

bit butterflies. It rearranges the data into the two streams, creating two 32-bit complex

words to feed the butterfly unit with the right data for two butterflies. The result of these

two butterflies is then saved in another register;

• 4th cycle: the work performed during the 3rd cycle is repeated for the other 128 bits;

• 5th cycle: the gather rearranges the data generated by the butterfly unit, creating the right

output streams. The streamer stores the first 128 bits;

• 6th cycle: the streamer stores the other 128 bits.

We could also think about double the butterfly datapath and that would lead to the following

processing flow:

Where all the operations work on 128 bits except for the butterfly which would work on 256

bits. The correspondent structural scheme would be the same in Figure 45 but with double

datapath and therefore double bandwidth towards the datapath.

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

LOAD LOAD BUTTERFLY STORE STORE

62

These two possible implementations have been evaluated in terms of expected execution cycles.

For this computation, 10% of overhead has been considered.

N points
Cycles [16-bit]

1st case

Butterfly Cycles

1st case [%]

Cycles [16-bit]

2nd case

Butterfly

Cycles

2nd case [%]

16 53 30% 44 18%

32 132 30% 110 18%

64 317 30% 264 18%

128 740 30% 616 18%

256 1690 30% 1408 18%

512 3802 30% 3168 18%

1024 8448 30% 7040 18%

In the first case, the HWPE would be 3÷3.5 times faster than the software, in the second case

3.5÷4 times faster.

Comparing this new solution with the implemented one, we will find a considerable reduction

in terms of area and power consumption. The price to pay for such results is a larger execution

time as this new implementation is two times slower than the realized one.

63

8. Conclusion and Future Work

A cluster-coupled hardware processing engine computing FFT has been designed. The

accelerator is composed of a streamer, a scatter/gather, a buffer, a butterfly unit, a control unit

and some ROMs for the twiddle factors storage. Furthermore, the accelerator has been

interfaced to a register file to program it via software through a memory-mapped peripheral

port.

The accelerator, to perform the FFT, loads all the FFT samples into a buffer, then it processes

the data iterating multiple times the butterfly operation and storing the partial results into such

a buffer, and finally stores all the results into the Tightly-Coupled Data Memory (TCDM).

Proceeding in this way several conflicts accessing the TCDM are avoided.

The accelerator may process 8/16/32-bit complex samples (8/16/32 bits for the real part and

8/16/32 bits for the imaginary part) and with a 4 KB buffer may compute up to a

2048/1024/512-point FFT. It is 7 times faster than a highly optimized software running FFT on

8 cores, even if the shown architecture is probably not the best implementation in terms of area,

due to the internalized buffer which occupies around 65% of the whole area. For this reason, a

new implementation without the internal buffer has been studied. Such a solution is expected

to be considerably smaller in terms of area and to be around 3.5 times faster than the highly

optimized software.

During future work, the HWPE realized for this project will be assessed in terms of power

consumption. Then the new solution will be implemented and compared to the buffer-based

architecture. The new design will be also more flexible because the buffer introduced a

constraint on the number of FFT points. Such a constraint will still be present due to the ROMs

employed for the twiddle factor storage. However such ROMs could also be expanded since

they are much more compact than the banks of SCMs composing the buffer.

64

References

[1] https://pulp-platform.org/

[2] Slade, G. William. "The Fast Fourier Transform in Hardware: A Tutorial Based on an FPGA

Implementation." I: ResearchGate (2013).

[3] Wang, Angie, et al. "A 0.37 mm 2 LTE/Wi-Fi compatible, memory-based, runtime-

reconfigurable 2 n 3 m 5 k FFT accelerator integrated with a RISC-V core in 16nm FinFET."

2017 IEEE Asian Solid-State Circuits Conference (A-SSCC). IEEE, 2017.

[4] Xiao, Xin, Erdal Oruklu, and Jafar Saniie. "Fast memory addressing scheme for radix-4 FFT

implementation." 2009 IEEE International Conference on Electro/Information Technology.

IEEE, 2009.

[5] Johnson, L. G. "Conflict free memory addressing for dedicated FFT hardware." IEEE

Transactions on Circuits and Systems II: Analog and Digital Signal Processing 39.5 (1992):

312-316.

[6] Cooley, James W., and John W. Tukey. "An algorithm for the machine calculation of

complex Fourier series." Mathematics of computation 19.90 (1965): 297-301.

[7] Jones, Douglas L. "Radix-4 FFT Algorithms." Connexions module: m12027 (2006).

[8] Jayakumar, D., and E. Logashanmugam. "Design of combined Radix-2, Radix-4 and Radix-

8 based Single path Delay Feedback (SDF) FFT." Indian Journal of Science and Technology 9

(2016): 45.

[9] Park, Jungmin. "Design of a radix-8/4/2 FFT processor for OFDM systems." CPRE/COMS

(2009).

[10] Semiconductor, Freescale. "Complex Fixed-Point Fast Fourier Transform Optimization

for AltiVec™." (2004).

[11] Welch, P. "A fixed-point fast Fourier transform error analysis." IEEE Transactions on

Audio and Electroacoustics 17.2 (1969): 151-157.

[12] Kabal, P., and B. Sayar. "Performance of fixed-point FFT's: Rounding and scaling

considerations." ICASSP'86. IEEE International Conference on Acoustics, Speech, and Signal

Processing. Vol. 11. IEEE, 1986.

https://pulp-platform.org/

65

[13] Cohen, Danny. "Simplified control of FFT hardware." IEEE Transactions on Acoustics,

Speech, and Signal Processing 24.6 (1976): 577-579.

[14] https://github.com/pulp-platform/hwpe-mac-engine

[15] https://github.com/pulp-platform/hwpe-tb

[16] https://github.com/pulp-platform/hwpe-stream

[17] https://github.com/pulp-platform/hwpe-ctrl

[18] Tutorial, F. F. T. "University of Rhode Island Department of Electrical and Computational

Engineering ELE 436: Communication Systems."

[19] http://www.bitweenie.com/listings/fft-zero-padding/

[20] https://hwpe-doc.readthedocs.io/en/latest/

[21] Sutherland, Stuart, and Don Mills. "Synthesizing systemverilog busting the myth that

systemverilog is only for verification." SNUG Silicon Valley (2013): 24.

[22] https://git-scm.com/

[23] Yates, Randy. "Fixed-point arithmetic: An introduction." Digital Signal Labs 81.83

(2009): 198.

[24] https://doc.xdevs.com/doc/_Materials/FixedPointArithmetic.pdf

[25] Teman, Adam, et al. "Power, area, and performance optimization of standard cell memory

arrays through controlled placement." ACM Transactions on Design Automation of Electronic

Systems (TODAES) 21.4 (2016): 1-25.

https://github.com/pulp-platform/hwpe-mac-engine
https://github.com/pulp-platform/hwpe-tb
https://github.com/pulp-platform/hwpe-stream
http://www.bitweenie.com/listings/fft-zero-padding/
https://hwpe-doc.readthedocs.io/en/latest/
https://doc.xdevs.com/doc/_Materials/FixedPointArithmetic.pdf

