Representation learning and applications in neuronal imaging

Marini, Michela (2019) Representation learning and applications in neuronal imaging. [Laurea magistrale], Università di Bologna, Corso di Studio in Ingegneria elettronica [LM-DM270], Documento ad accesso riservato.
Documenti full-text disponibili:
[img] Documento PDF (Thesis)
Full-text accessibile solo agli utenti istituzionali dell'Ateneo
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato

Download (13MB) | Contatta l'autore

Abstract

Confocal fluorescence microscopy is a microscopic technique that provides true three-dimensional (3D) optical resolution and that allows the visualization of molecular expression patterns and morphological structures. This technique has therefore become increasingly more important in neuroscience, due to its applications in image-based screening and profiling of neurons. However, in the last two decades, many approaches have been introduced to segment the neurons automatically. With the more recent advances in the field of neural networks and Deep Learning, multiple methods have been implemented with focus on the segmentation and delineation of the neuronal trees and somas. Deep Learning methods, such as the Convolutional Neural Networks (CNN), have recently become one of the new trends in the Computer Vision area. Their ability to find strong spatially local correlations in the data at different abstraction levels allows them to learn a set of filters that are useful to correctly segment the data, when given a labeled training set. The overall aim of this thesis was to develop a new algorithm for automated segmentation of confocal neuronal images based on Deep Learning techniques. In order to realize this goal, we implemented a U-Net-based CNN and realized the dataset necessary to train the Neural Network. The results show how satisfactory segmentations are achieved for all the test images given in input to our algorithm, by obtaining a Dice coefficient, as average of all the images of the test dataset, greater than 0.9.

Abstract
Tipologia del documento
Tesi di laurea (Laurea magistrale)
Autore della tesi
Marini, Michela
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Indirizzo
Bioingegneria elettronica
Ordinamento Cds
DM270
Parole chiave
Deep Learning,U-Net,neuroscience,segmentation,Machine Learning
Data di discussione della Tesi
19 Dicembre 2019
URI

Altri metadati

Statistica sui download

Gestione del documento: Visualizza il documento

^