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Introduzione

Un arrangiamento di iperpiani è una collezione finita di sottospazi affini

di codimensione uno (chiamati iperpiani) in uno spazio vettoriale complesso

di dimensione finita.

L’algebra di coomologia del complementare di un arrangiamento di iperpiani

ammette un’elegante presentazione dovuta a Orlik e Solomon, i quali hanno

dimostrato che questa algebra è isomorfa ad un’algebra graduata, generata in

grado uno, che soddisfa relazioni di tipo combinatorio, che dipendendono solo

dal reticolo delle intersezioni ([OT92]). In particolare, se tutti gli iperpia-

ni dell’arrangiamento passano per l’origine, l’algebra di coomologia dipende

soltanto dal matroide associato all’arrangiamento.

Negli ultimi anni, vari autori hanno studiato gli arrangiamenti torici,

collezioni finite di sottotori di codimensione uno (chiamati ipertori), in un

toro complesso.

L’algebra di coomologia del complementare di un arrangiamento torico è

piú complicata in quanto il toro complesso ha già di per sé una coomologia

non banale e perchè l’intersezione di due sottotori in generale non è connessa.

Nel 2005, De Concini e Procesi si sono concentrati sullo studio dell’algebra

di coomologia del complementare degli arrangiamenti torici nel quale le inter-

sezioni di sottotori sono sempre connesse (arrangiamenti torici unimodulari)

ottenendone una presentazione sullo stile di quella data da Orlik e Solomon

per gli arrangiamenti di iperpiani ([DCP05]). In questo caso, l’algebra di
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ii Introduzione

coomologia del complementare è sempre generata in grado uno.

Nel 2018, Callegaro, D’Adderio, Delucchi, Migliorini e Pagaria hanno

generalizzato il lavoro di De Concini e Procesi fornendo una presentazione,

sempre sullo stile di quella data da Orlik e Solomon, dell’algebra di coomolo-

gia di un generico arrangiamento torico ([CDD+19]). Studiando il caso gen-

erale, hanno visto che questa algebra non è necessariamente generata in grado

uno.

Inoltre, perfino per calcolare i numeri di Betti del complementare di un ar-

rangiamento torico, non è sufficiente considerare le dipendenze lineari tra

gli ipertori. Infatti, è necessario considerare un matroide aritmetico che

tenga conto del numero di componenti connesse delle intersezioni di iper-

tori dell’arrangiamento ([DM13], [Moc12]).

A differenza del caso degli arrangiamenti di iperpiani, la coomologia del com-

plementare di un arrangiamento torico non dipende unicamente dal matroide

aritmetico dell’arrangiamento. Pagaria ha infatti costruito esplicitamente

due arrangiamenti torici con matroidi isomorfi ma anelli di coomologia non

isomorfi ([Pag19b]).

Piano della tesi. Nelle tre appendici richiamiamo concetti di base

riguardanti i moduli, i matroidi e la coomologia di de Rham. Nel primo capi-

tolo trattiamo gli arrangiamenti di iperpiani. Dopo alcune definizioni di base

ed alcuni esempi, definiamo l’algebra di Orlik e Solomon dell’arrangiamento

e, grazie alla costruzione di una particolare base di quest’algebra (chiamata

base dei circuiti non rotti), dimostriamo l’esistenza di un isomorfismo tra

quest’algebra e l’algebra di coomologia del complementare dell’arrangiamento.

Nel secondo capitolo affrontiamo alcuni concetti relativi al toro com-

plesso, come il gruppo fondamentale, l’anello della coomologia di de Rham

ed alcune proprietà dei rivestimenti finiti.
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Nel terzo capitolo analizziamo gli arrangiamenti torici. Prima di tutto

introduciamo, per un generico arrangiamento torico, il reticolo delle com-

ponenti connesse delle intersezioni di ipertori, il matroide aritmetico as-

sociato e una scelta di forme logaritmiche differenziali. Successivamente

trattiamo il caso unimodulare, ottenendo una presentazione, sullo stile di

quella data da Orlik e Solomon, dell’algebra di coomologia del complementare

dell’arrangiamento. Infine generalizziamo questo risultato per un arrangia-

mento torico arbitrario, attraverso un suo rivestimento dato da un arrangia-

mento unimodulare.





Introduction

An arrangement of hyperplanes is a finite collection of codimension one

affine subspaces (called hyperplanes) in a finite dimensional complex vector

space.

The cohomology algebra of the complement of an arrangement of hyperplanes

admits an elegant presentation due to Orlik and Solomon. They proved that

this algebra is isomorphic to a graded algebra generated in degree one, that

satisfies some combinatorially determined relations ([OT92]).

Moreover, the cohomology algebra depends only on the intersection poset.

In fact, if all hyperplanes pass through the origin, it depends only on the

matroid associated with the arrangement, which is a combinatorial abstrac-

tation of the way these hyperplanes intersect each other.

In the last years, many authors studied the toric arrangements, that are

finite collections of subtori of codimension one (called hypertori), in a com-

plex torus.

The cohomology algebra of the complement of a toric arrangement is more

complicated because the ambient torus has its own cohomology algebra.

Moreover the intersection of two subtori in general is not connected mak-

ing the combinatorial data more intricated.

In 2005, De Concini and Procesi provided an Orlik-Solomon-type presen-

tation for the cohomology algebra of the complement of unimodular toric

arrangements ([DCP05]), that are toric arrangements in which the intersec-
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vi Introduction

tions of subtori are always connected. In this case, the cohomology algebra

of the complement is always generated in degree one.

In 2018, Callegaro, D’Adderio, Delucchi, Migliorini and Pagaria gener-

alised De Concini and Procesi’s work, providing an Orlik-Solomon-type pre-

sentation for the cohomology algebra of the complement of a general toric

arrangement ([CDD+19]). In the general case, this algebra is not necessarily

generated in degree one.

Moreover, even to encode basic topological data such as the Betti numbers

of the complement of a toric arrangement, it is not enough to consider the

linear dependencies among the hypertori. In fact, it is necessary to consider

an arithmetic matroid that keeps track of the number of connected compo-

nents of the intersections of subtori ([DM13], [Moc12]).

Unlike the case of hyperplane arrangements, the cohomology of the com-

plement of a toric arrangement does not depend only on the arrangement’s

arithmetic matroid. In fact, Pagaria explicitly constructed two toric arrange-

ments with isomorphic matroids and with non-isomorphic cohomology rings

([Pag19b]).

Plan of the thesis. Some background material on modules, matroid and

de Rham cohomology is recalled in three appendices. In the first chapter,

we treat the hyperplane arrangements. After some basic definitions and ex-

amples, we define the Orlik-Solomon algebra of an arrangement, and, thanks

to the construction of a particular basis of this algebra (called non-broken

circuit basis), we prove the existence of an isomorphism between this algebra

and the cohomology algebra of the complement of the arrangement.

In the second chapter, we recall some basic fact of the complex torus such

as its fundamental group, its de Rham cohomology ring and some properties

of its finite coverings.
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In the third chapter, we analyse the toric arrangements. First we in-

troduce, for a general toric arrangement, the poset of layers, the arithmetic

matroid and a choice of logarithmic forms, then we treat the unimodular case

and, after some formal identities, we provide an Orlik-Solomon-type presen-

tation for the cohomology algebra of the complement of the arrangement.

Thus, finally, we consider a general toric arrangement, and, by covering it

with unimodular arrangements, we obtain an Orlik-Solomon-type presen-

tation of the cohomology algebra of the complement of an arbitrary toric

arrangement.





Chapter 1

Arrangements of hyperplanes

and Orlik-Solomon algebras

1.1 The poset of intersections L(A)

Definition 1.1.1. Let K be a field and VK be an `-dimensional K-vector

space. An arrangement of hyperplanes A = (AK, VK) = {H1, . . . , Hn} is

a finite set of affine subspaces of dimension (` − 1). We call every Hi in A
a hyperplane in VK. If we want to emphasize the dimension of V , we say

that A is an `-arrangement.

From now on we will denote by n the number of hyperplanes in the ar-

rangement, and by ` the dimension of the ambient space V .

We say that an arrangement A is central if
⋂
H∈AH 6= ∅, and we call

T (A) :=
⋂
H∈AH the center of A.

Let V ∗ be the dual space of V , the space of linear forms on V . Choose

a basis {e1, ..., e`} in V and let {x1, ...x`} be the dual basis in V ∗, i.e.

xi(ej) = δi,j ∀i, j. Note that if A is a central arrangement, the coordinates

may be chosen so that each hyperplane contains the origin, then, without

loss of generality, we can say that the center of A contains the origin.

1



2 Arrangements of hyperplanes and Orlik-Solomon algebras

Each hyperplane H ∈ A is the kernel of a polynomial αH of degree one.

This polynomial is defined up to a non-zero scalar multiple, in fact, two

distinct polynomials p, q ∈ K[x1, . . . , xl] define the same hyperplane H if

p = cq for some c ∈ K∗. In this case we write p
.
= q. Then we are allowed to

give the following definition.

Definition 1.1.2. The product

Q(A)
.
=
∏
H∈A

αH

is called a defining polynomial of A.

Note that if A is a central arrangement, then each αH is a linear form

and Q(A) is a homogeneous polynomial of degree n.

Definition 1.1.3. Let A be an arrangement. Define L(A) the poset of all

non-empty intersection of elements of A with the partial order given by the

reverse inclusion

X ≤ Y ⇐⇒ Y ⊆ X.

We agree that L(A) includes the ambient space V as the intersection of

the empty collection of hyperplanes. Note that V is the unique minimal

element since X ⊆ V for every X ∈ L(A).

Definition 1.1.4. Define a rank function on L(A) by

r : L(A)→ N

X 7−→ codim(X).

Note that r(V ) = 0 and r(H) = 1 ∀H ∈ A. For this reason we say that

every hyperplane H is an atom of L(A).

Definition 1.1.5. Denote Lp(A) = {X ∈ L(A); r(X) = p}.
The Hasse diagram of L(A) has vertices labeled by the elements of L(A)

and arranged on levels Lp(A) for p ≥ 0. If X ∈ Lp(A) and Y ∈ Lp+1(A), an

edge in the Hasse diagram connects X with Y if and only if X < Y .
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Definition 1.1.6. Let X be a maximal element of L(A).

Define rank(A) = r(X). We say that an `-arrangement A is essential

if rank(A) = `.

The rank of an arrangement is well defined since it can proved that

maximal elements of L(A) have the same rank.

Remark 1.1.7. An `-arrangement A is essential if and only if it contains `

linearly independent hyperplanes. If A is a central essential `-arrangement,

then rank(A) = r(T (A)) = `. In particular the coordinates may be chosen

so that T (A) = {0}.

Example 1.1.8. Let A be a `-arrangement defined by Q(A) = x1x2 . . . x`,

i.e. A = {H1, . . . , H`}, with Hi = {xi = 0} ∀i = {1, . . . , `}, is a central

essential arrangement since
⋂
H∈AH = {(0, . . . , 0)} =: T (A) and rank(A) =

r({(0, . . . , 0)}) = `. This arrangement A is called Boolean arrangement and

it is the arrangement of the coordinate hyperplanes in K`.

Example 1.1.9. Let A be a 2-arrangement defined by Q(A) = xy(x+y−1),

i.e. A = {H1, H2, H3} withH1 = {(x, y) ∈ V ;x = 0}, H2 = {(x, y) ∈ V ; y = 0}
and H3 = {(x, y) ∈ V ;x+ y = 1}.

Figure 1.1: A



4 Arrangements of hyperplanes and Orlik-Solomon algebras

The Hasse diagram of L(A) is:

L2 (0, 0) (0, 1) (1, 0)

L1 H1 H2 H3

VL0

It is an essential arrangement since rank(A) = r({(0, 0)} = r({(0, 1)}) =

r({(1, 0)}) = 2 but it is not central since H1 ∩H2 ∩H3 = ∅.

Example 1.1.10. Let A be a `-arrangement defined by

Q(A) =
∏

1≤i<j≤`

(xi − xj).

Since T (A) =
⋂
H∈AH = {x1 = · · · = x`}, rank(A) = `− 1. It follows that

A is a central but not essential arrangement. This arrangement A is called

braid arrangement.

For ` = 3, A = {H1, H2, H3} with H1 = {(x, y, z) ∈ V ;x = y},
H2 = {(x, y, z) ∈ V ;x = z} and H3 = {(x, y, z) ∈ V ; y = z}.

Figure 1.2: Projection of A in the plane 0xy
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1.2 The Möbius function

Definition 1.2.1. Let A be an arrangement and let L = L(A).

Define the Möbius function

µA = µ : LÖL −→ Z

as follows:

�

µ(X,X) = 1 if X ∈ L,

� ∑
Z∈L,

X≤Z≤Y

µ(X,Z) = 0 if X, Y ∈ L and X < Y,

�

µ(X, Y ) = 0 otherwise.

Note that for fixed X the values of µ(X, Y ) may be computed recursively.

It follows that if ν is any other function which satisfies the defining properties

of µ, then ν = µ.

Theorem 1.2.2. If X ≤ Y , then µ(X, Y ) 6= 0 and sgnµ(X, Y ) = (−1)r(X)−r(Y ).

Definition 1.2.3. For X ∈ L, define µ(X) = µ(V,X).

Remark 1.2.4. In general is not possible to give a formula for µ(X), but

we know that

1. µ(V ) = 1;

2. µ(H) = −1 ∀H ∈ L;

3. if r(X) = 2, then µ(X) = |AX |−1; where AX = {H ∈ A;H ≤ X}.
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Example 1.2.5. Let A be the Boolean `-arrangement.

For X ∈ L,

µ(X) = (−1)r(X).

Proof. Define ν(X) = (−1)r(X). It suffices to show that ν satisfies ν(V ) = 1

and
∑

Z∈L,
Z≤Y

ν(Z) = 0 ∀Y ∈ L. Clearly ν(V ) := (−1)0 = 1. If Y ∈ L

and Y 6= V , there exist Hi1 , . . . , Hip ∈ A such that Y = Hi1 ∩ · · · ∩ Hip .

For every Z ∈ L such that Z ≤ Y , there exist Hj1 , . . . , Hjq ∈ A such that

Z = Hj1∩· · ·∩Hjq with {j1, . . . , jq} ⊆ {i1, . . . , ip} and q = r(X) ≤ r(Y ) = p.

Then ∑
Z∈L,
Z≤Y

ν(Z) =
∑
Z∈L,
Z≤Y

(−1)r(Z) =

p∑
q=0

(
p

q

)
(−1)q = 0.

Definition 1.2.6. Let A be an arrangement with intersection poset L and

Möbius function µ. Let t be an indeterminate.

Define the Poincaré polynomial of A by

π(A, t) =
∑
X∈L

µ(X)(−t)r(X).

The reason for this terminology is that, as we will show in Theorem 1.5.13,

if A is a complex arrangement, π equals the Poincaré polynomial of the co-

homology ring of the complement of A viewed as a complex manifold. In

particular, the Betti numbers of the complement of a complex arrangement

are just the coefficients of the polynomial π.

It follows from Theorem 1.2.2 that π(A, t) has nonnegative coefficients.

In fact,

sgnµ(X)(−1)r(X) = sgn (−1)r(V )−r(X)(−1)r(X) = +1.
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Example 1.2.7. Let A be the Boolean `-arrangement.

We have already proved in Example 1.2.5 that µ(X) = (−1)r(X). Then

π(A, t) = 1 +

(
`

1

)
(−1)(−t) +

(
`

2

)
(+1)(−t)2 +

(
`

3

)
(−1)(−t)3 + · · · =

=
∑̀
p=0

(
`

p

)
tp = (1 + t)p.

Example 1.2.8. Let A be the arrangement defined by Q(A) = xy(x+y), i.e.

A = {H1, H2, H3} with H1 = {(x, y) ∈ V ;x = 0}, H2 = {(x, y) ∈ V ; y = 0}
and H3 = {(x, y) ∈ V ;x = −y}. The Hasse diagram of L(A) is:

(0, 0)

H1 H2 H3

V

Then

π(A, t) = µ(V )(−t)0 + µ(H1)(−t)1 + µ(H2)(−t)1 + µ(H3)(−t)1 + µ((0, 0))(−t)2 =

= 1 + 3t+ 2t2.

Even if it seems like every Poincaré polynomial of a central arrangement

is a product of linear terms (1 + bt) ∈ Z[t], we give an example that proves

that this is a false impression.

Example 1.2.9. Let A be the central and essential arrangement defined by

Q(A) = xyz(x+ y − z).
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The Hasse diagram of L(A) is:

(0, 0, 0)

{(0, 0, z)} {(0, y, 0)} {(0, y, y)} {(x, 0, 0)} {(x, 0, x)} {(x,−x, 0)}

{(0, y, z)} {(x, 0, z)} {(x, y, 0)} {(x, y, x+ y)}

V

and then the Poincaré polynomial of A is

π(A, t) = 1 + 4(−1)(−t) + 6(+1)(−t)2 − [6(+1) + 4(−1) + 1](−t)3 =

= (1 + t)(1 + 3t+ 3t2).

1.3 The Orlik-Solomon algebra

In this section we assume A is a central arrangement.

Definition 1.3.1. Let A be an `-arrangement over a field K and K be a

commutative subring of K.

Let {eH ;H ∈ A} be a set of symbols in one-to-one correspondance with the

hyperplanes of A. Define

E1 =
⊕
H∈A

KeH

the free K-module of all K-linear combination of these symbols and

E = E(A) = Λ(E1) =

|A|⊕
j=0

ΛjE1

the exterior algebra of E1, that is a graded K-algebra.
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Write Ej := ΛjE1 and uv = u ∧ v. Note that E1 := Λ1E1 agrees with its

earlier definition.

Recall that:

� E0 := Λ0E1 = K;

� e2
H = 0 and eHeK = −eKeH ∀H,K ∈ A;

� Ep is the K-module generated by the products of p distinct ei with

Hi ∈ A.

Definition 1.3.2. Define a K-linear map

∂ := ∂E : E −→ E

by ∂1 = 0, ∂eH = 1 and

∂(eH1 . . . eHp) :=

p∑
k=1

(−1)k−1eH1 . . . êHk . . . eHp ∀p ≥ 2, H1, ..., Hp ∈ A,

where the notation êHk indicates that the factor eHk is omitted from the

product.

Remark 1.3.3. Since ∂E ◦ ∂E = 0 and ∂E is homogeneous of degree -1,

(E, ∂E) is a chain complex. Moreover, since ∂E is a derivation of the exterior

algebra, it gives E the structure of a differential graded algebra.

Definition 1.3.4. Given S = (H1, ..., Hp) a p-tuple of hyperplanes of A, we

define

|S| := p, ∩S := H1 ∩ ... ∩Hp and eS := eH1 . . . eHp ∈ E.

For S = () the empty tuple, we agree that |S| = 0, ∩S = V and eS = 1.

Let Sp denote the set of all p-tuples (H1, ..., Hp) and let S = ∪p≥0Sp.

Since at the beginning of this chapter we have supposed A central, for every

tuple S, we have ∩S 6= ∅, then ∩S ∈ L with r(∩S) ≤ |S|.
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Definition 1.3.5. We say that a tuple S is independent if r(∩S) = |S|
and dependent if r(∩S) < |S|.

Remark 1.3.6. The terminology has a geometric significance: the tuple

S = (H1, . . . , Hp) is independent if and only if the corresponding linear form

αH1 , ..., αHp are linearly independent. Equivalently, if and only if the hyper-

planes of S are in general position.

Definition 1.3.7. Let ≺ be a fixed total order on A.

A p-tuple S = (H1, . . . , Hp) is standard if H1 ≺ · · · ≺ Hp.

A p-tuple S = (H1, . . . , Hp) is a circuit if it is minimally dependent, i.e.

(H1, . . . , Hp) is dependent but (H1, . . . , Ĥk, . . . , Hp) is independent for every

1 ≤ k ≤ p.

Definition 1.3.8. Let A be an arrangement.

Define I = I(A) the ideal of the K-algebra E generated by ∂eS for all de-

pendent S ∈ S, i.e.

I := {aS1∂eS1 + · · ·+ aSp∂eSp ; p > 0, aSi ∈ E and Si ∈ S, Si dependent∀i}.

Lemma 1.3.9. If S is dependent, then eS ∈ I.

Proof. For s ∈ S, 0 = ∂(eseS) = (∂es)eS ± es(∂eS) = eS ± es(∂eS). It follows

that eS = ±es(∂eS) ∈ I.

Proposition 1.3.10. E is generated by the elements eS where S is standard

and I is generated by elements of the form ∂eS where S is a circuit.

Proof. We need to prove only the second statement. Let S a dependent p-

tuple. There exist T, U ⊆ S with T circuit, such that S = T ∪ U . For every

t ∈ T , we have that

∂eS = ∂(eT eU) = ±(∂eT )eU±eT∂eU = ±(∂eT )eU±et∂eT∂eU = (±eU±et∂eU)∂eT .
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Definition 1.3.11. Let ϕ : E −→ E/I be the natural projection on the

quotient K-algebra.

Define A = A(A) := E/I the Orlik-Solomon algebra of A and denote

Ap := ϕ(Ep), aH := ϕ(eH) for H ∈ A, and aS := ϕ(eS) for S ∈ S.

Since E is a graded algebra and I is a homogeneous ideal of E, A is a

graded algebra

A =

|A|⊕
p=0

Ep
I ∩ Ep

=

|A|⊕
p=0

Ap.

Note that, for p > `, Ap = 0 since every element of Sp is dependent.

Proposition 1.3.12. ∂EI ⊂ I.

Proof. If S is dependent, by Leibniz rule, ∂(x∂eS) = (∂x)(∂eS) ∈ I for any

x ∈ E.

Remark 1.3.13. It follows that:

� ∂E induces a K-linear map ∂A : A −→ A defined by, for x ∈ E,

∂A(ϕ(x)) := ϕ(∂E(x)).

� A inherits the structure of a differential graded algebra.

� (A, ∂A) is a chain complex.

Lemma 1.3.14. (A, ∂A) is acyclic complex of chains.

Proof. We have to prove that Ker∂A ⊆ Im∂A. For every a ∈ A there exists

u ∈ E such that a = ϕ(u). Let v := eH with H ∈ A and b := ϕ(v). We have

that ∂A(ba) = ∂A(ϕ(v)ϕ(u)) = ∂A(ϕ(vu)) := ϕ(∂E(vu)) = ϕ(u − v∂Eu) =

ϕ(u)− ϕ(v)ϕ(∂E(u)) = ϕ(u)− ϕ(v)∂A(ϕ(u)) = a− b∂A(a) = a. Then there

exists x ∈ A such that a = ∂A(x) ∈ Im∂A.
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Proposition 1.3.15. Let A be an `-arrangement, then

A =
⊕̀
p=0

Ap.

In particular

A = K ⊕
⊕
H∈A

KaH ⊕
⊕̀
p=2

Ap.

Proof. From now on, for every p, denote Ip := I ∩ Ep.
I0 = {x∂eS|x ∈ Er, S ∈ Sq dependent and r + (q − 1) = 0} = {x∂eS|x ∈
E0, S ∈ S1 dependent} ∪ {x∂eS|x ∈ E1, S ∈ S0 dependent}. Since every

element of S0 and S1 is independent, we have that I0 = 0 and hence A0 = K.

I1 = {x∂eS|x ∈ Er, S ∈ Sq dependent and r + (q − 1) = 1}, since the only

dependent elements of S2 are of the form S = (H,H), and since eS = e2
H = 0,

we have I1 = 0 and then the elements aH are linearly independent over K
and A1 =

⊕
H∈AKaH .

Example 1.3.16. Let A be the Boolean `-arrangement.

Since S = (H1, . . . , Hp) is independent if and only if H1, . . . , Hp are distinct

hyperplanes. It immediately follows that if S is dependent, than eS = 0,

I = 0 and than A = E.

1.3.1 The grading by L(A)

In this subsection we want to discuss a grading on A(A) finer than the

standard grading inherited from E.

Definition 1.3.17. Let X ∈ L(A). Denote

SX = {S ∈ S| ∩ S = X}

and

EX =
∑
S∈SX

KeS.



The Orlik-Solomon algebra 13

Note that, since S =
⋃
X∈L SX is a disjoint union and EXEY ⊆ EX∩Y ,

E is an algebra graded by L(A), with

E =
⊕
X∈L

EX .

Proposition 1.3.18. I is homogeneous with respect to the grading of E by

L(A), with

I =
⊕
X∈L

I ∩ EX .

Proof. If S is a circuit with ∩S = X, then, for every s ∈ S, we have that

∩(S\{s}) = X otherwise S\{s} would be a proper dependent set in S. Thus

every homogeneous component of ∂eS =
∑

si∈S(−1)i−1eS\{si} ∈ EX belongs

to the same EX .

Remark 1.3.19. Since E is a graded algebra with respect to L(A) and I is

a homogeneous ideal of E with respect to the same grading, A is a graded

algebra with respect to L(A), i.e.

A =
⊕
X∈L

AX ,

where, for every X ∈ L(A), AX := EX
I∩EX

.

Proposition 1.3.20. The grading of A by L(A) is finer than the standard

grading A =
⊕`

p=0Ap.

Proof. In order to prove that

Ap =
⊕

X∈L(A),
r(X)=p

AX ,

it suffices to prove

Ap =
∑

X∈L(A),
r(X)=p

AX .
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⊆: For every a ∈ Ap, there exists u =
∑

s∈Sp cSeS ∈ Ep, with cS ∈ K,

such that a = ϕ(u). Note that, for every S dependent, eS ∈ I and, for every

S independent with X = ∩S, eS ∈ EX (because r(X) = |S| = p), it follows

that a =
∑

S∈Sp,
S independent

cSϕ(eS) ∈ AX .

⊇: Let X ∈ Lp. For every a ∈ AX , there exists u =
∑

S∈SX cSeS ∈ EX ,

with cS ∈ K, such that a = ϕ(u). Since eS ∈ I for every S dependent and

eS ∈ Ep for every S independent (because r(∩S) = r(X) = p), It follows that

a =
∑

S∈SX ,
S independent

cSϕ(eS) ∈ Ap.

1.3.2 The broken circuit basis

The aim of this subsection is to show that the K-algebra A(A) is a free

K-module by constructing a standard K-basis for A(A).

Definition 1.3.21. Let ≺ be a fixed total order on A(A) and denote minS

the minimal element of S with respect to ≺.

A standard p-tuple S = (H1, . . . , Hp) is a broken circuit if ∃K ∈ A such

that K ≺ minS and (K,H1, . . . , Hp) is a circuit.

A standard p-tuple S = (H1, . . . , Hp) is a nbc-set if it does not contain any

broken circuit. If S ia a nbc-set, we say that eS is a nbc-monomial.

Remark 1.3.22. Every broken circuit is a dependent tuple obtained by

deleting the minimal element in a standard circuit.

Every nbc-set is an independent tuple.

Definition 1.3.23. Define

nbcp(A) := {S ∈ Sp | S is nbc-set} nbc(A) :=
⋃
p≥0

nbcp(A);
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C0 := K Cp the free K-module with basis {eS ∈ E | S ∈ nbcp(A)} for p ≥ 1;

C := C(A) :=
⊕
p≥0

Cp the broken circuit module.

Note that C(A) is a free graded K-module and a sub-K-module of E(A).

In general C is not closed under multiplication in E, so C is not a sub-K-

algebra of E.

Remark 1.3.24. If S is a nbc-set, for every s ∈ S, S\{s} is a nbc-set. Then

∂E(C) ⊆ C and the restriction ∂C : C −→ C of ∂E : E −→ E is well defined.

It follows that (C, ∂C) is a chain complex.

Lemma 1.3.25. (C, ∂C) is an acyclic complex of chains.

Proof. First we prove that eH1C ⊆ C with H1 the minimal element of A with

respect to ≺. Let S be a nbc-set. If (H1, S) contains a broken circuit, then

there exists S ′ ⊆ S such that (H1, S
′) is a broken circuit. Since every broken

circuit is obtained by deleting the maximal element in a circuit, there exists

a circuit T such that (H1, S
′) = T\minT . It implies that minT ≺ H1, that

is absurd for hypothesis.

In order to prove that (C, ∂C) is an acyclic complex of chains, we have to

demonstrate that Ker(∂C) ⊆ Im(∂C). Let c ∈ C with ∂C(c) = 0 and H1 the

minimal element of A with respect to ≺. Thanks to the previous statement,

we know that eH1c ∈ C, then c = c− eH1(∂C(c)) = ∂C(eH1c) ∈ Im(∂C).

Remark 1.3.26. Since E is a graded algebra with respect to L(A), C is a

graded algebra with respect to the same grading, i.e.

C =
⊕
X∈L

CX ,

where, for every X ∈ L(A), CX := C ∩ EX .
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Lemma 1.3.27. The grading of C by L(A) is finer than the standard grading

C =
⊕`

p=0Cp.

Proof. It suffices to prove that for every p ≥ 0,

Cp =
⊕
X∈Lp

C ∩ EX =:
⊕
X∈Lp

CX .

⊆: Let eS ∈ Cp. Since S is a nbc-set with |S| = p, it is an independent tuple

with r(∩S) = p. It immediately follows that eS ∈
⊕

X∈Lp CX .

⊇: Let eS ∈ CX with X ∈ Lp. Since every S ∈ nbc(A) is independent,

|S| = r(∩S) = r(X) = p, then eS ∈ Cp.

We introduce now two statements that will be very usefull in the next

theorem (see Proposition 3.31 and Lemma 3.40, [OT92] for the proofs).

Proposition 1.3.28. Let X ∈ L(A) and AX := {H ∈ A|H ≤ X}.

1. AX(AX) ' AX(A).

2. CX(AX) = CX(A).

Theorem 1.3.29. Let ϕ : E −→ A(A) be the natural projection such that

ϕ(eS) = aS. The K-linear homomorphism ϕ|C(A) : C(A) −→ A(A) is an

isomorphism of graded K-module.

Proof. It suffices to prove that, for every X ∈ L(A), ϕ|CX : CX −→ AX is

an isomorphism. We use induction on rank(A).

If rank(A) = 0, we have that L = {V }, then C = CV := C ∩EV = C ∩K =

K = AV = A. It follows that ϕ|CV is the identity map.

Suppose the theorem holds for rank(A) < r. We need to prove it for

rank(A) = r. Let X ∈ L(A).

� If r(X) < r, then r(AX) < r, so by induction hypothesis

ϕ̃ : CX(AX) −→ AX(AX) is an isomorphism. Considering Proposition

1.3.28, it follows that ϕ|CX : CX(A) = CX(AX)
ϕ̃−→ AX(AX) ' AX is

also an isomorphism.
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� If r(X) = r, since A is a central arrangement, X = T where T is the

center of A. Now consider the following diagram

0 Cr Cr−1 ... C0 0

0 Ar Ar−1 ... A0 0

∂C

ϕ|Cr

∂C

ϕ|Cr−1

∂C

ϕ|C0

∂A ∂A ∂A

Since Ap = ⊕X∈LpAX and Cp = ⊕X∈LpCX , it follows that ϕ|Cp is an

isomorphism for every p < r. For the five lemma we have that also

ϕ|Cr is an isomorphism.

Corollary 1.3.30. {aS ∈ A(A); S is nbc-set} is a basis, called the broken

circuit basis, for A(A) as a graded K-module.

Example 1.3.31. Let A be the central and essential arrangement defined

by Q(A) = xyz(x+ y)(x+ y − z).

Define H0 = {x + y = z}, H1 = {x = 0}, H2 = {y = 0}, H3 = {z = 0} and

H4 = {x = −y}. The Hasse diagram of L(A) is:

(0, 0, 0)

{(0, 0, z)} {(0, y, 0)}{(0, y, y)} {(x, 0, 0)}{(x, 0, x)} {(x,−x, 0)}

{(0, y, z)} {(x, 0, z)} {(x, y, 0)}{(x, y, x+ y)} {(x,−x, z)}

V

The circuits of A are: {(H0, H3, H4), (H1, H2, H4), (H0, H1, H2, H3)}, then

nbc(A) = ∅ ∪ S1 ∪ S2\{(H2, H4), (H3, H4)}∪

∪ {(H0, H1, H2), (H0, H1, H3), (H0, H1, H4), (H0, H2, H3)}.
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Then {aS;S ∈ nbc(A)} is the broken circuit basis of A(A). Note that in

order to compute this basis we needed only the poset L(A).

1.3.3 The deletion-restriction exact sequence

Definition 1.3.32. Let A = {H1, . . . , Hn} be a non-empty arrangement and

let H ′ a fixed hyperplane in A. We define two new arrangements:

A′ := A\{H ′} obtained by the deletion of H ′ and

A′′ := {H ∩H ′|H ∈ A} obtained by the restriction of A to H ′.

Remark 1.3.33. A′ is an `-arrangement with |A′| = n − 1, and A′′ is an

(`− 1)-arrangement in the space H ′ with |A′′| ≤ n− 1.

For any object O associated with arrangements, we write O = O(A), O′ =

(A′) and O′′ = O(A′′).

Without loss of generality, from now on we will always choose H ′ as the

last hyperplane Hn.

Definition 1.3.34. Let A, A′ and A′′ as defined above. Define the map

λ : A′ −→ A′′

H 7−→ H ∩Hn,

and, for every S = (Hi1 , . . . , Hip), the q-tuple

λ(S) := (Hji , . . . , Hjq)

such that λ(Hik) = Hjk for every k ∈ {1, . . . , p} and eλ(S) := eHji ∧ · · ·∧ eHjq .

Note that, since distinct hyperplanes in A may have identical intersection

with Hn, the indices jk need not to be distinct and then |A′′| ≤ n− 1.
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From now on, we choose linear order on A′ and A′′ such that A′ in-

herite the order from A, i.e. A′ = {H1, . . . , Hn−1}, and in A′′, for every

i, j ∈ {1, . . . , n− 1}, Hi ∩Hn precedes Hj ∩Hn if and only if Hi precedes Hj

in A′.

Let’s consider the sequence

0 E ′ E E ′′ 0,i j

where i is the natural inclusion

i(eS) = eS

and

j(eS) =

eλ(S\{Hn}) if Hn ∈ S,

0 otherwise.

Note that i is an injective map, j is surjective, Im(i) ⊆ Ker(j) but Ker(j) *
Im(i). In fact, if S = (H1, H2, Hn) where H1 ∩ Hn = H2 ∩ Hn, then

j(eS) = eH1∩HneH2∩Hn = 0, but S is not a tuple of hyperplanes of A′. It

follows that this sequence need not to be exact at E.

Now we prove a lemma that will be very usefull in Proposition 1.3.36 and

in Theorem 1.3.37.

Lemma 1.3.35. 1. i(I ′) ⊂ I;

2. j(I) ⊂ I ′′;

3. i(C ′) ⊂ C;

4. j(C) = C ′′.
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Proof. 1. It immediately follows from the fact that if S is dependent in

A′ then it is dependent also in A.

2. Let eS ∈ E. If Hn /∈ S, then j(eS) = 0. If S = (Hi1 , . . . , Hiq , Hn),

we have that ∩λ(S\{Hn}) = (Hi1 ∩ Hn, . . . , Hiq ∩ Hn) = ∩S. If S is

dependent, then αHi1 , . . . αHiq , αHn are dependent functionals, and then

also αHi1 |Hn , . . . αHiq |Hn are dependent functionals, that is λ (S\{Hn})
is dependent too. Now

j(∂eS) = j
(
∂(eS\{Hn})eHn ± eS\{Hn}∂(eHn)

)
= j

(
∂(eS\{Hn})eHn

)
=

= j

(
iq∑
j=i1

(−1)j−1eS\{Hj ,Hn}eHn

)
=

=

iq∑
j=i1

(−1)j−1eHi1∩Hn . . . êHj∩Hn . . . eHiq∩Hn =

= ∂(eHi1∩Hn . . . eHiq∩Hn) = ∂(eλ(S\{Hn})) ∈ I ′′.

3. Let eS ∈ C ′. If eS /∈ C, then there exists S ′ ⊆ S and H ∈ A such that

H ≺ minS ′ and (H,S ′) circuit. Since S is a nbc-set for A′, it follows

that H has to be equal to Hn but Hi ≺ Hn for every i ∈ {1, . . . , n− 1}
and this contradicts the hypothesis.

4. First note that if S̃ ∈ {H1 ∩ Hn, . . . , Hn−1 ∩ Hn}, there exists S ∈
{H1, . . . , Hn} such that λ(S\{Hn}) = S̃. The thesis immediately fol-

lows from the fact that S is a nbc-set if and only if λ(S\{Hn}) is a

nbc-set.

Proposition 1.3.36. Let ĩ and j̃ be the restriction of i and j respectively to

C ′ and C. The short sequence

0 C ′ C C ′′ 0ĩ j̃

is exact.
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Proof. Thanks to 3) and 4) of Lemma 1.3.35, the sequence is well defined.

Moreover, since i is injective, j is surjective and j ◦ i = 0, it suffices to prove

that Ker(j̃) ⊆ Im(̃i).

Let N ⊆ C be the sub-K-module generated by {eS|Hn ∈ S, S nbc-set}, since

C = N ⊕ ĩ(C ′) and since ĩ(C ′) ⊆ Ker(j̃), we have that Ker(j̃) ⊆ Im(̃i) ⇔
Kerj̃ ∩N = {0}. Then it is enough to check j̃ is injective over N . Let S,T

nbc-sets such that Hn ∈ S,Hn ∈ T and suppose S 6= T . It follows that if

eλ(S\{Hn}) = eλ(T\{Hn}), then λ(S\{Hn}) = λ(T\{Hn}), so ∃Hs ∈ S,Ht ∈ T
with Hs 6= Ht, such that Hs ∩ Hn = Ht ∩ Hn. This implies that, if we

suppose Hs ≺ Ht, {Hs, Ht, Hn} is a dependent set and then {Ht, Hn} is a

broken circuit. This contradicts the fact that T is a nbc-set. It follows that

S = T and this completes the proof.

Theorem 1.3.37. The not exact sequence

0 E ′ E E ′′ 0i j

descends to the exact sequence

0 A′ A A′′ 0.î ĵ

Proof. Thanks to 1) and 2) of Lemma 1.3.35, factorising

0 → E(A′)k
ik−→ E(A)k

jk−→ E(A′′)k−1 → 0 we obtain the well define se-

quence 0 −→ A(A′)k
îk−→ A(A)k

ĵk−→ A(A′′)k−1 −→ 0. Theorem 1.3.29 and

Proposition 1.3.36 suffice to conclude.
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1.4 The matroid M(A)

In the previous section we have construct the Orlik-Solomon algebra A

of a central arrangement A and it is clear by its definition that it depends

only on the poset L(A), i.e. on the linear dependencies of the hyperplanes.

We now want to show that the Orlik-Solomon algebra depends only on a

particular matroid associated with the arrangement.

The next statement immediately follows from Remark 1.3.6.

Proposition 1.4.1. The pair (A, {S ∈ S; S independent}) is a matroid,

called the matroid of the arrangementM =M(A).

Remark 1.4.2. � {S ∈ S|;S is a circuit} = C(M) where C(M) is the

set of circuits of M;

� If r is the rank function on L(A) = {∩X;X ⊆ A} and rM is the rank

function of the matroid of the arrangement, then r(∩X) = rM(X);

� cl(X) = {K ∈ A;αK ∈ span{αH ;H ∈ X}}.

Theorem 1.4.3. Let A = {H1, . . . , Hn} be a central arrangement and let

L(A) and L(A) be, respectively, the poset of intersections of the arrangement

and the poset of flats of the matroid of the arrangement. Then

L(A) ∼= L(M).

Proof. Let S, T ⊆ {H1, . . . , Hn}. Then

∩S = ∩T ⇔ span{αH |H ∈ S} = span{αH |H ∈ T}

⇔ cl(S) = cl(T ).

Since L(M) = {cl(X)|X ⊆ E}, it follows that the map φ that sends

∩S to cl(S) is an isomorphism between L(A) and L(M).
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It immediately follows that

Corollary 1.4.4. Let A be a central arrangement. Then the poset L(A)

of the intersections of the hyperplanes of A depends only on the matroid of

the arrangement M(A). Thus the matroid M(A) encapsulates the essential

information about A needed to define L(A) and the Orlik-Solomon algebra of

the arrangement.

Example 1.4.5. Let A be the central and essential arrangement of Example

1.3.31 with Hasse diagram of L(A)

(0, 0, 0)

{(0, 0, z)} {(0, y, 0)}{(0, y, y)} {(x, 0, 0)}{(x, 0, x)} {(x,−x, 0)}

{(0, y, z)} {(x, 0, z)} {(x, y, 0)}{(x, y, x+ y)} {(x,−x, z)}

V

Note that:

I(M) := {S ∈ S|S is independent} = {∅}∪S1∪S2∪(S3\{(H0, H3, H4), (H1, H2, H4)});
C(M) = {(H0, H3, H4), (H1, H2, H4), (H0, H1, H2, H3)}
and B(M) = S3\{(H0, H3, H4), (H1, H2, H4)}.
In order to construct the lattice of the flats ofM(A), first we have to compute

the rank and closure function of M(A).

r(∅) = 0

r((Hi)) = 1 ∀i;

r((Hi, Hj)) = r((H0, H3, H4)) = r((H1, H2, H4)) = 2 ∀i 6= j

r((Hi, Hj, Hk)) = r(X) = 3 ∀(i, j, k) /∈ {(0, 3, 4), (1, 2, 4)},

∀X ∈ S4 ∪ S5.
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Then

cl(∅) = ∅

cl({Hi}) = {Hi} ∀i

cl({Hi, Hj}) = {Hi, Hj} ∀{i, j} /∈ {{0, 3}, {0, 4}, {3, 4}, {1, 2}, {1, 4}, {2, 4}}

cl({Hi, Hj}) = {H0, H3, H4} ∀{i, j} ∈ {{0, 3}, {3, 4}, {0, 4}}

cl({Hi, Hj}) = {H1, H2, H4} ∀{i, j} ∈ {{1, 2}, {1, 4}, {2, 4}}

cl({H0, H3, H4}) = {H0, H3, H4}

cl({H1, H2, H4}) = {H1, H2, H4}

cl({Hi, Hj, Hk}) = cl(X) = A ∀{i, j, k} /∈ {{0, 3, 4}, {1, 2, 4}}

∀X ∈ S4 ∪ S5.

Finally we have:

L(M) ={∅} ∪ S1 ∪
{
{Hi, Hj} ∀{i, j} /∈ {{0, 3}, {0, 4}, {3, 4}, {1, 2}, {1, 4}, {2, 4}

}
∪

∪ {H0, H3, H4} ∪ {H1, H2, H4} ∪ S5.

The Hasse diagram of L(A) is

{H0, H1, H2, H3, H4}

{H1, H2, H4} {H1, H3}{H0, H1} {H2, H3}{H0, H2} {H0, H3, H4}

{H1} {H2} {H3}{H0} {H4}

∅

which is isomorphic to the Hasse diagram of of L(A).
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1.5 Cohomology of the complement M(A)

Definition 1.5.1. Let VC w C` be a complex vector space and A be an

arrangement in VC. Denote the complement of H as

MH := V \H

and the complement of A as

M = M(A) := V \
⋃
H∈A

H.

Note that, since V is an open smooth manifold of real dimension 2` and

M,MH are open in V , M,MH are open smooth manifolds of real dimension

2`. It follows that we can study theirs de Rham cohomology H∗(M ;Z) and

H∗(MH ;Z). All cohomology rings to follow have integer coefficients, and we

henceforth omit the Z from our notation.

Remark 1.5.2. The canonical generator of H1(C∗) ' Z in the de Rham

cohomology can be represented by the form 1
2πi
dlog(z). It follows that, since

MH is homotopy equivalent to C∗ via projection onto a complex line meeting

H transversely, H1(MH) ' H1(C∗) ' Z. Note that, for every H ∈ A, we

have a well-defined map

αH |MH
: MH −→ C∗.

It follows that we are allowed to give the next definitions.

Definition 1.5.3. For every H ∈ A, define on V the following logarithmic

form

$H =
1

2πi
dlog(αH).

We will denote $i, instead of $Hi , the logarithmic form of Hi ∈ A.

Let i and j be the inclusion maps i : MH −→ V and j : M −→ V .

Denote < $H > the cohomology class of $H in H1(MH) and [$H ] the

cohomology class of $H in H1(M).
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Remark 1.5.4. Let k be the inclusion map k : M −→MH , then

< $H >= H1
(
αH |∗MH

)( 1

2πi
dlog(z)

)
∈ H1(MH);

[$H ] = H1(k∗)(< $H >) ∈ H1(M).

Note that the cohomology classes [$H ] ∈ H1(M) determine a homomor-

phism of graded algebras ϑ : E → H∗(M) sending eH 7−→ [$H ].

Proposition 1.5.5. The map ϑ defined above, descends to a homomorphism

of graded algebras θ : A→ H∗(M).

Proof. It suffice to prove that ϑ(I) = 0. Let S = {Hi1 , . . . , Hik} be a depen-

dent set and consider {αi1 , . . . , αik} the set of the correspondent linear depen-

dent functionals. Without loss of generality, we can suppose αik =
∑k−1

j=1 cjαij

where cj ∈ C for every j, then $ik := 1
2πi

dαik
αik

= 1
αik

∑k−1
j=1 cjαij$ij .

Thus

ϑ(∂eS) :=
k∑
j=1

(−1)j−1ϑ(ei1 ∧ · · · ∧ êij ∧ · · · ∧ eik) =

=
k−1∑
j=1

(−1)j−1($i1 ∧ · · · ∧ $̂ij ∧ · · · ∧
1

αik
cjαij$ij)+

+ (−1)k−1[$i1 ∧ · · · ∧$ik−1
] =

=
k−1∑
j=1

(−1)j−1(−1)k−j−1 1

αik
cjαij [$i1 ∧ · · · ∧$ik−1

]+

+ (−1)k−1[$i1 ∧ · · · ∧$ik−1
] =

=
(

(−1)k−2

k−1∑
j=1

1

αik
cjαij + (−1)k−1

)
[$i1 ∧ · · · ∧$ik−1

] =

=
(

(−1)k−1
(
− 1

αik
αik + 1

))
[$i1 ∧ · · · ∧$ik−1

] =

= 0.
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1.5.1 Isomorphism between A(A) and H∗(M(A))

Our aim is to prove that the map θ of Proposition 1.5.5 is an isomorphism

of graded algebras. In order to do this we construct an exact sequence in

cohomology analogous to the one that we have construct with Orlik-Solomon

algebras in Theorem 1.3.37.

Let (A′,A,A′′) be the deletion restriction triple determined by the hyper-

plane Hn ∈ A. We denote the complements of these arrangements by M ′,M

and M ′′ respectively.

Remark 1.5.6. M ′′ = Hn\
⋃
i 6=n(Hi ∩Hn) = M ′ ∩Hn and M = M ′\M ′′.

Lemma 1.5.7. There exist two maps φ and ψ such that

... Hk(M ′) Hk(M) Hk−1(M ′′) Hk+1(M ′) ...
Hk(i∗M ) φ ψ

is a long exact sequence in cohomology, where iM : M −→M ′ is the inclusion

map.

Proof. By the long exact sequence of the pair (M ′,M),

... Hk(M ′) Hk(M) Hk+1(M ′,M) Hk+1(M ′) ...
Hk(i∗M ) Hki Hk+1j

it is enough to find an isomorphism Hk−1(M ′′) ' Hk+1(M ′,M).
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Since M ′′ = M ′ ∩Hn, we can consider a tubular neighborhood N of M ′′

in M ′ and N0 := N\M ′′. For example, in the arrangement of Example 1.1.9,

we would have:

Figure 1.3: Tubular neighborhood of M ′′ = M ′ ∩H3.

It follows that there exists a vector bundle ξ = (N, π,M ′′) of rank 1 such

that the restriction on N0 is a bundle with fibre homeomorphic to C∗. Since

both bundles are restriction of trivial bundles over Hn, it follows that they

are trivial and (N,N0) = M ′′ × (C,C∗) up to homeomorphism. Thus

H∗(N,N0) = H∗(M ′′)⊗H∗(C,C∗).

For every k there is an isomorphism τ : Hk(M ′′) −→ Hk+2(N,N0) called

Thom isomorphism (for further information see [BT95, Chapter 6]).

Since M ′\N ⊆M ⊆M ′, by excision we have

Hk(M ′,M) ' Hk(M ′\(M ′\N),M\(M ′\N))

and since M\(M ′\N) = N\M ′′ = N0, we have an isomorphism

r : Hk(M ′,M) −→ Hk(N,N0).

Thus if suffice to define φ := τ−1 ◦ r ◦Hki and ψ = Hk+1j ◦ r−1 ◦ τ.
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Now we can finally conclude that

Theorem 1.5.8. The map θ : A → H∗(M) is an isomorphism of graded

algebras.

Proof. We use induction on |A|. If A = ∅, A ' H∗(M) = Z and

θ : A −→ H∗(M) is the identity map. If A 6= ∅, we can consider the deletion

restriction triple (A′,A,A′′) determined by the last hyperplane Hn and we

have already proved in Theorem 1.3.37 that, for every k, the sequence

0 A′k Ak A′′k 0î ĵ

is exact. Let’s consider the following commutative diagram for every k.

0 A′k Ak A′′k 0

0 Hk(M ′) Hk(M) Hk−1(M ′′) 0

î

θ′

ĵ

θ θ′′

Hk(i∗M ) φ

By induction hypothesis, θ′ and θ′′ are isomorphisms. If we prove that

the second row is exact, then, thanks to the five lemma, we can conclude

that θ is an isomorphism too. From Lemma 1.5.7 we know that the second

row is exact in Hk(M). Since the first row is exact in A′′k, θ
′′ ◦ ĵ is surjective.

It follows from the commutativity of the diagram that θ ◦ ψ is surjective,

thus φ is too and the second row is exact in Hk−1(M ′′). Again from Lemma

1.5.7, Kerψ = Imφ = Hk−1(M ′′) i.e. ψ = 0. It immediately follows that

KerHk(i∗M) = Imψ = 0 and then the second row is exact in Hk(M ′).

Corollary 1.5.9. The cohomology classes [$H ] generate H∗(M).

Remark 1.5.10. In other words, the cohomology algebra H∗(M(A)) is iso-

morphic to the algebra A with

� A generated by {aS; S independent set}. The degree of aS is |S|.
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� The following types of relations

1. For any two generators aS and aS′ ,

aSaS′ =

0 if S t S ′ is a dependent set

(−1)`(S,S
′)aStS′ otherwise

where, for C = {c1 < · · · < cl} and D = {d1 < · · · < dh}, `(C,D)

denote the lenght of the permutation that takes

(C,D) = {c1, . . . , cl, d1, . . . , dh} into C ∪D.

2. For every circuit C,

∂(aC) =
∑
Hj∈C

(−1)j−1aC\Hj = 0.

1.5.2 Consequences

In Section 1.4 we have seen that the Orlik-Solomon algebra A(A) depends

only on the matroid M(A). Thanks to Theorem 1.5.8 we can say that also

the cohomology of M(A) is completely determined by the matroid M(A).

Since the complement of a hyperplane `-arrangement in V ' C` is a

manifold of real dimension 2`, we know that Hk(M(A)) = 0, for every k > 2`.

Moreover, thanks to Theorem 1.5.8, we can also state that

Corollary 1.5.11.

Hk(M(A)) = 0, for every k > `.

Definition 1.5.12. The Poincaré polynomial of the complement is

defined as

Poin(M(A), t) =
∑
p≥0

bp(M)tp,

where, for every p, bp(M) = rank(Hp(M)) is the p-th Betti number of M .
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Theorem 1.5.13. Let A be a complex arrangement. Then

Poin(M(A), t) = π(A, t).

where π(A, t) is the Poincaré polynomial of A.

In particular

bp(M) =
∑
X∈Lp

(−1)pµ(X).

Example 1.5.14. Let A be the arrangement of Example 1.3.31, in which we

have already computed {aS;S ∈ nbc(A)} the broken circuit basis of A(A),

with

nbc(A) = ∅ ∪ S1 ∪ S2\{(H2, H4), (H3, H4)}∪

∪ {(H0, H1, H2), (H0, H1, H3), (H0, H1, H4), (H0, H2, H3)}.

Since A(A) is a graded algebra isomorphic to H∗(M(A)),

b0 = 1 b1 = 5 b2 =

(
5

2

)
− 2 = 8 b3 = 4.

If we compute bp using Theorem 1.5.13 we obtain the same results. In fact

(0, 0, 0)

{(0, 0, z)} {(0, y, 0)}{(0, y, y)} {(x, 0, 0)}{(x, 0, x)} {(x,−x, 0)}

{(0, y, z)} {(x, 0, z)} {(x, y, 0)}{(x, y, x+ y)} {(x,−x, z)}

V∑
X∈L0

(−1)0µ(X) = (−1)0(1) = 1;∑
X∈L1

(−1)µ(X) = 5(−1)(−1) = 5;∑
X∈L2

(−1)2µ(X) = 4(−1)2(1) + 2(−1)2(2) = 8;∑
X∈L3

(−1)3µ(X) = (−1)3µ((0, 0, 0)) =
∑

Z<(0,0,0) µ(Z) = 1− 5 + 8 = 4.
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Chapter 2

Complex tori

Definition 2.0.1. The d-dimensional complex torus is the set T := (C∗)d

of d-tuples of non-zero complex numbers. This is a group under coordinate-

wise multiplication.

Let’s now consider the surjective group homomorphism f : C −→ C∗

such that f(z) = exp(2πiz). Since Ker(f) = Z, C/Z ' C∗. It immediately

follows that exists a group isomorphism f̃ such that Cd/Zd ' (C∗)d.

2.1 Characters of the torus

Definition 2.1.1. A character of (C∗)d is a group homomorphism

f : (C∗)d −→ C∗.

Denote Λ the set of characters of (C∗)d.

Definition 2.1.2. Define C[t±1
1 , . . . , t±1

d ] the ring consisting of Laurent

polynomials

f(t1, . . . , td) :=
∑

(a1,...,ad)∈Zd
λ(a1,...,ad)t

a1
1 . . . tadd

with finitely many λ(a1,...,ad) 6= 0.
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Proposition 2.1.3. Let f : (C∗)d −→ C∗ be a Laurent polynomial.

f is a character of (C∗)d if and only if it is a Laurent monomal, i.e. for

every t ∈ (C∗)d,

f(t1, . . . , td) =
d∏
i=1

taii

with a ∈ Zd.

Proof. ⇐: It is immediate to verify since, for every t, s ∈ (C∗)d,

f(ts) = (t1s1)a1 . . . (tdsd)
ad = ta11 . . . tadd s

a1
1 . . . sadd = f(t)f(s).

⇒: Let s ∈ (C∗)d and define ms the multiplication operator

ms : Λ −→ Λ

f 7−→ f̃

such that f̃(t) := f(st). If f is a character of (C∗)d, it is an eigenvector for

the operator ms of eigenvalue f(s), in fact ms(f)(t) = f(s)f(t).

In particular, if a, b ∈ Zd with a 6= b, then the characters
∏d

i=1 t
ai
i and

∏d
i=1 t

bi
i

are eigenvectors for ms of distinct eigenvalues.

It follows that there exist λ ∈ C∗, a ∈ Zd such that

f = λ
d∏
i=1

taii .

In fact, let f(t) := λa
∏
taii + λb

∏
tbii and suppose a 6= b. Since f is a

eigenvector of ms, there exists c ∈ C∗ such that ms(f) = cf . Since ev-

ery monomial of the form
∏d

i=1 t
ai
i is an eigenvector of ms, if follows that

there exist c1, c2 ∈ C∗ such that ms(f)(t) = λams(
∏
taii ) + λbms(

∏
tbii ) =

λac1

∏
taii + λbc2

∏
tbii . Thus c1 = c = c2 that is absurd since a 6= b.

We conclude noting that, since f is a non-zero group homomorphism,

f(1) = 1, then λ = 1.
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Looking only at characters that lie in C[t±1
1 , . . . , t±1

d ], so we can say that

Corollary 2.1.4. The set Λ of characters of (C∗)d is an abelian group under

coordinatewise multiplication, naturally isomorphic to Zd.

Proof. It immediately follows from Proposition 2.1.3 that the mapping

(a1, . . . , ad) 7−→ e(a1,...,ad) :=
d∏
i=1

taii

is a group isomorphism between the additive group Zd and the multiplicative

group Λ.

Example 2.1.5. Consider two characters on (C∗)2 −→ C∗:

(t1, t2) 7→ (t32) (t1, t2) 7→ (t−1
1 t22).

The first is identified with (0, 3) ∈ Z2 and the second one

with (−1, 2) ∈ Z2. Their sum is the character (t1, t2) 7→ (t−1
1 t52) which is

identified with (−1, 5) = (0, 3) + (−1, 2) ∈ Z2.

Definition 2.1.6. A character χ of (C∗)d viewed as an element (a1, . . . , ad)

of Zd, is called primitive if GCD{a1, . . . , ad} = 1.

Example 2.1.7. Consider again the characters on (C∗)2 −→ C∗:

(t1, t2) 7→ (t32) (t1, t2) 7→ (t−1
1 t22).

It is obvious that the first one isn’t primitive (GCD{0, 3} = 3) while the

second is.

2.2 Fundamental group and de Rham coho-

mology ring

Since (C∗)d is a d-dimensional complex manifold, it is a 2d-dimensional

real manifold and as such we can compute its de Rham cohomology.
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First we introduce a very important statement that will be very useful in the

computation of the fundamental group and the coomology groups of (C∗)d

(see Appendix C for the definition of strong deformation retract).

Proposition 2.2.1. S1 is a strong deformation retract of C∗.

In particular S1 and C∗ are homotopy equivalent.

Proof. If we take

r : C∗ −→ S1

z 7−→ z
||z|| ,

we immediately see that r(z) = z for every z ∈ S1, and then r is the

retraction wanted.

We can conclude considering

F : C∗ × [0, 1] −→ C∗

(z, t) 7−→ tz + (1− t) z
||z|| .

In fact, for every z ∈ C∗ and for every a ∈ S1, we have that

� F (z, 0) = z
||z|| = (i ◦ r)(z);

� F (z, 1) = z = IdC∗(z);

� F (a, t) = a ∀t ∈ [0, 1].

Moreover, through F |S1×[0,1], S
1 and C∗ are homotopic equivalent.

Corollary 2.2.2.

π1(S1) ' π1(C∗),

H∗dR(S1) ' H∗dR(C∗).
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Recall that π1(S1) ' Z, Hk
dR(S1) ' Z ∀k = 0, 1 and Hk

dR(S1) ' 0

∀k 6= 0, 1. We can now easily compute the fundamental group and the de

Rham cohomology groups of the torus T = (C∗)d, using basic properties of

algebraic topology. In fact,

Proposition 2.2.3.

π1(T ) = Zd.

Proof. For every z = (z1, . . . , zd) ∈ T = (C∗)d:

π1(T, z) ' π1(C∗, z1)× · · · × π1(C∗, zd) '

' π1

(
S1,

z1

||z1||

)
× · · · × π1(S1,

zd
||zd||

) '

' Z× · · · × Z '

' Zd.

Proposition 2.2.4.

Hk
dR(T ) ' Z(dk) ∀k ≤ d.

Proof. Thanks to Corollary 2.2.2 and Kunneth formula, we obtain, for every

k:

Hk
dR(T ) =

⊕
i1+···+id=k

H i1
dR(C∗)⊗ · · · ⊗H id

dR(C∗) '

'
⊕

i1+···+id=k

H i1
dR(S1)⊗ · · · ⊗H id

dR(S1) '

'
⊕

i1+···+id=k

Z =

= Z(dk).
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Remark 2.2.5. In order to study the ring structure of H∗dR(T ), we must

recall that H∗dR(S1) ' Λ(x) with deg(x) = 1. Thanks to Kunneth formula,

we have that H∗dR((C∗)d) ' H∗dR(C∗)⊗H∗dR((C∗)d−1), then, by induction we

have that H∗dR((C∗)d) ' Λ(x1, . . . , xd) with deg(xi) = 1 ∀i ∈ {1, . . . , d}.
Thus

Hk
dR(T ) ' Λk(x1, . . . , xd) =< {xi1 ∧ · · · ∧ xik , with i` 6= im ∀` 6= m} > .

This means that every k-form of the torus can be written as the wedge of k

different 1-forms. Then H∗dR(T ) = Λ(H1
dR(T )) is generated in degree one.

Example 2.2.6. Let T = {(t, s) ∈ (C∗)2} be the 2 dimensional complex

torus.

H0
dR(T ) '< [1] >= Z,

H1
dR(T ) =<

[
1

2πi

dt

t

]
,

[
1

2πi

ds

s

]
>=:< [ψ1], [ψ2] >,

H2
dR(T ) =<

[
1

2πi

dt

t

]
∧
[

1

2πi

ds

s

]
>=:< [ψ1 ∧ ψ2] > .

2.3 Coverings

In order to study the coverings of T = (C∗)d, we have to recall a funda-

mental theorem in algebraic topology.

Theorem 2.3.1. Let X be a topological space path connected and locally path

connected such that there exists a universal covering q : X̃ −→ X. Then, for

every x ∈ X and for every subgroup H < π1(X, x), there exists an unique

covering p : E −→ X and a point e ∈ p−1(x) such that H = p∗π1(E, e).

Moreover

deg(p) = [π1(X, x) : H].
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Corollary 2.3.2. If p : U −→ T is a finite covering, then U = (C∗)d.

Proof. We want to prove that, for every H < π1(T ) of finite index, there

exists a finite covering p : (C∗)d −→ T such that p∗π1((C∗)d) = H, then,

thanks to the uniqueness of the finite covering we conclude.

Since π1(T ) ' Zd, it follows that every subgroup of finite index H of π1(T )

is isomorphic to Zd, then if {v1, . . . , vd} is a basis of H and {e1, . . . , ed} is the

canonical basis of Z, we have that

Zd ' H ↪→ Zd

vi 7−→ ai,1e1 + · · ·+ ai,ded.

This implies that for every H < Zd there exists A ∈ GLd(Z) such that

H = Im(A). Now we conclude considering

p : (C∗)d −→ T

(u1, . . . , ud) 7−→
(
u
a1,1
1 . . . u

a1,d
d , . . . , u

ad,1
1 . . . u

ad,d
d

)
which is a finite covering of T with p∗(π1(U)) = H.
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Chapter 3

Toric arrangements

3.1 The poset of layers L(A)

Definition 3.1.1. Let T = (C∗)d be a complex torus, and let Λ be the set

of characters of T .

Consider a list ~χ = (χ1, . . . , χn) ⊆ Λd and ~b = (b1, . . . , bn) ⊆ (C∗)d. The

toric arrangement defined by ~χ and ~b is

A = {Hi; i ∈ {1, . . . , n}},

where Hi := χ−1
i (bi) is the levet set of χi at level bi. We call every Hi a

hypertorus. We will always denote by n the number of hypertori in the

arrangement and d the dimension of the complex torus.

Remark 3.1.2. Every toric arrangement can be described by primitive

characters. In fact, if χ = (a1, . . . , ad) is a non-primitive character, there ex-

ists a primitive character χ′ such that χ = mχ′ with m := GCD{a1, . . . , ad},
then χ−1(b) = {(χ′)−1(c); cm = b}.
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Example 3.1.3. Consider the character χ such that (t, s) 7→ s3. It is non-

primitive since, viewed as an element of Z2, χ = (0, 3) = 3(0, 1) = 3χ′.

χ−1(1) = {(t, s) ∈ (C∗)2; s3 = 1} =

= {(t, s) ∈ (C∗)2; s = e
2
3
πi} ∪ {(t, s) ∈ (C∗)2; s = e

4
3
πi} ∪ {(t, s) ∈ (C∗)2; s = 1} =

= (χ′)−1(e
2
3
πi) ∪ (χ′)−1(e

4
3
πi) ∪ (χ′)−1(1).

Definition 3.1.4. A toric arrangement is central if ~b = (1, . . . , 1) i.e. if Hi

is the kernel of χi for all i.

Definition 3.1.5. Let A be a central toric arrangement defined by ~χ =

(χ1, . . . , χn) with χi(t1, . . . , td) = tai11 . . . taidd . Define, in Cd, the hyperplane

arrangement

Ã := {H̃i
k
; k ∈ Z, i = 1 . . . , n}

with

H̃i
k

:= {(x1, . . . , xd) ∈ Cd; ai1x1 + · · ·+ aidxd = k}.

Such hyperplane arrangement is called periodic.

Remark 3.1.6. The family of hyperplanes {H̃k; k ∈ Z} is the preimage of

H in the universal cover of (C∗)d. In fact, in the previous section, we have

seen that there is a group isomorphism f̃ such that Cd/Zd ' (C∗)d. It follows

that

f̃−1(H) = {(x1, . . . , xd) ∈ Cd|(e2πix1)a1 . . . (e2πixd)ad = 1} =

= {(x1, . . . , xd) ∈ Cd|a1x1 + · · ·+ adxd = k ∀k ∈ Z} =

=
⋃
k∈Z

(H̃k).

Example 3.1.7. Let T = (C∗)2 and consider the central toric arrangementA
defined by ~χ = (χ1, χ2, χ3) with χ1(t, s) = t, χ2(t, s) = s and χ3(t, s) = t2s−1.
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We can then consider the hyperplane arrangement Ã given by the hyper-

planes, for every k ∈ Z, H̃1
k

:= {(x, y) ∈ C2|x = k}, H̃2
k

:= {(x, y) ∈ C2|y =

k} and H̃3
k

:= {(x, y) ∈ C2|2x− y = k}.

Figure 3.1: Ã /Z2

−−→ A

Definition 3.1.8. A toric arrangement A is unimodular if, for every A ⊆
{H1, . . . Hn}, ∩Hi∈AHi is either connected or empty.

Example 3.1.9. Let T = (C∗)2 be the 2-dimensional torus andA = {H1, H2}
where H1 := {(t, s) ∈ (C∗)2|t = 1}, H2 := {(t, s) ∈ (C∗)2|s = 1}. It is

obviously unimodular since H1 ∩H2 = {(1, 1)} is connected.

Figure 3.2: Ã /Z2

−−→ A
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Take, instead, A′ = {H1, H2} where H1 = {(t, s) ∈ (C∗)2|ts = 1},
H2 = {(t, s) ∈ (C∗)2|ts−1 = 1}. A′ is not unimodular sinceH1∩H2 = {(1, 1), (−1,−1)}.

Figure 3.3: Ã′ /Z2

−−→ A′

Definition 3.1.10. Let A be a toric arrangement on T = (C∗)d and let

L(A) be the set of all connected components of non-empty intersection of

hypertori of A. We agree that L(A) includes T as the intersection of the

empty collection of hypertori.

The elements of L(A) are called layers of the arrangement.

Define a partial order on L(A) by the reverse inclusion:

X ≤ Y ⇔ Y ⊆ X.

Define also a rank function on L(A) such that, for every X ∈ L(A), r(X)

is the lenght of any chain T < · · · < X.

Definition 3.1.11. A toric arrangement A is essential if the maximal ele-

ments in L(A) are points.

From now on we will consider only essential arrangement with ≺ a fixed

total order on it.
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3.2 The arithmetic matroid M(A)

Since Λ ' Zd, we can identify every character of T = (C∗)d with an ele-

ment of Zd. We say that a subset of hypertori is independent if the defining

characters of these hypertori are linearly independent over Q.

For every toric arrangement A = {H1, . . . , Hn} in T = (C∗)d we can con-

sider the pair (A, {S ⊆ {H1, . . . , Hn} with S independent}) that is a matroid

called matroid of the toric arrangementM :=M(A).

Definition 3.2.1. Let A = {H1, . . . , Hn} be a toric arrangement and S a

p-tuple of hypertori of A. Define [S] the integer d×|S|-matrix whose columns

are the characters in S viewed as elements of Zd. The columns appear in the

total order ≺ chosen on A.

We say that S is a circuit if it is minimally dependent, that is, S is linearly

dependent but any proper subset of S is not.

Let min(S) be the minimal element of S with respect to ≺. S is a broken

circuit if ∃K ∈ A;K ≺ min(S) and (K,S) is a circuit.

S is a no-broken-circuit set (nbc set) if it does not contain any broken

circuit. Denote nbc(A) the set of all nbc sets.

Remark 3.2.2. � S ⊆ {H1, . . . , Hn} is an independent set if and only if

rank([S]) = |S|;

� {S ⊆ {H1, . . . , Hn} with S circuit} = C(M) the set of circuits of the

matroid M(A);

� every nbc-set is an independent set.
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Example 3.2.3. Let T = (C∗)2 be the 2-dimensional torus andA = {H1, H2, H3, H4}
where H1 := {(t, s) ∈ (C∗)2|t = 1}, H2 := {(t, s) ∈ (C∗)2|s = 1},
H3 := {(t, s) ∈ (C∗)2|ts = 1} and H4 := {(t, s) ∈ (C∗)2|ts−1 = 1}.

Figure 3.4: Ã′ /Z2

−−→ A′

The Hasse diagram of L(A) is:

(1, 1) (−1,−1)

H1 H2 H3 H4

(C∗)2

Note that every hypertorus and every pair of hypertori is independent.

Moreover C(M) = {{H1, H2, H3}, {H1, H2, H4}, {H1, H3, H4}, {H2, H3, H4}},
the broken circuits are: {H2, H3} {H2, H4} {H3, H4} and

nbc(A) = {∅, {H1}, {H2}, {H3}, {H4}, {H1, H2}, {H1, H3}, {H1, H4}}.
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Definition 3.2.4. Let A = {H1, . . . , Hn} a toric arrangement in (C∗)d.

For every subset S of hypertori of A, viewed as a subset of Λ, define

ΛS :=< S >⊆ Λ,

ΛS := (Q⊗Z ΛS) ∩ Λ,

m(S) := [ΛA : ΛA] multiplicity of S,

where < S > is the Z−module generated by S.

For S = () we agree that m(S) = 1.

Remark 3.2.5. m(S) is the greatest common divisor of all minors of [S]

with size equal to the rank of [S]. In particular if [S] is a non singular square

matrix, m(S) = |det([S])|.

Example 3.2.6. Take S =

{(
0

1

)
,

(
3

1

)}
⊆ Z2.

ΛS =

{
m1

(
0

1

)
+m2

(
3

1

)
;m1,m2 ∈ Z

}
=

{(
3m2

m1 +m2

)
;m1,m2 ∈ Z

}
⊆ Z2,

ΛS =

{
q1

(
0

1

)
+ q2

(
3

1

)
; q1, q2 ∈ Q

}
∩Z2 =

{(
3q2

q1 + q2

)
; q1, q2 ∈ Q

}
∩Z2.

Since Z ⊆ Q, obviously ΛS ⊆ ΛS, but ΛS ( ΛS since, for example

2
3

(
0

1

)
+ 1

3

(
3

1

)
∈ ΛS\ΛS.

Since ΛS ' 3Z⊕ Z and ΛS ' Z2, we have that

[ΛS : ΛS] =
[ΛS : Λ]

[ΛS : Λ]
= 3,

that equals ∣∣∣∣∣det
[

0 3

1 1

]∣∣∣∣∣ .
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We now introduce the definition of arithmetic matroid.

Definition 3.2.7. A tripleM = (E, I,M) is an arithmetic matroid if (E, I)

is a matroid and m : P(E) −→ N is a function such that:

� if A ⊆ E, v ∈ E is dependent on A (i.e. rM(A ∪ {v}) = rM(A)), then

m(A ∪ {v}) divides m(A).

� if A ⊆ E, v ∈ E is independent on A (i.e. rM(A ∪ {v}) = rM(A) + 1),

then m(A) divides m(A ∪ {v}).

� if A ⊆ B ⊆ E with B = A t F t T and, for every A ⊆ C ⊆ B,

rM(C) = rM(A) + |C ∩ F |, then

m(A)m(B) = m(A ∪ F )m(A ∪ T ).

� if A ⊆ B ⊆ E with rM(A) = rM(B), then∑
A⊆T⊆B

(−1)|T |−|A|m(T ) ≥ 0.

� if A ⊆ B ⊆ E with r∗M(A) = r∗M(B), then∑
A⊆T⊆B

(−1)|T |−|A|m(E\T ) ≥ 0

with r∗M the rank function of the matroid M∗ on E with bases the

complement of the bases of M (M∗ is called dual of M).

We say that an arithmetic matroid M = (E, I,m) is GCD if, for every

A ⊆ E, m(A) = GCD({m(B); B ⊆ A and |B| = rM(B) = rM(A)}).

Proposition 3.2.8. Let A be a toric arrangement on (C∗)d. The matroid

of the arrangement M(A) together with the function m of Definition 3.2.4,

determines a arithmetic matroid.

In particular, thanks to Remark 3.2.5, it is a GCD arithmetic matroid.
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Remark 3.2.9. It follows from the properties of the arithmetic matroids

(see [DM13]), that m(S) is the number of connected components of
⋂
Hi∈S Hi

when this intersection is non-empty. In particular, if A is unimodular, then

m(S) = 1 for all S.

Remark 3.2.10. The poset of layers L(A) determines the arithmetic ma-

troidM(A) = (A, {S ⊆ A|S independent},m). In fact, for every S, if XS is

the set of minimal upper-bounds in L(A), we have that

� S is independent if and only if r(x) = |S| for every x ∈ XS;

� m(S) = |XS|.

Example 3.2.11. Let T = (C∗)2 be the 2-dimensional torus and

A = {H1, H2, H3} the central not unimodular toric arrangement with

H1 := {(t, s) ∈ (C∗)2|t = 1}, H2 := {(t, s) ∈ (C∗)2|s = 1} and

H3 := {(t, s) ∈ (C∗)2|t3s = 1}.

Figure 3.5: Ã /Z2

−−→ A

We want to compute the arithmetic matroidM(A). Thanks to the Hasse

diagram of L(A),

{p} {q} {r}

H1 H2 H3

T
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we can immediately say that {H1, H2, H3} is the only dependet set.

In order to compute the multiplicity function, thanks to Remark 3.2.5, we

need to construct the matrices of every tuple of hypertori

[{H1, H2, H3}] =

[
1 0 3

0 1 1

]
, [{H1, H2}] =

[
1 0

0 1

]
,

[{H1, H3}] =

[
1 3

0 1

]
, [{H2, H3}] =

[
0 3

1 1

]
.

Then we obtain

m({H1}) = m({H2}) = m({H3}) = 1, indeed H1, H2, H3 are connected;

m({H1, H2}) = |det[{H1, H2}]| = 1 as well as m({H1, H3}) = 1, indeed H1 ∩
H2 = H1 ∩H3 = (1, 1) =: p connected;

m({H2, H3}) = |det[{H2, H3}]| = 3, indeed H2∩H3 = {p, q := (e2/3πi, 1),r :=

(e4/3πi,1))} that has 3 connected components;

m({H1, H2, H3}) = GCD{1, 2} = 1, indeed H1 ∩H2 ∩H3 = {p} connected.

Thanks to Remark 3.2.10 we can also construct the arithmetic matroid

M(A) looking only the poset L(A). In fact,

X{H1} = {H1}, r(H1) = 1 = |{H1}| and m(H1) = |X{H1}|. The same argu-

ment for H2 and H3.

For j ∈ {2, 3}, X{H1,Hj} = {p}, r(p) = 2 = |{H1, Hj}| and m({H1, Hj}) =

1 = |{p}|. X{H2,H3} = {p, q, r}, r(p) = r(q) = r(r) = 2 = |{H2, H3}| and

m({H2, H3}) = 3 = |{p, q, r}|.
X{H1,H2,H3} = {p}, r(p) = 2 6= 3 = |{H1, H2, H3}| and m({H1, H2, H3}) =

1 = |{p}|.

Lemma 3.2.12. If C = {Hi1 , . . . , Hip} is a circuit, then there exist {c1, . . . , cp}
with cj ∈ {−1,+1} ∀j ∈ {1, . . . , p} such that

p∑
j=1

cjm(C\{Hij})χij = 0

where every χij is viewed as element of Zd.
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It can be proved that the coefficients cj depend only on L(A) (see [Pag19a]).

Corollary 3.2.13. If A is unimodular, then every circuit can be realized by

a minimal linear dependency

p∑
j=1

cjχij = 0

where cj ∈ {−1,+1} for all j ∈ {1, . . . , p}.

Proof. It immediately follows from Lemma 3.2.12 and Remark 3.2.9.

Example 3.2.14. Let A be the non-unimodular toric arrangement of Ex-

ample 3.2.11. We have that χ1 =

(
1

0

)
, χ2 =

(
0

1

)
and χ3 =

(
3

1

)
. Since

C = {H1, H2, H3} is the unique circuit of A, we have that, for c1 = +1,

c2 = +1, c3 = −1,

c1m(C\{H1})χ1 + c2m(C\{H2})χ2 + c3m(C\{H3})χ3 =

= 3c1

(
1

0

)
+ c2

(
0

1

)
+ c3

(
3

1

)
= 0.

3.3 Cohomology of the complement M(A)

Definition 3.3.1. Let A be a toric arrangement in T = (C∗)d. Define the

complement of A by

M(A) = T\
⋃
H∈A

H

and the Poincaré polynomial of the complement by

Poin(M(A), t) =
d∑
j=0

bj(M)tj

where, for every j, bj(M) := rank(Hj
dR(M)) is the j-th Betti number of

M(A).
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Definition 3.3.2. Let A be a toric arrangement in (C∗)d.

Given a point p ∈ T , we define A[p] the linear arrangement in the tangent

space Tp(T ) as the arrangement given by the hyperplane Tp(H) for all H ∈ A
such that p ∈ H.

For W ∈ L(A), a point p ∈ W is called generic if, for any H ∈ A such that

W * H, we have that p /∈ H. In other words, p ∈ W is generic if it does not

lie in any other hypertorus.

We defineA[W ] as the hyperlane arrangementA[p] for a generic point p ∈ W .

Note that A[W ] is well defined since it does not depend on the choice of

the generic point p.

Example 3.3.3. Let A be the toric arrangement on T = (C∗)2 of Example

3.2.11. For every point p0 in any hyperplane H in A, we identify Tp0(T ) with

C2 with coordinates (t̄, s̄).

Let H̄1 := {(t̄, s̄) ∈ C2|t̄ = 0}, H̄2 := {(t̄, s̄) ∈ C2|s̄ = 0} and

H̄3 := {(t̄, s̄) ∈ C2|3t̄+ s̄ = 0}.
We have that A[p] = {H̄1, H̄2, H̄3}, A[q] = A[r] = {H̄2, H̄3}.
For W = H1, every point p0 6= p = (1, 1) is generic and we have that

A[H1] = A[p0] = {H̄1}.

A[p] A[q] = A[r] A[H1]
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The following lemma is essentially proved in Theorem 4.2 of [DCP05].

Lemma 3.3.4. If A is a toric arrangement in T = (C∗)d,

Poin(M(A, t)) =
d∑
j=0

Nj(t+ 1)d−jtj,

where, for j ∈ {0, . . . , d},

Nj :=
∑
L layer
|L|=j

|nbcj(A[L])|

and nbcj is the set of nbc of cardinality j in the arrangement A[L].

In particular,

bj =

j∑
i=0

Ni

(
d− i
j − i

)
.

Example 3.3.5. Let A be the toric arrangement on T = (C∗)2 of Example

3.2.11. We want to compute the Poincaré polynomial of the complement.

First we have to compute A[W ] for every W ∈ L(A). The Hasse diagram of

L(A) is:

{p} {q} {r}

H1 H2 H3

T

A[T ] = ∅

A[H1] = {H̄1} A[H2] = {H̄2} A[H3] = {H̄3}

A[p] = {H̄1, H̄2, H̄3} A[q] = {H̄2, H̄3} A[r] = {H̄2, H̄3}.

Then

N0 = |nbc0(A[T ])| = |C2| = 1
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N1 = |nbc1(A[H1])|+ |nbc1(A[H2])|+ |nbc1(A[H3])| =

= |{H̄1}|+ |{H̄2}|+ |{H̄3}| = 3

N2 = |nbc2(A[p])|+ |nbc2(A[q])|+ |nbc2(A[r])| =

= |{H̄1, H̄2}, {H̄1, H̄3}|+ |{H̄2, H̄3}|+ |{H̄2, H̄3}| = 4.

Thus

b0 = N0 = 1 b1 = 2N0 +N1 = 5 b2 = N0 +N1 +N2 = 8.

and

Poin(M(A, t)) = 1 + 5t+ 8t2.

Logarithmic forms

Definition 3.3.6. Let A = {H1, . . . , Hn} a toric arrangement in (C∗)d.

For every i ∈ {1, . . . , n}, define the following logarithmic forms:

ωi :=
1

2πi
dlog(1− eχi), ψi :=

1

2πi
dlog(eχi),

ω̄i :=
1

2πi
dlog(1− eχi) +

1

2πi
dlog(1− e−χi).

For every S = {Hi1 , . . . , Hip} ⊆ {H1, . . . , Hn},

ωS := ωi1 ∧ · · · ∧ ωip ψS := ψi1 ∧ · · · ∧ ψip ω̄S := ω̄i1 ∧ · · · ∧ ω̄ip .

Lemma 3.3.7. For every i ∈ {1, . . . , n},

ω̄i = 2ωi − ψi.

Proof. If suffices to prove that ωi − ψi = ω̄i − ωi. Note that

ωi :=
1

2πi

eχi

eχi − 1
dlog(eχi) =

eχi

eχi − 1
ψi,

then

ωi − ψi =

(
eχi

eχi − 1
− 1

)
ψi =

1

2πi

1

eχi − 1
dlog(eχi) =

1

2πi
dlog(1− e−χi).
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3.3.1 Unimodular case

Let A be an unimodular toric arrangement in T = (C∗)d and C =

{H1, . . . , Hk} a circuit of A. Thanks to Corollary 3.2.13, we have that

k∑
j=1

cjχj = 0

where cj ∈ {−1,+1}. The aim of this subsection is to prove that:

k∏
j=2

(ω̄j + cjψj − ω̄j−1 + cj−1ψj−1) = 0.

In order to do it, we need to introduce two lemmas that deal with two

particular cases.

Lemma 3.3.8. If χ1 =
∑k

i=2 χi, then

ω2 . . . ωk = ω1

k−1∏
i=2

(ωi+1 − ωi + ψi)

Proof. For every fixed j̄ ∈ {2, . . . , k}, we consider the product∏k−1
i=2 (ωi+1 − ωi + ψi) without the factors ωj̄ and ψj̄, i.e.

j̄−2∏
i=2

(ωi+1 − ωi + ψi)(ω̂j̄ − ωj̄−1 + ψj̄−1)(ωj̄+1 − ω̂j̄ + ψ̂j̄)
k−1∏
i=j̄+1

(ωi+1 − ωi + ψi),

where the notationω̂j̄ and ψ̂j̄ indicate that ωj̄ and ψj̄ are omitted.

Since, for every i, ωi ∧ ωi = 0 and ωi ∧ ψi = 0, we obtain

j̄−1∏
i=2

(−ωi + ψi)
k−1∏
i=j̄

ωi+1,

then

ω1

k−1∏
i=2

(ωi+1 − ωi + ψi) =
k∑
j=2

ω1

(
j−1∏
i=2

(−ωi + ψi)
k−1∏
i=j

ωi+1

)
.
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Now, for every A ( C = {H1, . . . , Hk}, denote

ηA = η1 . . . ̂ηmax(C\A) . . . ηk with ηi = ηAi =

ωi if Hi ∈ A

ψi if Hi /∈ A

where Hmax(C\A) := max(C\A).

If max(C\A) = Hj, then {Hj+1, . . . , Hk} ⊆ A, thus

ηA = η1 . . . ηj−1ωj+1 . . . ωk = η1 . . . ηj−1

k−1∏
i=j

ωi+1.

It easily can be proved that

j−1∏
i=2

(−ωi + ψi) =
∑
A⊆C,

max(C\A)=Hj

(−1)|A≤j |η1 . . . ηj−1,

where A≤j := A ∩ {H1, . . . , Hj}. Then it follows that

ω1

k−1∏
i=2

(ωi+1−ωi+ψi) =
k∑
j=2

∑
H1∈A(C,

max(C\A)=Hj

(−1)|A≤j |−1ηA =
∑

H1∈A(C

(−1)|A≤max(C\A)|−1ηA.

Define

ϑ(1) :=
1

2πi
dlog(1−

k∏
j=2

eχj)

and, for every B ⊆ C ′ := {H2, . . . , Hk},

Φ
(1)
B := (−1)`(B,C\B)

∏
Hi∈B

ωi
∏

Hj∈C′\B,
Hj 6=max(C′\B)

ψjϑ
(1).

Since χ1 =
∑k

i=2 χi, we have that ϑ(1) = ω1 and

Φ
(1)
B = (−1)max(C\B)−1ηB∪{H1}.

In [DP11, eq. (15.3)] it has been proved that∑
B(C

(−1)|B|+kΦ
(1)
B = ω2 . . . ωk,

then, if we take A = B ∪ {H1}, then max(C\B) = max(C\A) and |B| =

|A|−1. Since k−1−max(C\A) = |A|− |A≤max(C\A)| we obtain the claimed

equality.
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Lemma 3.3.9. If
∑k

i=1 χi = 0, then

k−1∏
i=1

(ωi+1 − ωi + ψi) = 0

equivalently
k−1∏
i=1

(ω̄i+1 + ψi+1 − ω̄i + ψi) = 0

Proof. First we prove by induction on k that

ω2 . . . ωk = ω2

k−1∏
i=2

(ωi+1 − ωi + ψi).

For k = 2 it is immediate. If it is true for k = k̄, then it is true also for

k = k̄ + 1. In fact,

ω2

k̄∏
i=2

(ωi+1 − ωi + ψi) = ω2 . . . ωk̄(ωk̄+1 − ωk̄ + ψk̄) = ω2 . . . ωk̄ωk̄+1.

Now, if we denote χ′1 = −χ1, we have that χ′1 =
∑k

i=2 χi and then we

can rewrite the left-hand side of the last equation using Lemma 3.3.8 and we

obtain:

ω2

k−1∏
i=2

(ωi+1 − ωi + ψi) = ω2 . . . ωk = ω′1

k−1∏
i=2

(ωi+1 − ωi + ψi).

Collecting terms we have (ω2−ω′1)
∏k−1

i=2 (ωi+1−ωi +ψi) = 0. It follows that,

thanks to Lemma 3.3.7

0 = (ω2 − ω′1)
k−1∏
i=2

(ωi+1 − ωi + ψi)

= (ω2 −
1

2πi
dlog(1− e−χ1))

k−1∏
i=2

(ωi+1 − ωi + ψi)

= (ω2 − ω1 + ψ1)
k−1∏
i=2

(ωi+1 − ωi + ψi)

=
k−1∏
i=1

(ωi+1 − ωi + ψi).
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Now we can easily prove:

Proposition 3.3.10. If
∑k

j=1 cjχj = 0 where cj ∈ {−1,+1}, then

k∏
j=2

(ω̄j + cjψj − ω̄j−1 + cj−1ψj−1) = 0.

Proof. If we denote χ′i = ciχi for every i ∈ {1, . . . , k}, we obtain
∑k

i=1 χ
′
i = 0,

then, since ω̄′i = ω̄i and ψ′i = ciψi, thanks to Lemma 3.3.9 we conclude.

Example 3.3.11. Let T = (C∗)2 be the 2-dimensional torus and A′ the

unimodular arrangement defined by H1 := {(t, s) ∈ (C∗)2|t = 1},
H2 := {(t, s) ∈ (C∗)2|s = 1} and H3 := {(t, s) ∈ (C∗)2|ts = 1}.

Figure 3.6: Ã′ /Z2

−−→ A′

Following the calculus of Example 3.2.3, we have that {H1, H2, H3} is the

only circuit in A′. In this case we have that χ3 =

(
1

1

)
=

(
1

0

)
+

(
0

1

)
=

χ1 + χ2. Since

ω3 =
1

2πi
dlog(1− st) =

1

2πi

d(st)

st− 1
=

1

2πi

sd(t) + td(s)

st− 1
,
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and

ω2 − ω1 + ψ1 =
1

2πi
dlog(1− s)− 1

2πi
dlog(1− t) +

1

2πi
dlog(t)

=
1

2πi

d(s)

s− 1
− 1

2πi

d(t)

t− 1
+

1

2πi

d(t)

t

=
1

2πi

d(s)

s− 1
− 1

2πi

d(t)

t(t− 1)
,

it follows that, exactly as Lemma 3.3.8 states,

ω3(ω2 − ω1 + ψ1) =
−1

4π2

(
sd(t)

st− 1

d(t)

s− 1
+

td(s)

st− 1

d(t)

t(t− 1)

)
=

=
−1

4π2

(
(st− 1)d(t)d(s)

(st− 1)(s− 1)(t− 1)

)
=
−1

4π2

d(t)d(s)

(s− 1)(t− 1)
=

=
−1

4π2
dlog(1− t)dlog(1− s) =

= ω1ω2,

If we denote χ′3 := −χ3 we have that χ1 + χ2 + χ′3 = 0.

Note that, since ψ′3 = −ψ3 and ω̄′3 = ω̄3, we have that

ω′3 =
1

2
(ω̄′3 − ψ′3) =

1

2
(ω̄3 + ψ3) =

1

2
(ω̄3 − ψ3) + ψ3 = ω3 + ψ3 =

= ω3 − ψ′3.

Thus

0 = ω1ω2 − ω3(ω2 − ω1 + ψ1) = ω1ω2 − (ω′3 − ψ′3)(ω2 − ω1 + ψ1) =

= (ω1 − ω′3 + ψ′3)(ω2 − ω1 + ψ1),

that is exactly what Lemma 3.3.9 states.

Definition 3.3.12. Let C = {H1, . . . , Hk} a circuit of A.

For every A,B ⊆ C such that A ∩B = ∅, denote

η̄A,B :=
∏

Hi∈A∪B

η̄Ai with η̄Ai =

ω̄i if Hi ∈ A

ψi if Hi ∈ B
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Proposition 3.3.13. Let C = {H1, . . . , Hk} a circuit of A such that∑
Hj∈C ciχi = 0 where ci ∈ {−1,+1} for all i. Then

k∑
j=1

∑
A,B⊂C

C=AtBt{Hj}

(−1)|A≤j |cB η̄A,B = 0

where cB :=
∏

Hi∈B ci and A≤j = A ∩ {H1, . . . , Hj}.

In particular ∑
Hj∈C

∑
A,B⊂C

C=AtBt{Hj}
|B|even

(−1)|A≤j |cB η̄A,B = 0.

Proof. From Proposition 3.3.10, we have that
∏k

i=2(ω̄i+ciψi−ω̄i−1+ci−1ψi−1) =

0. Exactly like we have done in the proof of Lemma 3.3.8, we can rewrite this

equation as
k∑
j=1

j−1∏
i=1

(−ω̄i + ciψi)
k∏

i=j+1

(ω̄i + ciψi) = 0.

Expanding all the products we obtain exactly

k∑
j=1

∑
A,B⊂C

C=AtBt{Hj}

(−1)|A≤j |cB η̄A,B = 0. (3.1)

Moreover, for χ′i := −χi,
∑k

i=1 ciχ
′
i = 0, ψ′ = −ψ and ω̄′i = ω̄i. Then

k∑
j=1

j−1∏
i=1

(−ω̄i − ciψi)
k∏

i=j+1

(ω̄i − ciψi) = 0,

thus

0 =
k∑
j=1

∑
A,B⊂C

C=AtBt{Hj}

(−1)|A≤j |cB η̄
′
A,B =

k∑
j=1

∑
A,B⊂C

C=AtBt{Hj}

(−1)|A≤j |cB(−1)|B|η̄A,B.

Adding this to (3.1), we obtain

0 =
k∑
j=1

∑
A,B⊂C

C=AtBt{Hj}

(−1)|A≤j |cB η̄A,B
(
1 + (−1)|B|

)
.
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It immediately follows that∑
Hj∈C

∑
A,B⊂C

C=AtBt{Hj}
|B|even

(−1)|A≤j |cB η̄A,B = 0.

Theorem 3.3.14. Let A = {H1, . . . , Hn} be an essential unimodular toric

arrangement.

The rational cohomology algebra H∗(M(A),Q) is isomorphic to the algebra

E with

� E generated by {eA;B|A ∩ B = ∅, A t B is a independent set} . The

degree of eA;B is |A tB|.

� The following types of relations

1. For any two generators eA;B and eA′;B′,

eA;BeA′;B′ =

0 if A tB t A′ tB′ dependent

(−1)`(A∪B,A
′∪B′)eA∪A′;B∪B′ otherwise

where, for C = {c1 < · · · < cl} and D = {d1 < · · · < dh},
`(C,D) denote the lenght of the permutation that takes (C,D) =

{c1, . . . , cl, d1, . . . , dh} into C ∪D.

2. If
∑n

i=1 niχi = 0 where ni ∈ Z, then
∑n

i=1 nie∅;{Hi} = 0.

3. For every circuit C ⊆ {H1, . . . , Hn}, with associated linear depen-

dency
∑

Hi∈C niχi = 0 with ni ∈ Z, then∑
Hj∈C

∑
A,B⊂C

C=AtBt{Hj}
|B| even

(−1)|A≤j |cBeA;B = 0

where cB :=
∏

Hi∈B sgn ni.
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Proof. We want to prove that the map Φ given by eA;B 7−→ [η̄A,B] is well

defined.

� if A tB is an independent set, A and B are independent sets too.

� The elements [η̄W,A,B] satisfy the same relations. In fact

1. For η̄A,B and η̄A′,B′ , with AtBtA′tB′ independent set, we have

η̄A,B η̄A′,B′ =
∏

Hi∈A∪B

η̄Ai
∏

Hi∈A′∪B′
η̄A
′

i =

= (−1)`(A∪B,A
′∪B′)

∏
Hi∈A∪B∪A′∪B′

η̄Ai η̄
A′

i =

= (−1)`(A∪B,A
′∪B′)η̄A∪A′,B∪B′ .

2. If
∑n

i=1 niχi = 0, then

n∑
i=1

niη̄∅,Hi =
n∑
i=1

niψi =
n∑
i=1

nidlog(eχi) = d

(
n∑
i=0

log(eniχi)

)
=

= dlog

(
n∏
i=1

eniχi

)
= dlog

(
e
∑n
i=1 niχi

)
= 0.

3. it immediately follows from Proposition 3.3.13.

We will prove that Φ is bijective at the end of this chapter, in Theorem 3.3.55

that is a generalization of this theorem.

Remark 3.3.15. � Every generator of degree k can be written as the

product of k generators of degree one. In fact, if |A t B| = k, by

definition

η̄A,B = (−1)`(A,B)
∏
Hi∈A

ω̄i
∏
Hj∈B

ψj = (−1)`(A,B)
∏
Hi∈A

η̄Hi,∅
∏
Hj∈B

η̄∅,Hj .

This implies that every form in H∗(M(A),Q) is the product of 1-forms.
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� Among the generators of H∗(M(A),Q) there are the generators of

H∗(T,Q), in fact {η̄∅,i; i = 1, . . . , n} = {ψ1, . . . , ψn} generates H∗(T,Q)

since A is essential.

� This theorem gives a Orlik-Solomon-type presentation for the

cohomology algebra of an unimodular toric arrangement.

By Remark 1.5.10, the reason for this name is clear.

Example 3.3.16. Let A be the toric arrangement of Example 3.3.11.

� The generators ofH∗(M(A),Q) can be represented by {ω̄1, ω̄2, ω̄3, ψ1, ψ2, ψ3},
with

ω1 =
1

2πi
dlog(1−t) =

1

2πi

d(t)

t− 1
ψ1 =

1

2πi
dlog(t) =

1

2πi

d(t)

t

ω2 =
1

2πi
dlog(1−s) =

1

2πi

d(s)

s− 1
ψ2 =

1

2πi
dlog(s) =

1

2πi

d(s)

s

ω3 =
1

2πi
dlog(1−ts) =

1

2πi

sd(t) + td(s)

ts− 1
ψ3 =

1

2πi
dlog(ts) =

1

2πi

sd(t) + td(s)

ts

and

ω̄1 = 2ω1 − ψ1 =
1

2πi

(
t+ 1

t(t− 1)
d(t)

)
ω̄2 = 2ω2 − ψ2 =

1

2πi

(
s+ 1

s(s− 1)
d(s)

)
ω̄3 = 2ω3 − ψ3 =

1

2πi

(
s(ts+ 1)d(t) + t(ts+ 1)d(s)

ts(ts− 1)

)
.

� The relations are

1. For A = H1, B = H3, A′ = H2 and B′ = {H1, H3}, we have that

η̄A,B η̄A′,B′ = ω̄1ψ3ω̄2ψ1ψ3 = 0.

If we take instead B′ = ∅, we obtain

η̄A,B η̄A′,B′ = ω̄1ψ3ω̄2 = −ω̄1ω̄2ψ3 = (−1)`(A∪B,A
′∪B′)η̄A∪A′ .
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2. Since χ1 + χ2 − χ3 = 0,

η̄∅,{1}+η̄∅,{2}−η̄∅,{3} = ψ1+ψ2−ψ3 =
1

2πi

(
d(t)

t
+
d(s)

s
− sd(t) + td(s)

ts

)
= 0.

3. If |B| even, then we have

(A,B) ∈ {(∅, {H1, H2}), (∅, {H1, H3}), (∅, {H2, H3}), ({H1, H2}, ∅),({H1, H3}, ∅),

({H2, H3}, ∅)},

then

(−1)0c1c2ψ1ψ2 + (−1)0c1c3ψ1ψ3 + (−1)0c2c3ψ2ψ3 + (−1)2ω̄1ω̄2 + (−1)1ω̄1ω̄3+

+ (−1)0ω̄2ω̄3 =

= ψ1ψ2 − ψ1ψ3 − ψ2ψ3 + ω̄1ω̄2 − ω̄1ω̄3 + ω̄2ω̄3 =

= ψ1ψ2 − ψ3(ψ1 + ψ2) + ω̄1ω̄2 − ω̄1ω̄3 + ω̄2ω̄3 =

= ψ1ψ2 − ψ3ψ3 + ω̄1ω̄2 − ω̄1ω̄3 + ω̄2ω̄3 =

=
−1

4π2

(
d(t)d(s)

ts
+

(t+ 1)(s+ 1)d(s)

ts(t− 1)(s− 1)
− (t+ 1)(ts+ 1)d(t)d(s)

ts(t− 1)(ts− 1)

)
+

− −1

4π2

(
(s+ 1)(ts+ 1)d(t)d(s)

ts(s− 1)(ts− 1)

)
=

=
−1

4π2

(
(t− 1)(s− 1)(ts− 1) + (t+ 1)(s+ 1)(ts− 1)− (t+ 1)(s− 1)(ts+ 1)

ts(t− 1)(s− 1)(ts− 1)

)
+

− −1

4π2

(
(t− 1)(s+ 1)(ts+ 1)

ts(t− 1)(s− 1)(ts− 1)

)
=

=
−1

4π2

(
(ts− 1)[(t− 1)(s− 1) + (t+ 1)(s+ 1)]

ts(t− 1)(s− 1)(ts− 1)

)
+

− −1

4π2

(
(ts+ 1)[(t+ 1)(s− 1) + (t− 1)(s+ 1)]

ts(t− 1)(s− 1)(ts− 1)

)
=

=
−1

4π2

(
(ts− 1)[2ts+ 2]− (ts+ 1)[2ts− 2]

ts(t− 1)(s− 1)(ts− 1)

)
=

=
−1

4π2

(
2((ts)2 − 1)− 2((ts)2 − 1)

ts(t− 1)(s− 1)(ts− 1)

)
=

= 0.
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3.3.2 General case

Coverings

Definition 3.3.17. Let A be a primitive arrangement in T = (C∗)d and

f : U −→ (C∗)d be a finite covering. Define

ai := |π0(f−1(Hi))| for every Hi ∈ A,

AU :=
⋃
H∈A

π0(f−1(H)) =
⋃
Hi∈A

ai⋃
j=1

HU
i,j,

where HU
i,j is the j-th connected component of f−1(Hi), and for every q ∈

f−1(Hi),

HU
i (q) the connected component of f−1(Hi) containing q.

Note that AU is a primitive arrangement, since every hypertorus is con-

nected.

Proposition 3.3.18. The connected components f−1(Hi) are associated with

the primitive character χ̂i
ai

, where χ̂i := χi ◦ f .

In particular, every L ∈ π0(f−1(Hi)) has equation

χ̂i
ai

=
χ̂i
ai

(q)

with q any point in L.
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Example 3.3.19. Let A = {H1, H2, H3} be the toric arrangement in

T := (C∗)2 of Example 3.2.11, with H1 := {(t, s) ∈ (C∗)2|t = 1},
H2 := {(t, s) ∈ (C∗)2|s = 1} and H3 := {(t, s) ∈ (C∗)2|t3s = 1}.

Figure 3.7: Ã /Z2

−−→ A

Let f : (C∗)2 −→ T the covering given by f(u, v) 7→ (u, v3).

For p = (1, 1) ∈ T, f−1(p) = {p1 = (1, e
2
3
πi), p2 = (1, e

4
3
πi), p3 = (1, 1)}. In

AU we have

f−1(H1) = {(u, v) ∈ (C∗)2|u = 1} = H
(C∗)2

1 , with χ̂1 =

(
1

0

)
, and a1 = 1,

f−1(H2) = {(u, v) ∈ (C∗)2|v3 = 1} =
⋃
k∈Z

{(u, v) ∈ (C∗)2|v = e
2
3
kπi} =

= {(u, e
2
3
πi) ∈ (C∗)2} ∪ {(u, e

4
3
πi) ∈ (C∗)2} ∪ {(u, 1) ∈ (C∗)2} =

= H2,1
(C∗)2 ∪H2,2

(C∗)2 ∪H2,3
(C∗)2 =

= H
(C∗)2

2 (p1) ∪H(C∗)2

2 (p2) ∪H(C∗)2

2 (p3)

with χ̂2 =

(
0

3

)
and a2 = 3
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f−1(H3) = {(u, v) ∈ (C∗)2|u3v3 = 1} =
⋃
k∈Z

{(u, v) ∈ (C∗)2|uv = e
2
3
kπi} =

= {(u, v) ∈ (C∗)2|uv = e
2
3
πi} ∪ {(u, v) ∈ (C∗)2|uv = e

4
3
πi}∪

∪ {(u, v) ∈ (C∗)2|uv = 1} =

= H3,1
(C∗)2 ∪H3,2

(C∗)2 ∪H3,3
(C∗)2 =

= H
(C∗)2

3 (p1) ∪H(C∗)2

3 (p2) ∪H(C∗)2

3 (p3)

with χ̂3 =

(
3

3

)
and a3 = 3.

In order to visualize this 7 hypertori in A(C∗)2 , we consider the associated

periodic hyperplane arrangement Ã(C∗)2 , defined by

H̃1
(C∗)2

= {(x, y) ∈ C2|x = 0},

H̃
(C∗)2

2,1 = {(x, y) ∈ C2|3y = 1}

H̃
(C∗)2

2,2 = {(x, y) ∈ C2|3y = 2},

H̃
(C∗)2

2,3 = {(x, y) ∈ C2|3y = 3},

H̃
(C∗)2

3,1 = {(x, y) ∈ C2|3x+ 3y = 1},

H̃
(C∗)2

3,2 = {(x, y) ∈ C2|3x+ 3y = 2},

H̃
(C∗)2

3,3 = {(x, y) ∈ C2|3x+ 3y = 3}.

Note that, in this example, A(C∗)2 is unimodular.

Figure 3.8: Ã(C∗)2
/Z2

−−→ A(C∗)2
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Logarithmic forms of coverings

The aim of this subsection is to describe the logarithmic forms on M(AU).

Definition 3.3.20. Let A = {H1, . . . , Hn} be an arrangement in T = (C∗)d

and f : U −→ T be a finite covering.

For every i ∈ {1, . . . , n} and every L ∈ π0(f−1(Hi)), we define the following

logarithmic forms:

ωL = ωUi (q) :=
1

2πi
dlog(1−e

χ̂i
ai
− χ̂i
ai

(q)
) ψL = ψUi :=

f ∗(ψi)

ai
=

1

2πi
dlog(e

χ̂i
ai )

ω̄L = ω̄Ui (q) := 2ωUi (q)− ψUi

with q any point in L, and f ∗ the pull-back of f .

For π0(f−1(Hi)) = {HU
i,1, . . . , H

U
i,ai
}, we also denote ω̄HU

i,j
as ω̄Ui,j.

For every S ⊆ {H1, . . . , Hn}, define

ωUS (q) :=
∏
Hi∈S

ωUi (q) ψUS :=
∏
Hi∈S

ψUi ω̄US (q) :=
∏
Hi∈S

ω̄Ui (q),

where q ∈ ∩Hi∈SHU
i (q).

For every A,B ⊆ {H1, . . . , Hn} with A ∩B = ∅ , denote

η̄UA,B(q) =
∏

Hi∈A∪B

η̄Ui (q) with η̄Ui (q) =

ω̄Ui (q) if Hi ∈ A

ψUi if Hi ∈ B,

where q ∈ ∩Hi∈AHU
i (q).

Remark 3.3.21. Note that ωUi (q) does not depend on the choice of the point

q ∈ L.
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Definition 3.3.22. Let S ⊆ {H1, . . . , Hn} be an independent set, W a

connected component of ∩Hi∈SHi and p any point in W . Since the pullback

f ∗ is injective, we can define the forms ωfW,S and ω̄fW,S as the unique forms

on M(A) such that

f ∗(ω̄fW,S) =
1

|∩Hi∈SHU
i (q0) ∩ f−1(p)|

∑
q∈f−1(p)

ω̄US (q)

and

f ∗(ωfW,S) =
1

|∩Hi∈SHU
i (q0) ∩ f−1(p)|

∑
q∈f−1(p)

ωUS (q)

where q0 is any point in f−1(p).

Lemma 3.3.23. If AU is unimodular, then for any S ⊆ {H1, . . . , Hn} inde-

pendent, W ∈ π0(∩Hi∈SHi) and p ∈ W ,

π0(f−1(W )) =

{ ⋂
Hi∈S

HU
i (q0)|q0 ∈ f−1(p)

}
.

Proof. ⊇: If AU is unimodular, ∩Hi∈SHU
i (q0) is a connected component of

∩Hi∈Sf−1(Hi), then f(∩Hi∈SHU
i (q0)) is a connected component of ∩Hi∈SHi.

Since q0 ∈ ∩Hi∈SHU
i (q0), f(∩Hi∈SHU

i (q0)) has to contain f(q0) = p, thus

f(∩Hi∈SHU
i (q0)) = W and then ∩Hi∈SHU

i (q0) is a connected component of

f−1(W ).

⊆: Take L ∈ π0(f−1(W )) and take a point q ∈ L. Since L ⊆ ∩Hi∈Sf−1(Hi)

and q ∈ L, L ⊆ ∩Hi∈SHU
i (q), but, since ∩Hi∈SHU

i (q) is connected, we have

that L = ∩Hi∈SHU
i (q).

It immediately follows that:

Remark 3.3.24. If AU is unimodular, then

f ∗(ω̄fW,S) =
1

|L ∩ f−1(p)|
∑

q∈f−1(p)

ω̄US (q)

with L any connected component of f−1(W ).



70 Toric arrangements

Example 3.3.25. Let A be the toric arrangement in T := (C∗)2 of Example

3.2.11 and f : U = (C∗)2 −→ T such that f(u, v) = (u, v3). As we have

already computed in Example 3.3.19,

HU
2 (p1) = {(u, v) ∈ (C∗)2; v = e

2
3
πi} = {(u, v) ∈ (C∗)2; e

4
3
πiv = 1}

HU
2 (p2) = {(u, v) ∈ (C∗)2; v = e

4
3
πi} = {(u, v) ∈ (C∗)2; e

2
3
πiv = 1}

HU
2 (p3) = {(u, v) ∈ (C∗)2; v = 1}

HU
3 (p1) = {(u, v) ∈ (C∗)2;uv = e

2
3
πi} = {(u, v) ∈ (C∗)2; e

4
3
πiuv = 1}

HU
3 (p2) = {(u, v) ∈ (C∗)2;uv = e

4
3
πi} = {(u, v) ∈ (C∗)2; e

2
3
πiuv = 1}

HU
3 (p3) = {(u, v) ∈ (C∗)2;uv = 1}.

Denoting ξ = e
2
3
πi, we obtain

ω̄U2 (p1) =
−1− ξ2v

1− ξ2v

dv

v
ω̄U2 (p2) =

−1− ξv
1− ξv

dv

v
ω̄U2 (p3) =

−1− v
1− v

dv

v

ω̄U3 (p1) =
−1− ξ2uv

1− ξ2uv

d(uv)

uv
ω̄U3 (p2) =

−1− ξuv
1− ξuv

d(uv)

v
ω̄U3 (p3) =

−1− uv
1− uv

d(uv)

uv
.

For W = p, S = {H2, H3}, we obtain

f∗(ω̄fW,S) = ω̄2,3(p1) + ω̄2,3(p2) + ω̄2,3(p3) =

=
−1

4π

(
1 + ξ2v

1− ξ2v

dv

v

1 + ξ2uv

1− ξ2uv

d(uv)

uv
+

1 + ξuv

1− ξuv
dv

v

1 + ξuv

1− ξuv
d(uv)

uv

)
+

+
−1

4π

(
1 + v

1− v
dv

v

1 + uv

1− uv
d(uv)

uv

)
=

=
−3

4π

u3v6 + u3v3 + 4u2v3 + 4uv3 + v3 + 1

uv(v3 − 1)(u3v3 − 1)
dudv,

thus

ω̄fW,S =
−1

4π

t3s2 + t3s+ 4t2s+ 4ts+ s+ 1

ts(s− 1)(t3s− 1)
dtds.



Cohomology of the complement M(A) 71

Separating coverings

Definition 3.3.26. Let A = {H1, . . . , Hn} be an arrangement in T = (C∗)d

and S ⊆ {H1, . . . , Hn} be an independent set. We say that a covering

f : U −→ T separates S if, for any connected component W of ∩Hi∈SHi and

for every Hi ∈ S, there exist qi ∈ f−1(Hi) such that f(∩Hi∈SHU
i (qi)) = W.

Lemma 3.3.27. If f is a covering such that AU is unimodular, then f

separates every independent set S ⊆ {H1, . . . , Hn}.

Proof. Thanks to Lemma 3.3.23, there exists q ∈ f−1(Hi) such that W =

f(f−1(W )) = f(∩Hi∈SHU
i (q)).

Example 3.3.28. Let A be the toric arrangement in T := (C∗)2 of Example

3.2.11 and f : U −→ T such that f(u, v) = (u, v3).

Figure 3.9: Ã /Z2

−−→ A

Since AU is unimodular, f separates every independent set. In fact for

S = {H2, H3}, π0(H2 ∩H3) = {p, q, r} and

f(HU
2 (p1) ∩HU

3 (p1)) = f(p1) = p,

f(HU
2 (q1) ∩HU

3 (q1)) = f(q1) = q,

f(HU
2 (r1) ∩HU

3 (r1)) = f(r1) = r.
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Figure 3.10: Ã(C∗)2
/Z2

−−→ A(C∗)2

Here we state an important result of [CDD+19, Proposition 5.3].

Proposition 3.3.29. Let A = {H1, . . . , Hn} be an arrangement in

T = (C∗)d and S ⊆ {H1, . . . , Hn} an independent set. There exist a covering

f : U −→ T that separates S.

Lemma 3.3.30. If f is a covering that separates S = {H1, . . . , Hk}, then

f ∗(ω̄fW,S) =
∑

~1≤~j≤~a,
∩iHU

i,ji
⊆f−1(W )

∏
Hi∈S

ω̄Ui,ji ,

where π0(f−1(Hi)) = {HU
i,1, . . . , H

U
i,ai
} and the k−tuple ~1,~j,~a are defined by

~1 = (1, . . . , 1),~j = (j1, . . . , jk),~a = (a1, . . . , ak).

Theorem 3.3.31. Let A = {H1, . . . , Hn} be an arrangement in T = (C∗)d

and S ⊆ {H1, . . . , Hn} an independent set. If f : U −→ T ,g : V −→ T are

coverings that separate S, then

ω̄fW,S = ω̄gW,S.

Analogously ωfW,S = ωgW,S.
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Proof. First we suppose there exists a finite covering h : V −→ U such that

g = f ◦ h.

U T

V

f

h g

In this case, thanks to Lemma 3.3.30, we have

g∗(ωfW,S) = h∗(f ∗(ωfW,S)) = h∗

 ∑
~1≤~j≤~a,

∩iHU
i,ji
⊆f−1(W )

∏
Hi∈S

ω̄Ui,ji

 ,

g∗(ωgW,S) =
∑

~1≤~k≤~b,
∩iHV

i,ki
⊆g−1(W )

∏
Hi∈S

ω̄Vi,ki ,

where π0(f−1(Hi)) = {HU
i,1, . . . , H

U
i,ai
} and π0(g−1(Hi)) = {HV

i,1, . . . , H
V
i,bi
}.

Since

h∗(ω̄Ui,ji) =
∑

h(HV
i,ki

)=HU
i,ji

ω̄Vi,ki ,

we obtain

g∗(ωfW,S) =
∑

~1≤~j≤~a,
∩iHU

i,ji
⊆f−1(W )

∏
Hi∈S

h∗(ω̄Ui,ji) =

=
∑

~1≤~j≤~a,
∩iHU

i,ji
⊆f−1(W )

∏
Hi∈S

∑
h(HV

i,ki
)=HU

i,ji

ω̄Vi,ki =

=
∑

~1≤~j≤~a,
∩iHU

i,ji
⊆f−1(W )

∑
~1≤~k≤~b,

h(HV
i,ki

)=HU
i,ji

∏
Hi∈S

ω̄Vi,ki =

=
∑

~1≤~k≤~b,
∩Hi∈SH

V
i,ki
⊆g−1(W )

∏
Hi∈S

ω̄Vi,ki =

= g∗(ωgW,S),
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and then

ω̄fW,S = ω̄gW,S.

Finally, in the general case, we have two coverings f : U −→ T and g : V −→
T . Consider h : V ′ −→ U the pullback of g by f , g′ := f ◦ h and note that

g′ separates S since f does.

U T

V ′

f

h
g′

Now, applying the previous part of the proof, we can say that

g′∗(ω̄fW,S) = g′∗(ω̄g
′

W,S) ⇒ ω̄fW,S = ω̄g
′

W,S.

Analogously, considering the diagram

V T

V ′

g

h
g′

we can say that

g′∗(ω̄gW,S) = g′∗(ω̄g
′

W,S) ⇒ ω̄gW,S = ω̄g
′

W,S,

then we conclude.

It immediately follows that we are allowed to give the following defini-

tions:

Definition 3.3.32. Let S be an independent set of A = {H1, . . . , Hn} and

W a connected component of ∩Hi∈SHi. Define

ω̄W,S := ω̄fW,S ωW,S := ωfW,S ,

where f : U −→ T is any covering that separates S.
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Lemma 3.3.33. Let S, S ′ be two sets of A = {H1, . . . , Hn} such that S tS ′

is an independent set and W ,W ′ be, respectively, connected component of

∩Hi∈SHi, ∩Hi∈S′Hi. Then

ω̄W,Sω̄W ′,S′ = (−1)`(S,S
′)

∑
L∈π0(W∩W ′)

ω̄L,StS′ .

Proof. First notice that the left-hand side is well defined since, if S t S ′ is

independent, then S and S ′ are too. Take a covering f : U −→ T that sepa-

rates StS ′ (remember that f exists thanks to Proposition 3.3.29). Obviously

f separates also S and S ′, then we have

f ∗ (ω̄W,Sω̄W ′,S′) = f ∗(ω̄W,S)f ∗(ω̄W ′,S′) =

=

 ∑
~1≤~j≤~a,⋂

Hi∈S
HU
i,ji
⊆f−1(W )

∏
Hi∈S

ω̄Ui,ji


 ∑

~1≤~k≤~b,⋂
Hi∈S′

HU
i,ki
⊆f−1(W ′)

∏
Hi∈S′

ω̄Ui,ki

 =

=
∑

~1≤~j≤~a, ~1≤~k≤~b,
(
⋂
Hi∈S

HU
i,ji

)∩
(⋂

Hi∈S′
HU
i,ki

)
⊆f−1(W∩W ′)

∏
Hi∈S

ω̄Ui,ji

∏
Hi∈S′

ω̄Ui,ki =

=
∑

~1≤~p≤(~a,~b),

(
⋂
Hi∈StS′

HU
i,pi

)⊆f−1(W∩W ′)

(−1)`(S,S
′)
∏

Hi∈StS′
ω̄Ui,pi =

= (−1)`(S,S
′)

∑
L∈π0(W∩W ′)

∑
~1≤~p≤(~a,~b),

(
⋂
Hi∈StS′

HU
i,pi

)⊆f−1(L)

∏
Hi∈StS′

ω̄Ui,pi =

= (−1)`(S,S
′)

∑
L∈π0(W∩W ′)

f ∗(ω̄L,S∪S′) =

= f ∗

(−1)`(S,S
′)

∑
L∈π0(W∩W ′)

ω̄L,S∪S′


where pi := (ji, ki).
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Lemma 3.3.34. If ∩Hi∈SHi is connected and ∩Hi∈SHi = W , then

ω̄W,S = ω̄S.

Proof. The identity map id : T −→ T separates S, in fact:

id(∩Hi∈S(HT
i (qi))) = ∩Hi∈SHi = W.

Then

ω̄W,S = ω̄idW,S =
∑

1≤j≤1

∏
Hi∈S

ω̄Ti,j =
∏
Hi∈S

ω̄i = ω̄S.

Definition 3.3.35. Define

η̄W,A,B := (−1)`(A,B)ω̄W,AψB.

Lemma 3.3.36. If ∩Hi∈SHi is connected and ∩Hi∈SHi = W , then

η̄W,A,B = η̄A,B

where η̄A,B of Definition 3.3.12.

Proof. Thanks to Lemma 3.3.34,

η̄W,A,B = (−1)`(A,B)ω̄W,AψB = (−1)`(A,B)ω̄AψB =
∏

Hi∈A∪B

η̄Ai = η̄A,B.

From Lemma 3.3.33, we have

Lemma 3.3.37. Let A,A′, B,B′ be four sets of A = {H1, . . . , Hn} such that

A t A′ tB tB′ is an independent set and W ,W ′ be, respectively, connected

component of ∩Hi∈AHi, ∩Hi∈A′Hi. Then

η̄W,A,B η̄W ′,A′,B′ = (−1)`(A∪B,A
′∪B′)

∑
L∈π0(W∩W ′)

η̄L,AtA′,BtB′ .
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Definition 3.3.38. Define F∗ = {Fi}i∈Z the increasing filtration ofH∗(M(A),Z)

defined by

F−1 = 0 F0 = H∗(T,Z)

and

Fi =
⊕
j≤i

Hj(M(A),Z)⊗H∗(T,Z),

identifying H∗(T,Z) with its image j∗(H∗(T,Z)) in H∗(M(A),Z)

where j : M(A) −→ T is the natural inclusion.

The associated graded module is defined by

gr∗(H
∗(M(A))) :=

⊕
i≥0

Fi
Fi−1

.

It can be proved that there exist an isomorphism of graded modules such

that

grk(H
∗(M(A))) '

⊕
W∈L(A)
rk(W )=k

H∗(W )⊗Hk(M(A[W ])),

where A[W ] is the hyperplanes arrangement of Definition 3.3.2. Recall that

A[W ] is a rk(W )-arrangement.

Lemma 3.3.39. For A,B ⊆ {H1, . . . , Hn} with A t B independent and for

any W ∈ π0(∩Hi∈AHi), we have that the image of η̄W,A,B in gr|A|(H
|B|(M(A)))

equals

(−1)`(B,A)2|A|ψB ⊗$A ∈ H |B|(W )⊗H |A|(M(A[W ])),

where $A is the canonical generator in the top degree of the Orlik Solomon

algebra of the hyperplane arrangement A[W ] associated with the hyperplanes

indexed by A.

Proof. See [CDD+19, Lemma 5.14].

Example 3.3.40. Consider A the arrangement of Example 3.2.11, with

H1 := {(t, s) ∈ (C∗)2|t = 1}, H2 := {(t, s) ∈ (C∗)2|s = 1} and

H3 := {(t, s) ∈ (C∗)2|t3s = 1}.
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We have already computer in Example 3.3.3 that A[p] = {H̄1, H̄2, H̄3} with

H̄1 := {(t̄, s̄) ∈ C2|t̄ = 0}, H̄2 := {(t̄, s̄) ∈ C2|s̄ = 0} and

H̄3 := {(t̄, s̄) ∈ C2|3t̄+ s̄ = 0}.

Figure 3.11: A A[p]

For A = {H2, H3} and W = p, the image of ω̄p,{H2,H3} in gr2(H∗(M(A)))

equals

4⊗ e{H̄2,H̄3} with eH̄2
=

1

2πi

d(s̄)

s̄
eH̄3

=
1

2πi

d(3s̄+ t̄)

3s̄+ t̄
.

Unimodular coverings

Let A = {H1, . . . , Hn} be a primitive, central and essential arrangement

in T = (C∗)d and denote E the ground set of the arithmetic matroid M(A)

associated with A. Suppose the arrangement contains exactly one circuit

C = {H1, . . . , Hk}, hence rk(E) = n − 1. Denote F = {Hk+1, . . . , Hn}.
Thanks to Lemma 3.2.12,

∑k
i=1 cim(C\{Hi})χi = 0, with c1 ∈ {−1,+1}.

Definition 3.3.41. For every i ∈ {1, . . . , n}, define

ai :=


m(E)2

m(C)

∏
Hj∈C
Hj 6=Hi

m(C\{Hj}) for i = 1, . . . , k

m(E)2

m(C∪F≤i)
for i = k + 1, . . . , n.

where F≤i := F ∩ {H1, . . . , Hi}.
Denote Λ(E) the set in Q⊗Z Λ generated by {χ1

a1
, . . . , χn

an
}.
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Remark 3.3.42. � Λ = ΛE. In particular m(E) = [Λ : ΛE].

� [Λ(E) : ΛE\Hi ] =
∏

j 6=i aj ∀i.

Example 3.3.43. Let A be the toric arrangement in T := (C∗)2 of Example

3.2.11. In this case, C = {H1, . . . , Hn}, then

ΛC =

{
q1

(
1

0

)
+ q2

(
0

1

)
+ q3

(
3

1

)
; q1, q2, q3 ∈ Q

}
∩ Z2 =

=

{
q1

(
1

0

)
+ q2

(
0

1

)
; q1, q2 ∈ Q

}
∩ Z2 = Z2.

We have already computed computed in Example 3.2.11

m({H1, H2}) = m({H1, H3}) = 1 and m({H2, H3}) = 3,

then it follows that

a1 = 1 a2 = 3 a3 = 3,

hence

Λ(C) =

{
m1

(
1

0

)
+m2

(
0
1
3

)
+m3

(
1
1
3

)
;m1,m2,m3 ∈ Z

}
=

=

{
m1

(
1

0

)
+m2

(
0
1
3

)
;m1,m2 ∈ Z

}
' Z⊕ 1

3
Z ⊆ Q⊗Z Z2

Now consider C\{H1}, then

ΛC\{H1} =

{
m1

(
0

1

)
+m2

(
3

1

)
;m1,m2 ∈ Z

}
' 3Z⊕ Z,

thus

[Λ(C) : ΛC\{H1}] = 9 = a2a3.
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Lemma 3.3.44.
k∑
i=1

ci
χi
ai

= 0.

Proof. Note that aim(C\{Hi}) = m(E)2

m(C)

∏k
j=1m(C\{Hj}), then we have

0 =
k∑
i=1

cim(C\{Hi})χi =
m(E)2

m(C)

k∏
j=1

m(C\{Hj})
k∑
i=1

ci
χi
ai
,

and since m(E)2

m(C)

∏k
j=1m(C\{Hj}) 6= 0, we conclude.

Proposition 3.3.45. Λ ⊆ Λ(E) with

[Λ(E) : Λ] =

∏n
j=1 aj

aim(A\Hi)
=: g,

where Hi is any element of C.

In particular there exists a special covering of T of degree g.

Definition 3.3.46. Let πU : U −→ T the covering of Proposition 3.3.45.

Denote AU the arrangement in the torus U induced by the characters χi
ai

in

Λ(E), i.e. AU =

{(
e
χ1
a1

)−1 (
e

2kπi
a1

)
, . . . ,

(
e
χn
an

)−1 (
e

2kπi
an

)
; k ∈ Z

}
.

Lemma 3.3.47. AU is primitive and unimodular.

Proof. For every Hj ∈ C, {χi
ai
}i 6=j is a basis for Λ(E). It follows that AU is

primitive.

In order to prove the unimodularity of AU , we can use Proposition 15.7 of

[DCP11] which state that an arrangement is unimodular if and only if, for

every A = {H1, . . . , Hm} independent and H0 dependent on A, χ0 can be

written as linear combination of {χ1, . . . , χm} with coefficients in {−1, 0,+1}.
Now, since C is the unique circuit of {H1, . . . , Hn}, then, for every Hj ∈ C,

{χ1

a1
, . . . ,

χ̂j
aj
, . . . , χn

an
} is an independent set. Moreover, by Lemma 3.3.44,∑k

i=1 ci
χi
ai

= 0, then, every
χj
aj

can be written as linear combination, with

integer coefficients, of the characters {χ1

a1
, . . . ,

χ̂j
aj
, . . . , χn

an
}. Thus, if

A ⊆ {H1, . . . , Hn} is an independent set, there exists Hj ∈ C\A, then

{χi
ai
}Hi∈A can be completed to a basis {χ1

a1
, . . . ,

χ̂j
aj
, . . . , χn

an
} of Λ(E).
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Remark 3.3.48. For every i, χi = ai
χi
ai

, then it can be written as linear

combination of the elements of the basis {χj
aj
}j 6=i. Thanks to Remark 3.1.2,

we have that
∣∣π0

(
π−1
U (Hi)

)∣∣ = ai.

Example 3.3.49. Let A be the toric arrangement in T := (C∗)2 of Example

3.2.11. In Example 3.3.43 we have proved that Λ(E) = Λ(C) is generated by

{e1,
e2
3
, e1 + e2

3
} where e1 =

(
1

0

)
and e2 =

(
0

1

)
.

A = {H1, H2, H3} with

H1 = (eχ1)−1 (1) = {(t, s); t = 1}

H2 = (eχ2)−1 (1) = {(t, s); s = 1}

H3 = (eχ3)−1 (1) =
{

(t, s); t3s = 1
}

that are primitive in

Λ =<

{
e1 =

(
1

0

)
, e2 =

(
0

1

)}
> .

AU = {HU
1,1, H

U
2,1, H

U
2,2, H

U
2,3, H

U
3,1, H

U
3,2, H

U
3,3} with

HU
1,1 =

(
e
χ1
a1

)−1

(1) = {(u, v) ∈ U ;u = 1}

HU
2,1 =

(
e
χ2
a2

)−1 (
e

2
3
πi
)

= {(u, v) ∈ U ; v = e
2
3
πi}

HU
2,2 =

(
e
χ2
a2

)−1 (
e

4
3
πi
)

= {(u, v) ∈ U ; v = e
4
3
πi}

HU
2,3 =

(
e
χ2
a2

)−1

(1) = {(u, v) ∈ U ; v = 1}

HU
3,1 =

(
e
χ3
a3

)−1 (
e

2
3
πi
)

= {(u, v) ∈ U ;uv = e
2
3
πi}

HU
3,2 =

(
e
χ3
a3

)−1 (
e

4
3
πi
)

= {(u, v) ∈ U ;uv = e
4
3
πi}

HU
3,3 =

(
e
χ3
a3

)−1

(1) = {(u, v) ∈ U ;uv = 1}

that are primitive in

Λ(C) =<

{
e1 =

(
1

0

)
, e′2 =

(
0
1
3

)}
> .
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Then we have that A is represented by(
1 0 3

0 1 1

)
,

while AU is represented by (
1 0 3

0 3 3

)
.

Note that the covering πU is exactly the covering f of Example 3.3.19.

Lemma 3.3.50. Let S ( {H1, . . . , Hn}, W a connected component of ∩Hi∈SHi

and p ∈ W.
For every layer L of AU with πU(L) = W , the number of preimages of p

contained in L is ∣∣L ∩ π−1
U (p)

∣∣ =
m(S)

m(E\Hj)

∏
Hi∈E\S),

i 6=j

ai,

where Hj is any element of C\S.

Proof. We know that
∣∣π−1
U (p)

∣∣ =
∏n
j=1 aj

aim(E\Hi) . On the other hand

|π0(π−1
U (W ))| =

∣∣π0(π−1
U (∩Hi∈SHi))

∣∣
|π0 (∩Hi∈SHi))|

=

∏
Hi∈S ai

m(S)
.

Then we obtain, for any Hj ∈ C\S,∣∣L ∩ π−1
U (p)

∣∣ =

∏n
i=1 ai

ajm(E\Hj)

m(S)∏
Hi∈S ai

=

=
m(S)

m(E\Hj)

∏
Hi∈(E\S),

i 6=j

ai.
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Example 3.3.51. Let A be the toric arrangement in T := (C∗)2 of Example

3.2.11.

Figure 3.12: Ã /Z2

−−→ A

Figure 3.13: Ã(C∗)2
/Z2

−−→ A(C∗)2

Take S = {H2}, W = H2, q = (e
2
3
πi, 1) ∈ H2 and L = HU

2,1. We have

π−1
U (q) = {q1 := (e

2
3
πi, e

2
3
πi), q2 := (e

2
3
πi, e

4
3
πi), q3 := (e

2
3
πi, 1)}, then

|HU
2,1 ∩ π−1

U (q)| = |{q1}| = 1 =
1

3
· 3 =

m(H2)

m(H2, H3)
a3.

If we take instead S = {H1}, W = H1, p = (1, 1) ∈ H1 and L = HU
1 . We

have π−1
U (p) = {p1 := (1, e

2
3
πi), p2 := (1, e

4
3
πi), p3 := (1, 1)}, then

|HU
1 ∩ π−1

U (p)| = |{p1, p2, p3}| = 3 =
1

1
· 3 =

m(H1)

m(H1, H3)
a3.
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Definition 3.3.52. For any A,B ⊆ E with A t B independent set and for

every q ∈ π−1
U (∩Hi∈AHi), we define

η̄UA,B(q) := (−1)`(A,B)ω̄UA(q)ψUB .

Lemma 3.3.53. Let A,B ⊆ {H1, . . . , Hn} with AtB is a maximal indepen-

dent subset of {H1, . . . , Hn}. For every connected component W of ∩Hi∈AHi,

we have

π∗U(η̄W,A,B) =
m(A tB)

m(A)

∑
q∈π−1

U (p0)

η̄UA,B(q),

with p0 any point in W.

Proof. Recall that, from Definition 3.3.35, η̄W,A,B := (−1)`(A,B)ω̄W,AψB.

Thanks to Definition 3.3.20, we have that

π∗U(ψB) =
∏
Hi∈B

π∗U(ψi) =
∏
Hi∈B

aiψ
U
i =

[ ∏
Hi∈B

ai

]
ψUB .

It follows that, with Remark 3.3.24, we obtain:

π∗U(ω̄W,A) = π∗U(ω̄πUW,A) =
1∣∣L ∩ π−1
U (p)

∣∣ ∑
q∈π−1

U (p)

ω̄UA(q).

Since AtB is a maximal independent set, |A|+ |B| = rk(AtB) = rk(E) =

|E| − 1, then there exists a unique Hj such that E = A t B t {Hj}. Thus,

by Lemma 3.3.50,

π∗U(η̄W,A,B) = (−1)`(A,B)π∗U(ω̄W,A)π∗U(ψB) =

= (−1)`(A,B)

∏
Hi∈B ai∣∣L ∩ π−1

U (p)
∣∣ ∑
q∈π−1

U (p)

ω̄UA(q)ψUB =

= (−1)`(A,B)m(E\Hj)

m(A)

∏
Hi∈B ai∏

Hi∈(E\(A∪Hj)) ai

∑
q∈π−1

U (p)

ω̄UA(q)ψUB =

= (−1)`(A,B)m(A ∪B)

m(A)

∑
q∈π−1

U (p)

ω̄UA(q)ψUB =

=
m(A tB)

m(A)

∑
q∈π−1

U (p0)

η̄UA,B(q).
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Proposition 3.3.54. For every L connected component of ∩Hi∈XHi,∑
Hj∈C

∑
X=AtBt{Hj}

F⊆A
|B| even
W⊇L

(−1)|A≤j |cB
m(A)

m(A ∪B)
η̄W,A,B = 0,

with A≤j = A ∩ {H1, . . . , Hj}, cB :=
∏

Hi∈B ci.

Proof. SinceAU is an unimodular arrangement, thanks to Proposition 3.3.13,

for any q ∈ π−1
U (p) with p ∈ ∩Hi∈CHi, we have∑

Hj∈C

∑
A′,B⊂C

C=A′∪B∪Hj
|B| even

(−1)|A
′
≤j |cB η̄

U
A′,B(q) = 0,

then, since X = C t F ,

0 =
∑
Hj∈C

∑
A′,B⊂C

C=A′∪B∪Hj
|B| even

(−1)|A
′
≤j |cB η̄

U
A′,B(q)η̄UF,∅(q) =

∑
Hj∈C

∑
X=A∪B∪Hj

F⊆A
|B| even

(−1)|A≤j |cB η̄
U
A,B(q).

Thus, thanks to Lemma 3.3.53,

0 =
∑

q∈π−1
U (p)

∑
Hj∈C

∑
X=A∪B∪Hj

F⊆A
|B| even

(−1)|A≤j |cB η̄
U
A,B(q) =

=
∑
Hj∈C

∑
X=A∪B∪Hj

F⊆A
|B| even

(−1)|A≤j |cB
∑

q∈π−1
U (p)

η̄UA,B(q) =

=
∑
Hj∈C

∑
X=A∪B∪Hj

F⊆A
|B| even
W⊇L

(−1)|A≤j |cB
m(A)

m(A ∪B)
π∗U(η̄W,A,B) =

= π∗U


∑
Hj∈C

∑
X=A∪B∪Hj

F⊆A
|B| even
W⊇L

(−1)|A≤j |cB
m(A)

m(A ∪B)
η̄W,A,B

 .
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Now, dropping the assumption that A has an unique circuit, we can

finally give an Orlik-Solomon-type presentation for the cohomology algebra

of a general toric arrangement.

Theorem 3.3.55. Let A be an essential toric arrangement.

The rational cohomology algebra H∗(M(A),Q) is isomorphic to the algebra

E with:

� E generated by {eW,A;B|W ranges over all layers of A, A is a set generating W,

A ∩ B = ∅, A t B is an independent set} . The degree of eW,A;B is

|A tB|.

� The following types of relations

1. For any two generators eW,A;B and eW ′,A′;B′, if A t B t A′ t B′

dependent,

eW,A;BeW ′,A′;B′ = 0, (3.2)

otherwise

eW,A;BeW ′,A′;B′ = (−1)`(A∪B,A
′∪B′)

∑
L∈π0(W∩W ′)

eL,A∪A′;B∪B′ . (3.3)

2. If
∑n

i=1 niχi = 0 where ni ∈ Z, then

n∑
i=1

nieT,∅;{i} = 0. (3.4)

3. For every X ⊆ {H1, . . . , Hn} with rk(X) = |X| − 1 and every

L ∈ π0(∩Hi∈XHi), then∑
Hj∈C

∑
A,B⊂X

X=AtBt{Hj}
F⊆A
|B| even
W⊇L

(−1)|A≤j |cB
m(A)

m(A ∪B)
eW.A;B = 0 (3.5)

where X = C t F with C the unique circuit in X with associated

linear dependency
∑

Hi∈C niχi with ni ∈ Z and

cB :=
∏

Hi∈B sgn ni.
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Proof. First we prove that the map Φ given by eW,A;B 7−→ [η̄W,A;B] is well

defined (see Definition 3.3.35).

� If A t B is independent, then A is independent too and, if W ∈ L(A)

and A is generating W , then W ∈ π0(∩Hi∈AHi), thus η̄W,A;B is well

defined and has degree |A|+ |B| = |A tB|.

� The elements [η̄W,A,B] satisfy the same relations. In fact,

1. It immediately follows from Lemma 3.3.37,

2. Already proved in Theorem 3.3.14.

3. It immediately follows from Proposition 3.3.54. Note that, since

F ⊆ A, then B ⊆ C and cB is well defined.

It remains to prove the bijectivity of Φ.

It is surjective since gr (Im(Φ)) = gr(H∗(M(A),Q)). In fact, from

Lemma 3.3.39, we have that, for every eW,A;B,

gr(Φ(eW,A;B)) = (−1)`(A,B)2|A|ψB ⊗$A ∈ gr|A|(H∗(M(A))).

On the other hand, for every generators ψB ⊗ $A of gr(H∗(M(A))) there

exists a preimage in E defined by (−1)`(A,B)2−|A|eW,A;B.

Now, letA ⊆ {H1, . . . , Hn} an independent set and takeD(A) ⊆ {H1, . . . , Hn}
such that A ∪D(A) is a maximal independent set.

In order to prove the injectivity of Φ, we prove that E is generated by eW,A;B

with A nbc set in the arrangement A[W ] and B ⊆ D(A). Thanks to equa-

tion 3.3, eW,A;B = (−1)`(A,B)eW,A;∅eT,∅,B, than it suffices to prove that each

factor of the rhs can be written as linear combination of eW,S;R with S nbc

set such that W ∈ π0(∩Hi∈SHi) and R ⊆ D(S). First we prove that every

eW,A;∅ satisfies the thesis.
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Define on P(E) a total order given by

A < A′ ⇐⇒ |A| < |A′|

or

|A| = |A′| with A greater than A′ wrt the lexicographic order.

We prove the thesis by induction on P(E). For the base case we take

A = max(E) that is a nbc set, then obviously the thesis is satisfied.

Let A = {H1, . . . , Hm} be an independent non-nbc set and suppose that for

every A′ < A the thesis is true. Since A is a non-nbc set, there exists A1 ⊆ A

broken circuit i.e. there exists K ∈ E such that (K,A1) is a circuit. For

X = (K,A) = {K,H1, . . . , Hm}, rk(X) = rk(A) = |A| = |X| − 1, then by

equation 3.5, we have that eW,A;∅ can be written as linear combination of the

ones eW,S;R with R 6= ∅ and |S| < |A| and eW,S;∅ with S = X\Hi. It follows

that eW,A,∅ can be written as linear combination of eW,S,R with S < A, then

by inductive hypothesis we can conclude.

From definition and equation 3.4, eT,∅,B =
∏

b∈B eT,∅,b where for every b ∈ B,

eT,∅,b =
∑

a∈A λb,aeT,∅,a +
∑

d∈D(A) µb,deT,∅,d, and, for equation 3.2, we have

that eT,∅;B can be written as linear combination of eT,∅;B′ with B′ ⊆ D(A).

Since A is essential, for every W ∈ π0(∩Hi∈AHi), rk(W ) = |A|, then

dim(E) ≤
∑

W∈L(A)

2d−rk(W )|nbcrk(W )(A[W ])| =

=
∑

W∈L(A)

2dim(W )|nbcrk(W )(A[W ])| =

= Poin(M(A), 1) =

= dim(H∗(M(A))),

thus Φ is also injective.
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Remark 3.3.56. � This theorem generalized the one for the unimodular

arrangement, in fact, by Lemma 3.3.36, if ∩Hi∈AHi is connected, we

have that η̄W,A,B = η̄A,B with W = ∩Hi∈AHi. Thus, in the unimodular

case, the relations of this theorem are exactly the same of Theorem

3.3.14.

� There are examples of non-unimodular arrangements whose cohomol-

ogy algebra is not generated in degree one. Anyway, as we have already

seen in Remark 3.3.15, if A is unimodular, the cohomology algebra is

generated in degree one.

� Φ determines an isomorphism that cannot be restricted toH∗(M(A),Z)

due to the 2|A| factor in Lemma 3.3.39. However it is possible to give

a presentation also for H∗(M(A),Z): see Theorem 7.4 [CDD+19].

� Since the equation 3.2, 3.3 and 3.5 can be determined by the poset of

layers L(A), and it can be proved that also 3.4 can be recovered by

the poset [Pag19a], this presentation of the cohomology algebra of the

complement of a toric arrangement is completely determined by L(A).

We have also seen, in Remark 3.2.10, that the poset of layers L(A)

determines uniquely the arithmetic matroid of the arrangement, but

unlike the case of hyperplane arrangements (Corollary 1.4.4), L(A)

does not depends only on arithmetic matroids. In fact, in [Pag19b],

Pagaria constructed two toric arrangements with isomorphic matroids

but non-isomorphic cohomology rings.



90 Toric arrangements

Example 3.3.57. Let A be the toric arrangement in T := (C∗)2 of Example

3.2.11. In order to compute the generators, we take the Hasse diagram of

the poset of layers L(A), that is:

{p} {q} {r}

H1 H2 H3

T

� For W = T ,

η̄T,∅;Hi = ψi ∀i, η̄T,∅;{Hi,Hj} = ψiψj ∀i 6= j.

For W = Hi,

η̄Hi,Hi;∅ = η̄Hi;∅ = ω̄i η̄Hi,Hi;Hj = η̄Hi;Hj = ω̄iψj ∀i 6= j.

For W ∈ {p, q, r},

η̄p,{H1,H2};∅ = ω̄p,{H1,H2} η̄p,{H1,H3};∅ = ω̄p,{H1,H3} η̄p,{H2,H3};∅ = ω̄p,{H2,H3}

η̄q,{H2,H3};∅ = ω̄q,{H2,H3} η̄r,{H2,H3};∅ = ω̄r,{H2,H3}.

Note that thanks to relation 3.3, we have that

ω̄1ω̄2 = ω̄p,{H1,H2} ω̄1ω̄3 = ω̄p,{H1,H3}

Then we conclude that the generators of H∗(M(A),Q) can be repre-

sented by

ω̄1 ω̄2 ω̄3

ψ1 ψ2 ψ3

ω̄p,{H2,H3} ω̄q,{H2,H3} ω̄r,{H2,H3}
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with, as computed in Example 3.3.19,

ω̄p,{H2,H3} =
−1

4π

t3s2 + t3s+ 4t2s+ 4ts+ s+ 1

ts(s− 1)(t3s− 1)
dtds,

similarly,

ω̄q,{H2,H3} =
−1

4π

t3s2 + t3s+ 4ξt2s+ 4ξts+ s+ 1

ts(s− 1)(t3s− 1)
dtds,

ω̄r,{H2,H3} =
−1

4π

t3s2 + t3s+ 4ξ2t2s+ 4ξ2ts+ s+ 1

ts(s− 1)(t3s− 1)
dtds,

where ξ = e
2
3
πi.

� The relations are

1.

ω̄iψi = 0 ∀i;

ω̄iω̄s,{H2,H3} = 0 ∀i = 2, 3 ∀s ∈ {p, q, r};

ω̄1ω̄2 = ω̄p,{H1,H2} ω̄1ω̄3 = ω̄p,{H1,H3};

ω̄2ω̄3 = ω̄p,{H2,H3} + ω̄q,{H2,H3} + ω̄r,{H2,H3}.

2. Since 3χ1 + χ2 − χ3 = 0,

3ψ1 + ψ2 − ψ3 = 0.

3. C = {H1, H2, H3} is the unique circuit with {p} = H1 ∩H2 ∩H3,

then

0 = −1

3
η̄T,∅,{H2,H3} + η̄p,{H2,H3}∅ + η̄T,∅,{H1,H2} + η̄p,{H1,H2},∅+

− η̄T,∅,{H1,H3} − η̄p,{H1,H3},∅ =

= −1

3
ψ2ψ3 + ω̄p,{H2,H3} + ψ1ψ2 + ω̄p,{H1,H2} − ψ1ψ3 − ω̄p,{H1,H3} =

= −1

3
ψ2ψ3 + ω̄p,{H2,H3} + ψ1ψ2 + ω̄1ω̄2 − ψ1ψ3 − ω̄1ω̄3.
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Considering the relations above, we have that

- a basis for H1(M(A)) is represented by

{ω̄1, ω̄2, ω̄3, ψ1, ψ2},

then dim(H1(M(A))) = 5;

- a basis for H2(M(A)) is represented by

{ω̄1ω̄2, ω̄1ω̄3, ω̄2ω̄3, ψ1ψ2, ω̄1ψ2, ω̄2ψ1, ω̄3ψ1, ω̄r,{H2,H3}},

then dim(H2(M(A))) = 8.

Note that these results are the same of Example 3.3.5 in which we computed

b1 = 5 and b2 = 8.



Appendix A

Modules and algebras

A.1 K-modules

Definition A.1.1. Let (K,+,∗ ) be an abelian ring.

(M,⊥) is a K-module if (M,⊥) is an abelian group and exists an operation

∗ : K ×M −→M such that:

� (a+ b) ∗m = a ∗m⊥ b ∗m;

� a ∗ (m⊥n) = a ∗ m⊥a ∗ n;

� (a∗b) ∗m = a ∗ (b ∗m);

� 1R ∗m = m

∀ a, b ∈ K and ∀m,n ∈M .

A K-module where K is a field, is called K-vector space.

Definition A.1.2. Let M be a K-module and N a subgroup of (M,⊥).

N is a sub-K-module of M if, for every a ∈ K, n ∈ N , a ∗ n ∈ N .

93
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If X is a non-empty subset of the K-module M , then we define

< X >:=
⋂

N sub-K-module of M
X⊆N

N

the sub-K-module generated by X, that is the smallest sub-K-module of

M that contains X.

If X = {x1, . . . , xn} is a finite set, then < X >= {
∑n

i=1 ai ∗ xi|ai ∈ K} is

said to be finitely generated.

If X = {x}, we write Kx :=< x >= {a ∗ x|a ∈ K}.
If M =< X > we say that X generates M .

Definition A.1.3. Let M be a K-module and N be a subset of M. N is

linearly independent if for any distinct x1, . . . , xn ∈ N and a1, . . . , an ∈ K
we have

n∑
i=1

ai ∗ xi = 0 ⇒ ai = 0 ∀i.

A set that is not linearly independent is linearly dependent.

Definition A.1.4. Let M be a K-module. A subset B of M is a basis for

M if B is linearly independent and generates M .

M is said to be a free K-module if M = {0} or if M admits a basis.

Theorem A.1.5. A subset B of a K-module M is a basis if and only if every

nonzero x ∈M is an essentially unique combination of the vectors in B.

Definition A.1.6. Let M be a K-module and N be a sub-K-module of M.

The binary relation

xRy ⇔ x− y ∈ N

is an equivalence relation on M, whose equivalence classes are the cosets

[x] = {x+ n|n ∈ N}.
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The set M/N of all cosets of N in M is a K-module under the well defined

operations ⊥̃ : M/N ×M/N −→M/N and ∗̃ : M/N ×M/N −→M/N such

that

[x]⊥̃[y] := [x⊥y] and a∗̃[x] := [a ∗ x].

This K-module is called quotient K-module.

Definition A.1.7. Let M ,N be K-modules and f : M −→ N a group

homomorphism. f is a K-linear map or K-homomorphism if

f(a ∗m) = a ∗ f(m) ∀a ∈ K,∀m ∈M.

A bijective K-linear map is called K isomorphism.

Definition A.1.8. Let M , N be two K-modules and consider the set of the

pairs (m,n) with m ∈M,n ∈ N .

This set is a K-module with the operations + and ∗ defined as follow:

(m,n) + (m′, n′) = (m+m′, n+ n′)

and

a ∗ (m,n) = (a ∗m, a ∗ n)

∀m,m′ ∈M,n, n′ ∈ N, a ∈ K.

This K-module, denoted as M ⊕N , is called direct sum of M and N.

In the same way, it is defined the direct sum of a finite collection of

K-modules, and it will be denoted as⊕
i∈{1,...,n}

Mi := M1 ⊕ · · · ⊕Mn.

The direct sum of n copies of M is denoted as

Mn := M ⊕ · · · ⊕M.

Definition A.1.9. Let (K,+,∗ ) be a graded ring with K = ⊕mi=0Ki.
AK-moduleM = ⊕nj=0Mj is a graded K-module ifKλ∗Mµ ⊂Mλ+µ ∀λ, µ.
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Definition A.1.10. Let M ,M ′ be graded K-modules with M = ⊕ni=1Mi,

M ′ = ⊕mi=1M
′
i . A K-homomorphism of K-modules f : M −→ M ′ is a

graded homomorphism if f(Mi) ⊆ M ′
i ∀i. A bijective homomorphism

is called graded isomorphism. f is called homogeneous of degree k if

f(Mi) ⊆M ′
i+k ∀i.

A.2 K-algebras

Definition A.2.1. Let (K,+,∗ ) be an abelian ring. A K-module (A,⊥)

with scalar product ∗ is a K-algebra if there exists a bilinear operation

? : A× A −→ A, called multiplication of A.

Recall that a bilinear operation is an operation that satisfies the fol-

lowing properties:

� (x⊥y) ? z = x ? z + y ? z

� x ? (y⊥z) = x ? y⊥x ? z

� (a ∗ x) ? y = a ∗ (x ? y)

� x ? (b ∗ y) = b ∗ (x ? y)

∀x, y, z ∈ A and ∀a, b ∈ K.

Definition A.2.2. Let A be a K-algebra and B a sub-K-module of A. B is

a sub-K-algebra of A if x ? y ∈ B ∀x, y ∈ B.

Definition A.2.3. Let A be a K-algebra and I a sub-K-module of A. I is

an ideal of A if i ? x ∈ I, x ? i ∈ I ∀i ∈ I, x ∈ A.
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Definition A.2.4. Let A be a K-algebra and I an ideal of A. The binary

relation

xRy ⇔ x− y ∈ I

is an equivalence relation on A, whose equivalence classes are the cosets

[x] = {x+ i|i ∈ I}.

The set A/I of all cosets of I in A is a K-algebra under the bilinear operation

?̃ : A/I × A/I −→ A/I defined by

[x]?̃[y] := [x ? y].

This K-algebra is called quotient K-algebra.

Note that ?̃ is well defined, since, if [x] = [x′] and [y] = [y′],

x ? y − x′ ? y′ = x ? (y − y′) + (x− x′) ? y′ ∈ I, thus [x ? y] = [x′ ? y′].

Definition A.2.5. Let A,A′ be K-algebras and f : A −→ A′ a K-linear map.

f is a homomorphism of K-algebras if f(x?y) = f(x)?′f(y) ∀x ∈ A, x ∈
A′.

A bijective homomorphism is called K isomorphism.

Definition A.2.6. Let A be a K − algebra. A K-linear map ∂ : A −→ A is

a K-derivation if it satisfies the Leibniz rule, i.e, ∀a, b ∈ A,

∂(a ? b) = (∂a) ? b+ a ? (∂b).

In this case we say that A is a differential K-algebra

A.2.1 Graded K-algebras

Definition A.2.7. Let A be a K-algebra. A is a graded K-algebra if there

exist a collection {Ai}i∈{1,...,n} of sub-K-modules of the K-module A such that

A =
⊕n

i=1Ai and Ai ? Aj ⊂ Ai+j ∀i, j ∈ {1, . . . , n}.
An element x ∈ A is called homogeneous if it belongs to one of the Ai and

homogeneous of degree i if x ∈ Ai.
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Remark A.2.8. � 0 is homogeneous of all degrees;

� if x 6= 0 is homogeneous, it belongs to only one of the Ai. If x ∈ Aī,
we say that ī is the degree of x and we write deg(x) = ī;

� Every x ∈ A may be written uniquely as sum of homogeneous elements

with, for x =
∑n

i=1 xi, xi ∈ Ai. In this case we say that xi is the

homogeneous component of degree i of x.

Definition A.2.9. Let A be a graded K-algebra with A = ⊕ni=1Ai and I an

ideal of A. I is an homogeneous or graded ideal of A if I = ⊕ni=1I ∩ Ai.

Proposition A.2.10. If A is a graded K-algebra with A = ⊕ni=1Ai and I is

a homogeneous ideal of A, then A/I =
⊕n

i=1
Ai
I∩Ai is graded K-algebra.

Definition A.2.11. Let A,A′ be K-algebras with A = ⊕ni=1Ai, A
′ = ⊕mi=1A

′
i.

A homomorphism of K-algebras f : A −→ A′ is a graded homomorphism

of graded algebras if f(Ai) ⊆ A′i ∀i. A bijective homomorphism is called

graded isomorphism.

f is graded of degree k if f(Ai) ⊆ A′i+k ∀i.

Definition A.2.12. Let A be a graded K-algebra. A is a differential

graded K-algebra if there exists a K-linear map ∂ : A −→ A of degree

1 or degree -1, such that:

� ∂ ◦ ∂ = 0;

� ∂ respects the graded Leibniz rule, i.e.

∂(a ? b) = (∂a) ? b+ (−1)deg(a)a ? (∂b)

for every a, b ∈ A.

In this case ∂ is called derivation of A.
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A.2.2 Exterior algebras of K-modules

Definition A.2.13. Let M ,N K-modules. Define B the K-module of formal

linear combinations of elements of M × N , and R the K submodule of B

generated by the element of one of the following types:

� (m1 +m2, n)− (m1, n)− (m2, n);

� (m,n1 + n2)− (m,n1)− (m,n2);

� (a ∗m,n)− (m, a ∗ n)

∀m,m1,m2 ∈M, n, n1, n2 ∈ N, a ∈ K.

The tensor product of M and N , denoted by M ⊗N , is the quotient

K-module B/R. For every m ∈M,n ∈ N , define x⊗ y the tensor product

of m and n the image of (m,n) through the natural projection

π : M ×N −→M ⊗N .

Remark A.2.14. Directly from this definition, it follows that

� (m1 +m2)⊗ n = m1 ⊗ n+m2 ⊗ n;

� m⊗ (n1 + n2) = m⊗ n1 +m⊗ n2;

� (a ∗m)⊗ n = m⊗ (a ∗ n)

∀m,m1,m2 ∈M, n, n1, n2 ∈ N, a ∈ K.

Definition A.2.15. Let M be a K-module. Define M⊗0 := K and for every

n > 0,

M⊗n := M ⊗ · · · ⊗M

the K-module defined as the tensor product of n modules equal to M , and

T (M) :=
⊕
n≥0

M⊗n

the K-module defined as the direct sum of {M⊗n}n≥0.
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T (M) is a K-algebra, called tensor K-algebra of M, with the operation

? : T (M)× T (M) −→ T (M) defined on the generators as

(x1 ⊗ · · · ⊗ xp) ? (y1 ⊗ · · · ⊗ yq) := x1 ⊗ · · · ⊗ xp ⊗ y1 ⊗ · · · ⊗ yq

for every (x1 ⊗ · · · ⊗ xp) ∈M⊗p, (y1 ⊗ · · · ⊗ yq) ∈M⊗r, p, q > 0.

Clearly T (M) is a graded algebra.

Definition A.2.16. Let M be a K-module. Define I the ideal of T (M)

generated by the elements x ⊗ y − y ⊗ x, with x, y ∈ M . The exterior

K-algebra of M , denoted as Λ(M) is the quotient K- algebra of the tensor

algebra T (M) by the ideal I.

For every x1 ⊗ · · · ⊗ xp ∈ T (M), denote x1 ∧ · · · ∧ xp its class in Λ(M).

It follows from the definition that:

� x ∧ y = −y ∧ x ∀x, y,∈M ;

� x ∧ x = 0 ∀x ∈M .

Since T (M) is a graded algebra and I is a graded ideal, Λ(M) is a graded

algebra, i.e.

Λ(M) :=
⊕
n≥0

M⊗n

I ∩M⊗n :=
⊕
n≥0

Λn(M)

and ΛrE ∧ ΛsE ⊆ Λr+sE.

Remark A.2.17. Since I∩M⊗0 = I∩M⊗1 = {0}, then Λ0(M) = M⊗0 = K
and Λ1(M) = M⊗1 = M .

It can be proved that x ∧ y = (−1)pqy ∧ x ∀x ∈ Λp(M), y ∈ Λq(M).
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For X = {x1, . . . , xn}, denote Λk(x1, . . . , xn) := Λk(< X >) and

Λ(x1, . . . , xn) = Λ(< X >). Since x ∧ x = 0 for every x ∈ X, we have

that Λk(x1, . . . , xn) is generated by {xi1 ∧ · · · ∧ xik , with i` 6= im ∀` 6=
m,xij ∈ X}, i.e. every element of Λk(x1, . . . , xn) can be written as the

wedge of k distinct elements of < X >, which are elements of degree 1 since

< X >= Λ1(< X >). For this reason we say that Λ(x1, . . . , xn) is generated

in degree one.
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Appendix B

Matroids

Definition B.0.1. A matroid M is an ordered pair (E, I), where E is a

finite set and I is a collection of subsets of E having the following properties:

(I1) ∅ ∈ I;

(I2) If B ⊆ A and A ∈ I, then B ∈ I;

(I3) If A,B ∈ I where |B| < |A|, then ∃a ∈ A\B such that B ∪ {a} ∈ I

The elements of I := I(M) are called independent sets, and E is called

ground set of M. A subset of E that is not in I is called dependent.

Definition B.0.2. A circuit of M is a minimal dependent set. Define

C(M) the set of circuits of M, i.e.

C(M) = {X /∈ I; ∀x ∈ X,X\{x} ∈ I}.

Note that I(M) = {X ⊆ E; @Y ⊆ X with Y ∈ C(M)}. It immediately

follows that

Proposition B.0.3. A matroid is uniquely determined by its set C(M) of

circuits.

Definition B.0.4. B ⊆ E is a basis of M if it is a maximal independent

set in M.Denote B the set of basis of M.
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Lemma B.0.5. If B1 and B2 are basis of a matroid M, then |B1| = |B2|.

Note that B is the collection of maximal subsets of E that contain no

member of C(M) and C(M) is the collection of minimal sets that are con-

tained in no member of B.

Definition B.0.6. Let M = (E, I) a matroid and X ∈ E. Define

I|X := {I ⊆ X|I ∈ I};

M|X := (X, I|X) the restriction matroid of M to X;

C(M|X) = {C ⊆ X|C ∈ C(M)}

and the rank function

rM : P(E) −→ Z+ ∪ {0}

X 7−→ |B|
where B basis of M|X . Denote rM(M) := r(E).

Note that the rank function is well defined thanks to Lemma B.0.5.

Remark B.0.7. For every X ⊆ E,

� X ∈ I ⇔ |X| = rM(X);

� X ∈ B ⇔ |X| = rM(X) = rM(M);

� X ∈ C ⇔ X 6= ∅ and rM(X) = |X|−1 = rM(X\{x})∀x ∈ X.

Definition B.0.8. Define the closure operator of M as

cl : P(E) −→ P(E)

X 7−→ {x ∈ E|rM(X ∪ x) = rM(X)}
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Remark B.0.9. For every X ⊆ E,

1. rM(X) = rM(cl(X));

2. X ⊆ cl(X);

3. cl(cl(X)) = cl(X);

4. cl(X) ⊆ cl(Y ), for X ⊆ Y .

Definition B.0.10. A subset X of E is a flat (or closed set) of M if

cl(X) = X. Denote L(M) the set of flats of M and note that it is a poset

under inclusion.

Remark B.0.11. {X ⊆ E|X flat} = {cl(X)|X ⊆ E}. In fact, in order to

prove the right to left inclusion, we take Y = cl(X) which is a flat since, by

Remark B.0.9, cl(Y ) = cl(cl(x)) = cl(X) = Y .

Definition B.0.12. Let X, Y be subsetes of E. We say that X spans Y if

Y ⊆ cl(X) and that X is a spanning set of M if cl(X) = E.

Proposition B.0.13. Let X be a subset of E, then:

� X is a spanning set ⇔ rM(X) = rM(M).

� X is a base of M⇔ X is a spanning set and independent set

⇔ X is a minimally spanning set.

� X is a circuit ⇔ X is a minimal non-empty set such that

x ∈ cl(X − x) ∀x ∈ X.

� cl(X) = X ∪ {x ∈ E|∃ C circuit such that x ∈ C ⊆ X ∪ x}.



106 B Appendix



Appendix C

Vector bundles and de Rham

cohomology

C.1 Vector bundles

Definition C.1.1. Let E, M be C∞ manifolds and π : E −→ M be a C∞

map. The triple ξ = (E, π,M) is a vector bundle of rank n over a field K,

if

� π−1(x) is a K-vector space for every x ∈M ;

� there exists an open cover {Uα} of M and diffeomorphisms ϕα : Uα ×
Kn −→ π−1(Uα) such that

π ◦ ϕα = proj1

where proj1 : Uα×Kn −→ Uα is the projection on the first component,

and ∀x ∈ Uα,∀y ∈ Kn the maps

ϕα,x : Kn −→ π−1(x)

y 7−→ ϕα(x, y)

are linear isomorphisms.
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If K is equal to R or C, ξ is called, respectively, real or complex vector

bundle.

Remark C.1.2. � π is a surjective map since for every x ∈ M , π−1(x)

is a K vector space and then it can’t be empty;

� E =
⊔
x∈M π−1(x).

Definition C.1.3. Let M be a C∞ manifold. ξ = (M × Kn, proj1,M) is

called trivial bundle of rank n over K.

Definition C.1.4. Let ξ = (E, π,M) be a vector bundle and let O be an

open submanifold of M. The vector bundle ξ|O := (π−1(O), π|π−1(O), O) is

called restriction of ξ.

Definition C.1.5. Let ξ = (E, π,M) be a vector bundle.

A C∞ map s : M −→ E is a section of ξ if π ◦ s is the identity on M.

Let U be an open set in M, a C∞ map is a section of ξ over U if it is a

section of ξ|U , i.e. π ◦ s is the identity on U.

Proposition C.1.6. Every vector bundle ξ = (E, π,M) admits a section

s0 : M −→ E such that, ∀x ∈M , s0(x) = 0x where 0x is the zero element of

the vector space π−1(x). s0 is called zero section of ξ.

Definition C.1.7. Let M be a n-dimensional C∞ manifold, and S be a k-

dimensional C∞ submanifold of M. An open neighborhood T of S in M is a

tubular neighborhood if there exist a vector bundle ξ = (E, π, S) of rank

n− k and a diffeomorphism ψ : T −→ E such that ψ|S = s0, where s0 is the

zero section of ξ.

Theorem C.1.8 (Tubular Neighborhood Theorem). Let M is a C∞ mani-

fold. Every C∞ submanifold S in M has a tubular neighborhood T.
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Let’s now recall some notions about homotopy:

Definition C.1.9. Let M ,N be C∞ manifolds and f ,g be C∞ maps between

M and N . f and g are C∞-homotopic if there exists a C∞ map

F : M ×R −→ N

such that

F |M×{0} = f and F |M×{1} = g.

In this case F is called homotopy from f to g and we write f '∞ g.

Definition C.1.10. Let M ,N be C∞ manifolds. We say that M is homo-

topy equivalent to N if there exist f : M −→ N and g : N −→ M C∞

maps such that

g ◦ f ' 1M and f ◦ g ' 1N .

In this case f and g are called homotopy equivalences and we write

M '∞ N .

If a manifold M is homotopy equivalent to a point, we say that M is con-

tractible.

Definition C.1.11. Let S be submanifold of a manifoldM , with i : S −→M

the inclusion map.

A C∞ map r : M −→ S is a retraction from M to S if r ◦ i = 1S. In this

case we say that S is a retract of M .

S is a deformation retract of M if there exists an homotopy F from 1M

to i ◦ r. S is a strong deformation retract of M if it is a deformation

retract such that F (s, t) = s for every s ∈ S, t ∈ R (i.e. F leaves S fixed for

every time t).

Proposition C.1.12. Let S be submanifold of a manifold M. If S is a de-

formation retract of M, then S is homotopy equivalent to M.

Proposition C.1.13. A vector bundle over a contractible manifold is trivial.
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C.2 De Rham cohomology

We assume the reader is familiar with basic concepts of differential

topology such as C∞ manifold, C∞ map, tangent space, pullback of a map

and smooth differential form. (See [Tu08]).

Let M be a C∞ manifold. We denote Ωk(M) the real vector space of

smooth differential k-forms on M.

From now on we will call a smooth differential k-form, simply k-form.

Recall that

� Ω0(M) = C∞(M) := {f : M −→ R, f is a C∞ map};

� Ωk(M) = 0 for every k ≥ dim(M) the dimension of M;

� Ω∗(M) :=
⊕dim(M)

k=0 Ωk(M), with the wedge product ∧ of forms, is a

graded algebra;

� α ∧ β = (−1)k+`β ∧ α for every α ∈ Ωk(M), β ∈ Ω`.

Definition C.2.1. Let M be a C∞ manifold. An exterior derivative on

M is a R-linear map

d : Ω∗(M) −→ Ω∗(M)

of degree 1 such that:

� on 0-forms it agrees with the differential df of a function f ;

� d ◦ d = 0;

� d(α ∧ β) = (dα) ∧ β + (−1)kα ∧ (dβ), where α ∈ Ωk(M).
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Theorem C.2.2. On any manifold M there exists an unique exterior deriva-

tive d : Ω∗(M) −→ Ω∗(M) characterized uniquely by the three properties of

Definition C.2.1.

It follows that Ω∗(M) is a differential graded anticommutative algebra

and (Ω∗(M), d) is a cochain complex, called de Rham complex.

Define dk := d
∣∣
Ωk(M)

: Ωk(M) −→ Ωk+1(M).

Definition C.2.3. Let M be a C∞ manifold.

A k-form ω is a closed k-form if ω ∈ Ker(dk) and it is a exact k-form if

ω ∈ Im(dk−1).

The cohomology of the de Rham complex is the quotient vector space

Hk
dR(M) :=

Ker(dk)

Im(dk−1)
=
{closed k-forms on M}
{exact k-forms on M}

.

It is called de Rham cohomology of M in degree k.

Define

H∗dR(M) =

dim(M)⊕
k=0

Hk
dR(M).

Note that, for every α, β forms:

� α, β closed ⇒ α ∧ β closed;

� α exact, β closed ⇒ α ∧ β exact;

� α closed, β exact ⇒ α ∧ β exact.

It follows that the wedge product of the k-forms induces a wedge product

on the classes defined by

[α] ∧ [β] := [α ∧ β].

This product gives to H∗dR(M) the structure of an anticommutative graded

R-algebra.
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Definition C.2.4. Let M ,N be C∞ manifolds and f : M −→ N be a C∞

map.

Define

Hk
dR(f ∗) : Hk

dR(N) −→ Hk
dR(M)

[ω] 7−→ [f ∗(ω)]

where f ∗ : Ωk(N) −→ Ωk(M) is the pullback map of f .

These maps induce an homomorphism of algebras

H∗dR(f ∗) : H∗dR(N) −→ H∗dR(M).

Note that Hk
dR(f ∗) is well defined since it can be proved that the exterior

derivative commutes with the pullback of every C∞ map.

Proposition C.2.5. Let M ,N be C∞ manifolds and f : M −→ N be a C∞

map. If f is a diffeomorphism, then Hk
dR(f ∗) is a isomorphism of vector

spaces for every k.

In particular

H∗dR(M) ' H∗dR(N).

From this proposition immediately follows that the de Rham cohomology

is a diffeomorphism invariant of C∞ manifold.

C.2.1 Homotopy axiom for the de Rham cohomology

Proposition C.2.6. Let M ,N be C∞ manifolds and f, g be C∞ maps be-

tween M and N . If f '∞ g then Hk
dR(f ∗) = Hk

dR(g∗).

Corollary C.2.7. Let M ,N be C∞ manifolds. If M is homotopy equivalent

to N , then H∗dR(M) is isomorphic to H∗dR(N).

Corollary C.2.8. Let S be a submanifold of a manifold M . If S is a defor-

mation retract of M , then H∗dR(S) is isomorphic to H∗dR(M).
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C.2.2 Mayer-Vietoris sequence

Theorem C.2.9. Let {U, V } be an open cover of a C∞-manifold M .

Consider, for each k,

i : Ωk(M) −→ Ωk(U)⊕ Ωk(V )

α 7−→ (α|U , α|V )

and

j : Ωk(U)⊕ Ωk(V ) −→ Ωk(U ∩ V )

(β, γ) 7−→ β|U∩V − γ|U∩V .

The sequence

0→ Ωk(M)
i−→ Ωk(U)⊕ Ωk(V )

j−→ Ωk(U ∩ V )

is exact for each k.

Remark C.2.10. If B ⊆ A, for every form ω in A, ω|B = i∗B(ω) where

iB : B −→ A is the canonical inclusion.

In particular the sequence of cochain complexes

0→ Ω∗(M)
i−→ Ω∗(U)⊕ Ω∗(V )

j−→ Ω∗(U ∩ V )→ 0 (C.1)

is exact.

Note that Ω∗(U)⊕ Ω∗(V ) = Ω∗(U t V ).

Thanks to Snake’s lemma, the sequence C.1 gives rise to a long exact

sequence in cohomology, called Mayer-Vietoris sequence

· · · → Hk
dR(M)

Hk
dR(i)
−−−−→ Hk

dR(U)⊕Hk
dR(V )

Hk
dR(j)
−−−−→ Hk

dR(U∩V )
δk−→ Hk+1

dR (M)→ . . .

where δk is the connecting homomorphism.
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C.2.3 Relative de Rham cohomology

Definition C.2.11. Let M be C∞ manifold, S be a submanifold of M and

iS : S −→M be the inclusion map. Define a complex Ω∗(M,S) := ⊕kΩk(M,S)

by

Ωk(M,S) := Ωk(M)⊕ Ωk−1(S)

and

d : Ωk(M,S) −→ Ωk+1(M,S)

(α, β) 7−→ (dα, α|S − dβ).

It is easy to verify that d2 = 0. Note that a cohomology class in Ω∗(M,S)

is represented by a closed form ω on M such that ω|S is exact.

Proposition C.2.12. Let

i : Ωk−1(S) −→ Ωk(M,S)

α 7−→ (0, α)

and

j : Ωk(M,S) −→ Ωk(M)

(β, γ) 7−→ β.

The sequence

0→ Ωk−1(S)
i−→ Ωk(M,S)

j−→ Ωk(M)

is exact for each k.

Proposition C.2.13. Let M be C∞ manifold, S a submanifold of M . There

is an exact sequence, called long exact sequence of the pair (M,S)

· · · → Hk−1
dR (S)

Hk−1
dR (i)
−−−−→ Hk

dR(M,S)
Hk
dR(j)
−−−−→ Hk

dR(M)
Hk
dR(i∗S)
−−−−→ Hk

dR(S)→ . . .

where Hk
dR(M,S) is called relative de Rham cohomology.

In conclusion we state an important theorem called excision theorem
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Theorem C.2.14. Let U ,A,X be three manifolds. If U ⊆ A ⊆ X, then the

inclusion map (X\U,A\U) −→ (X,A) induces, for every k, an isomorphism

r : Hk
dR(X,A) −→ Hk

dR(X\U,A\U).
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