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Introduzione

Lo scopo di questa tesi è quello di presentare una curiosa interpretazione della gravità che deriva
da considerazioni statistiche ed evidenzia punti cruciali che potrebbero essere ulteriori argomenti
importanti su cui poter fare ricerca scientifica. Nel tentativo di derivazione delle equazioni di
campo di Einstein attraverso un approccio statistico, fenomeni termodinamici conducono alla
teoria classica della Relatività Generale, tuttavia con informazioni aggiuntive che usualmente
non compaiono quando si procede invece per la Teoria dei Campi.

Ciò nonostante, questo implica che sia necessario rivedere e accettare nuovi presupposti a
livello fondamentale per quanto riguarda la natura dello spaziotempo. Tali assunzioni sono
motivate e giustificate dall’osservazione del modello statistico dal punto di vista di un sistema di
riferimento privilegiato, nel momento in cui si compara il comportamento gravitazionale con la
termodinamica.

I primi tentativi di esplorare questa analogia risalgono al 1974, dopo la intrigante scoperta
teorica della radiazione di buco nero del fisico Stephen Hawking, attraverso la quale l’interpretazione
termodinamica della gravita è diventata sempre più evidente.

Di conseguenza, quando la gravità è considerata come un fenomeno che avviene a livello
macroscopico nel modo descritto dalla Relativià Generale Classica, inevitabilmente esiste una
statistica a livello microscopico. Dunque, esistono dei gradi di liberta di natura ancora sconosciuta
associati allo spaziotempo, cosicché si dice che la gravità come la conosciamo “emerge”. Questo
collegamento tra macro e micro è simile alla derivazione di altre quantità termodinamiche, come
temperatura o entropia di un gas atomico, risultato di uno stato particolare dei gradi di libertà di
tutte le particelle considerate: un funzionale per tali gradi di libertà dello spaziotempo può essere
trovato consentendo alla gravità di essere l’espressione a larga scale di questi, ogni qualvolta la
procedura di estremizzazione viene effettutata.

Tali gradi di libertà vengono chiamati in gergo “atomi di spaziotempo”, la cui dinamica
avviene su scala microscopica; l’ordine di grandezza delle interazioni è quella di Plank e tali
atomi suppostamente possiedono un certo numero di gradi di libertà, la cui natura ultima è
considerata irrilevante sulla scala macroscopica della teoria: l’obiettivo è quello di descrivere la
gravità in maniera statistica in funzione del numero di tali granuli microscopici.

Qui sotto, verrà descritto il percorso eseguito con la descrizione degli argomenti trattati in
ciascun capitolo.
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Nel primo capitolo si deriveranno le equazioni del moto con il metodo usuale, estremizzando
la Lagrangiana di Einstein-Hilbert rispetto alla metrica. Facendo ciò, evidenzieremo l’esistenza
di una corrente di Noether conservata off-shell, la cui natura è puramente geometrica: questo
discende semplicemente dal fatto che la Lagrangiana è uno scalare.

Nel secondo capitolo, verranno fatte considerazioni particolari grazie alle quali sarà possibile
fornire una interpretazione fisica alla corrente ricavata in precedenza. L’utilizzo delle equazioni
del moto rivela che la carica di Noether associata può essere vista come entropia dello spaziotempo;
in questo modo, le equazioni del moto sono l’espressione di un bilanciamento fra entropie: da un
lato, la variazione dell’entropia associata alla materia che oltrepassa un orizzonte, dall’altro la
variazione dell’entropia di natura geometrica.
Tale interpretazione, infatti, non è una mera formalità. Il fatto che a ogni orizzonte si possa
associare della radiazione di buco nero, a una certa temperatura, sostiene fortemente l’idea che
gli orizzonti siano sistemi termodinamici a tutti gli effetti, anche se definiti come entità puramente
geometriche.

La derivazione convenzionale delle equazioni di campo non tiene in considerazione alcuna
caratteristica termodinamica dello spaziotempo. Questo suggerisce di provare a cambiare visione
e cercare un metodo di derivazione differente, in cui aspetti termodinamici siano presi come
punti iniziali. Ecco il contenuto del capitolo tre: considerando la gravità come un fenomeno
statistico a livello fondamentale, si può provare una derivazione delle equazioni di campo a
partire dall’estremizzazione di un funzionale di entropia opportuno.

Il capitolo quattro esplora la possibile esistenza di una micro-struttura dello spaziotempo,
o “atomi”, in altre parole: risulta quindi un ingrediente piuttosto naturale per una descrizione
statistica della gravità. Tale granulosità dello spaziotempo verrà descritta e implementata con
l’introduzione di un particolare oggetto matematico in grado di fornire una distanza finita tra
due eventi, nel limite di coincidenza tra essi; questa nuova metrica effettiva, che descrive la
micro-dinamica in maniera assai curiosa, trasmuta la Lagrangiana canonica di Einstein-Hilbert
in quel funzionale di entropia utilizzato nella derivazione statistica.

In conclusione, questo lavoro di tesi si riduce a una introduzione degli argomenti trattati,
ma la teoria, appena descritta in breve, apre a nuove e intriganti frontiere e questioni ancora
da approfondire e spiegare. Infatti, le assunzioni fondamentali sono applicabili anche su teorie
a ordini derivativi maggiori a due e in dimensioni superiori di quelle usuali. Inoltre, funziona
anche per teorie che non necessariamente sono caratterizzate da una proporzionalità fra entropia
e area della superficie: questa è una ragione in più che la rende affascinante e interessante.



Introduction

The purpose of this thesis is to introduce an interesting interpretation for gravity that comes
from statistical considerations and highlights possible milestones that might be topics of research
themselves. In the attempt of deriving Einstein’s field equations through a statistical approach,
thermodynamic behaviours lead to the classical General Relativity Theory plus some extra
information that is not visible under the usual Field Theory derivation.

Nevertheless, this implies that is necessary to review and accept new assumptions at fundamental
level for nature of spacetime. These are motivated and justified by observing the statistical model
under a particular system of reference when comparing gravity’s behaviour with thermodynamics.

The beginning of exploration of this analogy can be traced back in 1974, thanks to the
intriguing theoretical discovery of black hole radiation by the physicist Stephen Hawking, through
which a thermodynamic interpretation of gravity has become more evident.

Consequently, when gravity is considered as a phenomenon that occurs at a macroscopic level
in the way it is known in Classical General Relativity, a microscopic statistic exists, inevitably.
Thus, some still unknown degrees of freedom associated to spacetime play an important role, so
that the gravity we are familiar with it said to ”emerge”. This link between macro and micro
is as similar as any derivation of thermodynamic quantities, in example temperature or entropy
of an atomic gas, resulting from a particular status of the degrees of freedom of all particles
involved: a functional for spacetime degrees of freedom therefore can be found allowing gravity
to be their large scale expression, whenever the extremisation procedure is applied.

They way to call them in jargon is “atoms of spacetime” whose dynamics is suggested to be
considered at the smallest scale; the order of magnitude of interactions is the Planck length and
such atoms are expected to carry a certain number of degrees of freedom, whose ultimate nature
is considered as irrelevant at the scale of the macroscopic theory: the main goal is to describe
gravity in a statistical manner in terms of the number of these not-better-defined microscopic
degrees of freedom.

The full path taken, with all considerations and highlights are in the following chapters, as

iii



iv

described below.

In the first chapter, the equations of motion are derived by using the usual route, i.e. by
extremisation of the Einstein-Hilbert Lagrangian with respect to the metric. In doing this, we
will stress that a Noether current exists, of strictly geometric nature; although this is simply as
a consequence of the fact that the Lagrangian is a scalar, what is relevant to notice is that this
quantity is conserved already off-shell and deserves definitely particular attention, as long as it
carries curious information when observed at specific frame of reference.

In the second chapter, the physical interpretation to the associated current found previously
is described, as well as the conditions under which it is possible. Using the field equations, it
turns out that to the Noether charge can be given the interpretation of entropy of spacetime;
in this way, the equations of motion are the expression of a balancing between entropies: on
one side the variation of entropy associated to matter crossing an horizon, on the other side the
variation of entropy of geometric origin.
This interpretation, indeed, is not a mere formality. The fact that to any horizon is associated
black body radiation at a certain temperature strongly substantiates the idea that horizons, even
if defined as purely geometric entities, are thermodynamic systems in every respect.

The conventional derivation of field equations does not take into account any thermodynamic
feature of spacetime. Then, the considered observation suggests to try to change perspective
and search for a different derivation, with thermodynamic aspects of spacetime taken as starting
points. This is the content of chapter three. By considering gravity as a statistical phenomenon
at fundamental level, one can attempt to derive the equations of motion by extremisation of a
certain suitable entropy functional.

Chapter four explores the possible existence of a micro-structure of spacetime, or “atoms”,
in other words: this appears quite a natural ingredient of a statistical description of gravity.
Such granularity of spacetime will be described and implemented through the introduction of a
peculiar mathematical object, which acts as a very bizarre metric, able to give a finite distance
between two events even in the limit in which the two events do coincide; this new effective
metric describing this micro-dynamics curiously makes the canonical Einstein-Hilbert Lagrangian
transmute into the entropy functional used in the statistical derivation.

All things considered, this thesis wants to introduce the values to the reader beneath such a
new intriguing approach for gravity studies. All those features qualitatively described above are
open doors and arise more questions to be deepened and explained accurately.
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1
An Action Principle for Gravity

Generally, in mechanics and field theory, equations of motion are derived through an action
A, which is a functional defined in terms of the integral of a Lagrangian L. In mechanics,
the Lagrangian is a function depending on the dynamical variables q(t) and their first order
derivatives q̇(t), both functions of time

A[q(t)] =
∫ t2

t1

L[q(t), q̇(t), t]dt

where t1 and t2 set an interval of time, whilst q(t1) = q1 and q(t2) = q2 are the fixed endpoints
of the evolution process of the studied system. When the action is stationary, the result of above
integral are second order field equation of motion.

This formalism naturally extends to field theories, and is used largely in Quantum Field
Theory to study the forces of nature, that is electromagnetic interaction, strong and weak force.
Unfortunately, several difficulties arise when gravity is involved.

In the standard theory of gravity, i.e. general relativity, one takes the spacetime metric
gab(x) as the fundamental dynamical variable. The effects of gravity on matter can be included,
under the so-called minimal coupling (i.e. without direct coupling to curvature), changing the
measure of the action from d4x to

√
−gd4x and using covariant derivatives. Thus, the matter

Lagrangian depends on certain variables collectively denoted by φ, their first order derivatives
and the metric; in such a way its action is defined as

Am =
∫
d4x
√
−gLm(φ,Dφ; gab) (1.1)

As for the dynamics of gravity itself, we can follow this scheme choosing as dynamical field
the metric. One thing happens, however, which makes the gravitational case unique among all
fields: if we try to construct a Lagrangian which depends on the metric and its first derivatives
alone, we fail; the reason being that any such Lagrangian turns out to be a trivial constant.

To see this, consider a point P of a geodesic curve γ(t), where t is the proper time along
it. We can introduce a particular set of local coordinates adapted to a geodesics, also known as

1



CHAPTER 1. AN ACTION PRINCIPLE FOR GRAVITY 2

Fermi normal coordinates; precisely, we choose xa = (t, x1, x2, x3) such that, in a neighbourhood
of P , when t is small, the set (t, 0, 0, 0) represents the geodesics on P ; moreover, the metric
gab ' ηab and any Christoffel symbol vanishes. Consequently, around the whole line of γ a frame
of reference in which the metric is flat can always been found.
It follows that if we build a scalar function in the form f(gab, ∂cgab) and involving Fermi
coordinates, it results that near P the function reduces to f(ηab, 0), so that it is a constant
along any geodesics of spacetime, trivially.
Therefore if f is a constant, its value remains the same in any other coordinate system.

A way out is to add in the gravitational Lagrangian a dependence on second derivatives of
the metric. It turns out that, if this dependence is linear, the terms with second derivatives,
which are those potentially giving derivatives higher than two in the equations of motion, are
confined in a total derivative term, which can be managed some way or another.

Therefore, we build the action

Ag =
∫
d4x
√
−gLg(gab, ∂cgab, ∂2gab) (1.2)

where we demand for linearity on second order derivatives.

The Ricci scalar is the only scalar built from the curvature tensor satisfying these requirements.
Using this as Lagrangian, the action consists in a bulk part, which leads to the equations
of motion, and a surface part. A way to eliminate the effects of the latter is to add to the
Lagrangian a surface term (Gibbons-Hawking-York counterterm) involving a scalar function
which compensates such a boundary integral and after the variation it takes that away.
Despite this procedure actually works, it appears quite peculiar when contrasted with the
characteristic clean structure of Field Theory. In the following, we prefer to leave the original
surface part in (1.2) as it is.

This will enable us to highlight that this surface part, which is, from the above, fundamentally
thrown away in the conventional derivation of field equations, still turns out to be equivalent to
the bulk part in its information content.

1.1 The Einstein-Hilbert Lagrangian

The Einstein-Hilbert action consists in the integral of the described Lagrangian, with a suitable
normalization constant:

16πκ AEH =
∫
V

d4x
√
−gLEH =

∫
V

d4x
√
−gR (1.3)

Explicitly,

LEH ≡ P bcd
a Rabcd (1.4)
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where P bcd
a is a four-rank tensor constructed with only the metric, carrying all the same

symmetries of the Riemann tensor

P bcd
a = 1

2(δcagbd − δdagbc) (1.5)

Let us use now these symmetries properties of P bcd
a and express the Riemann tensor in terms

of Christoffel symbols as

Rabcd = ∂cΓadb − ∂dΓacb + ΓaciΓidb − ΓadiΓicb (1.6)

where the Christoffel symbols are written in terms of the metric derivatives in the form

Γabc = 1
2g

ad [∂bgdc + ∂cgbd − ∂dgbc] (1.7)

Thus, the integrand in the considered action becomes

√
−gP bcd

a Rabcd = 2
√
−gP bcd

a ΓaciΓidb + 2∂c
[√
−gP bcd

a Γadb
]
− 2Γadb∂c

[√
−gP bcd

a

]
(1.8)

where we applied the product property of derivatives and use the anti-symmetry of the Riemann
tensor in index exchange Rabcd = −Rabdc.
At this point, consider the partial derivative in the very last addend which can be expressed as

∂c[
√
−gP bcd

a ] =
√
−g[∂cP bcd

a + ΓiciP bcd
a ] (1.9)

for which, with g ≡ det gab, we have used

Γaca = 1
2g

ad∂cgad = − 1
2g ∂c(−g) = ∂c(ln

√
−g) = 1√

−g
∂c(
√
−g) (1.10)

The tensor P abc
a was said to be divergence-free, so from its covariant derivative, which is null,

we can make explicit the partial derivative in terms of Christoffel symbols. Thus, writing

DcP
bcd

a = ∂cP
bcd

a + ΓbicP icd
a + ΓcicP bid

a − ΓiacP bcd
i = 0 (1.11)

we find

∂cP
bcd

a = −ΓbicP icd
a − ΓcicP bid

a + ΓiacP bcd
i (1.12)

Therefore, substituting it in (1.9) and multiplying both sides by Γadb, only two terms remain:

Γadb∂c[
√
−gP bcd

a ] =
√
−g[ΓadbΓiacP bcd

i −ΓadbΓbicP icd
a ] =

√
−g[ΓidbΓaicP bcd

a −ΓadiΓibcP bcd
a ] (1.13)
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Finally putting this into equation (1.8), we obtain the expression for the Lagrangian to be

√
−gP bcd

a Rabcd = 2
√
−gP bcd

a ΓadiΓibc + 2∂c
[√
−gP bcd

a Γadb
]

(1.14)

As a consequence, the only surviving Lagrangian terms defining the gravitational action are

√
−gP bcd

a Rabcd =
√
−gLquad + Lsur (1.15)

where we have separated the specific terms as we wanted:

Lquad ≡ 2P bcd
a ΓadkΓkbc Lsur ≡ 2∂c

[√
−gP bcd

a Γabd
]

(1.16)

In front of this result, it is remarkable to highlight that the Lquad term is the bulk part of
Einstein-Hilbert Lagrangian, the one giving back the equations of motion, and the term related
to the surface enclosing it is Lsur, that appears in form of a total derivative which can be treated
in several ways.
Thus, if we rewrite

√
−gLquad =

√
−gR − Lsur, the complete action to be varied at the end is

in the form

Atot = Aquad +Am = 1
16πκ

∫
V

d4x
√
−gLquad(g, ∂g) +

∫
V

d4x
√
−gLm(φ,∇φ; g) (1.17)

Nevertheless, although the surface part does not participate in furnishing the final field
equation, the bulk and surface Lagrangians are two quantities that share a very deep relationship
beneath that will be clearer later. In the following subsection it will be performed the variation of
the gravitational action respect to the metric, whilst it will be shown later an equivalent method
of variation involving a new set of coordinates, through which such a link between Lquad and
Lsur gets evident.

1.1.1 Variation of Gravitational Action

As shown in the previous calculations, it is possible to split the Einstein-Hilbert Lagrangian
putting on evidence the quadratic term represented by Lquad. This piece of action is actually
the part which gives the equations of motion when the total action is varied. In this section we
calculate the variation with respect to the metric gab of the quadratic part first, later the surface
term, which will be set to vanish opportunely at the boundary, that is asking for δgab = 0 on it.

Gravity Term Let us start with the Einstein-Hilbert Lagrangian term initially, thus

δ(
√
−gR) = δ(

√
−g)R+

√
−gδR (1.18)

The Riemann Tensor variation takes the form in covariant derivatives
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δRabcd = Dc(δΓadb)−Dd(δΓacb) (1.19)

noticing that

Db(δΓacd) = ∂b(δΓacd) + ΓamcδΓmcd − ΓmcbδΓamd − ΓmdbδΓacm (1.20)

Therefore the Ricci tensor is found contracting two indexes in the Riemann tensor δRab = δRcacb,
thus the Ricci scalar variation is

δR = Rabδg
ab +Da(gbcδΓabc − gbaδΓddb) (1.21)

where the last four-divergence does not vanish in the action integral, even invoking the Stokes
Theorem.
Fortunately in our case, this is not needed because it naturally cancels out with a term appearing
in the variation of the surface Lagrangian. For convenience, such a term can be rewritten using
the relation

gabδRab = 1√
−g

∂a

[√
−g(gbcδΓabc − gbaδΓddb)

]
= 2√

−g
∂c(
√
−ggbkP cd

ak δΓabd) (1.22)

The metric determinant variation, instead, is calculated as follows. First,

δ
√
−g = − 1

2
√
−g

δg = 1
2
√
−g(gabδgab) (1.23)

where δg = ggabδgab due to the Jacobi formula. Hence,

1√
−g

δ
√
−g = −1

2gabδg
ab (1.24)

Putting the last results into the action integral defined in (1.2), the expression for it becomes

δAg = 1
16πκ

∫
V

d4x
√
−g

[(
Rab −

1
2gabR

)
δgab + 2∂c

(√
−ggbkP cd

ak δΓabd
)]

(1.25)

As expected, the geometry part of equation of motion is contained in this term in the form of
the Einstein tensor 2Gab = 2Rab − gabR = 0. The second addend, instead, will be subtracted by
a term appearing in the variation of the surface Lagrangian.
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Surface Term The surface term variation can be computed starting from

δLsur = ∂c

[
2P cd

ak Γabdδ(
√
−ggbk) +

√
−ggbkδΓabd)

]
(1.26)

As anticipated before, the second addend is the one that cancels out the term in the variation
of the geometric part. The first addend, instead, involves the variation

δ(
√
−ggbk) =

√
−g δgij

(
δbi δ

k
j −

1
2g

bkgij

)
(1.27)

Thus

δLsur = ∂c

[
2
√
−gP cd

ak Γabd
(
δbi δ

k
j −

1
2g

bkgij

)
δgij

]
+ 2∂c

(√
−ggbkP cd

ak δΓabd
)

(1.28)

We are ready now to put all pieces together and find the variation of the quadratic action,
according to

δAquad = δAg − δAsur (1.29)

Now, (1.28) is integrated and subtracted from (1.25) in order to have

δAquad = 1
16πκ

∫
V

d4x
√
−g

[(
Rab −

1
2gabR

)
δgab − ∂c

(√
−gM c

ijδg
ij
)]

(1.30)

in which a new three-rank object M c
ij collecting all the residue terms was defined:

M c
ij ≡ 2P cd

ak Γabd
(
δbi δ

k
j −

1
2g

bkgij

)
(1.31)

Therefore, the Gauss theorem can be applied in order to obtain a surface integral. It gives
the result

1
16πκ

∫
∂V

d3x
√
hnc M

c
ijδg

ij (1.32)

where nc is a unit vector normal to the surface ∂V . This integral vanishes demanding that
δgij = 0 at the boundary. Finally, we have obtained the expression for the quadratic action
returning the geometric part of the classical Einstein’s field equations.
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1.1.2 Discovery of a Holographic Principle

We present in here an equivalent — but more meaningful — procedure in varying the gravitational
action, in which it emerges an interesting principle that ties intrinsically the bulk with the surface
term.

In analogy to the fact that a generic Lagrangian Lq(q̇, q) can give back the Euler-Lagrange
equations by varying the coordinate q in the action and demanding δq = 0 on the boundary, a
new Lagrangian Lp(q̈, q̇, q) can be defined as

Lp(q̈, q̇, q) = Lq(q̇, q)−
d

dt

(
q
∂Lq
∂q̇

)
(1.33)

However, we demand in here that the variation of the momentum p = ∂Lq/∂q̇ vanishes at the
boundary, instead of δq. As we will show, the equations of motion arise even under this condition,
thanks to linearity on second derivatives.

To see this, let us consider the action integral of such a defined Lagrangian and vary it respect
to q

δAp = δ

∫
dtLq(q̇, q)− δ

∫
dt
d

dt
q p(q̇, q) (1.34)

The first addend leads to the canonical Euler-Lagrangian field equations of motion, whilst the
other one

δAp =
∫
dt

[
δLq
δq
− d

dt

δLq
δq̇

]
δq − (q δp)

∣∣t2
t1

(1.35)

Thus, on top of the bulk Euler-Lagrangian equations of motion one must also impose δAp = 0,
which is obtained by asking that δp = 0.

In a similar way, the Lagrangian for gravity can be rewritten as

√
−gR =

√
−gLquad − ∂c

[
gab

∂
√
−gLquad
∂(∂cgab)

]
(1.36)

and comparing it with (1.15), it is evident that

Lsur = −∂c

[
gab

∂
√
−gLquad
∂(∂cgab)

]
(1.37)

The above solution is not just a casual quantity, but it consists in the so-called holographic
principle. Actually, the relationship between surface and bulk is of holographic nature, which
means that the two entities share information and, in this way, they are tightly bound to each
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other.
In fact, considering physical quantities like entropy, in example, it is possible to show that
such information is translated into “degrees of freedom”: the entropy of a three-dimensional
region of bulk express the same number of degrees, when the system is at equilibrium, of the
two-dimensional surface enclosing it, on which one has a definition of “horizon entropy”. [5]
In fact, this rescaling in information quantity between the term containing the equations of
motion and the surface part, which is disregarded always, appears naturally for gravity in the
canonical derivation, so that it deserves a proper path of research around which it might be
possible to discover and develop new understandings of gravity.

Turning back our calculation, we can identify a sort of “gravitational momentum” inside the
square brackets that collects all the terms led to vanish at the boundary, once the variation is
carried, as argued in the following section.
We try now to rewrite the (1.16) by defining a proper pair of coordinates.

The quadratic Lagrangian can be expressed in terms of derivatives of the metric by substituting
the Christoffel symbols with their definition, simply

Lquad = 2P bcd
a ΓadkΓkbc ≡

1
4M

abcijk∂agbc∂igjk (1.38)

where

Mabcijk = gaigbcgjk − gaigbjgck + 2gakgbjgci − 2gakgbcgij (1.39)

The surface Lagrangian, instead, can be redefined through a vector V c as

Lsur = 2∂c
[√
−ggbkP cd

ak Γabd
]
≡ ∂c[

√
−gV c] (1.40)

At this point, in the same spirit of the previous calculation, we vary each term and sum them
according to

δAg = δAquad + δAsur (1.41)

so that one obtains

δ(
√
−gR) = δ(

√
−gLquad) + δ

[
∂c(
√
−gV c)

]
= −
√
−gGabδgab − ∂c[gikδ(

√
−gM cij)] (1.42)

The quadratic part remains the same, but the variation of the surface one, instead, leads to
consider a new object M cij such that M c

ikg
ik = −V c, thus

δ
[
∂c(
√
−gV c)

]
= −∂c[gikδ(

√
−gM cij)] (1.43)

With more attention, M c
ij is actually the same object introduced previously in definition (1.31)

that now takes the form
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M cik = gilgkmΓclm − gilgckΓdld −
1
2g

ikV c (1.44)

However, if before it was introduced as a cumulative expression of all the multiplicative terms
of δgik, it appears more evident here that it consists in the canonical momentum for gravity
associated to the field coordinate gab.
Indeed, one has that the object M cik is defined through the functional derivative of the quadratic
Lagrangian, respect to the derivative of the field coordinate gab, as it appears in (1.37):

M cik ≡ ∂
√
−gLquad
∂(∂cgik) = 1

2M
cikpqr∂pgqr (1.45)

Finally, the integration can be done and, invoking the Gauss theorem, the surface integral
becomes

1
16πκ

∫
∂V

d3x gabδ(
√
−gM0ab) (1.46)

where it runs over the the surface ∂V at t = const. The integral vanishes by asking
√
−gM0ab

to be fixed at the boundary.

All this was discussed to put on evidence that, despite a Lagrangian depending on second
derivatives of the metric was used, a conjugate momentum related to gab exists and it carries all
the other remaining terms: thanks to linearity on second order, such annoying terms are summed
up into the definition of a canonical momentum that can be easily confined at the boundary,
thereof. This procedure does not affect the quadratic part and the bulk term remains as the only
source of the geometric part of field equations, still in terms of Gab.

In addition, the canonical procedure shows the natural presence of holography between the
two terms of the Einstein-Hilbert Lagrangian and it is worth to cross this door, since new features
and properties of physical relevance might be exemplary in letting know more about gravitational
force at fundamental level.

1.2 The Noether Current

Before proceeding further in deriving explicitly the equations of motion, we want to show first
that a gravitational Noether current exists whose nature is purely geometric: this relevant
aspect descends from the fact that R is a scalar. In addition, this result is worth specific
attention because it is obtained without considering any equation of motion, then such an object
is conserved upstream.

A fast way to calculate it can be pursued when the action is varied with respect to coordinate
transformations of the kind xa → xa − ξa. The starting point is a generic scalar action (1.2),
from which we write below:
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δ(
√
−gLg) =

√
−g
[
Eabδg

ab +Da(gbcδΓabc − gbaδΓddb)
]

(1.47)

In the left-hand side, a divergence-free behaviour, which is intrinsically satisfied, can be put
under evidence whenever ξa vanishes at the boundary. The local variation of the metric under the
infinitesimal coordinate transformation xa → xa − ξa is given by δgab = Daξb +Dbξa. Similarly,
the variation of a scalar object, like Lg is given by just the transport term, δLg = ξa∂aLg.
Substituting them into the action one finds

δAg =
∫
d4x δ(

√
−gLg) =

∫
d4x [

√
−g
2 gab(Daξb +Dbξa)Lg +

√
−gξa∂aLg] (1.48)

Contracting the indexes one finds

δAg =
∫
d4x
√
−g
(
(Daξ

a)Lg + ξa∂aLg
)

=
∫
d4x
√
−gDa(ξaLg) (1.49)

However, if one demands that ξa vanishes at the boundary of the integration, this full variation
vanishes, δAg = 0. Considering now the arbitrariness of the infinitesimal vector field ξa one
finally gets

Da(Lgξa) = 0 (1.50)

and the vector P a ≡ Lgξa is conserved, without the use of any equation of motions. This is true
for any scalar. Hence, δ(

√
−gLg) =

√
−gDa(Lgξa) = ∂a(

√
−gLgξa).

Returning to the explicit expression (1.47), about the side on the right, and using the
expression of δgab as before, the first addend becomes 2EabDaξb, so Da(2Eabξb). In the second
addend, instead, just call δva = gbcδΓabc − gbaδΓddb. The equation becomes

Da(Lgξa + 2Eab ξb + δξv
a) := DaJ

a = 0 (1.51)

where δξ was written to remark that is the boundary term which arises due to such a changing
of coordinates. The current Ja is actually a Noether current, it satisfies a continuity equation
and it is conserved off-shell.

1.3 Variational Principle for Matter

In general, a suitable Lagrangian for matter can be defined and coupled to gravity with the
method of the minimal coupling mentioned earlier. From it a generic second rank tensor
Fab, which is symmetric and possesses specific properties, can be derived. We will prove that
physically, it is identified with the energy-momentum tensor carrying the density of energy and
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momentum Tab of the matter in the studied system. Moreover, it consists in the source of the
field equation in gravity and it is required to be divergence-free DaT

ab = 0.
Recall that we are searching for something in the form

Am =
∫
d4x
√
−gLm(φ,Daφ; gab) (1.52)

where φ is a generic field. The action integral variation respect to the metric is easily computed
as

δAm =
∫
V

d4x
√
−g
(
δLm
δgab

− 1
2gabLm

)
δgab (1.53)

Now, using the expression for the total action (1.17) and setting it to be null, putting on evidence
a factor 1/2, the resulting equations of motion arise:

1
8πκ

(
Rab −

1
2gabR

)
= 2δLm

δgab
− gabLm := Fab (1.54)

First of all, it can be shown that the tensor Fab actually acts as a energy-momentum tensor:
i.e. considering the Lagrangian of a generic scalar field φ

Lφ = 1
2g

ab∂aφ∂bφ−
1
2m

2φ2

and calculating the tensor defined above it results Fab ≡ Tab[φ], with

Tab[φ] = ∂aφ∂bφ− gabLφ

In analogy to (1.49), the divergence-free property, instead, must be intrinsically satisfied,
according to the invariance of the field equations under generic transformations of coordinates
such as xa → xa − ξa, with δgik = Diξk +Dkξi and ξa null at the boundary. It remains

δAm =
∫
d4x
√
−g Da(Lmξa) = 0 (1.55)

if the equation of motion of the matter fields are used (their variations needed to verify
that Lm is a scalar do not contribute as they just the equations of motion). The four-vector
P a ≡ Lmξa is conserved and it is possible to build P a ≡ T abξb, which is conserved along the
geodesic identified by the killing vector.

In few words, the integral (1.53) under such a coordinate transformation can be rewritten as

δAm = 1
2

∫
d4x
√
−g Tab(Daξb +Dbξa) =

∫
d4x
√
−g(DaTab)ξb (1.56)
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where the total derivative term vanishes at the boundary requiring ξa to be null in there. When
δAm = 0, the energy-momentum tensors is conserved: DaT

ab = 0.

1.4 Gravitational Field Equations

The total action now has all the ingredients both for matter both for gravity to be varied and
give back the well-known Einstein’s equations of motion, indeed,

δAtot =
∫
V

d4x
√
−g
{

1
16πκGik −

1
2Tik

}
δgik = 0 (1.57)

where Tik is actually the source of the gravitational field. Consequently, when matter is not
present, by demanding that δgik is null on the boundary ∂V , the above integral vanishes and
the only surviving term is the one that gives the geometry part of the equation of motion, when
δAquad = 0.
The inclusion of a matter term as in (1.17) implies the classical Einstein field equation are found.

Restoring the definition of Gab in terms of Riemann and Ricci tensors and integrating it, we
get

Rab −
1
2gabR = 8πκTab (1.58)

Notice that the above solution was chosen with a null cosmological constant Λ = 0.
Alternatively, we could have consider it into the initial Lagrangian without affecting the equations
of motion solution; indeed, this is equivalent to add a term on the right hand side, interpreted
as a negative pressure p = −ρ.

All things considered, these expected field equations are derived only from a part of the
Hilbert action, whilst the rest needs careful considerations in order to make it vanish. Of course,
it is a quantity of physical relevance as well, because it was seen that it shares information content
with the bulk counterpart according to a holographic principle.
However, in the previous section it was discovered thus such an unwanted surface term appears
even in the expression of the Noether current as δξv, so that the integration of its four-divergence
in the 4-dimensional space, makes it assume an interesting signification on-shell. Indeed,

∫
V

d4x
√
−gDaJ

a =
∫
∂V

d3x
√
h naJ

a (1.59)

The surface term δξv
a vanishes if ξa is a Killing vector. Therefore, it is the element naJa which

carries a conserved quantity on the surface, with particularly interesting interpretations, as a
energy, then an entropy, described in details in the following chapter.



2
Gravity as a Thermodynamic

Entity

The previous chapter introduced a mathematical description of gravity, formally based on an
action principle formalism. We saw that a Lagrangian can be properly found in order to have
the exact equations of motion of the General Relativity Theory.
The cost of it was the presence of a surface integral term which needed precise considerations
in order to let it vanish. The associated Noether current, however, reminds interesting features
once the dynamics is studied on the boundary, implications that now we propose to discuss in
here.

2.1 Heat Densities at Equilibrium

As primary step, let us start exploring deeper the terms appearing in the current Ja, in order to
give a precise meaning, of physical relevance, to each one and the contest those are realised.

Consider the Noether current Ja, satisfying the continuity equation (1.51). It is important
to recall that its form

Ja[ξ] = Lgξa + 2Eab ξb + δξv
a (2.1)

contains terms which were residues of the appearing surface part in the gravity Lagrangian of
Einstein-Hilbert. Moreover, each addend shows a four-vector field ξa of deep relevance when
chosen properly, as we will notice soon. This quantity is off-shell conserved; consequently, we
want to evaluate what happens at equilibrium, that is when equations of motion are put into the
above expression.

Firstly, as already anticipated in section (1.2), the term δξv
a disappears if ξa is a Killing

vector, in example, with positive norm.
This is true because Ja can be computed for any kind of Lagrangian and any vector field ξa, so
that the term δva takes the general form

13
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δva = 1
2A

a(bc)δgbc + 1
2B

a(bc)
d δΓdbc (2.2)

Thus, if the variation is carried respect to a Killing vector, δ → δξ and the first addend is null
obviously because δξgab = Daξb +Dbξa = 0; the last one is also null for the same reason, due to
the fact that the affine connection is nothing but the sum of terms involving derivatives of the
metric.

A second observation follows straightforwardly. Indeed, in absence of matter, when equations
of motion Eba ≡ Gba = 0 hold, the Noether current (2.1) reduces to the form Ja = 2Rabξb, whose
physical interpretation is still obscure. However, it can be pointed out that its nature is purely
geometrical and such a characteristic descends from the expression of the Hilbert Lagrangian,
that is built itself through geometrical mathematical considerations.

Therefore, we introduce in here a further vector field na and the condition naξa = 0, valid in
a certain region around an event of the spacetime. By contraction of it with the Noether current,
the term involving the Ricci scalar disappears under the mentioned condition and it remains

naJ
a = 2Gab naξb (2.3)

Considering now the Einstein’s equations including the matter counterpart 2Gab = 2Rab−gabR =
Tab, instead, the expression of the above result leads to

naJ
a = T ab naξ

b (2.4)

If one pays attention to the very last solution, he notices that it was discussed in section (1.3)
how T ab ξ

b was a conserved quantity along the geodesics reproduced by the Killing vector ξa.
Actually, such a term is a known quantity in physics and it really represents a heat density of
massive origin, so, even for dimensional reasons, we are allowed to start thinking that the object
Rabξ

a is a kind of heat density of geometrical nature, which is conserved as well as the one of
matter.

Around at any spacetime event point it can be always identified a surface that surrounds
it and this can be mathematically done keeping a coordinate as constant. In this contest, it is
obvious to select hypersurfaces at constant time t = const, so that, if we chose a time-like Killing
vector along the time coordinate, the condition ξaξa = 0 holds onto the hypersurface.
Consequently, the presence of a second arbitrary vector field suggests using it to identify clearly
the surface region around the event, thus na = Nξa can be thought as the normal vector of the
surface at t constant; observing the dynamics of the system onto it, the term Rξaξa is null and

naJ
a = 2NRabξaξb = NTabξ

aξb (2.5)

Under this spark, there is no reason to wonder if also the geometric term is a energy density
anymore. In addition, it seems that the system, at equilibrium, obeys at a certain balance
law around the surface, between the energy of matter and the one carried by the geometry of
spacetime.
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Nevertheless, we remark that such an interpretation was possible only by the presence of matter
in the field equations.

Hence, if Ja carries a energy density, the quantity Rabξaξb should represent a formal density
of gravitational heat, per unit time, crossing the surface t = const.
That can be seen even in terms of a flux, as we will study later, in the integral form

∫
∂V

d3x
√
h 2NRabξaξb =

∫
∂V

d3x
√
h NTabξ

aξb (2.6)

where na = Nξa represents the unit normal to the surface ∂V , defined parallel to a time-like
Killing vector ξa.

In order to verify whether this mathematical result might have a possible relevant physical
interpretation, it is mandatory to find suitable conditions in which matter goes missing beyond
a horizon.
The next section will remind the physics of accelerating frames of reference and it will focus on
the main quantities that Rindler observers are able to measure.

2.2 Rindler Horizons

The choice of a Rindler frame of reference is very helpful in giving an elegant and straight
thermodynamic interpretation for the gravitational field equations [4]. The power of it lays in
the fact that such a type of frame can be found at any point in space time, even in flat spacetime,
regardless of the presence of gravity. It is a key example that could let understand better the
physics behind all this dissertation, given by a particular class of observers described in a Rindler
metric. In here thermodynamics emerges since a horizon, that is a boundary of a certain region
of spacetime, appears hot according to some accelerated observers [7].

In 1995, it was showed by Jacobson that the Einstein’s equation could be derived from a
thermodynamic approach.
One considers a generic spacetime horizon as a null hypersurface which acts as a causality barrier,
separating the outside world from the inside one containing the degrees of freedom of the system.
The main curiosity is that such horizons hide information from the outside observers, thus it is
natural to think that the lack of information is a kind of entropy. Such a quantity is related to
an “entanglement entropy” whose scale is infinite in Quantum Field Theory, but a finite cut-off
length Lc, in case it exists, makes the entanglement entropy be proportionally to it quadratically
L2
c .

Around any spacetime event enclosed by a 2D surface, it is possible to find a local flat region:
we identify in this neighbourhood a local Rindler frame (LRF), moving with acceleration a, and
the bi-dimensional surface as the local Rindler horizon; the system is said in “local equilibrium”
inside the shell region. In here, Poincaré symmetries are preserved, so a vector killing representing
generic boosts ξa exists, vanishing onto the horizon. A energy density crossing the horizon is
equivalent to a heat flow δQ and the entropy is proportional to this by a certain temperature
T = aη/2π, associated to the surface, in the usual form δQ = TdS.
The LRF interprets all the matter energy as heat, once that has crossed the horizon. However,
a free falling observer do not experience all this.
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For a LRF, with ξa pointing to the selected event, the current for matter Jam = T abξb crossing
the horizon generates the energy density flux Tabξaξb, from which the heat flow is the integral

δQm =
∫
H

Tabξ
adΣb = −a

∫
H

λTabk
akbdλdA (2.7)

The choice is ξa = −aλka, with ka tangent to the horizon H and λ a parameter being null on
it, where dA is the area element. Recall that Tabξa is a conserved quantity, as it was shown
in section (1.3). Hence, the entropy exchange related to some matter entering the horizon is
trivially TlocδSm = δQm, with Tloc = aηR/2π and ηR is the scale length at which the observer is
situated.

Recall now what stated before about gravity; analogously to the matter quantity, if the
current for gravity Ja[ξ] = LEHξa + 2Gab ξb carries a formal energy density which is conserved
on-shell according to Noether theorem, it is possible to write

δQg = −aN
∫
H

λ
(
LEHkaka + 2Gabkakb

)
dλdA ≡ −aN

∫
H

λ2RabkakbdλdA (2.8)

when Gab = 0. Hence, the associated entropy results to be TδSg = δQg with T = aηc/2π.

At this point, if an amount Qm has crossed the horizon, this is enlarged by the same quantity
counted as Qg, thus the Rindler observer has to impose that the two entropies must be equal, so

(
2π
ηc

)
N

∫
H

λ2RabkakbdλdA =
(

2π
ηR

)∫
H

λTabk
akbdλdA (2.9)

In the coincidence limit NηR → ηc ∼ η, in other words, when the two length scales become
comparable at the horizon — viz. the Planck scale —, one prepares the integrand in the form

(2Rab − Tab)kakb = 0 (2.10)

which holds for any arbitrary null vector ka at any point in spacetime, so the result is independent
from the specific notion carried by our specific observer. After integration the Einstein field
equations emerge

2Gab − Tab = Λgab (2.11)

with the integration constant Λ. Inevitably, the equations of motion arose clearly for our Rindler
observer.
At any point in spacetime, a local Rindler observer can be found always, then it can be used to
study physically how matter couples with the gravitational field. However, under this view, it is
relevant to remark how this link is strictly observer dependent, that is there are other frames of
reference in which thermodynamics is not perceived.

At this point it is mandatory to notice that the entire above dissertation is not solely a
theoretical powerful description. Certainly, a physical application can be treated when considering
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black holes. Their horizons are perfectly causal barriers and, when some matter enters it, the
associated horizon entropy increases.
The temperature associated to the horizon is in this case the particular Hawking temperature
TH = κ/2π, proportional to κ, the superficial gravity of the black hole: the last one is the
measures of the acceleration of a near-horizon observer, so it can be identified with κ ≡ aη.
Now, from T = aη/2π, if η ∼ ~/ckB , one recovers exactly the expression of the real Hawking
temperature

TH = κ

2π = ~c3

8πGMkB
(2.12)

where a = c4/4GM and M is the black hole’s mass, according to the Schwarzshild solution, kB
is the Boltzmann constant and G the gravitational constant: what it was just found is therefore
a magnificent reality which lets state that the element Rabξaξb is definitely a heat energy density
rate of gravitational contribution.

All things considered, the presence of matter, which possesses all the characteristics of
thermodynamic observables, allows us to start thinking that the formal expression of the gravity
entropy itself alone assumes a physical thermodynamic reality onto horizons. The existence of
special observers constitutes a proof. However, in this contest the interpretation presented in
(2.9) is possible if, and only if, the field equations Gab = Tab are valid, exclusively because
geometric quantities equate matter ones.

2.3 A Different Perspective

Geometry of spacetime has at this point a new face of deep relevance which deserves all the
attention. The entropy associated to horizons is not just a formality anymore because, in a
certain way, it compensates the flux of matter crossing this, so that it must be an existent
physical thermodynamic quantity.
The proof is not only theoretical when considering generic horizons, but it is also physical if we
put an observer under special frame of reference, viz. a local Rindler frame.

Around at any event, null surfaces can always be found – i.e. considering a light-like killing
vector ξa– so that even observers, who see them heated up by crossing matter, exist. However,
in our theory, the new equations of motion in the form

Gabξ
aξb = kTabξ

aξb (2.13)

fulfil a “zero-dissipation” principle such that the respective heat quantities satisfy Hg = Hm
(or δQg = δQm equivalently) on the boundary, then it follows that the heating contribute of
spacetime micro-structure contrasts the one due to matter.
Certainly, the appearing vector fields ξa need more care in giving a justification about their
existence.

On the contrary, classically, the well known elegant field equations appear in the form
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Gab = Rab −
1
2Rgab = kTab (2.14)

On the left side, the geometry description with the Ricci tensor and the scalar representing
the curvature of spacetime; on the right one, instead, the energy-momentum tensor of matter as
the source of gravity.

Firstly, the presence of the Ricci scalar in the Lagrangian is a requirement following from the
equivalence principle, according to which it is always possible to find, at any point of spacetime,
a reference frame which is locally Minkowskian, so that the Special Relativity laws are applicable
to it. Indeed, it was noticed that the gravitational effects could be mimicked by an opportune
accelerated frame, so that such an observer would not have experimented locally the presence of
a gravitational force.
Beneath this amazing feature, there is the astonishing suggestion that gravity has geometrical
properties, that is its effects can be described by the curvature of the spacetime background. It
follows a mathematical formalism, based on differential geometry, that leads to an expression of
the action involving the Ricci scalar, with all the discussions carried in the previous chapter.
As far as we are concerned, this argumentation is still present even in the derivation of (2.13)
since the Noether current Ja has shown to be itself of geometrical nature intrinsically.

Secondly, the source of curvature is found to be the matter; in the Newtonian limit,
the 00-component of the momentum-energy tensor Tab satisfies the Poisson equation for a
gravitational scalar field φ

52 φ ∝ T00 = kρ

Hence, in accordance with the equivalence principle, gravity is tied with a geometric description
in both cases it is represented in a scalar or a tensor form. Thus geometric characteristics are
preserved even in the field equations in scalar form as in (2.13).
After one hundred years, these powerful characteristics make Einstein’s General Relativity
acknowledged to be the “master” theory which describes gravity, enforced by the large amount
of experimental proves that have been collected during all these years, day by day.

Nevertheless, observing the ordinary form (2.14), on the one hand the interpretation is related
to the topology of spacetime, to the energy density of matter on the other hand: no one can state
that these two entities are the same thing apparently. In the same way, Padmanabhan writes,
in one of his articles [2], the tensor Einstein’s result equates “apples and oranges”. Thus one
can accept that these two fruits are equal for the sake of mathematics and discard this paper,
otherwise one can show that Einstein could have written his equation mathematically correct,
in another way, avoiding such a misleading question, even keeping all the requirements cited
previously.
Nowadays, finding an answer to the manner which curvature of spacetime arises is still an open
field in gravity research: this is the context such a thesis concerns itself with.

Anyway, the (2.14) tell how matter deforms spacetime and the massive objects take their
dynamics on it at the same time, but not the reason such different entities are equated: this is
the guiding aspect of gravity which this thesis aims to dig into.
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To help us, the results obtained in the 70’s concerning black hole thermodynamics have set a
path along to which one can appreciate a thermodynamic behaviour of gravity. This appears
evident every time field solutions involving horizons are considered.
It is worth to spend effort and exploring a possible different nature for spacetime, thereof.

Only considering the scalar equations the nature of this equality is evident, therefore this
suggests inevitably that the equation of motion has to be derived by statistical considerations.

The subsequent move is considering the functional Qtot as the total heat density, thus one
can use it to calculate the total energy crossing into the null surface generated by the ξa vector
fields. Formally, by summing Qtot = Qg +Qm, one has

Qtot =
∫
√
γ dλ d2x

(
Hm +Hg

)
(2.15)

and Qg can be interpreted as the heat content for gravity. Reversing this relationship, then the
Hs can be interpreted as the heating rates per unit area of the null surface by the respective
components.
Such a idea was already introduced by Jacobson, independently from all the path covered
until this point of the thesis. He easily showed, in the similar idea presented before, how the
Einstein’s equations of motion could have been derived from the proportionality δQ = TdS,
letting them being recalled more properly as “Einstein’s equation of state”. [7]
Thereof, if also gravity can be hot, the Boltzmann principle guarantees that it inevitably
possesses a micro-structure. We can identify hence the above quantity as a functional suitable
to extremisation onto a null surface, which returns back the equations of motion in the scalar
form.

Under the light of such an interpretation of the projected equations of motion, we want to
find a proper statistical formalism in order to derive the gravitational field equations. The next
chapter will describe this attempt.



3
A Statistical Formalism

In the chapter before, it was discussed how to interpret the geometric term appearing in the
Noether current when the Einstein’s equations of motion hold. It resulted that a special class
of observers, accelerating onto a certain horizon, attributes a thermodynamic behaviour to it,
since it measures an exchange of heat densities between matter and spacetime. Under these
conditions, the equations of motion emerged together with a set of four-vector fields qaqb with
null norm.
These features suggest therefore to attempt a derivation of the Einstein equations through a
proper entropy functional depending on such vector fields.

In this chapter it will be presented the form of the entropy functional which yields to the
field equation by varying it with respect to the vectors qa. We will require q2 = 0 and that F [q]
is invariant under any transformation that leaves the four-vectors light-like.
This will be discovered to furnish not only the equations of motion we are used to, but also a
cosmological constant which arises naturally attached to them.

3.1 The Entropy Functional

We search now for an expression of a functional being aware of the presence of certain geometric
microscopic degrees of freedom, using the expression of the current conserved on shell.
It is obvious that such degrees need a more accurate study, but for the moment we only suppose
their existence.
Hence, this discussion starts by assuming the statistical nature of gravity since the beginning,
independently from the field equations.

We recall the heat densities rates in the form

A Rabq
aqb (3.1)

for gravity, whilst for matter

B Tabq
aqb (3.2)

20
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with A,B two arbitrary constants. Therefore, the functional F [q] is built starting from these
quantities in the spirit of what stated earlier:

F [q] = L2
P Rabq

aqb − 8πL4
P Tabq

aqb (3.3)

Such a definition involves the dependence of the functional only on the vectors qa, which is
actually the variable respect to which the variation will be done.
In an analogy to statistical mechanics procedure, at equilibrium, the extremisation of (3.3)
furnishes exactly the classical equations of motion of gravity, for which we demand to be valid
for all vectors qa in spacetime.
Quantitatively, the imposition δF [q] = 0 resumes the balancing explored earlier of a heat
equilibrium between the two contributes of matter and geometry at the horizon, which arise
when equations of motion hold. In this way, the second addend is the heat content of matter
crossing it whilst the first one is a heat content of geometry nature, each one with qa as generator.

3.2 Extremisation Procedure

The entropy functional (3.3) is now ready to be studied through the extremisation formalism.
We already mentioned that the variable is the vector field qa and F [q] is invariant for any
displacement of it.

In section (1.3), the matter Lagrangian was discussed to be in the form of the
energy-momentum tensor. It results relevant at this stage to point out another aspect
which takes into consideration a symmetry under an additive constant.
Indeed, classically, the equations of motion remain valid and unvaried for any constant added to
Lm, in example −λ, which is equivalent to sum λ to the Hamiltonian term: one interprets it as
an arbitrary shift in the zero-level energy point.
However, in the case of gravity, such a circumstance affects the source of gravity so that it
becomes Tab + λgab and an ulterior condition is necessary in order to let it vanish, because
we want reasonably to not break this symmetry. Moreover, it is obvious that any extremum
principle in this form can not have the metric as the dynamical variable.

It follows in our procedure, instead, that we demand F [q] to not change under any
transformation that keeps valid the condition gabq

aqb = 0, at any point in spacetime.
The variation of our functional can now be taken, with the condition reflected by the null vectors
qaδq

a = 0, therefore

δF = 2
(
L2
P Rabq

a − 8πL4
P Tabq

a + λ(x)gabqa
)
δqb = 0 (3.4)

with the constant λ(x) that does not depend on qa, but it can depend, in general, on the
coordinates. Thus,

(
L2
P Rab − 8πL4

P Tab + λ(x)gab
)
qa = 0 (3.5)
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is an expression valid for all arbitrary qa, in this way

L2
P Rab − 8πL4

P Tab = −λ(x)gab (3.6)

Notice that any derivative of the field qa is not appearing in the equation we found, thus the
power of the method described leads to the wanted solution just through the variation of this
interesting variable.

At this point, the free-divergence property of both Gab and Tab returns a very important
result. In fact, applying a covariant derivative to both sides one has DaT

a
b = 0 and

L2
P DaR

a
b = L2

P

2 ∂a(Rδab ) = −∂a(λ(x)δab ) (3.7)

so that

∂a

[
λ(x)δab + L2

P

2 Rδab

]
= 0 (3.8)

This means obviously that the quantity inside brackets is a constant in the form

λ(x) + L2
P

2 R = constant (3.9)

This solution, if put into equation (3.6) leads to the field equations for gravity

Gab = Rab −
1
2Rδ

a
b = 8πL2

PT
a
b + Λδab (3.10)

where the integration constant called Λ acts as a natural cosmological constant.

Nevertheless, this solution contains a very new deep meaning because of the presence of the
element Λ. Behind this, it might be hidden some natural physical interpretations about the
cosmological constant problem. At this level we will not get deep into such a wide contest, but
it is enough just to highlight that such a theory, that is without a precise zero-level of energy
density, is equivalent to any other theory containing a cosmological constant, with observables
consequences. Hence, Λ is physically an undetermined cosmological constant to be fixed with
further considerations .
Hence, under no circumstances one can introduce in such a formalism a cosmological constant
manually, since it appears by itself as an integration constant. In this way, one has to work on
that in order to use it in the cosmological contest.

For the above reasons, field equations obtained involving light-like vector qs are conceptually
very different from a theory in which q2 > 0, in example, representing the four-velocity of
an observer. In this case, the equations of motion are the equality of quantity measured in
the geometric and the matter sector respectively, as we explored in section (2.2): indeed, only
considering horizons and q2 = 0 the field equations arose, holding for all qa.
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All the path followed until this moment let us formulate a new principle in which the field
equations are obtained with a cosmological constant which arises without having put it into
consideration from the beginning. It seems that the conventional field theory approach is blind
to its existence and the only way to introduce it in the final equations is artificially, thus adding
it to the Lagrangian initially, in example. Of course, this leads to the open problems physicist
are trying to solve nowadays on cosmology, so that the alternative approach presented in the
thesis might be very helpful in this area, too.

In conclusion, a statistical point of view, conversely, might be able to avoid some misleading
doubts from a fundamental level. Indeed, alternatively to a variation principle, one can ask that
at fundamental level the equations of motion are in a projected form onto surfaces with q2 = 0.
More words will be spent on this feature in the last section.

3.3 A new understanding

Under the light switched on before, an equivalent form to the Einstein equation is defined by the
introduction of a null vector qa such that we obtain a scalar equation demanding that it holds
for all qas:

Gabq
aqb = kTabq

aqb (3.11)

Geometry described by Rabqaqb and matter depicted as Tabqaqb can be seen balancing each
other making the product of the respective densities ρgρm being equal to unity on shell, when
equations of motion hold at equilibrium. Without this feature, we would not have any guiding
principle which tell us how matter influences the evolution of spacetime: the canonical equations
of motion, again, limit only to the kinematic of gravity rather than its dynamic framework [2][8].

Only under this new form of the field equations for gravity there is no doubt that both
sides are the same thing. It results they can be both interpreted independently and acting as a
balancing between matter and spacetime: no more “apples” are said to be equal to “oranges”
as it occurs in the canonical form [2]. Nevertheless, we just ask for a new revisit, so there is
no point of hesitation on this feature, since the Classical General Relativity Theory remains
unchanged.
Therefore, we are dealing with a new derivation of the equation of motion which merely
changes the perspective of spacetime at fundamental level, leaving untouched all the useful and
spectacular applications of Einstein work.

Moreover, the form in (3.11) tells that they constitute the dynamics at fundamental level:
this is intriguing because it was shown that a cosmological constant emerges coupled with the
other terms, as an effect of microscopic natural dynamics between degrees of freedom of matter
and the spacetime.
The subsequent chapter will present a form of a metric which is able to relate the usual metric
on the macroscopic scale, with the minimum finite distance of the atoms of spacetime: in this
way, a real link between the two dynamics of macro and micro scales will be shown to exist.



4
Measure of Minimal Length

In the last chapter, a entropy functional returning the projected equations of motion was
introduced, following the idea that geometry of spacetime behaves thermodynamically. This
perspective implies the assumption of the existence of a micro-structure of spacetime, i.e. the
existence of discrete degrees of freedom at microscopic scale.

Such a granular structure of the spacetime is a very new concept respect to the one we are
used to, that is the ordinary view of it as a continuum, aspect that might be sometimes very
difficult to accept rather than trying to accomplish it. This granularity may be thought in terms
of the existence of a minimal finite distance between events.

It has recently risen the idea to implement this by building a mathematical tool which can
take into consideration the spacetime graining. More precisely, what we would like to have is an
object qab through which we measure the distance between two events recovering a minimal finite
length, instead of zero, in the coincidence limit between two events. On the contrary, when the
distance is large enough, the macroscopic scale is kept described by the usual metric gab we are
accustomed to. This consists in a real challenge because a metric giving back a no-null minimal
distance can not exist.

We present in this chapter the expression and the characteristics of the “quasi-metric”.

4.1 The quasi-metric

We want, in this section, to discuss the existence and the characteristics of a suitable metric
through which, in the limit it tends to zero, it is possible to recover a non-vanishing measure;
conversely, it results that it is finite and the length scale corresponds to the Plank unit.
The derivation of this special metric is quite complex and might deserve many chapters dedicated
to. Thus only the main features will be enlightened [9] [12] [13].

Suppose to have an event point P called “base” which is the center of a normal convex
neighbourhood N (P ) and another point p ∈ N (P ) named “field”. This means that a unique
geodesics connecting any two points exists always in N (P ). If σ2(p, P |gab) is the geodesic
distance squared calculated with the usual background metric, the aim is to find a modified

24
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metric qab so that we can use it as basilar parameter measuring the distance of the two events.
Furthermore, the distance between two points is naturally better represented by a quadratic
quantity rather than the metric, naturally.

We define the geodesic distance as

σ2(p, P ) = 2Ω(p, P ) (4.1)

through the so-called Synge’s world function. This is a biscalar in that it is a scalar depending
on two points.
The Synge’s world function is written as

Ω(p, P ) = 1
2 [λ(p)− λ(P )]

∫ λ(p)

λ(P )
[gabtatb](x(λ))dλ (4.2)

where λ is an affine parameter, whilst ta is the tangent vector to the geodesic connecting the
points p and P , satisfying t2 = ε = ±1. It is evident that we are considering space-like or
time-like vectors for which it is possible to take the affine parameter as the distance λ =

√
εσ2.

In this case,

ta = ∂aσ
2

2
√
εσ2

(4.3)

Notice that all the main geometric properties of the spacetime, generally described by the
background metric, can be expressed using the Synge’s function as well: this choice do entail no
loss of information about the metric characteristics of the manifold [10]. Indeed, all information
is already encoded in the calculation of the geodesic distance in the expression σ2 = gab(xa −
Xa)(xb − Xb), where x,X are coordinates of the two points p, P respectively. Hence, one has
that the usual metric is recovered in the coincidence limit

gab = lim
p→P

DaDbσ
2 ' lim

p→P
DaDbΩ (4.4)

What said previously can be now generalised by considering a function S of the biscalar σ2,
under certain conditions. Thus, we set a generic functional acting from the space of the geodesic
distances related to gab to the ones concerning the qab, as S(σ2) : 2Ω 7→ 2Ω̃, and take into account
three main requirements:

i. The first one is that a zero-point Lorentz invariant length L0 exists as the minimum distance
between two events p, P . Thus, we set the modification to the most general form to be a function
σ2 → SL0(σ2), such that

SL0(0) = L2
0
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ii. The second condition is the trivial identity

S0(σ2) = σ2

iii. The last one implies the convergence

|SL0 |
S′2L0

(0) <∞

All these ingredients will be necessary to our purposes after having found the most general
form for qab, which is presented starting from the following section.

4.1.1 Expression of the q-metric

The expression of qab is expected to assume the generic form [8]

qab = Agab − εBtatb B ≡ QA

A−1 +Q
= AQ

α
(4.5)

whose controvariant version is

qab = A−1gab + εQtatb (4.6)

with A,Q bi-scalar functions of the spacetime event points to be determined opportunely.
Hence, two conditions are required to fix the above quantities definitely.

I) The first requirement concerns the existence of a minimal length such that the geodesic
distance gets modified as

σ2 → σ2 + L2
0 (4.7)

This can be imposed by introducing the modified Hamilton-Jacobi equation in the q-metric; if
satisfied by σ2, it is expressed as:

gab∂aσ
2∂bσ

2 = 4σ2 (4.8)

Hence, for a generic functional SL0(σ2), we require that

qab∂aSL0∂bSL0 = 4SL0 (4.9)

Putting trivially (4.6) into the last equation and using the chain rule for derivatives ones finds
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(
A−1gab + εQtatb

)
∂aσ

2∂bσ
2
(
dSL0

dσ2

)2
= 4SL0 (4.10)

Let us call S′L0
= dS/dσ2. By adding algebraically a quantity εA−1tatb inside the brackets on

the left side, we get

[
A−1(gab − εtatb) + εαtatb

]
∂aσ

2∂bσ
2 = 4SL0

S′2L0

(4.11)

with α = A−1 + Q. However, this means that equation (4.9) fixes the quasi-metric only on the
hypersurface generated by the four-vectors tatb, that is, introducing the induced metric on such
a surface as hab = gab − εtatb and making use of (4.8), one consequently finds

α = A−1 +Q = 1
σ2
SL0(σ2)
S′2L0

(σ2) (4.12)

II) The second condition, instead, fixes the q-metric definitely and it permits to find the
remaining biscalar A. We make use of the modified d’Alembertian operator and we require
that the corresponding two-points Green functions satisfy

G̃[σ2] = G[SL0(σ2)] (4.13)

in all maximally symmetric spacetime, that is �̃G̃[σ2] = 0, when �G[σ2] = 0, at any p 6= P . By
definition, a maximally symmetric spacetime is the manifold which contains locally the maximum
number of Killing vectors.

Te most general form of the box operator corresponding to qab takes the form

�̃ =A−1
{
�g + gij∂i lnA ∂j + εti∂i lnA ti∂i

}
+

+ εQ

{[
∇iti + 3

2 t
i∂i lnA

]
ti∂i + (ti∂i)2

}
+

+
√
εσ2 dα

dσ2 t
i∂i

(4.14)

In the case of a maximally symmetric spacetime, the two d’Alemebert operators assume the form

�̃ = α� + 2ασ2 ∂

∂σ2 [ln(αA3)] ∂

∂σ2

� = ∂2

∂σ2 +
(

∂

∂σ2 ln ∆−1 + 3
σ

)
∂

∂σ

(4.15)
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where a new object ∆, called van Vleck determinant, was introduced and whose general definition
is the following:

∆(p, P ) = 1√
g(p)g(P )

det
(
∂(p)
a ∂

(P )
b

σ2

2

)
(4.16)

with the superscripts that identify the respective coordinates points at which the derivative is
taken. Its role is analogous to the one of the Jacobian determinant, so it consists in a powerful
instrument in any contest in which curvatures are present. Actually, we can notice that in flat
spacetimes ∆(p, P ) = 1, thus in arbitrary curved spacetimes ∆(p, P )→ 1, when p→ P .

In equation (4.15), that is for maximally symmetric spacetime, the van Vleck determinant
becomes

∆−1/3 =
{

sin y
y

, 1, sinh y
y

}
(4.17)

with y = |σ|/a and a is the curvature radius related to the geodesics.
Consequently, considering the condition (4.13), the solution of the obtained differential equation
reads

A = SL0

σ2

(
∆

∆S

)2/3
(4.18)

When SL0 = σ2, A = 1 fixes the constant of integration. The subscripts S tells that it is
calculated respect to the function S, instead of σ2.

Putting all pieces together the final expression of the q-metric assumes the form

qab = σ2

SL0

(
∆

∆S

)−2/3
gab + ε

{
SL0

σ2S′2L0

− σ2

SL0

(
∆

∆S

)−2/3
}
tatb (4.19)

Equivalently in terms of the surface matrix, we have

qab = σ2

SL0

(
∆

∆S

)−2/3
hab + ε

(
SL0

σ2S′2L0

)
tatb (4.20)

The whole argument pursued in this section carries a very deep geometrical significance in
such a contest. Thanks to the arbitrariness in the choice of SL0(σ2), we can now discuss some
cases using the three conditions presented earlier.

The invocation of requirement i. introduces a metric whose geodesic distance is actually
SL0(σ2) = σ2 + L2

0, that takes into account a minimal finite length L0. Hence,
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qab = σ2

σ2 + L2
0

(
∆

∆S

)−2/3
hab + ε

(
1 + L2

0/σ
2

1 + σ2

)
tatb (4.21)

In the limit of large distances between events, in which σ2/L0 � 1, we are left with the trivial
identity inherent to condition ii., that is SL0 → S0(σ2) = σ2 which makes ∆S → ∆ and A→ 1;
as a consequence, the modified metric tends to qab ' gab: this is the result that one expects
under such constraints, naturally, even when gab describes a flat spacetime.
In general, this does not happen for any S(σ2) and the q-metric might lead to a non-zero curvature
also in presence of a flat spacetime.

Moreover, observing (4.19), we highlight the fact that the appearing ratio of the van Vleck
determinants express, in a certain way, the discrepancy between the curvatures measured with
the usual geodesic distance σ2 and its mapping SL0(σ2): these two becomes coincident once in
the surface Σ generated by tatb and the quasi-metric assumes the exact form of hab.
The role of this quantity will be relevant in the calculation of the Ricci scalar later, as we will
see.

In the chapter below, such a result will be used in order to derive the expression of the Ricci
biscalar and all the main features related to it will be enlightened and discussed properly.

4.2 Ricci bi-scalar

Our interest now is focused on finding the exact expression of the Ricci scalar for the q-metric,
because, in our dissertation, it consists in the Lagrangian functional for gravity. The generic
expression for it will be derived using the so-called Gauss-Codazzi relation [11]. Each term of it,
which is calculated respect to qab, will be rewritten in terms of the elements related to the usual
background metric gab, trough the introduction of a “conformal transformation” on the induced
geometries, trick that simplifies the computation notably.
In addition, we will notice that the final result is composed by a conformal part, which
depends only on A, and another part, where B 6= 0, that does not play any role in conformal
transformations: this is a relevant discriminant in the solution we want to find.
The notation with a “tilde” refers always to quantities calculated using the q-metric.

The Gauss-Codazzi formula for the Ricci scalar R̃ is the following:

R̃ = R̃Σ − ε
[
K̃2 + K̃2

ab + 2T̃ iD̃iK̃
]

+ 2εD̃iã
i (4.22)

where T̃ a = qabT̃b, in which we have introduced such a vector defined as

T̃a =
√
A−Bta ≡

√
αta

thus ãi = T̃ bD̃bT̃a is the acceleration vector associated to T̃a.
Moreover, it were defined the objects
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K̃ab = D̃aT̃b − εãaT̃b
K̃ = qabK̃ab

(4.23)

so that K̃2
ab = qiaqjbK̃abK̃ij . The Ricci scalar RΣ is obtained through the induced metric h̃ab.

Covariant derivatives, instead, are defined through the Christoffel symbols as

Γ̃abc = Γabc + 1
2q

ak (Dbqck +Dcqbk −Dkqab) (4.24)

in this way D̃iT̃k = ∂iT̃k − Γ̃aikT̃a, obviously.

At this point, as primary step, in order to rewrite the surface addends in terms of elements
corresponding to gab, we introduce the definition of conformal transformation, which is defined
as a transformation that preserves angles locally. This gives the relationship between only the
terms of the induced geometries, that is related to Σ; if the metrics on the hypersurface are
respectively h̃ab and hab, one finds that

h̃ab = Ahab

R̃Σ = A−1RΣ
(4.25)

Notice that these two quantities are simply rescaled by a factor A, so no dependence on B
is present.

The remaining terms in square brackets of (4.22), instead, can be manipulated with some
algebra by calculating the affine connection explicitly and restoring the definition given earlier
of the vectors T̃ a in terms of the ta. By doing this, one obtains the covariant derivative as

D̃bT̃c =
√
α

(
Dbtc + 1

2
tjDjA

α
hbc + B

α
[Kbc −Kcb]

)
(4.26)

where the expressions of K and Kab related to gab are defined as above:

Kab = Datb − εabta
K = gaigbjKabKij

(4.27)

Thus, the acceleration is found trivially to be ãi = ai = taDati.

The final form of searched addends results therefore

K̃ab = A√
A−B

[
Kab + 1

2(taDa lnA)hab
]

K̃ = 1√
A−B

[
K + 3

2(taDa lnA)
] (4.28)
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Now, substituting the ingredients (4.25) and (4.28) into the Gauss-Codazzi formula, we get
the final result for R̃ to be [12]

R̃(p, P |qab) = A−1R(p, P |gab) + ε(α−A−1)Jd − εαJc (4.29)

in which some terms have been renamed as

Jc = ε
6√
A
�A+

(
K + 3

2 t
aDa lnA

)
(taDa lnαA) (4.30)

Jd = 2Rabtatb +K2
ab −K2 − 2Dia

i = ε(R−RΣ − 2Dia
i) (4.31)

In here it results clearer which terms play a role in conformal transformations. Actually, when
B = 0, this case corresponds to conformal metrics for which the Jd term does not contribute and
the second addend above becomes null. Such a coincidence is not trivial because the structure
of this term reveals itself to be special because it contains the element Rabtatb of wide interest
in our contest.
In the following section we are actually discussing in details these features and the way in which
this term is a crucial pillar in the whole emergent gravity paradigm treated in this paper.

4.2.1 Equigeodesic Surfaces

In this section we propose to recover explicitly the exact expression of the gravitational
Lagrangian, which is nothing but the Ricci scalar. The starting point is to see what happens
to the general expression (4.29) when two event points do coincide, p → P , and whether it is
comparable with the general Ricci scalar R(gab) of the background metric.
It will be consequently found that a leading term exists and it astonishingly will be the exact
term contained inside the definition of the entropy functional F [q], rather than R(gab) as well as
one might expect.

For the sake of simplicity, we now consider the spacetime as foliated by equi-geodesic surfaces
ΣG and call the one of the event P as ΣG,P . The related normal vector to it is the vector tangent
to the geodesics connecting P to p, that is affinely parametrised as 4.3.
By doing this, we make “disappear” the acceleration ai terms in all the definitions of the previous
section, thus we are left with modified terms such as

Kab =⇒ Kab = Datb = ∂a∂b(σ2/2)− εtatb√
εσ2

Jd =⇒ Jd = ε(R−RΣG,P
)

At this point, it is possible to insert in (4.29) the expressions (4.12) and (4.18) for both α and
A. In the computation of such an expression two equalities for the van Vleck determinant are
used. Indeed, the van Vleck determinant satisfies two main differential identities which connect
them with Kab and K related, this time, to the surface ΣG,P :



CHAPTER 4. MEASURE OF MINIMAL LENGTH 32

tiDi ln ∆ = 3√
εσ2
−K (4.32)

tiDi(tjDj ln ∆) = − 3
εσ2 −K

2
ab +Rabt

atb (4.33)

Finally, the result obtained is

R̃(p, P |qab) =
[
σ2

SL0

(
∆

∆S

)−2/3
RΣ −

6
SL0

+ 20 d

dSL0

ln ∆S

]
−

− SL0

λ2S′2L0

(
KabK

ab − 1
3K

2
)

+

+ 4SL0

[
2 d2

dS2
L0

ln ∆S −
3
2

(
d

dSL0

ln ∆S

)2
] (4.34)

Firstly, three main relevant contributions emerged, named as Q0, QK , Q∆ corresponding to
the first, second and third addend, respectively: intrinsic curvature, extrinsic curvature and van
Vleck determinant. Each of these will be defined later piece by piece.
Thus, Ricci scalar result is mathematically described by the geodesic structure of spacetime,
completely.

Moreover, notice that, as far as S(σ2) represents effects of quantum gravity, only its first order
derivatives appears in the Ricci formula because all the other higher order terms cancels out; this
luck of dependence suggests that semi-classical effects of quantum gravity can be grasped only
from precise details of quantum gravity itself, rather than its any perturbative contribution.

Finally, the extrinsic curvature of the surface ΣG,P related to the event base point P does
not imply any coincidence limit divergence.

4.2.2 Coincidence Limit

We are about to take the limit of two events coinciding, L0 → 0. The peculiar aspect of
the previous result for the Ricci bi-scalar tensor is that it can be decomposed essentially into
three additive terms, the ones that sum up the main characteristics of the geometry of spacetime.

The main assumption for the purposes of our calculations is to consider regions of spacetime
as smooth, so that we are allowed to expand the terms in a covariant Taylor series around L0.
Each term expansion is indicated below:

Kab = 1
L0
hab −

1
3L0Eab + 1

12L
2
0t
iDiEab −

1
60L

3
0

(
titjDiDjEab + 4

3EakE
k
b

)
+O(L4

0)

K = 3
L0
− 1

3L0E + 1
12L

2
0t
iDiE −

1
60L

3
0g
ab

(
titjDiDjEab + 4

3EakE
k
b

)
+O(L4

0)
(4.35)
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In addition, we use the covariant Taylor expansion of the van Vleck determinant

∆1/2(p, P )[L0] = 1 + 1
12L

2
0Rabt

atb +O(L3
0) (4.36)

together with the expansion of the Ricci surface element

RΣG,P
= R− ε

[
10
3 E −

6
L2

0

]
+O(λ3) (4.37)

Precisely, Kab describes the local geodesic structure of any kind of spacetime, and each term
results completely depending on the tidal tensor Eab = Rakbit

kti and E = gabEab.

Notice that the contribution of L0 is contained only in the intrinsic curvature part Q0, while
it appears at higher order in the others because SL0(0) = L2

0. Let us therefore examine each
piece separately.

Extrinsic Curvature The extrinsic curvature term QK can be discussed using the condition
iii., that is asking for convergence of the ratio |SL0 |/S′2L0

(0)�∞. It depends on L0 quadratically,
actually

QK = SL0

S′2L0

1
L2

0

[
L2

0
9

(
E2
ab −

1
3E

2
)

+O(L3
0)
]

in such a way this term does not contribute in the limit and no divergent objects appear. Such a
powerful peculiarity is direct consequence of the presence of the van Vleck determinant without
whom we would have had the problem to face divergent terms.

Van Vleck Determinant The term Q∆ vanishes trivially as well as before because it furnishes
further dependences on L2

0, as it can be noticed observing the Taylor series (4.36) and considering
that

lim
L0→0

lim
σ2→0

(
d

dSL0

ln ∆S

)
= 1

6ε[Rabt
atb](P ) (4.38)

Intrinsic Curvature We are left with the only surviving Q0, the intrinsic curvature that, at
this point, constitutes the main contribution to R̃ in the coincidence limit, as anticipated before.
Using equation (4.37) and ∆(0) = 1 one gets, together with (4.38),

lim
L0→0

lim
σ2→0

Q0 = 2
3ε[Rabt

atb](P ) + 201
6ε[Rabt

atb](P ) = ε4[Rabtatb](P ) (4.39)

As a consequence we have found the most important result for the expression of the Ricci
scalar in the quasi-metric and in the coincidence limit, which gets proportional to the tidal
element E :
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lim
L0→0

R̃(P ) = ε 4[Rabtatb](P ) (4.40)

4.2.3 Observations

It was shown how the Ricci scalar in the q-metric becomes proportional to the element Rabqaqb,
in the limit the distance of two points of spacetime tends to zero, a quantity having a key role
in the emergent gravity contests.
The first time we encountered it was in section (1.2), when the existence of a Noether current
for gravity was discovered: it is not a casualty that these two different topics lead to a similar
result.

The form of the Noether charge pushed to consider a new Lagrangian for gravity in the
form of a entropy functional, as in (3.3). The resulting equations of motion validated such a
choice and this entropy functional is now even more accredited under the result obtained in
this chapter: actually, a metric carrying the existence of a microscopic structure of spacetime
suggests that, at fundamental level, the leading functional term has to be in the tidal form Eab.
This magnificent solution would not have never been found with the usual metric, due to the
fact that the resulting geodesic interval vanishes in the coincidence limit. Afterwards, it follows
that the theory concerning an arbitrary functional S(σ2), with all the characteristic of the
geometric spacetime left unaltered, permits to insert a no-null finite length at small scale and
understand better some new basilar physic aspects on gravity.
Thereof, the necessity of a statistical derivation for it, with all the considerations argued until
now, is now definitely clear.

Moreover, in spite of the doubts about the presence of the vector field qa, as argued in section
(3.3), their existence is now not ambiguous anymore because it emerges naturally just considering
a discrete structure for spacetime. Indeed, these vector fields are intrinsically participating in
the guiding curvature term Q0.

4.3 Statistical Formalism

We want to conclude the dissertation explaining how such atoms of spacetime can be treated
microscopically through statistical considerations. Therefore, the aim is to link these degrees
of freedom with the macroscopic behaviour of gravity, emerging in the form of thermodynamic
quantities such as heat densities of energy and entropy, as argued since the beginning.
In this way, it is more evident how the functional F [q] plays a perfect role in giving back the
gravitational equations of motion as counting the granules of spacetime, together with the
matter degrees of freedom.

As for any fluid, one can define a fundamental function called generally distribution density
function f(xi, pj) which gives the amount of atoms dN = f(xi, pj)d3xd3p contained in the unit
volume of phase space d3xd3p, each with the proper space coordinates xi and momenta pj . In our
case of the spacetime, the idea is the same, thus we define an object which counts the number
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of degrees of freedom of its “atoms”: doing this, we are already stating that we suppose the
existence of these degrees and that they are equivalent to each other, so their nature does not
affect the theory we are trying to build. For our purpose, we define a function ρ(x, φA) whose
dependence are the coordinate x and a sort of momentum φA; the last one takes an index A
being a natural number (A = 1, 2, 3...) representing the possible internal degrees of freedom.
Consequently, the matter contribution is introduced through the stress energy tensor T ab . Then,
in such a space, there are both atoms of spacetime both atoms of matter, hence the most generic
distribution density function assumes the dependence

ρ[GN (x), φA, T ab (x)] (4.41)

Notice that the coordinates dependence was put into the definition of GN which represents the
geometrical variables related to spacetime, in example the metric, the curvature tensor and so
on, each one identified by N = 1, 2, 3....

Therefore, the total number of degrees of freedom for a certain spacetime configuration is
counted through a product all over the phase space and linked to a configuration entropy value
S:

Ωtot =
∏
φA

∏
x

ρ[GN (x), φA, T ab (x)] ≡ expS (4.42)

At the equilibrium, it is possible to separate the total density function into the product of the
two contribution respectively of matter and spacetime, hence exponentiating those quantities,
Ωtot becomes

Ωtot =
∏
φA

exp
∑
x

(
ln ρg + ln ρm

)
(4.43)

in which the gravity part only depends on GN and φA, whilst the matter density depends on Tab
and φA.
The point at which the functional Ωtot takes its maximum value, respect to φA, corresponds to
the state of equilibrium of the system, hence it reproduces the Einstein gravity equations.

Now, consider the expression of the entropy functional (3.3) integrated in a four-dimensional
space in the covariant volume dV , under a certain function Γ(F [x; ξa]) of it, having chosen the
arbitrary qa → ξa as a light-like killing vector:

S[ξa(x)] =
∫
V

d4xΓ(F [x; ξa]) (4.44)

Hence,

F [x; ξa] ≡
[
B T ab (x)−A Rab (x)

]
ξaξ

b ≡ F (x)δab ξaξb (4.45)

Indeed, varying δS = 0 respect to the null vector one gets (3.10) as expected. Under this
glance, we interpreted the variables x and ξa as a set of internal parameters describing the
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atoms of spacetime; at any event a set of null vectors ξa is defined with the condition ξ2 = 0 at
each point.

4.3.1 Heat Density for Gravity

By considering (4.43), it can be shown that the proper form for the entropy density for gravity
ρg is related to the tidal term Eab. Intuitively, we saw the association to heat rate content to be

Hg[q] ≡
dQg√
σd2xdλ

= Rabq
aqb (4.46)

where we have set the approximation ξa → qa at the null surface, with qa = dxa/dλ null vector
normal to it.

By basic differential geometry knowledge, area and volume are related by a flat part
contribution plus a term which takes into consideration the curvature measure. In our case we
want to relate

√
hd3x and √gd4x, which both vanish in classical spacetime if the size of the

region goes to zero. This should not be surprising even if we rescale the zero value to be a
finite number, because we expect that at this value both measures of area and volume vanish
naturally as well.
However, the area element does not vanish in the definition of density we are about to find.
Indeed, a non null vector field qa is present and the density ρg(xi, qa) depends on its choice.

We propose now to calculate
√
h using the q-metric described earlier. The metric can be

thought in the general form in the Euclidean sector

ds2
E = dσ2 + habdx

adxb (4.47)

A typical set of coordinates can be identified through three angles and the coordinate length σ,
along the geodesics connecting to points p and P ; thereafter, taking a limit σ → 0, the non-zero
value should emerge, evidently if and only if the spacetime is not threaten as a continuum, but
in a discrete way.

The respective determinants are related in this way:

√
q =
√
α−1A3/2√g ≡

√
α−1
√
h (4.48)

Hence, setting SL0(σ2) = σ2 + L2
0, it is possible to recover the volume element

√
q = σ(σ2 + L2

0)
[
1− 1

6E(σ2 + L2
0) +O(E2)

]√
hΩ (4.49)

and the surface element
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√
h = (σ2 + L2

0)3/2
[
1− 1

6E(σ2 + L2
0) +O(E2)

]√
hΩ (4.50)

where E ≡ Rabq
aqb and qa = ∇aσ is the vector along the direction of σ, normal to the surface

Σ; the element
√
hΩ is related to the other coordinates, i.e. the angular part. It follows that

the second addend in brackets appears as the curvature correction to the area at the considered
event-point.
Thereof, when σ → 0 and L0 ∼ LP is a typical length of Plank order, the volume element
vanishes but the above solution becomes

√
h = L3

P

[
1− 1

6EL
2
0

]√
hΩ (4.51)

At this point, a simple algebra manipulation leads to the definition of a density function as

ρg(xi, qa) ≡
√
h

L3
P

√
hΩ

= 1− L2
0

6 Rabq
aqb (4.52)

where ρg can be assumed to be the number of atoms of spacetime. In here, it appears natural
and evident the dependence on the vectors qa.
Nevertheless, in order to interpret the above density function as the number of atoms of
spacetime per unit volume at a given event P , we imagine them as a solid made of ordinary
matter, in which the particles are not point-like anymore.

Consider therefore qa as a sort of momentum of the spacetime atoms and the density function
represents the numbers of microscopic degrees of freedom of such particles.
Hence, if one sets the identification Hg ≡ L−4

P ρg(x, q), the definition for the gravity heat density
follows similarly to the one for matter:

Hg[q] ≡
dQg√
hd3x

= 1
L4
P

[
1− L2

0
6 Rabq

aqb

]
(4.53)

Thus, it is possible to count now the discrete number of degrees of freedom of the atoms of
spacetime by exponentiation according to Sg = ln ρg, hence

Ωg = exp ln ρg = exp
[
µ

∫ √
σd2xdλ

L3
P

(
L4
PHg

)]
(4.54)

where µ = 1/LPT and T has dimensions of a temperature.

In conclusion, the total heat content including matter carries actually the form of the
functional (3.3), that is
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Qtot =
∫ √

σd2xdλ

 1
L4
P

+
(
Tab −

1
8πL2

P

Rab

)
qaqb

 (4.55)

where we have put the right value of the constant L2
0 = (3/4π)L2

P . The analogous expression to
the above one includes the entropy definitions, by dividing for a temperature.

The above expression tells the way in which the dynamics of the system is driven to
equilibrium, indeed, it is evident how the respective densities act balancing so that ρgρm = 1 on
shell.
Straightforwardly, the statistical approach offers spacetime shells as the “place” where the
gravitational system equilibrium is realised. Thereof, in the case shells are also specific physical
horizons, they deserve to be explored because they might contain plenty of information about
the natural dynamics of gravity: actually, this is a direct consequence of the fact that they share
information with their bulk content.
Next section will show how surface and bulk share information content on shells, only through
thermodynamic considerations.

4.4 Holographic Equipartition

In this last section, we want to analyse briefly some consequences of the holographic principle
by counting numerically the physical degrees of freedom of a certain region of spacetime, as
anticipated in section 1.1.2. In fact, it was pointed out that the bulk term of the Einstein-Hilbert
Lagrangian shares information content with the related surface part.
Since we have explored the thermodynamic behaviour for the Noether current as an entropy
quantity, we want to rewrite it in terms of number of degrees of freedom, contained inside the
bulk Nbulk and in the surface part Nsur. [5]
The discussion will end up with an amazing equality between these numbers: this permits to
understand better the spacetime dynamical evolution.

Let us start by considering again the Noether current (1.51) in the contracted form qaJ
a,

where qa = dxa/dλ and λ is the parameter along the null generator qa. It is possible to show
that this can be expressed as

16πqaJa[ξ] = 1√
σ

d

dλ
(2a
√
σ) (4.56)

where a is a positive function depending on coordinates. We suppose the current to depend on
a time evolution vector ξa as usual, so that ξa → qa at the surface.
The derivation of the above solution, consisting just in several algebraic calculations, would
require a too long digression that only takes away the attention from the main purpose we want
to highlight simply, therefore it is not presented in here; it can be found in [16].

It was seen that the integration over the three-dimensional space region H of the term qaJ
a
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reproduces a physical heat density. Now, the measure of the integral for an interacting vector
field over a null surface is qa

√
σd2xdλ. Thus, observing equation (2.8), one has

∫
H

√
σd2xdλ qaJ

a =
∫
H

d2xdλ
d

dλ
(2a
√
σ) =

∫
H

√
σd2xdλ qa(δξva + 2Gab ξb +Rξa) (4.57)

so that we can rewrite it by inserting the field equations in the form Gab = 8πL2
PTab + Λgab and

recalling the null-norm condition gabq
aqb = 0:

−
∫
H

d2xdλ
√
σ

8πL2
P

qa δξv
a =

∫
H

d2xdλ

8πL2
P

d

dλ
(2a
√
σ)−

∫
H

d2xdλ
√
σ (2Tabqaqb) (4.58)

At this point, the very last integrand can be identified with the energy density of matter
crossing the surface into the bulk region.
Therefore, the whole integral constitutes the total energy and if the matter heat flux thermalizes
at the average temperature of the null surface, we can count the degrees of freedom, invoking
the energy equipartition theorem, as

Em = 1
2NbulkkBTavg (4.59)

where

Tavg ≡
1

ASH

∫
SH

d2x
√
σ Tloc (4.60)

was introduced as an average temperature of the local temperature Tloc = a/2π. Obviously,
ASH

is the area of the surface.

The other integral, instead, can be solved over λ from a certain value of λ1 to another one
λ2, trivially, so that one obtains a difference of heat quantities on the boundaries located at λ1
and λ2 respectively. In this way,

∫
SH

d2x

L2
P

(
a

2π

) (√
σ

4

)∣∣∣∣∣∣
λ2

λ1

= Q(λ2)−Q(λ1) (4.61)

As done previously, Tloc = a/2π and we take the surface number of degrees of freedom to be

Nsur = ASH

L2
P

=
∫
SH

√
σd2x

L2
P

(4.62)

so that the final expression for (4.58) becomes
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∫
H

d2x
√
σ

8πL2
P

qa δξv
a = 1

2kBTavg(Nbulk −Nsur|
λ2
λ1

) (4.63)

Therefore, whenever ξa is a killing vector generating a boosts, coincident with the normal
vector qa at the null surface, the left hand side vanishes and the holographic equipartition arises:
Nsur = Nbulk.
Equation (4.63), acts as guiding principle in describing the dynamical evolution of the spacetime.
In fact, equilibrium is found whenever the left-hand side is zero and the discrepancy from
holographic equipartition vanishes.
Conversely, the number of degrees of freedom of a certain region of spacetime tends to become
equal to the ones contained in the surface that surrounds it, so that the gravitational equilibrium
is realised.

Moreover, the power of this natural characteristic assumes a deep relevance since a bulk and a
surface can always be found around any point of spacetime. Hence, if treated on specific physical
horizons, the information accessible to it is analogous to the information content of its bulk
volume, so that this approach might result quite interesting in the study of regions of spacetime
which are not accessible directly, viz. black holes.



5
Conclusion

This dissertation is related to some fundamental questions and unsolved puzzles in physics about
gravity. On one hand, formally, we face deep problems when studying it under a Quantum Field
Theory approach in the same way one does with all the other three forces of nature; on the
other hand, instead, it is conceptually inexplicable why in Einstein’s equations, two different
quantities, geometry and matter, appear to two be equated.
The reader was introduced to a new possible and valid approach to the study of gravity, by
offering a possible answer to those questions.
Actually, observing the canonical Einstein’s field equation under a special frame of reference,
it was possible to highlight similarities between gravity behaviour and thermodynamics at
macroscopic level. This discovery, let us then evaluate a different consideration about the nature
of spacetime (see 3.3).

The starting point was deriving the field equations for gravity using the Canonical Quantum
Field Theory approach, that is finding a suitable Lagrangian that was possible to extremise
according to the action principle. The Hilbert Lagrangian

LEH = 1
2(δcagbd − δdagbc)Rabcd

was shown to be right candidate, as long as it is a scalar functional, not trivially constant,
however dependent on the metric and its first and second derivative, with the property of
linearity on these.

The resulting equations of motion, by variation of the metric gab, are safely still at second
order, whilst the extra higher order derivative terms, appearing in the action, are collected into
a surface integral, which vanishes whether δgab is set to be null on it.
Indeed, the Hilbert Lagrangian is made by a quadratic part, which is the one giving back the
equations of motion, and a surface part that asks for particular attentions.
Nevertheless, these two parts do share information content according to a holographic principle
which arises naturally (see 1.1.2).

Afterwards, it was shown that such a surface part leads to the existence of a Noether current
conserved off-shell and its related charge assumes formally the expression of a heat density
quantity of geometric nature in the form (see 1.2)

41



CHAPTER 5. CONCLUSION 42

Rabq
aqb

However, this physical interpretation is allowed if, and only if, the equations of motion with
both geometry and matter are considered onto a generic null hypersurface of spacetime.
Indeed, such a formal quantity assumes a physical meaning on a special case in which the
mathematical surfaces are actually horizons for a certain class of accelerated observers, for
example, black holes.

Local Rindler frames of reference were a spectacular proof, rather than an example, of the
fact that an entropy balancing between matter and spacetime occurs onto the horizon (see 2.2).
In this way, by definition of entropy, an horizon appears to the observers thermodynamically
“hot”.
Now, as long as entropy is a macroscopic quantity that arises statistically from a microscopic
physics of the particles of matter, one can invoke the Boltzmann principle also for the entropy
of the geometric counterpart, so that we postulate inevitably the existence of a discrete
micro-structure at fundamental level, called as “degrees of freedom” of spacetime.

Accepting therefore that spacetime is actually granular and possesses a certain number of
degrees of freedom, of still unknown nature, one wants to build a suitable entropy functional for
gravity, which gives back a set of equations of motion of statistical nature (see 3.2). The searched
functional has the form

F [q] = L2
P Rabq

aqb − 8πL4
P Tabq

aqb

The variation is done respect to the field qa, which furnishes a set of equations projected onto
the hypersurface generated by the couple qaqb, with the condition q2 = 0, that is

(
Rab −

1
2R gab

)
qaqb = 8πL2

PTabq
aqb

First thing to notice is that, by this procedure, it emerges that the new set of scalar field
equations equates two same quantities both for geometry and matter, solving the philosophical
problem that keeps affecting the classical Einstein’s equations in its tensor form.
However, it is necessary to ask the functional F [q] to be invariant for any transformation that
keeps unchanged the norm of the vectors q2 = 0: only in this way a set of equations of motion
arise with an integration constant inside, whose role is the one of a cosmological constant. So,

Rab −
1
2R gab = 8πL2

PTab + Λgab

It follows that the granular structure of spacetime makes, in this way, a cosmological constant
arise naturally by the integration of such projected equations of motion, feature that is invisible
in Quantum Field Theory and needs to be added manually, later on.
Moreover, this result is even more astonishing because it might contain answers to many of the
open problems in cosmology, since the information carried by the constant is directly contained
in the nature of spacetime itself, at the smallest scale.



CHAPTER 5. CONCLUSION 43

A discrete background for the gravitational dynamics requires innovative mathematical
tools to work with. Actually, a quasi-metric can be built in order to give a finite length in the
coincidence limit of two events: such a finite small distance is of the order of Plank length (see
4.1).

The quasi-metric qab, at large scale, instead, reduces to the ordinary metric gab, as expected.
However, the most sensational result is obtained if the Ricci scalar is constructed from the
q-metric. In the coincidence limit, in which the minimum length scale L0 → 0 and the geodesic
distance σ2 → 0, the Ricci quasi-scalar R̃(q) does not coincide with the expression of the Ricci
scalar constructed with the usual metric gab, as one might expect. By contrast,

R̃(q) ∝ Rabq
aqb

which is the exact expression appearing in the Noether current when Einstein’s field equations
hold. This suggests the form can describe gravity at fundamental level. In such a way, a certain
class of light-like q-vector fields exists intrinsically beneath, so that a functional built from these,
completely with matter, constitutes a perfect generator of equations of motion with a likewise
natural cosmological constant.

All things considered, this new statistical approach for gravity possesses plenty of theoretical
validation, both mathematical both physical. It could be therefore a new road to follow in
order to evaluate new methods to quantisation. Indeed, the attention should be moved to the
quantisation of the degrees of freedom of spacetime and the fields qa.
All this debate is enforced by the fact that the canonical approach, in which the metric is
considered a variable, is not a proper choice conceptually, due to the nature of spacetime which
does not behave like an external field propagating in it. Such a concept reflects disappointing
consequences to any attempt in canonical quantization. Thus, if the physicists have the patience,
nowadays, to show some interest into the emergent theory, a new door for quantum gravity might
be opened and maybe, one day, crossed too.

As it was possible to read, several deep topics were inevitably touched and mentioned during
the whole journey. Many of those are actually either wide field of researched themselves or
fundamental parts for other topics. Therefore, it worth to write some extra lines about those
and convince the reader how the statistical approach to gravity can contribute significantly also
to other open areas of research.

Below, it will be shortly discuss how this approach can be extended to existing higher
order theories of gravity, beyond the Einstein’s, and some generalisations about the Holographic
principle.

Higher Order Theories In addition to the whole discussion, it is mandatory to inform that
this thesis has presented the emergent gravity formalism in the contest of the usual “physical
gravity”. The Einstein theory in a 4D spacetime, in fact, can be treated as a special case and
framed in the wider mechanism of broader theories of gravity.

In fact, emergent gravity operates even in gravitational models both at dimensions higher
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than four, both at higher order derivatives of the metric: an example of such a class of theories
are the ones named as Lanczos-Lovelock [1] [14].

In these models, a Lagrangian is built for generic spacetimes with dimension D, so Einstein’s
General Relativity is a special case forD = 3 andD = 4. Essentially, the most general Lagrangian
expression is

L(D)
m = Q bcd

a R a
bcd (5.1)

which contains a more compact form of the tensor

(m)Q ijk
a = 1

16π 2−mδcda3...a2m

abb3...b2m
Rb3b4
a3a4

...Rb2m−1b2m
a2m−1a2m

(5.2)

where a sum over m is implicit with certain arbitrary constants cm; m is the order in the theory.
We recognise the tensor used in the thesis contest when (1)Q bcd

a ≡ P bcd
a .

Thus, expanding it in power series of its derivatives, one gets (in matrix notation)

P (g,R) = c1P1(g) + c2P2(g,R) + ... (5.3)

General Relativity is found when only c1 is non zero, in example c1 = 1/16πG. Any other further
element can be considered as higher order correction terms to the Einstein theory.

Holographic Principle Another interesting aspect involves the generalisation of the
holographic principle. Such a powerful relationship between the quadratic and the surface part
appearing in the Hilbert Lagrangian, choosing gab as dynamical variable and ∂cgab as its conjugate
momentum, for D > 2, results

Lsur = −
[
D

2 − 1
]−1

∂i

(
gab

∂Lquad
∂(∂igab)

)
Such an identity is satisfied naturally, without any further requirement.

As well as it was shown, the above principle leads to the equality of the number of degrees of
freedom contained in the D-dimensional volume bulk and the ones present in the horizon with
dimension D − 1, when the system is at equilibrium [5].

Hence, Holography is a property also of Lanczos-Lovelock Lagrangian models. Moreover, it
constitutes basilar aspects in other important theories such as String Theory, for example.

This is another reason which makes emergent gravity worthy of attention.
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