
ALMA MATER STUDIORUM – UNIVERSITÀ DI BOLOGNA
CAMPUS DI CESENA

Scuola di Ingegneria e Architettura

Corso di Laurea Magistrale in Ingegneria e Scienze Informatiche

2p-kt :
A Kotlin-based, Multi-Platform

Framework for Symbolic AI

Tesi di laurea magistrale

Relatore
Prof. ANDREA OMICINI

Co-relatore
Dott. GIOVANNI CIATTO

Presentata da
ENRICO SIBONI

Terza Sessione di Laurea

Anno Accademico 2018-2019

2

Abstract

Today complex software systems are typically built as aggregates of hetero-
geneous components, where symbolic AI may effectively help facing key issues
such as intelligence of components and management of interaction. However, most
solutions for symbolic manipulation are currently either proof of concept imple-
mentations or full-fledged monolithic runtimes, mostly targeting a single platform
or a specific problem. Among the many, two decades ago, the tuProlog engine
proposed a flexible and modular architecture on top of a portable platform –
namely, the JVM – which should have overcome the aforementioned problems.
Sadly, the technology of the time forced some design choices which are nowadays
limiting its development and its porting on other platforms – critical for modern
AI –, such as JavaScript (JS) or iOS. For such reasons in this thesis we propose
(the design and development of) 2p-kt, an object-oriented, modular engine for
symbolic manipulation written in pure Kotlin – thus supporting compilation on
several platforms, there including JVM, and JS –, coming with a natural support
for Prolog-like SLD resolution but virtually open to other resolution strategies.
2p-kt design is conceived to maximise components deployability, lightweightness,
reusability and configurability, while minimising their mutability, and keeping its
architecture open to the injection of new Prolog libraries or resolution strategies.

i

ii

To my dear family

iii

iv

Acknowledgements

I would like to thank Prof. Andrea Omicini for offering me the opportunity to
carry out this work and for his teachings throughout the last two years. Further-
more I would like to thank Dott. Giovanni Ciatto for supervising my work and for
his patience, his great support, and his trust in me.

I would like to express my gratitude to my mother, Loretta, and my sister
Federica, for their everlasting love and for always supporting me and my decisions.
I will be grateful forever for your love.

v

Contents

Acknowledgements v

1 Introduction 1

2 State of the Art 3
2.1 The Prolog language . 3

2.1.1 Brief history . 3
2.1.2 Concepts summary . 4
2.1.3 Horn clauses and SLD-resolution principle 9

2.2 Prolog implementations . 12
2.3 Kotlin and multi-platform support 17

2.3.1 Brief history . 17
2.3.2 Main features . 18
2.3.3 Multi-platform programming 21

3 2p-kt Project 23
3.1 tuProlog . 23
3.2 Use scenarios . 26
3.3 Requirements . 27

4 2p-kt Design 29
4.1 Architectural design . 29
4.2 Core module . 31

4.2.1 Main “core” types . 31
4.2.2 Other “core” features . 35

4.3 Unify module . 36
4.3.1 Abstract unification algorithm 37
4.3.2 Main “unify” types . 39

4.4 Theory module . 39
4.5 Solve module . 40

4.5.1 Prolog execution model and the search-tree 41
4.5.2 Main “solve” types . 52

vi

CONTENTS vii

4.6 Solve-classic module . 56
4.6.1 Inferential core design . 56
4.6.2 Main “solve-classic” types 61

4.7 Solve-streams module . 62
4.7.1 Rationale . 63
4.7.2 Inferential core design . 64
4.7.3 Default primitives . 68
4.7.4 Main “solve-streams” types 71

4.8 Dsl-core module . 72
4.8.1 Term creation modalities . 73

4.9 Dsl-unify module . 75
4.10 Dsl-theory module . 75

5 2p-kt Implementation 77
5.1 Core module . 77
5.2 Unify module . 80
5.3 Theory module . 81

5.3.1 Rete algorithm implementation 81
5.4 Solve module . 83
5.5 Solve-classic module . 89
5.6 Solve-streams module . 94

5.6.1 FSM execution and states 94
5.6.2 Solver and support classes 97
5.6.3 DefaultBuiltins . 100

5.7 Dsl-core module . 101
5.8 Dsl-unify module . 102
5.9 Dsl-theory module . 103

6 2p-kt Validation 105
6.1 Test design . 105
6.2 Test implementation overview . 107

6.2.1 Core module tests . 107
6.2.2 Unify module tests . 107
6.2.3 Theory module tests . 108
6.2.4 Solve module tests . 108
6.2.5 Solve-streams module tests 110
6.2.6 Solve-classic module tests 111

6.3 Requirements compliance . 111

7 Conclusions 113
7.1 Summary . 113

viii CONTENTS

7.2 Future Works . 114

Chapter 1

Introduction

Nowadays, the needs for intelligent pervasive systems are opening new perspec-

tives for logic programming and symbolic Artificial Intelligence (AI). At the same

time, they also impose novel requirements for logic-based development frameworks,

which should allow logic programmers to easily integrate Prolog chunks with other

programming languages, and to be possibly executed by a multiplicity of platforms,

including web, mobile, and native ones. However, most solutions for symbolic ma-

nipulation are currently either proof of concept implementations or full-fledged

monolithic runtimes, mostly targeting a single platform or a specific problem.

Among the many Prolog technologies proposed so far, the tuProlog [1] engine

introduced an innovative, flexible and modular architecture on top of a portable

platform – namely, the JVM – which should have overcome the aforementioned

problems. However, the technology of the time (early 2000s) forced some design

choices which proved themselves inadequate in the next years. To target such

issue, in this thesis, we aim at rebooting the tuProlog project preserving good

design choices made at the time while addressing some issues that we identify as

critical. In doing so, we also increase the modularity of tuProlog, as well as its

portability on other platforms.

Accordingly, in this thesis we discuss the design, architecture, and development

of 2p-kt, that is, an object-oriented, modular engine for symbolic manipulation

written in pure Kotlin, featuring a native multi-platform support. 2p-kt design

1

2 CHAPTER 1. INTRODUCTION

is conceived to maximise components deployability, lightweightness, reusability

and configurability, while minimising their mutability, and keeping its architecture

open to the injection of new Prolog libraries or resolution strategies.

The 2p-kt project is divided in several modules, each one featuring a Prolog

macro-functionality. For instance, it comprehends (i) a module addressing knowl-

edge representation, (ii) a module for Prolog unification, and (iii) a general module

for Prolog resolution. In particular, the latter module comes in two specific im-

plementations: a classic one – emulating the functioning of the original tuProlog

engine – and an experimental one—in which we (successfully) assess the imple-

mentation of a Prolog engine in a functional fashion, where immutability reigns

supreme.

Finally, we endow 2p-kt of an extensive testing suite, through which its func-

tioning is validated. This testing suite, if correctly maintained, will enable 2p-kt

project developers to possibly exploit some kind of agile development. Indeed,

every principal module is finely tested, providing both a “living” documentation

and a way to intercept possible regressions while modifying existing code.

Accordingly, the remainder of this thesis is structured as follows. In chapter 2,

we provide a technical background for what concerns Prolog and logic program-

ming. We also describe Kotlin in detail, being the programming language we rely

on for the realisation of our project. In chapter 3, we describe how the 2p-kt project

came to life, which are its predecessor tuProlog merits and defects, defining a set of

requirements for the system we wish to realise. In chapter 4, we model the system

and its components, describing their structure, interaction, and behaviour. Then

for each module we discuss its detailed design choices. In chapter 5, we provide an

overview on the system implementation, describing all the elements of interest. In

chapter 6, we describe the system validation carried out through automated tests,

of which an implementation overview is also given.

Chapter 2

State of the Art

In this chapter, we provide a technical background briefing on the arguments of

interest of this thesis. In section 2.1, we describe Prolog language summarising its

basic concepts and the abstract computation model. Furthermore, a brief overview

of Prolog implementations in provided in section 2.2. Finally, in section 2.3, we

introduce Kotlin language and its main features.

2.1 The Prolog language

Prolog is a logic programming language leveraging on a small set of basic – yet

powerful – mechanisms, including pattern-matching, tree-based data structures,

unification, and automatic backtracking.

It has its roots in first-order logic, and unlike many other programming lan-

guages, Prolog is intended primarily as a declarative programming language.

In this section we provide an introduction to logic programming and Prolog.

2.1.1 Brief history

Logic programming has its root in automated deduction and first-order logic.

The former was studied by Kurt Gödel and Jacques Herbrand in the 1930s [2],

whose work can be seen as the origin of the “computation as deduction” paradigm.

The latter was first introduced by Gottlob Frege and subsequently modified by

3

4 CHAPTER 2. STATE OF THE ART

Giuseppe Peano and Bertrand Russell throughout the second half of the 19th

century [3].

These works led Alan Robinson, in 1965, to the invention of a resolution princi-

ple based on the notion of unification [4], which makes it possible to prove theorems

of first-order logic and thus compute with logic.

The final steps towards logic programming were made in the 1970s by (i)

Robert Kowalski, who introduced the notion of logic programs with a restricted

form of resolution, compared to the one proposed by Robinson, as a feasible proof

search strategy [5]; (ii) Alain Colmerauer and its team, who worked on a practical

realisation of the idea of logic programs, giving birth to Prolog.

Since then, for about ten years, there was an explosion of dialects of Prolog,

implementing various different extension of it, even changing its semantics. The

need for a standard was becoming increasingly important.

The ISO Prolog Standard is the result of another ten years of international

discussion which began in 1985, which ended in 1995 [6].

The main difference between logic programming and the other programming

paradigms is the way computation is conceived. In commonly used programming

paradigms, given an input (i.e. expression), the computation is the application

of fixed rules that produce an output. In logic programming, given an input

(i.e. conjecture), the computation consists in searching a proof to that input in a

solution space, following a predefined search strategy.

2.1.2 Concepts summary

The logic programming paradigm substantially differs from other programming

paradigms. When stripped to the bare essentials it can be summarised by the

following three features [7]:

• Computing takes place over the domain of all terms defined over a “univer-

sal” language.

• Values are assigned to variables by means of automatically generated sub-

stitutions, called most general unifiers. These values may contain vari-

CHAPTER 2. STATE OF THE ART 5

ables, called logical variables.

• The control is provided by a single mechanism, called automatic backtrack-

ing.

Terms. A term is defined recursively by applying a finite number of times the

following syntax rules:

〈Term〉 := 〈V ariable〉 | 〈Constant〉 | 〈Compound〉
〈Constant〉 := 〈Number〉 | 〈Atom〉
〈Number〉 := 〈Integer〉 | 〈Float〉

〈Compound〉 := 〈Atom〉(〈Args〉)
〈Args〉 := 〈Term〉 | 〈Args〉, 〈Args〉

So a term can be a variable, a constant (an atom or a number) or a compound

term, i.e. a functor, whose name is an atom, together with its arguments (a non-

empty sequence of comma-separated terms between parentheses) [6].

The objects used to build terms belong to the following disjoint sets:

• The variables denoted by a sequence of letters, digits or underscore char-

acters, beginning with an upper case letter or by the underscore character.

Variables are used to refer to any object.

In the reminder of this thesis we denote by L(〈V ariable〉) the set of all

variable symbols, and their instances will be written as mono-spaced strings.

For instance, X1, y2, Var, Atom, A variable are examples of variables in

L(〈V ariable〉).

• The atoms, denoted by a sequence of letters, digits or underscore characters

beginning with a lower case letter or a sequence of arbitrary characters in

single quotes. Atoms formed with any characters, may be unquoted if there

is no ambiguity with other sets. Atoms are used in particular to denote

names of predicates or functors.

In the reminder of this thesis we denote by L(〈Atom〉) the set of all atom

symbols, and their instances will be written as mono-spaced strings.

6 CHAPTER 2. STATE OF THE ART

For instance, x1, atom, ’1’, ’This is a single atom’, this too, and

’ ’ are examples of atoms in L(〈Atom〉), whereas the null atom is de-

noted ’’.

• The numbers are partitioned into integers (negative and positive integers)

and floating-point numbers, or in short floats. They will be denoted as usual.

In the reminder of this thesis we denote by L(〈Number〉) the set of all number

symbols, and their instances will be written as mono-spaced strings.

33, -33, 33.0, -0.33E+02 are examples of integer and float numbers in

L(〈Number〉).

• The compound terms are characterised by the name of their functor, called

the functor, and the number of their arguments, called arity. The outermost

functor of a compound term is called its principal functor.

In the reminder of this thesis we denote by L(〈Compound〉) the set of all

compound term symbols, and their instances will be written as mono-spaced

strings.

For instance, f(var1, g(Var2, a), b c) is an example of a compound

term in L(〈Compound〉), where the functor ’f’ has arity 3 and ’g’ arity 2.

’f’ is the principal functor.

Atoms and numbers form the constants, also called atomic terms. foo, ’Bar’,

1.2, -0.33E+02 are atomic terms. Moreover, atoms can be viewed as functors of

arity 0.

A term is said to be ground if it has no variable in it. The (set of the) variables

of a term is the set of all the variables occurring in a term. It is empty if the term

is ground.

In general, terms have no a priori meaning: each one of them can be associated

to a domain-specific entity by means of pre-interpretation.

In the reminder of this thesis we denote by L(〈Term〉) the set of all term

symbols, for which holds the relation L(〈Term〉) = L(〈V ariable〉) ∪ L(〈Atom〉) ∪
L(〈Number〉) ∪ L(〈Compound〉)

CHAPTER 2. STATE OF THE ART 7

Substitution. A substitution is a mapping from variables to terms. It is assumed

that a substitution is the identity mapping with the exception of a finite number

of variables. The notation:

{V1/t1, . . . , Vn/tn}

denotes a substitution where all variables are mapped to themselves, with the

exception of V1, . . . , Vn where Vi ∈ L(〈V ariable〉) is mapped to a term ti ∈
L(〈Term〉), different from Vi, for 1 ≤ i ≤ n.

The identity substitution corresponds to the identity mapping. Therefore its

(finite) representation is the empty set and it is called the empty substitution.

Substitutions denote bindings. Given V ∈ L(〈V ariable〉) and t ∈ L(〈Term〉),
such that {V/t} belongs to some substitution, the variable V is said to be bound

to t by some substitution. If t is not a variable, V is said to be instantiated (by

some substitution).

A substitution σ is naturally extended to a function on terms by defining:

σ(f(t1, . . . , tn)) = f(σ(t1), . . . , σ(tn))

In particular for any constant c, σ(c) is defined to be c. Substitutions will be

represented by Greek letters acting as postfix operators, hence the application of

a substitution σ to a term t is denoted: tσ (instead of σ(t)), and tσ is called an

instance of t.

A term s ∈ L(〈Term〉) is an instance of the term t if there exists a substitu-

tion σ such that s = tσ. For example, applying substitution {X/a, Y/f(X, b),

Z/g(X, Y)} to term f(Y, Z) gives the term f(f(X, b), g(X, Y)) which is an

instance of it.

As substitutions are mappings they can be composed. Let θ and σ be the sub-

stitutions represented, respectively, by {X1/s1, . . . , Xn/sn} and by {Y1/t1, . . . ,
Ym/tm} where

({X1, . . . , Xn} ∪ {Y1, . . . , Ym}) ⊆ L(〈V ariable〉)
and

({s1, . . . , sn} ∪ {t1, . . . , tm}) ⊆ L(〈Term〉)

8 CHAPTER 2. STATE OF THE ART

The representation of θ composed with σ can be obtained from the set

{X1/s1σ, . . . , Xn/snσ, Y1/t1, . . . , Ym/tm}

by removing all bindings Xi/siσ for which Xi = siσ, with 1 ≤ i ≤ n, and all

bindings Yj/tj such that Yj ∈ {X1, . . . , Xn}, with 1 ≤ j ≤ m.

The notion of instance extends to substitutions. A substitution σ is an instance

of the substitution θ if there exists a substitution µ such that σ = θµ.

A substitution is idempotent if successive applications to itself yield the same

substitution. Examples: a ground substitution is trivially idempotent; the follow-

ing substitution is idempotent {X/a, Y/f(T, b), Z/g(a, U)}.
A term s is a renaming of the term t, with regard to (w.r.t.) a set of variables

S ⊆ L(〈V ariable〉), if s is obtained from t by mapping different variables into

different variables and no variable in term s belongs to S. Example: the term f(T,

U, T) is a renaming of the term f(X, Y, X) w.r.t. the set {X, Y, Z, W, P, Q}, but

f(Y, U, Y) is not.

Most General Unifier. A substitution σ is a unifier of two terms if the instances

of these terms by the substitution are identical. Formally, σ is a unifier of t1 ∈
L(〈Term〉) and t2 ∈ L(〈Term〉) if t1σ and t2σ are identical. It is also a solution

of the equation t1 = t2, and, by analogy, it is called the unifier of the equation.

The notion of unifier extends straightforwardly to several terms or equations (i.e.

all terms or equation members become identical). Terms or equations are called

unifiable if there exists a unifier for them. They are not unifiable otherwise.

A unifier is a most general unifier (MGU) of terms if any unifier of these terms

is an instance of it. A most general unifier always exists for terms if they are

unifiable. There are infinitely many equivalent unifiers through renaming.

The process of solving an equation between terms is called unification. This

process adheres to a simple set of rules [6]:

i Given two non-initialised variables {X, Y } ⊂ L(〈V ariable〉), with X 6= Y ,

they unify with unifier {X/Y }

CHAPTER 2. STATE OF THE ART 9

ii Given a non-initialised variable X and a non-variable term u ∈ L(〈Term〉) \
L(〈V ariable〉), they unify with {X/u}

iii Given two constants, they unify if and only if they are the same constant,

with empty unifier

iv Given two terms, they unify if and only if they have the same functor and

arity, and their arguments unify recursively.

For instance, given the expression

g(a, Y) = g(X, Z)

the substitution {X/a, Y/Z} represents the MGU and is less constraining than

substitutions {X/a, Y/b, Z/b} and {X/a, Y/a, Z/a}, which are instances of the

first. But the equation X = f(X) has no solution (no unifier for X and f(X)).

In logic programming, atomic actions are equations between terms, which are

executed through the unification process. In other words, the unification process

is the basic operation on which the proof-search strategy relies to check whether

a proof to a given conjecture has been found or not. As stated before, the proof-

search strategy employed in logic programming is the one proposed by Kowalski,

known as SLD-resolution principle. So, in order to understand how computation

works in its entirely, in the following section we briefly explain how the SLD-

resolution principle works, after a short but necessary introduction to Horn Clauses

[8].

2.1.3 Horn clauses and SLD-resolution principle

In logic, sentences are called prepositions, which can be written through pred-

icates. Predicates are essentially structured terms and, in logic, are called atoms:

if p is a predicate symbol of arity n and t1, . . . , tn are terms, then p(t1, . . . , tn) is

an atom.

If the literal A is a logic atom, then the logical formula “A” states that A is

true, while “¬A” states that A is false. Literals can be combined through logical

10 CHAPTER 2. STATE OF THE ART

connectives to build more complex logic formulas. If A and B are literals, they

can be combined through: conjunction (e.g. A ∧ B, both A and B are true);

disjunction (e.g. A ∨ B, either A or B is true); implication (e.g. A → B, if A is

true then B is true); equivalence (e.g. A↔ B, A is true if and only if B is true).

A logic clause is a finite disjunction of literals. Given n literals A1, . . . , An and

m literals B1, . . . , Bm, the formula

A1 ∨ . . . ∨ An ∨ ¬B1 ∨ . . . ∨ ¬Bm

is a logic clause with n “positive” literals and m “negative” literals, which is often

written as

A1, . . . , An ← B1, . . . , Bm

A conjunction of logic clauses is called a Clausal Normal Form (CNF).

Finally, Horn clauses are logic clauses with at most one positive literal. One

example of them is represented by definite clauses, which are logic clauses with

exactly one positive literal (e.g. A ← B1, . . . , Bm). Furthermore, there are two

kinds of definite clauses: unitary clauses, which have no negative literals (e.g.

A ←) and definite goals, which have no positive literals (e.g. ← B1, . . . , Bm).

Both of them are Horn clauses too.

We are interested in Horn clauses since the SLD-resolution principle works as

follows: given a logic program P written as a CNF of Horn clauses and a formula

F , it shows that it is possible to compute (by contradiction) whether P logically

entails F . So, in order to exploit it, logic programs are written as CNF of Horn

clauses. In a logic program, definite clauses are called rules, unitary clauses are

called facts and definite goals are simply called goals. Rules and facts make up

the “source code” of a logic program, while goals represents the input that must

be proven.

The SLD-resolution principle, as the one proposed by Robinson, proceed by

contradiction: it negates the formula F and succeeds if it fails to prove it against

the program P . To prove a goal G with respect to a program P , the principle

works as follows:

CHAPTER 2. STATE OF THE ART 11

1. It looks for a logic clause in P whose head (i.e. the positive literal) unifies

with G (clause-choice).

2. There are three possible outcomes to this search:

(a) no clause could be found: in this case the resolution fails.

(b) a rule R of form A ← B1, . . . , Bm is found: being θ the MGU of G

and R, then the proof of G succeeds, and is represented by Gθ, if it is

possible to further prove the sub-goals B1θ, . . . , Bmθ, where Biθ is the

application of θ to Bi, with 1 ≤ i ≤ m. Thus, these sub-goals represent

now the current goal.

(c) a fact F is found: being θ the MGU of G and F , no sub-goals are added

to the current goal and the solution is represented by Fθ.

3. If the current goal is empty, the resolution ends successfully (SLD refutation).

Otherwise, a selection rule is adopted to choose the next sub-goal to prove

(predication-choice), starting back from point 1. If the current goal never

gets emptied, the resolution does not terminate.

Backtracking. Resolution relies on automatic backtracking : at a given point τ

in the resolution process, for the current goal/sub-goal G there could be more than

one clause in the program whose head matches with it; after choosing one of them,

if the resolution of the related sub-goals fails, the process automatically backtracks

to point τ , where another clause is chosen. Backtracking is performed until at

least one “candidate” clause is still present.

The SLD-resolution principle is often called a “proof search” because of its

non-deterministic nature: as just stated, while looking for a clause in the program

P , there could be more than one whose head matches with the current goal (or-

nondeterminism brought by clause-choice); furthermore, we have non-determinism

even when the resolution process has to choose the next goal to prove among

several sub-goals (and-nondeterminism brought by predication-choice). The way

these forms of non-determinism are dealt with, represents how the proof-search

proceeds in the solution space.

12 CHAPTER 2. STATE OF THE ART

In Standard Prolog those selection algorithms are fixed as follows, representing

the standard computation rule [6]:

• predication-choice always selects the leftmost predication in current goal G

• clause-choice selects “unifiable” clauses according to their sequential order

in P

This makes Prolog computations deterministic, a basic feature for every pro-

gramming language.

2.2 Prolog implementations

In the last decads, several Prolog implementations have been proposed. Some

of them are radically different from others, with different syntax and different

semantics (e.g. Visual Prolog) [9]. The code portability has always been a prob-

lem but, after the production of ISO Prolog standard, at least code that strictly

conforms to ISO-Prolog is portable across ISO-compliant implementations.

In this section we will provide a brief overview of current Prolog implementa-

tions.

BProlog [10] is a Prolog engine available as a freeware for non commercial use

at http://www.picat-lang.org/bprolog/. It consists of a versatile and efficient

Constraint Logic Programming (CLP) system. It supports Unix and Windows

platforms. The project reached version 8.1 and it has not been updated any fur-

ther since 2014. It supports the Prolog ISO standard. It supports interoperability

with the Java Virtual Machine (JVM) by means of an external Java interface, but

it doesn’t support any JavaScript interoperability.

JIProlog is a Prolog engine available as an open source project AGPLv3-licensed

at https://github.com/jiprolog/jiprolog. It consists of a Java Prolog inter-

preter and its main features are full Java/Prolog and Prolog/JDBC interactions

support. It supports the JVM platform as it is a Java project. The project is alive

and actively maintained. It supports the Prolog ISO standard. It natively supports

interoperability with JVM, but it doesn’t support JavaScript interoperability.

http://www.picat-lang.org/bprolog/
https://github.com/jiprolog/jiprolog

CHAPTER 2. STATE OF THE ART 13

Ciao! prolog [11] is a Prolog engine available as an open source project LGPL-

licensed at https://github.com/ciao-lang/ciao. It consists of a Prolog-based

logic programming system and its main features are CLP and multi-paradigm

programming. It supports Unix and Windows platforms as it is a C project. The

project is alive and actively maintained. It supports the Prolog ISO standard. It

supports interoperability with JVM by means of a complex Java/Prolog interface

using sockets, but it doesn’t support any JavaScript interoperability.

ECLiPSe [12] is a Prolog engine available as an open source project MPL-licensed

at https://sourceforge.net/projects/eclipse-clp/. It consists of a CLP

system. It supports Unix and Windows platforms as it is a C project. The project

is alive and actively maintained. It supports the Prolog ISO standard. It supports

interoperability with JVM by means of an external library, but it doesn’t support

any JavaScript interoperability.

GNU Prolog [13] is a Prolog engine available as an open source project GPLv2-

licensed at https://sourceforge.net/projects/gprolog/. It consists of a Pro-

log compiler and its main features are CLP and C interoperability. It supports

Unix and Windows platforms as it is a C project. The project reached version

1.4.4 and it has not been updated any further since 2018. It supports the Prolog

ISO standard. It doesn’t support interoperability with both JVM and JavaScript.

Jekejeke Prolog [14] is a Prolog engine available as an open source project at

https://github.com/jburse/jekejeke-devel, licensed under their own Evalu-

ation/Distribution1 license. It consists of a Prolog interpreter runtime library. It

supports JVM and Android platforms as it is a Java project. The project is alive

and actively maintained. It supports the Prolog ISO standard, but its developers

documented some discrepancies2 with it. It natively supports interoperability with

JVM, but it doesn’t support any JavaScript interoperability.

JLog is a Prolog engine available as an open source project GPLv2-licensed

at https://sourceforge.net/projects/jlogic/. It consists of a Prolog inter-

preter and its main features are Java compatibility and suitability for educational

1http://www.jekejeke.ch/idatab/doclet/cust/en/docs/recital/package.jsp
2http://www.jekejeke.ch/idatab/rsclet/prod/docs/10_dev/15_stdy/07_compliance/

package.pdf

https://github.com/ciao-lang/ciao
https://sourceforge.net/projects/eclipse-clp/
https://sourceforge.net/projects/gprolog/
https://github.com/jburse/jekejeke-devel
https://sourceforge.net/projects/jlogic/
http://www.jekejeke.ch/idatab/doclet/cust/en/docs/recital/package.jsp
http://www.jekejeke.ch/idatab/rsclet/prod/docs/10_dev/15_stdy/07_compliance/package.pdf
http://www.jekejeke.ch/idatab/rsclet/prod/docs/10_dev/15_stdy/07_compliance/package.pdf

14 CHAPTER 2. STATE OF THE ART

purposes. It supports the JVM platform as it is a Java project. The project

reached version 1.3.6 and it has not been updated any further since 2012. It sup-

ports the Prolog ISO standard. It natively supports interoperability with JVM,

but it doesn’t support JavaScript interoperability. It also supports programmatic

usage of Logic Programming in Java.

JScriptLog is a Prolog engine available as an open source project GPLv2-licensed

at https://sourceforge.net/projects/jlogic/. It consists of Prolog inter-

preter and its main feature are JavaScript compatibility and suitability for edu-

cational purposes. It supports JavaScript-enabled platforms as it is a JavaScript

project. The project reached version 0.7.5.beta and it has not been updated

any further since 2012. It supports the Prolog ISO standard. It natively supports

interoperability with JavaScript, but it doesn’t support JVM interoperability.

LPA-Prolog [15] is a Prolog engine available as a freeware at http://www.

lpa.co.uk/sup_dow.htm. It consists of a Prolog compiler for Windows and its

main features are a user interface and the Windows support. It supports only

the Windows platform. The project is alive and actively maintained. It does

not supports the Prolog ISO standard. It supports interoperability with JVM by

means of an external library, but doesn’t support any JavaScript interoperability.

Open Prolog is a Prolog engine available as a freeware at https://www.scss.

tcd.ie/misc/open-prolog/. It consists of a Prolog implementation whose main

feature is Mac OS support. It supports the Mac OS platform. The project reached

version 1.1b10 and it has not been updated any further since 2005. It partially

supports the Prolog ISO standard. It doesn’t support interoperability with both

JVM and JavaScript.

SICStus [16] is a Prolog engine available as a commercial product at https:

//sicstus.sics.se/. It consists of a Prolog development system and its main

features are performance and Prolog ISO standard support. It supports Unix and

Windows platforms. The project is alive and actively maintained. It supports the

Prolog ISO standard. It supports interoperability with JVM by means of external

library, but it doesn’t support any JavaScript interoperability.

Strawberry Prolog is a Prolog engine available as an open source project AntiGNU-

https://sourceforge.net/projects/jlogic/
http://www.lpa.co.uk/sup_dow.htm
http://www.lpa.co.uk/sup_dow.htm
https://www.scss.tcd.ie/misc/open-prolog/
https://www.scss.tcd.ie/misc/open-prolog/
https://sicstus.sics.se/
https://sicstus.sics.se/

CHAPTER 2. STATE OF THE ART 15

licensed at http://www.dobrev.com/download.html. It consists of a Prolog com-

piler and its main feature is the debugging facility. It supports Unix and Windows

platforms as it is a C++ project. The project is alive and actively maintained. It

doesn’t support the Prolog ISO standard. It doesn’t support interoperability with

both JVM and JavaScript.

SWI-Prolog [17] is a Prolog engine available as an open source project BSD-

licensed at https://github.com/SWI-Prolog/swipl-devel. It consists of a Pro-

log environment and its main feature is to be useful in building research prototypes

and interactive systems. It supports Unix, Windows and JavaScript-enabled plat-

forms. The project is alive and actively maintained. It supports the Prolog ISO

standard, but there are some documented discrepancies. It supports interoper-

ability with both JVM and JavaScript by means of, respectively, external or third

parties libraries.

Tau prolog is a Prolog engine available as an open source project 3-Clause

BSD-licensed at https://github.com/jariazavalverde/tau-prolog. It consists

of Prolog interpreter and its main feature is to be an in-browser full client-side Pro-

log implementation. It supports JavaScript-enabled platforms as it is a JavaScript

project. The project is alive and actively maintained. It supports the Prolog

ISO standard. It natively supports interoperability with JavaScript, but it doesn’t

support JVM interoperability.

tuProlog [1] is a Prolog engine available as an open source project LGPL-licensed

at https://gitlab.com/pika-lab/tuprolog/2p. It consists of a lightweight Pro-

log system and its main feature is Java interoperability. It supports JVM and

Android platforms as it is a Java project. The project is alive and actively main-

tained. It supports the Prolog ISO standard. It natively supports interoperability

with JVM, but it doesn’t support JavaScript interoperability. It also supports

programmatic usage of Logic Programming in Java.

Visual Prolog is a Prolog engine available as a freeware at https://www.

visual-prolog.com/. It consists of a Prolog-based multi-paradigm programming

language and its main feature is the user interface. It supports Unix and Win-

dows platforms. The project is alive and actively maintained. It doesn’t support

http://www.dobrev.com/download.html
https://github.com/SWI-Prolog/swipl-devel
https://github.com/jariazavalverde/tau-prolog
https://gitlab.com/pika-lab/tuprolog/2p
https://www.visual-prolog.com/
https://www.visual-prolog.com/

16 CHAPTER 2. STATE OF THE ART

the Prolog ISO standard. It doesn’t support interoperability with both JVM and

JavaScript.

XSB [18] is a Prolog engine available as an open source project LGPL-licensed at

https://sourceforge.net/projects/xsb/. It consists of a deductive database

and logic programming system and its main feature is tabled resolution. It sup-

ports Unix and Windows platforms. The project is alive and actively maintained.

It supports the Prolog ISO standard. It supports interoperability with JVM by

means of an external library, but it doesn’t support JavaScript interoperability.

YAP-Prolog [19] is a Prolog engine available as an open source project GPL-

licensed at https://github.com/vscosta/yap-6.3. It consists of a Prolog com-

piler and its main feature is to be modular. It supports Unix and Windows plat-

forms as it is a C project. The project is alive and actively maintained. It supports

the Prolog ISO standard. It supports interoperability with JVM by means of an

external library, but it doesn’t support JavaScript interoperability.

Among the 18 Prolog implementations taken in consideration, only 13 are still

actively developed. On these, we find out that:

• 10 advertise Prolog ISO standard support (JIProlog, Ciao! prolog, ECLiPSe,

Jekejeke Prolog, SICStus, SWI-Prolog, Tau prolog, tuProlog, XSB, YAP-

Prolog).

• 10 support some kind of interface to the JVM world (JIProlog, Ciao! pro-

log, ECLiPSe, Jekejeke Prolog, LPA-Prolog, SICStus, SWI-Prolog, tuProlog,

XSB, YAP-Prolog).

• 2 feature some kind of JavaScript interface (SWI-Prolog and Tau prolog)

SWI-Prolog turns out to be the best implementation at matching our “goodness”

criteria. But none of the reviewed implementations – not even SWI-Prolog –

feature a native support to be used both in JVM and JavaScript-enabled platforms.

https://sourceforge.net/projects/xsb/
https://github.com/vscosta/yap-6.3

CHAPTER 2. STATE OF THE ART 17

2.3 Kotlin and multi-platform support

Kotlin [20] is a statically typed programming language targeting JVM, An-

droid, JavaScript and Native platforms. It has constructs that make it suitable

either for object-oriented and functional programming styles; a mix of the two is

also possible.

In this section we provide a description of the language after a brief historical

introduction.

2.3.1 Brief history

In last fifteen years Java has always been one of the top-two most-used pro-

gramming languages, hand in hand with C Language [21]. After the advent of

Android development around 2010, Java 6 use increased. Unfortunately, while

Java updates (like Java 7 and Java 8 with lambda support) were released for

the standard platform, the Android SDK platform struggled aligning, leaving pro-

grammers to use outdated and “uncomfortable” features.

JetBrains’ Kotlin open-source project started in 2010 reaching the first official

stable 1.0 release in February 2016. In 2017 at Google IO the official Kotlin support

for Android development, was announced. This potentially brought all the new

Java features (till Java 13), to the light, in Android development, maintaining

compatibility with Java 6 bytecode.

Kotlin 1.1 introduced full stable support for compiling to JavaScript (Kotlin/JS),

and the experimental support for Coroutines. Kotlin 1.2 introduced the experi-

mental support for multi-platform projects. Kotlin 1.3 introduced full stable sup-

port for Coroutines, and reworked the multi-platform support to be more effective

(in terms of project structure) but still leaving it experimental, and therefore sub-

ject to changes.

At time of writing Kotlin latest release version is 1.3.61 of November 2019.

18 CHAPTER 2. STATE OF THE ART

2.3.2 Main features

Kotlin is inspired by some popular languages (Java, C#, JavaScript, Scala and

Groovy), trying to concentrate best things of them in one language. It is designed

with Java interoperability in mind, so Java-Kotlin interaction and vice-versa is

painless.

To present its main features a comparison to Java can be more effective than a

simple list of its features—most of which are standard among procedural languages.

Fixed Java Problems

Kotlin “fixes” some Java old well-known flaws. Here we briefly enumerate the

most relevant ones, explaining how Kotlin addresses them.

Null references are controlled by the type-system. In Kotlin if a type

should contain the null value, the programmer has to explicitly declare it. Then

the type-system enforces the programmer to manage properly the situation, when

the declared type is used. The result is that programmers are now aware of where

nullability could cause problems, avoiding unexpected problematic NullPoint-

erExceptions.

There are no raw types. In Kotlin if a class C has some type arguments, the

programmer can’t declare something of type C without explicitly declaring even

its type arguments. Java had to maintain this capability to ensure backwards

compatibility with Java code written before Generics introduction.

Kotlin arrays are invariant. This prevents the possibility of run-time failure,

unlike in Java. Arrays of primitive types are however compiled to Java primitive

types arrays, to avoid boxing/unboxing overhead and maximise performances.

Functions are first-class citizens. Kotlin has proper functions types, because

they are a first-class concept. In Java we had SAM-conversions (Single Abstract

Method), i.e. interfaces with a single declared method (also known as Functional

CHAPTER 2. STATE OF THE ART 19

Interfaces), that could be treated as lambda functions through syntactic sugar.

The SAM-conversion created – behind the scenes – an anonymous object imple-

menting that interface with the body of the lambda, hence maintaining backwards

compatibility.

Kotlin does not have checked exceptions. In Kotlin is not mandatory to

catch exceptions. This makes declared APIs more comfortable to be used, rather

than Java APIs with lots of throws clauses. Checked exception are theoretically a

very good feature for code stability. Pragmatically, they do more harm than good,

because library users will ignore all caught exceptions most of the time. Further-

more, checked exceptions introduce problems in software in terms of scalability

and possibility of evolution [22] [23].

Kotlin Specific Features

Kotlin “inherits” from the languages inspiring it, some very handy features,

which enhance the programming experience.

Extension functions. Kotlin provides the ability to extend a class with new

functionality without having to inherit from the class or use design patterns such

as Decorator. To declare an extension function, we need to prefix its name with

the receiver type, i.e. the type being extended. This makes very easy the creation

of Domain Specific Languages (DSL).

It is worth pointing out that extensions are resolved statically and so the re-

ceiver type determining which extension will be called is not the run-time type,

but the compile-time one.

Smart-casts. In many cases, explicit casts after a “type check” are not needed,

because Kotlin compiler tracks these checks, and smart casts variables for you to

the correct type.

String templates. String literals may contain template expressions, i.e. pieces

of code that are evaluated and whose results are concatenated into the String.

20 CHAPTER 2. STATE OF THE ART

With the usage of $ symbol, the programmer can embed expression in Strings

without manually concatenating the single pieces.

Delegation as first-class citizen. The Delegation pattern is a good alterna-

tive to implementation inheritance, and Kotlin supports it natively requiring zero

boilerplate code. A class Derived can implement an interface Base by delegating

all of its public members to another specific Base implementation.

Object Expression and Decalration. Kotlin provides a direct support to the

widely used Singleton pattern. With the object keyword the programmer can

declare a new type (ie. a class) which will have only one instance by design.

Declaration-site variance. Inherited from C#, declaration-site variance is added

to already present use-site variance of Java. Thus developers can declare generic

types variance once for all while designing a library. In this way library users can

benefit from that design, without needing to declare complex use-site types.

Operator overloading. Kotlin allows us to provide implementations for a pre-

defined set of operators on user declared types. These operators have fixed sym-

bolic representation (like + or *) and fixed precedence. To implement an operator,

we provide a member function or an extension function with a fixed/predefined

name, for the corresponding type. Functions that overload operators need to be

marked with the operator modifier. This feature is another building block for

DSL construction.

Data classes. Frequently there’s the need to create classes whose main purpose

is to hold data. In such a class, some standard functionalities and utility func-

tions are often mechanically derivable from held data, like equals(), hashCode(),

toString(), and others. Indeed, most of IDEs provide automatic generation func-

tionalities for some of these methods. In Kotlin, such data container class is called

a data class and it’s marked with the keyword data in its declaration. Classes

CHAPTER 2. STATE OF THE ART 21

marked with it, will receive an automatic implementation for the aforementioned

methods.

Collection Standard Library with separated mutable and immutable

classes. In Kotlin classes in the Collection package are separated by means of

their mutability. This allows for different treatment of variance with different

types (i.e. mutable collections parameters are correctly treated as invariant, while

immutable ones can allow a more flexible usage).

Coroutines. Kotlin approaches asynchronous and non-blocking programming

with Coroutines, supporting them at language level with minimal APIs in the stan-

dard library and delegating most of the functionality to the Coroutines specific

libraries. Unlike many other languages with similar capabilities (e.g. JavaScript),

async and await are not keywords in Kotlin and are not even part of its standard

library, but are library functionalities of the external coroutines module. More-

over, Kotlin’s concept of suspending function provides a safer and less error-prone

abstraction for asynchronous operations than futures and promises.

2.3.3 Multi-platform programming

One of the main enticing feature of Kotlin, among the others, is that of multi-

platform support. Working on all platforms is an explicit goal for Kotlin, but this

is a premise to a much more important goal: sharing code between platforms.

Currently supported platforms include: JVM, Android, JavaScript, iOS, Linux,

Windows, Mac and even embedded systems like STM323. This brings the in-

valuable benefit of reuse for code and expertise, saving the effort for tasks more

challenging than implementing everything twice or multiple times.

One of the key capabilities of Kotlin multi-platform code is a way for “common

code” to depend on platform-specific declarations. In multi-platform projects we

have different code source sets: one for each targeted platform, and one common

source set that is shared for all platforms. In the common source set, programmers

3https://en.wikipedia.org/wiki/STM32

https://en.wikipedia.org/wiki/STM32

22 CHAPTER 2. STATE OF THE ART

Figure 2.1: Structure of a Kotlin multi-platform project. Source: https:

//kotlinlang.org/docs/reference/building-mpp-with-gradle.html

should implement the overall software system logic, while platform specific source

sets only contain those implementations accessing platform specific features. This

architecture will work thanks to the expected/actual mechanism.

With this mechanism the “common code” declares to expect some functionality

to be implemented somewhere else, and in the meanwhile it can use it to logically

complete the system common implementation. The targeted platforms code can

later implement the actual functionality, accessing platform specific characteristics,

that were inaccessible in “common code”. This resembles the well-known Template

Method pattern but applied at the architectural level, between source sets.

This mechanism opens the possibility to widen the targeted platforms range,

in different moments of a project life, needing only to implement platform specific

code for the newly supported platform and automatically inheriting all the already

implemented (and hopefully tested) system logic. Even though this feature is still

in an experimental status, it seems very promising.

https://kotlinlang.org/docs/reference/building-mpp-with-gradle.html
https://kotlinlang.org/docs/reference/building-mpp-with-gradle.html

Chapter 3

2p-kt Project

2p-kt is the natural evolution and modernisation of tuProlog Prolog implemen-

tation. In this chapter we discuss how the idea of 2p-kt project came to life.

In section 3.1 we provide some thoughts about or predecessor tuProlog, then in

section 3.2 we provide our vision for the use of 2p-kt and finally in section 3.3 we

talk about its requirements that drove the design.

3.1 tuProlog

tuProlog is a Java object-oriented Prolog engine which has been designed to

build intelligent components for dynamic Internet infrastructures [24]. The original

purpose of that work was to develop a malleable architecture for tuProlog inference

core, applying sound engineering practices such as object-oriented design, reuse

of established community knowledge in the form of patterns, loose coupling of

components, modularity, and a clear and clean separation of concerns.

tuProlog is still maintained to date, but unstructured interventions performed

by many developers and an insufficient level of testing have led to the accumu-

lation of a lot of technical debt, making changes and enhancements application

much more difficult than necessary. Furthermore, some design choices were af-

fected by the limits of the JVM technology of yore. In fact, the development of

tuProlog started in the early 2000s, when JDK 5 had not yet been introduced.

23

24 CHAPTER 3. 2P-KT PROJECT

This means that the core of tuProlog has been developed without relying on the

many constructs which make Java such a modern and flexible OOP language—

such as generics, for-each loops, enums, and many others1. Despite such issues

never affected the many conceptual and fundamentals merits of tuProlog, they

heavily affect the maintanability and evolvability of the tuProlog source code.

tuProlog merits. We list here the merits of tuProlog, that are, those features

which have proven themselves to be good design decisions in hindsight, and will

therefore be retained:

• Inferential core modelled as a Finite State Machine. The inferential core of

tuProlog is built in the form of a Finite State Machine (FSM). This virtually

enables developers to extend the inferential core with possibly new states, in

order to affect its behaviour.

• Hard-code as few as possible built-ins inside inference core. Indeeds, if no

libraries has been loaded, the tuProlog core natively supports only those

libraries which:

– directly in influence the resolution process, such as ’!’/0;

– are too basic to be defined elsewhere, such as fail/0;

– need to be defined near the core for efficiency reasons, such as ’,’/2.

• Possibility to call Java from Prolog. tuProlog enables users to call any Java

class, library, object directly from the Prolog code with no need of pre-

declarations, awkward syntax, etc., with full support of parameter passing

from the two worlds, yet leaving the two languages and computational mod-

els totally separate so as to preserve a priori their own semantics — thus

bringing the power of the object-oriented platform (e.g. Java Swing, JDBC,

etc) to the Prolog world for free.

• Capability to use Prolog programmatically in Java. tuProlog users can ex-

ploit Prolog engines directly from the Java code as one would do with any

1https://en.wikipedia.org/wiki/Java_version_history#Java_5_updates

https://en.wikipedia.org/wiki/Java_version_history#Java_5_updates

CHAPTER 3. 2P-KT PROJECT 25

other Java library with its functionality, again with full support of parame-

ter passing from the two worlds in a non-intrusive, simple way that does not

alter any semantics. This virtually brings the power of logic programming

into any Java application.

• Notion of Library. A library in tuProlog is a container for reusable code,

written according to the best fit paradigm, chosen between LP and OOP.

In libraries it is possible for example to implement a Prolog clause “body”

using Java code, and this works smoothly with the rest of the architecture.

They are the practical point of integration between the two paradigms.

• The idea of a Term hierarchy. The idea to have a hierarchy of types reflecting

LP concepts makes possible their programmatic usage from Java.

• The idea of being lightweight. tuProlog was designed to be minimal and

highly configurable (for example, through libraries). These characteristic go

hand in hand with each other, since the more the core is minimal and more it

must be configurable, to add needed functionalities. Therefore tuProlog core

lightweightness makes it suitable to execute on resource constrained devices

as well as common devices.

tuProlog defects. Here we point out defects of tuProlog, i.e. those features that

in retrospect were bad design choices (although some of them were forced by the

technology of the time) and will be addressed by 2p-kt.

• Model classes at wrong detail level. In tuProlog we have a base class Term

extended by three classes Var, Number, Struct. Then the hierarchy explores

various types of numbers (with sub-classes Float, Double, Int, Long) but

does not explore the variability of classes that cuold emerge under Struct. In

fact the Struct class has a lot of methods to check if represented structured

term is of some specific sub-type, i.e. isList, isAtom, etc.

The lack of a first-class support to some basic Prolog structure types is felt

when programmatic type enforcement is needed (e.g. in parameter types).

26 CHAPTER 3. 2P-KT PROJECT

• Model classes are mutable. Currently model classes internals can be modified

by means of method calls side effects. For example, Var class contains the

binding to the bound term instance, if any, and this reference can be modified

at any time.

This makes code more prone to “external attacks” (maybe unwanted) coming

from other code using references to mutable internals. It is now known that

mutability should be avoided if not necessary to achieve requirements on

performance of software [25].

Furthermore, because the history of changes is important to support the

backtracking mechanism, this pervasive mutability led to the creation of aux-

iliary data structures maintaining the history of changes made to mutable

components.

• Primitive, directives and function invocation uses reflection. In tuProlog to

define primitives, directives and functions a programmer should implement

them as methods, in a library class, with a specific name depending on the

desired predicate name. Then they will be searched at invocation time by

the Java reflection mechanism.

Although this approach seems to have no problems, it increases the code

rigidity and forces the programmer to use non-coded conventions, possibly

leading to errors. Furthermore, is now known that the reflection mecha-

nism introduces some overhead, that could have been avoided with different

engineering.

3.2 Use scenarios

2p-kt has been thought to explicitly address two main use scenarios: (i) its use

by software programmers as a library to exploit the logic programming paradigm

and (ii) its use as a basic component to be further extended by adding new Prolog

libraries, primitives, and so on.

CHAPTER 3. 2P-KT PROJECT 27

Logic programming library. The use as logic programming library is the pri-

mary usage. It is intended for “final users”, i.e. programmers that would like to

inject in their software some logic programming, in a seamless way. A basic usage

would be the exploitation of symbolic manipulation and the unification mechanism,

but the main feature would be the ability to write Prolog programs and solve goals

against them.

Prolog extensions base. The secondary usage is as a code base to implement

Prolog extensions, deviating from the Prolog Standard functionalities. Program-

mers could create their extensions, writing new Prolog libraries, containing custom

theories and primitives. Then these extensions could be loaded during Prolog en-

gine creation, or later during computations, and hence be internally exploited.

3.3 Requirements

In this section we list requirements that will dictate the shape of the project.

Some of them are specifically meant to address some previously identified defects.

Architectural requirements

Multi-platform support. 2p-kt should be able to run on, at least, two

different platforms (e.g. JVM and JavaScript), and support extendability to new

ones.

Strong modularity. 2p-kt should be split into modules in a way that al-

lows to import separately parts of interest, hence avoiding to create a monolith

library. For instance, it should be possible to import the symbolic manipulation

functionality separately from Prolog solver one.

Functional requirements

Prolog Standard support. 2p-kt should support the implementation, and

then the execution, of standard built-ins [6], following their behaviour description.

28 CHAPTER 3. 2P-KT PROJECT

Immutability by default. Core classes should be immutable, solving the

corresponding defect in tuProlog (section 3.1). The overall implementation should

follow the principle that, if mutability is not strictly necessary, it should be avoided.

Detailed Term hierarchy. A detailed hierarchy should be created to better

represent terms and their variations. The term hierarchy should include all “types”

introduced in Prolog Standard reference [6].

Term instances should be of most specific class. Correct class instances

creation should be enforced. For instance, the creation of a Term which is, in

particular, an Atom, has always to return an instance of the Atom class.

Solver computation max duration. It should be possible to specify a

max duration for Solver computations, after which the goal solution search will be

exceptionally interrupted.

Non-functional requirements

Maximise programmatic usability of concepts. 2p-kt should provide

the ability to use Prolog concepts with minimal effort and no additional “boiler-

plate code”. In past this was addressed with the usage of a Prolog parser which

was the intermediary from the Prolog language and its programmatic usage in

other languages. This should not be the way to proceed. We want, for example,

a Domain Specific Language (DSL) enabling programmers to exploit the Prolog

language concepts without the need of cumbersome intermediaries (like a parser).

Project code testing. 2p-kt project code should be tested. More precisely,

every public feature should be directly or indirectly tested.

Chapter 4

2p-kt Design

In this chapter we explore the architectural and detailed design of the project.

In section 4.1 we provide an overview of the project architecture, then each further

section provides a deep look in each project module design.

4.1 Architectural design

The project is split in several modules, each one providing a single self-contained

feature, enforcing the Single Responsibility Principle (SRP) yet at architectural

level. We have the following modules (Figure 4.1):

Core: It is the basic building block for others modules. It contains model classes

used throughout the overall project. It provides the basics for symbolic

manipulation.

Unify: It depends on core module. It contains model classes to support unifica-

tion. It provides the basic unification mechanism.

Theory: It depends on unify module. It models the concept of Prolog theory

(program). It provides theory manipulation constructs.

Solve: It depends on theory module. It models basic concepts useful for Prolog

solver implementations. It provides all model classes needed implementing

a Prolog solver.

29

30 CHAPTER 4. 2P-KT DESIGN

Figure 4.1: 2p-kt modules architectural dependencies.

CHAPTER 4. 2P-KT DESIGN 31

Solve-Classic: It depends on solve module. It contains an enhanced implemen-

tation of tuProlog inferential core. It provides the tuProlog enhanced re-

implementation.

Solve-Streams: It depends on solve module. It contains an experimental infer-

ential core implementation, based on tuProlog, with an implicit backtracking

mechanism. It provides the newly proposed solver implementation.

DSL-Core: It depends on core module. It models a Domain Specific Language

(DSL) inspired by Prolog itself. It provides simple and uncluttered DSL to

enable programmers to create core data structures in a Prolog-like fashion.

DSL-Unify: It depends on dsl-core and unify modules. It adds unification con-

structs to dsl-core. It provides an enhanced DSL enabling programmers to

exploit Prolog unification with no “boilerplate code”.

DSL-Theory: It depends on dsl-unify and theory modules. It adds theory ma-

nipulation facilities to dsl-unify. It provides an enhanced DSL enabling pro-

grammers to write Prolog theories in a clear and compact way.

4.2 Core module

Core module contains model classes for Prolog domain (Figure 4.2). The mod-

eling follows quiet closely the Term definition (section 2.1.2).

4.2.1 Main “core” types

At top of the hierarchy we have the Term type which has as sub-types Constant,

Struct (alias for Compound) and Var (alias for Variable). Constant has as sub-

types Numeric and Atom. Numeric is specialised in Integer and Real. Because

atoms can be viewed as functors with zero arity, Atom is also a sub-type of Struct.

Other core classes are specialisations of Struct (or its sub-types) represent-

ing remarkable structured terms, with particular meanings. The proposed design

addresses the defect of tuProlog of not being specific enough.

32 CHAPTER 4. 2P-KT DESIGN

Indicator. It is the term describing the structure of compound terms.

In particular it is a ground term in the form name/arity, where name ∈
L(〈Atom〉) denoting the name of a predicate or a functor and arity is a non-

negative integer denoting the number of its arguments. For example the structure

a(b, c(d, e), f) has ’a’/3, as its indicator.

List. It denotes terms that in Prolog model “collections”.

An empty list in Prolog is denoted by the atom []. It is captured by EmptyList,

a List sub-type.

A not empty list in Prolog is denoted by the functor ’.’/2, captured by Cons

(a List sub-type), where the first argument is a term and the second a list. A list

of elements is the term .(a1, .(a2, .(..., .(aN, []) ...))), but it may be

written with a simpler notation: [a1, a2, ..., aN].

One may also use the concatenation syntax. By definition, writing [a1, ...,

aN | [b1, ..., bM]] is equivalent to writing [a1, ..., aN, b1, ..., bM].

But if last sub-term is not an empty list, the concatenation syntax becomes manda-

tory, and the whole term is called to be a list-term. For example, term .(a1,

.(a2, .(..., .(aN, t) ...))), where t is not an empty list, is represented as

[a1, ..., aN | t]. Lists and list-terms are disjoint sets of terms. List-terms

have at least one element. List-terms whose last sub-term is a variable, like [a1,

..., aN | X], are called partial lists.

Tuple. It is the structure with indicator ’,’/2. It has a left and a right element,

and can be nested to contain more elements, as for List dot functor.

Set. It is a structured term somehow similar to List.

An empty set is denoted by the atom {}. It is captured in EmptySet, a Set

sub-type.

A not empty set is denoted by the functor ’{}’/1. The term ’{}’(’,’(a,

’,’(b, c))) can be written, in a simpler notation, as {a, b, c}. If the single

argument is a Tuple, then the Set contains each element part of Tuple recursive

CHAPTER 4. 2P-KT DESIGN 33

structure, otherwise the Set contains the single Term element. Examples: {1}

contains 1, {a, b} contains a and b, but {[1, 2, c]} contains [1, 2, c].

Empty. It is a sub-type of Atom, and the common super-type for empty data

structures (EmptyList and EmptySet).

Truth. It is a sub-type of Atom which models Prolog truth special atoms. In

particular it has two possible instances: the atom true and the atom fail.

Clause. It denotes terms used in Prolog to write executable programs. Their

principal functor is ’:-’/2 and they can be rules, represented by Rule type, or

directives, represented by Directive type.

A rule in Prolog has a particular (abstract) syntax [6]:

〈Rule〉 := 〈Head〉 :- 〈Body〉 | 〈Predication〉
〈Head〉 := 〈Predication〉

〈Predication〉 := 〈Atom〉 | 〈Compound〉

It is defined to be a term whose principal functor is ’:-’/2, with a first argument,

called the head and a second, called the body, or a term which is a predication. A

predication is defined as a term which is an atom or a compound term.

A body follows the syntax:

〈Body〉 := (〈Body〉, 〈Body〉)
| (〈Body〉; 〈Body〉)
| (〈Body〉 -> 〈Body〉)
| 〈V ariable〉
| 〈Predication〉

It is defined as a term, whose principal functor is ’,’/2 (a conjunction of bodies),

’;’/2 (a disjunction of bodies), ’->’/2 (an implication of bodies), a variable or

a predication whose principal functor is different from, ’,’/2, ’;’/2 or ’->’/2.

We will say that a body (of a clause) contains a given term, if this term occurs in

the position of a predication using the rules defining a body.

34 CHAPTER 4. 2P-KT DESIGN

Figure 4.2: The hierarchy of classes at core of 2p-kt, modelling Prolog domain.

A fact in Prolog is a rule term whose body is the atom true. It is captured

by Fact, a Rule sub-type. Because the body is fixed, it can be omitted in writing

facts. Thus facts are (syntactically) predications, and vice-versa.

A directive in Prolog follows the (abstract) syntax:

〈Directive〉 := :- 〈Body〉

It is defined as a term whose principal functor is ’:-’/2, with first argument

always null and second argument, the body, filled following previously mentioned

body syntax rules. Directives can be thought to all effects as rule terms, with no

head specified.

A clause term is said to be well-formed if and only if its head does not contain

a number or a variable and its body is well-formed. A clause body is said to be

well-formed if and only if it does not contain a number, following the definition of

“contains” given before for clause bodies.

CHAPTER 4. 2P-KT DESIGN 35

4.2.2 Other “core” features

Alongside the expected core model types, the core module provides other useful

functionalities, general enough to gain a prominent place in such module.

Substitution. The homonym Prolog concept is captured in a Substitution

type.

Unlike in tuProlog, where Var used to contain the binding to the bound term,

in 2p-kt we applied the SRP. Vars in fact have the sole task of representing Prolog

variables. Substitutions in turn have the sole task to represent variable bindings.

Scope. Scope concept is strictly related to variables. Variable scope is captured

in Scope type. The breadth of a variable scope is limited to single terms. Every

time a new term is considered in Prolog, its variables are different from other terms

ones.

For example if we consider the term a(A) :- b(A), there are two A variables

and they are the same (instance). Hence with same bindings, if any. Considering

instead terms a(A) and b(A) separately, there are two A variables and they are

different (instances). Hence with different bindings.

TermVisitor. The well-known Visitor pattern is provided over terms through

TermVisitor type, to enable actions dispatch on terms components. Specific

actions can be carried out for each specific Term sub-type, making very easy to

think about structural visit of terms.

Operator, Specifier and OperatorSet.

Other basic concept in Prolog is the operator. An operator is a particular

structured term, with arity 1 or 2, that can be written in a prefix, infix or postfix

notation, without parenthesis. It is described with a triple formed by its name (an

atom), specifier (one of the atoms: xf, yf, xfx, xfy, yfx, fx, fy) and priority (an

integer). An Operator type will represent it.

36 CHAPTER 4. 2P-KT DESIGN

Specifier Class Associativity

fx prefix non-associative

fy prefix right-associative

xfx infix non-associative

xfy infix right-associative

yfx infix left-associative

xf postfix non-associative

yf postfix left-associative

Table 4.1: Specifiers for operators.

The priority of a term is normally 0, when it is written in functional, list or

curly notation, or if it is a bracketed expression or an atomic term. But if the

term is written as an unbracketed expression in operator notation, its priority is

the priority of its principal functor.

The specifier of an operator (Table 4.1) is a mnemonic that defines the arity, the

class (prefix, infix or postfix) and the associativity (left-, right- or non-associative)

of the operator. The arity is equal to the number of x and y in the specifier.

The specifier f symbol is a placeholder indicating a specifier name. The specifier

y and x defines how implicit associativity works with operand(s). Indeed, the

former means “associative here”, the latter means “non-associative here”. The

implicit associativity is particularly useful for writing subexpressions with the same

operator without parenthesis. For example the expression (1 + 2 + 3 + 4) is the

term ’+’(’+’(’+’(1, 2), 3), 4))) if the specifier of ’+’ is yfx. A Specifier

type will represent all available specifiers.

The OperatorSet type captures the concept of currently known set of opera-

tors.

4.3 Unify module

The unify module aims at describing the unification process and its basic com-

ponents (such as equations of terms introduced in Section 2.1.2).

CHAPTER 4. 2P-KT DESIGN 37

4.3.1 Abstract unification algorithm

The algorithm is described below by four equation transformation rules and by

two failure conditions. At every step the computation state is characterised by a

set of equations. The initial set is a set of one or more equations. The step consists

of the application of a transformation rule to one of the equations or in checking

that an equation satisfies a failure condition. The computation terminates if an

equation, in the current set of equations, satisfies a failure condition or if none of

the rules is applicable to any equation [6].

• Transformation rules:

Splitting: Replace an equation of the form f(s1, . . . , sn) = f(t1, . . . , tn),

where {s1, . . . , sn, t1, . . . , tn} ⊆ L(〈Term〉) and n ≥ 0, by the

equations s1 = t1, . . . , sn = tn.

Identity Removal: Remove an equation of the form X = X, where X ∈
L(〈V ariable〉).

Swapping: Replace an equation of the form t = X, where X ∈ L(〈V ariable〉)
and t ∈ L(〈Term〉) \ L(〈V ariable〉), by the equation X = t.

Variable elimination: If there is an equation of the form X = u, where

X ∈ L(〈V ariable〉) and u ∈ L(〈Term〉), such that X does not appear

in u (negative occurs-check) but X appears in some other equation,

then replace any other equation s = t, where s ∈ L(〈Term〉), by the

equation s{X/u} = t{X/u}.

• The failure tests halt and report failure if the set includes an equation in one

of the following forms:

Disagreement: f(s1, . . . , sn) = g(t1, . . . , tm), where ’f’/n 6= ’g’/m, with

n,m ≥ 0.

Positive occurs-check: X = u, where X ∈ L(〈V ariable〉), u ∈ L(〈Term〉) \
L(〈V ariable〉), and u includes X.

38 CHAPTER 4. 2P-KT DESIGN

This algorithm is called the Herbrand algorithm [6]. Given two terms it always

terminates with success (the remaining set of equations defines an idempotent

MGU of the two terms) or with failure (there is no unifier). The two actions

corresponding to a negative or positive occurs-check correspond to the so called

occurs-check tests.

For example starting with one equation f(X, Y) = f(g(Y), h(T)):

1. Splitting produces two equations {X = g(Y), Y = h(T)}; the first equation

does not correspond to any transformation, but

2. a variable elimination may be performed with the second, leading to the

equations: {X = g(h(T)), Y = h(T)},

3. which corresponds to the substitution: {X/g(h(T)), Y/h(T)}, which is an

idempotent MGU.

Notice that the equation X = f(X) corresponds to the positive occurs-check case

and leads immediately to a failure.

The occurs-check problem. The abstract unification algorithm definition im-

poses implementing the occurs-check tests inside it. It is easy to observe that

these tests, which are performed very frequently, influence the performances of the

algorithm [6].

Now if one omits the occurs-check tests, we are faced with different problems:

1. the behaviour of the Herbrand unification algorithm may be unsound : it may

succeed when it should fail. Example: {X = f(X), Y = a} gives the (wrong)

“solution” {X/f(X), Y/a}.

2. the Herbrand unification algorithm may not terminate. Example: starting

with the set of equations: {X = f(Y, X), Y = f(X, Y)} the fourth transfor-

mation rule may be applied indefinitely.

3. the result of the Herbrand unification algorithm is no longer independent of

the way the transformation rules are applied. Example: starting with the set

CHAPTER 4. 2P-KT DESIGN 39

of equations: {X = f(Y), Y = f(X), Z = a, Z = b} the fourth transformation

rule may be applied indefinitely on the first two equations instead of firstly

considering the last two equations which immediately lead to a disagreement.

4.3.2 Main “unify” types

Equation The Equation type captures the concept of Prolog equation of terms,

and it is specialised in four sub-types aimed at simplifying the unification

algorithm writing (according to transformation rules). An equation, as a

matter of fact, can be:

• Identity, an equation of identical terms.

• an Assignment, stating that V = t, where V ∈ L(〈V ariable〉) and

t ∈ L(〈Term〉).

• Comparison, hence an equation comparing two terms, possibly different

(not already split by the transformation rule).

• Contradiction, that is an equation stating a contradiction, equating

two different terms.

Unificator The Unificator type represents the concept of “unificator engine”.

The unification process is executed within a “substitution context” set at

start time, usually empty, represented by predefined substitutions.

Its main purpose is to compute an MGU between two terms, optionally

disabling the occurs-check. Other derived features are (i) the ability to

check if two terms match (i.e. if there is an MGU), (ii) the ability to get

the unified term, hence with the computed MGU already applied.

4.4 Theory module

Theory module models the concept of “Prolog program”. A Prolog program

(also called just theory) is basically a collection of Clauses.

40 CHAPTER 4. 2P-KT DESIGN

A theory, during execution, can be read and written (enabling meta-programming)

and because of these features it can be referred as a Clause database. When reading

clauses from a clause database, they are retrieved in insertion order. Furthermore,

in a database all the clauses are well-formed (Section 4.2.1). ClauseDatabase type

captures this clause database concept.

Prolog ISO standard also tells that clauses in a clause database, which will

be used during execution, should be transformed. This means that all variables

X ∈ L(〈V ariable〉) in the position of a predication in clauses body, should be

replaced by a term call(X). For example, the clause product(A) :- A, A is

stored in the database after preparation for execution as the term: product(A)

:- call(A), call(A).

In our design ClauseDatabase is not in charge of doing that “preparation for

execution”, because following a lazy approach we will do that transformation only

for really needed clauses, “on the fly”, during resolution. This reduces responsi-

bilities of ClauseDatabase type to its core, and potentially avoids to transform

a very big database of clauses just for using few of them. On the other hand, at

design level, we do not predispose a way to prevent multiple transformations of

the same clause. In a Prolog theory where a clause, needing transformation, is

used a lot of times, a trivial implementation of the resolution process could lead

to bad performances.

4.5 Solve module

The solve module contains basic concepts at the root of Prolog standard res-

olution process, like ExecutionContext, Libraries, Primitives. All these concepts

are solver-implementation independent.

It is designed to be used at least in two different ways: (i) as a solid common

base for Prolog libraries programmers that would like to enhance the language with

new functionalities, working with solver-implementation independent abstractions

or (ii) as a convenient Prolog solver interface, to programmatically solve goals.

Before we introduce the technical detailed design, we provide a description of

CHAPTER 4. 2P-KT DESIGN 41

the Prolog execution model.

4.5.1 Prolog execution model and the search-tree

The execution model is first presented for a subset of Standard Prolog called

definite Prolog [6]. Then the model is extended to handle all the procedures.

In definite Prolog there are only user-defined procedures in the form of clauses

in which the body is a sequence (denoted by conjunctions) of predications. So all

the clauses have the form:

h(t0) :- p1(t1), p2(t2), . . . , pn(tn).

or

h(t0) :- true.

where the ti are (possibly empty) sequences of terms. Goals are definite bodies

(i.e. a nonempty sequence of predications).

The execution model is defined on the principle of a general resolution algo-

rithm whose input data are a single goal and a clause database. This algorithm

corresponds to a proof procedure (a particular case of unit resolution), aimed at

finding instances of the initial goal which are logical consequences of the definite

program.

The general resolution algorithm. The general resolution of a goal G with a

database P is defined by the following algorithm:

1. Start with a current goal which is the initial definite goal G and a current

substitution which is the empty substitution.

2. If G is true then stop (success), otherwise

3. Choose a predication A in G (predication-choice)

4. If A is true, delete it, and proceed to step (2), otherwise

5. If no freshly renamed clause in P has a head which unifies with A then stop

(failure), otherwise

42 CHAPTER 4. 2P-KT DESIGN

6. Choose in P a freshly renamed clause H :- B whose head unifies with A

by substitution σ which is the MGU of H and A (clause-choice), and

7. Replace in G the predication A by the body B, flatten and apply the sub-

stitution σ to obtain the new current goal, let the new current substitution

be the current substitution composed with σ, and proceed to step (2).

A freshly renamed clause means a clause which is renamed w.r.t. all the vari-

ables which have occurred in all the previous resolution steps.

The steps (3), (6), and (7) are called resolution step. The substitution σ is

called the local substitution.

In the case of success (step 2), the current substitution restricted to the vari-

ables of the initial goal is the answer substitution.

This algorithm defines in an indeterminate manner successful, failed and pos-

sibly infinite computations. It is “indeterminate” because the order in which the

computations may be considered is not fixed. It depends on the predication-choice

(step 3) and the clause-choice (step 6).

Prolog Standard, to attack this non-determinism, fixes those choices: predication-

choice always chooses the first predication in the sequence G, while clause-choice

always chooses the “unifiable” clauses according to their sequential order. With

these fixed choices a new algorithm may be designed. It will use the notion of

search-tree.

The Prolog search-tree. The different computations defined by the general

resolution algorithm may be represented by a tree called the Prolog search-tree

that we define as follows:

• Each node is labelled by the local substitution and the current goal.

• The labels of the root are the empty substitution an the initial goal to be

executed.

• There are two kinds of leaf-nodes:

– Nodes whose goal label is true, called success nodes.

CHAPTER 4. 2P-KT DESIGN 43

– Nodes with a goal label different from true such that there is no re-

named clause whose head is unifiable with the chosen predication, called

failure nodes.

• A non-leaf node has as many children as there are clauses whose head (with

a suitable renaming) is unifiable with the chosen predication (the first pred-

ication in the current goal). If B1, . . . , Bn is the goal associated with the

node, B1 being the chosen predication, and A :- C1, . . . , Cm is a freshly

renamed clause with B1 and A unifiable, then the corresponding child is la-

belled with the local substitution which is the MGU σ of B1 and A, and the

current goal which is the sequence of predications obtained after flattening,

σ(C1, . . . , Cm, B2, . . . , Bn).

The children are in the same order as the clauses in the database. A left-to-

right order of the children will be assumed.

At every node a current substitution may be computed as the composition of

all the local substitutions along the path starting from the root up to that node

(inclusive). To every success node there corresponds an answer substitution which

is the current substitution of that leaf, restricted to the variables of the initial goal.

Notice that the notion of search-tree depends only on the predication-choice.

The clause-choice specifies the way it is visited. Given a search-tree, the execution

of a goal in the context of a database, with the Prolog Standard fixed choices, may

be represented by a depth-first left-to-right visit of the search-tree. This visit

defines the visit order of the nodes of the search-tree, hence the order of execution

of goals and subgoals. If the search-tree has infinite branches, there is no way to

visit beyond the first one, which will be explored indefinitely. This explains why

the execution does not terminate when the traversal visits an infinite branch. It

also explains why not all solutions may be computed if there is an infinite branch

with some success branches afterwards.

44 CHAPTER 4. 2P-KT DESIGN

Consider the following database and the goal p(U, V).

p(X, Y) :- q(X), r(X, Y). q(a) :- true. r(b, b1) :- true.

p(X, Y) :- s(X). q(b) :- true. r(c, c1) :- true.

s(d) :- true. q(c) :- true.

Figure 4.3 shows the corresponding Prolog search-tree with the chosen predi-

cation underlined. Fresh renaming is denoted by new variables and local substitu-

tions are represented before the node, beside the incoming arc.

The current substitution computed at the second success leaf is {U/c, V/c1,
X/c, Y/c1}. The corresponding answer substitution is {U/c, V/c1}. The tree

walk produces the following answer substitutions, in this order: {U/b, V/b1},
{U/c, V/c1}, {U/d}.

Search-tree visit and construction algorithm. The following algorithm syn-

thetises the general resolution algorithm and the concept of search-tree, describing

the construction and visit of a search-tree simultaneously. The algorithm repre-

sents the execution of a goal with a given database [6].

It is defined in two parts: the “down walk” similar to the general resolution

algorithm and the “backtracking” which corresponds to the choice of a not yet

visited computation path. So, instead of simply “stopping”, the algorithm will

continue towards a backtracking step.

Let P be the current database.

1. Start from the root as current node, labelled by the initial goal G, which is a

sequence of predications, as current goal, and by the empty substitution as

local substitution,

2. If the goal G of the current node is true then backtrack (success), otherwise

3. Let A be the first predication in G,

4. If A is true, delete it, and proceed to step (2.) with the new current goal

being the tail of the sequence G (if the tail is empty then replace it by true),

otherwise

CHAPTER 4. 2P-KT DESIGN 45

Figure 4.3: A Prolog search-tree example. Image taken from Prolog: The Standard

- Reference Manual [6]

46 CHAPTER 4. 2P-KT DESIGN

5. If no renamed clause in P has a head which unifies with A then backtrack

(failure), otherwise

6. Add to the current node as many children as there are freshly renamed

clauses H :- B in P whose head is unifiable with A with the same order as

the clauses in P .

The child nodes are labelled with a local substitution σ, which is the MGU

of A and H (H :- B being the corresponding freshly renamed clause), and

the current goal G′ which is the instance by σ of G in which A has been

previously replaced by B and which has been flattened.

7. The current node becomes the first child and proceed to step (2).

The new current substitution is obtained by composing all the local substitu-

tions along the path from the root up to the current node (inclusive).

If a node has more than one child, it is non-deterministic. Such a node for

which A is re-executable is called a choice point. If a node has only one child after

its first visit it is a deterministic node. A node is said to be completely visited after

all the branches issuing from it have been completely developed.

This algorithm describes how to walk down until success or failure is reached.

The continuation (backtrack), which consists of visiting again a node which has

not yet been completely visited, is called backtracking.

After constructing a branch terminated by a success or failed leaf-node, the

possible nodes which may be visited are nodes with still non-visited children “on

the right” of that branch (considering a left-to-right order of the children, this is

illustrated in Figure 4.4). These nodes may be reached by seeking the first ancestor

node with a not yet visited child.

The new current node is the first child not yet visited and the execution con-

tinues at step (2). If there are no more non-visited children, the execution of the

initial goal is achieved.

The execution model for Prolog Standard. Up to now it has been assumed

that the procedures were user-defined procedures. The model extends straightfor-

CHAPTER 4. 2P-KT DESIGN 47

Figure 4.4: A Prolog search-tree and its non-visited children. Image taken from

Prolog: The Standard - Reference Manual [6]

48 CHAPTER 4. 2P-KT DESIGN

wardly to built-in predicates: the search-tree is visited and constructed according

to the Prolog search-tree visit and construction algorithm as long as no built-in

predicate is chosen.

This algorithm is thus adapted to describe the execution of a goal in the context

of a given environment (clause database and Prolog flags) [6].

Steps (5) and (6) of the search-tree visit and construction algorithm are mod-

ified as follows to take into account built-in predicates and their side-effects.

Three cases have to be distinguished (notice that A is different from true, since

this case is already considered in steps (2) and (4)):

• If A corresponds to a user-defined procedure which exists in the database,

then the execution continues as indicated in steps (5) and (6) of the Prolog

search-tree visit and construction algorithm.

• If A does not correspond to any existing procedure, then the action depends

on the value of the Prolog flag unknown; if its value is:

– error: an error is generated whose effect corresponds to the execution,

at the same node, of the built-in predicate throw(existence error(

procedure, PI)), where PI ∈ L(〈Compound〉) is the predicate indi-

cator of the chosen predication A; the effect of this predicate is defined

in the description of the standard built-in predicate throw/1 [6].

– warning: an implementation dependent warning is generated, and the

current goal fails (failure).

– fail: the current goal fails (failure).

In both last cases the execution continues doing backtracking.

• If A corresponds to a built-in predicate defined in the Standard Prolog or

a custom system procedure (in an extension of Standard Prolog), then it is

executed and it can:

– succeed with no other alternative, with local substitution σ. Thus a

new unique child is added whose labels are the local substitution and

CHAPTER 4. 2P-KT DESIGN 49

the instance by σ of the tail of the current goal. If the tail of the current

goal is empty, the goal label is just true. The execution continues at

step (2) with the new child as the current node.

– succeed with more than one alternative, with possibly different local

substitutions. Thus several children are created according to the or-

der specified in the description of the built-in predicate. Each child is

labelled with the corresponding local substitution as specified in the

description of the built-in predicate and a goal which is the instance

by the local substitution of the tail of the current goal. If the tail of

the current goal is empty, the goal label is just true. The execution

continues at step (2) with the first child as the current node.

– fail, thus the execution continues as indicated in backtracking.

– generate an error. The execution is interrupted and an error is gen-

erated whose effect corresponds to the execution at the same node

of built-in predicate throw/1 whose argument is error(error term,

impl def) where error term in described with the error cases in the

built-in predicate description and impl def is an implementation de-

fined term. If several errors are generated by a built-in predicate, the

error that is reported is implementation dependent.

The side-effect of cut. Here we give some details of the built-in predicate “cut”

(’!’/0) aimed at performing some control by pruning the search-tree.

“Cut” always succeeds, but it has a drastic side-effect on the search-tree: it

deletes some search-tree branches in order to force a predication to execute quickly

without constructing and visiting all sub-search-trees.

For example, if the first clause of the clause database previously defined, is

replaced by p(X, Y) :- q(X), !, r(X, Y)., Figure 4.5 shows that the search-

tree corresponding to the goal p(U, V), depicted in the Figure 4.3, now has only

one failed branch.

The effect of the “cut” is thus to erase all the hanging nodes between the

current node and issued from the parent node of the goal which was containing it.

50 CHAPTER 4. 2P-KT DESIGN

Doing so, all the nodes which have been made deterministic will be skipped when

backtracking takes place.

The side-effect of throw-catch interaction. Finally we give some details

of built-in predicates throw/1 and catch/3, aimed respectively at throwing and

managing exceptions and whose behaviour changes the search-tree.

Throw. The execution of throw(E) with E ∈ L(〈Term〉) \ L(〈V ariable〉)
seeks in the search-tree for the closest ancestor node whose chosen predication has

the form catch(Goal, Catcher, RecoverGoal), which is still executing its Goal

argument (and not RecoverGoal) and such that a freshly renamed copy E ′ of E

unifies with Catcher by substitution σ.

• If there is no such ancestor, then a system error is raised and the behaviour

is implementation dependent.

• If there is such ancestor node whose goal label is catch(Goal, Catcher,

RecoverGoal then (i) all the nodes between the current node and the an-

cestor one, are made deterministic (none of these nodes can thus be selected

by backtracking) and (ii) a second child is added to the ancestor node whose

labels are the substitution σ and the goal call(RecoverGoal)σ, and back-

tracks. The execution will thus continue, with the new child as current node,

at step (2.) of algorithm for serach-tree visit and construction (Section 4.5.1).

Catch. Captures errors generated through explicit throw/1 usage, during

the execution of a given goal – first catch/3 argument – or implicitly when an

error is raised by the processor—having the same throw/1 effect. Then executes a

recover goal (third catch/3 argument, after instantiation). The meaning of such

primitive, must be considered with the built-in predicate throw/1.

Solving the goal catch(G, C, R), where G ∈ L(〈Term〉) \ L(〈V ariable〉) and

{C,R} ⊂ L(〈Term〉), the execution of call(G) is triggered. If an error occurs

during its execution, which is “caught” by C, the resulting instance of R is executed

(see Throw definition).

CHAPTER 4. 2P-KT DESIGN 51

Figure 4.5: A search-tree example showing the effect of Cut. Image taken from

Prolog: The Standard - Reference Manual [6]

52 CHAPTER 4. 2P-KT DESIGN

More precisely, if the current goal is catch(G, C, R), it creates a new child

whose labels are the empty substitution and the goal call(G). The execution

will continue at step (2.) of algorithm for search-tree visit and construction (Sec-

tion 4.5.1).

4.5.2 Main “solve” types

Solution

The Solution type captures the concept of outcome of a Prolog computation.

It always has a reference to the solved goal and to the substitution that was applied

to solve it. It has three sub-types:

• Yes, meaning that the Prolog goal was executed successfully;

• No, representing the Prolog failure response;

• Halt, reporting that the computation stopped abruptly due to an unhandled

error.

Solve requests and responses

In order to be able to support asynchronous interactions with a Prolog goal

solver, we separated the concepts of SolveRequest and SolveResponse and gave

them a first-class representation. The design was inspired by stateless web inter-

actions, asynchronous by construction, and by REST principles.

SolveRequest represents a request to solve a Prolog goal, carrying with it all

the information necessary for its solution, such as:

• the goal Indicator,

• the goal argument list,

• the ExecutionContext (described below) into which the goal should be

solved.

CHAPTER 4. 2P-KT DESIGN 53

SolveResponse represents a response to a previously submitted solve request,

carrying with it the mere Solution along with the possible side-effects caused

by the goal execution. These side-effects will be computed starting from the

SolveRequest represented state.

Those request and response concepts are designed to be dealt with, only if

the programmer is developing a Prolog library, that is an extension of Prolog

language. Programmatic usage of the solver should not expose these internal

details, somehow low-level.

Primitive

Primitive is a function that given a SolveRequest, with a particular Indi-

cator, produces a lazy sequence of SolveResponses. A primitive is so called,

because it is not implemented in Prolog language, but in the native language in

which the Prolog solver is written. It is very useful to write some Prolog predicates

implementations in a procedural language. Every programming paradigm is really

good at doing something particular and with primitives we give the chance, to

library developers, to use the best-fit paradigm in writing functionalities.

Function

Function concept is somehow similar to the primitive one but this time we have

ComputeRequest and ComputeResponse. However, these have the same conceptual

meaning of solve requests and responses. A ComputeResponse instead of carrying

a solution, carries the function computed Term. A Function maps a “compute

request” into a single “compute response”.

The function concept will be employed to represent Prolog Standard arithmetic.

In fact some terms represent arithmetic expressions when they are in the following

positions:

• the right-hand argument of the built-in predicate is/2,

• both arguments of the arithmetic comparison built-in predicates ’=:=’/2,

’=\=’/2, ’<’/2, ’>’/2, ’=<’/2, ’>=’/2.

54 CHAPTER 4. 2P-KT DESIGN

In that case they will be formed as a term, using arithmetic functors and numbers

only, otherwise the evaluation of the expression raises an exception [6].

Library

A Library is a container for:

• Operators, because each library could declare theirs,

• Prolog theories, in the form of ClauseDatabase, defining custom library

predicates,

• Primitives, defining custom library predicates implemented in an impera-

tive way,

• Functions, defining custom functions to be used in evaluating Prolog ex-

pressions.

During resolution process more than one library could be loaded at the same time.

This poses the problem of name clashes between predicate indicators.

We provide also a LibraryAliased type, that is a Library with a characteristic

alias attached. This enables the solver to search predicates with their plain name

and also with their “fully-qualified” name (i.e. alias plus the predicate indicator

name).

ExecutionContext

The ExecutionContext type captures the homonym concept. It contains im-

portant context information that determines the solver behaviour, such as:

• Loaded libraries, that will be used during resolution process along with user

defined theory.

• Enabled flags, that will slightly modify the resolution process behaviour and

set some solver parameters.

CHAPTER 4. 2P-KT DESIGN 55

• Static Knowledge-Base, a ClauseDatabase containing user’s not-modifiable

clauses.

• Dynamic Knowledge-Base, a ClauseDatabase containing user’s modifiable

clauses; the modifications can be done using the appropriate built-in predi-

cates.

• Substitution, that will contain the current substitution in the specific con-

text.

The ExecutionContext is a block of information that is replicated for each

node of the search-tree, labelling it.

Solver

The Solver type represents the “Prolog engine” that will navigate the search-

tree finding solutions. Given an initial ExecutionContext, possibly empty, it will

lazily solve a given goal.

The laziness in the resolution process is necessary because the Prolog execution

model could potentially produce infinite computation paths. So when a solution

is found, before proceeding in the search-tree exploration, the solution has to be

reported.

We also provide the possibility for the Solver user, to specify a maximum

execution duration. This will help bounding the amount of time needed to search

a solution, in those cases where if no solution is found rapidly, it will not matter

anymore.

Exceptions and PrologError

Prolog language has exceptions. Our design commits at implementing them

as exceptions in the implementation language, with a one to one mapping. The

TuPrologRuntimeException is the basic type for exceptions thrown during resolu-

tion process. It will always contain an ExecutionContext that helps to understand

because and where, during the resolution, the exception happened.

Some notable exception sub-types could be:

56 CHAPTER 4. 2P-KT DESIGN

• HaltException: when it is thrown, the resolution process should halt im-

mediately.

• TimeOutException: it is thrown when the execution max duration has been

exceeded and so the execution should terminate.

• PrologError: this is an exception thrown at Prolog language level. The

Prolog ISO standard in fact describes its own exceptions and the way they

should be manged. All Prolog language level exception should be sub-types

of PrologError.

The Prolog ISO standard also states that when a Prolog exception cannot

be handled properly, a SystemError (sub-type of PrologError) should be

raised. If even this exception could not be managed we halt the resolution

process by means of an HaltException.

A Prolog library programmer can throw an exception either by using the na-

tive language keyword throw along with the exception instance or launching the

resolution of a throw/1 predicate.

4.6 Solve-classic module

The solve-classic module contains the same inferential core of tuProlog but in

a slightly reviewed design. The solver provided by this module could be seen, to

all effects, as an enhanced tuProlog [1].

4.6.1 Inferential core design

The inferential core of classic 2p-kt solver is designed as a Finite State Machine

(FSM), whose basic architecture is depicted in Figure 4.6. The machine is com-

posed by (i) an initial state, assumed as the solving procedure starts, (ii) seven

main states representing the activities performed during the resolution process,

and (iii) four final states which identify the different ways a demonstration may

be ended.

CHAPTER 4. 2P-KT DESIGN 57

Figure 4.6: The solve-classic solver core Finite State Machine.

One of the differences from tuProlog design is the increased number of states.

We tried to confine better responsibilities of each state, for example separating

selection of primitives from their execution. On the other hand we remained

adherent to the original design, leaving the management of some Prolog primitives

to the inferential core itself, like ’,’/2, ’!’/0, fail/0, throw/1 and catch/3.

This complicates to some extent the inferential core design.

Furthermore, is worth pointing out that the following described FSM design,

is made with in mind the idea that the state machine is one during the whole

resolution process.

58 CHAPTER 4. 2P-KT DESIGN

Init state. The Init state is the main entry point of the FSM when starting a

demonstration process and, as its name declares, initialises the core by extracting

the subgoals to evaluate from the query, and by setting up an object which repre-

sents the execution context for the current subgoal. That subgoal is chosen by the

next state, to which the Init state immediately passes control.

Goal Selection state. The Goal Selection state checks if there is a next goal

to be executed from the subgoal list.

• If such a goal does not exist because the resolvent is empty, the current

context is checked:

– if it is the root context, and there are open alternatives to be ex-

plored, then the demonstration has ended and the machine ends up

in TRUE CP state, where a further solution to the initial query can be

asked;

– if it is the root context, and there are no open alternatives, then the

demonstration has ended and the machine stops into TRUE state;

– else, the machine shifts to Goal Selection state again, adjusting current

context to hold parent next goals, and the resolution process continues.

• If the resolvent is not empty and there is a next goal, the machine shifts to

Primitive Selection state.

Primitive Selection state. The Primitive Selection state deals with evaluating

current subgoal which a previous state has selected from the resolvent.

• If the indicator of such subgoal is bound to a primitive predicate, its execu-

tion is triggered, a new goal scope is opened (thus a choice point is saved),

and the machine gets shifted to the Primitive Execution or the Exception

state, depending respectively on the success or error of primitive triggering.

• If the indicator of the subgoal does not represent a primitive, its evaluation

can only be performed by browsing the logic theory contained in the engine

CHAPTER 4. 2P-KT DESIGN 59

and selecting a compatible clause. These actions are performed in the Rule

Selection state.

Primitive Execution state. The Primitive Execution state deals with the so-

lutions produced by primitive triggering. When the solution is:

• Yes, the control passes to Goal Selection state, with a context modified to

point to the next goal in list.

• No, the machine shifts into Backtrack state.

• Halt, the machine shifts into Exception state.

Exception state. The Exception state would be assumed by the machine when-

ever an error occurs during the execution of a Prolog subgoal. The effect of a

run-time error should be the same as the invocation of a throw/1 primitive.

• If the thrown exception is a prolog error, the Exception state job should

be to carry out the procedural side effect of throw/1: causing the normal

flow of control to be transferred back to an existing call of catch/3 which

matches the thrown error. Keeping the Prolog term representing the error,

the Exception state would need to trigger a backwards visit of resolution

tree composed of execution context objects, in order to find the appropriate

catch/3 subgoal, which needs to feature a second argument unifiable with

the error to be caught. The search is made recursively:

– if current context is the root one, no parent goal can handle the error,

then the machine stops the computation in the HALT state.

– if current goal is not catch/3, then the machine shifts again to Excep-

tion state, switching current context with its parent context.

– if the second argument is not unifiable with the thrown prolog error,

then the machine behaves as described in previous point.

60 CHAPTER 4. 2P-KT DESIGN

– if the second argument is unifiable, the unifier is composed with local

substitution producing σ; then σ is applied to catch/3 third argument

RecoverGoal; RecoverGoalσ is used as source for new goals to be sub-

mitted for resolution and σ becomes the new local substitution; the

machine hence shifts to Goal Selection state with the newly computed

context, to continue its execution.

During the search, each traversed execution context would be pruned, so as

not to be executed or selected by backtracking mechanism anymore.

• If the thrown error is not a prolog error, then the machine stops the compu-

tation in the HALT state.

Rule Selection state. When entering the Rule Selection state, given the current

goal G:

• If G is true, then the machine shifts to Goal Selection state adjusting context

to point to the next goal in list.

• If G is fail, then the machine shifts to Backtrack state.

• If G is ’!’/0 (Cut), then the machine goes into Goal Selection state, updat-

ing current context to point to the next goal and deletes (cuts) all eligible

choice points.

• Otherwise a set of rules compatible with current subgoal G is gained from

the logic theory stored in the engine.

– if that set is empty, then a backtrack is triggered by setting the ma-

chine’s next state to Backtrack state;

– otherwise, having found at least a compatible rule with the current

subgoal, a new goal scope is opened (thus a new choice point is saved)

and the machine gets shifted to Rule Execution state.

CHAPTER 4. 2P-KT DESIGN 61

Rule Execution state. The Rule Execution state deals with evaluating a pre-

viously selected rule H :- B. Here the unifier computation, between current goal

and the currently selected rule head (H), is performed:

• If the the two terms are unifiable, with σ, then the rule body (B) evaluation

is prepared: a new execution context is created with Bσ as subgoal source

and σ as local substitution, then the machine shifts to Goal Selection state.

• If the two terms are not unifiable, then the machine shifts to Backtrack state.

Backtrack state. Once entered the Backtrack state, a check on the set of opened

choice point is performed:

• If that set is empty, a transition to the FALSE state is performed, to imme-

diately make the demonstration fail.

• If the set is not empty, the next alternative is fetched from last added choice

point; the new current context is updated to consider the fetched alternative

as “no more selectable” and:

– if the last added choice point was a rule choice point, then the machine

shifts to Rule Execution state;

– else the last choice point added was a primitive choice point, hence the

machine goes into Primitive Execution state.

End states. Among the four mentioned end states (TRUE CP, TRUE, FALSE,

HALT), the TRUE CP one is not properly an end state. While the others can’t

produce a subsequent state, because signaling a type of computation end, the

TRUE CP one can transition to Backtrack state, although it also has the function

to signal a successful computation end.

4.6.2 Main “solve-classic” types

The actual design of the finite state machine is realised using the State pattern

[26]. This design pattern is typically used to allow an object to alter its behaviour

62 CHAPTER 4. 2P-KT DESIGN

when its internal state changes, by modelling states as objects which encapsulate

the different behaviours. In our case, the solver plays the role of the object whose

state changes during the course of a computation, and whose state is therefore

modelled as a set of objects with their own behaviour.

State. The class hierarchy representing the core states is based in the inter-

face State, providing the next(): State method which contains the state’s be-

haviour in the concrete sub-classes and which returns the state to move to. From

State all other classes representing the core’s states are derived: StateInit,

StateRuleSelection, StateBacktrack and so on, with a clean name pattern,

matching state names in the FSM. StateEnd will extend State adding proper-

ties to retrieve the computed Solution. StateException will have an additional

property to contain the exception that caused the state machine to go into that

state.

ChoicePointContext. ChoicePointContext is a type needed by states to keep

track of if and which choices has been chosen during resolution process and hence

are useful during backtracking. There are two kind of ChoicePointContexts: the

primitive ones keep track of which responses of primitives have been already con-

sidered; the rule ones keep track of which rules have been already chosen for

execution. Every choice point context can be asked if there are open alternatives,

i.e. some not already chosen computational paths.

4.7 Solve-streams module

The solve-streams module brings with it a very different solver type from that

present in solve-classic. This solver has been designed from scratch, with Prolog

search-tree and functional programming in mind.

CHAPTER 4. 2P-KT DESIGN 63

4.7.1 Rationale

Backtracking step removal. When navigating the Prolog search-tree, as al-

ready said, we encounter choice points. The point is: what if, instead of making a

choice at some point, we always make all possible choices and “forget” about that

choice point? Instead of needing to remember it, and to backtrack till this point

to make another choice and execute, we could prepare a sequence of all execution

contexts that should be carried out from this point, and merely use them when

the execution of current “branch” has been completed.

This basic idea removes the need of an explicit backtracking mechanism, because

when at “choice point time” we prepare all the execution contexts, they don’t have

any side effect of any branch execution inside them, because none has been already

executed. So the implicit backtracking mechanism resides in selecting a previously

prepared context, with no side effect inside it.

The tricky part is that of implementing primitives that alter flow control like

’!’/0 (Cut) and throw/1 (Throw). These primitives should somehow affect the

inferential core in a way that it can determine which already prepared context

should be discarded, hence not executed.

The solution we have found, can be a “side effect” field in the SolveResponse

type that can be read by the “upper scope executor” and, if applicable, it can

discard its prepared contexts and continue.

Seeking minimality. Trying to be as minimal as possible, we thought at which

mechanisms were really needed at the inferential core. We firstly ended up with

this list:

• A way to determine if a computation can end with success.

• A mechanism to unify the current goal with database rule heads and execute

their bodies.

These mechanisms describe the simplest inferential core, that makes a rigid

pattern matching of a rule head with a goal and makes its body the new current

64 CHAPTER 4. 2P-KT DESIGN

goal, until the current goal matches the success condition expressed at first point,

or otherwise fails.

To widen the capabilities of such inferential core, enabling it to the execute the

whole Prolog language, we just added to the list:

• A mechanism to find and execute primitives.

So primitives revealed themselves as the docking point for every other Prolog

feature.

4.7.2 Inferential core design

The inferential core of streams 2p-kt solver is designed as a FSM, whose basic

architecture is depicted in Figure 4.7. The machine this time is composed by

(i) an initial state, assumed as the solving procedure starts, (ii) two main states

representing the activities performed during the resolution process, and (iii) three

final states which identify the different ways a demonstration may be ended.

Starting from the idea explained before, every state computes all its possible

subsequent states at the same time.

Is worth pointing out that the following described FSM desing, is thought with

in mind that during the resolution process the state machine can start another

instance of itself, nesting the execution.

Init state. The Init state is the main entry point of the FSM when starting a

demonstration process. It initialises the state machine preparing it for potential

“side effects” execution. Then, it takes the current goal G and:

• If the success check strategy says that G is solved, shifts to TRUE state.

• If G is not a well formed goal, shifts to FALSE state.

• If G is a well formed goal, prepares the goal for execution (i.e. if it is a

variable, then it wraps the variable in call/1), sets the current goal to the

prepared goal, and finally goes into Goal Evaluation state.

The Init state always goes into a single subsequent state.

CHAPTER 4. 2P-KT DESIGN 65

Figure 4.7: The solve-streams solver core Finite State Machine.

66 CHAPTER 4. 2P-KT DESIGN

Goal Evaluation state. The Goal Evaluation state deals with evaluating the

current goal as a primitive, if applicable.

• If the indicator of current goal is present in loaded libraries primitives, then

the primitive execution is triggered:

– if the primitive succeeds executing, it shifts into a state depending on

the Solutions type; that is, if the solution is Yes, No, Halt respectively

goes into TRUE, FALSE or HALT states; we call that mechanism so-

lution forwarding ; the number of next states depends on the number of

solutions returned by primitive execution;

– if the primitive throws a prolog error, a brand new resolution process

is started with the goal throw(prolog error), leaving the duty of im-

plementing “throw” behaviour to an external throw/1 primitive; for

responses coming from this sub-execution we use solution forwarding

again.

– if the primitive throws an HaltException, shifts to a single HALT

state.

– if any of the forwarded solutions coming from the two initial points, are

Halt solutions, then all remaining prepared contexts are discarded.

• If the indicator of current goal doesn’t match any loaded primitive, then it

shifts to the single Rule Selection state.

Rule Selection state. When entering the Rule Selection state, current goal is

used to load all matching rules from the engine ClauseDatabase.

• If no matching rule is found, it ends up in a single FALSE state.

• If matching rules are found, they are prepared for execution, then ordered

through a given clause choice strategy.

For each rule H :- B, let σ be the unifier computed between current goal

and H; Bσ is the sub-goal to be executed, thus an execution context is

prepared for it.

CHAPTER 4. 2P-KT DESIGN 67

Then, for each prepared execution context :

1. a sub-state-machine is initialized with it and its execution is triggered,

making it start from Init state;

2. when the sub-state-machine execution ends up in a final state respond-

ing to our commissioned sub-goal;

(a) the “side effect” field is checked to know whether other prepared

context should be discarded or not; if they should be discarded,

then this “discard information” is saved for further usage;

(b) the sub-solution is forwarded, if it isn’t a No solution or it is a No

solution but hasn’t alternatives;

(c) if the sub-solution is an Halt solution, then the other prepared con-

texts are discarded; the same happens if the “discard information”

is present.

The number of Rule Selection subsequent end states depends on the number

of succeeded rule bodies execution, plus a failed one, if present.

End states. All mentioned end states (TRUE, FALSE, HALT) are properly

end states, meaning that no further computation is performed starting from them.

After an end state is reached, that branch of the Prolog search-tree is considered

to be completely explored and subsequent prepared contexts should be executed,

further exploring the search-tree.

Or-parallelism. The proposed design paves the way for optimisations exploiting

some kind of computation parallelism.

In particular the or-parallelism originates from parallelising the execution of

rules in Rule Selection state. In fact, if more than one rule head matches the

current goal, parallel computations could be carried out for each rule body, mak-

ing some sort of speculative execution (speculative because, in case a ’!’/0 is

executed, all cut subsequent computations results have to be dropped).

68 CHAPTER 4. 2P-KT DESIGN

4.7.3 Default primitives

The “solve-streams” inferential core is very simple and has no embedded prim-

itive in it. To reach “solve-classic” one capabilities and adhere to Prolog Standard

execution model, all basic primitives should be provided as part of the solver. Note

that Prolog Standard execution model takes these primitives for granted.

Conjunction. This primitive execution is triggered when solving a goal whose

principal functor is ’,’/2.

Its behaviour can be described as follows:

1. Given the current conjunction goal, all “in-conjunction” sub goals are ex-

tracted and ordered with a given predication choice strategy ; an empty sub-

stitution σ is prepared to be composed with sub goals produced substitutions,

in order to “accumulate knowledge” over previously executed sub goals;

2. Let G be the first sub goal in conjunction;

3. Gσ is prepared for execution producing G′;

4. A new solver instance is created to solve G′, resulting in its solutions;

5. For each G′ solution S (notice that at every loop iteration, previous side

effects should be removed):

(a) If S is Yes and we have other “in-conjunction” goals to be solved and no

throw/1 has been executed successfully, then this procedure is executed

again from (3.) with G being the next sub goal and σ being current σ

enriched with S new substitutions.

(b) Otherwise if S is not No or it is No and there are no other open alter-

natives, then the S solution is added to those given in output.

At any point of execution if a Cut or Throw is executed, all previously opened

alternatives are cut; this in particular means that in point (5.) all G′ solutions S

after a cut execution should not be considered, breaking the “for each” loop.

CHAPTER 4. 2P-KT DESIGN 69

Cut. This primitive execution is triggered when solving a goal whose principal

functor is ’!’/0. In our design it has the only responsibility of responding True

solution specifying as “side effect”, the Cut one.

Call. This primitive execution is triggered when solving a goal whose principal

functor is call/1. It is needed at this level, near the inferential core, because it

has particular behaviour with ’!’/0, and catch/3 primitive is defined on top of

it.

The effect of a Cut occurring inside a call/1 goal is limited to this goal, i.e. it

should have no effect outside of it. call/1 is said to be opaque (or not transparent)

to Cut.

Its behaviour can be described as follows:

1. If the call/1 argument G is a Var, then the prolog error instantiation

error is thrown.

2. Otherwise, if G is not well-formed goal, then the prolog error type error(

callable, G) is thrown, where G is the call/1 argument.

3. Otherwise, a new solver instance is created to solve G, after being prepared

for execution, and its solutions are forwarded as responses of the call/1

request; all changes made by ’!’/0 during this resolution are confined inside

the call/1 “scope”.

Throw. This primitive execution is triggered when solving a goal whose principal

functor is throw/1.

The throw/1 primitive works as a Cut between the triggering point in the

search-tree till the matching catch/3. However this type of “cut” can’t be confined

by call/1 primitive as the normal Cut.

Its behaviour can be described as follows:

1. If the throw/1 argument A is a Var, then the prolog error instantiation

error is thrown.

70 CHAPTER 4. 2P-KT DESIGN

2. Otherwise the stack of solving goals, till this point, is checked for the presence

of an ancestor catch/3 goal, whose second argument unifes with A:

(a) if there is no ancestor catch or the unifier can’t be computed, because

the two terms does not unify, then:

i. if the thrown error is a system error, then the resolution process

is halted;

ii. otherwise a system error is thrown.

(b) if the two terms unify, by unifier σ, then σ is composed with local

context substitution; the primitive succeeds with Yes solution and the

solution “side effect” is set to the Throw one.

Catch. This primitive execution is triggered when solving a goal whose principal

functor is catch/3. This primitive is complementary to the throw/1 one.

Its behaviour can be described as follows:

1. The first argument G of catch/3 is extracted;

2. G is wrapped into a call/1 primitive call, becoming call(G);

3. A new solver instance is created to solve call(G);

4. For each solution S coming from that execution:

(a) if this catch/3 goal was not selected by a throw/1 primitive, all re-

sponses are forwarded as they are; note that catch/3 without any

throw/1 primitive executed, behaves just like call/1;

(b) otherwise if this catch/3 goal was selected by a throw/1, then the last

catch/3 argument is taken and S substitution applied to it;

(c) the “recover goal” R, thus obtained, is wrapped into a call/1 primitive,

resulting in call(R);

(d) current catch/3 is made no more selectable from other throw/1 calls;

CHAPTER 4. 2P-KT DESIGN 71

(e) then a new solver instance is created to solve call(R) and all solutions

coming from this execution are forwarded as solutions of the principal

catch/3 goal.

4.7.4 Main “solve-streams” types

The actual design of the described FSM is realised also this time exploiting the

State pattern [26].

State: The State type defines the base interface for every state. It provides a

behave(): Sequence<State> that returns the lazily initialized sequence of

subsequent states.

IntermediateState: The IntermediateState type defines a non-final state, thus

carrying a SolveRequest used during resolution. Init, Goal Evaluation and

Rule Selection states are all IntermediateStates.

FinalState: The FinalState type defines a final state, hence carrying a SolveRe-

sponse to some request. TRUE, FALSE and HALT states belong to this

category.

SideEffectManager: It is a type capturing the concept of “side effect” that has

to be reported to external executors. It will encapsulate the logic for side

effects detection and execution.

SolverStrategies: It is a type capturing all the strategies used during resolution

process. It is an application of the well-known Strategy pattern. In particular

we have three strategies, for the solver:

• success check strategy, that determines when a goal should be considered

solved; the default is an equality check of current goal with true atom;

• clause choice strategy, that determines in which order clauses are se-

lected when loaded from the ClauseDatabase; the default is the Prolog

standard clause choice, i.e. the first database matched clause is taken

first;

72 CHAPTER 4. 2P-KT DESIGN

• predication choice strategy, that determines in which order the predi-

cations in a conjunction are selected for execution; the default is the

Prolog standard predication choice, i.e. the left-most predication is

solved first.

A different SolverStrategies could be passed to the solver to change its

default inner workings, without modifying its source code.

4.8 Dsl-core module

The dsl-core module contains the modeling of a Domain Specific Language

(DSL) for 2p-kt core module types manipulation.

This DSL is designed to simplify as much as possible the creation of core classes

mimicking the Prolog syntax. It will provide a prolog “scope” where a pseudo-

Prolog syntax can be used to create objects. This scope can be thought as a Scope

as defined in core module, hence inheriting its concept of variables scoping, with

enhanced capabilities.

Some extra-Scope needed features are:

• A function to convert any type to the correct Prolog type. It will be used

inside any other functionalities to ensure that every type gets converted to

the proper Term.

• An override of host language default operators to make them behave as

creators of Structs. For example, in DSL 5 + 1 should be converted to

’+’(5, 1) Struct.

• An enhancement of host language String type, to enable programmers to

use it as a Prolog functor. For example in DSL "my functor"("my arg1",

"my arg2") should be legal, and should be evaluated to the corresponding

Struct without apices.

CHAPTER 4. 2P-KT DESIGN 73

4.8.1 Term creation modalities

With this module we add further modalities to create objects, so it’s worth to

classify all of them, from scratch, in a clear way. During this classification we will

show that higher level construction modalities will be less verbose and much more

clear; our running example will be to programmatically create the term f(A, B)

:- g(A), g(B).

Core module provides two basic levels of Term objects creation:

(i) Type.of(argument: CorrectType, ...): Type.

Every core module type has its own of static factory method attached, which

can create objects passing correctly typed arguments. Implementations con-

structors won’t be accessible by design, so this is the only basic way to create

an object.

Our example object should have been created by the following method calls:

Rule.of(Struct.of("f", Var.of("A"), Var.of("B")), Struct.of("g",

Var.of("A")), Struct.of("g", Var.of("B"))).

But since every call of Var constructor returns a different instance, this won’t

produce what we expected. In fact the first two A and B variables, will be

different instances from the second ones. This is why in core module we have

the Scope type and hence a second level of construction methods.

(ii) Scope.typeOf(argument: CorrectType, ...): Type.

Inside a Scope we gain access to new methods to create objects easier. Prag-

matically these methods:

– handle correclty variables;

– forward the creation request to the previous level (i) constructors (ob-

viously not for variables whose instances are retained and reused as

needed);

– remove the burden to programmers to always type “Type dot of”.

74 CHAPTER 4. 2P-KT DESIGN

Our example object is now correctly created by the following method calls:

ruleOf(structOf("f", varOf("A"), varOf("B")), structOf("g", varOf(

"A")), structOf("g", varOf("B"))).

Now we come to the dsl-core module, which enhances the Term creation expe-

rience, providing two other levels:

(iii) Prolog.typeOf(argument: AnyType): Type.

Inside a prolog scope we gain access to the extra-Scope features described

before and, in addition to all Scope methods, each of them is overloaded with

a version that accepts arguments not necessarily of correct type. These over-

loaded methods convert their parameters to correct type, and then forward

the call to previous level (ii) constructors.

Our example object can now be correctly created by the following method

calls: ruleOf(structOf("f", "A", "B"), structOf("g", "A"), structOf(

"g", "B")) or better ruleOf("f"("A", "B"), "g"("A"), "g"("B")).

We also want to point out that the creation of variables here, uses the current

prolog scope; this means that if in two different parts of the same prolog scope

we wrote the above two rule code, the As and Bs will always be the same,

even if in different clauses. This could be a problem if a user would like

to write different clauses with different variable scopes, in the same prolog

scope. In fact the fourth creation level solves this “problem”.

(iv) Prolog.type { DSL written object, then casted to Type }: Type.

In a prolog scope we also have access to this other type of methods. These

methods will accept in input a function whose receiver should be a prolog

scope, then they internally create an and-hoc empty scope and call the given

function with it. This is how the variable scope isolation can be achieved.

Our example object can now be correctly created by the following method

call: rule { "f"("A", "B") ‘if‘ "g"("A") and "g"("B") }.

If this code is duplicated and executed inside the same prolog scope, variables

of first rule will be different from variables of the second one.

CHAPTER 4. 2P-KT DESIGN 75

4.9 Dsl-unify module

The dsl-unify module extends dsl-core one functionalities to enable program-

mers to easily unify terms inside a prolog scope.

The prolog scope provided by this module features overloaded Unificator

methods (mguWith, matches and unifyWith) accepting non Terms as parame-

ters. These parameters are then converted to Terms and forwarded to the common

Unificator methods.

4.10 Dsl-theory module

The dsl-theory module extends dsl-unify one functionalities to enable program-

mers to easily write Prolog programs (theories) inside a prolog scope.

The prolog scope provided by this module adds two ways to create a ClauseData-

base:

• a theoryOf method that somehow adheres to the (ii) type of constructors,

hence calling internally the (i) i.e. ClauseDatabase.of(...).

• a theory method accepting multiple scoped functions producing clauses,

which is similar to (iv) type of constructors.

The (iii) type constructor is not provided. This is because implementing it

will break the semantics of the constructor of databases. All variables in the

ClauseDatabase would be shared, and this is not a good design choice. It could

be implemented in a way that doesn’t break the semantics, but it would require

double computational time, and because we offer a better alternative, it’s not

worth it.

76 CHAPTER 4. 2P-KT DESIGN

Chapter 5

2p-kt Implementation

In this chapter we present how the described design has been implemented in

Kotlin language. Each section of this chapter dives into implementation details of

each project module.

5.1 Core module

All core types described in core module design (Section 4.2) are implemented

as interfaces. This permits multiple inheritance, enabling us to exactly implement

fig. 4.2 hierarchy.

Every interface has its own actual implementation. Implementations are im-

mutable and are internal to the module, i.e. they cannot be instantiated by module

users.

Every interface (except for Term) has its own companion object containing some

static factory methods, named of, that handle the actual creation of instances.

The hierarchy of interfaces is crafted to manage the correct creation of instances

even if a super-interface is used to create a sub-type. For instance, if we call the

Struc.of("a") method, it returns an Atom implementation instance and not a

Struct one. This smart management in instance creation makes possible to check

for instance type, not only by means of isXXX getters, but even with language

type checking “is” operator.

77

78 CHAPTER 5. 2P-KT IMPLEMENTATION

All interfaces also define proper methods to access their immutable internals.

Term. The Term type defines some notable methods:

• structurallyEquals(other: Term): Boolean, that is a method to en-

able structural comparison of Terms. This is very useful when implementing

ClauseDatabase clause retrieval, because there structural checks are made.

• apply(substitution: Substitution): Term, that is a method to ap-

ply some variable bindings to a Term. In Term interface there’s a default

implementation of this method covering all cases, hence no sub-type has to

implement or override it.

• freshCopy(): Term, that is a method implementing variable renaming.

This method is very useful during resolution process when clauses are loaded

from the database, and their variables should be renamed before unifying the

head.

Var. The Var type implementation returns a different instance every time the

factory method of is invoked. It internally holds a counter of created instances,

and the provided variable name is concatenated with the variable instance number,

composing the variable identifier. This way there cannot be two equals variable

instances coming from two different calls of the factory method.

Term methods are implemented this way:

• structurallyEquals returns true if the other Term is also a Var.

• freshCopy returns a newly created variable with the old variable name.

Struct. Struct implementation is the base class, either directly or indirectly,

for most of the other classes. It provides common basic behaviour implementing:

• structurallyEquals, that returns true if functor and arity are the same

and all arguments are recursively structurallyEquals.

CHAPTER 5. 2P-KT IMPLEMENTATION 79

• freshCopy, that returns a newly created Struct implementation with same

functor and recursively freshCopy applied arguments.

Clause. Clause in our implementation is the class having the responsibility to

“prepare for execution” its instances (Section 4.4).

The actual behaviour is obtained through an implementation of TermVisitor.

Given a collection holding the notable functors defined for clause bodies (’,’/2,

’;’/2 and ’->’/2), it transforms all visited variables V inside it, occurring in the

position of a predication, into the required structure call(V).

Scope. The Scope implementation holds a map between variable names and

variable instances. It provides bridge methods for all main types factory methods,

without doing more that that, except for the varOf(name: String) method. In

fact before using the Var.of() factory, it checks if the provided variable name is

present inside current scope instance; if it is present, returns the stored instance,

otherwise it creates a new Var instance and stores it for further retrieval.

Substitution. The Substitution implementation is technically a sub-type of

Map<Var, Term>. Hence it naturally holds “mappings” and inherits all Map type

methods and characteristics. Its methods are implemented actually delegating a

Map instance, retrieved upon construction.

To comply with the standard the construction provided Map is checked:

• all variable chains are shortened by means of a trimVariableChains method;

circular mappings are managed and become identity mappings, then

• all identity mappings (i.e. a mapping from a Var instance to the same

instance) are removed.

Substitution has two sub-types: Unifier and Fail. The former is a type

representing a substitution as described in Prolog Standard, the latter is a singleton

instance used when there isn’t a unifier. This approach is meant to reduce the

usage of null and exception throwing.

80 CHAPTER 5. 2P-KT IMPLEMENTATION

Substitution.plus(other: Substitution): Substitution method im-

plements the composition of substitutions. Unlike in the standard the composi-

tion of substitutions can lead to a Fail in case there are contradictions emerging

from the bindings. The composition also leads to a Fail when one of the two

substitutions is failed.

Substitution provides the “of” static factory method, as the other core classes.

The overloads accepting possible conflicting substitutions, thus operating a com-

position, also check for contradictions.

5.2 Unify module

The unify module implements Equation and Unificator abstractions.

Equation type companion object contains some factory methods “allOf” that

reify the abstract unification algorithm “splitting” transformation rule. Thus, given

two Structs, these methods return a sequence of equations corresponding to the

equation of arguments at same indexes of the structured term. We decided to im-

plement this behaviour inside Equation because at construction time it is easier to

recognise the correct type of equation (Identity, Assignment or Contradiction).

Unificator type is represented by an interface, partially implemented by Ab-

stractUnificationStrategy. The latter class is a base class implementing a

simple and basic unification algorithm [27] through mgu(term1: Term, term2:

Term, occursCheck: Boolean): Substitution method. AbstractUnifica-

tionStrategy does not give a body to method checkTermsEquality, which is a

template method that decides when two Terms should be considered equal, hence

dictating when the unification should succeed or not.

The concept of “unifying Terms” is simply modifiable implementing a different

version of checkTermsEquality. In fact we provide two basic unification strate-

gies: strict that implements the Prolog Standard unification, and a naive variant

where numbers for example are made unifiable by value and not by type (i.e. float

1.0 unifies with integer 1, unlike in Prolog Standard).

The mguWith, matches and unifyWith methods are provided in infix variant

CHAPTER 5. 2P-KT IMPLEMENTATION 81

to be easily used as operators between Terms.

5.3 Theory module

Theory module implements the ClauseDatabase abstraction. As a real database,

it has methods to read, write and remove Clauses:

• assertA, adds the given clause before the othres

• plus, aliases the assertA method

• assertZ, adds the given clause after others

• contains, checks for presence of matching clause (using structurallyEquals)

• get, retrieves all matching clauses (found using structurallyEquals)

• retract, deletes one matching clause (using structurallyEquals) and re-

turns a RetractResult

• retractAll, deletes all matching clauses (using structurallyEquals) and

returns a RetractResult

The RetractResult type holds the information of a “retract” operation (re-

moval operation). It can be a Success, and hence contains the new database and

the removed Clauses, or it can be a Failure, containing the same database with

no modifications.

The ClauseDatabase is frequently consulted during the resolution process.

The need for good read/write performances led us to the implementation of an

efficient retrieval algorithm.

5.3.1 Rete algorithm implementation

The Rete algorithm [28] solves the problem of matching patterns against a

multitude of objects.

82 CHAPTER 5. 2P-KT IMPLEMENTATION

The idea behind the algorithm is to create a “classification tree”. In this tree

we have two type of nodes:

• non-leaf nodes: they are in charge of classifying the received request of object

insertion (or pattern retrieval) and forward it to the correct child node; they

contain pointers to other nodes;

• leaf nodes: they contain the objects of interest.

The classification takes place over a set of predefined properties in common between

objects and patterns. Every non-leaf node classifies objects and patterns using one

property assigned to it. The order in which non-leaf nodes are connected to each

other, thus which properties are evaluated before the others, is predefined.

Our implementation has general classes, reusable for possibly other Rete trees

implementations:

• ReteNode, an interface defining common operations of insertion, retrieaval

and deletion.

• AbstractReteNode, an abstract class with common behaviour for every Rete

node; the implementation relies on HashMaps to index child nodes.

• AbstractIntermediateNode, class that represent a generic non-leaf node.

• AbstractLeafNode, class representing a generic leaf node.

Because we had to index Clauses (by their head), our selected classification

properties were in order: functor, arity, arguments. Note that if a node is not

already present it is created in place, otherwise the old instance is always reused.

Intermediate node types are:

• RootNode, in charge of classifying clauses by their head functor.

– If the clause is a Rule it forwards the request to the proper FunctorNode.

– If the clause is a Directive it forwards the request to the leaf node

DirectiveNode (because no distinction can be made for directives over

the null head).

CHAPTER 5. 2P-KT IMPLEMENTATION 83

• FunctorNode, classifies rules by their head functor arity; it forwards the

request to the proper ArityNode.

• ArityNode, classifies rules by their head functor arguments.

– If the head functor arity is not zero, it forwards the request to ArgNode

with zero index.

– Otherwise it forwards the request to NoArgsNode.

• NoArgsNode, immediately forwards the request to the pointed RuleNode.

• ArgNode, has a double behaviour:

– If the head functor has other arguments after the currently indexed

one, forwards the request to another ArgNode with current index incre-

mented by one.

– If the current node is indexing the last head functor argument, forwards

the request to the pointed RuleNode.

Leaf node types RuleNode and DirectiveNode are merely containers for respec-

tively Rules and Directives.

5.4 Solve module

All types described in solve module design (Section 4.5.2) are implemented

here.

Solution. The solution type is implemented in a Solution sealed class with

properties query, substitution and a computed property solvedQuery obtained

as the application of substitution to the query.

Its three sub-classes are Yes, No and Halt data classes ; the last two over-

ride substitution property to be always Substitution.Fail. Halt requires,

as additional parameter, the TuPrologRuntimeException that halted the solver

computation.

84 CHAPTER 5. 2P-KT IMPLEMENTATION

Solve request and responses. Our implementation provides a sealed class

Solve that has two implementations: Request and Response.

Response is a simple data class carrying the mandatory property Solution

and other optional properties that should be instantiated whenever a modification

is made to libraries, flags, staticKB, dynamicKB or to sideEffectManager.

Request is also a data class and carries with it all information explained in

design chapter plus a requestIssuingInstant and an executionMaxDuration to

be able to interrupt no more meaningful computations. The Request implemen-

tation also provides a group of methods to create a Response from it, lightening

the programmer from the burden of setting to which request is the response re-

sponding to. These methods, whose signature include all the optional Response

parameters, are:

• replySuccess which takes a substitution as first parameter (needed to con-

struct the Solution.Yes);

• replyFail which takes no other parameter than the optional Response ones,

becasue to create a Solution.No no other information, than the query al-

ready present in Request, is needed;

• replyException which takes a TuPrologRuntimeException as first param-

eter (needed to construct the Solution.Halt);

• replyWith which takes as first parameter a Boolean signaling if the response

should be positive or negative; this creates a solution with empty unifier in

positive case;

• replyWith which takes as first parameter the Solution to be set in Re-

sponse.

While implementing Request class, instead of using the core module Indicator

class, we created an enhanced version of it, with in mind the support for vararg

predicates, and we called it Signature. Hence a Signature is an enhanced

Indicator.

CHAPTER 5. 2P-KT IMPLEMENTATION 85

Other Request implementation detail is that it features a type variable, al-

lowing solver implementations to have their own context type in requests without

needing to explicitly cast it. The Request class signature is in fact: Request<out

E: Executioncontext>.

Primitive. A Primitive in our implementation is simply a typealias for a

function that takes in input a request and produces the sequence of lazily com-

puted responses: (Solve.Request<ExecutionContext>) -> Sequence<Solve.

Response>. Along with this type-alias we provide PrimitiveWrapper abstract

class. It contains useful utilities to manage primitives, making easier their imple-

mentation and usage; in particular:

• signature property returns the supported signature to which the current

primitive should be applied;

• wrappedImplementation abstract property, contains the primitive function

implementation itself; since its used in other properties this is an application

of Template Method pattern.

• descriptionPair property, associates the correct signature to the primitive

implementation.

PrologFunction. The function feature implementation is very similar to that

of primitives and request/response; this time we have a base Compute sealed class

with two sub-classes Request and Response.

The Response data class this time has only one field of type Term, representing

the computation result.

The Request data class has same design of the Solve twin. This time we

have only one utility method to create a Response starting from a Request:

replyWith(term: Term).

A PrologFunction is a typealias for (Compute.Request<ExecutionCon-

text>) -> Compute.Response.

86 CHAPTER 5. 2P-KT IMPLEMENTATION

Even this time we provide a FunctionWrapper class to make easier the us-

age and implementation of these functions. The class reuses part of the Primi-

tiveWrapper design.

Along with functions we provide two evaluators:

• ExpressionEvaluator, which is a generic term evaluator, implemented as

a TermVisitor returning a Term, thus extending TermVisitor<Term>; its

behaviour can be described as follows:

1. Always call, on current term, the staticCheck method whose duty is

to check if the evaluation can happen;

2. When visiting a Struct S

(a) if the signature does not match any loaded function signature, then

S is returned as is;

(b) otherwise, let F be the selected function;

(c) all arguments of S are visited with current evaluator instance;

(d) a dynamicCheck is applied to each result, checking if the computa-

tion can continue;

(e) a Compute.Request is created with S signature and all the already

evaluated S arguments as request arguments;

(f) then, F is called with the newly created request.

This implementation staticCheck and dynamicCheck methods do nothing;

they are an application of Template Method design pattern.

• ArithmeticEvaluator, which realises a Prolog Standard arithmetic evalua-

tor; it implements the template methods :

– staticCheck, which checks the term argument and:

∗ if it is a Var, throws an InstantiationError;

∗ if it is an Atom, throws a TypeError;

∗ if it is a Struct but not one among the allowed functions in ex-

pressions, throws a TypeError.

CHAPTER 5. 2P-KT IMPLEMENTATION 87

– dynamicCheck, which checks the given term and:

∗ if it is not a Numeric, throws a TypeError;

∗ if it is not an Integer argument, evaluated inside a bitwise opera-

tor, throws a TypeError

In order to consider ’/’/2 as an arithmetic operator ad not as an Indicator,

the visit(term: Indicator): Term has been implemented as well, mak-

ing it call super.visitStruct(term), hence triggering term arithmetic eval-

uation.

Library. The library concept is captured into the interface Library, then we

have the LibraryAliased one which represents a library with some attached

alias. Their behaviour is definied primarily at interface level, in fact LibraryImpl

and LibraryAliasedImpl are simple classes adding only equals, hashCode and

toString methods. Since libraries are thought to be used together, we also pro-

vide the interface LibraryGroup which defines some operations over a group of

libraries, such as adding or updating them.

Libraries is the implementation of a LibraryGroup of LibraryAliased li-

braries; it implements all the methods to retrieve, add and update libraries and

their contents.

ExecutionContext. The ExecutionContext interface implements the designed

concept, adding only a property prologStackTrace which is very useful when an

error should be reported to the user.

Solver. The Solver interface also implements the designed concept. It features a

solve(goal: Struct, maxDuration: TimeDuration = TimeDuration.MAX VAL-

UE): Sequence<Solution> that lets the user specify the goal to be solved, the op-

tional maximum duration of computation and returns a lazy sequence of Solution

instances.

88 CHAPTER 5. 2P-KT IMPLEMENTATION

TimeRepresentation. To make the implementation independent from any time

representation, we created two type aliases TimeInstant and TimeDuration. Their

actual implementation is a Long specifying: in the former case the milliseconds

from first January of 1970 as usual in programming languages, in the latter case

the duration in milliseconds.

If, for some reason, the time representation should be changed, then this would

be the main point where the change should happen.

Execptions and PrologError. All the designed exceptions are implemented

as classes extending the Kotlin RuntimeException.

Moreover TuPrologRuntimeException adds, to runtime exceptions:

• a prologStackTrace property, to easily access the homonym ExecutionCon-

text property;

• an updateContext method, to easily copy an exception returning a new

instance with provided context.

The PrologError abstract class extends TuPrologRuntimeException. It is the

base class for all Prolog language errors. Every PrologError has a type descrip-

tive structure and an extraData term that can contain arbitrary implementation

dependant data. PrologError companion object has a static factory method of

which, given a type structure, is in charge of creating the correct specific instance

of the error, as happens in core module classes hierarchy. If no corresponding error

is recognised, an anonymous PrologError instance is created.

Some of the commonly used error representations have been implemented:

InstantiationError, TypeError, EvaluationError and SystemError.

Common built-ins. In this solver independent module, we also provide some

default built-ins which are not “solver internals” dependent (i.e. these predicates

whose work does not interfere with the execution flow).

For example we have:

CHAPTER 5. 2P-KT IMPLEMENTATION 89

• All arithmetic primitives: ’=:=’/2, ’=\=’/2, ’<’/2, ’>’/2, ’=<’/2, ’>=’/2

and is/2;

• All arithmetic functions, not listed for brevity.

• All those built-ins whose implementation could be achieved by writing some

simple Prolog rules like, for example:

– ’;’/2 implementation, achieved with:

(A ;) :- A.

(; B) :- B.

– ’->’/2 implementation, achieved with:

(Cond -> Then) :- call(Cond), !, Then.

5.5 Solve-classic module

The actual solve-classic implementation follows its design very closely (Sec-

tion 4.6.2).

State. At the hierarchy top we have the State interface, extended by an Ab-

stractState class. This class is the base class for all other concrete classes.

The designed addition of solution and exception properties for final states, is

implemented respectively in interfaces EndState and ExceptionalState, both

derived from State.

Note that TRUE, TRUE CP and FALSE are all represented with the same

StateEnd data class. When StateEnd.next(): State is called, then the cur-

rently held context is checked by means of hasOpenAlternatives property:

• if it has open alternatives, it makes the state shift to StateBacktracking,

implementing TRUE CP designed behaviour;

90 CHAPTER 5. 2P-KT IMPLEMENTATION

• if it hasn’t open alternatives, next(): State throws a Kotlin NoSuchEl-

ementException, signaling a wrong usage, hence implementing the TRUE,

FALSE final states behaviour.

HALT state is implemented in StateHalt data class.

Cursor. To help managing solver inner workings, solve-classic implementation

defines a new type of collection, called Cursor.

A Cursor is like an Iterator, but instead of interacting with it requiring the

“next element” and if it “has a next element”, the Cursor type can be queried to

know if it points to a current element or if it isOver (i.e. no current element

pointed), and that pointer can be moved forward by calling next method which

returns a new instance of Cursor pointing to the next element.

Some basic implementations for Cursor interface are present and used inter-

nally, as needed, by static factory methods :

• EmptyCursor, which is a cursor pointing to nothing and with no next capa-

bility (i.e. exception is thrown if next is called);

• NonLastCursor, which is a cursor that has a next element to be pointed to;

• MapperCursor, which is a cursor that lazily maps current object with pro-

vided mapper function, and as next cursor returns another MapperCursor

with same mapper function;

• ConjunctionCursor, which is a cursor to compose Cursors in a way that

the second Cursor is exploited only when the first one isOver.

ExecutionContext. The solve-classic ExecutionContext is implemented in an

ExecutionContextImpl data class. Over the interface properties it features the

ones below:

• query, which will contain the user provided initial query;

• goals, which will contain the Cursor on top of goals to be executed;

CHAPTER 5. 2P-KT IMPLEMENTATION 91

• rules, which will contain the Cursor over current rules open alternatives;

• primitives, which will contain the Cursor over current primitives execution

open alternatives;

• startTime and maxDuration, which are properties to implement solver time

management;

• choicePoints, which will contain the head of a linked list of choice points;

• parent, which will contain current context’s parent;

• depth, which will contain how much deep in the search tree we are with

current context (i.e. how many rules or primitives executions have been

triggered);

• step, which will contain how many computational steps (measured in “state

shifts”) have been carried out till current execution context.

ExecutionContextImpl also has the following computed properties:

• isRoot, which returns whether depth == 0;

• hasOpenAlternatives, which forwards the call to current context choice

point;

• isActiavtionRecord, which tests whether current context doesn’t have a

parent or has a parent with depth equals current depth minus one;

• pathToRoot, which computes the sequence of contexts following the parent

property till the resolution root;

• prologStackTrace, which returns the Prolog stack trace from current con-

text to root context.

92 CHAPTER 5. 2P-KT IMPLEMENTATION

ChoicePointContext. A ChoicePointContext is a sealed class containing:

• the alternatives: Cursor to be explored;

• the executionContext in which the choice point was encountered;

• the parent: ChoicePointContext of current one;

• the depth at which the ChoicePointContext was encountered;

• a property pathToRoot that contains a lazily initialised sequence of all choice

points opened from this to the resolution tree root;

• a property hasOpenAlternatives to query if any alternatives: Cursor

present from current choice point till the root, has other alternatives to be

explored.

It has two data class implementations: Rules and Primitives. They are

meant to contain respectively multiple rules choice points and multiple primitive

responses choice points.

Two extension methods are provided to create modified instances of these im-

mutable classes:

• appendRules, which creates and returns a new ChoicePointContext with

provided rules alternatives Cursor and with parent set to the receiver object,

hence leghthening the choice points list; depth field is also increased by one;

• appendPrimitives, which does the same thing but with provided primitives

alternatives.

ClassicSolver. The ClassicSolver class is the Solver implementation pro-

vided by solve-classic module.

ClassicSolver is a data class with four constructor parameters:

• libraries, to hold loaded libraries at start;

• flags, to hold enabled flags at start;

CHAPTER 5. 2P-KT IMPLEMENTATION 93

• staticKB, to hold all static predicates loaded upon construction;

• dynamicKB, the same as previous point, but for changeable Knowledge Base.

The solve method is implemented as follows:

• All the computation happens inside a SequenceScope, which is a Kotlin

functionality to lazily yield all the elements of a sequence.

• The method starts initialising an ExecutionContextImpl with provided

solver constructor parameters.

• A variable state is initialised with a StateInit instance holding the newly

constructed context.

• Then the method execution enters an infinite loop in which:

1. the method next(): State is called on state variable and its result

is assigned to state itself;

2. if state is an EndState instance, then the contained solution is

yielded to the SequenceScope; note that until another element is re-

quested to the sequence the computation is suspended after the yield

call (this is how lazyness is achieved);

3. if state has no other alternatives, break the infinite loop.

DefaultBuiltins. The solve-classic solver implementation comes with some spe-

cific DefaultBuiltins that serve to its correct inner workings.

In addition to CommonBuiltins it adds:

• some static rules:

– (A, B) :- A, B to help the unpacking of conjunctions in multiple

goals;

– call(X) :- X to unpack every call/1 primitive usage;

94 CHAPTER 5. 2P-KT IMPLEMENTATION

– catch(G, ,) :- G to manage the catch/3 situation with no errors.

In fact in solve-classic solver implementation the catch management is

made for the “non error” part thanks to a rule, while the “error” part

is managed internally by the inferential core itself as described in its

design.

• the built-in primitive Throw that, in this implementation, only needs to re-

turn a Solution.Halt with the correct PrologError instance and the infer-

ential core will do the rest.

5.6 Solve-streams module

The actual implementation, even this time, follows quiet closely the design

(Section 4.7). We will focus on notable implementation details.

5.6.1 FSM execution and states

One thing to keep in mind as you move from solve-classic to solve-streams, is

that:

• The solve-classic implementation is one big state machine from start to end,

with a big context holding all information needed during resolution process.

The “communication” between states can happen easily creating a copy of

the context, with a modified field, that will be read by subsequent states.

• The solve-streams implementation, instead, is a small state machine that

in two of its states can create sub-instances of itself (to solve sub-goals).

The “communication” between states becomes much more difficult this way,

because information passing should happen through Solve.Request and

Solve.Response fields.

State. The State interface defines, besides the already designed method be-

have(): Sequence<State>, these elements:

CHAPTER 5. 2P-KT IMPLEMENTATION 95

• a solve: Solve field, that will contain either the Request, which the state

is computing for, or the Response which the state is holding to respond to

a request;

• a hasBehaved: Boolean property, which will contain whether the current

state has behaved or not.

Starting from State the hierarachy of state classes counts:

• The interface IntermediateState extending State and overriding solve

field type to be a Solve.Request<ExecutionContext>, because intermedi-

ate states only can have requests to carry out.

• The interface FinalState extending State and overriding solve field to be

of type Solve.Response, because final states only can contain a response to

some request.

• The abstract class AbstractState, which is a State with an execution strat-

egy (to be used internally, executing the behaviour) and whose hasBehaved

property is false.

• The interface TimedState, which is a State to which can be asked the current

time.

• The class AlreadyExecutedState, which extends State and it’s a wrap-

per class for some other State to signal that it has behaved; its property

hasBehaved always returns true.

• The abstract class AbstractTimedState, which extends AbstractState and

implements the timed behaviour that every non-final state should have. It

provides a template method behaveTimed(): Sequence<State> which is

called only if the execution max duration has not been exceeded. In case it

has been exceeded the state shifts immediately into StateEnd.Halt, return-

ing a sequence containing only that as next state.

96 CHAPTER 5. 2P-KT IMPLEMENTATION

• Then we have the main states implementations StateInit, StateGoalEval-

uation and StateRuleSelection, which follow the design description, all

of them extending AbstractTimedState.

• At last we have StateEnd sealed class extending AbstractState and Fi-

nalState, and their three data class implementations: StateEnd.True,

StateEnd.False and StateEnd.Halt. Their behave method returns an

emptySequence, because end states have no subsequent state.

We also provide some extension methods with ItermediateState as re-

ceiver, along with StateEnd, to enhance the state behaviour writing, in

particular end state shifting. Following the replyXXX methods style in

Solve.Request, here we have:

– stateEndTrue, to create a successful end state, accepting as first argu-

ment a substitution;

– stateEndFalse, to create a failed end state;

– stateEndHalt, to create an halt end state, accepting as first argument

the exception thrown;

– stateEnd, to dynamically create the correct end state depending on

first Solution parameter;

– stateEnd, to forward the provided Solve.Response with correct end

state.

StateMachineExecutor. Because of the particular nature of our state machine,

whose behaviour produces all next possible states, we implemented its execution

algorithm into a dedicated StateMachineExecutor class.

Roughly speaking the execution of such a state machine is a continuous “flat

mapping” of state behaviours, until the last state has behaved. It is like trying

to flatten the search-tree exploration into a single sequence of visited states. The

resulting sequence will be to all effects “the history” of that tree navigation from

top to bottom, left to right.

CHAPTER 5. 2P-KT IMPLEMENTATION 97

The internal execution algorithm is recursive and given a state S, can be de-

scribed as follows:

1. If S has already behaved, return a sequence containing only S.

2. Otherwise, start building a lazy sequence that initially contains only S, then:

(a) retrieve all possible next states of S;

(b) for each S ′ of them, execute this algorithm from (1.) and add the result,

of its explosion, to the lazy sequence being built.

The public execute(state: State): Sequence<State> always drops first

state returned from the internal algorithm, because it is the input state, hence not

interesting. It also unwraps states wrapped in AlreadyExecutedState.

Moreover we have an internal method called executeWrapping(state: State):

Sequence<State> which calls execute and then wraps every returned state into

AlreadyExecutedState, needed inside StateRuleSelection. This method is

needed since in StateRuleSelection, with this architecture, at some point we

want to know the sub-goal Solve.Responses, to forward them as responses of

current Solve.Request. At first sight, we could merely use execute method

onto instantiated StateInit with the sub-request, but this would lead to dou-

ble execution of that StateInit; the first time inside the StateRuleSelection

and the second time from the outer execute, which has brought the execu-

tion till the StateRuleSelection itself. This is why inside any state, if a sub-

execution is needed, the executeWrapping should be used. In fact wrapping

states into AlreadyExecutedState is an implementation trick to make the outer

execute return them as they are. Every “part of state sequence” wrapped in

AlreadyExecutedState is put in the output sequence, untouched.

5.6.2 Solver and support classes

SideEffectManagerImpl. The SideEffectManagerImpl class is very impor-

tant for solve-streams implementation. It is the communication vehicle between

98 CHAPTER 5. 2P-KT IMPLEMENTATION

states for “notifying” that a side effect on execution flow should happen. It con-

tains the following methods:

• Cut related:

– cut, to apply the Cut side effect;

– stateInitInitialize, to initialise every StateInit to be ready for

side effects;

– enterRuleSubScope, to prepare a new SideEffectManager while en-

tering a rule sub-scope;

– extendParentScopeWith, to be used when exiting a rule sub-scope;

– resetCutWorkChanges, to reset Cut side effects when exiting a call/1

primitive.

• Throw/Catch related:

– throwCut, to apply the Throw side effect;

– isSelectedThrowCatch, to know if the current catch/3 was selected

by a throw/1;

– retrieveAncestorCatch, to find among parents an ancestor matching

catch/3;

– ensureNoMoreSelectableCatch, to ensure that a catch/3 which has

been selected, won’t be selected again;

– shouldExecuteThrowCut, to know if a Throw has been executed.

• related to Cut and Throw/Catch:

– creatingNewRequest, to reorganise internal data structures during new

sub-request creation;

– shouldCutExecuteInRuleSelection, to query if the Cut side effect

should be applied; it should be used in StateRuleSelection only, be-

cause makes some specific checks.

CHAPTER 5. 2P-KT IMPLEMENTATION 99

ExecutionContextImpl. The solve-streams ExecutionContext is implemented

in an ExecutionContextImpl data class. Beyond the interface properties, it fea-

tures:

• a field solverStrategies to hold the provided strategies;

• a field sideEffectManager to hold the current insatnce.

Solver. The Solver implementation provided by solve-streams is StreamsSolver.

It is a data class holding start parameters like initial libraries, flags, staticKB

and dynamicKB.

The public solve method implementation does the following steps:

1. Creates a Solve.Request with the goal Struct and an ExecutionCon-

textImpl with provided solver parameters and the specified maxDuration.

2. Forwards this request to the internal implementation of solve.

3. Returns all provided Solve.Responses, mapping them to the respective

Solutions.

The internal solve method implementation:

1. Creates a new StateInit instance with provided Solve.Request.

2. Executes that state machine through StateMachineExecutor.execute().

3. Filters the resulting state sequence by FinalState whose response query is

equals to the request one, then finally maps it to its held Solve.Response.

SolverUtils. The SolverUtils Kotlin file contains several useful methods which

simplify the writing of common behaviours, recurring during solver implementa-

tion. We have:

• Term.isWellFormed(): Boolean, which tells if receiver Term is well-formed;

100 CHAPTER 5. 2P-KT IMPLEMENTATION

• Term.prepareForExecutionAsGoal(): Struct, which prepares for execu-

tion the receiver Term, using under the hood the Clause.prepareForExe-

cution() method;

• Sequence.orderWithStrategy(...), which lazily orders the receiver se-

quence with provided strategy argument;

• moreThanOne(s: Sequence<*>): Boolean, which lazily checks if the pro-

vided sequence has more than one element or not;

• Solve.Request.newSolveRequest(...): Solve.Request, which creates

a copy of receiver request, modifying fields accordingly to all provided pa-

rameters; for example it adds provided substitution to the already present

ones, it adjusts the execution max duration and current time and sets the

new request goal in returned request;

• Solve.Request.replyWith(r: Solve.Response): Solve.Response, which

is useful to forward a response to the upper Solve.Request.

5.6.3 DefaultBuiltins

As already explained in Section 4.7.3, we had to package the solver with a

plethora of basic primitives: Conjunction, Cut, Call, Throw, Catch and Not.

They are all Kotlin objects extending PrimitiveWrapper to ease their writing,

and their behaviour follows closely what has been described in design section.

Not. The Not primitive has been added to solve-streams solver default ones,

for efficiency reasons. Instead of leveraging on the CommonRule couple (not(X)

:- call(X), !, fail. and not().) that would require to instantiate several

state machines, we provided a simple and straightforward primitive that inverts

the result of the single argument goal execution.

CHAPTER 5. 2P-KT IMPLEMENTATION 101

5.7 Dsl-core module

The implementation of 2p-kt Domain Specific Language (DSL) is provided in

this module, following the explained design (Section 4.8).

The Prolog interface, which extends Scope, is the reification of that design,

with all required methods (including the default implementations); among the

others in fact, we have:

• Any.toTerm(): Term, which is the universal converter of any type to Term

representation; it raises an IllegalArgumentException if no conversion is

possible;

• String.invoke(term: Any, vararg terms: Any): Struct, which en-

ables the programmers to use Strings as if they were structure functors;

• all language arithmetic operators overridden in a way such that the operator

becomes the functor for the two (converted) terms: Any.operator(term:

Any): Struct;

• a lot of infix methods to make easier to read a DSL written program; all

of them have an Any receiver argument and an Any argument and return a

Struct whose functor is dependent on the method name; for example and

creates conjunction, or creates disjunction, ‘=‘ creates a term ’=’(term1,

term2), and so on;

• some Scope methods overloaded, to make them accept Any arguments and

hence widen their applicability;

• Any.‘if‘(other: Any): Rule, which is an infix method to gracefully

write Prolog rules;

• two infix methods Var.to(term: Any): Substitution and String.to(

term: Any): Substitution, which make more compact the Substitu-

tion creation;

102 CHAPTER 5. 2P-KT IMPLEMENTATION

• a companion object method empty(): Prolog to create a clean prolog

scope.

Finally a module global function <R> prolog(function: Prolog.() -> R):

R is provided, implementing the scoping of this DSL. In fact all described meth-

ods work without problems if inside such a scope, because defined into function

receiver type.

5.8 Dsl-unify module

This dsl-core extension DSL, enhanced with unification constructs (Section 4.9),

is implemented as the interface PrologWithUnification, which extends Prolog

and Unification.

Inside it default methods, overloading Unificator ones, are provided widening

the parameters typing to Any; thus we have:

• the three normal functions, with Any type parameters:

– mgu(term1: Any, term2: Any): Substitution

– matches(term1: Any, term2: Any): Boolean

– unify(term1: Any, term2: Any): Term?

• the three infix versions, with Any type parameters:

– Any.mguWith(term: Any): Substitution

– Any.matches(term: Any): Boolean

– Any.unifyWith(term: Any): Term?

PrologWithUnification companion object provides, besides the empty() fac-

tory method, an of(unificator: Unificator): PrologWithUnification one

to specify a different unification strategy, if the default one is not desired.

Finally a module global function, specific for this DSL extension, is provided to

be used when unification features are needed inside a prolog scope: <R> prolog(

function: PrologWithUnification.() -> R): R.

CHAPTER 5. 2P-KT IMPLEMENTATION 103

5.9 Dsl-theory module

This is the dsl-unify extension DSL, adding theory creation capabilities (Sec-

tion 4.10), is implemented through the interface PrologWithTheories, which ex-

tends PrologWithUnification.

Inside it we have the two designed methods to create Prolog theories:

• theoryOf(vararg clauses: Clause): ClauseDatabase, which implements

the level (ii) constructor;

• theory(vararg clauseFunctions: Prolog.() -> Any): ClauseDatabase,

which implements the level (iv) constructor.

Finally the module global function <R> prolog(function: PrologWithThe-

ories.() -> R): R, is provided to enable programmers to use the enhanced the-

ories creation prolog scope, when needed.

104 CHAPTER 5. 2P-KT IMPLEMENTATION

Chapter 6

2p-kt Validation

After the previous chapters, where we modelled the system to finally imple-

ment it, we now proceed with the description of its validation. More precisely, in

section 6.1 we discuss the test design adopted in our testing suite then we briefly

present an overview of the implementation (section 6.2). Then, in section 6.3 we

discuss the requirement compliance of 2p-kt.

6.1 Test design

Each project module has its own testing module. Testing modules contain

automated tests to verify module classes compliance with the expected behaviour

and intercept possible future regressions when code will be modified.

In our testing code-base we implemented three of many types of functional

testing :

Unit tests: These are tests whose main purpose is to exercise single functional-

ities of one class (i.e. single methods or even single lines of code). They

requires detailed knowledge of the internal program design and code, hence

are written by programmers while implementing the under test class.

Integration tests: These are tests whose main purpose is to verify that two or

more parts together, work as expected.

105

106 CHAPTER 6. 2P-KT VALIDATION

System tests: These are tests that exercise the whole system behaviour, as if it

was used by the final user. It is a black-box type of testing, where the result

is checked for correctness.

Furthermore, our design opted to not abuse of inheritance mechanism to achieve

the application of DRY (Don’t Repeat Yourself) principle. Even if it is very cheap

to implement, it is very hard to maintain. For example, inheriting a test class may

inherit even useless behaviour, or behaviour that for a specific class instance should

not exist, and a test may be overridden to do nothing. The solution to this prob-

lems could be to create a test class hierarchy that in the worst case mirrors the

tested hierarchy, thus duplicating the programmer work. Hence not very conve-

nient for a newborn project.

We decided to opt for delegation. Test classes delegate some of their repeated

behaviours to an external object whose purpose is exactly that of providing

a functionality-testing service. Thus every test class can implement its specific

tests without the problems described above, selecting every time which test helper

method to use from the “service” object.

The pattern we implemented in our tests is the following, where “type” word

should be replaced by the actual type under test:

1. We have a test class named TypeTest, which is a unit test for Type. This

class is in the same package of the tested class, but in the mirrored testing

module.

2. Then, we have a “service” object named TypeUtils, which contains useful

methods to help testing Type and possible derived or closely related types.

If test data is shared among different test classes, TypeUtils contains it,

permitting its reuse. This object is in a testutils sub-package of tested

class package.

This way there’s no need for a hierarchy of test classes, and tests are more clear,

because all the under test behaviour is specified in one class, and not divided into

different classes.

CHAPTER 6. 2P-KT VALIDATION 107

6.2 Test implementation overview

In this section we provide an overview of tests implementation for each tested

module. Some modules not completely tested are not listed in sections below.

These ones test implementation, are object of future work on this project.

6.2.1 Core module tests

In core module testing, we have:

• a unit test for each type;

• a unit test for each interface companion object (which usually implements

factory functionality); factories are tested also to provide correct sub-classes

instances when needed;

• an integration test for notable Atom instances like true, fail, [] and {};

• a testing utility class AssertionUtils, with some useful methods to help

testing all classes, like onCorrespondingItems which executes the given

function on corresponding items of two given Iterables;

• a testing utility class TermTypeAssertionUtils, with methods to test Term

hierarchy classes runtime type and isXXX getters.

In this module testing every single field, property, method and constructor is

tested in all possible cases. In it we have the finest testing implemented throughout

the project. Tests total count amounts to 489.

6.2.2 Unify module tests

In unify module testing, we have:

• EquationTest unit test, which deeply tests the Equation type;

• EquationUtils, which contains correct and not correct samples of equa-

tions, shollow equations or deep equations, and utility assertion methods

108 CHAPTER 6. 2P-KT VALIDATION

like assertAllIdentities, assertAnyContradiction, and so on to apply

DRY principle in EquationTest;

• AbstractUnificationStrategyTest unit test, which tests the unification

algorithm over equation samples provided by EquationUtils plus other ad-

hoc thought examples to stress particular situations;

• UnificatorTest unit test, which tests the different types of default unifica-

tion algorithms implemented;

• UnificatorUtils, which contains utility data useful for testing AbstractUni-

ficationStrategy and Unificator, and utility methods like assertMguCor-

rect, assertMatchesCorrect, and so on.

Tests total count amounts to 49.

6.2.3 Theory module tests

In theory module testing, we have testing classes for the Rete algorithm imple-

mentation and for the ClauseDatabase implementation.

• All Rete node types are tested in multiple situations.

• All ClauseDatabase creation modalities and instance methods are tested

through ClauseDatabaseTest and ClauseDatabaseImplTest.

Tests total count amounts to 157.

6.2.4 Solve module tests

In solve module testing, we have a unit test for each class. The only exceptions

are some simple common primitives and some function implementations which

miss a corresponding unit test, and will be covered by future works tests.

CHAPTER 6. 2P-KT VALIDATION 109

Solve-test module. Solve module and its dependent sub-modules testing are as-

sisted by a solve-test module, crafted to test “solve” capabilities. The solve-test

module depends on solve, from which inherits main types, but even from dsl-theory

to help the writing of test data.

In solve-test we have these classes:

• DummyInstances, containing fake objects to be used in parameter filling;

• TestUtils, which contains:

– some commonly useful methods in testing solver hosting modules like,

assertSolutionEquals

– a DSL-theory raw extension for test writing, enhancing the program-

ming experience:

∗ Struct.yes(vararg withSubstitution: Substitution): Solu-

tion.Yes, which creates a Solution.Yes starting from the receiver

structure and the provided substitutions;

∗ Struct.no(): Solution.No, which creates a Solution.No start-

ing from the receiver structure;

∗ Struct.halt(exception: TuPrologRuntimeException): Solu-

tion.Halt, which does the same thing with the provided exception;

∗ Struct.hasSolutions(vararg Struct.() -> Solution), which

creates a Pair from the provided goal structure to a List of its

Solutions;

∗ Solution.changeQueryTo(query: Struct): Solution, which

copies the receiver Solution into another instance with only the

query field changed;

∗ Iterable<Solution>.changeQueriesTo(query: Struct): It-

erable<Solution>, which does the same thing of previous method

but over an Iterable of solutions.

• TestingClauseDatabases, which contains all custom created databases to

test various solver functionalities;

110 CHAPTER 6. 2P-KT VALIDATION

• PrologStandarExampleDatabases, which contains all Prolog Standard ex-

ample databases of implemented primitives, to ensure the standard behaviour

is respected;

• SolverFactory, which is an interface defining properties and a method to

create a custom solver instance to be tested;

• SolverTestPrototype, that is a base class to which all solver implemen-

tations will delegate system testing. Here we implement all system testing

methods, that each solver should comply with, calling them in their specific

tests.

Tests total count amounts to 211.

6.2.5 Solve-streams module tests

In solve-streams module testing, we have:

• unit test classes related to the Finite State Machine, which test each state

possible outcomes;

• integration test class StateIntegrationTesting, which tests the whole state

machne behaviour;

• unit test classes related to each primitive implementation;

• integration test classes like CutAndConjunctionIntegrationTest, which tests

the integration of few primitives;

• system test class StreamsSolverSystemTesting, which implements SolverFac-

tory delegating to SolverTestPrototype all its testing methods. In this

class to test the solver behaviour as a whole, DefaultBuiltins are loaded

before testing starts.

Tests total count amounts to 150.

CHAPTER 6. 2P-KT VALIDATION 111

6.2.6 Solve-classic module tests

At time of writing, the only implemented test in solve-classic is the most impor-

tant test ClassicSolverSystemTesting, which tests the overall good functioning.

6.3 Requirements compliance

Architectural requirements. 2p-kt adheres to all architectural requirements

which required (i) multi-platform support and extendability towards other plat-

forms – achieved with the adoption of Kotlin multi-platform as development tech-

nology – and (ii) a strong modularity—achieved implementing the proposed

design, in which modules have single responsibilities.

Functional requirements. 2p-kt partially adheres to Prolog Standard sup-

port requirement. More precisely, this thesis project successfully supports the

implementation of all standard built-ins, but at time of writing only part of Prolog

ISO standard built-ins are actually implemented. Hence, the execution of some

ISO Prolog predicates is not currently possible. The full Prolog ISO standard

support is object of future works (Section 7.2) on this project, due to the amount

of work required.

However, our implementation adheres to all other functional requirements, in-

cluding:

• Immutability by default: All project classes are immutable, by design.

• Detailed Term hierarchy: We designed a very detailed Term hierarchy

following the Prolog Standard reference and further adding some other types

(Figure 4.2).

• Term instances should be of most specific class: We designed the core

classes to be created through static factory methods internally dispatching

the correct instance creation.

112 CHAPTER 6. 2P-KT VALIDATION

• Solver computation max duration: We endowed the common Solver

interface of a method accepting a max duration parameter, whose meaning

must be honored by solver implementations.

Non-functional requirements. 2p-kt adheres to requirement maximise pro-

grammatic usability of concepts providing some DSL modules, addressing the

requirement concern.

Regarding the project code testing requirement it can be considered satis-

fied, because indirectly all the public API of the project has been tested. As we

described in section 6.1 and section 6.2, a specific unit testing has been carried out

for core, unify, theory, solve, solve-streams modules. A system test has been

provided for solve-classic module and then we have indirectly tested dsl-core,

dsl-unify and dsl-theory modules extensively using them in system tests.

Chapter 7

Conclusions

In this last chapter, we firstly summarise the work that has been done with

this master thesis in section 7.1. Finally, we discuss some possible future works

that could be carried out to enhance the project implementation in section 7.2.

7.1 Summary

In this thesis we have successfully designed and implemented 2p-kt which is

a lightweight, modular, multi-platform framework for the Prolog language, over-

coming all identified tuProlog issues (section 3.1), hence successfully rebooting the

project. Indeed, it features nine modules (fig. 4.1) which encapsulate a specific

feature, possibly enabling a selective usage of each one.

We endowed 2p-kt of two interchangeable resolution engines, based on the

same common API. The former features the classical tuProlog resolution (sec-

tion 4.6). The latter features a newly conceived Prolog resolution implementa-

tion (section 4.7), paving the way for resolution parallelisation and Prolog “choice

strategies” modification.

In literature or in commerce, there’s no logic framework working on multiple

platforms in a lightweight fashion, hence without an external library (section 2.2).

The overall 2p-kt can be currently compiled down and used as a library in JVM and

JavaScript platforms, but every other platform targeted by Kotlin multi-platform

113

114 CHAPTER 7. CONCLUSIONS

is virtually supported, hence including Native ones. Thus, another contribution

of this thesis, is that of providing a Prolog framework with native multi-platform

support like no other does.

However, currently, 2p-kt has some limitations. Due to lack of time, the Prolog

ISO standard built-in predicates implementation has not yet been completed and

will be object of future works on this project. Nonetheless, the way for their

implementation is pave.

Ultimately, we are overall satisfied with the work that has been carried out

with this thesis.

7.2 Future Works

In this section we list some of possible future works.

Complete Prolog Standard ISO support. The 2p-kt implementation cur-

rently complies with a subset of Prolog ISO standard. Missing standard predicates

should be implemented in future, to reach full ISO compliance.

Prolog resolution parallelism. It is known in literature how the Prolog res-

olution process parallelisation is a long-standing problem, in particular because

of “problems” with backtracking mechanism. Because in our design we enforced

immutability, in future it could be evaluated how this choice impacts the construc-

tion of a parallel resolution engine. We think that solve-streams Solver could be

a good starting code-base to experiment this kind of evolution.

New resolution modules. Our architecture allows new Solver modules im-

plementation, benefiting from the basic components already provided. It could

be interesting to explore the implementation of alternative modules not (strictly)

based on a depth-first search. For instance, tabled resolution, breadth-first search

approaches or constraint programmming approaches.

CHAPTER 7. CONCLUSIONS 115

Interactive Interpreter. As for other Prolog systems, an interactive interpreter

could be a good way to experiment little pieces of Prolog code. Since 2p-kt is a

modular project, a module for such a feature could be a good addition.

Tail recursion optimisation. Current 2p-kt solvers implementations, do not

have any tail recursion optimisation. Hence for some Prolog programs, the run-

time memory allocation could be sub-optimal.

Parser module. A parser module should be added to 2p-kt to complete its

functionalities. Such a module should depend on theory and implement the Prolog

text parsing functionality, giving in output the parsed theory object.

Test coverage. 2p-kt unit tests do not cover the full project implementation, in

particular there are no unit tests for solve-classic and DSL modules (dsl-core,

dsl-unify, dsl-theory). We do not aim at 100% test coverage, since it is a myth,

but it would be better to cover at least all main public classes implementation.

Signature vararg support. Another minor interesting feature, not already im-

plemented but “prepared” for that, it’s the support for vararg Prolog predicates.

Even though this is not a Prolog ISO standard feature, it would be stimulating to

try implementing such a feature.

116 CHAPTER 7. CONCLUSIONS

Bibliography

[1] G. Piancastelli, A. Benini, A. Omicini, and A. Ricci, “The architecture and

design of a malleable object-oriented prolog engine,” in Proceedings of the

2008 ACM symposium on Applied computing, pp. 191–197, ACM, 2008.

[2] C.-P. Wirth, J. H. Siekmann, C. Benzmüller, and S. Autexier, “Jacques her-

brand: Life, logic, and automated deduction.,” 2009.

[3] J. Ferreirós, “The road to modern logic—an interpretation,” Bulletin of Sym-

bolic Logic, vol. 7, no. 4, pp. 441–484, 2001.

[4] J. A. Robinson et al., “A machine-oriented logic based on the resolution prin-

ciple,” Journal of the ACM, vol. 12, no. 1, pp. 23–41, 1965.

[5] R. Kowalski, “Predicate logic as programming language,” in IFIP congress,

vol. 74, pp. 569–544, 1974.

[6] P. Deransart, L. Cervoni, and A. Ed-Dbali, Prolog: The Standard: Reference

Manual. Berlin, Heidelberg: Springer-Verlag, 1996.

[7] K. R. Apt, “The logic programming paradigm and prolog,” arXiv preprint

cs/0107013, 2001.

[8] A. Maffi, “Blockchain and beyond: Proactive logic smart contracts,” Master’s

thesis, Alma Mater Studiorum - Università di Bologna - Campus di Cesena,

2018.

117

118 BIBLIOGRAPHY

[9] J. Wielemaker and V. S. Costa, “On the portability of prolog applications,”

in International Symposium on Practical Aspects of Declarative Languages,

p. 69, Springer, 2011.

[10] N.-F. Zhou, “B-prolog user’s manual,” Version 7.8. Dostupné z: www. probp.

com/download/manual. pdf, 1994.

[11] M. V. Hermenegildo, F. Bueno, M. Carro, P. López-Garćıa, E. Mera, J. F.

Morales, and G. Puebla, “An overview of ciao and its design philosophy,”

Theory and Practice of Logic Programming, vol. 12, no. 1-2, pp. 219–252,

2012.

[12] M. Wallace and A. Veron, “Two problems-two solutions: one system-eclipse,”

in IEE Colloquium on advanced software technologies for scheduling, pp. 3–1,

IET, 1993.

[13] D. Diaz and P. Codognet, “The gnu prolog system and its implementation,”

in SAC (2), pp. 728–732, 2000.

[14] X. T. GmbH, “Jekejeke runtime reference.” http://www.jekejeke.ch/

idatab/rsclet/prod/en/docs/05_run/10_docu/02_reference/package.

pdf, October 2019.

[15] B. D. Steel, “Win-prolog 7.0 - technical reference.” http://www.lpa.co.uk/

ftp/7000/win_ref.pdf, 2019. LPA association url: http://www.lpa.co.

uk/win.htm.

[16] M. Carlsson and P. Mildner, “Sicstus prolog—the first 25 years,” Theory and

Practice of Logic Programming, vol. 12, no. 1-2, pp. 35–66, 2012.

[17] J. Wielemaker, T. Schrijvers, M. Triska, and T. Lager, “Swi-prolog,” Theory

and Practice of Logic Programming, vol. 12, no. 1-2, pp. 67–96, 2012.

[18] K. Sagonas, T. Swift, and D. S. Warren, “Xsb as an efficient deductive

database engine,” in ACM SIGMOD Record, vol. 23, pp. 442–453, ACM,

1994.

http://www.jekejeke.ch/idatab/rsclet/prod/en/docs/05_run/10_docu/02_reference/package.pdf
http://www.jekejeke.ch/idatab/rsclet/prod/en/docs/05_run/10_docu/02_reference/package.pdf
http://www.jekejeke.ch/idatab/rsclet/prod/en/docs/05_run/10_docu/02_reference/package.pdf
http://www.lpa.co.uk/ftp/7000/win_ref.pdf
http://www.lpa.co.uk/ftp/7000/win_ref.pdf
http://www.lpa.co.uk/win.htm
http://www.lpa.co.uk/win.htm

BIBLIOGRAPHY 119

[19] V. Santos Costa, L. Damas, and R. Rocha, “The yap prolog system,” arXiv

preprint arXiv:1102.3896, 2011.

[20] JetBrains s.r.o., “Kotlin programming language.” https://kotlinlang.

org/, October 2019.

[21] TIOBE Software BV, “Tiobe index.” https://www.tiobe.com/

tiobe-index/, October 2019.

[22] B. Venners and B. Eckel, “The trouble with checked exceptions: Version-

ing with checked exceptions.” https://www.artima.com/intv/handcuffs2.

html, August 2003.

[23] B. Venners and B. Eckel, “The trouble with checked exceptions: The scala-

bility of checked exceptions.” https://www.artima.com/intv/handcuffs3.

html, August 2003.

[24] E. Denti, A. Omicini, and A. Ricci, “tuprolog: A light-weight prolog for inter-

net applications and infrastructures,” in International Symposium on Practi-

cal Aspects of Declarative Languages, pp. 184–198, Springer, 2001.

[25] J. Bloch, Effective java. Addison-Wesley Professional, 2017. Item 17.

[26] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, “Design patterns: Micro-

architectures for reusable object-oriented design,” Reading: Addison-Wesley,

1994.

[27] A. Martelli and U. Montanari, “An efficient unification algorithm,” ACM

Transactions on Programming Languages and Systems (TOPLAS), vol. 4,

no. 2, pp. 258–282, 1982.

[28] C. L. Forgy, “Rete: A fast algorithm for the many pattern/many object pat-

tern match problem,” in Readings in Artificial Intelligence and Databases,

pp. 547–559, Elsevier, 1989.

https://kotlinlang.org/
https://kotlinlang.org/
https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/
https://www.artima.com/intv/handcuffs2.html
https://www.artima.com/intv/handcuffs2.html
https://www.artima.com/intv/handcuffs3.html
https://www.artima.com/intv/handcuffs3.html

	Acknowledgements
	Introduction
	State of the Art
	The Prolog language
	Brief history
	Concepts summary
	Horn clauses and SLD-resolution principle

	Prolog implementations
	Kotlin and multi-platform support
	Brief history
	Main features
	Multi-platform programming

	2p-kt Project
	tuProlog
	Use scenarios
	Requirements

	2p-kt Design
	Architectural design
	Core module
	Main ``core'' types
	Other ``core'' features

	Unify module
	Abstract unification algorithm
	Main ``unify'' types

	Theory module
	Solve module
	Prolog execution model and the search-tree
	Main ``solve'' types

	Solve-classic module
	Inferential core design
	Main ``solve-classic'' types

	Solve-streams module
	Rationale
	Inferential core design
	Default primitives
	Main ``solve-streams'' types

	Dsl-core module
	Term creation modalities

	Dsl-unify module
	Dsl-theory module

	2p-kt Implementation
	Core module
	Unify module
	Theory module
	Rete algorithm implementation

	Solve module
	Solve-classic module
	Solve-streams module
	FSM execution and states
	Solver and support classes
	DefaultBuiltins

	Dsl-core module
	Dsl-unify module
	Dsl-theory module

	2p-kt Validation
	Test design
	Test implementation overview
	Core module tests
	Unify module tests
	Theory module tests
	Solve module tests
	Solve-streams module tests
	Solve-classic module tests

	Requirements compliance

	Conclusions
	Summary
	Future Works

