
Alma Mater Studiorum · Università di Bologna

Scuola di Scienze
Dipartimento di Fisica e Astronomia
Corso di Laurea Magistrale in Fisica

Loop-induced annihilation of dark matter

Relatore:
Prof. Fabio Maltoni

Correlatore:
Dott. Jan Heisig

Presentata da:
Daniele Massaro

Anno Accademico 2018/2019





The story so far:
In the beginning the Universe was created.
This has made a lot of people very angry
and been widely regarded as a bad move.

Douglas Adams
The Restaurant at the End of the Universe

Alla mia famiglia, a Federica.
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Abstract

Plenty of evidences suggest the existence of a new type of non-luminous matter
in the Universe, that has been called dark matter. Its nature is still unresolved,
however, there is a widespread belief that is a new particle. Today we have three
important search strategies for dark matter: indirect detection, direct detection
and collider searches. In this thesis we focus on indirect detection, which
investigates the products of annihilation of dark matter in overdense regions of
the Universe. In particular we focus on γ-ray observations, considering the γ-ray
line signal, arising from dark matter annihilation into a pair of monochromatic
photons. For electrically neutral dark matter, this process can proceed only
via loop diagrams. Its computation can be done using numerical techniques.
Numerical tools are a huge step forward in the dark matter research, and help
scientists to make predictions and improve their models. However, at the current
status there is no tool allowing for the calculation of loop-induced γ-ray signals
for arbitrary models. In this thesis we make an important step towards filling
this gap. We focus on the numerical tool MadDM, and we validate the feature
of automatised loop-induced computation using two dark matter models: the
singlet scalar Higgs portal model and a simplified top-philic model. We then
constrain the parameter space of these models using the current experimental
results. In particular we consider the upper limits on γ-ray line searches obtained
by Fermi-LAT and HESS collaborations, finding that they provide important
constraints on the parameters of both models.
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Sommario

Un gran numero di evidenze osservative suggerisce l’esistenza di un nuovo tipo
di materia che non emette luce e che è stata chiamata materia oscura. La sua
natura è ancora misteriosa, ciò nonostante, un’ipotesi largamente affermata è
che si tratti di una nuova particella. Oggi abbiamo tre importanti strategie di
ricerca per la materia oscura: detezione indiretta, detezione diretta e ricerca con
acceleratori. In questa tesi ci siamo concentrati sulla detezione indiretta. Essa
studia i prodotti dell’annichilazione di materia oscura in regioni particolarmente
dense dell’Universo. In particolare ci siamo concentrati sull’osservazione di
uno spettro monocromatico di raggi γ, prodotto dall’annichilazione di materia
oscura in una coppia di fotoni monoenergetici. Attualmente si ipotizza che la
materia oscura sia elettricamente neutra, quindi questo processo può procedere
solo attraverso diagrammi a loop. Il calcolo di tali diagrammi può essere
svolto utilizzando tecniche numeriche. I software numerici costituiscono un
grande passo in avanti nella ricerca della materia oscura, aiutando gli scienziati
a realizzare predizioni e migliorare i loro modelli. Tuttavia, attualmente non
ci sono software in grado di eseguire il calcolo di processi loop-indotti per
spettri γ monoenergetici in modelli arbitrari di materia oscura. L’obiettivo di
questa tesi è quello di colmare questa lacuna. Ci concentreremo sul software
numerico MadDM testando il calcolo di processi loop-indotti su due modelli di
materia oscura: il modello “singlet Scalar Higgs portal” e unmodello semplificato
“top-philic”. Successivamente studieremo lo spazio dei parametri dei modelli,
implementando i vincoli sperimentali attuali. In particolare, considereremo i
limiti di esclusione sulle linee γ ottenuti dalle collaborazioni Fermi-LAT e HESS,
riuscendo a imporre vincoli importanti sui parametri di entrambi i modelli.
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Chapter 1

Introduction

Since the early 1930s, plenty of issues related to our astrophysics and cosmology
appeared and are still unresolved. The observation ofComaCluster by astronomer
Fritz Zwicky [1] shows an unexpectedly higher mass compared to expectations.
The measurement of galaxy rotation curves by Vera Rubin [2] suggests that
galaxies are more massive than what we can actually observe through photons.
The Cosmic Microwave Background (CMB) shows that our structure formation
models were not able to describe the measured density contrast. All these issues
lead to the hypothesis of a new kind of matter, that is invisible and undetectable
with electromagnetic radiation and that is called dark matter. The dark matter
hypothesis allowed to solve the mentioned issues, however, its elusive nature
makes it very hard to detect. Indeed, we only know few facts about dark matter.
We know it interacts at least gravitationally and that it should make up nearly the
26% of the energy budget of the Universe [3]. The rest is made of the ordinary
matter described by the Standard Model of particle physics, that accounts only
for the 5%, while the remaining 69% is known as dark energy.

A huge step forward in the comprehension of darkmatter has been done in the
last decades and new observations has been carried out. There is a widespread
belief that dark matter is a new particle which has probably interacted with
Standard Model particles in its history. Following this idea, today we have
three important search strategies for dark matter: indirect detection, which
studies the products of dark matter annihilation in overdense regions; direct
detection, that investigates the nucleon-dark matter scattering; colliders searches,
aimed at producing dark matter particles through collisions of Standard Model
ones or through fixed target experiments to study the high-intensity frontier.
Nonetheless, experiments alone are not enough for a complete understanding
of the dark matter nature. The other key ingredient is a theoretical viable dark
matter model. The assumption of dark matter being a new particle has lead
scientists to build a huge variety of dark matter models, with different mass scale,
number of particles and free parameters. Dark matter models can be constrained
using the results of experiments and observations, which can deeply constrain
the model parameter space. The comparison between theory and experiments
can be accomplished only if we are able to compute the relevant dark matter



2 Chapter 1. Introduction

DM γ

γDM

Figure 1.1: Feynman diagram of
annihilation of dark matter (DM)
into a pair of photons. This pro-
cess can proceed only via a loop.

quantities from each model. However, in most cases, a pure analytical treatment
is impractical. The best approach is to use numerical tools: they are able to
compute the relevant observables for any kind of model and allows scientists to
study the phenomenology without being aware of the analytical implications. In
this framework, a lot of tools have become available. In this thesis wewill focus on
MadDM [4], a numerical tool able to compute many relevant quantities related to
dark matter. MadDM is a plugin of the numerical tool MadGraph5_aMC@NLO
[5, 6] and can exploit all its functionalities. In particular, given a dark matter
model, MadDM is able to:

• compute the production/annihilation velocity averaged cross section, rele-
vant for both relic density and indirect detection computations;

• compute the nucleon-darkmatter scattering cross section, relevant for direct
detection;

• compute collider predictions (thanks to its underlying framework
MadGraph5_aMC@NLO);

• compare theoretical observables against experimental results, by providing
statistical tools.

In this thesis we will utilise MadDM in order to analyse an interesting signature
of dark matter indirect detection. We will focus on dark matter annihilation into
a pair of photons, that is shown in fig. 1.1. This is a two-body process, so the
final photons are monochromatic and their energy spectrum is constituted by a
sharp line peaked at the mass of the dark matter particle. This is a smoking gun
signal as the astronomical background is low. However, because dark matter in
general is supposed to be electrically neutral, this channel proceeds via a loop-
induced process. There are tools that provides a framework in which compute
loop-induced processes: MicrOMEGAs 3.0 [7] allows the computation of loop-
induced Higgs decay in γγ and gg, along with the loop-induced annihilation
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in γZ and γγ in the framework of the Minimal Supersymmetric Standard
Model. Moreover, in the case of Supersymmetry, DarkSUSY 6 [8] allows for
the computation of loop-induced annihilation of dark matter into γγ, γZ and
gg. However, at the current stage there is no numerical tool allowing for the
calculation of loop-induced γ-ray signals for arbitrary models. In this thesis we
will fill this gap: MadDM can, in principle, inherit the capability to compute
loop-induced processes from MadGraph5_aMC@NLO [9]; we will validate it
with two dark matter models. We have chosen the singlet scalar Higgs portal
model [10–12] and a simplified top-philic model [13]. The MadDM predictions
for these two models can be corroborated with an effective approach for the
singlet scalar Higgs portal model [14–16] and with analytical expressions for
the top-philic model [17, 18]. We will then use the code to derive limits on the
models, exploiting the constraints on γ-ray line signal set by the experiments
Fermi-LAT [19] and HESS [20].

The thesis is organised as follows. In chap. 2 we will review the main concepts
of cosmology, needed to understand the theory of dark matter. In chap. 3 we
introduce dark matter, discussing the main indirect evidences and possible
particle candidates; we will then go through the experimental methods that are
used today, listing their most interesting results as far as it concerns this thesis. In
chap. 4 we review the main numerical techniques that are available to compute
loop integrals, and the three Mathematica packages FeynRules [21], FeynArts
[22], NLOCT [23] we will use. These packages allow us to implement dark matter
models at a Next-to-Leading order level, in a format that can be used in MadDM
to compute loop-induced processes. In chap. 5 we present the original part of this
work. We introduce the numerical tool MadDM, focusing on its capabilities. We
test the loop-induced computation made by MadDM in two models, comparing
it to known results. We study the phenomenology of the models, showing the
main constraints on their parameter space. We conclude in chap. 6.





Chapter 2

A brief review of cosmology

The aim of this chapter is to provide the reader a brief introduction to
cosmology, for what concerns the arguments that are needed in the next chapters.
A more complete treatment of the topics can be found in books, for example [24,
25]. We are working in natural units (c = 1,  h = 1).

2.1 The Friedmann equation
When we observe our Universe on very large scales, we can say larger than

10Mpc∗, we see that it is both homogeneus and isotropic. Cosmologists sum up
these features in what is called Cosmological Principle. When studying cosmology
we consider the framework of general relativity, so we write the Einstein’s
equations:

Rµν −
1

2
gµνR+Λgµν = 8πGTµν , (2.1)

where Rµν is the Ricci tensor, R is the Ricci scalar, Λ is the cosmological constant,
gµν is the space-time metric, that in our convention is gµν = diag(1,−1,−1,−1)
(West Coast ormostlyminus) and Tµν is the energy-momentum tensor. By assuming
the Cosmological Principle, we can solve them. We obtain a metric that describes
our Universe on large scales, with the assumptions of homogeneity and isotropy.
This is known as the Friedman-Lemaître-Robertson-Walker metric:

ds2 = dt2 − a(t)2
(

dr2

1− kr2
+ r2dϑ2 + r2 sin2 ϑdϕ2

)
, (2.2)

where r, ϑ, ϕ are the spherical coordinates and a(t) is called scale factor. The
factor k is called curvature and can take the possible values: 1 for closed Universe,
0 for flat Universe and −1 for open Universe. We can define the parameter

H(t)
.
=
ȧ(t)

a(t)
, (2.3)

∗1 pc = 3.086× 1016m.
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called the Hubble parameter. The value of H(t) depends on time. Today† we have
[3]:

H0 = (67.36± 0.54) kms−1Mpc−1 ≈ h · 100 kms−1Mpc−1 , (2.4)

where we introduce the standard parametrisation with the dimensionless param-
eter h = 0.6736± 0.0054. The Hubble parameter is a measure for the expansion
of the Universe. Today observations agree that the Universe expansion is acceler-
ating. An accelerating expansion means that the rate of change ȧ(t) increases in
time, so its rate of change ä(t) must be positive, ä(t) > 0. That does not mean
that H(t) is increasing in time, in fact if we define the deceleration parameter:

q
.
= −

äa

ȧ2
, (2.5)

we can obtain
dH
dt = −H2(1+ q) . (2.6)

The deceleration parameter has been measured today to be q0 ≈ −0.55, so
Ḣ0 < 0, the Hubble parameter is decreasing in time, though the Universe is in an
accelerating expansion. This implies that while observing the Universe at a fixed
distance, galaxies crossing that point are moving slower at later time.

Turning back to eq. (2.1), we will focus on the energy-momentum tensor. Its
components physically mean the following: T00 is the energy density; T0j is the
energy flux across the spatial surface xj = constant, j ∈ { 1, 2, 3 }; T i0 is the density
of ith component of momentum; T ij is the ith component of momentum flux
across the spatial-surface xj = constant. Normal momentum flux T ij, with i = j,
causes normal stress on the fluid element and the others T ij, with i 6= j, cause
shear stress. We can consider the approximation of perfect fluid. Perfect fluids
are idealised models of fluids characterised by no viscosity or heat conduction.
We can study the energy-momentum tensor in a comoving frame with the perfect
fluid. Since heat conduction is null, there is no energy flux, so T0j = 0. The
absence of viscosity implies that there are not shear stresses T ij = 0, with i 6= j.
Further, isotropy implies that spatial components must be equal, so that T ij ∝ δij.
That means we can cast the energy-momentum tensor in a simple, diagonal form:

Tµν = diag(ρ,−P,−P,−P) , (2.7)

where ρ is the energy density and P is the pressure, that characterises normal
stresses.

The dynamical equations describing the evolution of the scale factor a(t) can
be found solving eq. (2.1), assuming the metric (2.2). The time-time component
of eq. (2.1) gives the so called Friedmann equation [24]

ȧ2 + k =
8

3
πGρa2 , (2.8)

†To label a quantity measured todaywe use the subscript 0, e.g. a0 = a(t0).
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while the space-space components yield

ä = −
4

3
(ρ+ 3P)a , (2.9)

From eq. (2.8) we obtain

1+
k

H(t)2a(t)2
= ρ(t)

8πG

3H(t)2
, (2.10)

where we define the critical density:

ρc(t)
.
=
3H(t)2

8πG
, (2.11)

and consequently we introduce the dimensionless density parameter as the ratio

Ω(t)
.
=
ρ(t)

ρc(t)
. (2.12)

2.2 Composition of the Universe
In the previous section we have considered the perfect fluid approximation

and we cast the energy-momentum tensor as in eq. (2.7). It satisfies the continuity
equation∇µTµν = 0, where∇µ is the covariant derivative. Considering the ν = 0

component we obtain the conservation of energy:

∂ρ

∂t
+ 3

ȧ

a
(ρ+ P) = 0 . (2.13)

In general we can specify an equation of state for each component of the Universe
in the form:

P = wρ , (2.14)

where w is a constant. The value of w for each component is:

• w = 0, for non-relativistic matter (dust). We have P = nkBT = ρkBT/m (kB
is the Boltzmann constant), but for non-relativistic species (see § 2.3) T � m,
so that P ≈ 0;

• w = 1/3, for radiation, because radiation pressure can be expressed as
P = ρ/3;

• w = −1, for dark energy. Today observations show that the expansion of
the Universe is accelerated, and this is incompatible with a dust-dominated
Universe. The simplest way to take it into account is to assume the presence
of Dark Energy, implemented via the celebrated cosmological constant,
characterised by P = −ρ.



8 Chapter 2. A brief review of cosmology

10−4 10−2 100 102

a

10−14

10−9

10−4

101

106

1011

1016

ρ
/
(G
e
V
c
m

−
3
)

Radiation (γ
+
ν)

Matter (baryonic + dark matter)
Dark energy

Radiation era Matter era Dark energy era

Figure 2.1: Trend of the energy density of the various components of the
Universe with the names of the different eras. The highlighted points are
relative to today (a0 = 1).

We can integrate (2.13) obtaining

ρ ∝ a−3(1+w) , (2.15)

and so we can write the different trend of the components through time:

ρr ∝ a−4 , (2.16a)
ρm ∝ a−3 , (2.16b)
ρΛ ∝ a0 . (2.16c)

The different dependence of the constituents in eqs. (2.16a) and (2.16b) means
that there was an instant in which their energy density was equal and that is
called equivalence. Moreover, if we plot the dependencies in eq. (2.16) it is possible
to recognise three different epochs: in each of them one of the components is
dominant with respect to the others, as we can see in fig. 2.1. We can also compute
the time dependence of a(t), by assuming as anstatz a power law a(t) ∝ tβ and
using eq. (2.9) upon substitution of eq. (2.15):

a ∝ t2/(3+3w) , (2.17)

and consequently,

a ∝ t1/2 radiation epoch, (2.18a)
a ∝ t2/3 matter epoch. (2.18b)
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ΩΛ0 68.5%

Ωb0

4.9%

ΩDM026.4%

Figure 2.2: A pie chart showing the compo-
sition of the Universe today. The radiation
component is not shown because is too small
compared to the scale of the chart.

The density parameter is given by considering all the contributions of the
different components the Universe is made of:

Ω =
∑

i∈{ components }

Ωi . (2.19)

Today we know the contribution of each component, thanks to the Planck
experiment [3]. It has studied the CMB assuming that the Big Bang cosmological
model is parametrised by the ΛCDM model. It stares the Universe contains three
major components: the cosmological constant Λ, related to dark energy, the cold
dark matter (CDM, see § 3.2) and the ordinary matter, described by the Standard
Model. Their contribution to the energy budget of the Universe today is:

• Radiation: Ωr0 ≈ 5× 10−5;

• Matter‡: Ωm0 = 0.3153± 0.0073, that comprises baryonic matter (Ωb0 ≈
0.0493) and dark matter (ΩDM0 ≈ 0.264);

• Dark Energy: ΩΛ0 = 0.6847± 0.0073.

The composition of our Universe today is shown in fig. 2.2.

2.3 Equilibrium thermodynamics
The history of the Universe is an history of cooling. If we consider the actual

temperature of the Universe, we have T0 = 2.73K, that is the temperature of
the CMB radiation. Going backwards in time, in what is called early Universe,

‡In this chapter we are not making any distinction between baryonic matter and dark matter.
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temperature was higher than now. When we talk about the Universe, we need to
think of it as made of different species, that are all the known (and unknown)
particles. It is important to remark that the temperature is something related to
the species. Considering the sizeable interaction strength of the Standard Model
gauge groups, the early Universewas in thermal equilibrium in good approximation.
When different species are in thermal equilibrium, there are processes (for e.g.
elastic scatterings between particles) that maintain the species thermalised. If
these processes are faster than the rate of the expansion of the Universe, they are
efficient and keep the species in equilibrium. Considering a weakly interacting
gas of particles with g internal degrees of freedomwe can compute the expression
of the number density n, the energy density ρ and the pressure P at thermal
equilibrium,

n =
g

(2π)3

∫
f(p)d3p , (2.20)

ρ =
g

(2π)3

∫
f(p)E(p)d3p , (2.21)

P =
g

(2π)3

∫
|p|
2

3E(p)
f(p)d3p , (2.22)

where f(p) is the phase space distribution function (occupancy function) and
the energy is given by E(p)2 = |p|

2
+m2. When particles exchange energy and

momentum efficiently, the system is in kinetic equilibrium, and the function f(p) is
different for fermions and bosons, having the form of the Fermi-Dirac (FD) and
Bose-Einstein (BE) distribution functions:

fFD
BE

(p) =

[
exp

(
E(p) − µ

T

)
± 1
]−1

, (2.23)

where µ is the chemical potential. For a process like

a+ b
 c+ d , (2.24)

we say that is in chemical equilibrium when we have the following relation for
chemical potentials:

µa + µb 
 µc + µd . (2.25)

We can write the eqs. (2.20)–(2.22) in spherical coordinates. Considering the
parameter x = m/T and making the change of variable ξ = p/T we get:

n =
g

2π2
T3
∫+∞
0

ξ2

exp
(√
ξ2 + x2

)
± 1

dξ , (2.26)

ρ =
g

2π2
T4
∫+∞
0

ξ2
√
ξ2 + x2

exp
(√
ξ2 + x2

)
± 1

dξ , (2.27)

P =
g

6π2
T4
∫+∞
0

ξ4√
ξ2 + x2

(
exp

(√
ξ2 + x2

)
± 1
) dξ , (2.28)
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where we have dropped the chemical potential, because at early time we can
assume it to be small, µ ≈ 0. It is possible to consider the relativistic and
non-relativistic scenarios to cast eqs. (2.26)–(2.28) in a simple form. A species χ in
the Universe with massmχ is relativistic if T � mχ (x� 1). A relativistic species
contributes to the energy density of the radiation component of the Universe.
Moreover, the energy of the species in thermal equilibrium is larger thanmχ, so
that the species χ can be produced by processes involving other species. When,
instead, we have T � mχ (x� 1), χ becomes non-relativistic. When a species is
non-relativistic, there is not enough energy to produce it. We can write a simple
expression for the number density and the energy density at thermal equilibrium:

• relativistic case,

n =


ζ(3)

π2
gT3 bosons,

3

4

ζ(3)

π2
gT3 fermions,

(2.29)

ρ =


π2

30
gT4 bosons,

7

8

π2

30
gT4 fermions,

(2.30)

P =
ρ

3
; (2.31)

• non-relativistic case,

n = g

(
mχT

2π

)3/2
exp

(
−
mχ

T

)
, (2.32)

and at lowest order we can consider E(p) ≈ mχ and so energy density is
equal to the mass density,

ρ = mχn ; (2.33)

while, considering the equation of state for a perfect gas we have,

P = nT , (2.34)

and, by the means ofmχ � T , we have P � ρ, so a non-relativistic gas of
particles acts like pressureless dust.

The relativistic or non-relativistic nature of a certain species implies a different
trend in its temperature during the evolution of the Universe. We can compute
those trends using arguments of general relativity, that are shown in [26],
obtaining:

T ∝ a−1 relativistic, (2.35)
T ∝ a−2 non-relativistic. (2.36)
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When does a species stop to be in thermal equilibrium with the others?
Consider the rate of the expansion of the Universe, given by theHubble parameter
H. The thermalisation processes that maintain equilibrium are: the scattering
between different species and the annihilation or production of a species. Their
rate Γ depends on the cross section and on the relative number density:

Γ = nσv . (2.37)

The thermal equilibrium is maintained as long as Γ > H. During the expansion
of the Universe, the number density of a certain species drops as eqs. (2.29)
and (2.32), because of the decreasing temperature, so there will be a time, called
decoupling, when the condition above is no longer satisfied, in other words Γ < H.
From that moment on the species considered is no more in thermal equilibrium
with the cosmological fluid and its number density, energy density and pressure
can not be described by eqs. (2.29)–(2.34). In summary, the key events that
happened to the various species during the evolution of the Universe are:

• the transition from being relativistic to being non-relativistic;

• the decoupling: the processes that kept the species thermalised each other
becomes inefficient, because their rate is lower than the expansion rate of
the Universe.

We can compute the total radiation energy density ρr by simply summing eq. (2.30)
over the relativistic species,

ρr(T) =
∑
i

ρi(T) =
π2

30
g?(T)T

4 , (2.38)

where g?(T) is the effective number of degrees of freedom at a certain temperature
T . It has two contributions:

g?(T) = g
th
? (T) + g

dec
? (T) (2.39)

• species that are relativistic and in thermal equilibrium with radiation:

gth? (T) =
∑

i∈{ bosons }
gi +

7

8

∑
i∈{ fermions }

gi , (2.40)

there is no dependence on the temperature, because all the species are in
thermal equilibrium and have the same temperature T ;

• species that are relativistic but also decoupled from the cosmological fluid,
so are not in thermal equilibrium with the other species:

gdec? (T) =
∑

i∈{ bosons }
gi

(
Ti

T

)4
+
7

8

∑
i∈{ fermions }

gi

(
Ti

T

)4
, (2.41)

and we see the dependence on the temperature of the species.
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If we consider T larger than the top mass, every particle of the Standard Model is
relativistic, so we have:

g?(T) = 2︸︷︷︸
γ

+ 3 · 3︸︷︷︸
W±, Z

+ 8 · 2︸︷︷︸
g

+ 1︸︷︷︸
h

+
7

8

 6 · 2 · 3 · 2︸ ︷︷ ︸
qi,q̄i∀i∈{ colours }

+ 3 · 2 · 2︸ ︷︷ ︸
e±, µ±, τ±

+ 3 · 2︸︷︷︸
νe, νµ, ντ


= 106.75 ,

(2.42)

where we assumed three massless neutrino species.

2.4 Entropy
To describe the evolution of the Universe is useful to have a conserved

quantity. We can consider the expansion of the Universe as adiabatic, so we have
the conservation of entropy. By the Second Law of Thermodynamics we have

T dS = dU+ P dV , (2.43)

with U = ρV , so we obtain

dS = d
(
ρ+ P

T
V

)
. (2.44)

We can define the entropy per comoving volume,

s
.
=
S

V
=
ρ+ P

T
, (2.45)

that is conserved in thermal equilibrium. Now we can compute the total entropy
per comoving volume, that is dominated by the relativistic species, as we have
done in eq. (2.38), obtaining

s =
∑
i

ρi + Pi
Ti

=
2π2

45
g?S(T)T

3 , (2.46)

where g?S(T) is the effective number of degrees of freedom in Entropy at a certain
temperature T and it has two contributions:

g?S(T) = g
th
?S(T) + g

dec
?S (T) (2.47)

• species in thermal equilibrium:

gth?S(T) =
∑

i∈{ bosons }
gi +

7

8

∑
i∈{ fermions }

gi = g
th
? (T) , (2.48)

• species that are decoupled:

gdec?S (T) =
∑

i∈{ bosons }
gi

(
Ti

T

)3
+
7

8

∑
i∈{ fermions }

gi

(
Ti

T

)3
. (2.49)
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The conservation of s implies that S is conserved:

S = sV ∝ sa3 ∝ g?S(T)T3a3 . (2.50)

Inverting the above expression we have

T ∝ g?S−1/3a−1 . (2.51)

Whenever a species becomes non-relativistic we have that g?S drops, while the
temperature of the thermal bath T raises, according to eq. (2.51). This happens
because of the conservation of entropy: when a species becomes non-relativistic,
its entropy is transferred to the other species in the thermal bath.

2.5 Structure formation
Asmentioned in § 2.1, observations of ourUniverse on large scales suggest that

it is both homogeneous and isotropic. However on small scales it is very lumpy,
the density of galaxies is about 105 times the average density of the Universe and
the density of a cluster of galaxies is about 102 to 103 times the average density of
the Universe. So these structures represent a density perturbations in the actual
Universe. We can define a density perturbation as

δ
.
=
δρ

ρ
=
ρ− ρ

ρ
. (2.52)

Today we can measure perturbations of the order δ ≈ 102. In the past they were
surely lower and we can measure them by observing the temperature fluctuations
of the CMB. They are of the order

∆T

T
/ 10−5 , (2.53)

so the Universe was very smooth at that time. How could the Universe get from
a smooth situation with δ ≈ 10−5 to a lumpy situation with 102? Cosmologists
think that at the basis of the growth of perturbations we can find the gravitational
instabilities, that carried the evolution of small inhomogeneities into the larger
ones we can observe today.

We will focus on the evolution of a matter density Universe in the presence of
a gravitational field. We will treat the problem from a newtonian point of view,
without using general relativity: this approximation is valid as long as the cosmic
structures are small compared to the curvature of the Universe. We can write the
equations of the newtonian motion of a perfect fluid:

∂ρ

∂t
+∇ · (ρu) = 0 continuity equation, (2.54)(
∂

∂t
+ u · ∇

)
u = −

1

ρ
∇P −∇ϕ Euler equation, (2.55)

∇2ϕ = 4πGρ Poisson equation, (2.56)
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where ρ is the matter density, P is the matter pressure, u is the local fluid velocity
and ϕ is the gravitational potential. To solve the eqs. (2.54)–(2.56) we can use a
perturbative approach: consider a known solution and add a small perturbation
to it. Moreover, because we want to develop a linear theory, we can consider only
first order contributions. The unperturbed solutions (with subscript 0) is related
to an homogeneously expanding fluid:

ρ0 = ρ0(t0)

(
a(t0)

a

)3
, (2.57a)

u0 =
ȧ

a
r , (2.57b)

∇ϕ0 =
4πGρ0

3
r , (2.57c)

∇P0 = 0 . (2.57d)

We add a small perturbation in the following way:

ρ = ρ0 + δρ = ρ0(1+ δ) , (2.58a)
u = u0 + δu , (2.58b)
ϕ = ϕ0 + δϕ , (2.58c)
P = P0 + δP . (2.58d)

Then it is better to express everything through the following coordinates x,
obtaining:

r = ax , (2.59a)

∇r =
1

a
∇x , (2.59b)(

∂

∂t

)
r

+Hr · ∇r =

(
∂

∂t

)
x

. (2.59c)

Therefore, we obtain the following differential equation,

δ̈k + 2Hδ̇k +

(
v2s k

2

a2
− 4πGρ0

)
δk = 0 , (2.60)

called Jeans equation, where δk(t)
.
= δ̂(t,k) is the Fourier transform of δ(t, x),

δ(t, x) =

∫
d3k
(2π)3

δ̂(t,k) exp(−ik · x) , (2.61)

and vs is the (adiabatic) sound speed,

v2s =

(
∂P

∂ρ

)
S

. (2.62)

It is possible to define the constant

kJ =
4πGρ0a

2

v2s
, (2.63)
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called Jeans wavenumber, and with it rewrite eq. (2.60),

δ̈k + 2Hδ̇k + 4πGρ0

(
k2

k2J
− 1

)
δk = 0 . (2.64)

We can see that the Jeans wavenumber separates the gravitationally stable and
unstable modes,

• k� kJ: we have that eq. (2.64) becomes

δ̈k + 2Hδ̇k +
v2s k

2

a2
δk = 0 , (2.65)

that is the equation of a damped harmonic oscillator. The solution is either
overdamped or oscillatory with decreasing amplitude. The friction term is
given by 2Hδ̇. In this case the perturbations do not grow.

• k� kJ: we have that eq. (2.64) becomes

δ̈k + 2Hδ̇k − 4πGρ0δk = 0 . (2.66)

In a matter Universe we know that a(t) goes as eq. (2.18b), so we can
compute H(t) from eq. (2.3) and ρ(t) from eq. (2.8), we obtain:

δ̈k +
4

3t
δ̇k −

2

3t2
δk = 0 , (2.67)

that has two solutions, one of which growing,

δk ∝ t2/3 . (2.68)

So, in a matter-dominated epoch, perturbations can grow if k� kJ. If we consider
a radiation-dominated epoch, we have that a(t) goes as eq. (2.18a), so, from
eq. (2.66), we obtain:

δ̈k +
1

t
δ̇k = 0 , (2.69)

that has a solution in the form

δk ∝ A+ B log(t) , (2.70)

whereA andB are constants. so the growth is possible only if the perturbation has
a non null initial velocity δ̇k(ti), such asB 6= 0. Anyway, the growth is logarithmic,
that means it’s really slow compared to the previous case. That happens because
in a radiation-dominated epoch the expansion rate is faster than it would be in
a matter-dominated one, and the growth of perturbation is moderated. So the
matter perturbations can grow only in a matter-dominated Universe. However
before the decoupling, matter is strongly coupled to radiation, which implies a
large sound speed c/

√
3, that contributes to wipe out the perturbations.
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Is it possible to cast kJ in another form, by introducing the Jeans length,

λJ
.
=
2π

kJ
. (2.71)

In this case the condition for growing perturbations is λ � λJ. In general the
Jeans length has the following form:

λJ ∝
vs√
ρ
. (2.72)

As we see, the sound speed opposes to the gravitational collapse, because faster
perturbations dissipate easily, resulting in a large value of the Jeans length. On the
other hand a larger density makes the collapse easier, because the gravitational
field is stronger. Next to the Jeans length we can define the Jeans mass. It is the
mass contained in a sphere of radius equal to the Jeans length,

MJ ∝ ρλJ3 . (2.73)

The propagation of a perturbations of massM is possible ifM >MJ.





Chapter 3

Dark matter: evidence and detection

Astrophysical observations [3] show that baryonic matter accounts only for
nearly 20% of the total amount of matter in the Universe. The other 80% is a
new kind of matter that we are not able to detect and that, for this reason, is
called dark matter. Understanding the nature of dark matter is certainly one of
the most intriguing challenge in the scientific framework. A lot of scientists are
working on this topic, trying to build a theory extending the Standard Model
and comprising dark matter or to set up experiments in order to detect it. We
will start off this chapter by talking about dark matter history, going through
its experimental evidences and the possible candidates that are hypothesised,
following the reviews [27–29]. Consequently we will focus on one candidate,
the Weakly Interacting Massive Particle, talking about its importance in the dark
matter searches, and its formation mechanism, referring to [24, 25, 30]. We will
finally review the experimental aspects of dark matter searches and observations,
giving an hint on their actual situation, following the reviews [31–36].

3.1 What is dark matter?

The development of the concept of dark matter has a long history in the
astronomical framework. Scientists and philosophers always wondered if there
could exist some form of matter that is imperceptible. It is from it that the
adjective dark born. Astronomical objects can be observed because they emit
light, or, on the other hand, they absorb light, and can be observed as well as dark
regions. Light has always been the first way to survey the Universe and to trace
its matter content. The first evidence we have is that astronomical bodies emit
or absorb light in different way. We can quantify the emissivity by a quantity
called light-to-mass ratio. However, we also know that not every astronomical
object emit or absorb light. In general we can exploit light also to measure
indirectly the mass of an astronomical object. Moreover, we can measure it by
exploiting the gravitational theory, on the basis of the motion of close objects.
However, the two estimates can be different: the gravitational mass sometimes
exceeds the luminous mass estimate. From it astronomers have hypothesised the
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presence of some kind of dark matter, that we can not see and that accounts for
that discrepancy. We will now review the main evidences of dark matter.

Galaxy clusters
The first occurrence of a modern concept of dark matter in science was in the

work of the astronomer Fritz Zwicky. He studied the redshift of various galaxy
clusters finding that in the Coma cluster the velocity of individual galaxies with
respect to the mean velocity of the cluster is higher than the expected value,
computed from the estimated mass of the cluster, given by the sum of galaxies
masses [1]. He concluded

‘If this would be confirmed, we would get the surprising result that
dark matter is present in much greater amount than luminous matter,’

that is actually referred as the first use of the words dark matter (inaccurately, as it
was used before to indicate invisible matter). Although, Zwicky mentioned dark
matter without referring to its actual meaning: he was assuming cool stars or
gases. A similar conclusion was drawn by Sinclair Smith [37] while analysing the
mass of the Virgo cluster, finding that the total amount of gravitational mass was
much larger than the estimated mass by luminous matter. More discrepancies
were then confirmed by other observations of individual pairs or groups of
galaxies [38, 39], and the scientific community widely discussed the problem
during the International Astronomical Union (IAU) General Assembly [40].

Rotation curves of galaxies
One of the most known results in the dark matter discovery is the observation

of the rotation curves of galaxies, that is the circular velocity profile of its stars
and gases as a function of their distance from the Galactic Centre. To measure
the velocity distribution v(r) until the edge of a galaxy, different techniques
can be employed. For instance, velocity of hydrogen clouds are evaluated by
measurement of the 21 cm line of neutral hydrogen, because of its low level of
absorption in the interstellar medium. Suppose that spiral galaxies are made
of a central core (a disk and a bulge), containing the large part of galaxy mass,
and an outer region. We can treat them as rigid bodies and compute, recalling
Newtonian gravitational law,

v(r) =

√
GM(r)

r
. (3.1)

Considering the external region, we can setM(r) constant from luminous matter
observation, so that we have the velocity profile:

v(r) ∝ r−1/2 , (3.2)

expecting v(r) to decrease with distance.
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The first experimental result in this topic is due to Horace Babcock. In 1939 he
presents the measurement of the rotation curve of galaxy M31 (i.e. Andromeda
Galaxy) out to 20 kpc away from its centre [41]. He found inexplicably high
velocities at large radii and, approximating M31 to a sphere surrounded by
a flattened ellipsoid, he computed the mass distribution of it, finding a large
mass-to-light ratio in the external regionwith respect to the centre. He interpreted
the results as a strong gas absorption in the external region or as the existence
of unknown dynamical considerations that would permit a lower mass there.
Further measurement come from Jan Oort that studied the galaxy NGC 3115,
finding a large mass-to-light ratio in the external region [42]. His student
Hendrik C. van de Hulst predicted the 21 cm emission line of hydrogen, stating
that it could be used to measure its velocity. Oort and van de Hulst measured
the rotation curve of the galaxy M31 up to about 30 kpc away from the centre,
finding that the mass-to-light ratio was higher in the outer regions [43]. Another
measurement of the 21 cm line of M31 was done by Morton Roberts, confirming
the previous results with more accuracy [44]. A step further in terms of quality
was done by Kent Ford and Vera Rubin in 1970. They performed spectroscopic
observations of M31 up to 30 kpc and determine that rotation velocity rises slowly
with increasing distance from the centre of the galaxy, remaining almost constant
over radial distances from 16 kpc to 30 kpc [2], confirming previous results and
being in complete contrast with the theoretical prediction in eq. (3.2). In 1970
we have the appearance of the first statement arguing that additional mass was
needed in the outer parts of the galaxies in order to account for galaxies rotational
velocity observations. Ken Freeman compared the radius at which the rotation
curve was observed to peak to the theoretically predicted radius obtained with
an exponential distribution of matter (the distribution that basically matches the
observed luminous matter) [45], and stated

‘if [the data] are correct, then theremust be in these galaxies additional
matter which is undetected, either optically or at 21 cm. Its mass
must be at least as large as the mass of the detected galaxy, and its
distribution must be quite different from the exponential distribution
which holds for the optical galaxy.’

A few years later David H. Rogstad and G. S. Shostak analysed the rotation curves
of the galaxies: M33, NGC 2403, IC 342, M101 and NGC 6946 [46], the results
are shown in fig. 3.1. They noticed the same pattern, the rotation curves remain
flat out to the largest radii observed. Moreover, it started to become clear that
the optical radius can not be the edge of the galaxies. More and more studies
confirmed this property for several galaxies and the astrophysical community
widely accepted the conclusion that some invisible mass is present in galaxies.

Cosmic Microwave Background observations
In § 2.3 we have mentioned that the temperature of the Universe today is

T0 = 2.73K and that is due to the CMB radiation. Photons have decoupled from
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Figure 3.1: The hydrogen surface density profile
(left) and the corresponding rotation curves (right)
of the five galaxies studied by Rogstad and Shostak
[46]. The bars under the galaxy names indicate the
effective spatial resolution, while R80 is the radius
containing the 80% of the observed hydrogen.

the electrons and has been streaming freely through the entire Universe, the
CMB is made of the photons coming from the sphere’s surface of last scattering
with observer in the centre. The analysis of CMB temperature shows that its
fluctuations are only ∆T/T / 10−5. That means CMB photons were causally
connected and have the possibility to thermalise, a scenario today explained with
the theory of inflation. Anyway, in § 2.5, we have studied a model explaining how
density perturbations have grown during the evolution of the Universe. If density
perturbations are adiabatic, then we should expect temperature fluctuations of
the same order, recalling eq. (2.53), we have ρ ∝ T4, that means:

δdec =
δρ

ρ
≈ 3∆T

T
/ 10−5 . (3.3)

Supposing that all known matter is baryonic, we can compute the value of the
density fluctuation today, δ(t0) = δ0. From eq. (2.68) we can write:

δ(t) = Ct2/3 = Ca(t) , (3.4)
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with C a simple constant that can be determined by imposing the initial condition
at time tdec,

δdec = Cadec ⇒ C =
δdec

adec
. (3.5)

Therefore we have
δ0 =

δdec

adec
a0 . (3.6)

We know that a0 = 1, δdec ≈ 10−5 and adec ≈ 1/1100, so we compute

δ0 ≈ 10−2 . (3.7)

This result does not agree with the observation, that is δ0 ≈ 102. We need a faster
growth of the matter perturbations.

The way we can proceed is to introduce a dominant matter component with
a negligible pressure term, that is the dark matter, indeed. In § 2.5 we analyse
the case of baryonic perturbations: even though they can start growing after the
time of equivalence, their growth is suppressed, as long as they are coupled to
radiation. Dark matter behaves differently, we will see it decouples earlier than
baryons and its perturbations can start growing just after the time of equivalence.
So, after decoupling, baryonic perturbations growth is enhanced, because they
can exploit the holes that dark matter left after its growth. This process is known
as baryon catch-up. To compute it we start from the Jeans equation (2.60) for
baryonic perturbation in the general case of a cosmological fluid made of different
components, with t > tdec,

δ̈k,b + 2Hδ̇k,b +
v2s k

2

a2
δk,b − 4πG

∑
i∈{ components }

ρi,0δk,i = 0 . (3.8)

The sum over index i contains:∑
i∈{ components }

ρi,0δk,i = ρb,0δk,b + ρDM,0δk,DM + ρr,0δk,r . (3.9)

We know that the density perturbations of the radiation are suppressed and we
can assume that the Universe is dominated by dark matter energy density, so as
ρDM,0 � ρb,0. Moreover we are interested in the case of growing perturbations,
k� kJ, meaning that we can neglect the term v2sk

2a−2.We are left with

δ̈k,b + 2Hδ̇k,b − 4πGρDM,0δk,DM = 0 . (3.10)

The solution of this equation is

δk,b(t) = δk,DM(t)
(
1−

adec

a(t)

)
, (3.11)

the perturbations follows the growth of the dark matter, reaching it when
a(t) � adec. The presence of dark matter can justify a faster growth of the
baryonic perturbations, needed to match the observations.



24 Chapter 3. Dark matter: evidence and detection

An alternative: modified gravity paradigm
The need to hypothesise the presence of a new kind of invisible matter in

order to account observations has given rise to speculations on the validity of
Newton’s Law. In 1982MordehaiMilgrompublished his work [47–49] inwhich he
proposed a Modified Newtonian Dynamics (MOND) model that modifies Newton’s
Law for very low accelerations. This model is able to describe motion of stars and
gas within galaxies without any need of dark matter. The Newton’s Law results
in the following modification:

F = m
a2

a0
(3.12)

in the limit of very low accelerations a� a0, where a0 ≈ 1.2× 10−10ms−2. The
MOND theory very well explains the constant galactic rotation curves [50, 51] for
hundreds of galaxies and softens the mass discrepancy in galaxy clusters (though
it has not been so successful, because significant quantities of dark matter are
still required). However, MOND is a non-relativistic model and a relativistic
formulation is quite difficult to accomplish. Only in 2004 a relativistic theory in
the MOND framework was proposed by Jacob Bekenstein under the name of
TeVeS, shorthand for Tensor-Vector-Scalar gravity [52]. TeVeS has become the
leading theory of MOND and received great attention. Nevertheless, there are
few cases in which MOND theory fails. The most known is the case of the Bullet
Cluster, observed in 2006 [53]. It is a cosmological structure generated by the
merging of two clusters. As a result of the collision, the distribution of stars
and galaxies is separated from the hot X-ray emitting gas, which constitutes the
majority of baryonic mass. Studying the lensing properties and the X-ray maps
of the Bullet Cluster, astronomers have found out that the mass does not trace
the distribution of baryons, so dark matter is required and it must dominate the
mass of the system.

3.2 Cold, hot and warm dark matter
A first and simple classification of dark matter can be done by introducing

three categories:

• cold dark matter (CDM): it decouples from radiation after becoming non-
relativistic;

• hot dark matter (HDM): it decouples from radiation while still relativistic;

• warm dark matter (WDM): it is an intermediate case between HDM and
CDM.

A particle with mass m becomes non-relativistic when T � m, so heavier
particles becomes non-relativistic before lighter ones. Therefore, CDM andWDM
candidates will be heavier than HDM ones. We can observe that HDM particles
have a larger velocity than CDM, WDM particles at the time of decoupling,
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because they are still relativistic particles. As we mentioned previously, dark
matter is a type of collisionless matter, so its speed is not defined as the sound
speed, meaning the ratio between the gradient of pressure and the gradient of
density. The concept of speed of dark matter is intended as the thermal velocity,
that is the dispersion velocity of the particles it is made of. Thermal velocities of
dark matter particles have a direct influence on the structure formation. Indeed,
they tend to erase perturbations below a certain scale, which depends both on the
mass of the dark matter particle and on its formation mechanism. The length that
a particle travels before the perturbations start to grow is called free-streaming
length [54], defined as:

λfs
.
=

∫ teq
0

v(t)

a(t)
dt ≈

∫ tnr
0

c

a(t)
dt+

∫ teq
tnr

v(t)

a(t)
dt , (3.13)

with tnr the epoch when the particle becomes non-relativistic. Below λfs all
perturbations are wiped out. In the HDM scenario, dark matter particles are
relativistic, we can easily infer that only large scale structures will form, being
the λfs high.
In the same way, we can recall eq. (3.8):

δ̈k,b + 2Hδ̇k,b =
[
4πGρ(t) −

v2s (t)k
2

a2
δk,b

]
δk,i , (3.14)

where ρ(t) is defined as the sum in eq. (3.9). We can compute the Jeans mass,
obtaining:

MJ =
4

3
πρb(t)

[ πv2s (t)
4Gρ(t)

]3/2
. (3.15)

We know that a perturbation can grow only if its mass is higher than the Jeans
mass. In eq. (3.15) we see that MJ depends on time, in the sense that both
the densities of the components and the velocity of dark matter depend on it.
Therefore, it is possible to compute the maximum value of MJ, meaning the
minimum value of mass that a perturbation must have in order to grow (see [25,
55] and references therein):

Mmin ≈


105 ÷ 106M� CDM,
1016M� HDM,
1011M� WDM.

(3.16)

This gives rise to different scenarios in the structure formation:

• bottom-up: the first structures to collapse are the smaller ones, larger
structures originates from the merging of them; this is the CDM scenario:
darkmatter particlesmove slowly, so the growth of small-scale perturbations
is not suppressed, that means structure formation can begin earlier [56, 57];

• top-down: the first structures that can form are large scale pancake-like
structures, that undergo fragmentation in smaller structures; this is the
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HDM scenario: dark matter particles move with relativistic velocities, so
they wash out small scale perturbations and structure formation begins
relatively late [58–61];

• intermediate scenario: in the case of WDM, the structure formation is
characterised by a top-down approach for formation of smaller structures
and a bottom-up for larger ones; WDM candidates are faster than CDM
candidates, and small structures are washed out.

The simulation of both scenarios and their comparison with observations of the
Large Scale Structures suggest that a top-down approach is flawed, that means
the HDM scenario is ruled out. In this project we will focus on CDM candidates.

3.3 Dark matter candidates

The existence of darkmatter is well established, albeit the nature of its physical
constituents is yet to be discovered. By the late 1980s, an increasing number
of particle physicists became interested in the dark matter problem and the
hypothesis that the missing mass might be made of unknown particles has gained
more and more support. Today there is a widespread belief that dark matter
is made of new particles. A good dark matter candidate must be neutral and
stable on cosmological timescales and, in principle, there is a huge range of mass.
Theory has provided a lot of dark matter candidates, we will now review the
most studied ones. In general, dark matter may be made of several components,
and not just one single particle.

Relic neutrinos

Standard model neutrinos were the first suggested candidates for dark matter.
They have dark matter-like properties: they are neutral, massive, stable and they
weakly interact with other particles. The adjective relic is referred to the fact
that they have decoupled (see § 3.5 for reference) from radiation and has formed
the Cosmic Neutrino Background [62]. After the decoupling, that happened at
Tν,dec ≈ 1MeV neutrinos were no more in thermal equilibrium with electrons
and photons, and their temperature followed eq. (2.35). Later on, temperature
dropped below the mass of electron, so as they are no more part of the relativistic
degrees of freedom. Their entropy transferred to photons and not to neutrinos.
Computing the effective degrees of freedom of the components in thermal
equilibrium we have:

gth? (me < T < Tν,dec) = 2+
7

8
(2 · 2) = 11

2
, (3.17)

gth? (T < me) = 2 , (3.18)
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so that Tγ changed from Tγ = Tν to

Tγ =

(
11

4

)1/3
Tν . (3.19)

Knowing Tγ,0 we can compute Tν,0, and consequently nν(T0) from eq. (2.29).
StandardModel neutrinos have a small mass and at some point they have become
non-relativistic. Therefore we can compute ρν(T0)with eq. (2.33) and their relic
density results:

Ωνh
2 =
∑

i∈{ e,µ,τ }

mi

93 eV
. (3.20)

It is possible to constrain the sum of neutrino masses from Planck data [63],
obtaining ∑

i∈{ e,µ,τ }

mi < 0.12 eV , (3.21)

however this constrains their relic density to

Ωνh
2 < 0.0013 , (3.22)

that is too low to account for darkmatter relic density (see eq. (3.49) [3]). Moreover,
their low mass implies they are HDM candidates and we have previously seen
how the structure formation mechanism in that paradigm is in contrast with
observations.

Axions
Another (cold) dark matter candidates are the axions. They have been

introduced in the study of QuantumChromoDynamics (QCD) to solve the strong
CP problem. We can add the following term to the QCD lagrangian:

LQCD ⊃ ϑ
g2s
21π2

GaµνG̃aµν , (3.23)

where gs is the strong coupling constant and G̃aµν is the dual gluon field strength.
The number ϑ is related to the vacuum phase, its value must be very low,
ϑ ≈ 1× 10−10 to account observations. Indeed, eq. (3.23) introduces a charge-
parity violation that makes neutron electric dipole higher than expected, so we
need to keep the contribution of this term low. In order to account for this value
of ϑ, in 1977 Roberto Peccei and Helen Quinn proposed a model characterised by
a new U(1) global symmetry that is spontaneously broken and allows to drive the
value of ϑ to zero [64]. The Goldstone boson associated with it is the pseudoscalar
field a called axion. Its interaction lagrangian is:

La = −
g2s
32π2

a

fa
εµνρσGa

µνG
a
ρσ , (3.24)

where fa is the scale at which the symmetry is broken. The axion acquires a small
mass, proportional to f−1a . In order to describe a valid dark matter candidate, this
particle has to be light and weakly interacting to avoid constraints from particle
physics observations and therefore be stable on cosmological time scale.
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Sterile neutrinos

The right-handed (sterile) neutrinos were proposed as a (warm) dark matter
candidates in 1994 by Dodelson and Widrow [65]. They are siglet fermions that
mix with the Standard Model left neutrinos. These particles are predicted by
many extension of the Standard Model, for example in the type-I seesaw model,
where we add n right-handed neutrinos to the Standard Model, see [66] for
further details. As pointed out in [65], sterile neutrinos with a keV mass scale can
play the role of warm dark matter (we have seen how lighter neutrinos are related
to a top-down scenario for structure formation). These neutrinos are produced in
the early Universe at high temperatures and, unlike other particles, their feeble
interaction means that they were never in thermal equilibrium. Sterile neutrinos
possesses a radiative loop-mediated decay ν2 → ν1 + γ [67], where ν1, ν2 are
mass eigenstates withmν1 < mν2 . This produces a γ-ray line signature at half of
the νs mass that can be exploited to detect them.

WIMPs

One of the most popular (cold) dark matter candidate is the Weakly Interacting
Massive Particle (WIMP). As the name suggests, it is a massive particle interacting
through weak interaction. The large interest around them is due to the fact that
WIMPs can predict the correct value of the dark matter relic density easily, fact
that is known as the WIMP miracle (see § 3.6). Examples of WIMPs can be found
in supersymmetry, one of the most popular extension of the Standard Model.
In the beginning of 1970s, physicists considered to add a new symmetry able to
relate bosons and fermions of the Standard Model [68–71], called supersymmetry.
In the framework of supersymmetry, each particle has a superpartner, a particle
having the same quantum number, but the spin, differing by 1/2. Lot of new
particles has so been postulated. The most popular WIMP dark matter candidate
coming from supersymmetry is the neutralino∗. We will examine WIMPs in the
following sections.

3.4 Boltzmann equation

In the early Universe, species were in thermal equilibrium. However there
have been a certain number of departures from equilibrium as the temperature
decreases. This phenomenon has allowed certain species to survive until now
with a constant density. To compute this value and to describe how it has changed
we need to analyse the moment of decoupling.

Consider a certain species in the Universe, in absence of interactions the

∗Note that other non-WIMP dark matter candidates exist in supersymmetry such as the
gravitino or axino.
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number of particles per comoving volume, Ni = nia3, is constant in time:

dNi
dt = 0⇒ dni

dt a
3 + 3

da
dt a

2ni = 0⇒
dni
dt + 3Hni = 0 . (3.25)

If we want to include the interactions, we need to add a collision term, regarding
how the species interacts with the others:

1

a3
d
dt
(
nia

3
)
= Ci

[
{ nj }

]
. (3.26)

This is the Boltzmann equation.
Now we want to obtain a form for the Boltzmann equation for a dark matter

particle χ. In thermal equilibrium it interacts with the other species. The collision
term in eq. (3.26) is given by the depletion rate of dark matter particles σχχvn2χ.
The velocity v is not a fixed value, but a spectrum of velocities, following a certain
distribution (Fermi-Dirac or Bose-Einstein). Therefore we need to average over
that distribution, obtaining the following equation

ṅχ(t) + 3Hnχ(t) = − 〈σχχv〉
(
nχ(t)

2 − neq
χ (t)

2
)
, (3.27)

where we have
〈σχχv〉 =

∫
d3v1d3v2Pr(v1)Pr(v2)σv , (3.28)

with Pr(vi) being the velocity distribution of the ith particle at position r, and
v = |v1 − v2| is the relative velocity.

3.5 Freeze-out
During the evolution of the Universe, processes that maintain species in

equilibrium may become inefficient. When this happens the species freezes-out,
that means its density, known as relic density becomes constant until today. To
analyse the freeze-out we need to solve the Boltzmann equation. After defining
the yield as

Y
.
=
nχ

T3
, (3.29)

we can express the Boltzmann equation as follow,

1

a3
d
dt
(
na3

)
= − 〈σχχv〉

(
n2χ − n

eq
χ
2
)
⇒ T3

d
dt

( n
T3

)
= − 〈σχχv〉 T6

(
n2χ

T6
−
n
eq
χ
2

T6

)
,

(3.30)
where we have used eq. (2.35) to express the temperature before decoupling. We
obtain

dY(t)
dt = − 〈σχχv〉 T(t)3

(
Y(t)2 − Yeq(t)

2
)
. (3.31)

We can change the time variable in order to use x = mχ/T that is better suited
to keep track of the relativistic or non-relativistic nature of the dark matter. We
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assume that the decoupling of dark matter happens in a radiation-dominated
Universe. That means a scales as eq. (2.18a) and

H =
ȧ

a
=
1

2t
. (3.32)

From eq. (2.8), with k = 0, ρb � ρr and ρr given by eq. (2.38), we have

H =

(
8

3
πGρr

)1/2
=

(
4

45
π3Gg?T

4

)1/2
=

(
4
45
π3Gg?m

4
χ

)1/2
x2

=
H(mχ)

x2
, (3.33)

that means we can write, from eq. (3.32)

dx
dt =

d
dt

(√
2tH(mχ)

)
=
H(mχ)

x
, (3.34)

so
d
dt =

H(mχ)

x

d
dx . (3.35)

It is important to notice that the term g? in eq. (3.33) is not constant during the
evolution of the Universe and depends on the species that at each instant are
decoupled. Here we make an approximation, considering it constant. This means
that in our discussion we deal with high variations of temperature, covering
however regions inwhich g? may be considered constant. Substituting in eq. (3.31)
we obtain

dY
dx = −

λ

x2

(
Y2 − Y2eq

)
, (3.36)

with
λ
.
=
〈σχχv〉m3χ
H(mχ)

. (3.37)

While in equilibrium, from eq. (2.29), the yield of the particles is given by

Yeq(x) =
ζ(3)

π2
geff relativistic, (3.38)

Yeq(x) =
g

(2π)3/2
x3/2 exp(−x) non-relativistic, (3.39)

where geff = g (bosons), 3
4
g (fermions). We observe that in the relativistic regime

the process in fig. 3.2 can happen in both direction: the equilibrium density of χ
remains constant. In the non-relativistic regime, particles have not enough energy
to produce a pair of χ particles. The only allowed process is the annihilation, so
the equilibrium density drops. The Boltzmann equation in the form (3.36) is a
particular type of Riccati equation, it has no analytical solution, so we need an
approximate method to solve it. We can draw some qualitative conclusions. First
of all, knowing that H can be expressed as eq. (3.33), and that the interaction rate
Γ can be expressed as in eq. (2.37),

Γ = 〈σχχv〉neq
χ =

〈σχχv〉m3χYeq
x3

, (3.40)
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χ K

K′χ

Annihilation

Production
Figure 3.2: Annihilation and
production processes involv-
ing χ and generic Standard
Model particles K.

we can cast eq. (3.36) in the form

x

Yeq

dY
dx = −

Γ

H

(
Y2

Y2eq
− 1

)
. (3.41)

As the temperature becomes lower (x increases), we have that Γ evolves as

Γ(x) ∝ x−3 relativistic, (3.42)
Γ(x) ∝ x−3/2 exp(−x) non-relativistic, (3.43)

so in both scenarios Γ decreases. It will reach the point in which annihilation
processes become inefficient and freeze. This happens roughly when Γ ≈ H, the
moment of thermal decoupling; we will call the freeze-out point xf. The ratio
Γ/H in eq. (3.41) is a measure of the effectiveness of annihilations. Temperatures
continue to decrease, so Γ/H does, the more this factor is small compared to 1,
the more the relative change of the χ number density ∆Y/Yeq is lower:

∆Y

Yeq
∼
xdY

dx
Yeq

∼
Γ

H
< 1 . (3.44)

Therefore we expect that

Y(x) ≈ Yeq(x) for x < xf , (3.45)
Y(x) ≈ Yeq(xf) for x > xf , (3.46)

the number density of χ tracks the equilibrium value before reaching the freeze-
out point, at which it remains constant on the value it has when departing from
equilibrium.

We can now analyse how freeze-out works for different types of dark matter:

• hot dark matter: the freeze-out occurs when the species is still relativistic,
xf < 1, when Yeq is constant in time. That means the final value of Y does
not depend on the value of xf, resulting in Y∞ = Yeq(xf);
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Figure 3.3: A graphical visualisation of the Boltzmann equation in the
case of a cold relic. In the non-relativistic regime, the equilibriumdensity
drops exponentially until the freeze-out point, at which it becomes
constant. We can see that increasing values of λ are characterised by a
lower relic density, due to a later freeze-out.

• cold dark matter: freeze-out happens when the species is non-relativistic,
that means the details of freeze-out are important. When the particle
becomes non-relativistic, the equilibrium density drops as eq. (3.39) until
freeze-out. After freeze-out, the relic abundance is Y(x) = Y(xf), while
Yeq(x) is exponentially suppressed, therefore we have Y(x)� Yeq(x), and
eq. (3.36) becomes:

dY
dx = −

λ

x2
Y2 , (3.47)

which can be solved by simply integrating from xf to +∞. If λ does not
depend on x, we obtain a simple solution for the point x′ � xf:

Y(x′) ≈ xf
λ
, (3.48)

by assuming Y(xf)� Y(x′). That means the relic abundance at a given xf
decreases as λ increases. This is a direct consequences of the fact that λ is
proportional to the interaction rate Γ , as can be seen by comparing eqs. (3.37)
and (3.40). A graphical representation of these concepts is shown in fig. 3.3.
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Figure 3.4: Annihilation of
two WIMPs in Standard
Model particles K.

3.6 WIMP miracle
When dark matter freezes-out after thermal decoupling, its density remains

constant. The actual value of the relic density has been measured by the Planck
experiment [3]

Ωh2|Planck = 0.1200± 0.0012 . (3.49)
Therefore, when studying a dark matter model, we can infer strong constraints on
the parameters space, in order to reproduce themeasured relic density in eq. (3.49).
From a theoretical point of view we can compute the relic density by solving
the Boltzmann equation. We assume a CDM candidate that interacts through
electroweak interaction, the so called WIMP. For example, in the annihilation
process in fig. 3.4, we have T � mχ. We can write the cross section of the process
according to electroweak theory, by implicitly assuming thatmχ � mZ, namely
in Fermi limit of the theory:

σχχ =
πα2m2χ

c4wm
4
Z

, (3.50)

where cw
.
= cos ϑw and ϑw is the Weinberg’s angle. In order to compute 〈σχχv〉

we need to do the thermal average of eq. (3.50), because we have seen particles
velocity follows a certain distribution (thatmay be a Fermi-Dirac or a Bose-Einstein
distribution). Following eq. (3.28), we need the relative velocity of the particles.
The velocity vi of a particle with momentum ki and energy k0i is

vi =
|ki|

k0i
≈ |ki|

mχ
� 1 , (3.51)

so that the relative velocity is

v =

∣∣∣∣k1k01 −
k2

k02

∣∣∣∣ . (3.52)

Notice that the velocity of the particles is lower than 1 because we are in a
non-relativistic scenario. We can compute the centre-of-mass energy in the centre
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of momentum frame

s = (k1 + k2)
2
= 2m2χ + 2k

0
1k
0
2 − 2k1 · k2 = 2m2χ + 2

(
k01
)2

+ 2|k1|
2
= 4m2χ + 4|k1|

2

= 4m2χ
(
1+ v21

)
,

(3.53)

so we have
v1
2 =

s

4m2χ
− 1 . (3.54)

Turning back to eq. (3.52), it becomes

v =

∣∣∣∣k1k01 +
k1

k01

∣∣∣∣ = 2 |k1|k01 = 2v1 , (3.55)

so that, using eq. (3.54) we compute

m2χv
2 = 4m2χv

2
1 = s− 4m

2
χ . (3.56)

Using this formalism, we can find a simple formula for the thermally averaged
cross section. Considering the condition T / 3mχ, the velocity of χ particles
follows approximately the Boltzmann distribution. We can write the thermally
averaged cross section in the following way [72]

〈σχχv〉 =
2π2T

∫∞
4m2

χ
ds
√
s
(
s− 4m2χ

)
K1

(√
s

T

)
σχχ(s)(

4πm2χT K2
(mχ

T

))2 , (3.57)

where K1(x), K2(x) are the modified Bessel functions of the second kind. This
expression involves only a single integration. Moreover, when the condition
T / 3mχ is no longer satisfied, the velocity distribution of χwill be a Fermi-Dirac
or a Bose-Einstein distribution, however we can still use safely eq. (3.57). To get an
analytical estimation, we can consider an approximation for the relative velocity
v at a given temperature T in a non-relativistic case:

1

2
mχv

2 = T ⇒ v =

√
2T

mχ
, (3.58)

so that we can expand 〈σχχv〉 at first order in v,

〈σχχv〉 = σχχv+ O
(
v2
)
=
πα2m2χ

c4wm
4
Z

√
2T

mχ
+ O

(
v2
)
. (3.59)

To compute the value of the relic density we need to integrate eq. (3.47), with λ
given by eq. (3.37):

λ(x) =
〈σχχv〉m3χ
H(mχ)

=

(
2

45
πGg?

)−1/2α2m3χ

c4wm
4
Z

1√
x
+ O

(
v2
) .
=

λ√
x
, (3.60)

where we have made the substitutions according to eqs. (3.33) and (3.59) In order
to have λ constant we need g? constant. We consider two different temperature
intervals:
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• From T ≈ mZ ≈ 90GeV to T ≈ mb ≈ 5GeV : this is the interval related to
the electroweak energy scale. Abovemb, g? does not change much, from
eq. (2.39) we get:

g?(T) ≈ 100 , (3.61)
because the only species that is non-relativistic is the top quark. For our
purposes, it is useful to compute also the degrees of freedom in entropy,
from eq. (2.47):

g?S(T) = g?(T) . (3.62)

• From T ≈ mb ≈ 5GeV to today: when T falls below mb, g? drops dram-
matically, the today value is

g?(T0) ≈ 3.36 , (3.63)

given by the photons and the background of relativistic decoupled neutrinos.
In the same way we compute g?S:

g?S(T0) ≈ 3.91 . (3.64)

For the first interval we integrate the Boltzmann equation (3.47) from the freeze-
out point xf to a point x′ � xf abovemb:

dY
dx = −

λ

x5/2
Y2 ⇒ Y(x′) =

xf
3/2

λ
=

xf

λ(xf)
, (3.65)

where we have assumed Y(x′) � Y(xf). Now, Y(x′) evolves in the second
temperature interval, where we are in a non-relativistic regime. We can exploit
eq. (2.33) and the dependence in eq. (2.16b) to write:

ρχ(T0) = ρχ(T
′)

(
a′

a0

)3
= mχY(x

′)T ′
3

(
a′

a0

)3
= mχY(x

′)T0
3

(
a′T ′

a0T0

)3
. (3.66)

Using the conservation of entropy, that brings to the proportionality expressed in
eq. (2.51), we have (

a′T ′

a0T0

)3
=
g?S(T0)

g?S(T ′)
≈ 3.91
100

≈ 1

25
. (3.67)

Now we can compute the relic density from eq. (2.12)

Ωχh
2 ≈ h2mχY(x

′)T30
25

8πG

3H20
= h2

mχT
3
0

25

xfH(mχ)

〈σχχv〉(xf)m3χ
8πG

3H20

≈ 0.12 xf
23

√
g?(mχ)

10

1.7× 10−9GeV−2

〈σχχv〉(xf)
.

(3.68)

We can immediately notice that the relic density depends (approximately) only
on the thermally averaged cross section:

Ωh2 ∝≈
1

〈σχχv〉
, (3.69)
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that means only the ability of dark matter to interact is important to determine
its current density. In order to finish the computation we need to find the
freeze-out point xf. As we know, at the moment of decoupling we have the rate
of annihilation Γ equal to the rate of expansion of the Universe H:

Γ(xf) = H(xf) . (3.70)

We can substitute eqs. (3.33) and (3.40), with Yeq given by eq. (3.39), the velocity v
given by eq. (3.58) and g the number of relevant degrees of freedom of the WIMP:

σχχm
3
χ

x3f

g

(2π)3/2
x
3/2

f exp(−xf)
√
2

xf
=

(
4

45
π3Gg?(Tdec)m

4
χ

)1/2
1

x2f
(3.71)

...

exp(−xf) =
2

3
√
5

√
g?(Tdec)

g

π3
√
G

σχχmχ
. (3.72)

If we assume g = 2, corresponding to a complex scalar, we can solve the equation
finding:

xf ≈


20 formχ = 10GeV ,
23 formχ = 30GeV ,
26 formχ = 60GeV .

(3.73)

Choosing for example xf = 23, mχ = 30GeV and computing the relic density
with eq. (3.68), recalling eq. (3.59), we obtain

Ωχh
2 ≈ 0.12 xf

23

√
g?(mχ)

10

c4wm
4
Z

πα2m2χ

√
xf

2
1.7× 10−9GeV−2

≈ 0.12
( xf
23

)3/2√g?(mχ)
10

(
35GeV

mχ

)2
≈ 0.12 ,

(3.74)

that is the value of the relic density measured by Planck (3.49). So, assuming
a CDM candidate with an electroweak scale mass, whose annihilation process
is mediated by weak interaction, we obtain a value of the relic density that is
compatible with measurements. This fact is known as the WIMP miracle. In
terms of thermal averaged cross section, from eq. (3.68) we find that it has to be
nearly

〈σχχv〉 ≈ 1.7× 10−9GeV−2 ≈ 3× 10−26 cm3 s−1 . (3.75)

3.7 Coannihilation
Until now we have supposed dark matter consists of one single particle.

However, in many models, the dark matter sector contains more than one particle.
Suppose to have N different particles, labelled χi, with mass mχi , such that
mχi < mχj if i < j. They annihilate in Standard Model particles K:

χiχj → KK̄′ , (3.76)
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and other processes are possible, as the elastic scattering,

χiK→ χjK′ , (3.77)

or the decay of heavier states into lighter ones,

χj → χiKK′ . (3.78)

If decays are rapid enough, then today we are left only with χ1, that is the actual
dark matter candidate, because it is the lightest particle in the dark matter sector.
In the case of N = 1we turn back to the simple case of one single particle with
only one single process χ1χ1 → KK̄ contributing to the relic density. In the
general case, we have different annihilation processes, as in eq. (3.76) contributing
to the relic density and they are much more efficient. The number density of
each χi is ni and their equilibrium density is neq

i , that follows eq. (2.32) with
gi degrees of freedom if we suppose all the χi’s being non-relativistic. We can
define the total equilibrium density

n =

N∑
i=1

ni , (3.79)

that determines the observed relic density. We can write a Boltzmann equation
for each particle χi and obtain N different Boltzmann equations. Following the
arguments in [73], as long as the equilibrium between the species is maintained
with the processes in eq. (3.77), the ratios of abundances track their equilibrium
value and we have

ni

n
≈ n

eq
i

neq , (3.80)

that we can exploit in order to reduce the number of independent equations. At
the end, we are left with only one Boltzmann equation, that governs the evolution
of n:

ṅ+ 3Hn = −

N∑
i=1

〈σv〉(ninj − neq
i n

eq
j ) , (3.81)

and that we can cast in

ṅ+ 3Hn = −〈σeffv〉(n2 − neq2) . (3.82)

The term σeff is defined as:

σeff
.
=
∑
i,j

σij
n
eq
i n

eq
j

neq2 , (3.83)
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and can be expressed in the following way:

σeff =

N∑
i=1

σij
gigj

(
mχi

mχ1

)3/2(mχj

mχ1

)3/2
exp

(
−
mχi

+mχj
−2mχ1

T

)
(∑N

k=1 gk

(
mχk

mχ1

)3/2
exp

(
−
mχk

−mχ1

T

))2
=

N∑
i=1

σij
gigj(1+ ∆i)

3/2(1+ ∆j)
3/2 exp

(
−x(∆i + ∆j)

)(∑N
k=1 gk(1+ ∆k)

3/2 exp(−x∆k)
)2

=

N∑
i=1

σij
gigj

g2eff
(1+ ∆i)

3/2(1+ ∆j)
3/2 exp

(
−x(∆i + ∆j)

)
,

(3.84)

where ∆i
.
= (mχi −mχ1)/mχ1 , x = mχ1/T and

geff
.
=

N∑
k=1

gk(1+ ∆k)
3/2 exp(−x∆k) . (3.85)

We can further suppose that all the χi’s have similar masses. In this case the
exponential suppression exp(−x∆i) is not too high. The annihilation is more
efficient and 〈σeffv〉 is in general higher than only 〈σ1v〉, when we have only one
particle belonging to the dark matter sector. In the WIMP case we can reproduce
the correct value of the relic density, by having 〈σv〉 as in eq. (3.75). In the case of
coannihilation, 〈σv〉 contains contributions from the various channels in eq. (3.76),
while 〈σ1v〉 due to χ1χ1 → KK̄ is smaller. We can exploit the proportionality
〈σ1v〉 ∝ s−1 ∝ m−2

χ1
and see that a lower value of 〈σ1v〉 translates into an higher

value ofmχ1 .

3.8 The dark matter hunt
The search of dark matter relies on its interactions with other particles.

Assuming that the actual observed relic density comes from the freeze-out
mechanism, we can assume that dark matter interacts not only gravitationally.
Indeed, we saw how a weakly interacting candidate is suitable to predict the
correct observed value of the relic density. Therefore searches for dark matter
can be done by looking at its interactions with other particles. There are different
way to proceed:

• indirect detection: aims to look at the products of the annihilation processes
involving dark matter particles;

• direct detection: aims to detect dark matter elastic scatterings off Standard
Model’s particles;

• collider searches: aim to produce dark matter particles via the scattering of
particles in a collider.
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Figure 3.5: A graphical repre-
sentation of the detection meth-
ods of dark matter (DM), with
respect to Standard Model (SM).
The arrows go from the initial
particles to the final ones.

A graphical representation of the three different approaches can be found in
fig. 3.5.

In the next sections we will review the main characteristics of these methods
In this thesis we will focus on indirect detection.

3.9 Indirect detection
In § 3.5 we saw that dark matter’s density drops when particles become

non-relativistic until the annihilation process becomes suppressed. After that,
the comoving number density remains constant until now, but its distribution
changed considerably during the structure formation. In particular, dark matter
is concentrated in areas with a large amount of gravitational matter, and formed
structures called halos. In halos the dark matter density has a peak so the
annihilation process is significantly enhanced. In those regions the annihilation
of dark matter is active today, so we can detect the products coming from it. Dark
matter particles are nearly at rest in halos, because their kinetic energy is very
small. Therefore, the centre-of-mass energy of annihilation processes is simply
given by

√
s ≈ 2mχ, where χ is the dark matter candidate. The self-annihilation

of dark matter particles can produce any pair of kinematically allowed particles.
Those can be either stable particles of the Standard Model or unstable ones,
which undergo decays and hadronisation in stable particles as photons, neutrinos,
protons, antiprotons or heavy nuclei. Some examples of dark matter interaction
processes are:

χχ→ `+`− , (3.86a)
χχ→ qq̄→ pp̄+ X , (3.86b)
χχ→ τ+τ−,W+W−,bb̄+ X→ `+`−,pp̄+ X , (3.86c)
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where ` is a lepton, q is a quark, p is the proton and X is any possible extra QCD
radiation in that event. Antiparticles are rarer and so can give a distinctive signal.

The different products of dark matter annihilation follow different paths
before reaching our detectors. Charged particles do not follow a straight path,
they interact easily with interstellar gas and will diffuse in the galactic magnetic
fields, so we do not get any directional information from them. Those particles
constitute the Cosmic Rays, that can be studied by modeling their propagation,
and matching the observed fluxes, in the hypothesis of a dark matter origin.
The other possible final state is given by neutral particles, such as photons or
neutrinos. In this case they propagate in a straight line, and we can infer their
trajectory. Neutrinos travel basically undisturbed in the galaxy. They can be
detected with large Čerenkov detectors, by analysing the interaction products
of neutrinos with the medium in the detector volume. Conversely, photons are
easier to detect, but they are characterised by larger background. Looking into
indirect detection in γ-rays, dark matter can produce different photon’s spectra:

1. Hadronic, eqs. (3.86b) and (3.86c): dark matter annihilates to τ+τ−, gauge
bosons or any combination of quarks. A large number of pions are produced
by subsequent decays. The neutral ones decay in photons pairs π0 → γγ

with a 99% branching ratio, producing a photon-rich spectrum, along with
electrons and positrons from the decay of charged pions. The outcome of
this processes is a continuum spectrum of photons.

2. Leptonic, eq. (3.86a): dark matter annihilates predominantly to electrons
and muons. Photons can be produced only as a part of three body decays,
via final state radiation or internal bremsstrahlung. The rate of photon
production is suppressed and copious charged leptons are produced. The
photons spectrum will be continuum, characterised by a peak towards the
dark matter mass.

3. Line: dark matter annihilates directly to γγ. It is a two-body process, so the
photons have fixed energy and their spectrum is given by a monoenergetic
line with energy Eγ ≈ mχ. This channel is extremely promising for what
concerns astrophysical backgrounds: it is indeed difficult to explain a γ-ray
spectral line with conventional astrophysics. However dark matter carries
no charge, thus it can not couple directly to photons: this can happen only
via a loop diagram, that means the process is suppressed and the signal is
expected to be small. This kind of processes, without a tree level diagram,
are called loop-induced processes.

Photon flux
As we saw, photons reach Earth in a straight line from the point of dark

matter annihilation, hitting our detector. Our view of the sky is two-dimensional,
therefore detected photons are characterised by a certain solid angle∆Ω in the sky
within a time interval∆t. Suppose the signal arising from a volume∆V expressed
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in spherical coordinates (r′, ϑ, ϕ), where Earth is in the origin of the coordinates,
and suppose our detector has area A. Moreover, consider a Majorana fermion†

dark matter candidate and suppose that it annihilates into a certain particle i
with branching ratio ofBi and that each annihilation produces a spectrum dNiγ

dEγ of
photons. Finally, suppose their energy does not change between production and
detection (so we neglect redshift and absorption, which is a good approximation
for galactic signals). The number∆Nγ of photons receivedwithin a certain energy
∆E in a time interval ∆t is:

∆Nγ

∆Eγ∆t∆V
=
∑
i

Bi
dNiγ
dEγ

A

4πr′2
1

2
〈σv〉n(r)2 , (3.87)

where r = r(r′) is the coordinate of the annihilation point with respect to the
centre of the dark matter source. In the limit of a localised source, small time and
energy intervals we have:

d2Φγ
dEγ dV =

∑
i

Bi
dNiγ
dEγ

A

8πr′2
〈σv〉 ρ(r)

2

m2χ
, (3.88)

where we have defined the flux of photons

Φγ
.
=

dNγ
dt , (3.89)

and the number density

n(r) =
ρ(r)

mχ
. (3.90)

We can integrate over the solid angle and along the line of sight (l.o.s.), that is the
distance from the observer to the annihilation event, recalling that in spherical
coordinates dV = r′2 dΩdr′:

dΦγ
dEγ

=
∑
i

Bi
dNiγ
dEγ

A

8πm2χ
〈σv〉

∫
∆Ω

dΩ
∫
l.o.s.

dr′ ρ
(
r(r′,Ω)

)2 . (3.91)

The last expression can be split in two parts: the first one related to particle
physics and the other one related to the distribution of dark matter mass density.
That can be determine with the help of N-body simulations or by gravitational
measurements. We define the J-factor of the source in the following way:

J
.
=
1

8π

∫
∆Ω

dΩ
∫
l.o.s.

dr ρ
(
r(r′,Ω)

)2 . (3.92)

The distribution of dark matter is a key input for indirect detection. We canmodel
for simplicity ρ(r) as a spherically-symmetric distribution, so that ρ(r) = ρ(r)

and introduce the following standard density profiles:
†If it is not, the next formulae will have a factor 1/2.
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• generalised Navarro-Frenk-White (NFW) profile [74]:

ρNFW(r) = ρ0

( r
rs

)−γ(
1+

r

rs

)γ−3
, (3.93)

where rs is the scale radius. The NFW profile is an example of a cuspy
profile. The γ = 1 case corresponds to the canonical NFW profile. As ρ0 we
can use the dark matter density at the Sun position ρ�;

• Einasto profile [75]:

ρEin(r) = ρ0 exp
{
−
2

α

[( r
rs

)α
− 1
]}

, (3.94)

with the scale radius rs and the parameter α, which controls the curvature
of the profile;

• Burkert profile [76]:

ρBur(r) = ρ0

(
1+

r

rs

)−1(
1+

r2

r2s

)−1
, (3.95)

where, again, rs is the radius. The Burkert profile is an example of a cored
profile, meaning that it is characterised by a flatter density behaviour.

In the case of the Milky Way, the values of the free parameters can be read in
[77]. In fig. 3.6 we show an illustration of the three profiles, we see that the
differences between the NFW and Einasto profiles are marginal, while the Burkert
profile shows a reduced dark matter density in the centre of the halo. The three
profiles describe the dark matter density following a smooth pattern. The particle
physics part is instead related to the thermally averaged cross section 〈σv〉, already
defined in eq. (3.28). We can express it in terms of the centre-of-mass velocity
vCM = (v1 + v2)/2 and the relative velocity v = v2 − v1:

〈σv〉 =
∫

dv P̃r(v)σv , (3.96)

with
P̃r(v)

.
= 4πv2

∫
d3vCM Pr

(
vCM +

v

2

)
Pr

(
vCM −

v

2

)
. (3.97)

Considering a Maxwell-Boltzmann distribution Pr(v) = π−3/2v−30 exp
(
−v2/v20

)
with most probable velocity v0, also the relative velocity will follows a Maxwell-
Boltzmann distribution with most probable velocity

√
2v0:

P̃r(v) =

√
2

π

v2

v30
exp

(
−
v2

2v20

)
. (3.98)

As we have pointed out before, dark matter annihilates nearly at rest (tipically
v0 ≈ 1× 10−3), because it is non-relativistic, so we can expand the cross section
in powers of v:

σv = a+ bv2 + O
(
v4
)
, (3.99)
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Figure 3.6: Illustration of the standard density profiles. Parameters are
normalised to the Milky Way, we have taken the mean values reported
in [77].

the a and b factors are related, related respectively to the s-wave and p-wave
contribution to the cross section. For a p-wave dominated cross section we can
compute 〈σv〉 = 3bv20 considering b constant. In this approximation the velocity
averaging is equivalent to the evaluation of σv, with v =

√
3v0.

Recent experiments and results
In eq. (3.91) we have seen that the astrophysical contribution is a key parameter

for indirect searches of dark matter. In particular, the J-factor plays an important
role, the higher it is, the stronger will be the signal. Therefore, the best locations to
search for dark matter are those with an extraordinary matter density, in order to
have an high J-factor, so that annihilation is enhanced. One of the most prominent
target is given by the Milky-Way Galactic Centre, containing a huge variety of
large substructures, such as the central black hole Sag A*, supernovae remnants,
neutron stars and pulsars. The Galactic Centre is a very bright objective for γ-ray
searches, though it is a challenging region, due to a multiplicity of astrophysical
backgrounds:

• cosmic-ray protons striking interstellar gas, producing pions that decays in
photons;

• cosmic-ray electrons interacting with the electromagnetic field of interstellar
gas, producing photons via bremsstrahlung;
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• production of high energy photons, by inverse Compton scattering, due to
cosmic-ray electrons interacting with starlight;

• synchrotron radiation produced by the propagation of cosmic-ray electrons
in the strong magnetic fields of the galaxy.

Dealing with the large background of the Galactic Centre is not a simple task
for experiments. However, we have seen that the annihilation of dark matter in
a pair of photons produces a line spectrum. This signature is basically free of
background and is a promising target for indirect detection.
The analysis of it is the main topic of this thesis.
The Galactic Centre has been investigated for a γ-ray line signal. The experiments
Fermi-LAT and HESS have placed upper limits [19, 20] on it, over the GeV and
TeV regions in the darkmatter mass. These limits have been obtained for different
dark matter density profiles and in this thesis we will use them to constrain
the parameters space of two dark matter models. They are shown in fig. 3.7.
The Galactic Centre has also been surveyed for a continuum γ-ray spectrum.
Different experiments have found interesting signals, that still lack of a conclusive
explanation. The first example is the so called Galactic Centre Excess, found by
[78–80] and later confirmed by the Fermi Collaboration [81]. They have observed
a peak in the continuum γ-ray spectrum arising from the Galactic Centre and the
inner Galaxy at approximately 10° from the Galactic Centre. There are different
hypothesis about its origin: a dark matter annihilation contribution is promising,
but there is also a possible explanation in terms of an unseen population of
pulsars [82].

Although the Galactic Centre is a perfect objective for dark matter searches,
dealing with its high γ-ray background is quite challenging. For this reason,
another promising targets for indirect detection of photons are the dwarf spheroidal
galaxies (dSphs), satellite of the Milky Way. They are small, low-luminosity
spherical-shaped galaxies, hosting few old stars and little gas, so that they are
essentially free of γ-ray background. Moreover, they are believed to be dark
matter dominated [83]. This features makes them good targets for γ-ray detection,
even if their J-factors are lower than the Galactic Centre one. The Fermi-LAT
and HESS collaborations have carried out researches [84, 85] in order to find
signatures of dark matter annihilation, placing limits on the thermally averaged
cross section for various channels.

Another interesting channel for indirect detection is given by the cosmic rays.
The flux of electrons and positrons has been measured by PAMELA in 2008 [86],
and it was observed an increase in the positron fraction Ne+/(Ne+ + Ne−) for
energies above 10GeV . This phenomena was confirmed also by Fermi [87] and
AMS-02 [88], that observed a rise up to 300GeV . This excess implies the presence
of a new source of positron. We can explain this feature with dark matter, that
can in principle annihilates and supply another source of positron. However the
excess can also be explained with conventional astrophysics, supposing that it is
generated by a pulsar [89].
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Figure 3.7: The γ-ray line 95% CL upper
limits. The Fermi-LAT measurements [19]
are shown in figs. a, b; the R41 and R16
notations indicate that the regions of in-
terest correspond to a circular area of ra-
dius respectively 41° and 16° around the
Galactic Centre. Fig. c shows the measure-
ment carried out by HESS [20]. They were
computed by assuming two different dark
matter density profiles: the NFW and the
Einasto profiles.

3.10 Direct detection

Direct detection experiments rely on the scattering of dark matter particles
in the Milky Way halo in a detector on Earth. Dark matter elastically scatters
off the atomic nucleus and the momentum transfer gives rise to a nuclear recoil,
that is detectable. Direct detection detectors are usually set up undergrounds:
they must be shielded from cosmic radiation and natural radioactivity, that
are the most important backgrounds. The signal can be detected by exploiting
three different phenomena: energy deposition in calorimeters, scintillation light
and ionisation. The rate of WIMPs scattering off atomic nucleus depends both
on dark matter astrophysical properties and on particle physics one. From an
astrophysical point of view we need to consider the local dark matter density
ρ0 ≈ (0.39± 0.03)GeV cm−3 [90], the velocity distribution in the laboratory
frame f(v, t) of the dark matter particles in the halo and the dark matter massmχ.



46 Chapter 3. Dark matter: evidence and detection

From a particle physics perspective, the important parameters are the nuclear
recoil energy ER and the scattering cross section σ. We obtain the rate R:

dR
dER

=
ρ0M

mNmχ

∫vesc
vmin

vf(v, t)
dσ
dER

dv , (3.100)

whereM is the target mass of the detector. The velocity vesc ≈ 544 kms−1 [91]
is the escape velocity of dark matter particles, above this value dark matter is
no more bounded to the potential well of the Milky Way, while the minimum
velocity vmin to have a recoil in an elastic scattering case is

vmin =

√
ERmN

2µ2N
, (3.101)

where µN is the reducedmass of theWIMP-nucleus system,mN being the nucleus
mass,

µN =
mNmχ

mN +mχ
. (3.102)

The velocity distribution of dark matter particles in the laboratory frame is
subjected to an annual modulation due to the relative motion of Earth orbiting
around the Sun and of the Sun orbiting around theMilkyWay centre. Considering
the distribution f̃(v) of dark matter velocity with respect to the Galactic Centre
we can make a Galileian boost:

f(v, t) = f̃(vobs(t) + v) , (3.103)

where
vobs(t) = v� + v⊕(t) (3.104)

is the motion of the laboratory frame with respect to the Galactic Centre, with v�
being the velocity of the Sun and v⊕ the velocity of the Earth in that frame. A
simple description of the dark matter halo is achieved by the Standard Halo Model
(SHM) [92]: we consider the galactic halo as a smooth, isotropic and spherically
symmetric halo, characterised by a Maxwell-Boltzmann velocity distribution f̃(v)

f̃(v) =
1

N

(
1

πv20

)3/2
exp

(
−
|v|
2

v20

)
, (3.105)

withN being a normalisation constant and v0 is the most probable velocity. In
the framework of the SHM, v0 is the average velocity of the material around
the Galactic Centre, that is the velocity of the Local Standard of Rest, an ideal
point moving on a perfectly circular orbit around the Galactic Centre at the same
distance as the Sun. In the galactic coordinates‡ we have v0 ≈ (0, 235, 0) kms−1

[93]. The Sun motion in galactic coordinates is [94]:

v� ≈ v0 + (−11, 12, 7) kms−1 . (3.106)
‡The galactic reference frame is a cylindrical frame centered in the Galactic Centre and

coordinates (r, ϑ, z) = r r̂+ ϑ ϑ̂+ z ẑ, with r̂ pointing away from the Galactic Centre, ẑ pointing
to the galactic north and ϑ̂ = r̂× ẑ.
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The velocity of Earth can be expressed through the following expression:

v⊕ ≈ v⊕ cos(ϑ) cos
(
ω(t− t0)

)
, (3.107)

withω = 2π/T , T = 1 year, t0 is chosen in order to measure the maximum value
of |v⊕|when t = t0, ϑ ≈ 60° is the inclination angle between Earth’s orbit and the
galactic plane, while v⊕ ≈ 30 kms−1.

Dark matter particles scatter off with a non-relativistic velocity, so that its
de Broglie wavelength is small, compared to the nucleon’s wavelength. Therefore,
dark matter can not resolve the nucleons inside a nucleus, but it scatters off the
entire atomic nucleus. The WIMP-nucleus scattering cross section depends on
the recoil energy and on the velocity:

dσ
dER

=
2mN

πv2

〈
|ANR|

2〉 , (3.108)

where ANR is the non-relativistic limit of the scattering amplitude. It is possible
to study the amplitude using an effective approach: we have a spin-independent
(SI) cross section (with a scalar LS ∼ χ̄χN̄N or vector-mediated LV ∼ χ̄γµχN̄γµN

effective vertex) and a spin-dependent (SD) cross sections (characterised by an
axial-vector LA ∼ χ̄γµγ5χN̄γµγ

5N effective vertex).
In the spin-independent case we have:

dσ
dER

=
2mN

πv2

[
Zfp + (A− Z)fn

]2
F2SI(ER) , (3.109)

where fn, fp are the WIMP couplings to neutrons and protons respectively. The
term FSI(ER) is the nuclear form factor. Each interaction is characterised by the
momentum transfer q =

√
2mNER, of the order of MeV , so that dark matter

can not resolve the internal nucleus structure. For large momentum transfer,
the de Broglie wavelength decreases and part of the nucleons can participate to
the interaction, modifying the cross section. This effect is encoded in the form
factor. Eq. (3.109) is referred as spin-independent because does not depend on
the nuclear spin. In the spin-dependent case we have:

dσ
dER

=
16mNG

2
F

πv2

(
ap〈Sp〉+ an〈Sn〉

)2 J+ 1
J
F2SD(ER) , (3.110)

where GF is the Fermi constant, ap, an are the effective WIMP-nucleon couplings,
〈Sp〉, 〈Sn〉 are the average spin contributions of the nucleon. It is important to
point out that the nuclear form factor is different from the spin-independent case.

There are several experiments for direct searches of dark matter, for example
XENON1T [95], LUX [96], DarkSide-50 [97], PandaX-II [98] and SuperCDMS [99].
It is important to notice that they work with different nuclei, XENON1T, LUX and
PandaX-II work with Xe, DarkSide-50 works with Ar, while SuperCDMS works
with Ge, so, in order to compare the results, we need to cast eq. (3.109) in another
form. We can factor out the dependence on the target nucleus:

dσ
dER

=
2mN

4µ2Nv
2
σSIF

2
SI(ER) (3.111)
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Figure 3.8: Summary of the current 90% CL upper limits for the spin-
independent WIMP-nucleon cross section. We have considered the
experimentsXENON1T [100], LUX [101, 102],PandaX-II [103],DarkSide-50
[104] and SuperCDMS [105, 106]. The shaded region denotes the values
of the cross section sensitive to the coherent neutrino scattering off nuclei
[107].

and considering the spin-independent cross section σSI

σSI =
µ2N
µ2p
A2σp , (3.112)

where we have assumed fn = fp, so that dark matter couples coherently to the
entire nucleus and the cross section increases with the number of nucleons. It
depends on theWIMP-nucleon cross sectionσp and on the reducedmass ofWIMP-
nucleon system µp. The more recent results of the mentioned experiments are
shown in fig. 3.8, as 90% CL upper limits on the spin-independent WIMP-nucleon
cross section for different values of the WIMP mass.

3.11 Collider searches
The search for dark matter through colliders is based on the assumption that

it can interact with Standard Model particles: this can happen directly with
couplings to colliding quarks or leptons, or indirectly with a mediator. Therefore,
dark matter can in principle be produced by Standard Model particles collision.
This is the aim of collider searches. From the point of view of detection, dark
matter particles are similar to neutrinos, being without any electromagnetic or
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colour charge. If dark matter is the lightest and stable particle of new states,
the collider signature would be a cascade decays of the heavier new states,
eventually producing multi-parton or multi-lepton final states, together with
missing energy. One of the advantages of colliders is that they are equipped
with multipurpose detectors with which we can measure a lot of observables
and reconstruct the kinematic of the dark matter production process. A second
important feature is the high luminosity of colliders. The luminosity is a key
parameter in collider experiments, expressing the rate of the events per seconds,
having high luminosity means a huge amount of data, that can potentially contain
a lot of dark matter-related events. Last, background processes can be studied
in detail with the help of simulations. The combination of these three features
makes colliders a promising methods for dark matter searches. That being said, if
we discover a new particle with dark matter properties through colliders, we will
in addition learn a lot of properties of that particle. Nonetheless, the detection
of dark matter signature is quite challenging and revealing a particle that does
not decay in the detector volume does not mean it is stable on cosmological time,
that is the first requirement we need for dark matter in order to explain the relic
density.
There are two kinds of colliders: electron colliders and hadron colliders.

Electron colliders
In an electron collider the colliding particles are e+, e−. In a lepton collider

we know exactly the initial state, so we can reconstruct the four-momenta of final
particles starting from the initial ones. Production of dark matter can happen
in different ways, the simplest is the pair production. If we want to obtain
two dark matter particles χ of massmχ then we need a centre-of-mass energy√
s > 2mχ. This kind of signal is hard to identify, because it is invisible to our

detector. Another possibility is to look for dark matter production along with
another particle, such as a photon. This process can happen if the photon is
radiated off one of the incoming electrons, and it is called initial state radiation. The
experimental signature is often referred as γ plus missing momentum. In spite of
being characterised by a clean environment, electron colliders can not reach high
centre-of-mass energy in their collision. Moreover, that kind of process requires
the production of an hard photon and this lowers the rates of significant events.

Hadron colliders
Hadron colliders are instead characterised by high centre-of-mass energies,

however the experimental environment is far more complicated, there is a lot of
background related to the QCD processes and computations are less precise. In
colliders we consider two kinds of processes: signal and background. We are
interested in the signal, so we need to isolate the background, that is made of
knownprocesses and is described byQCD.Moreoverwe have to isolate interesting
data, so we need to set up a trigger that evaluates whether an event is relevant for



50 Chapter 3. Dark matter: evidence and detection

our dark matter research. The drawback of hadron collider is the impossibility to
exactly determine the initial state. With the Large Hadron Collider (LHC) [108]
at CERN we are able to make protons beams collide with energy 7 TeV each; at
these high energies we can resolve the internal structure of protons, so we need
to describe the initial state on the basis of quarks and gluons. Consequently, the
actual energy of the collision is at the TeV scale. Moreover we can not predict
the energy distribution of quarks and gluons, because it depends on the Parton
Distribution Functions [109], that can be determined only through experiments. We
can not reconstruct the four-momenta of the dark matter particles emerging from
the collision, but we can analyse the transverse momentum, that is supposed to
be zero both for initial and final state. The transverse momentum of a certain
particle i is defined as:

pT,i
.
= pi sin ϑ , (3.113)

where ϑ is the outgoing angle of the particle. Because we can not detect dark
matter particle directly, this will lead to an unbalanced of the total transverse
momentum. We can define a new observables, the missing transverse momentum
pmiss
T , given by:

pmiss
T

.
= −
∑
i

pT,i . (3.114)

A missing transverse momentum different from zero is a potential signature for
an invisible particle. We define another quantity, the missing transverse energy as
Emiss
T

.
= |pmiss

T |. The measurement of Emiss
T relies on a precise measurement of the

entire recoil. This is characterised by several experimental problems: particles
hitting the structure of the detectors, wrong reconstruction of jet events or non
functional parts of the detectors can lead to a fake missing energy. However, it is
possible to keep into account these effects by making cuts on the missing energy
value.
A recent result accomplished by CMS is the search for invisible decays of Higgs
boson [110], that allows to place an upper limit on the branching ratio of Higgs
boson to invisible particles:

B(h→ inv.) < 0.33 at 95% CL. (3.115)

If dark matter couples to the Higgs boson, we can suppose that those invisible
particles are indeed dark matter particles and exploit this result in order to
constrain the parameter space of dark matter models.



Chapter 4

Automation of loop-induced
amplitude computations

In chap. 3 we have seen that the γ-ray line signature arises from annihilation
of dark matter into a pair of photons. Because dark matter is supposed to be
electrically neutral, this process can proceed only via a loop, even at Leading
Order (LO), and does not have any tree-level contribution. Processes like this are
called loop-induced processes. Their calculation will involve loop integrals, that
in this case are unavoidable, and can be computed using numerical techniques.
In this chapter we describe the numerical tool MadGraph5_aMC@NLO [5, 6]
focusing on the main techniques it uses to handle loop-induced computations. A
complete treatment of the topic can be found in [6], while here we are interested
in giving an outline of what operations are done, which external softwares are
used and how they work together to produce the final result.

4.1 Construction of the matrix element
Considering a 2→ n process, MadGraph5_aMC@NLO computes the follow-

ing quantity:

dσ ∝
∑
spin
colour

|A|
2 , (4.1)

where we can express the square amplitude as:

|A|
2
=
∣∣A(n,0) +A(n,1)

∣∣2 = ∣∣A(n,0)
∣∣2 + ∣∣A(n,1)

∣∣2 + 2Re
{
A(n,0)A(n,1)∗} , (4.2)

where the term A(n,`) means the amplitude of a process 2→ n characterized by
the presence of ` loops. The term

∣∣A(n,0)
∣∣2 is the tree-level (called also Born level)

amplitude, in the case of loop-induced processes this is null. We are left with the
term

∣∣A(n,1)
∣∣2 alone. The computation of this amplitude is done by a dedicated

module of MadGraph5_aMC@NLO, called MadLoop. The amplitudeA(n,1) can
be expressed as a sum over the contribution C given by the different Feynman
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diagrams that participate to the process:

A(n,1) =
∑

diagrams

C . (4.3)

There are different numerical technique available to handle this computation.
The first implementation of MadLoop, that we will call MadLoop4 [111], was
based on the Ossola, Papadopoulos, Pittau (OPP) technique [112]. Its update in
MadGraph5_aMC@NLO, called MadLoop5, uses the Tensor Integral Reduction
(TIR) technique [113, 114], first introduced by Passarino and Veltman. Both allow
to reduce the master loop integrals as a linear combination of simpler integrals,
called scalar integrals plus a rational term, that we will call R. Consequently, C is
cast as:

C = Red[C] =
∑
i

di(C)

( )
i

+
∑
i

ci(C)

( )
i

+
∑
i

bi(C)

( )
i

+
∑
i

ai(C)

( )
i

+ R(C) , (4.4)

where each diagram (in order: box, triangle, bubble, tadpole) shown is a one-loop
(scalar) integral independent of C. The scalar integrals are defined as follows,
using the conventions of ’t Hooft and Veltman [115], in d dimensions:

.
= A0(m) =

(2πµ)4−d

iπ2

∫
ddq 1

q2 −m2
, (4.5)

.
= B0(p,m1,m2) =

(2πµ)4−d

iπ2

∫
ddq 1

[q2 −m21][(q+ p)2 −m22]
, (4.6)

.
= C0(p1, p2,m1,m2,m3) =

(2πµ)4−d

iπ2

×
∫

ddq 1

[q2 −m21][(q+ p1)2 −m22][(q+ p1 + p2)2 −m23]
,

(4.7)

.
= D0(p1, p2, p3,m1,m2,m3,m4) =

(2πµ)4−d

iπ2

×
∫

ddq 1

[q2 −m21][(q+ p1)
2 −m22]

· [(q+ p1 + p2)
2 −m23][(q+ p1 + p2 + p3)

2 −m24]

,

(4.8)

where we have dropped the iε prescription and added a normalisation constant
with the dimension of mass. The main difference between these techniques is in
the algebraic method employed to compute the coefficients and R. MadLoop5
(from now on we will call it simply MadLoop) is implemented with both the
techniques and can switch between them.
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The next step is to cast the expression of the one-loop amplitude in d dimension,
where d = 4− 2ε, with ε→ 0, to recover 4 dimensions. We can express C as

C =

∫
ddl̄ C̄(l̄) , (4.9)

with
C̄(l̄) =

N̄(l̄)∏k
i=1 D̄i

, (4.10)

where we have assumed that the loop is made of k propagators and

D̄i =
(
l̄+ pi

)2
−mi

2 (4.11)

is the inverse of the ith propagator, related to a particle with mass mi and
momentum pi. In d dimensions we can make the decomposition of the loop
momentum l̄ in:

l̄ = l+ l̃ , (4.12)

where l is the 4-dimensional part, while l̃ is the (−2ε)-dimensional one. Clearly
we have:

l · l̃ = 0 . (4.13)

A similar relation holds also for Dirac matrices γ̄µ and for the metric tensor
ḡµν. Therefore it is possible to define the 4-dimensional part of the numerator in
eq. (4.10):

N(l) = lim
ε→0

N̄(l̄ = l; γ̄µ = γµ, ḡµν = gµν) , (4.14)

and consequently express the (−2ε)-dimensional part as:

Ñ(l, l̃) = N̄(l̄) −N(l) . (4.15)

The new quantity in eq. (4.14) is a 4-dimensional quantity and can be treated
numerically without any issues. That means we can express C as

C = Cnon-R2 + R2 , (4.16)

where we have defined

Cnon-R2 =

∫
ddl̄ N(l)∏k

i=1 D̄i
, (4.17)

R2 =

∫
ddl̄ Ñ(l, l̃)∏k

i=1 D̄i
. (4.18)

We see that they still depend on a (4−2ε)-dimensional quantity, but the numerator
is a 4-dimensional function. We can obtain a representation of the amplitude in
eq. (4.3) separating the contribution coming from non-R2 and R2 terms, recalling
eq. (4.16): ∣∣A(n,1)

∣∣2 = ∣∣ALI
non-R2

∣∣2 + ∣∣ALI
R2

∣∣2 + 2Re
{
ALI

non-R2A
LI
R2

∗} . (4.19)
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It is important to remark that loop-induced processes are finite, they are not
characterised by any divergences. Given that there are no tree-level vertices, it
is indeed not possible to obtain counterterms with which cancel the eventual
divergences. That means the only external ingredients we need to provide are
the R2 terms. They are defined as the integral in eq. (4.18); it can be shown [116]
that the result is a set of a process-independent Feynman rules. That means
they can be computed once and only once for each model. So, the R2 terms are
theory-dependent parts, to be added to the definition files of the model, before
importing it in MadLoop. Their computation can be done in an automatised
way, using three Mathematica packages: FeynRules [21], FeynArts [22] and
NLOCT [23]. What we obtain at the end is the Unified FeynRules Output (UFO)
[117] format of the model, that is a set of Python files that can be imported in
MadGraph5_aMC@NLO.

The amplitude
∣∣ALI

non-R2

∣∣2 is the element specific to the loop-induced computa-
tion. It can be written as:

∑
colours

∣∣ALI
non-R2

∣∣2 = ∑
colours

H∑
h=1

(
L∑
l1=1

λl1

∫
ddq̄ Nh,l1(q)∏kl1

i=1 D̄i,l1

)

×
(

L∑
l2=1

λl2

∫
ddq̄ Nh,l2(q)∏kl2

i=1 D̄i,l2

)∗
, (4.20)

where λli are the colour structures. The indexes h and li label the helicity state
and the subamplitude, they are summed over their total numbers H and L. The
integer nli denotes the number of loop propagators in the subamplitude li. The
integrals can be reduced using one of the mentioned OPP or TIR techniques.
However, if we consider the reduction (formally indicated by the operator Red[·])
we find the expression

∑
colours

∣∣ALI
non-R2

∣∣2 = H∑
h=1

L∑
l1=1

L∑
l2=1

(
Red

[
Nh,l1∏kl1
i=1 D̄i,l1

]
Red

[
Nh,l2(q)∏kl2
i=1 D̄i,l2

]∗ ∑
colours

λl1λ
∗
l2

)
.

(4.21)
We notice that the loop amplitudes interfere each other. The sum depends
on L2 terms, so it has a quadratic dependence on the number of different
diagrams. The technique that is used to reduce the integral is important to reduce
the computational time and MadLoop can switch between the two mentioned
techniques in order to choose the best one. For further details on the numerical
computation of this amplitude, see [9].

4.2 Computation of the R2 terms
The software FeynRules, FeynArts and NLOCT allow to compute the R2

terms for each model, and export the model in the UFO format in order to be
used by MadGraph5_aMC@NLO. In general, they are also able to compute the
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UV counterterms (that are theory-dependent, too) in order to produce a model
that can be used also for Next-to-Leading Order (NLO) computations. In this
case we focus only on the computation of the R2 terms, summarising the main
steps.
After implementing the model in FeynRules and write the lagrangian, we can
perform its renormalisation with FeynRules itself. The renormalised lagrangian
is then passed to FeynArts, that expresses the various vertices in the following
form:

vertices =
∑
i

ciLi , (4.22)

where the ith vertex is characterized by the coupling ci and the Lorentz structure Li.
The latter contains all the kinematical information, such as Dirac matrices, metric
tensors, momenta, Levi-Civita tensors. Consequently, we can call NLOCT that is
able to solve the renormalisation conditions and compute the UV counterterms
and the R2 terms. The computation of those terms requires that the model is
renormalisable and is written in the Feynman’s gauge (as also MadLoop works
with it). The computation starts with the generation of the one-loop amplitudes
for a given number of external scalar, fermion and vector fields. So now we
compute the R2 terms, following eq. (4.18). First we make use of the Feynman
parameters to express the integral numerator and denominator. Then we can
substitute the products of the loop momenta with:

pµpνpρpσ → p4
1

d(d+ 2)
(gµνgρσ + gµρgνσ + gµσgρν) , (4.23a)

pµpν → p2
1

d
gµν . (4.23b)

Carrying out the loop-integration of the R2 terms we obtain:∫
ddp ε

p2 −m2
= iπ2m2 , (4.24a)∫

ddp ε

(p2 − ∆)2
= iπ2 , (4.24b)∫

ddp p
2(aε+ b)

(p2 − ∆)2
= iπ2(2a− b)∆ , (4.24c)∫

ddp p
2(aε+ b)

(p2 − ∆)3
= iπ2

(
a−

1

2
b
)
, (4.24d)∫

ddp p
4(aε+ b)

(p2 − ∆)4
= iπ2

(
a−

5

6
b
)
, (4.24e)

where a and b are polynomials on the Feynman parameters.
The lists of the R2 terms and of the UV counterterms are written on an external
file by NLOCT. That file must be imported in FeynRules, in order to obtain
the NLO UFO format of the model. The resulting UFO format will contain all
the computed terms and it is ready to be used in MadGraph5_aMC@NLO to
analyse loop-induced processes. The new vertices inferred by the R2 terms allow
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to compute the amplitude ALI
R2

that appears in eq. (4.19). That is a tree-level
amplitude, that can be handled easily by MadGraph5_aMC@NLO.



Chapter 5

MadDM applications to dark matter
models

In §§ 3.9–3.11 we have seen different experimental approaches in order to
study dark matter. There is a widespread belief that it could be made of new
particles, which belong to the so called dark sector. For this reason, plenty of
theoretical dark matter models are now available, with different mass scales,
number of particles or interaction strength. In order to study these models
efficiently, determine if they are compatible with experimental constraints and
obtain important predictions, the key ingredient is the possibility to compute
the relevant quantities related to each one. However, a pure analytical treatment
is impractical: models become more and more complicated and, in order to
investigate the entire parameter space, we need eventually to solve the Boltzmann
equation, whose analytical solutions are approximated. The best approach is
to use a numerical tool, that must be able to compute all interesting physical
quantities and eventually contain all the experimental results that are available
now.
In this thesis we focus on the numerical tool MadDM [4], giving an outline of
its capabilities in this chapter. We will then discuss the possibility to compute
loop-induced processes with it. The aim of this thesis is, in fact, to validate this
feature in MadDM with two dark matter models. From an experimental point
of view, loop-induced processes are related to the annihilation of dark matter
in a pair of photons, that is an important process in the framework of indirect
detection, because it gives a characteristic monochromatic signature.

As we mentioned, many dark matter models are available today: we have
decided to focus on WIMP models. In order to build a valid model, the first thing
we need to do is to make assumptions on quantum numbers related to our dark
matter candidate. We assume the existence of only one stable particle, to generate
the entire dark matter density of the Universe. Its mass is assumed to be in the
range from GeV to TeV , while its density comes from the thermal production
during the cooling of the Universe. Postulate a new particle is not enough to
study dark matter properties. From the freeze-out mechanism, we know that
dark matter has to couple with Standard Model. So we need to postulate also a
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way for our candidate to communicate with it. This means we need a mediator,
his choice depends on the model. This approach is known as simplified models.
The idea behind a simplified model is to enrich the known Standard Model
framework by adding just the particles describing the dark matter sector and
a mediator. It is someway similar to an Effective Field Theory (EFT) approach.
In EFT one studies a low energy model, characterised by the presence of high
dimension operators. They comes from particles that emerges only at high energy,
so that one can integrate them out at low energy. In this case, we incorporate
new particles (dark matter and the mediator) in the Standard Model, that is
treated as an EFT description of a more general model containing those new
particles. The dark matter models we will study in this thesis are: the singlet
scalar Higgs portal model and a simplified top-philic model. Both of them are
simple extension of the Standard Model. The first one has a new real scalar
field that couples with Higgs boson, that is the mediator. The second one has a
fermionic dark matter candidate, that couples to the Standard Model through
a coloured scalar. Both the models will be implemented in a UFO format at an
NLO level, because we need to deal with loop-induced processes, as explained in
chap. 4. We will study the loop-induced annihilation in photons, comparing the
numerical results coming from MadDM with analytical results. Moreover we
will study the phenomenology of the models, analysisng their parameter space
and implementing the various constraints on indirect detection, direct detection
and collider searches. In particular, we will exploit the constraints on the γ-ray
line signature coming from Fermi-LAT [19] and HESS [20].

5.1 What is MadDM?
MadDM is a numerical tool able to compute the most relevant quantities

related to dark matter for any dark matter model in UFO format. Its first release
[118] provided the possibility to compute the relic density for a certain darkmatter
model. The second release [119] added the computation of dark matter-nucleon
cross section along with the double differential event rates of nuclear recoils for a
generic experiment. Moreover, it implements the LUX experimental likelihoods
[120] to compare with data. The last version implements the indirect detection
module, which allows to perform the computation of the main observables
relative to indirect detection. It is now possible to predict the fluxes of γ-rays,
neutrinos or cosmic rays coming from dark matter annihilation in the Milky
Way or in neighbour galaxies. Moreover, in this version, MadDM is a plugin of
MadGraph5_aMC@NLO, and can inherit its capabilities. The computation of
〈σv〉 can be performed at tree-level for different final states in two ways: either
with the approximation of fixed dark matter velocity, or by generating events
according to a Maxwell-Boltzmann velocity distribution for the dark matter in the
galactic halo. In the last case, the annihilation is performed with a centre-of-mass
energy of

√
s = 2mχ

(
1+v2rel/8

)
, withmχ being dark matter mass and vrel =

√
3v0

(see § 3.9). Another new feature in MadDM is the experiment module: it allows
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to test model points against direct and indirect experimental constraints. The
current version of MadDM considers the following limits for direct detection:
XENON1T [121] and LUX [102] for spin-independent cross section; LUX [122]
and Pico60 [123] for spin-dependent cross section respectively on neutron and
proton. For what concerns the indirect detection, MadDM has implemented
the Fermi-LAT likelihood for prompt γ-rays coming from the analysis of dwarf
spheroidal galaxies [124, 125]. Further details on the capabilities of MadDM can
be found in [4].

At the current version, MadDM can compute annihilation cross sections for
any tree-level process. In this thesis we will focus on loop-induced processes,
in particular on indirect detection into two photons, studying the γ-ray line
signature. The capability of performing loop-induced computation should be
inherited by MadGraph5_aMC@NLO (see chap. 4) and we will validate it with
two darkmattermodels. Moreover, this featurewill allow to study other processes
such as annihilation in γZ or γh, that, together with γγ, are called the smoking
guns signatures of dark matter.

5.2 Singlet scalar Higgs portal model
The singlet scalar Higgs portal model [10–12, 30] is one of the simplest

extension of Standard Model which can explain dark matter. It consists of the
addition of a new scalar field S, which is a singlet for all of the Standard Model
gauge groups. The new interactions are renormalisable. To be a valid dark matter
candidate, the particle must be stable. We can satisfy this request by assuming a
Z2 symmetry, under which S is odd, S→ −S, while the Standard Model is even.

The lagrangian of the model reads:

L = LSM +
1

2
∂µS∂

µS−
1

2
m2S0S

2 −
1

4
λSS

4 −
1

2
λhSϕ

†ϕS2 , (5.1)

wheremS0 is the mass of the field S before electroweak symmetry breaking and
λS is the quartic coupling of S. The field ϕ is the usual Higgs Standard Model
doublet, that after the electroweak symmetry breaking and in the unitary gauge
has the form:

ϕ =
1√
2

(
0

v+ h

)
, (5.2)

with h being theHiggs boson and v = 246GeV the vacuum expectation value. We
see that the coupling λhS is the coupling between dark matter and the Standard
Model: hworks as the mediator. After the electroweak symmetry breaking we
can write the following lagrangian:

L = LSM +
1

2
∂µS∂

µS−
1

2
m2SS

2 −
1

4
λSS

4 −
1

2
λhSvhS

2 −
1

4
λhSh

2S2 , (5.3)

where we have definedm2S = m2S0 + λhS
v2

2
.
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Looking at eq. (5.1) we have three parameters to describe the model: two of
them (m2S0 and λS) are related to S sector, while the last one (λhS) regards the
interaction of Swith themediator. We can studymore deeply the parameter space,
in order to find the constraints on the couplings, discussing the vacuum stability
and the symmetry breaking pattern. Considering the entire scalar potential from
eq. (5.1) we have:

V =
1

2
m2S0S

2 +
1

4
λSS

4 +
1

2
λhSϕ

†ϕS2 − µh
2ϕ†ϕ+ λh

(
ϕ†ϕ

)2 , (5.4)

where the last two terms come from the Higgs lagrangian of the Standard Model.
We can discuss the following properties [11]:

• vacuum stability: the scalar potential is bounded frombelow if the couplings
obey the relations

λS, λh > 0 , (5.5a)
λSλh > λ

2
hS if λhS < 0 ; (5.5b)

• correct symmetry breaking pattern: S does not take a vacuum expectation
value: 〈0|S|0〉 = 0, by the means of the Z2 symmetry imposed on it. That
means we are working with a dark real scalar. This prevents S from affecting
the electroweak Symmetry breaking, by mixing with ϕ, thereforem2S0 > 0.

Our model can be exploited to study dark matter properties. As we saw, the
value of the parameter λS is important to guarantee the vacuum stability, but for
our purposes is highly unconstrained and can be chosen arbitrarily, though it
must not be too high in order to guarantee also perturbativity, as can be seen in
[126]. So we are left with only two parameters, one related to the mass of our
WIMP candidate and the other related to the coupling with the Higgs boson. In
the lagrangian in eq. (5.1), we notice the presence of the operator ϕ†ϕ: it is the
only one in the Standard Model with dimension two and so can be used to study
a lot of phenomena: invisible decay width of the Higgs boson, the annihilation of
dark matter through Higgs channels and the interaction SS→ hh. We can study
the model deeply by computing some relevant quantities related to dark matter
and see if we can reproduce the experimental results by assuming some values
for the parameters. In fig. 5.1 we see the annihilation diagrams related to the
model: in particular fig. 5.1a is relative to the annihilation in Standard Model
particles by a 2→ 2 process at tree-level. Let us focus on a light dark matter scalar
and let’s consider the leading decay of Higgs boson in bb̄ (B(h→ bb̄) ≈ 60%):

SS→ h→ bb̄, (5.6)

where Higgs boson is eventually off shell. Its diagram is shown in fig. 5.2. We
can write the amplitude for the process:

A(k1, k2) = u(k1)
−imb
v

v(k2)
i

(k1 + k2)
2
−m2h + imhΓh

(−iλhSv) , (5.7)
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Figure 5.1: Leading order 2→ 2 annihilation diagrams for the singlet scalar Higgs portal
model, K is a generic Standard Model particle.

k′2

k1 + k2

h

k′1

k2

k1

S

S

b̄

b

Figure 5.2: Annihilation diagram
of dark matter in b, b̄.

where u(k), v(k) are the spin states of the final fermions and Γh ≈ 4.07MeV
is the Higgs’s width [127]. Notice that we have multiplied everything by 2,
because S is a boson, so we can exchange the initial particles without changing
the diagram: this produces the factor 2 that simplifies with the symmetry factor
of the vertex coupling. Now we need to square the matrix element, sum over the
spin polarisations and the colours, and take the average:

∑
spin
colour

|A(k1, k2)|
2
= 2NCλ

2
hSm

2
b

s− 4m2b

(s−m2h)
2
+m2hΓ

2
h

, (5.8)

where we have defined the centre-of-mass energy s = (k1 + k2)
2
= (k′1 + k

′
2)
2.

We can now compute the total cross section, using the formula for quasi-elastic
scattering:

σ =

∑
|A|
2

16πs

√
s− 4m2b
s− 4m2S

=
NC

8π
√
s
λ2hSm

2
b

√√√√ 1−
4m2

b

s

s− 4m2S

s− 4m2b

(s−m2h)
2
+m2hΓ

2
h

. (5.9)

To compute the velocity-averaged cross section today we consider the non-
relativistic limit: from eq. (3.56), we obtain s ≈ 4m2S. Moreover, considering the
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approximation 〈σv〉 = σv+ O
(
v2
)
and assumingmS � mb we can finally write:

〈σv〉
∣∣∣∣
SS→bb̄

≈ NCλ
2
hSm

2
b

4π

1

(4m2S −m
2
h)
2
+m2hΓ

2
h

. (5.10)

We now study three different cases, related to the different values of the mass
of our candidate with respect to Higgs mass and extract the value of λhS needed
to reproduce the correct value of the relic density in eq. (3.49):

• resonance: we study the casemS = mh/2, we have:

〈σv〉
∣∣∣∣
SS→bb̄

=
NCλ

2
hSm

2
b

4πm2hΓ
2
h

=⇒ 〈σχχv〉 =
1

B(h→ bb̄)
〈σv〉

∣∣∣∣
SS→bb̄

≈ 27λ
2
hS

GeV2
,

(5.11)
from which we obtain:

〈σv〉 ≈ 1.7× 10
−9

GeV2
⇔ λhS ≈ 8× 10−6 ; (5.12)

• lighter scalar: the denominator in eq. (5.10) is characterised by two terms,
we see that the second onem2hΓ2h is negligible unless the first

(
4m2S −m

2
h

)2
one is null, that means only in resonance condition. So we consider the case
mh � mS � mb and obtain:

〈σv〉
∣∣∣∣
SS→bb̄

≈ NCλ
2
hSm

2
b

4πm4h
≈ λ2hS
1252 · 602GeV2 ≈

1.7× 10−9
GeV2

⇔ λhS ≈ 0.31 ;
(5.13)

• heavier scalar: there are other important annihilation channels:

SS→ τ+τ−,W+W−,ZZ,hh, tt̄ . (5.14)

For the final state tt̄ we can use the previous formula, by substitution of
mb with mt and by the approximation mS � mh. However, the final
states in vector bosons can not be studied with the same relation. In the
unitary gauge, the vector bosons have a degree of freedom given by the
Goldstone boson generated by the spontaneous symmetry breaking in the
Higgs doublet ϕ. The final states inW+W− or in ZZ present that degree
of freedom. In order to estimate the result, we can consider a final state
with a similar degree of freedom, for example the Higgs pairs, as the Higgs
boson comes from the same doublet. The annihilation SS → hh is given
by the three diagrams in fig. 5.1, respectively a s, t-channel and a 4-vertex
interaction. The amplitudes of the s-channel and the 4-vertex interaction
can be written straightforwardly:

A4 = −iλhS , (5.15)

As = (−iλhSv)
i

s−m2h

(
−3i

m2h
v

)
= −

3im2hλhS

s−m2h
. (5.16)
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Figure 5.3: Loop-induced annihilation diagrams in photons (unitary gauge) for the
singlet scalar Higgs portal model.

They are proportional to λhS, so we can neglect the t-channel, being it
proportional to λ2hS. Assuming the threshold s = 4m2S andmS � mh we
have:

As = −
3im2hλhS

4m2S −m
2
h

� A4 , (5.17)

so that we can neglect the s-channel and consider only A4. Using the same
arguments as in the previous cases we can obtain a formula for the cross
section; assumingmS = 200GeV :

〈σv〉
∣∣∣∣
SS→hh

≈ λ2hS
32πm2S

≈ λ2hS
4× 106GeV2 ≈

1.7× 10−9
GeV2

⇔ λhS ≈ 0.08 .
(5.18)

We see that the right choice of the parameters allows us to reproduce the correct
relic density for this model. The annihilation processes shown in fig. 5.1 results
in a continuum spectrum of γ-rays, due predominantly to π0 → γγ.

Loop-induced annihilation SS→ γγ

The annihilation SS→ h→ γγ is a loop-induced process, the related Feynman
diagrams can be found in fig. 5.3 in the unitary gauge. The singlet scalar Higgs
portal model has been implemented in UFO format with NLO corrections in
order to be imported by MadDM.
We have carried out the numerical computation of this process and compared the
results with an effective field theory approach, using the Higgs Effective Theory
(HEFT) [14–16].
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TheHEFTprovides a newpiece of lagrangian, that contains the new interaction
vertex hγγ:

LHEFT = −
1

4
g
(eff)
hγγFµνF

µνh , (5.19)

where Fµν = ∂µAν − ∂νAµ is the field strength tensor of the electromagnetic
vector field Aµ. The new Feynman rule we have to deal with is:

k

k
µ
1

kν2h

Aµ

Aν

= ig(eff)hγγ(k1 · k2g
µν − kν1k

µ
2 ) . (5.20)

In order to find the expression for the g(eff)hγγ we have to make a matching between
the singlet scalar Higgs portal model and theHEFT approach. This can be done by
comparing the expression for the amplitudes arising from the processes SS→ γγ

in both models. The complete calculation of this process involves the three
diagrams in fig. 5.3, which are loop diagrams that have the same loop structure of
the diagrams relative to the decay h→ γγ. In particular, we will use the results
from [128]. However, in this case we have to deal with the process SS→ γγ, so the
amplitude will contain the coupling constant −iλhSv and the Higgs propagator.
Moreover, every occurrence ofm2h in the results from [128] must be substituted
with s, the actual centre-of-mass energy. With these precautions, we can write
the amplitude for the processes in fig. 5.3:

iANLO = (−iλhSv)
i

s−m2h

αe

2πv
F · (k1 · k2gµν − kν1kµ2 )εAµ (k1)εBν(k2) , (5.21)

where αe is the fine-structure constant, εPµ is the polarisation vector associated to
the massless vector field Aµ with P the polarisation index and

F = FW

(4m2W
s

)
+
∑

f

NC(f)Q2f Ff
(4m2f
s

)
, (5.22)

with f being any Standard Model massive particle, NC(f) = 3 if f is a quark,
NC(f) = 1 otherwise; Qf is the electric charge of f. The functions FW(x), Ff(x) are
defined as follows:

FW(x) = 2+ 3x+ 3x(2− x)f(x) , (5.23)
Ff(x) = −2x

[
1+ (1− x)f(x)

]
, (5.24)

where

f(x) =


arcsin2(

√
x) for x > 1 ,

−
1

4

[
log
(1+√1− x
1−
√
1− x

)
− iπ

]2
for x < 1 .

(5.25)

Now we have to write the amplitude for the HEFT approach. The process
SS → γγ is now described by a tree-level diagrams, shown in fig. 5.4. The
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Figure 5.4: Leading order annihi-
lation diagrams in photons for the
singlet scalar Higgs portal model
in HEFT.

amplitude computation is straightforward

iAHEFT = (−iλhSv)
i

s−m2h
ig

(eff)
hγγ(k1 · k2g

µν − kν1k
µ
2 )ε

A
µ (k1)ε

B
ν(k2) . (5.26)

A comparison between eqs. (5.21) and (5.26) allows to compute:

g
(eff)
hγγ =

αe

2πv
F . (5.27)

The HEFT approach allows us to compute the annihilation SS → γγ as a
tree-level process. These kind of processes are handled easily by MadDM, so we
can use them to test the loop-induced computation. Therefore, we implemented
the singlet scalar Higgs portal model with the HEFT approach in FeynRules,
retrieving the UFO file. We have merged our model files with the ones coming
from the model [129], and we have slightly modified it, by using the exact
expression eq. (5.27) for g(eff)hγγ. In particular, considering every quark and lepton
massless apart for b and t, we obtain:

g
(eff)
hγγ =

αe

2πv

[
FW

(4m2W
s

)
+
4

3
Ff

(4m2t
s

)
+
1

3
Ff

(4m2b
s

)]
. (5.28)

We have then chosen some values of the parameters and tested several benchmark
points with MadDM, making the comparison in tab. 5.1. We see that the results
are consistent, that means MadDM computes the loop-induced integrals correctly.

Phenomenology of the singlet scalar Higgs portal model
The singlet scalar Higgs portal model has only two free parameters,mS and

λhS, and the study of its phenomenology is quite simple. Our aim is to see for
which values of the parameters we are able to reproduce the correct relic density
measured by Planck [3]:

Ωh2|Planck = 0.1200± 0.0012 , (3.49)
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Table 5.1: Comparison between the numerical
computation made by MadDM of the process
SS→ γγ both in the general case and in HEFT
approach, in the framework of the singlet scalar
Higgs portal model. We have fixed λχ = 0.1.

mS/GeV 〈σv〉γγ/(cm3 s−1)

50
NLO 2.02× 10−29
HEFT 2.00× 10−29

60
NLO 7.08× 10−28
HEFT 7.03× 10−28

70
NLO 1.16× 10−28
HEFT 1.15× 10−28

100
NLO 1.01× 10−29
HEFT 1.01× 10−29

200
NLO 1.66× 10−31
HEFT 1.66× 10−31

and to implement the main experimental results, constraining our model.
We have computed the relic density for different values of (mS, λhS), doing a

scan over the parameter space according to the following ranges:

• mS ∈ [5, 1000] GeV , in logarithmic scale;

• λhS ∈ [1× 10−4, 1], in logarithmic scale;

• the Higgs’s resonance region mS ∈ [62.4, 63] GeV requires an accurate
sampling, where ∆mS = mS(n + 1) −mS(n) ≈ 4.07MeV is equal to the
Higgs’s width [127].

Remember that the centre-of-mass energy is
√
s ≈ 2mS ∈ [10, 2000] GeV and it is

equal to the four-momentum of the Higgs boson. So, the possible processes are
determined by the decay modes of the Higgs boson at different energies:

• mS / 50GeV : final states in low mass quarks and in leptons, as shown in
fig. 5.1a, where K ∈ { u, d, c, s, b, e−, µ−, τ− }, mostly in bb̄, τ+τ− final
states;

• 50GeV / mS / mW,Z: the annihilation processes in low mass quarks and
leptons become less important, there are new 2→ 3 processes, due to final
states inWW∗, ZZ∗, where the off shell gauge bosons decay in two fermions,
as shown in fig. 5.5;

• mW,Z / mS < mh: the annihilations processes are inW+W−, ZZ, with a
low contribution of bb̄;
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Figure 5.5: The 2 → 3 annihila-
tion processes arising when 50GeV /
mS / mW,Z. Dark matter annihi-
lates in WW∗, ZZ∗, and the off shell
gauge bosons decay in StandardModel
fermions KK′.

• mh 6 mS 6 mt: in this mass range, the final state in hh becomes available,
with three diagrams, that are those in fig. 5.1, other important channels are
inW+W−, ZZ;

• mS > mt: for masses greater than the t quark mass, we have a new channel
in tt̄, in addition to the previous ones.

The channels in gg and in γγ are loop suppressed, so we have not considered
them. We have computed the relic density with MicrOMEGAs 5.0.9 [130], by
considering the simple case in which all the dark matter comes from our model.
We have not used MadDM, because at the current stage the computation of the
relic density does not consider 2→ 3 processes. In this case their contribution
is important in the dark matter mass range 50GeV / mS / mW,Z, indeed, a
comparison between MadDM and MicrOMEGAs 5.0.9 shows a difference of
about 20–30%.
Thereupon we have computed the values of the parameters in order to obtain the
correct relic density in eq. (3.49). For the singlet scalar Higgs portal model we
have the following (approximate) proportionality relation:

Ωh2 ∝≈
1

〈σv〉
∝≈

1

λ2hS
, (5.29)

Therefore, fixing λ(n)hS and computingΩh2(n), we can apply the following recursive
formula

λ
(n+1)
hS =

√
Ωh2(n)

Ωh2|Planck
λ
(n)
hS . (5.30)

until we have that Ωh2(n+1) is sufficiently close to the value Ωh2|Planck. We
associated to that number a theoretical uncertainty of 10%. In order to compute
the values of λhS related to the uncertaintywe can use the same previous formulae,
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but we have to change the value ofΩh2|Planck according to:

Ωh2|±10%
Planck =

1

1∓ 10%Ωh
2|Planck . (5.31)

Consequently we have added the γ-ray line 95% CL upper limits by Fermi-LAT
[19] and HESS [20]: we will see that the possibility to compute the value of 〈σv〉γγ
makes possible to determine the maximum value of λhS for each value of dark
matter mass considered by the experiments. This has been done by exploiting
the following relation, valid for a certain value ofmS:

〈σv〉γγ ∝ λ2hS , (5.32)

Fixing mS and λhS = λ∗hS we can compute 〈σv〉γγ = 〈σv〉∗ with MadDM and
then compute

λulhS =

√
〈σv〉ulγγ
〈σv〉∗ λ

∗
hS , (5.33)

where λulhS is the upper limit on λhS, due to the γ-ray line limits, expressed as
〈σv〉ulγγ.
Moreover we have studied the limits coming from direct detection, by considering
the spin-independent cross section 90% CL upper limit as measured by XENON1T
[100], by computing the maximum value of λhS for each value ofmS according to
the following formula [131]:

σSI =
λ2hSf

2
n

4π

µ2nm
2
n

m4hm
2
S

, (5.34)

where fn = 0.30. The term µn is the reduced mass of the dark matter-nucleon
system, whilemn = 0.939GeV is the average between the proton and the neutron
masses.
The last experimental result we have shown comes from the Higgs invisible decay
width [110]. Considering the latter related only to Higgs decay in our dark matter
candidate S, we can compute the invisible decay width [132]:

Γinv = Γ(h→ SS) =
λ2hSv

2

32πmh

√
1−

4m2S
m2h

, (5.35)

where we have, recalling eq. (3.115),

B(h→ inv.) = Γinv

ΓSM + Γinv
< 0.33 at 95% CL, (5.36)

where ΓSM = 4.07MeV as pointed out above. Therefore we can compute the
maximum value of λhS for eachmS using the eqs. above.

Plotting all the discussed results, we obtain the graph in fig. 5.6. First of
all, the part of the parameter space below the relic density line is excluded,
because it accounts for an higher relic density. This happens because the coupling
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Figure 5.6: Parameter space of the singlet scalar Higgs portal model. The black line
is the coupling that provides the observed relic density (Planck [3]) for each value of
mass, with a 10% theoretical uncertainty grey band. Moreover we show the γ-ray line
95% CL upper limits from Fermi-LAT [19] (HESS [20] limits are not visible for these
values of the parameters) for two different density profiles: Einasto (solid line) and
NFW (dashed line). We show also the 90% CL upper limits from XENON1T [100] on
the spin-independent cross section. Finally, the shaded area represents the excluded
region due to Higgs invisible width 95% CL upper limit [110].

is low, so that annihilation proceeds at a lower rate. What is above that line
represents instead the part of the parameter space that accounts for a relic density
lower than the observed one, because the coupling is high. In principle this
part is not excluded: if we suppose that our model does not describe the total
amount of dark matter, but only a fraction of it, the value of the relic density
we have to reproduce will be lower than the observed one. As expected, the
relic density line drops whenmS ≈ mh/2, that is the resonance region, because
〈σv〉 is enhanced. Other local minimum can be found aroundmW,Z, when the
processes inW+W−, ZZ are accessible, and wheremS ≈ mh, when the hh final
state becomes available. The zoomed region represents an area of the parameter
space when the constraints coming from Fermi-LAT limits are particularly close
to the exclusion limits of the relic density. Adding up the XENON1T limit we are
able to constrain a large part of the parameter space. The only available slice
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becomes the part from mS ≈ 55 to 63GeV , delimited above by the XENON1T
upper limits, and below by the relic density lower limit. Another little slice
can be found aroundmS ≈ 1000GeV , when the relic density line drops below
XENON1T limit.

5.3 Simplified top-philic model
The simplified top-philic model we have considered is a simple extension of

the Standard Model [13], made of a Majorana dark matter candidate χ, acting as
a singlet under Standard Model gauge groups, and a coloured scalar particle t̃
with the same quantum numbers as the right t quark. We assume a Z2 symmetry,
under which Standard Model particles are even, while χ→ −χ and t̃→ −t̃ are
odd. In this way we have that the dark matter candidate is stable whenmχ < mt̃.
We can therefore write the following lagrangian:

Lt-philic = Dµt̃(D
µt̃)
†
−m2t̃ t̃

†t̃+ χ(i/∂−mχ)χ+ λχt̃ tPLχ+ h.c. , (5.37)

where Dµ is the covariant derivative. The term PL is the left chirality projector,
defined as PL = (1−γ5)/2, where γ5 = iγ0γ1γ2γ3 = diag(−12,12). The particle
t̃ is the t-channel mediator that allows dark matter to interact with Standard
Model through the coupling λχ. Themodel has three free parameters: mχ,mt̃, λχ.
We can make a parallelism with the Minimal Supersymmetric Standard Model
(MSSM) [68–71] and recognise in t̃ the supersymmetric partner of t quark, called
stop, while χ is the neutralino. In the MSSM, the neutralino is given by a mixing
of bino e wino, and in this case the coupling is fixed λMSSM

χ = 2
√
2e

3 cosϑW
≈ 0.33,

by their gauge couplings. However, the model can be also considered as a low
energy limit of a non-supersymmetric scenario. This is indeed the case we are
interested on, treating λχ as a free parameter. We notice that the lagrangian
(5.37) can in principle contain another interaction term: t̃†t̃ϕ†ϕ, where ϕ is
the Higgs boson doublet. That interaction will affect the t̃¯̃t annihilation cross
section, the coannihilation rate, theχ-nucleon scattering rate and the loop-induced
annihilation of χ via an Higgs boson. However we can neglect that term by
imposing its related coupling very low. Moreover, we will consider a mass
splitting ∆m = mt̃ − mχ > 10GeV , so that we can safely neglect the effects
of flavour-violating coupling of t̃ to other up-like quarks [133]. This kind of
couplings can indeed be generated by the renormalisation group, but they are
negligible if the mass splitting is sufficiently high. The main annihilation and
coannihilation 2→ 2 LO diagrams that contribute to the relic density are shown
in fig. 5.7.

Loop-induced annihilation χχ→ γγ

We know that annihilation of dark matter in photons χχ → γγ is a loop-
induced process, and this can be seen clearly in the related diagrams in fig. 5.8.
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Figure 5.7: Leading-Order 2 → 2 annihilation and coannihilation diagrams for the
simplified top-philic model. Fig. a shows the only one proper annihilation diagram.

We have implemented the model in UFO format with NLO correction, to import
it in MadDM. To test the numerical computation of the loop-induced integral we
have compared the results with analytical formulae [17, 18]. Those come from
the general MSSM, but we can simplify them by considering our simple model,
where the neutralino couples only to squarks. We obtain:

〈σv〉γγ =
N2CQ

4
tλ
4
χα
2
e

16π3m2χ

[(
ReÃtt̃

(m2χ
m2
t̃

,
m2t
m2
t̃

))2
+

(
ImÃtt̃

(m2χ
m2
t̃

,
m2t
m2
t̃

))2]
, (5.38)

where NC = 3, Qt = 2/3. We have the definitions of the functions

ReÃtt̃(a, b) =
1

4

b

1+ a− b

(
I1(a, b) + 2 I3(a, b)

)
+
1

4

1

1− b

(
I2(a, b) − b I3(a, b)

)
,

(5.39)

ImÃtt̃(a, b) = −
π

4

b

1+ a− b
log
(
1+

√
1− b/a

1−
√
1− b/a

)
ϑ(a− b) , (5.40)

with ϑ(x) being the Heavside’s Theta function. The functions I1, I2, I3 arise from
three point loop integrals. Before going through them, it is useful to define the
quantities:

∆1(a, b)
.
= (a+ b− 1)2 + 4a , (5.41a)

∆2(a, b)
.
= (b− a− 1)2 − 4a . (5.41b)
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Figure 5.8: Loop-induced annihilation diagrams in photons (unitary gauge) for the
simplified top-philic model.

We can write:

I1(a, b) =
1

2

[
log2

(
1+

√
1− b/a

1−
√
1− b/a

)
− π2

]
ϑ(a− b)

− 2 arctan2
(

1√
b/a− 1

)
ϑ(b− a) , (5.42)

I2(a, b) = −Li2

(
1− a− b−

√
∆2(a, b)

2

)
− Li2

(
1− a− b+

√
∆1(a, b)

2

)
+

[
Li2

(
1+ a− b−

√
∆2(a, b)

2

)
+ Li2

(
1+ a− b+

√
∆2(a, b)

2

)]
ϑ
(
∆2(a, b)

)
+ 2Re Li2

[
√
a exp

(
i arccos

(1+ a− b

2
√
a

))]
ϑ
(
−∆2(a, b)

)
,

(5.43)
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Table 5.2: Comparison between the numerical computation
made by MadDM and the analytical formulae for 〈σv〉γγ in the
framework of the simplified top-philic model. We have fixed
λχ = 0.1.

mχ/GeV mt̃/GeV 〈σv〉γγ/(cm3 s−1)

200 300
numerical 4.59× 10−34
analytical 4.66× 10−34

400 500
numerical 1.954× 10−34
analytical 1.979× 10−34

500 600
numerical 1.444× 10−34
analytical 1.457× 10−34

700 800
numerical 8.867× 10−35
analytical 8.943× 10−35

750 800
numerical 1.008× 10−34
analytical 1.022× 10−34

1000 1200
numerical 3.55× 10−35
analytical 3.62× 10−35

1100 1200
numerical 4.40× 10−35
analytical 4.44× 10−35

I3(a, b) = −I2(a, b) + log2
(
1+ a+ b+

√
∆1(a, b)

2
√
b

)
− log2

(
1− a+ b+

√
∆2(a, b)

2
√
b

)
ϑ
(
∆2(a, b)

)
+

[
π

2
− arctan

(
1+ b− a√
−∆2(a, b)

)]2
ϑ
(
−∆2(a, b)

)
, (5.44)

The function Li2(z) is the dilogarithm function, defined as:

Li2(z) = −

∫z
0

log(1− t)
t

dt . (5.45)

We have chosen few values of the parameters and made the comparison in
tab. 5.2. The numerical results agree with the analytical ones with a maximum
relative error of 1.9%. MadDM is in very good agreement with the analytical
formulae.

Phenomenology of the simplified top-philic model
The simplified top-philic model has three free parameters,mχ,mt̃, λχ. Hence,

the study of the phenomenology is more complex than in the singlet scalar Higgs
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portal model. A recent result can be found in [13], where the same model is
analysed and characterised in depth. We will take the main results from it, we
will add the γ-ray line limits [19, 20] and the direct detection limit [100]. The
parameter space we have studied is (mχ, λχ),mt̃ is fixed by choosing:

∆m = mt̃ −mχ = mt ≈ 172GeV . (5.46)

For the relic density, we have adopted the results from [13], where the authors
performed the computation for different values of the parameters:

• mχ ∈ [100, 2× 105] GeV , in logarithmic scale;

• λχ ∈ [0.3, 14], in logarithmic scale.

A mass splitting as in eq. (5.46) ensures that the relic density is governed by
the usual freeze-out mechanism, because t̃ and χ are in chemical equilibrium,
i.e. the condition in eq. (3.80) holds. A lower mass splitting would make that
assumption breaking down; in this case the relic density is governed by the so
called conversion-driven freeze-out [134], that we will not discuss.
In the case of chemical equilibrium between t̃ and χ, we have that the relic density
depends on the annihilation and coannihilation processes involving χ, t and
t̃. The velocity-averaged cross section has various contributions, as we have
discussed in § 3.7, recalling eq. (3.83), we can write the effective cross section

σeff
.
=
∑

i,j∈{ χ,t,t̃ }

σij
n
eq
i n

eq
j

neq2 , (5.47)

where we have to consider the degrees of freedom: gχ = 2, gt̃ = 3. On the basis
of the centre-of-mass energy

√
s ≈ 2mχ, so depending onmχ, we have different

processes:

• mχ > mt: the main annihilation process is χχ→ tt̄ in fig. 5.7a; in addition
we have the coannihilation processes χt̃ → tg in figs. 5.7b and 5.7c and
t̃¯̃t→ gg in figs. 5.7e–5.7g, the last ones depend solely on gs (strong coupling
constant), so they are an important contribution for low λχ;

• mχ < mt: the process χχ → tt̄ is no more kinematically allowed, the
relic density is characterised by the loop-induced process χχ→ gg (whose
diagrams are the same as in fig. 5.8 by substitution of γ with g) and by the
2→ 3 processes χχ→W+bt̄, χχ→W−b̄t, shown in fig. 5.9. In this mass
range we can have also the loop-induced processes χχ→ h→ KK̄, shown
in fig. 5.10, with K any massive kinematically allowed Standard Model
particle, such as b,W, . . . ; this process is enhanced on the Higgs resonance
mχ ≈ mh/2;

• the choice of the mass splitting as in eq. (5.46) makes mt̃ > mt and that
means the processes in figs. 5.7d and 5.7h are always possible;
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Figure 5.10: Loop-induced annihilation of
χ in Standard Model massive particle K,
through Higgs exchange. This process is
enhanced on the Higgs resonance, mχ ≈
mh/2.

• for the same reason, also the processes in figs. 5.7b and 5.7c are always
possible independently on the value ofmχ.

In [13], the authors considered the value of the correct relic density from the
old measurement performed by Planck [135] (we will refer to it as Planck15):

Ωh2|Planck15 = 0.1199± 0.0027 , (5.48)

with a 10% theoretical uncertainty. With respect to the results in [13], we have
added the 95% CL γ-ray line limits provided by Fermi-LAT [19] and HESS [20].
Following the same approach as in § 5.2, we have made a rescaling using a
formula similar to eq. (5.33), exploiting the following proportionality relation
valid for a certainmχ

〈σv〉γγ ∝ λ4χ , (5.49)

and the fact that MadDM can compute 〈σv〉γγ straightforwardly.
For the direct detection constraints, we have updated the results in [13], consid-
ering the most recent results by XENON1T [100]. We have taken the σSI = σ∗SI
computation that was performed by [13] for each value of mχ, fixing λχ = λ∗χ,
and we have made a rescaling, finding the upper limit λulχ , on the basis of the 90%
CL upper limit σulSI provided by [100]:

λulχ = 4

√
σulSI
σ∗SI
λ∗χ . (5.50)

For what concerns experimental limits from collider searches we have adopted
the results of [13], considering the t̃ searches performed by CMS and ATLAS. A
large number of searches for the neutralino-stop sector were performed, the t̃
production is independent on the coupling strength λχ because depends only
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Figure 5.11: Parameter space of the simplified top-philic model. The black line is
the coupling that provides the observed relic density (Planck15 [135]) for each
value of mass, with a 10% theoretical uncertainty grey band (result taken from
[13]). Moreover we show the 95% CL γ-ray line upper limits from Fermi-LAT [19]
and HESS [20] for two different density profiles: Einasto (solid lines) and NFW
(dashed lines). We show also the 90% CL upper limits on the spin-independent
cross section from XENON1T [100]. Finally, the shaded area represents the 95%
CL combined excluded region due to the stop searches at colliders performed by
both CMS [136–138] and ATLAS [139–141].

on his gauge interactions, so these searches do not make any reference to the
strength of the λχ coupling. In order to remain in the framework of the simplified
top-philic model, we can consider the results for t̃ decays that do not involve
other supersymmetric particles. We have considered the LHC 13 TeV following
analysis: CMS fully hadronic [136, 137], CMS single lepton [138], ATLAS fully
hadronic [139], ATLAS single lepton [140] and ATLAS two leptons [141]. In [13],
the authors have combined them and analysed the resulting 95% CL exclusion
region on the parameters (mχ, ∆m). In this case we have taken the bounds for
the mass splitting (5.46), that results in the exclusion regionmχ /∈ [56, 400] GeV

(from now on labelled ‘LHC stop’).
Plotting thediscussed resultsweobtain thegraph infig. 5.11. First of all thepart

of the parameter space below the relic density line is excluded. The relic density
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drops whenmχ ≈ mt where we have that tt̄ production is kinematically allowed.
Collider searches limits exclude a large region, with masses below 400GeV , while
XENON1T limits exclude the high coupling region. With respect to the analysis
carried out by [13], we obtain the strongest limits for 800GeV / mχ / 8 TeV ,
given by the γ-ray line limits by HESS. In the regionmχ ' 8 TeV the XENON1T
limits are slightly stronger. For 400GeV / mχ / 800GeV the strongest limits are
given by the measurement on cosmic-ray antiproton fluxes performed by AMS-02
[142] and reported in [13]. In [13], the authors considered the limits for γ-ray
continuous searches coming from the analysis of dwarf spheroidal galaxies by
Fermi-LAT [124]. In the case of this model, in the low mass region, the constraints
coming from γ-ray line searches are more promising with respect to those from
continuous searches. This happens because for mχ � mt, we have seen that
the annihilation process χχ→ tt̄ is inefficient and the loop-induced annihilation
χχ→ gg, that yields a continuum spectrum of photons, is the dominant channel
during freeze-out. That process proceeds via the same loop diagrams as the
annihilation in γγ, shown in fig. 5.8 (upon substitution of γwith g). We can relate
their cross sections, obtaining [143]:

〈σv〉γγ
〈σv〉gg

=
Q4tNCα

2
e

2α2s
, (5.51)

where αs = g2s /(4π). An estimation of the ratio can be obtained by evaluating
αs at a fixed energy scale µ. For µ = 300GeV we have 〈σv〉γγ/〈σv〉gg ≈ 0.5%.
So, in the low mass region, the process yielding the continuum γ-ray spectrum
and the annihilation in γ-ray line are not very different in size and are both
loop-suppressed. The greater sensitivity of the line searches channel allows
for the line limits to be stronger than the continuous ones. In contrast, in the
region mχ > mt, the annihilation into tt̄ (that results in a continuum γ-ray
spectrum) is not loop-suppressed. Its cross section will be larger than that from
the annihilation in γγ and the limits on the continuum signal will be likely
stronger.





Chapter 6

Conclusion and outlook

In this thesis we investigated loop-induced annihilation of dark matter. In
particular, we focused on the γ-ray line signal, arising from the annihilation into
a pair of photons, an important indirect detection signature, because of the low
background. The computation of loop-induced processes can in principle be
done with numerical tools, however no dark matter tool was able to do it for
arbitrary models so far. In this thesis we studied MadDM, and we updated it by
adding this feature. We gave an outline on themain numerical techniques that are
used to make a loop-induced computation and we described three Mathematica
packages: FeynRules, FeynArts and NLOCT, that allows to implement any dark
matter model at NLO in MadDM. We validated the new feature by studying
two dark matter models. The first one is the singlet scalar Higgs portal model,
it is constituted by a scalar WIMP dark matter particle S, that couples with
Standard Model through the Higgs boson. We computed the loop-induced
process SS → γγ with MadDM and we compared the results with the Higgs
effective field theory, in which the same process is a tree-level process, that can be
handled easily by MadDM. The results were in perfect agreement for different
values of the parameters. The second model we studied is a simplified top-philic
model, made of a Majorana spinor dark matter particle χ and a scalar coloured
mediator t̃with the same quantum number as the right top quark. We computed
the loop-induced process χχ→ γγwith MadDM and we compared the results
with analytical formulae, obtaining excellent agreement. These tests show that the
loop-induced feature is correctly implemented in MadDM and works extremely
well for simple models.

We used the code to analyse the parameter space of the models, inferring
important constraints on it, based on the γ-ray line searches by the experiments
Fermi-LAT and HESS, that placed upper limits on the value of 〈σv〉γγ. For the
singlet scalar Higgs portal model we studied the parameter space by varying
the mass of the dark matter mS and the coupling λhS, between S and Higgs
boson. We computed the value of λhS that accounts for the measured relic density
for each value of mS. Consequently we implemented the limits coming from
direct detection (XENON1T) and Higgs invisible decay width, that allowed us to
constrain a large part of the parameter space. Finally we added the limits coming
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from γ-ray line searches by Fermi-LAT. We observed that the parameter space
compatible with constraints corresponds to a mass interval ofmS ≈ 55 to 63GeV
aroundmh/2, that is the resonance region.
For the simplified top-philicmodelwe considered the parameter spacemade of the
dark matter massmχ and the coupling λχ, between dark matter and the mediator
t̃. We fixed mt̃ = mχ +mt, where t is the top quark. We took the previous
results of [13], where the authors computed the relic density for the same choice
of the parameters. We updated it, adding the γ-ray line limits by Fermi-LAT and
HESS. Considering all the constraints, the allowed parameter space is above the
relic density line, constrained by the AMS-02 limits for 400GeV / mχ / 800GeV
and by the HESS γ-ray line limits for 800GeV / mχ / 8 TeV . The region
mχ / 400GeV is excluded by LHC limits, while the region mχ ' 8 TeV is
constrained by the XENON1T direct detection limits. With respect to previous
results, the HESS γ-ray line limits allows to rule out a large part of the parameter
space.

In future works, we will validate MadDM on more complicated models, as
the Inert Doublet Model (IDM) [144–146], in order to finalise the validation of the
loop-induced processes and provide a new release of the code, that will include
this feature. Moreover we will use the code to derive interesting constraints on
IDM parameters, extending previous analysis [147, 148].
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