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Introduction

This thesis studies the state-of-the-art in myoelectric control of active

hand prostheses for people with trans-radial amputation using pattern recog-

nition and machine learning techniques.

Myoelectric control systems are based both on the phantom limb, which is

the impression of being able to move an amputated limb, and on the tech-

nique of electromyography (EMG), which records electrical potentials gen-

erated in neuromuscular activation. In prosthetic control, EMG signals are

collected by surface sensors able to directly activate electrical motors of the

prosthetic device. This procedure is not invasive, and combined with pattern

recognition techniques it leads to a natural control due to the corrispondence

between movements of the prosthesis and phantom limb gestures.

Our work is supported by Centro Protesi INAIL in Vigorso di Budrio (BO).

We studied the control system developed by INAIL consisting in acquiring

EMG signals from amputee subjects and using pattern recognition methods

for the classification of acquired signals, associating them with specific ges-

tures and consequently commanding the prosthesis. Our work consisted in

improving classification methods used in the learning phase. In particular,

we proposed a classifier based on a neural network as a valid alternative to

the INAIL one-versus-all approach to multiclass classification.

The thesis is structured as follows:

• In Chapter 1 we describe the biomedical background introducing the

electromyography tecnique and giving an overwiew on the functioning
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of upper limb prostheses. The focus is on myoelectric control and on

the structure of a pattern recognition-based system;

• In Chapter 2 we describe some classical classification methods present

in literature. In particular we intoduce Logistic regression (LR), that is

a linear and binary supervised classification algorithm whose aim is to

calculate a class membership probability, used in multiclass classifica-

tion following the one-versus-all approach, and the Softmax classifier,

that is the extension of LR to multiclass classification. Finally we

describe the structure of Artificial Neural Networks (ANN), from the

Perceptron that is the first neural network described by algorithms to

the Multilayer Perceptron and Convolutional Neural Networks (CNN);

• In Chapter 3 we show the results of our analysis on classifiers. First we

describe the setting of the esperiment and the structure of the Matlab

code to build each classifier, then we discuss classification performances

obtained with our code tested on data sets acquired by INAIL patients.

The results obtained with the algorithm proposed here considerably improve

the performances obtained with the one previously used by INAIL.



Introduzione

Questa tesi studia lo stato dell’arte riguardo al controllo mioelettrico delle

protesi attive per la mano destinate a persone con amputazione trans-radiale,

utilizzando tecniche di pattern recognition e machine learning.

I sistemi di controllo mioelettrico si basano sia sull’arto fantasma, ovvero

l’impressione di poter muovere un arto amputato, sia sulla tecnica dell’elet-

tromiografia (EMG), che registra i potenziali elettrici generati nell’attivazione

neuromuscolare. Nel controllo protesico, i segnali EMG sono raccolti da sen-

sori di superficie in grado di attivare direttamente i motori elettrici del di-

spositivo protesico. Questa procedura è non invasiva, e associata a tecniche

di pattern recognition porta a un controllo naturale dovuto alla corrispon-

denza tra i movimenti della protesi e i gesti compiuti dall’arto fantasma.

Il nostro lavoro è supportato dal Centro Protesi INAIL di Vigorso di Bu-

drio (BO). Noi abbiamo studiato il sistema di controllo sviluppato in INAIL

che consiste nell’acquisizione dei segnali EMG da soggetti con amputazione e

nell’utilizzo di metodi di pattern recognition per classificare i segnali acquisiti,

associandoli a gesti specifici e comandando conseguentemente la protesi. Il

nostro lavoro è consistito nel migliorare i metodi di classificazione utlizzati

nella fase di apprendimento. In particolare abbiamo proposto un classifi-

catore basato su una rete neurale come valida alternativa all’approccio alla

classificazione multiclasse del tipo one-versus-all adottato in INAIL.

La tesi è strutturata come segue:

• Nel Capitolo 1 descriviamo il background biomedico introducendo la
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tecnica dell’elettromiografia e dando una panoramica del funzionamento

delle protesi di arto superiore. L’attenzione è focalizzata sul controllo

mioelettrico e sulla struttura di un sistema basato sulla tecnica di pat-

tern recognition;

• Nel Capitolo 2 descriviamo alcuni classici metodi di classificazione pre-

senti in letteratura. In particolare introduciamo la Logistic Regression

(LR), un algoritmo di classificazione lineare e binario il cui obiettivo

è di calcolare la probabilità di appartenenza a una classe, utilizzato

nella classificazione multiclasse seguendo l’approccio one-versus-all, e il

classificatore Softmax, ovvero l’estensione della LR alla classificazione

multiclasse. Infine descriviamo la struttura delle Reti Neurali Artifi-

ciali (ANN) dal Perceptron, che è la prima rete neurale descritta da

algoritmi, al Multilayer Perceptron e alle Reti Neurali Convoluzionali

(CNN);

• Nel Capitolo 3 proponiamo i risultati della nostra analisi sui classifi-

catori. Inizialmente descriviamo l’impostazione dell’esperimento e la

struttura del codice Matlab per costruire ogni classificatore, in seguito

analizziamo le performances di classificazione ottenute con il nostro

codice testate su data set acquisiti da pazienti INAIL.

I risultati ottenuti con l’algoritmo qui proposto migliorano notevolmente le

performances ottenute con quello precedentemente utilizzato in INAIL.
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Chapter 1

EMG signal and pattern

recognition

In this chapter we present EMG signals and describe their use in problems

of hand prosthesis control, adopting the experimental setup implemented by

Centro Protesi INAIL (BO).

The main references for this chapter are [2], [3], [7], [8], [9], [10].

1.1 sEMG

The key technique of this analysis is surface electromyography (sEMG).

The EMG signal measures the electrical activation of the muscular fibres

generated during the voluntary contraction of a muscle, called muscle action

potentials.

The most accurate tecnique for EMG signal acquisition is to use implantable

sensing electrodes, to be placed directly near the muscular fibers; however,

they are invasive and need surgery. Therefore, surface electrodes can be used

to carry out the measurement: when EMG electrodes are placed on the skin

surface they measure all the action potentials of the fibres underlying the

electrode. These sensors are made by metal plates connected to the inputs of
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2 1. EMG signal and pattern recognition

a differential amplifier that can sense the action potential of muscular cells

and amplify the signal.

With respect to implantable electrodes, surface sensors suffer from lack of

performance due to the noise mainly caused by motion artefacts, electri-

cal equipment and floating ground noise. Minimizing this noise during the

acquisition of the signal is crucial.

1.2 Myoelectric prostheses

In general, prosthetic devices for amputee patients can be divided in pas-

sive and active ones. Passive prostheses do not support any of the hand

functionalities (as for example cosmetic ones, a prosthetic option similar in

appearance to the non-affected arm or hand that provides just a simple help

in balancing and carrying), while active prostheses are externally powered

and perform advanced grasping and control functionalities.

Upper limb myoelectric prostheses are active prostheses that use small elec-

trical motors to provide power to the active joints. These motors are directly

activated by the amputee by means of sEMG input signals, collected by sen-

sors properly placed and then processed by a programmable electronic circuit

that carries out the control strategy. In this way, prostheses are controlled

via surface electromyography by patients themselves who take advantage of

contractions of what remains of muscles (corresponding to the real move-

ments) to assume allowed hand postures.

1.3 Pattern recognition

Myoelectric control, i.e. feed-forward control of prostheses using sur-

face EMG, is in use since the 1960s to control (externally powered) upper-

limb prostheses by amputees mostly due to its relatively low cost and non-

invasiveness. However, controlling via sEMG has often been quite non-
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Figure 1.1: Myoelectric prosthesis

natural, meaning that the amputee had to learn to associate muscle remnants

contractions to unrelated postures of the prosthetic device. Since remaining

muscles continue to work after the amputation, it would be natural to let

the amputee command a grasp posture just by performing the corresponding

action with the “phantom limb”, i.e. the part of the limb that has been

amputated but that the amputee still feels to have, which includes the hand:

indeed, [7] shows that amputees can still produce distinct and stable EMG

signals several years after the operation.

Pattern recognition and machine learning techniques applied to sEMG cur-

rently represent a good compromise between invasiveness and natural pros-

thesis controllability.

A pattern recognition-based system is tipically structured in three main steps:

• EMG signal acquisition;

• feature extraction and identification of the information content of the

signal;

• classification, i.e. assigning the extracted features to the class (gesture)

they most probably belong to, after a training phase during which the

system learns the way of linking myoelectric patterns to the postures.



4 1. EMG signal and pattern recognition

1.3.1 EMG data acquisition

During the acquisition of EMG signals the most important goal is reduc-

ing noise to get a good classification performance afterwards.

The bandwidth of the signals stays within 2 kHz, while the amplitude is 20

mV (−10 to +10) depending on the diameter of the muscles and on the dis-

tance from the sensing elements. To provide significant values of muscular

activation, Ottobock 13E200 sensors are used: these are pre-amplified elec-

trodes that amplify and filter EMG signals to reach an output range of 0–5

V, with a bandwidth of 90–450 Hz. To minimize the misplacement of the

EMG electrodes among different acquisition sessions, the sensors are equidis-

tantly placed on a silicone adjustable bracelet to locate about 5 cm below

the elbow, around the stump. The data are collected using a purpose-built

software acquisition system and USB-transmitted to the PC.

1.3.2 Feature extraction

The process of extracting the main components of signals typically occurs

after the segmentation of collected data during time, fixing a time window

length depending on the ability of patients. Examples of commonly used

time domain features are mean (M), variance (V), root mean square (RMS),

slope sign change (SSC), Willison amplitude (WA), simple square integral

(SSI) and waveform length (WL) (for more details see [8]).

In addition to feature extraction, a dimensionality reduction can be applied

to EMG data making use of Principal Component Analysis technique (PCA),

i.e. orthogonally projecting the data onto a lower dimensional linear space

such that the variance of the projected data is maximized ([4, Section 12.1]).

1.3.3 Classification

Pattern recognition techniques applied to myoelectric control are based

on supervised machine learning classification algorithms. Therefore an initial
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training phase is needed, during which the system learns to associate collected

EMG signals to the correct gesture label. Afterwards, the trained system is

set to recognize postures.

Classification accuracy varies according to different classifiers but mostly

depends on the ability of the patients to associate commanded actions with

corresponding phantom limb movements.

In the next chapter an excursus about classification algorithms focusing on

Artificial Neural Networks (ANN) will be presented.





Chapter 2

Classification methods

Machine learning (ML) can be defined as the sub-domain of Artificial

Intelligence that allows computer systems to perform a specific task (as for

example classification) with no need of an explicit model, but relying on

inference. Learning procedures can be categorized as follows:

i) supervised learning, that relies on the availability of a dataset of labeled

samples made of input signals with the corresponding target response

in order to realize a specific input-output mapping by minimizing a

proper cost function;

ii) unsupervised learning, which employs a set of inputs without any cor-

responding target values, that consists in the self-organized process of

determining correspondences within the data according to distribution,

visualization or similarities of samples;

iii) reinforcement learining, based on the continuing interactions between

a learning system and the response of its environment in order to max-

imize a reward.

In particular, supervised ML problems can be categorized into regression

and classification problems: in a regression problem the desired output con-

sists of one or more continuous variables while in a classification problem

the aim is to predict results among a discrete output set corresponding to

7



8 2. Classification methods

different categories.

In this work the focus is on supervised ML multiclass classification meth-

ods.

In the case of classification involving K > 2 classes, there are two possible

approaches: one consists in combining multiple binary classifiers in order

to build a multiclass classifier, another is to construct a unique classifier

whose output is a vector of probabilities. In the first case, K separated bi-

nary classifiers are trained respectively using the data from every class Ck,

with k = 1, . . . , K, as the positive samples and the data from the remaining

K − 1 classes as the negative samples (this is known as the one-versus-all

approach). In the second case, a class label for training is represented by

a vector t = (t1, . . . , tK) of length K such that if the class is Cj, then all

elements tk of t are 0 except element tj, which takes the value 1. Here the

value of tk is interpreted as the probability that the sample class is Ck, and

data are classified according to these probability values.

In this chapter we present some classical classification methods. We start

from Logistic Regression for a one-vs-all approach (with reference to [17],

[6]), then we describe Softmax classifier for multiclass classification (with

reference to [18]) and Artificial Neural Networks. In particular, we focus on

Rosenblatt’s Perceptron, Multilayer Perceptron and Convolutional Neural

Networks (with reference to [13], [11, Chapter 9]). The description of these

methods is given in order to understand the structure of classifiers that will

be used in our experiment and examined in the next chapter, since Logistic

Regression with the one-versus-all approach is the method currently used in

INAIL to approach the problem of the recognition of myoelectric patterns,

while our new proposals are a Softmax classifier built on an Artificial Neural

Network and a Convolutional Neural Network.

In general, the main references for the topics in this chapter are [4], [12]

and [5].
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2.1 Logistic Regression

Logistic Regression (LR) is a linear and binary supervised classification

algorithm whose aim is to calculate the class membership probability.

Given a dataset {(x(n), t(n))}Nn=1 of N samples, where x(n) ∈ Rm are the

input variables, or features, and t(n) ∈ {0, 1} are the target variables, we

can write the probabilities that the class is t(n) = 1 and t(n) = 0 for all

n = 1, . . . , N respectively as

P (t(n) = 1|x(n), θ) = σ(θTx(n) + θ0) (2.1)

P (t(n) = 0|x(n), θ) = 1− σ(θTx(n) + θ0) (2.2)

where θ ∈ Rm is the vector of classification parameters, or weights, θ0 ∈ R is

the bias term and σ is the logistic sigmoid function that maps its input to

an output between 0 and 1, defined as

σ(z) =
1

1 + e−z
. (2.3)

We observe that denoting z(n) = θTx(n) + θ0, the parameters θ transform

each input sample x(n) into an input z(n) to the logistic function, and the

output of the model y(n) = σ(z(n)) = P (t(n) = 1|z(n)) can be interpreted

as the probability that input z(n) belongs to 1-class.

The Logistic Regression model will be optimized by maximizing the like-

lihood that a given set of weights θ may predict the correct class of each

input sample.

Denoting the likelihood function with L(θ|t, z), the maximization can be

written as

argmax
θ

L(θ|t, z) = argmax
θ

N∏
n=1

P (t(n), z(n)|θ)

where P (t(n), z(n)|θ) is the joint probability of generating t(n) and z(n)

given the parameters θ. We can rewrite this probability as

P (t(n), z(n)|θ) = P (t(n)|z(n), θ)P (z(n)|θ) = P (t(n)|z(n), θ).
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Since the variable t(n) can assume 0 or 1 values, we can see the set of t(n) for

n = 1, . . . , N as independent Bernoulli variables. In general, for a Bernoulli

variable S ∼ Bernoullip the following formula holds:

P (S = k) = pk(1− p)1−k for k = 0, 1.

Therefore, fixed a set of weights θ we have

P (t(n)|z(n)) = P (t(n) = 1|z(n))t(n) · (1− P (t(n) = 1|z(n)))1−t(n)

= y(n)t(n) · (1− y(n))1−t(n).

Now, since the logaritmic function is a monotone increasing function, the set

of weights that maximizes the likelihood function will be the same as the one

that maximizes its logarithm. The advantage of using log-likelihood maxi-

mization is the prevention of numerical underflow due to low probabilities.

Then, according to previous observations, for a fixed θ we obtain

logL(θ|t, z) = log
N∏
n=1

y(n)t(n) · (1− y(n))1−t(n)

=
N∑
n=1

t(n) log(y(n)) + (1− t(n)) log(1− y(n)).

Remarking that

max
θ

logL(θ|t, z) = min
θ

(− logL(θ|t, z)), (2.4)

we can introduce an error function ξ(t, y), known as the cross-entropy loss

function, defined as follows:

ξ(t, y) = − logL(θ|t, z)

= −
N∑
n=1

[t(n) log(y(n)) + (1− t(n)) log(1− y(n))]

= −
N∑
n=1

[t(n) log(σ(z(n))) + (1− t(n)) log(1− σ(z(n)))].
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Pointing out the behaviour of this error function, we can understand that it

works well as a loss function for Logistic Regression. In fact, denoting for all

n = 1, . . . , N

ξ(t(n), y(n)) =

− log(y(n)) if t(n) = 1

− log(1− y(n)) if t(n) = 0

it’s clear that when t(n) = 1 the loss is 0 if y(n) = 1 and goes to infinity as

y(n)→ 0, and in case of t(n) = 0 the loss is 0 if y(n) = 0 and goes to infinity

as y(n) → 1. So the contribute of every sample to the loss function grows

when the probability to predict the correct class goes to 0, and finding the

set of weights θ that minimize the cross-entropy loss function makes sense.

Another reason to use the cross-entropy function in LR model is that it is

a convex loss function, and this results in a convex optimization problem in

which a global minimum exists.

We finally show how to calculate the derivative of the term ξ(t(n), y(n))

in the cross-entropy loss for the logistic function, which is crucial in gradient

based optimization techiques (described further in Section 2.3). Firstly, it is

necessary to calculate the derivative of the output y(n) of the logistic function

σ with respect to the input z(n):

∂y(n)

∂z(n)
=
∂σ(z(n))

∂z(n)
=

−1

(1 + e−z(n))2
· e−z(n) · (−1) =

1

1 + e−z(n)
· e−z(n)

1 + e−z(n)
.

Since 1− σ(z(n)) = 1− 1
1+e−z(n) = e−z(n)

1+e−z(n) , we obtain

∂y(n)

∂z(n)
= σ(z(n))(1− σ(z(n))) = y(n)(1− y(n)). (2.5)

Now we can calculate the derivative of the term ξ(t(n), y(n)) with respect to

the input z(n). By the chain rule for derivatives we have

∂ξ(t(n), y(n))

∂z(n)
=
∂ξ(t(n), y(n))

∂y(n)

∂y(n)

∂z(n)
.
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The second derivative in the right hand side is given by (2.5), so we are going

to calculate ∂ξ(t(n),y(n))
∂y(n)

:

∂ξ(t(n), y(n))

∂y(n)
=
∂(−t(n) log(y(n))− (1− t(n)) log(1− y(n)))

∂y(n)

=
−t(n)

y(n)
+

1− t(n)

1− y(n)
=

y(n)− t(n)

y(n)(1− y(n))
.

Therefore we finally have

∂ξ(t(n), y(n))

∂z(n)
=

y(n)− t(n)

y(n)(1− y(n))
y(n)(1− y(n)) = y(n)− t(n).

Logistic Regression as a Non-linear Classifier

Linearity in the Logistic Regression model is given by the formula

z(n) = θTx(n) + θ0

that determines a linear correlation between features and classification pa-

rameters. There is the possibility to extend classification by LR algorithm to

the non-linear case: it requires the creation of additional features to obtain

non-linear terms in the previous equation. A way to obtain new features

is combining the starting ones x(1), x(2), . . . , x(N) by multiplications. For

example, we have new polynomial features starting from initial features high

till the chosen non-linearity degree and considering all the multiplications be-

tween the possible permutations of these new features without exceeding in

non-linearity degree (for example x(1), ..., x(N), x(1)x(2), x(1)x(3), . . . , x(1)2,

..., x(N)2, x(1)x(2)x(3), . . . , x(1)3, ..., x(N)3 if the maximum degree of non-

linearity is 3). Therefore the dimension of the weights vector changes ac-

cording to the selected non-linearity degree.

2.2 Softmax

Softmax classification can be considered the extension of Logistic Regres-

sion to multiclass classification.
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Given a dataset {(x(n), t(n))}Nn=1 of N samples, where x(n) ∈ Rm are the

features, now we consider K distinct categories thus t(n) ∈ {1, . . . , K} are

the target variables.

To generalize the logistic sigmoid function to output a multiclass categorical

probability distribution we introduce the softmax function ς. This func-

tion takes a K-dimensional input vector z = (z1, . . . , zK) and outputs a

K-dimensional vector y = (y1, . . . , yK) whose components are real values

between 0 and 1 defined as follows:

yk = ς(z)k =
ezk∑K
k=1 e

zk
for k = 1, . . . , K. (2.6)

Here the denominator makes sure that the softmax function output satisfies∑K
k=1 yk = 1, so we may correctly interpret components yk as probabilities.

While in LR model we have a vector θ ∈ Rm of classification parameters

and a real bias term, now the set of weights consists in a matrix Θ ∈ RK×m,

where K is the total number of classes and m is the features dimension, and

the bias term is a vector θ0 ∈ RK . So we can observe, in analogy with the LR

classification, that denoting z(n) = Θx(n) + θ0, the parameters Θ transform

each input sample x(n) into an input z(n) ∈ RK to the softmax function.

We can write the probabilities that the class is t(n) = k for k = 1, . . . , K

given an input z(n) for n = 1, . . . , N as
P (t(n) = 1|z(n))

...

P (t(n) = K|z(n))

 =


ς(z(n))1

...

ς(z(n))K

 =
1∑K

k=1 e
zk(n)


ez1(n)

...

ezK(n)

 (2.7)

where P (t(n) = k|z(n)) is the probability that the class is k given the input

z(n).

The Softmax model will be optimized by maximizing the likelihood that

a given set of weights Θ may predict the correct class of each input sample.

For the following study, the class label for samples x(n) is represented by the

vector t(n) = (t1(n), . . . , tK(n)) of length K such that if the class is j, then
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all elements tk(n) of t(n) are 0 except element tj(n), which takes the value

1.

Denoting the likelihood function with L(Θ|t, z), the maximization can be

written as

argmax
Θ

L(Θ|t, z) = argmax
Θ

N∏
n=1

P (t(n), z(n)|Θ)

where P (t(n), z(n)|Θ) is the joint probability of generating t(n) and z(n)

given the parameters Θ. Since

P (t(n), z(n)|Θ) = P (t(n)|z(n), Θ)P (z(n)|Θ) = P (t(n)|z(n), Θ)

and in the variable t(n) only one class can be activated, fixed a matrix of

weights Θ we have

P (t(n)|z(n)) =
K∏
k=1

P (tk(n)|z(n))tk(n) =
K∏
k=1

(ς(z(n))k)
tk(n) =

K∏
k=1

(yk(n))tk(n).

where ς(z(n))k = yk(n) is the k-th component of the softmax function output

given the input z(n).

As observed during the derivation of the loss function for the logistic function,

the parameters Θ that maximize the likelihood are the same that minimize

the negative log-likelihood (see (2.4)). So introducing the cross-entropy loss

function for the softmax function

ξ(t,y) = − logL(Θ|t, z) = − log
N∏
n=1

K∏
k=1

(yk(n))tk(n) = −
N∑
n=1

K∑
k=1

tk(n) log(yk(n))

(2.8)

and remarking that tk(n) is 1 if and only if n-th sample belongs to class k

and yk(n) is the output probability that n-th sample belongs to class k, the

set of weights Θ that optimize the Softmax model is calculated minimizing

the cross-entropy loss function.

Finally, if we write the cross-entropy loss for the softmax function given by

(2.8) as ξ(t,y) =
∑N

n=1 ξ(t(n),y(n)), we show how to calculate the derivative
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of the term ξ(t(n),y(n)) as we did for LR model.

As before, we need to calculate the derivative of the output y(n) of the

softmax function with respect to its input z(n). Defining ΣK =
∑K

d=1 e
zd(n)

so that yk(n) = ezk(n)

ΣK
, we have the following two cases:

i) if k = j:
∂yj(n)

∂zj(n)
= ezj(n)ΣK−ezj(n)ezj(n)

Σ2
K

= ezj(n)

ΣK
(1− ezj(n)

ΣK
) = yj(n)(1− yj(n));

ii) if k 6= j:
∂yk(n)
∂zj(n)

= 0−ezk(n)ezj(n)

Σ2
K

= − ezk(n)

ΣK

ezj(n)

ΣK
= −yk(n)yj(n).

Now we can calculate the derivative of ξ(t(n),y(n)) with respect to the input

z(n) as:

∂ξ

∂zj(n)
= −

K∑
k=1

∂(tk(n) log(yk(n)))

∂zj(n)
= −

K∑
k=1

tk(n)
∂ log(yk(n))

∂zj(n)

= −
K∑
k=1

tk(n)
1

yk(n)

∂yk(n)

∂zj(n)
= − tj(n)

yj(n)

∂yj(n)

∂zj(n)
−
∑
k 6=j

tk(n)

yk(n)

∂yk(n)

∂zj(n)

i),ii)
= − tj(n)

yj(n)
yj(n)(1− yj(n))−

∑
k 6=j

tk(n)

yk(n)
(−yk(n)yj(n))

= −tj(n) + tj(n)yj(n) +
∑
k 6=j

tk(n)yj(n)

= −tj(n) + yj(n)

(
K∑
k=1

tk(n)

)
= −tj(n) + yj(n).

2.3 Model optimization

For both LR model and Softmax model, we found that the optimum set of

parameters (weights) to predict the correct class for each sample is calculated

by minimizing the respective cross-entropy loss. In the following section we

will show the iterative algorithm to reach this minimum.

In general, consider a loss function J(θ) that is a continuously differen-

tiable function of the unknown weigths θ = (θ1, . . . , θM). The output function
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J(θ) is a real number and represents a sort of measure of how well parameters

behave according to the problem. The aim is to find an optimal solution θ∗

that satisfies

J(θ∗) ≤ J(θ), (2.9)

so we need to solve the following unconstrained-optimization problem:

Minimize the loss function J(θ) with respect to the weight vector θ.

A necessary condition for optimality is

∇J(θ∗) = 0

where ∇ =
[
∂
∂θ1
, ∂
∂θ2
, . . . , ∂

∂θM

]T
is the gradient operator, therefore ∇J(θ) =[

∂J
∂θ1
, ∂J
∂θ2
, . . . , ∂J

∂θM

]T
.

A class of unconstrained-optimization problems is based on the idea of local

iterative descent.

2.3.1 Method of gradient descent

The method of gradient descent is a general minimization method, based

on the following theorem, with reference to [1].

Theorem 2.3.1. Let J ∈ C2(RM ,R). Suppose that J is convex, bounded

from below and satisfies the condition J(θ) → +∞ if |θ| → +∞. Consider

the Cauchy problem θ′(t) = −∇J(θ(t))

θ(t0) = θ0.
(2.10)

Then the solution satisfies θ(t)→ θ1 with θ1 minimum point of J .

Remark 1. Theorem 2.3.1 admits generalisations under the hypothesis of

convexity. Without this condition, the method could stop in presence of

local minimum points or critical points where the functional assumes a lower

value with respect to the initial one.
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The gradient descent method (GD) is an algorithm implementing the

solution of the Cauchy problem (2.10) in order to find the minimum. The

direction of the gradient, ∇J(θ), is called the direction of steepest descent.

Denoting with

g = ∇J(θ),

the gradient descent algorithm is formally described by the discretization of

the condition (2.10)

θ(n+1) = θ(n) − ηg(n) (2.11)

where η is a positive constant called learning rate and g(n) is the gradient

vector evaluated at the point θ(n). Therefore, the algorithm applies the cor-

rection

∆θ(n) = θ(n+1) − θ(n) = −ηg(n). (2.12)

To show that the gradient descent algorithm satisfies the unconstrained-

optimization condition for iterative descent, we simply note that

(J(θ(t)))′ = ∇J(θ(t))θ′(t)
(2.10)
= −||∇J(θ(t))||2.

The same property is preserved by the discretization.

We observe that the setting of the learining rate η is crucial in terms of

convergence behaviour: if η is too small the response of the algorithm is

overdamped, i.e. the iterative descent is overly slow, while if η is too large

the response is underdamped, i.e. the trajectory of θ(n) follows an oscillatory

path and the algorithm risks to become unstable.

2.3.2 Variations to GD method

A valid reference for this section is [19].

Stochastic gradient descent

In simple GD, the loss function J is defined with respect to a set of train-

ing data (for example see the cross-entropy loss for the softmax function

(2.8)), and so each iteration of the algorithm requires the entire data set to
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be processed in order to evaluate ∇J (techniques like this that use the whole

data set at once are named batch methods).

By contrast, there is an on-line version of gradient descent, known as stochas-

tic gradient descent, that evaluates the gradient and updates the parameters

using a different subset of the training data, called mini-batch, for each iter-

ation. In this case the loss function results from maximum likelihood for a

set of independent observations, and it has the form

J(θ) =
L∑
l=1

Jl(θ).

The algorithm is formally described by the following formulation:

θ(n+1) = θ(n) − η∇Jl(θ(n)). (2.13)

Stochastic GD is useful in practice for working with large data sets, and the

update of weights made by using a mini-batch can be interpreted as a noisy

estimate of the weights update that would result from using the entire data

set.

Stochastic gradient descent with momentum

The stochastic gradient descent algorithm may oscillate along the path

of steepest descent reaching the optimum. A way to reduce this oscillation

consists in the addition of a new term to the parameter update, called mo-

mentum term.

The stochastic gradient descent with momentum (SGDM) update is

θ(n+1) = θ(n) − η∇Jl(θ(n)) + γ(θ(n) − θ(n−1)), (2.14)

where γ takes account of the contribution of the previous gradient step to

the current iteration.
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2.4 Artificial Neural Networks

The term Artificial Neural Networks (ANN), more commonly “neural net-

works”, takes its origins from the search for mathematical representations of

information processing in biological systems on the basis of the awareness

that the human brain computes in a completely different, more complex and

faster way from digital computers.

To understand the ANN structure we are going to give a schematic descrip-

tion of the human nervous system (see Figure 2.1):

- the brain, represented by the neural net, is the center of the system

which receives information, understands it and makes decisions conse-

quently;

- the receptors convert stimuli into electrical impulses that transmit in-

formation to the neural net;

- the effectors convert electrical impulses generated by the neural net

into proper responses that represent system outputs.

We observe that left-right transmission is named forward transmission, while

the transmission in the opposite verse denotes the presence of feedback in the

system.

Figure 2.1: Diagram representation of nervous system

The capability of the nervous system to adapt to its surrounding envi-

ronment, known as plasticity, is essential for information processing through

brain structural constituents, i.e. neurons. For this reason an ANN is made

up of artificial neurons and it can be described as a machine designed to

model the way in which the brain performs particular tasks.
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In summary we can give the following definition of Artificial Neural Network

[12]:

An artificial neural network is a massively parallel distributed

processor made up of simple processing units that has a natu-

ral propensity of storing knowledge from experience and make it

available for use. It is similar to the brain for two aspects:

1. Knowledge is acquired by the network from its environment

by means of a learning process;

2. Interconnections between neurons, known as synaptic weights,

are used to store the acquired knowledge.

2.4.1 Model of a neuron

In the ANN structure, a neuron functions as an information-processing

unit. Now we present a mathematical model of a neuron, which constitutes

the basis for the design of a large family of neural networks. The model is

made of three basic elements:

1. A set of synapses, connecting links each characterized by a weight. At

the input synapse j connected to the neuron k, the input signal xj is

multiplied by the synaptic weight wkj;

2. An operator for summing the input signals weighted by the respective

synaptic weights of the neuron;

3. An activation function for limiting the amplitude range of the neu-

ron output, which is typically set to the interval [0, 1] or alternatively

[−1, 1].

An externally applied bias term bk is also included in the model, which de-

termines the increasing or lowering of the activation function input according

to its sign. A schematic depiction of the model is given in Figure 2.2.



2.4 Artificial Neural Networks 21

Figure 2.2: Diagram of the model of a neuron, labeled k.

In mathematical terms, the following equations characterize the neuron

k:

uk =
m∑
j=1

wkjxj (2.15)

vk = uk + bk (2.16)

yk = ϕ(vk) (2.17)

where x1, x2, . . . , xm are the input signals, wk1, wk2, . . . , wkm are the respec-

tive synaptic weights, uk is the linear combiner output from the sum of

weighted inputs, bk is the bias, vk is the input to the activation function ϕ(·)
and yk is the output of the neuron.

Regarding the activation function ϕ, we can identify three different types:

1. Hard limiter function, given by the formula

ϕ(v) =

1 if v ≥ 0

0 if v < 0.
(2.18)

Therefore ϕ sets the output of a neuron to 1 when the input signal

exceeds a fixed threshold (that in (2.18) is 0), otherwise it sets the
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output to zero. The hard limiter activation function takes discrete

values that can be {0, 1}, as in (2.18), or alternatively {−1, 1} and it

is not differentiable;

2. ReLU function, that stands for rectified linear unit function, given by

the formula

ϕ(v) = max(0, v). (2.19)

It is a piecewise linear function that will output the input directly if is

positive, otherwise it will output zero. Unlike the hard limiter function,

the ReLU function takes continous values and it is not differentiable in

0;

3. Sigmoid function, a common example of which is the logistic function

ϕ(v) =
1

1 + exp(−av)

where a is the slope parameter. By contrast to the previous activation

functions, the sigmoid activation function can assume a continous range

of values between 0 and 1 and it is differentiable in every point.

2.4.2 ANN structure

In general, we can distinguish three different classes of Artificial Neural

Network architectures:

• Single-Layer Feedforward Network (see Figure 2.3, left). Generally, a

layered network is made of neurons organized in several layers. The

simplest structure of a layered network consists in an input layer with

no computation performed projected onto an output layer of neurons,

but not vice versa (this aspect characterizes the network as a feedfor-

ward one). Such a network is named single-layer network referring to

the output layer of computation neurons.

• Multilayer Feedforward Network (see Figure 2.3, center). This type of

network is characterized by the presence of one ore more hidden layers
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between the input layer and the output layer. Its computation neu-

rons, called hidden neurons, have the function to operate between the

external input and the network output to extract higher-order informa-

tion. Typically, the neurons in each hidden layer have as their inputs

the output of the preceding layer. Intuitively, the more hidden layers

the network has, the more synaptic connections are present, the more

accurate the response is due to more connectivity.

• Recurrent Network (see Figure 2.3, right). A recurrent neural network

is different from a feedforward network for the presence of a feedback

loop, that is the situation where neurons feed their output back to

the input of its own and/or of all other neurons. Therefore, there are

connections from a layer to the previous layers but also from a layer to

itself. Feedback loops improve ANN performance in terms on learning

capability also involving the use of unit-time delay elements (denoted

in Figure 2.3 with z−1) which act in a non-linear dynamic way.

Figure 2.3: Examples of ANN structure diagrams: on the left a single-layer

feedforward network, in the center a multilayer feedforward network with one

hidden layer of 4 neurons, on the right a recurrent network.
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2.4.3 Rosenblatt’s Perceptron

The Perceptron is the first neural network described by algorithms, in-

vented in 1958 by the American psychologist Rosenblatt. It was studied to

be used in the classification of linearly separable patterns, i.e. patterns that

live in decision regions separated by a hyperplane.

The Perceptron structure consists of a single-layer feedforward network with

one neuron: it computes a combination of weighted inputs to apply to

a hard limiter type activation function in order to perform classification

with two classes C1 and C2. Denoting with x1, x2, . . . , xm the input signals,

w1, w2, . . . , wm the synaptic weights and b the bias, the input to the hard

limiter of the neuron is

v =
m∑
i=1

wixi + b. (2.20)

The network assigns in a correct way the set of inputs x1, x2, . . . , xm to the

class C1 if the hard limiter output is +1 and to the class C2 if the output is −1.

The separation hyperplane between the two decision regions in them-dimensional

signal space is defined by the equation

m∑
i=1

wixi + b = 0, (2.21)

and synaptic weights are to be adapted during the perceptron convergence

algorithm to perform the proper space division.

Before the presentation of the algorithm we point out some aspects con-

cerning the notation:

• We define the n-th input vector as the (m+ 1)-dimensional vector

x(n) = [+1, x1(n), x2(n), . . . , xm(n)]T ;

• We define the weight vector at the n-th time step in the algorithm

application as the (m+ 1)-dimensional vector

w(n) = [b, w1(n), w2(n), . . . , wm(n)]T .
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Observe that n refers to the sample number in the entire data set for the

input x, while it denotes the iteration number for w.

In this way the output of the linear combination of weighted input (sum of

the bias included) is

v(n) =
m∑
i=0

wi(n)xi(n) = wT (n)x(n) (2.22)

where x0(n) = +1 and w0(n) represents the bias b, and the separation hy-

perplane between classes C1 and C2 is given by the formula

wTx = 0 (2.23)

such that the class C1 corresponds to the subspace wTx > 0 and the class C2

to the subspace wTx ≤ 0.

The Perceptron algorithm

The goal of the Perceptron algorithm is to find a weight vector w such

that every input vector belongs to the correct subspace of the m-dimensional

input space (i.e. wTx > 0 or wTx ≤ 0). The algorithm applies the following

correcting rule:

If the n-th sample x(n) is correctly classified at iteration n by the

current weight vector w(n), there is no update, that is

w(n+ 1) = w(n) if wT (n)x(n) > 0 and x(n) ∈ class C1 (2.24)

w(n+ 1) = w(n) if wT (n)x(n) ≤ 0 and x(n) ∈ class C2. (2.25)

Otherwise,

w(n+ 1) = w(n)− η(n)x(n) if wT (n)x(n) > 0 and x(n) ∈ class C2

(2.26)

w(n+ 1) = w(n) + η(n)x(n) if wT (n)x(n) ≤ 0 and x(n) ∈ class C1

(2.27)

where η(n) > 0 is the learning-rate parameter.
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In the following part we present a convergence result known as the fixed-

increment perceptron convergence theorem, that refers to the case of constant

learning-rate parameter 0 < η ≤ 1:

Theorem 2.4.1 (Fixed-increment Perceptron Covergence). Let H1 be the

subspace of training vectors that belongs to class C1 and let H2 be the the

subspace of training vectors that belongs to class C2. Let H1 and H2 be linearly

separable. Then the perceptron converges in a finite number of iterations.

Proof. We prove the Theorem for η = 1 since a value of η ∈ (0, 1) implies a

rescaling so it doesn’t intervene in separability.

Consider the initial condition w(0) = 0 and suppose that wT (n)x(n) ≤ 0 for

n = 1, 2, . . . and the input vector x(n) belongs to the class C1. We are in

the case of (2.27) with η(n) = 1, therefore w(n+ 1) = w(n) + x(n) for x(n)

belonging to the class C1. Proceeding iteratively backwards (remembering

that w(0) = 0) we obtain

w(n+ 1) = x(1) + x(2) + · · ·+ x(n). (2.28)

Now define α as the positive integer

α = min
x(n)∈H1

wT0 x(n)

where w0 is the weight vector for which wT0 x(n) > 0 for samples x(1), . . . , x(n)

which belongs to class C1 (w0 exists since classes C1 and C2 are linearly sep-

arable for hypothesis). Multiplying (2.28) for wT0 we have

wT0 w(n+ 1) = wT0 x(1) + · · ·+ wT0 x(n) ≥ nα,

and applying the Cauchy-Schwarz inequality to the squared left hand side of

this equation we obtain

‖w0‖2‖w(n+ 1)‖2 ≥ [wT0 w(n+ 1)]2 ≥ n2α2. (2.29)

Now we deduce another inequality writing the correction rule as w(k + 1) =

w(k) + x(k) for k = 1, . . . , n and x(k) belonging to class C1. Calculating the
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Euclidean norm we have

‖w(k + 1)‖2 = ‖w(k) + x(k)‖2 = ‖w(k)‖2 + ‖x(k)‖2 + 2wT (k)x(k)

≤ ‖w(k)‖2 + ‖x(k)‖2.

Then defining β as the positive constant

β = max
x(k)∈H1

‖x(k)‖2

and summing the last inequality over k, we obtain

‖w(n+ 1)‖2 ≤
n∑
k=1

‖x(k)‖2 ≤ nβ. (2.30)

Combining inequalities (2.29) and (2.30) we find out that to have both of

them satisfied, n have to be smaller than some value nmax given by

n2
maxα

2

‖w0‖2
= nmaxβ =⇒ nmax =

β‖w0‖2

α2
.

nmax is the maximum number of iterations that the algorithm performs to

reach convergence.

2.4.4 Multilayer Perceptron

In the last section we studied Rosenblatt’s Perceptron that works well

with two classes of linearly separable data, based on updating synaptic

weights of one single neuron. Now we present a neural network structure,

called Multilayer Perceptron, which overcomes the limitations of the per-

ceptron algorithm including one or more hidden layers that work as feature

detectors. In this case hidden neurons gradually acquire the most important

characteristics of training data computing a non-linear transformation of in-

put samples, which results in a better separation of distinct classes.

The training of Multilayer Perceptron (i.e. the process of modifying synaptic

weights properly) can be divided in two phases:
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1. the forward phase during which, fixed some synaptic weights, the input

signal is propagated through the newtork layers to calculate the output.

In this phase we can identify the function signal type, that is a signal

that comes in at the input to come out at the output;

2. the backward phase, during which we can identify the error signal type

that originates at an output neuron by the comparison between the

output and the desired response and is propagated backwards through

layers. In this phase synaptic weights are modified according to the

information given by error signals.

Therefore we note that each neuron of a Multilayer Perceptron perform two

types of computations, the first for the function signal that consists in a

non-linear combination of weighted inputs, the second for the error signal

that involves the derivatives of the network function in order to use gradient

descent optimization methods and decide in which direction synaptic weights

have to be modified.

The back-propagation algorithm

The back-propagation algorithm provides a computationally efficient method

for the training of multilayer perceptrons. We are going to present the al-

gorithm in the simplest case of the Mean Squared Error loss function, given

by (2.32). Changing the loss function e.g. with a cross-entropy loss, the

derivatives involved have to be calculated properly but the steps of the com-

putation remain the same.

To introduce some notations, considering the set {(x(n), t(n))}Nn=1 of training

samples, we indicate with yj(n) the function signal produced as output of

neuron j given the input x(n). The corresponding error signal that originates

at the output of neuron j is denoted with

ej(n) = tj(n)− yj(n) (2.31)
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where tj(n) is the j-th component of the target-response vector t(n), and the

quantity

Ej(n) =
1

2
e2
j(n) (2.32)

is defined as the instantaneous error energy of neuron j. Consequently, the

total instantaneous error energy of the network is defined by

E(n) =
∑
j∈C

Ej(n) (2.33)

where C is the set of all the neurons of the output layer, and considering the

entire training set of N samples, we define the error energy averaged over the

training sample as

Eav(N) =
1

N

N∑
n=1

E(n) =
1

2N

N∑
n=1

∑
j∈C

e2
j(n). (2.34)

As explained in the presentation of the mathematical model of a neuron,

we remind that the input to the activation function of hidden neuron j, given

the input x(n), is

vj(n) =
m∑
i=0

wji(n)yi(n) (2.35)

where m is the total number of inputs and wji is the synaptic weight that

connect neuron j with neuron i (we observe that the addition of the bias bj

is equal to fix an initial input y0 = +1 and the synaptic weight wj0 = bj).

Therefore, the function signal yj(n) that is the output of neuron j is

yj(n) = ϕj(vj(n)). (2.36)

As a supervised-learning process, multilayer perceptron training is based

on error correction. The performance measure is a cost function, depending

on the synaptic weights of the network, which can be visualized as an error

surface in the weights space. Every vector of synaptic weights calculated

during the training process represents a point on the error surface, and to

improve classification performance this point has to move in direction of a

minimum point of the error surface. To do this, the optimization method
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used is the GD method (see Section 2.3.1) that evolves in the direction of

steepest descent of the error function.

In the batch method of learning, the cost function is defined by the averaged

error energy Eav(N) (see (2.34)) and the synaptic weights are updated after

processing the entire training set, while in the on-line method (which we are

going to see in detail) the cost function is the istantaneous error energy E(n)

(see (2.33)) and weights are corrected sample-by-sample.

In the case of on-line learning, the back-propagation algorithm applies a

correction ∆wji to the weight wji(n) proportional to the partial derivative
∂E(n)
∂wji(n)

, which indicates the right direction of search for weights in order to

minimize the error energy. Applying the chain rule for partial derivatives,

we obtain that

∂E(n)

∂wji(n)
=
∂E(n)

∂ej(n)

∂ej(n)

∂yj(n)

∂yj(n)

∂vj(n)

∂vj(n)

∂wji(n)
. (2.37)

Partial derivatives that intervene in (2.37) can be calculated as follow:

1. From (2.33) we have
∂E(n)

∂ej(n)
= ej(n); (2.38)

2. From (2.31) we have
∂ej(n)

∂yj(n)
= −1; (2.39)

3. From (2.36) we have
∂yj(n)

∂vj(n)
= ϕ′j(vj(n)); (2.40)

4. From (2.35) we have
∂vj(n)

∂wji(n)
= yi(n). (2.41)

Therefore substituting these results in (2.37) we obtain

∂E(n)

∂wji(n)
= −ej(n)ϕ′j(vj(n))yi(n) (2.42)
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and the correction ∆wji(n) can be defined as

∆wji(n) = −η ∂E(n)

∂wji(n)
, (2.43)

where η is the learning-rate parameter of the back-propagation algorithm.

Observe that from the negative sign in (2.43) we recognize the direction of

steepest descent for the error energy E(n).

Substituting (2.42) in (2.43) we obtain

∆wji(n) = ηδj(n)yi(n) (2.44)

where δj(n) is the local gradient of the output neuron j defined by

δj(n) =
∂E(n)

∂vj(n)
(2.45)

=
∂E(n)

∂ej(n)

∂ej(n)

∂yj(n)

∂yj(n)

∂vj(n)
= ej(n)ϕ′j(vj(n)). (2.46)

We found that the error signal ej(n) that originates at the output of neuron

j is a term involved in the correction formula. So we have to distinguish

two cases: in the first case neuron j is a neuron of the output layer, then its

output is comparable with a desired response, while in the second case neuron

j is a hidden node, then the corresponding error signal has to be determined

recursively in terms of the error signals of all other neurons connected to

neuron j.

• Case 1. If neuron j is an output node, its output yj(n) is known as

network output, so we can use (2.31) and calculate the local gradient

δj(n) with formula (2.46), then the correction ∆wji(n) by using (2.44);

• Case 2. If neuron j is a hidden node, we have to redefine the local

gradient δj(n) for hidden neuron j by the formula

δj(n) = − ∂E(n)

∂yj(n)

∂yj(n)

∂vj(n)

(2.40)
= − ∂E(n)

∂yj(n)
ϕ′j(vj(n)). (2.47)

To calculate the derivative ∂E(n)
∂yj(n)

, we first rewrite the error energy as

E(n) = 1
2

∑
k∈C e

2
k(n) to avoid confusing neuron index (now the index j
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refers to a hidden neuron while the index k refers to output neurons),

so we have

∂E(n)

∂yj(n)
=
∑
k∈C

ek(n)
∂ek(n)

∂yj(n)

(chain rule)
=

∑
k∈C

ek(n)
∂ek(n)

∂vk(n)

∂vk(n)

∂yj(n)
. (2.48)

Now for a hidden neuron results that

ek(n) = tk(n)− yk(n) = tk(n)− ϕk(vk(n)) =⇒ ∂ek(n)

∂vk(n)
= −ϕ′k(vk(n)),

(2.49)

and from (2.35) we obtain that

∂vk(n)

∂yj(n)
= wkj(n). (2.50)

Combining last equations in (2.48) we get

∂E(n)

∂yj(n)
= −

∑
k∈C

ek(n)ϕ′k(vk(n))wkj(n)
(2.46)
= −

∑
k∈C

δk(n)wkj(n), (2.51)

and we finally have from (2.47) that the back-propagation formula for

the local gradient of hidden neuron j is

δj(n) = ϕ′j(vj(n))
∑
k∈C

δk(n)wkj(n). (2.52)

The correction ∆wji is then computed using the back-propagation for-

mula in (2.44).

Activation function

During the computation of the correction ∆wji we found that the deriva-

tive ϕ′(· ) of the activation function intervenes in the local gradient formula,

so we need a differentiable activation function. We present two forms of

continuously differentiable non-linear activation functions commonly used in

multilayer perceptrons, which can be included in the category of Sigmoid

activation functions (identified in Section 2.4.1):
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Figure 2.4: Graph to visualize how the back-propagation formula works.

1. Logistic Function, already mentioned in Section 2.4.1, defined by

ϕj(vj(n)) =
1

1 + exp(−avj(n))
, a > 0

where a is a positive parameter and vj(n) has the form (2.35). This

activation function generates an output yj(n) ∈ [0, 1], and its derivative

is

ϕ′j(vj(n)) =
a exp(−avj(n))

[1 + exp(−avj(n))]2
yj(n)=ϕ(vj(n))

= ayj(n)
(
1− yj(n)

)
.

If neuron j is an output node and oj(n) is the j-th component of the

output vector of the multilayer perceptron, then yj(n) = oj(n) and the

local gradient is

δj(n) = ej(n)ϕ′j(vj(n)) = a
(
tj(n)− oj(n)

)
oj(n)

(
1− oj(n)

)
.

If neuron j is a hidden node, the local gradient is

δj(n) = ϕ′j(vj(n))
∑
k

δk(n)wkj(n) = ayj(n)
(
1− yj(n)

)∑
k

δk(n)wkj(n).

2. Hyperbolic tangent function, defined by

ϕj(vj(n)) = a tanh(bvj(n))

where a, b are positive constants. It generates an output yj(n) ∈ [−1, 1]

and its derivative is

ϕ′j(vj(n)) = ab
(
1− tanh2(bvj(n)

)
=
b

a

(
a+ yj(n)

)(
a− yj(n)

)
.
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If neuron j is an output node, the local gradient is

δj(n) =
b

a
(tj(n)− oj(n))

(
a+ oj(n)

)(
a− oj(n)

)
.

On the other side, if neuron j is a hidden node we have

δj(n) =
b

a

(
a+ yj(n)

)(
a− yj(n)

)∑
k

δk(n)wkj(n).

Stopping criteria

Generally, the back-propagation algorithm cannot be shown to converge.

Therefore there are some stopping criteria for the algorithm that derive from

some properties of the optimization problem at the base of the method.

Denoting with w∗ a local or global minimum of the error surface, we remind

that a necessary condition to be a minimum, denoting with g(w) the gradient

vector of the cost function, is

∇g(w∗) = 0.

Hence a stopping criteria is formulated as follow ([12, Section 4.4]):

The back-propagation algorithm is considered to have converged

when the Euclidean norm of the gradient vector reaches a suffi-

ciently small gradient threshold.

A second stopping criteria is based on the cost function that is stationary at

the minimum point w = w∗:

The back-propagation algorithm is considered to have converged

when the absolute rate of change in the error function per iteration

is sufficiently small.

We observe that these stopping criteria are supported by theory, so during

computation long learning times as well as early termination of the algorithm

may occur.
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In conclusion, the back-propagation procedure for on-line learning in mul-

tilayer perceptrons can be summarized as follows:

Back-propagation algorithm

1. Given a training sample {(x(n), t(n))}Nn=1, fix parameters and thresh-

olds needed and initialize synaptic weights and biases;

2. Apply an input vector to the network: let the training sample be

(x(n), t(n)), so the input vector is x(n). Then forward propagate layer

by layer computing for every neuron j in layer l, for l = 1, . . . , L, the

activation function input

v
(l)
j (n) =

∑
i

w
(l)
ji (n)y

(l−1)
i (n)

where w
(l)
ji (n) is the synaptic weight from neuron i in layer l − 1 to

neuron j in layer l and y
(l−1)
i is the output signal of neuron i in layer

l − 1, and then the output signal of neuron j in layer l

y
(l)
j (n) = ϕj(v

(l)
j (n)).

Finally compute the error signal ej(n) = tj(n)− oj(n).

3. Compute for every output neuron j in layer L the local gradient

δ
(L)
j (n) = ej(n)ϕ′j(v

(L)
j (n))

and then backpropagate to obtain the local gradient for each hidden

neuron by the formula

δ
(l)
j (n) = ϕ′j(v

(l)
j (n))

∑
k

δ
(l+1)
k (n)w

(l+1)
kj (n)

for neuron j in hidden layer l.

4. Modify the synaptic weights according to the correction formula

w
(l)
ji (n+ 1) = w

(l)
ji (n) + ηδ

(l)
j y

(l−1)
i (n)

for every l, for every i, j;
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5. Verify the chosen stopping criterion: if the stopping condition is not

satisfied, back to point 2 with a new training sample.

2.4.5 Convolutional Neural Networks

Convolutional Neural Networks (CNN) represent a particular class of neu-

ral networks suitable for pattern classification. Their structure is made up of

neurons characterized by learnable weights and biases as well as the multi-

layer perceptron, but they are specialized for processing data with a known

grid-like topology. Examples are time-series data viewed as a 1-D grid of

samples taken in different time instants, or image data viewed as a 2-D grid

of pixels. So basically CNNs take account of the arrangement of input data

in time or in space to improve classification.

We can summarize the process of supervised learning in a CNN in the fol-

lowing points:

1. Feature extraction: each neuron takes its inputs only from a small

subregion in the previous layer known as local receptive field. This fact

forces the neuron itself to a local feature extraction;

2. Feature mapping : neuron units in a convolutional layer are organized

into plans, each of wich is called feature map, and each unit in a feature

map is constrained to share the same weight values. In this contest,

a set of weights is known as a filter. During this phase, each neuron

combines its local input with its set of weights by mean of a convolu-

tion (from which the network takes its name): if (wij)i=1,...,F1,j=i,...,F2 is

the filter and (xij)i=1,...,F1,j=i,...,F2 is the input, the convolution is ([11,

Chapter 9, Section 9.1])

F1∑
i=1

F2∑
j=1

xi+m,j+nwij

where indeces m,n individuate the local input region;
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3. Subsampling : each convolutional layer is followed by a computational

layer whose task is to refine the outcome of feature mapping. In this

layer there is a plane of neuron units for every feature map in the

convolutional layer, and each unit takes inputs from a small receptive

field in the corresponding feature map to perform subsampling.

In light of this, the positive aspects of using a CNN are the reduction in the

number of weights parameters thanks to the sharing and the possibility to

take advantage of data evolution in time/space to acquire information from

a local research of features (nearby samples will be more strongly correlated

than more distant ones).

CNN Layers

As we described above, the structure of a Convolutional Neural Network

includes several layers. In detail, these layers are a Convolutional Layer, a

Pooling Layer and a Fully-Connected Layer. We present the steps of the

computation in the case of image data as inputs since in the next chapter we

need samples in an image format to be the input of the built CNN classifier

(see Section 3.4).

The Convolutional Layer (Conv Layer) does most of the computation.

In case of 2-D inputs (i.e. images), its synaptic weights consists in K fil-

ters of size F1 × F2 (which corresponds to the receptive field size of Conv

Layer neurons). Each filter slides across the input and neurons belonging to

the current feature map compute the convolution with its input region, that

is essentially the dot product between the entries, and then they add the bias.

Three hyperparameters control the size of the output, that are depth,

stride and zero-padding:

- the depth of the output corresponds to the number of filters we would

like to use, i.e. K;
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- the stride refers to how filters slide across the input. With an image

input, if the stride is 1 the filter moves pixel-by-pixel, while if the stride

inscreases to S the filters jump S pixels at a time. The larger the stride,

the smaller the output spatially (i.e. not considering the depth). We

denote with S1 the vertical stride size and with S2 the horizontal stride

size;

- sometimes it may be convenient to add rows or columns of zeros around

the input border, and the zero-padding controls this number of rows

and columns. We denote with P1 the padding applied to the top and

bottom of the input and with P2 the padding applied to the left and

right.

Therefore, given an input image of size W1 ×W2 and fixed the number

of filters K of dimension F1 × F2, the stride S1 × S2 and the zero-padding

P1 × P2, the output size of the Conv Layer is H1 ×H2 ×D where

H1 =
W1 − F1 + 2P1

S1

+ 1 (2.53)

H2 =
W2 − F2 + 2P2

S2

+ 1 (2.54)

D = K (the depth of the ouput). (2.55)

With filter sharing, the total number of weights is (F1·F2)·K and the num-

ber of biases is K (one per filter).

The layer following the Covolutional is a Pooling layer, that has the func-

tion of a subsampling layer. In fact it reduces the spatial size of the Conv

ouput, which becomes its input, and as a consequence the amount of com-

putation in the network. The most common operation to subsample in a

Pooling layer is the maximum operation, which behaves similarly to the con-

volution in a Conv layer: fixed a spatial extension the maximum operation

slides across the input and selects its value locally.

Therefore, given an input of size W1×W2×D and fixed a spatial extension

F1×F2 and a stride S1×S2, the output size of the Pooling layer is H1×H2×D
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Figure 2.5: Example of convolution of an input of size 3 × 4 with a 2 × 2

filter, fixed stride 1 × 1 and no padding. The following step is the addition

of the bias to every output component.

(the depth remains the same) where

H1 =
W1 − F1

S1

+ 1 (2.56)

H2 =
W2 − F2

S2

+ 1 (2.57)

Going to the example of Figure 2.5, if the output of Conv layer of spatial

dimension 2 × 3 is pooled with spatial extension 1 × 2 and stride 1 × 1 we

obtain a Pooling output of spatial size 2× 2.

Finally, the Pooling layer is followed by a Fully-connected layer, every

single neuron of which is connected with all the input nodes and compute

the “regular” weighted sum described in (2.15),(2.16) as the input to an

appropriate activation function ϕ.





Chapter 3

Experiments and results

In this chapter we present the result of our study based on the attempt to

improve myoelectric pattern recognition using different classification meth-

ods.

The starting point of the research is the approach used in INAIL to classify

EMG signals acquired by amputee patients. The adopted algorithm is the

binary Non-linear Logistic Regression (NLR) with a one-vs-all classification:

by this way more than one binary classifier is separately trained according

to the respective target class (i.e. gesture), and then combined to obtain a

multiclass classification. Intuitively, this procedure can be globalized using

a unique classifier which works simultaneously on the entire set of gestures.

Therefore, our aim is to make the learning process more global and then

verify if the new procedure returns acceptable results.

In Section 3.1 we present the EMG data acquisition protocol, specifying

the way in which data are collected and gestures to classify. In Section 3.2

the NLR algorithm used in INAIL is shown with focus on how every single

part of the process is implemented, while in Section 3.3 and 3.4 we present

our new proposals of multiclass classifiers that are a Softmax Classifier built

on an Artificial Neural Network and a Convolutional Neural Network. Fi-

nally the classification results obtained from NLR and ANNs are compared

on the same data and discussed in Section 3.5.

41
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The documentation consulted for Matlab implementation is given by [14]

and [15].

3.1 Experiment setup

The data sets of EMG signals used for our classification analysis were

collected in INAIL according to the following data acquisition protocol.

The participants in the experiment were twenty people with trans-radial

amputation, aged between 18 and 65, free of known muscular and/or neu-

rological diseases. These subjects were already experienced in myoelectric

control of prosthetic hands, thus they were trained in this type of record-

ing sessions. The six used EMG sensors, i.e. Ottobock 13E200=50 active

sensors whose characteristics were explained in Chapter 1, were placed on

the subjects’ forearm using a silicone bracelet. The number of the sensors

to be used was fixed at six because this is the highest possible number to

place into the prosthesis in order to mantain its structural integrity (for the

study on sensor reduction see [8]). Sensors were equidistantly placed in the

bracelet on the circumference of the stump, about 5 cm below the elbow,

and their right position above muscles were identified by manual inspection

of the stump. The data was collected using a software built by INAIL on

LabView platform able to sample the six sEMG signals at 1 kHz frequency

and convert them from analog to digital signals.

During the acquisition, each subject was sitting in front of a PC monitor

where one of the following five selected hand gestures was randomly shown:

1. Rest, relaxed hand;

2. Spherical, hand with all finger closed;

3. Pinch, hand with thumb and finger touching;

4. Platform, hand completely open and stretched;
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5. Point, hand with all fingers closed except for the index pointing.

Figure 3.1: The five selected hand gestures

Participants were instructed to reproduce steady state the displayed ges-

ture with their phantom limb. Therefore, fixed a recording time window

of 2 seconds, once the signals become stable the sampling session started

and continued for 2 seconds obtaining from each sensor 2032 samples. Ev-

ery single acquisition started from Rest position, and after having recorded

the current gesture signals the subjects were asked to return to Rest position.

During a single recording session each gesture was randomly repeated

nr = 10 times, then the final data set corresponding to a single subject ac-

quisition consists in a matrix of size (2032 ·nr·ng)× (1 + ns) where ng = 5

is the number of gestures and ns = 6 is the number of sensors. The first

column of the matrix contains the labels of acquired samples, which vary

between 1, 2, 3, 4, 5 that correspond to rest, spherical, pinch, platform and

point gestures respectively. The i-th column, for i = 2, . . . , 1 + ns, contains

the acquisitions of the entire session collected by sensor i − 1. For a better

understanding we observe, reading the samples matrix by rows, that every

row corresponds to a sample vector made by current gesture label followed

by the six sensor acquisition for that gesture at the same time.

After collecting EMG signals, the final step is to transmit samples to the

PC to train the classification system.
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Figure 3.2: Plot of EMG signals acquired by the six different sensors at the

same time during the reproduction of a Pinch gesture (3).

3.2 Non-linear Logistic Regression classifier

After collecting EMG signals from the twenty amputee patients, the fol-

lowing step is to train the classification system for every subject. The clas-

sifier chosen by INAIL to recognize the five selected gestures is a Non-linear

Logistic Regression classifier (NLR). In this section we describe in detail the

code developed to implement NLR algorithm in Matlab.

3.2.1 Scaling and subsampling

The starting point of the implementation is to identify the input data

set, that is the matrix collected during the single subject recording session,

exactly a 2032 · 10 · 5 = 101600 × 7 matrix. Denoting with x1, . . . , x6 our

features (i.e. the signal value acquired by sensors 1, . . . , 6) and with t the

target class/gesture, every matrix has the form
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
t(1) x1(1) x2(1) . . . x6(1)

t(2) x1(2) x2(2) . . . x6(2)
...

t(m) x1(m) x2(m) . . . x6(m)

 (3.1)

where m = 101600 is the total number of training samples. In order to obtain

a real-time classification with the fastest response, no feature extraction is

performed from the acquired signals, so the sEMG signal is used directly

as input for the classifier. The only operation made on input signals is the

scaling per feature, i.e. subtracting the mean to each signal and dividing

the result by the range. In terms of code, if we call TrainingSet the matrix

(3.1), we have

for i=2,...,7

Media(i)=mean(TrainingSet(:,i));

Range(i)=max(TrainingSet(:,i))-min(TrainingSet(:,i));

TrainingSet(:,i)=(TrainingSet(:,i)-Media(i))/Range(i);

end

In this way we obtain for each time step (i) a six-element vector x(i) of

scaled EMG signals, acquired by the six sensors, that belongs to the class

t(i). The vector x(i) will be used as input for the classifier.

The next step consists in dividing the entire data set in order to train the

classifier and test the result afterwards on different samples.

The division strategy relies on a three ways data split approach, i.e. the set

of m samples x(i) is divided into three subsets:
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1. the Training Set (TR), which contains 60% of the data, is used to train

the supervised classification algorithm by minimizing the specific cost

function;

2. the Cross Validation Set (CV), containing 20% of the data, is used to

evaluate performance of configurations selected during training in order

to find out the best model and avoid overfitting, that is the situation

in which the classification parameters set after training fit the training

data too well to obtain a good generalization;

3. the Test Set (TS), that contains the remaining 20% of the data, is used

to evaluate performance in terms of generalization, i.e. how the classi-

fier behaves with respect to input samples different from the training

set ones.

In addition to the three ways data split, another set is created before the

training. This derives from the fact that for each participant to the record-

ing session we acquire a data set of size 101600 × 7, which compose a large

scale-data set. Consequently, the time needed to complete training and model

optimization would be very long using all the samples. Therefore, downsam-

pling is applied at the beginning to select the part of the dataset to train,

cross-validate and test the classifier. To not lose information, the data not

selected by downsampling compose a new set of samples, called Generaliza-

tion Set (GS), that will be used as a second test set to evaluate the classifier

generalization ability.

In the code, the downsampling process is controlled by the integer variable

s that represents the sampling step. For example, if we fix s to 5 (one in

five) we obtain a GS containing 80% of the data, a TR containing 12% of

the data, a CV containing 4% of the data and a TS containing the remaining

4%. Therefore during implementation we have
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fixed s

for i=1:s:m

selectedData = [selectedData;TrainingSet(i,:)];

while i+s does not exceed m

GS = [GS; TrainingSet(i+1:i+s-1,:)];

when i+s exceeds m

GS=[GS;TrainingSet(i+1:m,:)];

end

(3.2)

Once the data for training, cross-validating and testing have been se-

lected, the three ways data split can be done on this new dataset (selectedData

in the code). At first, samples x(i) in selectedData matrix (i.e. its rows)

are randomly shuffled and divided in TR, CV and TS with a proportion in

percentage of 60 - 20 - 20. Then in order to mantain a right proportion of

samples belonging to different class/gestures in each of the three subsets, a

treshold in percentage is fixed: if the percentage of sample per class in each

of the set TR, CV and TS does not exceed the threshold, then samples in

selectedData have to be reshuffled until the achievement of the equilibrium.

Once the TR, CV and TS sets have been filled, the system is ready for the

beginning of the leaning process.

3.2.2 Models of features

As explained in Section 2.1, in order to extend the LR classification to

the non-linear case, the algorithm by INAIL creates additional features com-

bining the initial ones according to a fixed non-linearity degree.

In our study features are combined in two different ways to create two distinct

models:
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1. Exponential model of degree d, obtained adding to the initial features

x1, . . . , x6 new features corresponding to the initial ones high till the

indicated maximum degree;

2. Multinomial model of degree d, obtained adding to the initial features

all the monomials of maximum degree d obtained from the multiplica-

tion of x1, . . . , x6 with their exponentiations.

To give an example, if we set the non-linearity degree d to 2, the features

of the exponential model are x1, . . . , x6, x
2
1, . . . , x

2
6 while the features of the

multinomial model are x1, . . . , x6, x1x2, x1x3, . . . , x5x6, x
2
1, . . . , x

2
6.

In the Matlab code, the maximum degree of non-linearity of the model is

given by the variable dmax fixed at the beginning. To crate the additional fea-

tures, two auxiliary functions are defined respectively to compute exponential

and multinomial features, mapping_exp(X,d) and mapping_multinomial(X,d).

Each of the function has the matrix of data selected by subsampling and the

grade of the model d as inputs, and returns a matrix in which the initial six

columns are followed by new columns corresponding to the new additional

features generated by multiplying values of columns 1 to 6 as the feature

requires.

To determine the optimal model, hence the optimum degree of non-

linearity for the classification, all models will be tested during the train-

ing of NLR classifier depending on the value of dmax, so mapping_exp and

mapping_multinomial works to calculate all features up to dmax degree:
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fixed dmax:

- consider the selected data without the first column of gesture labels

and store the labels in a separate vector:

X1=selectedData(:,2:end);

t=selectedData(:,1);

- compute matrix of additional features:

X2=mapping_exp (X1,2);

X3=mapping_multinomial(X1,2);

X4=mapping_exp(X1,3);

X5=mapping_multinomial(X1,3);
...

X*=mapping_exp(X1,dmax);

X**=mapping_multinomial(X1,dmax);

end

(3.3)

The rows of the matrices X1,X2,. . . will be the input vectors to the NLR

classifier.

3.2.3 Structure of NLR classifier

Once the organization of the dataset is completed, we are ready to de-

scribe the tools necessary for the implementation of the NLR classifier.

Here we introduce a Matlab toolbox that provides a framework for designing

and implementing Artificial Neural Networks with algorithms and pretrained

models, that is the Deep Learning Toolbox [14],[15]. Thanks to its functions,

it is possible to create and train a customized neural network for regression

and classification problems as well as for the recognition of patterns in im-

ages. In our case, this toolbox allows to produce a neural network that works

in the same way as a NLR classifier, exactly a single-layer feedforward net-

work with the logistic sigmoid function as activation function, whose inputs

are vectors of features (i.e. the rows of matrices X1,X2,. . . created during
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feature mapping) and whose ouput is the estimated class/gesture label of

the input.

The starting command in the code is

net=network;

that returns a network type variable which contains a new neural network

with no inputs, layers or outputs. The next step consists in defining the

architecture properties, i.e. setting the following values:

- numInputs indicates the number of inputs, so its possible values are 0

or a positive integer;

- numLayers indicates the number of layers, so its possible values are 0

or a positive integer;

- biasConnect is a numLayers×1 Boolean vector which contains 1 in

position i if layer i has a bias;

- inputConnect is a numLayers×numInputs Boolean matrix which con-

tains 1 in position (i, j) if layer i has a weight coming from input j;

- outputConnect is a 1×numLayers Boolean vector which contains 1 in

position i if the network has an output from layer i.

Therefore, to create the single-layer feedforward network we need, all the five

architecture parameters described above are set to 1.

Then function properties have to be defined, that are:

- transferFcn, which defines the activation function for each layer used

to calculate the layer output during training and simulation;

- initFcn, that defines which of the layer initialization functions are

used to initialize weights and biases for every layer.
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In our case, the transfer function selected for the single layer is the Log-

sigmoid transfer function

logsig(n)=1/(1+exp(-n))

while the chosen initialization function is the Nguyen-Widrow function (for

more details see [16]).

In relation to the training process, two more function properties have to

be set:

- performFcn, which defines the function used to measure the network

performance during training, that corresponds to the cost function to

minimize;

- trainFcn which determines the optimization method, i.e. the correc-

tion to apply to synaptic weights in order to find out the ones that

minimize the loss function set in performFcn.

As performance function the selected one is the Mean Squared Error (MSE)

MSE =
1

N

N∑
n=1

(t(n)− y(n))2

where N is the number of samples used for training, t(n) is the gesture label

of sample n and y(n) is the network output, i.e. the estimated label of sam-

ple n, while the optimization method used is the Resilient Backpropagation

(Rprop). This training method differs from the Gradient Descent method in

the fact that the direction of weights update is determined only by the sign

of partial derivatives of the cost function with respect to the weights, not by

the magnitude. The size of the weight change is determined by a separate

update value set a priori (for more details see [15]).

Finally, the last set of values to fix refers to the division of the data set

according to the three ways data split. They are the following:
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- divideFcn defines the data division function to be used when the net-

work is trained;

- divideParam defines parameters and values of the current data di-

vision function. In particular, the three main parameters to set are

trainRatio, valRatio and testRatio to estabilish the proportion of

data to fill TR, CV and TS sets.

Since in our implementation the organization of the data set has already

been done ad hoc by sumbsampling, shuffling and multipling, obtaining as

result matrices in (3.3), the data division function is set to ’divideblock’

that considers the totality of samples and makes the division in three blocks

mantaining the order in the matrix. Then, according to the 60 - 20 - 20

proportion in percentage for the division in TR, CV and TS, we set

trainRatio=0.6, valRatio=0.2, testRatio=0.2.

In summary, the code to set all the network commands has this form:

net=network;

net.numInputs=1; net.numLayers=1;

net.biasConnect=1; net.inputConnect=1; net.outputConnect=1;

net.layers{1}.initFcn=’initnw’;

net.layers{1}.transferFcn=’logsig’;

net.performFcn=’mse’;

net.trainFcn=’trainrp’;

net.divideFcn=’divideblock’;

net.divideParam.trainRatio=0.6;

net.divideParam.valRatio=0.2;

net.divideParam.testRatio=0.2;

3.2.4 Training process

At this point of the implementation, we remember that the NLR classi-

fication algorithm is used in a one-versus-all approach. In our classification



3.2 Non-linear Logistic Regression classifier 53

problem where classes/gestures are ng = 5, this implies that five different

NLR classifiers have to be trained and then combined. To do this, a for loop

runs through the five classes and computes the training process class-by-class.

Now we consider one iteration of the for loop, identifying the gesture to

classify with the variable class, which can assume values from 1 to 5.

The first step consists in modifying labels of training samples, that are the

components of vector t obtained in (3.3), to distinguish class labels from

not-class labels:

for i=1:length(t)

if t(i)==class

t(i)=1;

else

t(i)=0;

end

(3.4)

In this way we make our data set suitable for a binary classification problem

whose aim is to recognize class gesture.

Subsequently, in order to select the feature mapping which gives the best

classification result, each feature model have to be tested during the training

process. We saw that for each feature model we have a different matrix of

training samples, then input vectors of different size for the classifier. For

this reason we create as many neural networks by the command network,

with properties explained in the previous part, as feature models are to train

each of the network with its respective samples and compare results.

Neural networks are trained using the command train(net,X,t), where

the network-type variable net contains the structure of the network to train,

the matrix X contains samples x(i) per row and t is the 0-1 vector of gesture

labels, and the training options are those set in the network structure. With

this command the way in which training is implemented is batch mode, i.e.
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in each iteration all the inputs in the training set are applied to the network

before the weights are updated.

According to the network setting we selected in Section 3.2.3 to build the

NLR classifier, the steps performed in each iteration of the training are the

following:

1. each sample x(i) belonging to TR set passes trough the net to generate

an output, which corresponds to the output of the Logistic Sigmoid

activation function;

2. the MSE is computed, then the Rprop algorithm correction, and current

weights are updated;

3. with the new set of weights, each sample x(i) belonging to CV set

passes through the net to generate the output, then MSE is computed

over the CV set. The same step is also computed on TS set;

4. stopping criteria are checked.

In relation to step 4 the criteria used to stop the network training are:

- minimum magnitude of the gradient of performance reached;

- maximum number of validation checks reached, i.e. the number of

successive iterations where the validation performance fails to decrease;

- maximum training time reached;

- maximum number of training iterations reached;

- minimum performance value reached.

These limits have their default value, but can also be adjusted by setting the

appropriate training parameters.

Once all the feature models have been tested on the corresponding net-

work, we select the best model comparing the network performances.
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The command train returns the two outputs [net,tr], where net is the

network object whose structure is the same as the initial network but with

the optimum synaptic weight and tr is a structure containing the training

record. In particular tr.best_perf, tr.best_vperf and tr.best_tperf

contain respectively the minimum train/validation/test performance value

over iterations.

In this study each of the neural networks crated for the feature model

selection is trained for Ntrain = 10 times to better generalize the process

since each initialization of the network results in different weights and biases

and might produce different solutions. The best training session is selected

according to the best validation performance: the value of tr.best_vperf

is compared between all the others, and the best session is chosen in corre-

spondence of the minimum.

The best feature model is selected in the same way with regard to the best

validation performance.

Summarizing the training process in terms of Matlab code, we have the fol-

lowing lines:

Xmod={X1,X2,...,X*,X**}; % feature models

networks={net1,net2,...,net*,net**};

Nets={}; PerfCV=[ ]; NETS={}; PERFCV=[ ];

for i=1:size(networks,2)

net=networks{i};

X=Xmod{i};

for j=1:Ntrain

[nettemp,tr]=train(net,X,t); % t defined in (3.4)

Nets{j}=nettemp;

PerfCV(j)=tr.best_vperf;
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net=init(net); % the network is re-initialized

end

best=find(PerfCV==min(PerfCV));

NETS{i}=Nets{best};

PERFCV(i)=PerfCV(best);

end

d=find(PERFCV==min(PERFCV)); % index of the best model in Xmod

In this way we find out that for class gesture the best model of features is

Xmod{d} and the best NLR classifier is built on NETS{d}. We remember that

NETS{d} from an input x(i) returns an output y(i) that is the probability

that the sample x(i) belongs to the current gesture class.

3.2.5 Decision thresholds

The step following the selection of the optimum model of features consists

in fixing the decision thresholds which determine the predicted gesture label

for each sample as a function of the probability output of the NLR classi-

fier. The purpose of INAIL is obtaining a classification that is as certain as

possible in the sense that when the system gives a response, the probability

that the estimated label is the right label must be high. For this reason

the decision thresholds in probability are fixed as high as possible for every

gesture compatibly with classification accuracy.

First of all we fix a set of thresholds to test, whose values vary between 0.2

and 0.99. For each of these values denoted with th, NETS{d} is tested on the

CV set obtained from the division of samples in Xmod{d}. From the proba-

bility vector output y we obtain the 0-1 vector of estimated labels setting to

1 the components y(i) that satisfy y(i) ≥ th and to 0 the others. To evaluate

performance in terms of accuracy the F1score is used, defined as follows. If

t is the known class vector and y is the estimated class vector, the relative

confusion matrix is
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(t(i) = 1) (t(i) = 0)

(y(i) = 1) nP nFP

(y(i) = 0) nFN nN

(3.5)

where nP is the number of true positive, nN the number of true negative,

nFP the number of false positive and nFN the number of false negative.

From this matrix we extract

PR =
nP

nP + nFP
(3.6)

RE =
nP

nP + nFN
(3.7)

where PR is called Precision and indicates the ability of the classifier not

to label as positive a sample that is negative, while RE is called Recall

and indicates the ability of the classifier to find all the positive samples.

Combining these two quantities we define the F1score in percentage as

F1score = 2 · PR ·RE
PR +RE

· 100. (3.8)

The higher the percentage, the more accurate the performance.

Therefore, going back to decision thresholds, the F1score is calculated for

the performances obtained from each fixed threshold. The optimal decision

threshold will be the one that maximizes the F1score.

3.2.6 Network evaluation

Once the best model of feature has been selected and the decision thresh-

old has been chosen, the performance of each of the five resulting NLR

classifiers has to be evaluated. This step is done computing the following

evaluation parameters on the test set TS:

- Precision;

- Recall ;
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- F1score;

- confusion matrix.

At the end of networks evaluation, for each of the five NLR classifiers we

have obtained:

1. the typology of the best model of features and its number of features,

bias feature included;

2. the optimum synaptic weights determined by the training process;

3. the optimal decision threshold value;

4. Precision, Recall, F1score and confusion matrix calculated on the test

set TS.

3.2.7 Test on GS and voting

At this point in the study we have determined the most performing NLR

classifier separately for each gesture on the basis of information provided by

samples in selectedData. The next step consists in combining the binary

classifiers to obtain a multiclass classification and testing the performance

on the set of samples we called Generalization Set (GS), defined in (3.2).

Firstly, the labels of GS samples are stored in a separate variable, as we did

for selectedData, and the bias feature x0 = 1 is added to the data set:

t=GS(:,1);

X=GS(:,2:end);

X=[ones(length(t),1),GS];

Afterwards the function HypMulticlass is specially created for multiclass

classification. This function takes as input the matrix of samples X, the vec-

tor of known gesture labels t, the vector D whose component D(i) identifies

the feature model chosen for gesture i for i = 1, . . . , 5, the structure Theta
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containing the five optimum vectors of synaptic weights and the vector Th

of the five optimal decision threshold values, and computes for each sample

(each row) of X the corresponding class value. As output it returns a ma-

trix Yhyp in which the first column contains known class labels, the second

column contains the estimated class labels and the remaining five columns

contain the probabilities in percentage that each input x(i) belongs to the

output class.

To do multiclass classification, the function rebuilds for each gesture i the

matrix of features Xf according to the best model encoded in D(i) and com-

putes the networks outputs by the function evaluation

1/(1+exp(-Theta{i}*Xf(j,:)’))

for i = 1, . . . , 5, j = 1, . . . , size(X,1). Then for each sample of X it com-

pares the ouput probabilities of belonging to class i with the relative decision

threshold Th(i). In this step there is the possibility of abstention in the fol-

lowing sense: considering the sample x(i), if none of the five probabilities

exceeds its decision threshold, then the estimated class label is set to zero

(i.e. the multiclass classifier does not choose).

Once obtained the matrix Yhyp, the procedure known as voting is im-

plemented. This step adds a sort of stability to the classification process in

view of the online classification to do once the prosthesis will be worn by the

patient and used in everyday life.

The key point of voting is that, while the data set selectedData was shuffled

before training and evaluation, this time samples in the matrix GS are placed

in order of acquisition during the EMG recording session. In fact it consists

in selecting an amplitude nVote intended for the voting interval and dividing

the first two columns of Yhyp (that contains known and estimated labels in

order of acquisition) in blocks according to this amplitude. Then the esti-

mated class that occurrs the most in each of the voting blocks becomes the

estimated class of each single sample of the block.
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After voting we obtain a Yhyp matrix with the same structure but with the

column of estimated class labels that has been modified, and on the basis of

these new values the performance of the multiclass classifier is evaluated by

computing:

1. the confusion matrix M, whose size is 5× 5 and contains the number of

true/false positives/negatives with respect to each gesture;

2. the F1score value for each gesture i, given by formulas

Pr=M(i,i)/sum(M(i,:));

Re=M(i,i)/sum(M(:,i));

F1score=2 · (Pr · Re)/(Pr+Re) · 100;

hence the mean of the five F1score values;

3. the percentage of abstention.

3.3 Multilayer Feedforward ANN

To reach the target of a more global classification, we propose the use of

a single multiclass classifier as an alternative to the one-vs-all classification

approach. Instead of considering five distinct binary classification problems

by the use of the NLR algorithm, this time each sample is considered with

its initial label i for i = 1, . . . , 5 and it is given as input to the new classifier

which returns a vector with five components corresponding to the probabili-

ties that the sample belongs to each class.

To obtain this kind of classification result we build a Softmax Classifier

on a Multilayer Feedforward ANN, including a non-linear transformation of

input samples. In the same way as with the NLR classifier, we take advantage

of the Matlab Deep Learning Toolbox functions to select and divide our data

properly, create and train our customized ANN and evaluate performance.
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In particular, we use the neural network pattern recognition app nprtool.

As in the previous section, now we describe every passage of the code neces-

sary to implement the multiclass classification following this new approach.

3.3.1 Scaling and subsampling

The initial setting of the problem is the same as described for NLR classi-

fication in Section 3.2.1. EMG signals acquired during the recording session

are organized in the TrainingSet matrix (3.1), and the scaling per feature

is the unique operation made on signals (no feature extraction is performed).

Afterwards, the first data set division is made according to the fixed sampling

step s to select samples for the GS set, and the remaining data are intended

to be divided following the three ways data split approach to train and test

the classifier.

The code for data division is equal to the one described in (3.2).

We point out that in this new setting, the shuffle of selected data made to

obtain a balanced three ways data split is not done in this phase of the im-

plementation. The network parameter divideFcn will be set properly to run

the shuffle automatically before training.

In order to face up the multiclass problem with a single global classifier,

we have to modify labels of samples from 1, 2, 3, 4, 5 to 0-1 vectors of length 5

such that if the sample label is i, then the new label vector has all 0 elements

except for element i that is 1. So the new label is (1, 0, 0, 0, 0) for samples

belonging to gesture 1, (0, 1, 0, 0, 0) for those belonging to gesture 2 and so on.

A function named convertT is specially created to modify labels structure:

it takes as input a vector of N labels and returns a 5 × N matrix whose

columns are the new 0-1 vectors labels.
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3.3.2 Structure of the multiclass classifier

The command used to create the suitable network structure for our mul-

ticlass problem is patternnet, which set the network parameters to have a

two-layer feedforward network with a sigmoid transfer function in the hidden

layer and a softmax transfer function in the output layer.

The number of neurons in the hidden layer is set in the integer variable

hiddenLayerSize, which can be arbitrarily chosen by the user. We observe

that the more this number increases, the more synaptic weights will be in

the network.

By the command

net=patternnet(hiddenLayerSize)

the tool creates a network that detects its number of input neurons according

to the length of input samples (i.e. the features number) and its number of

output neurons according to the number of distinct categories. Each output

neuron represents a category, so when an input vector of the appropriate

category is applied to the network, the corresponding neuron should produce

a 1, and the other neurons should output a 0.

Going back to the description of architecture parameters in Section 3.2.3,

for the network variable net created with patternnet we have the following

setting:

- numInputs=1, numLayers=2;

- biasConnect=[1;1] (i.e. both hidden and output layers have a bias);

- inputConnect=[1; 0] (it indicates the presence of weights going to the

first layer from the input layer, and the absence of weights going to the

second layer from the input layer);

- layerConnect=[0 0; 1 0] (set when numLayers > 1, it indicates the

presence of weights only going to the second layer from the first layer);
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- outputConnect=[0 1] (it indicates the presence of the network output

from the second layer).

In terms of function properties of the network we have to distinguish the

two layers, whose structures are stored separately and shown by the command

net.layers{i} for i = 1, 2. In light of this we can identify the following set

parameters:

- net.layers{1}.initFcn=’initnw’, net.layers{2}.initFcn=’initnw’

(weights and biases of both layers are initialized according to the Nguyen-

Widrow initialization algorithm in the same way as the previous net-

work);

- net.layers{1}.transferFcn=’tansig’ (the hidden layer activation

function is the Hyperbolic Tangent Sigmoid function

tansig(n)=2/(1+exp(-2*n))-1

whose output range is [−1, 1]. It is numerically equivalent to the Hy-

perbolic Tangent function in the sense that the numerical difference

between the ouputs is very small, but in Matlab it runs faster);

- net.layers{2}.transferFcn=’softmax’ (the output layer activation

function is the Softmax function defined in (2.6) and wrote in Matlab,

given an input vector v, as

softmax(v)=exp(v)/sum(exp(v))).

Going to the function properties related to the training process, we have:

- net.performFcn=’crossentropy’ (the selected performance function

is the cross-entropy loss for the Softmax function defined in (2.8) and

wrote in Matlab as

ce=-t.*log(y);

perf = sum(ce(:))/numel(ce);
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where ce is the cross-entropy for each pair (y, t) of output-target vectors

and perf is the aggregate cross-entropy performance normalized with

respect to the number of samples).

- net.trainFcn=’trainscg’ (the optimization method used during train-

ing is the scaled conjugate-gradient method (SCG), which differs from

the GD method for the direction in which synaptic weights are updated,

known as the conjugate-direction. For more details see [12, Chapter 4,

Section 4.16]).

Finally, the parameters values referring to the division of the data set are

the following:

- net.divideParam.trainRatio=0.6, net.divideParam.valRatio=0.2,

net.divideParam.testRatio=0.2 (to mantain the 60 - 20 - 20 propor-

tion in percentage for the division in TR, CV and TS);

- net.divideFcn=’dividerand’ (with this setting the sets TR, CV and

TS are filled after randomly shuffling the totality of samples in the

matrix, in contrast to the ’divideblock’ setting).

Figure 3.3: Diagram of the two-layer feedforward network created by the

command patternnet(10), where 6 is the number of features and 5 the

number of classes.
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3.3.3 Training process

Once the customized network has been created with patternnet and set

all the parameters to obtain a Softmax model, the network training starts.

The command used to train is train(net,X,T) again, but this time the

network-type variable net contains the structure of the network given by

patternet and the training options, X=selectedData(:,2:end)’ is the ma-

trix of data and contains the six element samples x(i) per columns, while T

is the matrix obtained by convertT whose columns are the respective vector

labels of samples.

The training is implemented in a batch mode, and the steps performed in

each iteration are the following:

1. each sample x(i) belonging to TR set passes trough the hidden layer

of the network to generate an output vector, whose components corre-

spond to the outputs of the Hyperbolic Tangent Sigmoid function for

each hidden neuron;

2. the output of the hidden layer becomes the input for the output layer,

so it passes through the new layer to generate the network output vector

given by the Softmax activation function;

3. the cross-entropy loss is computed, then error signals are backpropa-

gated to calculate weights corrections according to the SCG method

and weights are updated;

4. with the new set of weights, each sample x(i) belonging to CV set

passes through the net to generate the output, then the cross-entropy

is computed over the CV set. The same step is also computed on TS

set;

5. stopping criteria are checked, which are the same five described in Sec-

tion 3.2.4 for NLR.
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To better generalize the process of training, the network is trained for

Ntrain = 10 times on the same data since each initialization of the network

results in different weights and biases. As for NLR, the best training session

is selected according to the best validation performance among the 10, stored

in tr.best_vperf for each training.

3.3.4 Test on GS and voting

During the training session of the network, the best setting of synaptic

weights has been determined. Consequently, the network can be tested on

samples of GS.

Firstly, samples to evaluate the network are separated from their labels al-

ways in the same way, setting Xgs=GS(:,2:end)’, tgs=GS(:,1)’ and modi-

fying the structure of labels with the function convertT to obtain the matrix

Tgs with 0-1 vector labels as columns. Then we use an option of Deep Learn-

ing toolbox to simulate the network on new samples. If we name netbest the

network whose structure contains the optimum synaptic weights determined

by the training, the command

Ygs=netbest(Xgs)

takes each column of the matrix Xgs (i.e. each sample of GS set), calculates

the output of the network whose structure and weights are given by netbest

and stores the output vectors in the columns of Ygs. Therefore the column i

of Ygs is a five element vector whose components correspond to the probabil-

ity that the i-th sample in GS belongs to each of the five classes (component

j refers to class j for j = 1, . . . , 5). To select the highest probability among

the five for each sample, i.e. to determine the estimated class, the Matlab

command vec2ind is used. In general, vec2ind takes as input an N ×M
matrix V and returns a 1×M vector of indices indicating the position of the

largest element in each column of V . In our case, vec2ind(Ygs) returns a

vector of indices which correspond to the estimated classes for each sample

since the largest element per column identifies the highest probability per
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sample.

Once obtained the vector of estimated labels, the procedure of voting is

implemented in the same way as for NLR testing session (see Section 3.2.4).

Samples of GS in order of acquisition are divided in blocks according to the

amplitude given by the variable nVote, and the estimated class of samples

of each block is adjusted on the basis of the most occurring estimated class

of the block.

After voting, we obtain the final vector of estimated class labels for GS.

Then the performance of the classifier is evaluated by computing the con-

fusion matrix, the F1Score for each class, the mean F1Score given by the

mean of the five F1Score values and the percentage of abstention determined

by voting.

3.4 CNN

The idea of testing a convolutional network on the EMG data sets comes

from the procedure of acquisition of signals and the structure of samples in

the initial matrix. Describing the experiment setup in Section 3.1 we said

that during the execution of a gesture, the number of samples recorded from

each sensor is 2032 in a time window of 2 seconds, and these samples are

stored in the data matrix in order of acquisition. Therefore to determine the

gesture associated with a single sample, it can be useful to acquire informa-

tion from samples recorded in a temporal range centered in the instant of

acquisition of the sample in hand. Features of signals “close in time” are

similar in a good acquisition since signals are recorded during the steady

state of the movement, so there isn’t any evolution.

As for the previous classifiers, in this section we describe the code imple-

mented in Matlab to build a CNN, which has a different setting with respect

to the previous networks.
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3.4.1 Reorganization of the data set

As for NLR and Softmax classifiers, the first step consists in the scaling

per feature of signals in the matrix TrainingSet, defined in (3.1). After-

wards, a temporal amplitude is fixed in order to divide scaled samples of

TrainingSet in different blocks in order to be analyzed by the filters of the

CNN and provide “local” information. The blocks can be sequential, i.e.

where a block ends the next one starts, or overlapping, i.e. the final samples

of a block are in common with the following block, and they are selected so as

to contain samples with the same label. The block amplitude is determined

by the variable lblock fixed at the beginning.

Once the raws of TrainingSet matrix have been divided, each of the blocks

is saved separately as a MAT-file in a folder named cnn on the basis of the

label of its samples. The folder cnn has five subfolders named 1, 2, 3, 4 and

5, one for each class, and the blocks are stored in the proper subfolder.

The code for the division in sequential blocks and the saving, setting lblock =

16, is the following:

for i=1:16:size(TrainingSet,1)

c=TrainingSet(i,1);

filename=strcat(’cnn/’,num2str(c),’/sample’,num2str(i),’.mat’);

signaldata=TrainingSet(i:i+16-1,2:end);

save(filename,’signaldata’);

end

The code shows that each block has a size of lblock × 6 and it is saved as

sampleX.mat where X corresponds to its identification number.

The following step consists in reading the data using the Matlab function

imageDatastore, which allow to manage the blocks as a collection of image

files with the appropriate format to be the inputs of the CNN. With the

command
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location=’cnn’;

imds=imageDatastore(location,’FileExtensions’,’.mat’, ...

’IncludeSubfolders’,1,’LabelSource’,’foldernames’);

the blocks in the folder cnn are saved as images labeled in relation to the

subfolder in which they are stored. Then they are divided in training data

and validation data with a proportion in percentage of 80 - 20 to form the

two sets imdsTrain and imdsValidation.

3.4.2 Structure of the CNN

To define the CNN architecture for our classification problem, we have to

specify the layers of the network and set proper parameters for each layer.

Firstly we fix some variables about the classification problem, that are

numFeatures=6, numClasses=5,

then we set the parameters for the convolution with the following variables:

- filtersize and numFilters indicate respectively the size (height and

width) and the quantity of filter used;

- Padding indicates the size of padding to apply to input borders verti-

cally and horizontally;

- poolSize indicate the dimensions of the pooling regions in height and

width;

- Stride indicates the step size for traversing the input vertically and

horizontally.

Now we can specify the layers of the network with the following command:



70 3. Experiments and results

layers=[ ...

imageInputLayer([lblock numFeatures 1],’Normalization’,’none’)

convolution2dLayer(filterSize,numFilters,’Padding’,Padding)

reluLayer

maxPooling2dLayer(poolSize,’Stride’,Stride)

fullyConnectedLayer(numClasses)

softmaxLayer

classificationLayer ];

The first layer initializes each block as an image input for the network. The

Convolutional layer calculates the convolution between filters and the block

regions, then the ReLU layer and the Pooling layer reduce the dimensionality

of the Conv layer output. Finally the Fully-connected, the Softmax and the

Classification layers adapt the network output to the number of classes and

perform classification.

3.4.3 Training process and evaluation

As for the previous classifiers described, training options have to be set

before the session.

The optimization method used during training to update synaptic weights

is the Stochastic Gradient Descent with Momentum (SGDM), described in

Section 2.3.2. For this reason we have to choose the size of the mini-batch

and the maximum number of epochs, i.e. the maximum number of full passes

through the entire data set during the training session. These two aspects

are controlled setting the variables miniBatchSize and maxEpochs.

Therefore the set of training options is created as follows.



3.4 CNN 71

options=trainingOptions(’sgdm’, ...

’MaxEpochs’,maxEpochs, ...

’MiniBatchSize’,miniBatchSize, ...

’ValidationData’,imdsValidation, ...

’Shuffle’,’every-epoch’, ...

’Plots’,’training-progress’);

The training process starts with the command

net=trainNetwork(imdsTrain,layers,options).

Having specified ’training-progress’ as the ’Plots’ value in trainingOptions,

the process is monitored thanks to a graphic which displays training metrics

at every iteration, where with iteration we intend the step taken in the gra-

dient descent algorithm towards minimizing the cross-entropy loss function

using a mini-batch. The training metrics shown are:

- Training accuracy, that is classification accuracy on each individual

mini-batch in terms of the right responses given by the network;

- Validation accouracy, that is classification accuracy on the entire vali-

dation set with a default frequency of validation of 50 iterations;

- Training loss and validation loss, that are the values of the cross-entropy

loss on each mini-batch and on the validation set respectively.

Once training is completed, trainNetwork returns the trained network net.

To evaluate the classification performance after training, the CNN is tested

on validation data. The labels of imdsValidation samples are predicted

using the command

YPred=classify(net,imdsValidation)

where YPred is the vector of estimated labels, and the final validation accu-

racy is given by the fraction of labels that the network predicts correctly on

imdsValidation set.
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3.5 Results and discussion

In this section the classification results obtained by using the three classi-

fiers described in Sections 3.2, 3.3, 3.4 are presented. For brevity of notation

we will mention the classifiers respectively with the abbreviations NLR, ANN

and CNN.

To better understand the results we present step by step the procedure fol-

lowed to set up the analysis for the first two data sets, but it is the same for

each of the twenty data sets.

The parameters taken into account to evaluate performances are the follow-

ing:

1. Classification accuracy, given by the comparison between estimated

gesture labels and known gesture labels of EMG samples;

2. Execution time, obtained by timing the training process of the classifier

from the launch of the code to the generation of the output (the training

is performed offline, and this parameter allows to check if the time spent

is reasonable);

3. Memory storage, encoded in the total number of synaptic weights of

the classifier (it is an important aspect since the optimum weights de-

termined during the offline procedure have to be uploaded and stored

into the microcontroller embedded in the prosthetic device in order to

perform online classification, and the available memory is limited);

4. Computational burden, depending on how many and which operations

are necessary to do classification after training (similarly to the mem-

ory storage, it is crucial for the online classification: if the operations

required to recognize signals are too complex, the time required is long

and the microcontroller won’t give a real time response).

The first step consists in launching the code implemented in INAIL per-

forming the organization of the data set and the research of the best feature
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model in order to obtain the best NLR classification performance. The down-

sampling step s is set to 100 (i.e. samples are divided at first in selectedData

and GS with a proportion in percentage of 1 - 99, then the five binary NLR

classifiers are trained with 1% of the entire data set), the maximum degree of

non-linearity dmax is 3 and the amplitude of blocks nVote for the voting pro-

cedure is 50. After computing the output, the evaluation parameters such as

the F1Score per class, the percentage of abstention and the execution time

are stored. Then the competitor classifier ANN is built setting the variable

hiddenLayerSize according to the total number of synaptic weights result-

ing as optimum for NLR multiclass classification. The formula which links

the number of synaptic weights of ANN (bias included) with the number of

neurons in its hidden layer is

#weights = (hiddenLayerSize · 6) + hiddenLayerSize

+ (5 · hiddenLayerSize) + 5

where 6 is the number of features x1, . . . , x6 and 5 is the number of ges-

tures. Using this formula we set the number of hidden neurons such that the

resulting number of synaptic weights of ANN is the nearest integer to the

obtained number of synaptic weights of NLR. In this way none of NLR and

ANN has an advantage in terms of memory, and the fact that INAIL code is

implemented taking into account the limitations in memory storage guaran-

tees not to exceed in storable parameters. No feature mapping is done before

ANN training session since non-linearity is given by the sigmoid activation

function, then the inputs for the classifier are six elements vectors. After the

creation of the ANN structure, the network is trained with the same set of

samples used for NLR training (the same selectedData matrix made of 1%

of the total) and tested on the same GS.

At the end of the process the same evaluation parameters are saved, that are

F1Score per class, abstention percentage and execution time, and compared

with the NLR ones. In this first comparison it is important to specify that

NLR performs its optimal classification unlike ANN since for ANN initial
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features are not combined to obtain additional features and the number of

hidden units is constrained by NLR performance.

We report this comparison result on the first two data sets in the following

tables:

DATASET 1

s=100, 1016 samples to train NLR ANN

#weights 131 125 (# hidden neurons=10)

F1Score class 1 (%) 97.43 95.37

F1Score class 2 (%) 91.58 85.36

F1Score class 3 (%) 85.04 75.72

F1Score class 4 (%) 95.39 92.72

F1Score class 5 (%) 92.26 91.95

F1Score med (%) 92.34 88.23

Abstention (%) 6.07 0.64

Comparison time: 33 s

DATASET 2

s=100, 1016 samples to train NLR ANN

#weights 148 149 (# hidden neurons=12)

F1Score class 1 (%) 100 100

F1Score class 2 (%) 96.24 96.97

F1Score class 3 (%) 95.45 96.41

F1Score class 4 (%) 88.88 89.49

F1Score class 5 (%) 86.80 88.38

F1Score med (%) 93.47 94.25

Abstention (%) 0.74 0.34

Comparison time: 31 s

As first we observe that the total procedure of NLR and ANN classifi-

cation is rather fast since the global time spent is little more than 30 sec-

onds. According to the classification accuracy, while for the second data set
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the ANN F1Score for each class is slightly increased compared to the NLR

F1Score, as also shown by the mean F1score, for the first data set the per-

formance of ANN gets worse for each class, with a worsening of more than 4%

on average. This result can be justified by the fact that ANN works simul-

taneously on the five different classes of signals to identify characteristics of

each gesture which make it distinguishable from the other four, unlike NLR

which works separately on each gesture. Therefore ANN needs a larger num-

ber of samples for the training in order to acquire more accurate information.

In light of the previous considerations, a second comparison between NLR

and ANN is made modifying the INAIL code setting the downsampling step

s to 2, i.e. dividing the data set in two blocks with a proportion in percentage

of 50 - 50 and training the classifiers with 50% of the entire data set. As in

the previous test, the sets TR, CV, TS and GS for NLR and ANN contain

the same samples respectively and the number of hidden neurons for ANN

is chosen not to have advantages in terms of memory. Making this change

in the setting we expect a better accuracy for ANN classification, but we

know from the performance analysis done by INAIL on NLR classifier that

increasing the percentage of data to be used for training the execution time

increases considerably.

The results of the second comparison are reported below for data sets 1 and

2, so we can analyze the evolution with respect to the previous test.
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DATASET 1

s=2, 50800 samples to train NLR ANN

#weights 270 269 (# hidden neurons=22)

F1Score class 1 (%) 98.55 98.55

F1Score class 2 (%) 96.75 98.28

F1Score class 3 (%) 93.69 96.46

F1Score class 4 (%) 97.29 98.02

F1Score class 5 (%) 98.76 98.77

F1Score med (%) 97.01 98.02

Abstention (%) 1.96 0

Time 600 s 341 s

DATASET 2

s=2, 50800 samples to train NLR ANN

#weights 235 233 (# hidden neurons=19)

F1Score class 1 (%) 100 100

F1Score class 2 (%) 98.52 99.01

F1Score class 3 (%) 98.52 99.01

F1Score class 4 (%) 93.10 93.88

F1Score class 5 (%) 92.96 93.73

F1Score med (%) 96.62 97.13

Abstention (%) 0.29 0.39

Time 571 s 191 s

Several observations can be made on this new tables with respect to the

previous results. The number of synaptic weights and the execution time is

increased for both data sets 1 and 2, consistently with the increase of the num-

ber of samples to analyze which leads more time to pass throug the data and

more memory to store information. Moreover, the mean F1Score for both

NLR and ANN is increased, so classification is more accurate if classifiers are

trained with more samples. The significant result of this second test is that
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for both data sets and for each class the ANN F1Score becomes higher than

the NLR F1Score, with an execution time that exceedes 10 minutes for NLR

with respect to ANN which takes half NLR time for data set 1 and one-third

of NLR time for data set 2. Hence with more data to train the classifiers,

ANN performs a better classification with respect to NLR spending less time.

Given the evident improvement in ANN classification accuracy (in par-

ticular data set 1 shows a 10% increase in mean F1Score from the training

with 1% of the data to the training with 50% of the data), a third test is

done on ANN classifier using 80% of the data to perform the training of the

network. Setting the downsampling step s to 5 the entire data set is divided

in two subsets with a proportion in percentage of 80 - 20. The selectedData

matrix is made of the 80% while GS is filled with the 20%. According to the

hidden layer size of ANN, the number of hidden neurons is set so that the

total number of synaptic weights is as near as possible to the optimum num-

ber of parameters given by the NLR classification when s = 100 (i.e. INAIL

setting of downsampling step). With this setting we want to test, using a

number of synaptic weights on par with NLR on its best but increasing the

number of samples to train the classifier, if the ANN classification accuracy

increases further mantaining an accettable execution time, which does not

happen training NLR with an ever more number of data. For the voting

procedure, we keep the blocks amplitude nVote at 50.

Results are shown again for data sets 1 and 2.
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DATASET 1

s=5, 81280 samples to train ANN

#weights 125 (# hidden neurons=10)

F1Score class 1 (%) 98.18

F1Score class 2 (%) 99.37

F1Score class 3 (%) 95.59

F1Score class 4 (%) 97.00

F1Score class 5 (%) 98.76

F1Score med (%) 97.78

Abstention (%) 0

Time 283 s

DATASET 2

s=5, 81280 samples to train ANN

#weights 149 (# hidden neurons=12)

F1Score class 1 (%) 99.38

F1Score class 2 (%) 99.37

F1Score class 3 (%) 100

F1Score class 4 (%) 97.04

F1Score class 5 (%) 96.81

F1Score med (%) 98.52

Abstention (%) 0.24

Time 211 s

What is evident comparing these new results with tables given by the first

test is that the mean F1Score training ANN with the 80% of data has im-

proved with respect to NLR and ANN peformances with the 1% of training

data both for data set 1 and 2 mantaining the execution time under five min-

utes. For data set 2 the classification accuracy had already improved slightly

with s = 100 from NLR (F1Score med equal to 93.47%) to ANN (F1Score

med equal to 94.25%), and now with s = 5 ANN gets still better. For data
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set 1 after the performance worsening with s = 100 (from a mean F1Score

of 92.34% with NLR to a mean F1Score of 88.23% with ANN) now ANN

shows an improvement reaching the 97,78% of mean F1score.

It is interesting the evolution of the F1Score of class 3 for data set 1: while

with the 1% of training data it passes from 85% with NLR to 75% with

ANN, increasing the number of training samples it reaches the 95% with

ANN. This case shows how crucial is the amount of available information

during the training session of a multiclass classifier and how much it can

affect the recognition of each gesture pattern.

After testing ANN classification performances it is the turn of CNN. Our

aim is to take advantage of the temporal order of samples given by the acqui-

sition procedure to improve classification. The parameters on the network

are set as follows: lblock = 16, numFilters = 10, filterSize = [5 6],

Padding = [2 0], MaxPooling = [4 1], Stride = [1 1], miniBatchSize =

254, MaxEpochs = 50. Considering overlapping blocks with a proportion of

80% to train and 20% to validate, from each data set results 8080 training

blocks and 2020 validating blocks. The CNN is trained for five times to bet-

ter generalize the performance due to the fact that initial weights and biases

change for every training and samples to fill each individual mini-batch are

different per epoch. The classification results are given in terms of validation

accuracy and total number of weights, get by the formula

#weights = filterSize(1) · filterSize(2) · numFilters + numFilters

+ 5 · (H1 · numFilters) + 5

where H1 is the first spatial dimension of the Pooling layer output, calculated

in (2.56), and 5 is the number of gestures.

The results of CNN from data sets 1 and 2 are reported in the following

tables.
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CNN: DATASET 1 − 2

DATASET 1 Validation accuracy

Training 1 88.56 %

Training 2 89.36 %

Training 3 88.47 %

Training 4 89.60 %

Training 5 90.25 %

# weights = 965

DATASET 2 Validation accuracy

Training 1 91.88 %

Training 2 92.67 %

Training 3 92.72 %

Training 4 92.62 %

Training 5 92.43 %

# weights = 965

With respect to the performance shown by ANN when s = 5, in this test the

accuracy for both data set 1 and 2 is lower in spite of the considerable num-

ber of synaptic weights (which is seven times greater than ANN). A possible

explanation of this fact is that in our experiment we are recognizing gesture

types from EMG signals acquired during the steady state of the movement.

Therefore signals acquired by EMG sensors are constant during the acquisi-

tion time window, although their values are different depending on muscles

activated by the gesture. For this reason the filters of CNN, which pass

through the blocks to catch signal variations in order to distinguish gestures,

do not capture significant changes then the classification do not improve as

expected. In addition, we remember that the operations to do during the

simulation of the network have to be reproduced to perform online classifica-

tion and give a real time response, and with the convolution this is not the

case due to the complexity of execution.

For all these considerations we focus our study on the improvement in clas-

sification combined with limited execution time given by ANN.

To verify that the improvement in accuracy and time obtained using ANN

trained with 80% of the samples is consistent, the comparison between NLR

and ANN when s = 100 followed by the training of ANN setting s to 5 is

done on the other 18 data sets (i.e. the first and the third test did on data

sets 1 and 2 with the same setting), from data set 3 to data set 20.
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We report below the tables with the results relative to each data set in terms

of number of weights, mean F1score, percentage of abstention and execution

time.

DATASET 3 #weights F1Score (%) Abstention (%) Time

NLR, s=100 162 85.85 1.09
30 s

ANN, s=100 161 (#hn=13) 81.35 0.50

ANN, s=5 161 (#hn=13) 92.02 0.49 192 s

DATASET 4 #weights F1Score (%) Abstention (%) Time

NLR, s=100 157 98.59 0.60
31 s

ANN, s=100 161 (#hn=13) 98.15 0.10

ANN, s=5 161 (#hn=13) 99.76 0 202 s

DATASET 5 #weights F1Score (%) Abstention (%) Time

NLR, s=100 197 86.84 2.69
38 s

ANN, s=100 197 (#hn=16) 84.47 0.80

ANN, s=5 197 (#hn=16) 92.90 0.98 334 s

DATASET 6 #weights F1Score (%) Abstention (%) Time

NLR, s=100 183 94.40 2.74
38 s

ANN, s=100 185 (#hn=15) 91.80 0.20

ANN, s=5 185 (#hn=15) 98.52 0 255 s

DATASET 7 #weights F1Score (%) Abstention (%) Time

NLR, s=100 244 99.10 0.94
35 s

ANN, s=100 245 (#hn=20) 98.31 0

ANN, s=5 245 (#hn=20) 99.75 0 219 s
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DATASET 8 #weights F1Score (%) Abstention (%) Time

NLR, s=100 177 93.15 1.34
33 s

ANN, s=100 173 (#hn=14) 92.24 0.30

ANN, s=5 173 (#hn=14) 95.27 0 170 s

DATASET 9 #weights F1Score (%) Abstention (%) Time

NLR, s=100 218 84.74 4.23
33 s

ANN, s=100 221 (#hn=18) 84.05 1.29

ANN, s=5 221 (#hn=18) 94.29 0.49 243 s

DATASET 10 #weights F1Score (%) Abstention (%) Time

NLR, s=100 244 97.87 1.59
35 s

ANN, s=100 245 (#hn=20) 98.15 0.20

ANN, s=5 245 (#hn=20) 99.51 0 325 s

DATASET 11 #weights F1Score (%) Abstention (%) Time

NLR, s=100 188 98.46 3.18
34 s

ANN, s=100 185 (#hn=15) 97.10 0.25

ANN, s=5 185 (#hn=15) 99.50 0 216 s

DATASET 12 #weights F1Score (%) Abstention (%) Time

NLR, s=100 157 82.00 5.92
41 s

ANN, s=100 161 (#hn=13) 77.27 0.80

ANN, s=5 161 (#hn=13) 89.10 1.72 412 s

DATASET 13 #weights F1Score (%) Abstention (%) Time

NLR, s=100 244 87.18 4.68
41 s

ANN, s=100 245 (#hn=20) 84.90 1.04

ANN, s=5 245 (#hn=20) 95.57 0.24 734 s
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DATASET 14 #weights F1Score (%) Abstention (%) Time

NLR, s=100 183 98.64 0.65
44 s

ANN, s=100 185 (#hn=15) 98.75 0.10

ANN, s=5 185 (#hn=15) 100 0 341 s

DATASET 15 #weights F1Score (%) Abstention (%) Time

NLR, s=100 116 75.42 3.88
40 s

ANN, s=100 113 (#hn=9) 74.53 0.50

ANN, s=5 113 (#hn=9) 82.39 1.47 261 s

DATASET 16 #weights F1Score (%) Abstention (%) Time

NLR, s=100 166 90.11 2.59
41 s

ANN, s=100 161 (#hn=13) 89.46 0.65

ANN, s=5 161 (#hn=13) 94.82 0 258 s

DATASET 17 #weights F1Score (%) Abstention (%) Time

NLR, s=100 194 79.89 10.14
35 s

ANN, s=100 197 (#hn=16) 75.00 0.45

ANN, s=5 197 (#hn=16) 87.99 0.74 402 s

DATASET 18 #weights F1Score (%) Abstention (%) Time

NLR, s=100 157 88.55 1.59
40 s

ANN, s=100 161 (#hn=13) 88.43 0.44

ANN, s=5 161 (#hn=13) 96.32 0 437 s

DATASET 19 #weights F1Score (%) Abstention (%) Time

NLR, s=100 270 75.69 10.85
42 s

ANN, s=100 269 (#hn=22) 71.12 0.84

ANN, s=5 269 (#hn=22) 90.99 1.23 612 s



84 3. Experiments and results

DATASET 20 #weights F1Score (%) Abstention (%) Time

NLR, s=100 235 97.37 1.29
30 s

ANN, s=100 233 (#hn=19) 96.00 0.20

ANN, s=5 233 (#hn=19) 98.77 0 302 s

To get an overview of the results, a statistic is done considering also per-

formances obtained by data sets 1 and 2.

For every data set from 1 to 20 we obtain an improvement in classification

accuracy from the best NLR performance with s = 100 to the ANN per-

formance with s = 5 and a reduction of the abstention at the same time.

The mean F1Score from NLR to ANN (with s = 5) increases by 5.20% on

average, from a minimum improvement of 0.65% given by data set 7 to a

maximum improvement of 15.3% given by data set 19, with a percentage of

abstention that decreases by 2,96% on average, from a minimum decrease of

0.5% to a maximum decrease of 9.62% (in 11 of the 20 data sets the absten-

tion with ANN reaches 0%).

The number of synaptic weights varies from 113 (corrsponding to 9 hidden

neurons for ANN) to 269 (corresponding to 22 hidden neurons for ANN).

The time spent on average by ANN for the classification process with 80%

of data to train is 320 seconds (i.e. a little over 5 minutes), from a minimum

time of 192 seconds to a maximum of 734 seconds.

Going into details of new results, we observe that the ones obtained by

each of the data sets from 3 to 20 have the same trend as the first two data

sets previously studied. Given the same memory storage (i.e. the same num-

ber of weights), training the classifiers with 1% of the data returns a worse

performance of ANN with respect to NLR. The only exception is given by

data sets 10 and 14 for which ANN already works better than NLR, as we

observed for data set 2. About these cases we can say that they have in com-

mon high F1Score values even exceeding 98%, and these numbers suggest

that samples belonging to each gesture are so well distinguishable that the

1% of the data to train the classifier is enough to acquire information.
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Increasing the number of training data to 80% of the total, ANN fills the

previous gap giving a very positive response for every dataset from 3 to 20

mantaining a time significantly short, result not achievable by NLR.

An example that properly shows all the mentioned improvements is given by

data set 19. The classification with 1% of the data to train returns 75.69%

of F1Score with NLR versus 71.12% with ANN per 270 synaptic weights,

the highest number recorded in the study. It is evident that ANN does not

take advantage of the available memory. In fact increasing the quantity of

sample for training ANN reaches a 90.99% of F1Score in 612 seconds, which

is one of the longest execution times but accetable for an improvement of

more than 15%. We also point out that from an abstension of 10.85% with

NLR we obtain 1.23% with ANN, so overall ANN respondes more times and

giving the right label.

To complete the study, a final test is done on ANN in order to try to

further optimize classification performances.

As explained during the description of the analysis set up, we set the number

of hidden neurons of ANN on the basis of the optimum number of synaptic

weights given by the optimization procedure implemented by INAIL for NLR.

This fact represents a constraint on ANN performance. For this reason, on

the basis of F1Score values obtained in the last test, the data sets with more

margin of improvement are selected among the 20, that are 3, 5, 12, 15, 17,

19. For each of the six selected data sets the test is the following. ANN

classifier is built varying hiddenLayerSize value from 9 to 22 (that is the

maximum to not exceed in memory), and for each value the classification

process starts training the network with 80% of the samples and evaluating

it with the remaining 20%. At the end F1Score values corresponding to each

layer size are compared to verify if from the best performance we have any

improvement with respect to results reported in the previous tables.

The best performances for each selected data set are the following:

Dataset 3) F1Score of 92.15% with 15 neurons;
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Dataset 5) F1Score of 93.48% with 19 neurons;

Dataset 12) F1Score of 89.72% with 22 neurons;

Dataset 15) F1Score of 83.20% with 16 neurons;

Dataset 17) F1Score of 86.85% with 20 neurons;

Dataset 19) F1Score of 89.18% with 22 neurons;

Making the comparison with the tables corresponding to these data sets, we

can conclude that this test does not show significant improvements in clas-

sification accuracy since data sets 3, 5, 12 and 15 shows an increase of just

1% while data sets 17 and 19 give a slightly lower value of F1Score (this is

due to the arbitrariness of initial weights and biases which lead to different

classification results for every training).

The final consideration is according to the computational burden of op-

erations necessary for the ANN classification, which is definitely comparable

with the NLR one. For each sample two matrix-vector multiplications are

computed, one per ANN layer, and we have two function evaluations that

are the hyperbolic tangent sigmoid function and the softmax function. They

require the use of the exponential function such as NLR classification with

the logistic function, therefore there are not complexity problems.

Further studies on the execution time of online ANN classification are in

progress in INAIL in order to have an exact measurement and compare it

with the NLR performance online.

3.6 Conclusions

In this final chapter we explained how NLR, ANN and CNN classification

algorithms are implemented in a Matlab code, then the comparative analysis

was carried out testing and evaluating performances on 20 data sets of 5

hand gestures classes composed of the samples recorded from 20 people with

trans-radial amputation, using 6 sEMG sensors. We point out that each of

the 20 data sets presented different characteristics depending on the ability
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of the amputee patients, but the results obtained by the analysis showed the

same trend. Our aim was to globalize classification process with respect to

the NLR model presented by INAIL which follows a one-vs-all approach, and

multilayer neural networks represented a valid alternative working simulta-

neously on samples of the 5 gesture classes. While CNN presented a stucture

too complex for the embedded system of the prosthetic device, ANN was

more consistent with the requirements of the study that were memory stor-

age, computational burden, execution time and classification accuracy. In

fact for each data set, with the same classification memory, the performance

of ANN with a training set made of 80% of the totality of samples showed

a significant improvement with respect to NLR performance including the

optimization of the model, with an execution time that remained limited for

ANN increasing the number of training samples to acquire more information,

which is not the case for NLR. Finally, the decrease in the number of ab-

stentions combined with the improvement in classification accuracy of ANN

showed a more frequent response of the classifier with the correct label of the

input sample.
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è importante. Un Grazie immenso perchè, nonostante tu abbia conosciuto
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Marta. Con voi questo percorso è iniziato e ci tengo a ringraziarvi per quello
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