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Abstract

This thesis aims to study an ultracold atoms Fermi gas confined on a ring-shaped po-
tential and subjected to attractive contact interactions. In particular, we focus on the
analysis of the continuous crossover between the weakly interacting regime, in which
the ground state of the system is composed of weakly bound paired fermions and the
strongly interacting regime, in which the tight bounds among the atoms allow to neglect
the fermionic nature of the pairs. In this limit, the particles can be effectively consid-
ered as point-like bosons. In order to determine some observables that keep track of
the different regimes of this crossover, we consider an artificial gauge field acting on the
gas: the latter induces a persistent current in the ring that presents a periodic behaviour
with respect to the artificial gauge flux. The exact solution to this model is provided
using Bethe Ansatz and the periodicity can be determined at any interaction strength.
Afterwards, we study in detail the number parity effect, that is measurable at low in-
teractions and vanishes in the high interacting bosonic limit of the model, as we expect
from the general theory. Such parity effect, that can be detected studying the behaviour
of the persistent current, results to be a useful tool to probe the different regimes of
the crossover, providing a well-defined distinction between the fermionic and the bosonic
limit of the gas.



Sommario

Lo scopo di tale trattazione è lo studio di un gas di Fermi di atomi ultrafreddi confinato
su un anello ed in presenza di interazioni di contatto attrattive. In particolare ci si è
concentrati sullo studio dettagliato del crossover fra il regime debolmente interagente, in
cui il ground state del sistema è formato da coppie di atomi debolmente legate e il regime
fortemente interagente, in cui l’energia di legame di tali coppie risulta essere talmente
alta che la loro natura fermionica può essere completamente trascurata. In questo limite
le particelle del gas possono essere effettivamente trattate come bosoni puntiformi. Al
fine di determinare degli osservabili in grado di definire con esattezza i diversi regimi di
tale crossover, si è considerata l’azione di un campo di gauge artificiale agente sul gas, il
quale induce una corrente di massa non dissipativa nell’anello. Tale corrente, non nulla
solo su scala mesoscopica, presenta una periodicità nei confronti del flusso artificiale di
campo di gauge. La soluzione esatta a tale sistema può essere determinata tramite Bethe
Ansatz e la periodicità viene ricavata per ogni valore della costante di accoppiamento. In
seguito viene studiato nel dettaglio l’effetto di parità dipendente dal numero di particelle
del sistema, il quale risulta osservabile a basse interazioni e svanisce nel limite bosonico
altamente interagente descritto sopra, in accordo con la teoria e la letteratura generale
presente sull’argomento. Tale effetto di parità, che può essere rilevato a partire dalla
citata periodicità della corrente persistente, risulta dunque essere un buon indicatore dei
diversi regimi del crossover, permettendo di distinguere fra limite fermionico e bosonico
del gas.



Contents

Introduction 4

1 Ultracold atoms in one dimension: a general review 9
1.1 1-D quantum systems: far more than toy models . . . . . . . . . . . . . . 9

1.1.1 Optical trapping . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.1.2 Magnetic trapping . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.1.3 Conditions for one-dimensional regime . . . . . . . . . . . . . . . 11
1.1.4 Dimensionless coupling constant . . . . . . . . . . . . . . . . . . . 11

1.2 Atomtronics: experimental techniques and state of art . . . . . . . . . . . 12
1.2.1 Fermi gases in Atomtronics: present and future outlooks . . . . . 14

1.3 Ultracold Fermi gases: BCS-BEC crossover . . . . . . . . . . . . . . . . . 15
1.4 Persistent currents in electronic and atomic systems: the Leggett Theorem 17

2 One-dimensional crossover: a Bethe Ansatz formal derivation 20
2.1 Bethe Ansatz for Lieb-Liniger model . . . . . . . . . . . . . . . . . . . . 21

2.1.1 Thermodynamic limit and ground state . . . . . . . . . . . . . . . 23
2.2 Bethe Ansatz for Gaudin-Yang model . . . . . . . . . . . . . . . . . . . . 24

2.2.1 Thermodynamic limit and ground state . . . . . . . . . . . . . . . 25
2.3 Analysis of the crossover regime . . . . . . . . . . . . . . . . . . . . . . . 26

3 Artificial gauge field: a Bethe Ansatz analysis of persistent current 29
3.1 Hamiltonian minimal coupling with artificial gauge field . . . . . . . . . . 30
3.2 Gaudin-Yang model coupled with artificial gauge field . . . . . . . . . . . 31

4 Parity effect 38
4.1 Parity effect: free fermions . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.2 Parity effect: attractive fermions and crossover . . . . . . . . . . . . . . . 40

Conclusions and future outlooks 45

A Tonks Girardeau gas: a Bethe Ansatz solution 47

1



B Two particle problem 50

2





Introduction

Since the second half of the previous century, in particular after the realization of the first
Bose-Einstein condensate in 1995 by Cornell and Wieman[1], ultracold gases have played
a very rich and important role in modern physical research, both from a theoretical
and experimental point of view. The physical realization of such systems, together
with the evolution in optical and magnetic trapping techniques implemented to confine
atomic gases in one-dimensional geometries, have encouraged an increasing and dense
theoretical activity in this field. Indeed low dimensionality provides fascinating scenarios
in which the interaction among the components of the system produces extremely non-
trivial effects, to be combined with a mathematical formalism that is far more accessible
if compared with the higher dimensional models.

One of the most ambitious applications of the physics of ultracold atoms is Atomtronics[2].
This emerging field of research aims to provide an atomic analog to electronic circuits
and devices. The advantages of this alternative approach, that targets both classical
and quantum-based electronics, rely on a more various nature of the particles used for
circuitry. Indeed, using ultracold atoms allows to deal with both bosonic and fermionic
carriers that can be coupled via a wide variety of interactions that can be tuned with
great accuracy.

There are several ways to simulate a system of charged particles using atoms [3]: one
of the most common is to trap the latters in a ring-shaped potential and then make the
system to rotate. Indeed, as will be shown in Chapter 3, exploiting the similarity between
the Hamiltonian terms describing respectively the Lorentz and the Coriolis forces, one
can formally reproduce the behaviour of charged particles in a magnetic field studying
the rotating system of ultracold atoms. This tool introduces a non-dissipative mass
current in the ring that can be used to probe some of the microscopic properties of the
system. It’s worthy to notice that such current is a purely mesoscopic effect and it’s
not observable in the thermodynamic limit. As a consequence, the finite size of the ring
represents an important feature for this kind of analysis.

The applications of Atomtronics range from the simulations of quantum systems [4],
exploiting the ring geometry to reduce the problems related to the boundary effects, to
the realization of integrated circuits [5] and high-precision sensing devices such as quan-
tum interferometers [6]. At the moment, the great part of the research and experiments
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in Atomtronics concern bosonic systems. Among the main purposes of this thesis, there
is the attempt to introduce fermionic atoms in this framework and to study some typical
phenomena of these systems using artificial gauge fields and the consequent persistent
current at the equilibrium. The reasons for opening this new branch are also related to
an increasing experimental interest in Fermi Atomtronics systems.

Figure 1: Qualitative picture of BCS-BEC crossover:
at low attractive interactions the Fermi gas is composed
by weak bound paired atoms. Increasing the interaction
strength one reduces the dimension of the pairs towards a
regime in which strong attractions allow to consider them
as point-like bosons.

An interesting phenomenon that
occurs in fermionic systems is the so-
called BCS-BEC crossover[7], quali-
tatively pictured in Fig.1. Consider
a Fermi gas subjected to an attrac-
tive contact interaction in three di-
mensions: the configuration of the
ground state depends on the cou-
pling strength. Indeed, at low inter-
actions, the gas is composed of weakly
bound Cooper-like pairs, whose size
is larger than the interparticle spac-
ing. This makes the pairs to overlap
in this regime, called the BCS side of
the crossover. Increasing the inter-
action strength, the system is driven
through a regime of tightly bound

fermions in which there’s no spatial overlapping between the pairs. In this regime,
called BEC side, the strong attractions between the atoms allow the formation of dimers
whose internal fermionic structure can be neglected and the particles behave as point-like
bosons.

In three dimensions the residual coupling between the dimers results in a finite re-
pulsion due to the Pauli principle and below a critical temperature the system achieves
Bose-Einstein condensation[8]. As we will see, this property depends on the confinement
applied to the gas: the interactions in the bosonic limit of the model are different in
lower dimensions and the condensation doesn’t always occur.

The experimental technique used to drive the system through the different regimes
of the crossover is the Feshbach resonance, that allows to change the interaction between
two species of fermionic atoms by applying an external magnetic field. Indeed, the
latter provides the ability to continuously tune the scattering length of a two-particle
scattering process that univocally defines the scattering amplitude at low energy scales.
More details about Feshbach resonance can be found in reference [9].

The three-dimensional theoretical model that describes the BCS-BEC crossover is
not exactly solvable: one of the purposes of this thesis is to find a one dimensional and
integrable fermionic model that describes such phenomenon following some indications
already present in literature[10]. Afterwards, we want to characterize the different regimes
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probing the response of the system to an external artificial gauge field determining some
observables that keep track of the fermionic or bosonic nature of the components of the
gas with respect to interactions.

L 

0 L 

x
2

x1

Figure 2: Domain of the spatial eigenfunc-
tion of a one-dimensional system subject to a
delta interaction for N = 2 particles. We can
see that it can be divided in two subdomains
in which the particles are non-interacting: the
delta potential is non-vanishing only on the
edge x1 = x2 indicated by the red line and
can be implemented imposing suitable bound-
ary conditions.

One of the most efficient theoretical ap-
proaches for the exact solution of models de-
scribing one-dimensional quantum gases is the
Bethe Ansatz[11]. This technique provides an
explicit and very general expression for the
solution of the Schroedinger equation related
to an N-body Hamiltonian in which interac-
tions can be implemented by imposing addi-
tional conditions on the formal structure of the
non-interacting eigenfunction. This procedure
reduces the complexity of the problem, allow-
ing the system to be studied in a free regime
with some auxiliary constraints that typically
assume the form of polynomial or transcenden-
tal equations.
An example of coupling that can be treated
via Bethe Ansatz is the contact interaction,
that can be described by a delta function of the
distances between the particles. Indeed, from
the general quantum theory of one-dimensional
systems, it is well known that such interaction
can be equivalently implemented by requiring

the first derivative of the wavefunction of the system to be discontinuous in each point
where the Dirac delta has non-zero support. Far from this region, the system is described
by a non-interacting theory.
To better understand this point, consider the eigenfunction of two generic particles at
the positions x1 and x2 subjected to delta interaction and confined in a one-dimensional
box of length L. The domain of the function is displayed in Fig. 2: we can see that the
latter is divided into two subdomains x1 > x2 and x1 < x2 in which the delta interaction
has no effect. As a consequence, in each of them, the wavefunction describes two free
particles. These two sectors are separated by a boundary x1 = x2 on which the delta has
non-zero support: in this sense, one can solve the Schroedinger equation of the interact-
ing problem imposing additional boundary conditions on the free wavefunction in each
sector and then using the superposition principle to obtain the more general solution.
What we stated so far can be easily generalized to the case of N particles, provided that
the sectors described by the free theory cover without overlapping the entire domain of
the eigenfunction and the interactions only occur on the boundaries between each pair
of subdomains.
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Remarkably, since the N particles generalization of what we displayed so far involves the
superposition of all the possible coordinate sectors, the general form of Bethe Ansatz
wavefunction requires the summation of N ! terms, that represent all the possible permu-
tations of the coordinates of the particles. This implies that Bethe Ansatz, due to the
large number of terms in the eigenfunction also in few particles systems, doesn’t provide
a comfortable solution for models if one is interested in computing quantities that depend
on the entire form of the wavefunction. Some examples of such calculations are density
profiles or correlation functions. On the other hand, as we will see in the following chap-
ters, this technique furnishes a very effective and rapid way to obtain observables such
as the energy of the system and the momentum and thus will be particularly useful for
this thesis.

In the first chapter, we provide a general introduction to the physics of ultracold
atoms and to some experimental techniques used to trap and manipulate quantum gases.
Then, we focus in particular on the realization and the application of one-dimensional
systems, presenting more in detail some results concerning ultracold gases confined on
a ring-shaped geometry. After a general discussion about this topic, we will restrict our
analysis to experiments and physical properties of Fermi quantum gases.

In the following chapter, Bethe Ansatz is used to report the exact solution to the
Schroedinger equation of a quantum Fermi gas subjected to attractive contact inter-
action and confined on a ring, i.e. the so-called attractive Gaudin-Yang model. In
particular, considering the non-polarized case, that is same number of spin up and spin
down particles, we examine the ground state of the model at any coupling regimes, from
the weakly interacting state of paired fermions to the strongly attractive one, where
the internal fermionic structure of the pairs can be totally neglected. This solution has
been found independently by Gaudin[12] and Yang[13] in 1967. The main purposes of the
chapter are to present Bethe Ansatz technique, that will be widely used in the following
sections of the thesis, and to show a formal one-dimensional description of the BCS-BEC
crossover. In the highly interacting regime of the model, a continuous evolution occurs
between the quantum Fermi gas and a purely bosonic one, once some scaling transfor-
mations on the relevant parameters of the system are provided.
We will also display how that strict one-dimensionality of the model doesn’t allow to
reach the weakly interacting Bose-Einstein condensate regime since the interaction be-
tween the composite bosons results to be an infinite repulsion.

Then we study the attractive Gaudin-Yang model of rotating particles on a ring:
exploiting the similarity between the formal expressions of Coriolis and Lorentz forces,
we simulate the effect of a gauge field acting on a system of charged particles. Eventually,
we obtain an exact expression for the energy of the ground state and of the persistent
mass-current induced in the ring as a function of the angular velocity of the particles.
In particular, we demonstrate the periodic behaviour of both quantities with respect to
the latter. Remarkably, in analogy to what is obtained for persistent current of paired
electrons in superconducting materials[14], such periodicity is halved if compared to the
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one of the unbounded fermions. Another important result is that the period doesn’t
depend on the interaction strength and thus doesn’t keep track of the different regimes
of the crossover.

The last part of the thesis is dedicated to the description and to the study of the
parity effect: a typical phenomenon that occurs in fermionic systems that concerns the
dependence of some observables on the number of particles to be even or odd. In the
case we are dealing with, such observables are the energy of the ground state due to the
center of mass motion and the persistent current. We will see how for an odd number
N/2 of paired fermions the application of the artificial gauge field makes the energy of
the ground state to increase, driving the system in a less stable configuration: this be-
haviour is called diamagnetic, in analogy to what we have for magnetic fields acting on
charged particles. On the contrary, if N/2 is even the artificial gauge field reduces the
energy of the ground state, displaying a so-called paramagnetic behaviour.
The parity effect doesn’t occur in bosonic systems since they always present a dia-
magnetic behaviour thus, according to the general theory, it must vanish in the high
interacting bosonic limit of the model we are considering. As a consequence, we will
numerically compute the exact form of the eigenfunction for the N = 4, thus an even
number of pairs, and show how the system evolves from paramagnetic at low interactions
to diamagnetic while the system is driven to higher values of the coupling constant. We
will also compare the result with the exact and full solution of the two-particles problem
obtained in Appendix B, where only the diamagnetic behaviour is observed.
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Chapter 1

Ultracold atoms in one dimension: a
general review

In the following, we will provide a review of the ultracold atoms gases confined in one
dimension. First of all, we will present some experimental techniques implemented for
the realization of such systems, discussing also the main theoretical differences with
the usual three-dimensional systems. Afterwards, we will describe more in detail the
applications of this kind of setups focusing in particular on Atomtronics experiments.
We will include in the analysis both the most common bosonic systems and the more
recent attempts to incorporate Fermi gases in this framework. Eventually, we will sketch
some important features and results concerning ultracold fermionic systems that will be
central in the following chapters of the thesis. In particular, we will present more in detail
two important topics: the BCS-BEC crossover and its application in ultracold atoms and
the Leggett theorem, which represents one of the most fundamental results concerning
the persistent current in superconducting rings and more in general in fermionic systems.

1.1 1-D quantum systems: far more than toy models
Physical systems in one dimension represent nowadays a very rich source for theoretical
and experimental research. Despite the great interest that such systems have occurred
in science since more than one century, the great step forward for what concerns the
physical relevance of one-dimensional models was made together with the first experi-
mental realizations of these setups. Indeed the great progress in physics of materials and
nanotechnology allows to realize, starting from the last decades of the XX century, sev-
eral quasi one-dimensional structures such as Josephson junctions[15] arrays and ladder
compounds[16]. At the beginning of the 2000s, the development of trapping techniques
allows the creation and the manipulation of one-dimensional vapors of atoms. In the
following, we will briefly describe some of the most common atom trapping protocols
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Figure 1.1: An image of Bose and Einstein realized with a condensate of N = 5.2 105 atoms averaged
on 5 experimental runs. We can see the almost arbitrary manipulation of ultracold atoms provided by
optical traps. Figure from [17].

useful for the realization of low dimensional quantum systems.

1.1.1 Optical trapping

This technique exploits the laser interference to confine the atoms in a given geometry[17].
The electric field generated by a laser beam induces a small dipole moment on the atoms
that results in a confinement force proportional to the gradient of the field itself. In this
way, the corresponding optical potential is proportional to the intensity of the light via
a quantity called polarizability. The latter depends on the wavelength of the laser such
that it is negative for blue detuned laser beams and positive if the light is red detuned.

Therefore, the region in which the atoms are confined can be modeled by the detuning
from their resonant frequency and the intensity of the light[18]. A very common example
of optical potential used in experiments is a standing wave potential propagating in one
direction. One can produce a three-dimensional periodic lattice using a superposition of
three waves and add a harmonic potential to obtain the one-dimensional confinement.

1.1.2 Magnetic trapping

This kind of trapping exploits the Zeeman coupling between atomic spins and an external
magnetic field B. The potential describing such interaction is:

VZE = −gµB S ·B, (1.1)

where g is the gyromagnetic ratio of the atoms, µB is the Bohr magneton and S is the
spin of the atoms.

When the field is sufficiently homogeneous, the spins tend to align to the latter, being
parallel or antiparallel. In the first case, the potential induced by this coupling has a
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minimum when the field is very strong while in the second one the minima correspond
to weak intensities of B.

The most common way to implement such trapping techniques in a cigar-shaped
geometry involves atoms chips: wires deposited on the surface of the trap generate the
magnetic field. Most of these traps are built in order to have minima for weak field
intensities. As a consequence, since the atoms must be coupled to a homogeneous weak
field, the magnetic techniques usually implemented to tune the interactions of the system,
known as Feshbach resonances, cannot be applied. However, it is possible to tune the
coupling strength by changing the density (as discussed in Sec. 1.1.4 below) or using
"confinement induced resonances" [19].

1.1.3 Conditions for one-dimensional regime

The trapping techniques described in Sec. 1.1.1 and Sec. 1.1.2 are very general and
can be implemented to confine the system in a wide variety of different geometries. The
question now naturally arises: how to obtain a strictly one-dimensional system? The key
point is indeed to determine some parameters that fully specify the dimension in which
we are confining the gas.

Once the quantum gas has been trapped in a 3-d potential, one can reach one-
dimensional regime modulating the confinement in the two directions one wants to in-
hibit. For instance, consider a quantum gas confined in a three-dimensional harmonic
potential. In this case, the frequencies of the oscillations along the three directions are
very close to each other. If we want to confine the gas in a one-dimensional geometry, say
along z direction, we can apply a two dimensional transverse potential in the directions
x and y with a common oscillator frequency ω⊥. Assuming that the confinement energy
h̄ω⊥ is much higher than the energy scales of the one-dimensional system, we have that
the excited transverse modes are cooled down: they are not accessible to the atoms. This
is an example that shows how to obtain a strictly one-dimensional system starting from
a three-dimensional confinement.

1.1.4 Dimensionless coupling constant

Defining a weak or strong interacting regime implies a coupling parameter that is inde-
pendent of the unit of measurement. In order to build such a scale, we have to introduce
the dimensionless coupling constant. Let’s consider as particular case the contact poten-
tial, that represents one of the most common models for interactions in ultracold atoms
physics. Such interaction depends on the spatial coordinates of the particles and it’s
non-vanishing only when two of these coincide, i.e. only if two atoms are placed in the
same position. In the context of ultracold atoms it represents the Van der Waals force[20],
a short-range interaction that is far weaker than the chemical bonds and that can be
both attractive or repulsive. At low temperatures, only the s-wave atomic scattering is
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relevant: within this assumption, the Van der Waals potential can be considered as a
zero-range interaction. As a consequence, assuming an identical coupling among all the
particles in the system, we can model this interaction using a Dirac delta distribution.
Respectively in three and one dimensions, we will have the two potential terms for an N
particles gas:

V3D = g3D

N∑
i 6=j

δ(xi − xj)

V1D = g1D

N∑
i 6=j

δ(xi − xj), (1.2)

where xi represent the positions of the particles in the different three dimensional and
one-dimensional real space.

Both potentials in (1.2) must have the physical dimensions of an energy. Applying a
proper rescaling introducing a unit of mass µ and a factor h̄2 in order to express both
the energy and the coupling constant in power of unit of length, dimensional analysis
yields: [

µ

h̄2 g3D

]
≡
[
L
] [

µ

h̄2 g1D

]
≡
[
L
]−1

(1.3)

We can see from (1.3) that in order to obtain a dimensionless coupling constant we have
to renormalize using a characteristic length. Introducing the densities n1D and n3D as
the ratios between the number of particles and the volumes of the systems we obtain:

γ3D =
µ

h̄2 g3D n
1/3
3D

γ1D =
µ

h̄2 g1D n−1
1D (1.4)

As we previously recalled, these coupling constants define univocally the weak and the
strong interacting regimes respectively in three and one dimensions. This relations allow
to identify an highly significative difference between these two kind of physical systems
relying on the density of the gas. Indeed in three dimensions the strong interacting
regime occurs at high densities while in one-dimensional systems strong interactions are
related to dilute gases.

1.2 Atomtronics: experimental techniques and state of
art

An emergent research area of application for ultracold atoms is Atomtronics. As we
have already delineated in the Introduction, this research area pursues the realization
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Figure 1.2: (a) A schematic picture of a toroidal optical trap for a Bose-Einstein condensate. (b) (c)
and (d) show the toroidal trap with an additional rotating barrier on the ring, steering the atoms of the
condensate. Figure from [22].

of analogs of electronics devices using atoms and molecules instead of charged particles.
In this section, we will present some of the principal experimental results in this field,
starting from the setups involving bosonic systems and then providing some outlooks
about the use of Fermi gases.

Starting from the experiments in the context of ultracold atoms, thus the ones con-
cerning the trapping of such systems in a desired geometry, one can exploit these setups
to design devices useful for atomic circuitry or interferometry.

One of the most advanced experimental applications in the field is the realization of
atomic transistors[21]. In these devices the trapping techniques are used to shape and
manipulate the triple-well potential defining the three regions of an electronic transistor.
In this case the electric current is substituted by a flow of atoms across the potential
barriers and the current gain can be studied using the very same methods of the usual
transistors. Another very interesting application concerns the realization of the analog
of a superconducting quantum interferometer device (SQUID). This equivalence exploits
the similarity between the eigenfunctions of a Bose- Einstein condensate and a supercon-
ductor. Moreover, both devices take advantage of the ring-shaped of the system in which
they are confined. The flux through the ring can be simulated in the atomic system using
a rotating barrier that steers the atoms.[22][23]

Consider a non-rotating Bose-Einstein condensate. Due to the ring geometry of the
confinement potential, the wavefunction will be periodic and the angular momentum of
the particles will be quantized. Breaking the rotational symmetry using a barrier, one
can induce a transition in the momentum spectrum. Afterwards, the circulation can
be detected by releasing the condensate from the trap and studying the time-of-flight
distribution of the particles. Indeed, considering a non-rotating condensate, we have
that a release from the ring-shaped trap would make the superfluid to collapse and to
close the central hole almost instantaneously. On the contrary, a non-vanishing angular
velocity would prevent this effect. As a consequence, measuring the time necessary for
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the central hole to collapse, one obtains information about the rotation frequency with
very high precision. From the analogy between the rotation of an atomic gas and the
magnetic flux threading a ring of charged particles, delineated more in detail in Section
3.1, one can build the analogy between the device described so far and a superconducting
interferometer.

1.2.1 Fermi gases in Atomtronics: present and future outlooks

All the experiments and applications described so far concern bosonic system and bosonic
superfluids. In this section we will focus on Fermi ultracold gases and on some implemen-
tation of the latters. A crucial point for the applicability of Fermi gases is the fermionic
superfluidity, that allows to exploit the same properties of a Bose-Einstein condensate
in Atomtronics framework. This phenomenon is far more difficult to generate due to
the Pauli principle that doesn’t allow fermions of the same species to occupy the same
state. As a consequence, at the heart of fermionic superfluidity, we have some pairing
mechanism, that implies the formation of composite bosons reducing the influence of the
Pauli exclusion and allowing a condensation process. The main theoretical protocols for
pairing are the BCS theory of superconductivity and atomic-based phenomena like the
BCS-BEC crossover, that will be both described in the following section.

It’s worthy to notice that, conversely to Bose gases, fermionic superfluidity can only
arise from interactions. This is one of the main reasons why such systems present a
richer structure respect to a Bose condensate, in which the statistics of the particles is
far more important to determine the phases of the gas and its properties.

The statistics of the particles also prevents to have superfluidity and in general con-
tact interactions between spin-polarized Fermi gases. Consequently, in experiments it’s
fundamental to deal with different species of fermions that, in ultracold atoms frame-
work, correspond to different hyperfine states of the atoms. Strong quantum degeneracy
in fermionic systems has been observed at the end of the previous century in the group of
JILA [24], where the low temperatures necessary for the superfluidity have been reached
using a mixture two different species of fermions and bosons.

One of the main class of experiments for probing fermionic superfluidity concerns the
so-called pairing-gap spectroscopy[25]. This technique requires a third level in the hyper-
fine structure that is not included in the pairing mechanism responsible for superfluidity.
From a very general point of view, these experiments aim to probe the energy gap that
underlines the formation of pairs, beyond which the latters are destroyed. To achieve
this point, a radio-frequency field is applied to the gas, exciting only one component of
the pair. In absence of a gap the resonant frequency of the transition would coincide with
the energy difference between the excited and the ground level, assuming the system to
be in the latter. An extra amount of energy to provide to the system in order to observe
the transition, would display the presence of a gap and thus of pairs in the gas.

Future experimental outlooks concerning these systems aim a better understanding of
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phenomena the unitary limit of the Fermi gases. This regime occurs when the scattering
length of the system diverges and thus the latter becomes scale-invariant. In this limit
the only relevant length is the interparticle distance, which is fixed by the density of the
gas. Moreover, the superfluidity of mixtures of fermionic and bosonic particles can be
studied[26], with the purpose of determining the proper mixtures of different species of
fermionic atoms and bosons for which the entire gas is in a superfluid state.

In Atomtronics area of research, Fermi gases can be used to exploit some phenomena
typical of this kind of systems to better characterize the pairing mechanism and the
connection between superfluidity and superconductivity. An application in this sense
would also be determining a protocol to better understand high-temperature supercon-
ductivity that goes beyond the phonon-mediated pairing occurring in low temperatures
superconductors.

1.3 Ultracold Fermi gases: BCS-BEC crossover
In this section, we will describe in detail one of the most interesting phenomena occurring
in quantum ultracold Fermi gases: the BCS-BEC crossover.

The better understanding of such behaviour of ultracold Fermi gases aims to pro-
vide a connection between the two separated worlds of superconductivity, which is the
Bardeen Cooper Schrieffer pairing theory, and the superfluidity described by the Bose-
Einstein condensation. First of all it’s important to stress that BCS theory qualitatively
describes a,lso some phenomena that go beyond the conventional superconductivity, as
the pairing interactions of atomic nuclei[27] or the behaviour of some non-conventional
p-wave superfluids[28]. A BCS-like state of N fermions can be briefly described as com-
posed of N/2 paired fermions all in the same bound state whose size is larger than the
interparticle spacing. Consequently, it is possible to picture such pairs in terms of a
condensate of bosonic particles. The idea of a continuous crossover between these two
regimes arouses in the 1960s and the three-dimensional qualitative phase diagram has
been obtained before the experimental realizations using ultracold atoms.[29]

In order to explain the different phases of the crossover pictured in Fig 1.3, it is useful
to introduce the scattering length a that univocally defines the scattering amplitude in
the low energy limit. Considering a scattering process involving only s-waves we have:

lim
k→0

σ = 4πa2, (1.5)

where σ is the cross scattering section and k is the wave vector. In this framework,
weak interactions are connected to a negative scattering length and the BCS regime is
reached for 1/(kf a)→ −∞, where kf is the Fermi momentum and represents the inverse
of the distance between the particles. Starting from this regime the scattering length
can be tuned and brought to divergence: this limit is the so-called unitary limit of Fermi
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Figure 1.3: Phase diagram of the BCS-BEC crossover with respect to the scattering length a and the
temperature. The evolution of the critical temperature all along the crossover is still an open problem:
it can be determined experimentally in the different regimes. Fig.reproduced from [8].

gases. For strong attraction a > 0 and the BEC regime is reached when 1/(kf a)→ +∞.
Despite the Bose condensation is reached for high interaction, the formation of tightly
bound dimers resolves in a weak interacting Bose gas in which the bound states repel
each other for the residual effect of the Pauli principle. This counterintuitive feature can
be understood by studying the four body Schrodinger equation, which yields an explicit
result for the scattering length of dimer-dimer interaction that is reduced respect to the
one of the initial model[9].

The experimental realization of BCS-BEC crossover relies on the possibility of tuning
continuously the scattering length exploiting Feshbach resonances. From a very general
point of view, this phenomenon occurs in a two-particle scattering when a bound state
in a closed channel is coupled to the open channel of the process. This can be achieved
by varying the energy of the closed channel using an external magnetic field that acts
on the hyperfine states of the atom and induces a resonant condition. Such process
produces a change of sign in the scattering length from negative to positive, thus from
attractive to repulsive interactions. When the bound state crosses the threshold of the
continuous state in the open channel, the scattering length diverges and the system
is in the unitary limit where the system is scale-invariant and the only characteristic
length is the interparticle spacing proportional to k−1

f . As we have already anticipated
in the Introduction, the strictly one-dimensional description of this phenomenon presents
several differences from the usual three dimensional one. On one hand, the model of a
Fermi gas subjected to attractive contact interaction is integrable and thus can be exactly
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Figure 1.4: Schematic protocol of a Feshbach resonance: the external magnetic field acts on the
hyperfine states of the atoms in order to induce a resonant condition between the energies Ec and E.
This opens a bound state channel that a priori would have been far more unstable than the continuous
one. Figure from [10].

solved at any interaction strength, on the other hand the bosonic limit of such model
behaves like a Tonks-Girardeau gas of hardcore bosons (see Appendix 1) and one never
reaches the weakly interacting Bose condensate. A future outlook for the present research
could be to study the quasi-one-dimensional crossover, that is a three-dimensional model
confined in a one-dimensional waveguide. In this case, as explained in reference [11], an
analog of the 3D crossover can be achieved exploiting a confinement induced resonance
that interprets the role of the three dimensional Feshbach resonance, inducing a coupling
between an open and a closed channel in the trap and properly tuning the scattering
length. In this limit, the weak interacting bosonic limit exists and the Bose condensation
of the paired fermions occurs, although at the present moment there’s no an experimental
realization of such theoretical protocol in one dimension.

1.4 Persistent currents in electronic and atomic sys-
tems: the Leggett Theorem

Let’s now introduce an important concept in the framework of physics in ring-shaped
potentials, originally concerning a system of fermions in a superconductor but, as we will
show in Chapter 3, also very relevant in the context of ultracold fermionic atoms.
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Figure 1.5: We can see the energy of the electrons on the ring showing a periodicity with respect to
the magnetic flux. Since the current is the derivative of the energy respect to the latter, the period will
be the same. Figure from [31].

Consider a metallic ring and a magnetic flux passing through it. The periodicity of
the eigenfunction required by the shape of the system can be twisted by a phase that
takes into account the gauge transformation including the effect of the flux [30].

Ψ(θ1 = 0, θ2...θN) = eiΦ/Φ0Ψ(θ1 = 2π, θ2...θN), (1.6)

where θi are the angular coordinate of the N particles on the ring and Φ is the magnetic
flux through the ring. The quantity Φ0 is called quantum of flux and for free electrons
we have Φ0 = h/e being e the elementary charge. In such framework a non-dissipative
current, defined for zero temperature as the derivative of the energy with respect to the
flux, is induced in the ring.

The very same phenomenon occurs in a superconducting ring, with the only difference
that the quantum of flux results to be halved. This is coherent with the fact that the
charge carriers in this case are paired fermions, that transport a charge of 2e. A very
general result relating the persistent current and the quantum of flux is both systems is
the Leggett theorem [31]. Such theorem concerns systems of N fermions described by an
Hamiltonian in the form:

HLegg =
N∑
i=1

1

2m

(
pi − eA(θi)

)2

+
N∑
i=1

V (θi) +
∑
ij

U(θi − θj), (1.7)

where A is the vector potential minimally coupled to the momenta of the particles, U is
an arbitrary fermion-fermion interaction and V represent a term of local disorder. Given
an Hamiltonian in this form, the theorem states two important results:
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• The current is periodic with respect to the flux and the period coincides with the
quantum of flux of the components of the system or with an integral function of the
latter. Such period doesn’t depend neither on interaction U nor on local disorder
V .

• If we consider spinless fermions, the number of particles N defines the diamagnetic
or paramagnetic behaviour of the material. Indeed if N is even we have that the
energy of the system is maximum at Φ = 0, while for odd values of N we have a
minimum in Φ = 0: the sign of the persistent current is different in the two cases.

The main features emerging from this theorem are the importance of the quantum
of flux in describing the persistent current and the existence of parity effects in this
framework. The first one states that once the current components are determined and
thus the quantum of flux is fixed, apart from some pre-factor due to an integration, the
behaviour of the persistent current with respect to the flux is univocally defined at any
two-body interaction and at any level of local disorder. The second feature formalizes
the present of parity effect, that will be studied in Chapter 4, relating the response of
the material to the application of an external gauge field to the number of particles in
the system. It’s important to stress again that the second point of the previous list is
valid for spinless electrons or equivalently for fully polarized fermions.

Such theorem was initially applied to electrons in a metal ring, but as we will see
the great arbitrariness of the Hamiltonian makes it easily generalized to different kinds
of fermions, including ultracold atoms. This is possible because the delta interaction,
that is the common fermion-fermion coupling in ultracold atoms, is included in the ones
appearing in the Hamiltonian (1.7). In the following we will simulate the action of a
gauge field acting on charged particles on a system of neutral atoms: in order to check
the accuracy of our treatment will be very important to compare our results with the
Leggett theorem, stressing the similarities and properly explaining the differences.

19



Chapter 2

One-dimensional crossover: a Bethe
Ansatz formal derivation

The first step to take to provide a theoretical description of a crossover between a
fermionic and a bosonic model is to impose a one-to-one mapping between the formal
expressions associated with the physical quantities that describe the system in the two
cases. This will allow to properly fix the regime in which the two models can be legiti-
mately considered equivalent and also to study the continuity of the process in order to
make a distinction between a crossover and a phase transition. Since we are interested
in studying the ground state of a one dimensional model of attractive Fermi gas and in
investigating the limit in which interactions allow to describe the system using a bosonic
model, the most relevant quantities we want to be equivalent are the energies of the
respective ground states. Therefore, in the following, we will explicitly derive an identity
originally underlined by Gaudin in the original Bethe Ansatz solution of the model of
a Fermi gas with attractive delta interaction confined on a ring. This identity concerns
the energy of the ground state of this model and the correspondent quantity in a one
dimensional model of repulsive bosons with the same kind of interaction, the so-called
repulsive Lieb-Liniger gas[32]. Indeed, once the thermodynamic limit is applied to both
expressions, it’s possible to perform a power series expansion in the respective strong
interacting regime, i.e strong attractive fermions and strong repulsive bosons. This al-
lows to obtain two identical expressions besides a change of sign in the corresponding
dimensionless coupling constants and a proper rescaling of the mass and the density of
the particles. Remarkably, in order to obtain the continuous crossover, the mass of the
bosons must be double of the mass of the fermions, while the densities are in the inverse
ratio. This is coherent with the physical picture of composite bosons made up by paired
fermions in which the extreme tight bounds allow to neglect the internal degrees of free-
dom.
The first step in the derivation of the crossover will be to show the Bethe Ansatz exact
solution for both Gaudin-Yang and Lieb-Liniger model. Afterwards, the formal mapping
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between the energies of the ground state in the thermodynamic limit will be displayed by
studying the strongly attracting and strongly repulsive regimes respectively for fermions
and bosons.

2.1 Bethe Ansatz for Lieb-Liniger model
We start revising the Bethe Ansatz solution for the Lieb-Liniger model, following [32].
Let us consider the Schroedinger equation for N bosons in the interval 0 ≤ xi ≤ L and
subjected to a repulsive contact interactions:

(
− h̄2

2mB

N∑
i=0

∂2

∂x2
i

+ g
∑
i<j

δ(xi − xj)
)

Φ(x) = EΦ(x), (2.1)

where g > 0 and x = (x1, x2...xN) is the vector that specifies the positions of the N
particles. Equation (2.1) can be expressed in an equivalent way through the system:

(
− h̄2

2mB

∑N
i=0

∂2

∂x2i

)
Φ(x) = EΦ(x)

(
∂

∂xj+1
− ∂

∂xj

)
Φ(x)|xj+1=xj = 2mBg

h̄2
Φ(x)|xj+1=xj

(2.2)

Imposing periodic boundary conditions (PBC) for all the coordinates of the N particles
xi, ∀i = 1...N :

Φ(0, x2, ...xN) = Φ(x2, ...xN , L) (2.3)

we may solve Eq.(2.2) using the Bethe Ansatz:

Φ(x) =
∑
P

B(P) exp
{
i

N∑
j=1

kP(j)xj

}
, (2.4)

where the summation is performed over all the permutations P of N rapidities kj. From
the first of equations (2.2) one has that the energy eigenvalues are given by:

EB =
N∑
j=1

h̄2k2
j

2mB

(2.5)

while the second equation fixes the coefficients B(P). Indeed consider two permutations
P and Q such that:

kP (1) = kQ(2), kP (2) = kQ(1)
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By assuming linear independence of the addenda in the sum (2.4) we can substitute
in (2.2) only the terms regarding these two permutations. One obtains the following
relationships between the coefficients:

B(Q) = −B(P )
2mBg
h̄2
− ikP (2) + ikP (1)

2mBg
h̄2

+ ikP (2) − ikP (1)

≡ −B(P )eiθ(k2−k1) (2.6)

Considering all the different pairs of permutations, we will have analogous relations.
In order to fix properly all the coefficients, we can start from a value B(1) = 1 and
then decompose each permutation P in transpositions, building the phase defining B(P)
by simply composing the phases relative to each transposition. Explictly, for a generic
permutation P we have:

B(P ) =
∏
Tij

−eiθ(ki−kj) (2.7)

Where Tij constitutes a sequence of transpositions involving the rapidities ki and kj in
which P can be decomposed.

In order to determine the precise form of the allowed rapidities kj we have to apply
the PBC: a substitution of Bethe Ansatz wave function (2.4) in equation (2.3) yields:

(−1)N−1 exp
{
i
N∑
i=1

θ(ki − kj)
}

= exp
{
−ikjL

}
(2.8)

This relations holds for all kj: taking the product of all these equations and noting that
θ(ki − kj) = −θ(kj − ki) one eventually has:

N∑
j=1

kj =
2πm

L
m ∈ Z (2.9)

that implies that the center of mass momentum doesn’t depend on interactions and take
any multiple value of 2π

L
. Relation (2.9) brings to the quantization of the total momentum

of the particles, whose expression can be computed directly from Schroedinger equation:

P̂Φ(x) = −ih̄
N∑
j=1

∂Φ

∂xj
=
( N∑
j=1

h̄kj

)
Φ(x) (2.10)

Notice that we have assumed the rapidities to be real in this case, since there are no bound
states for repulsive bosons. Taking the logarithm of Eq.(2.8) we obtain the following
equation for the rapidities:

kjL = −
N∑
s=1

θ(ks − kj) + 2πmj, (2.11)

where mj are integers or semintegers depending on the number N of bosons being odd
or even respectively.
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2.1.1 Thermodynamic limit and ground state

Consider the limits N → ∞ and L → ∞, provided nB ≡ N/L finite and fixed. We
identify the ground state of the system fixing the minimum distance between the kjs.
Introducing a density of rapidities:

fB(kj) =
1

(kj+1 − kj)L
(2.12)

one can eventually obtain the continuum limit using equation (2.11):

2πfB(k) = 1 +
4mBg

h̄

∫ K

−K

fB(p)

(2mBg
h̄2

)2 + (p− k)2
dp (2.13)

where the integral kernel comes from the expansion of the difference quotient of the
Bethe phases and where the formal relation:

1

L

∑
s

(...) =

∫
(...)fB(p)dp

it’s been used. The cut-off rapidity K is fixed by the request of normalization for the
density of rapidities: ∫ K

−K
fB(x)dx = nB (2.14)

while the energy for unit of length of the ground state can be computed by taking the
continuous limit in equation (2.5):

EB
L

=
h̄2

2mB

∫ K

−K
fB(p)p2dp (2.15)

Introducing the dimensionless coupling constant γB = 2mBg
h̄2nB

one may recast equation
(2.13) in a suitable way:

2πfB(k) = 1 + 2γB

∫ K

−K

fB(p)

nB

(
γ2
B + 1

n2
B

(p− k)2
)dp (2.16)

Hence, to obtain the exact ground-state energy EB at any interaction strength, one has
first to obtain the density of rapidities from the equation (2.16) and then insert it in Eq.
(2.15).
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2.2 Bethe Ansatz for Gaudin-Yang model
We next revise the Bethe Ansatz solution for the Gaudin Yang model [12]. Consider now
a system of N = N↑ + N↓ attracting fermions of mass mF confined in a spatial region
of dimension L, where the arrows refer to the spin degree of freedom. Considering the
non-polarized case, we can set N↑ = N↓ = N/2 and assuming that the interaction can
be described by a δ-potential, we have a Schroedinger equation similar to (2.1):

(
− h̄2

2mF

N∑
i=0

∂2

∂x2
i

+ c
∑
i<j

δ(xi − xj)
)

Ψ(x) = EΨ(x), (2.17)

where in this case c < 0. As in the bosonic case we can decouple this equation in a
system analogous to (2.2) and require that the system satisfies the PBC (2.3). In the
following, a Bethe Ansatz solution is investigated:

Ψ(x) =
∑
P

A(P) exp
{
i
N∑
j=1

qP(j)xj

}
(2.18)

The coefficients A(P ) are fixed by requiring discontinuity in the first derivative of the
eigenfunction in all the points in which delta-interactions between two particles with
antiparallel spins occur. Proceeding as in the previous section, one obtains an equation
for the Bethe phases and coefficients:

A(P ) = −
∏
Tij

eiφ(qi−qj), A(1) = 1 (2.19)

eiφ(qk−qj) =
2mF c
h̄2
− iqk + iqj

2mF c
h̄2

+ iqk − iqj
(2.20)

The main difference between bosonic and fermionic systems relies on the symmetries of
the coefficients A(P ). Indeed, each time a permutation involves a transposition between
rapidities associated to particles with the same spin, a factor (−1) must be applied
to (2.19) in order to preserve the antisimmetry properties of the eigenfunction. As a
consequence, imposing PBC yields a slightly different expression for allowed rapidities:

exp{−iqjL} =

N/2∏
s=1

exp{iφ(qs − qj)} (2.21)

String Hypothesis

Since we are dealing with attractive interactions, we have to take into account the for-
mation of bound states in the lowest energy level. Such paired fermions will be described
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assuming the so-called string hypothesis, with the additional constraint for the number
of particle N to be even: in view of thermodynamic limit this can be assumed without
any loss of generality.
The string hypothesis relies on the fact that the rapidities defined in (2.21) assume the
following form:

q̃j
± = uj ± ivj, j = 1..N/2, uj, vj ∈ R ∀ j (2.22)

It’s worthy to notice that this formalism requires the rapidities to be pairwise complex
conjugated to constrain the expression of the energy analogous to (2.5) to assume only
real values. In order to fix the imaginary part v, consider equation (2.21): after using
(2.22) one obtains that in thermodynamic limit the left-hand side either diverges to
infinity or goes to zero, depending on the sign of the imaginary part. As a consequence,
in order to have a pole or a zero on the right-hand side, we have that each rapidity must
have an imaginary part in the form vj = v = ±mF

h̄
c.

Taking the logarithm of Eq.(2.21) we obtain:

qjL = −
N/2∑
s=1

φ(qs − qj) + 2πrj, (2.23)

where rj ∈ Z. The energy eigenvalues can be expressed by:

EF = −Nh̄
2(c/2)2

2mF

+

N/2∑
j=1

h̄2u2
j

2mF

≡ −N |εb|+ Eeff
F (2.24)

where the first term represents the bound energy of the pairs.

2.2.1 Thermodynamic limit and ground state

Let’s now focus on the study of the ground state properties in thermodynamic limit
(N,L)→∞ keeping finite the fermion density nF = N/L. Defining the density of pairs
rapidities as:

fF (qj) =
1

(qj+1 − qj)L
(2.25)

and proceeding as for the Lieb-Liniger model, one obtains from (2.23):

2πfF (q) = 2 +
4mF c

h̄2

∫ Q

−Q

fF (p)

(2mF c
h̄2

)2 + (p− q)2
dp, (2.26)

where the normalization constraint reads:∫ Q

−Q
fF (x)dx =

nF
2

(2.27)
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As a consequence, from (2.24) we have that the effective energy for unit of lenght of the
ground state is:

Eeff
F

L
=

h̄2

2mF

∫ Q

−Q
fF (p)p2dp (2.28)

where the bound energy of the pairs has been incorporated in the first member.
Equation (2.26) can be expressed as well in terms of a positive adimensional coupling

constant γF = −2mF c
h̄2nF

:

2πfF (q) = 2− 2γF

∫ Q

−Q

fF (p)

nF (γ2
F + 1

n2
F

(p− q)2)
dp (2.29)

2.3 Analysis of the crossover regime
We now focus on the strongly interacting limit of Lieb-Liniger and Gaudin-Yang models
i.e. the limit of highly attractive fermions and strongly repulsive bosons. Recalling the
integral equations for rapidities densities:

2πfB(k) = 1 +
4mBg

h̄2

∫ K

−K

fB(p)

(2mBg
h̄

)2 + (p− k)2
dp

2πfF (q) = 2 +
4mF c

h̄2

∫ Q

−Q

fF (p)

(2mF c
h̄2

)2 + (p− q)2
dp

we want to determine the relation between the coupling constants c and g under which
a continuous crossover between these two regimes of the fermionic and bosonic model
occurs. We follow the procedure adopted in Ref.[33]:

• The rapidities densities of both models will be expanded in power series and the
correponding integral equations will be reduced to polynomial relations up to a
finite order of the coupling constants;

• The explicit solutions of rapidities densities will be computed in the strongly in-
teracting regimes of both models and will be used to obtain the energies of the
ground states;

• Comparing the expressions of the energies, we determine the conditions under
which a continuous mapping between two spectra can be performed.

We consider first the Gaudin-Yang density of rapidities: introducing the scale transfor-
mations:

λF =
−2mF c

Qh̄2 , x = q/Q, y = p/Q, fF (Qx) = FF (x), (2.30)
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the integral equation can be recast in the following form:

2πFF (x) + 2λF

∫ 1

−1

FF (y)

λ2
F + (y − x)2

dy = 2 (2.31)

Now, exploiting the symmetry of FF (x) respect to a change of sign in his argument,
it is possible to expand such function in even power series:

FF (x) =
∞∑
n=0

anx
2n (2.32)

In addition, the integral kernel of the equation can be expanded as well:

1

λ2
F + (x− y)2

= 2λF

∞∑
n=0

∞∑
k=0

∞∑
l=0

[(k−l)/2]+n∑
m=1

an

(
k

l

)
(−1)l+k+m−1 2k−l

xk+l

k!
×

× ∂k

∂(λ2
F )k

(
2λk−l+2n−1

F

(
λ
−2(m+1)
F

1

2m
− tan−1(1/λF )

))
(2.33)

where [x] is the floor function of x.
In order to obtain an expression for the coefficients an one must equate the terms at the
same power in x. Since we are interested in the strong coupling limit, only the first two
coefficients a0 and a1 will be taken into consideration so that FF (x) = a0 + a1 x

2. From
Eq.(2.28) it’s immediate to derive the rescaled version for the effective energy:

Eeff
F

L
=
h̄2 Q3

2mF

∫ 1

−1

FF (x)x2dx (2.34)

In order to obtain an expression independent from the cut-off rapidity Q, we can
express the latter as a function of fermionic density, solving the normalization constraint:

Q

∫ 1

−1

FF (x)dx =
nF
2

(2.35)

Thus, as a function of the adimensional coupling constant γF the energy can be written
as:

Eeff
F

L
=
h̄2n3

F

2mF

π2

12

( 2γF
2γF + 1

)2(
1 +

4π5

15(2γF + 1)3

)
(2.36)

An analogous procedure can be accomplished on the bosonic rapidities density. In-
deed, by implementing the scale trasformation:

λB =
2mBg

Kh̄2 , z = k/K, t = p/K, fB(Kz) = FB(z) (2.37)

27



one obtains the integral equation:

2πFB(z)− 2λB

∫ 1

−1

FB(t)

λ2
B + (t− z)2

dt = 1 (2.38)

The same expansion carried out so far yields the following expression for the ground
state energy of Lieb-Liniger gas in the strong coupling limit:

EB
L

=
h̄2n3

B

2mB

π2

3

( γB
γB + 2

)2(
1 +

32π5

15(γB + 2)

)
(2.39)

It is now immediate to verify that, upon the transformations:

nF = 2nB, mF = 1/2 mB → γB = 4γF (2.40)

equation (2.36) and (2.39) assume the very same form providing a mapping between the
ground-state energies of Gaudin-Yang attractive model and Lieb-Linger repulsive model
in the strong coupling limit. From the non-singularity of such expressions in the limit

1
γF/B

→ 0 we can also state that the mapping is continuous. In conclusion, this analysis
shows that in the limit of strong attractions the fermionic model tends to the one of
bosonic point-like particles with strongly repulsive interactions.
It’s worthy to notice that what we found so far implies that the crossover between the
two models occurs in a regime in which paired fermions can be considered point-like
particles up to the third order in the adimensional inverse coupling constant 1/γB/F .
A very interesting outlook for the future would be is to study at which order the two
models deviate, and where the internal structure of the fermionic pairs starts to play a
role.
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Chapter 3

Artificial gauge field: a Bethe Ansatz
analysis of persistent current

In the previous chapter, we have identified the precise interaction regimes that allow us
to distinguish among fermions, composite bosons and point-like bosons in the model we
are considering. In the following, after introducing the technique implemented to simu-
late the coupling with a magnetic field on charged particles, we use the Bethe Ansatz to
provide an exact solution to the model presented so far taking into account the presence
of an external artificial gauge field and a finite ring. The mesoscopic dimension of the
system will enlight the presence of purely quantum effects in the ground state, such as
non-zero persistent currents inside the ring that present a periodicity with respect to the
elementary quantum of artificial gauge flux of the particles. In addition, we will show
that such periodicity, in analogy with a system of electrons on a superconducting ring,
is halved in the case of attractive fermions if compared to the non-interacting theory,
coherently with the formation of pairs. Moreover, assuming a complete decoupling of
Bethe wavefunction in center of mass and relative components, we show that the peri-
odicity does not depend on the interaction strength: it retains the same value for each
value of the coupling constant. This is because only the center of mass coordinate of
the wavefunction is non-trivially affected by the artificial gauge field, while the contact
interaction only influences the relative motion of the particles.

Since this phenomenon also regards bosonic systems, it will be also studied in the
BEC regime. Despite the results presented in Appendix A on a gas of hardcore bosons
show that the periodicity of the current is the same as a system of non-interacting
fermions, the scaling transformations necessary to obtain a continuous crossover allow
to recover the explicit value of the period for paired fermions. This is coherent with the
independence of the period from interactions and shows that this quantity doesn’t keep
track of the different regimes of the BCS-BEC crossover.
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3.1 Hamiltonian minimal coupling with artificial gauge
field

In order to introduce an artificial gauge field acting on a quantum gas confined on a ring
of radius R, we can induce a rotation of angular velocity Ω on the system, exploiting the
similarity between the formal expressions of Coriolis and Lorentz forces. Suppose that
the ring lies on the X-Y plane: the position of the i-th particle is specified by the arch
Rϕi, where ϕi is the azimuth angle on the ring itself. Assuming a contact interaction
between particles, the Hamiltonian of the system at rest can be written as:

H = −
N∑
i=1

h̄2

2mR2

∂2

∂ϕ2
i

+
g

R

N∑
i 6=j

δ(ϕi − ϕj) (3.1)

where g is an arbitrary real interaction constant. Performing the rotation described
above around Ẑ axis leads to a term that in cartesian coordinates reads:

−ΩL̂Z = ih̄
(
Ŷ

∂

∂X
− X̂ ∂

∂Y

)
(3.2)

to be added in the Hamiltonian. The transformation law:{
X = R cos(ϕ)

Y = R sin(ϕ)
(3.3)

allows to rewrite (3.2) respect to ϕ:

−ΩL̂Z = ih̄Ω
∂

∂ϕ
(3.4)

The Hamiltonian of the rotating system is:

H =
N∑
i=1

− h̄2

2mR2

∂2

∂ϕ2
i

+
g

R

N∑
i 6=j

δ(ϕi − ϕj) + ih̄Ω
N∑
i=1

∂

∂ϕi
= (3.5)

=
N∑
i=1

1

2m

(−ih̄
R

∂

∂ϕi
−mΩR

)2

+
g

R

N∑
i 6=j

δ(ϕi − ϕj)−
1

2
mΩ2R2

We can see that rotation induces a shift in the momentum operator and in the potential
energy in analogy with the minimal coupling to an elettromagnetic field: in this sense
rotation can be intended as a proper model of a gauge field interacting with the system.
In this analogy, the quantity Ω is called artificial gauge flux or Coriolis flux.
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It’s now immediate to map the ring in an one-dimensional interval of lenght L = 2πR,
in which periodic boundary conditions allow to linearize the position of the particles
imposing xi = Rϕi. We obtain the 1D Hamiltonian:

N∑
i=1

1

2m

(
−ih̄ ∂

∂xi
−mΩR

)2

+ g
N∑
i 6=j

δ(xi − xj) + EΩ, (3.6)

where we set EΩ = −1/2 NmΩ2R2.

3.2 Gaudin-Yang model coupled with artificial gauge
field

Let’s now apply the Bethe Ansatz formalism developed so far to a one dimensional gas
of N attractive fermions of mass mF : we will refer to the Hamiltonian (3.6), imposing
that g = c < 0 and E(F )

Ω = −1/2 NmFΩ2R2.
In analogy to what we did in the previous chapter, once defined x = (x1...xN) as the
vector of the positions of the particles, we impose the Ansatz:

Ψ(x) =
∑
P

A(P) exp
{
i
N∑
j=1

qP(j)xj

}
,

where qj represent the distinct rapidities of the particles. It’s worthy to notice that the
coupling with the artificial gauge field can be equivalently expressed shifting the rapidi-
ties qj or even modifying the periodic boundary conditions through the application of a
twisting phase by implementing a gauge transformation on (3.6). Since all these formu-
lations are equivalent in order to preserve the gauge invariance, in the following we will
write the explicit coupling term in the Hamiltonian, leaving the formal expression of the
eigenfunction unaffected by the field.
In addition, we note that the discontinuity on the first derivative of Ψ due to the delta-
interaction is not affected by the coupling with the artificial gauge field once the continu-
ity of wavefunction is assured. From this last conclusion, we can infer that the expression
for the Bethe coefficients is the same as the theory at rest reported in (2.19) and (2.20).

Let’s now apply the periodic boundary conditions that must hold ∀xi ∈ [0, L]:

Ψ(0, x2...xN) = Ψ(x2, ...xN , L).

Substituting the wavefunction in this relation one obtains ∀j = 1...N :

exp{−iqjL} = exp{i
N∑
s=1

φ(qs − qj)}, (3.7)
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Figure 3.1: Comparison between real and imaginary part of the eigenfunction for N = 2 and coupling
constant 2mF c/h̄

2 = −2 evaluated using string hypothesis (right) and using exact solution of (3.8)(left).
The position of the second particle is fixed at x2 = 4.25 l on a total lenght of the system L = 5 l, with
l unit of length.

from which we can derive the explicit expression for the fermonic rapidities:

qj = − 1

L

N∑
s=1

φ(qs − qj) +
2π

L
nj, nj ∈ Z (3.8)

As we did in the previous chapter, we will make some assumptions about the expres-
sion of the rapidities related to the bound states. In analogy to what we have done for
the infinite system, we will consider complex-valued rapidities, two by two conjugated
in order to assure the energy eigenvalues to be real. On the other hand, since we are
considering a finite system, we may expect that the imaginary part of such rapidities will
present some deviations from the value of ±mF c

h̄
fixed in L→∞ limit that follows from

the application of the string hypothesis. What we stated so far is well displayed in Fig.3.1
and Fig.3.2 as obtained from the solution of the N = 2 exact equations (see Appendix B
for details). We can observe that the periodicity of the eigenfunction is assured on the
boundary of the system only considering the exact solution for finite values of L. Indeed,
a straightforward substitution in the eigenfunction of rapidities whose imaginary part is
the one obtained from the string hypothesis doesn’t take into account the edge effects
due to the decay of the eigenfunction when the second particle is placed very close to
the boundary. This is our first important result: the string hypothesis does not ensure
the correct periodicity of the wavefunction on the finite ring.

In the following, we want to determine the dependence of the ground state energy on
the Coriolis flux Ω. For this purpose, exploiting the fact that in a homogeneous system
center of mass and relative coordinate decouple, we separate the energy eigenvalues of
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Figure 3.2: Modulus square of the eigenfunction, as a function of the coordinate x1 for x2 = 4.25
l, in the same case considered in Fig.3.1. From this plot we can see that the spatial density of the
state present a peak when the two fermions are close to each other. If the fixed particle is placed
sufficiently close to the boundary, in string hypothesis framework the eigenfunction doesn’t keep track
of the periodicity of the system.

the system in two different terms related to the formation of the bound states and to an
effective positive contribution. In order to achieve this, one can introduce the center of
mass and the Jacobi relative coordinates[34]:

rcom = 1
N

∑N
k=1 xk

rrelj =
(

j
j+1

)1/2(∑j
k=1 xk
j
− xj+1

) (3.9)

In this frame of coordinates the Hamiltonian (3.6) can be recast as:

H =
1

2NmF

(
Pcom −mFΩR

)2

+
N−1∑
l=1

Q2
l

2mF

+ EF
Ω , (3.10)

where it is important to stress again that the contact interaction term has not been
included because it can be equivalently treated as a discontinuity condition to be imposed
on the eigenfunction: it does not explicitly appear in the Schroedinger equation. The
conjugate momentum operators that appear in the Hamiltonian are obtained by imposing
canonical commutation relations with the corresponding coordinates. Explicitly, they
assume the following form:

Pcom = −ih̄
N∑
j=1

∂

∂xj
(3.11)

Ql =
−ih̄√
l(l + 1))

(
l∑

p=1

∂

∂xp
− l ∂

∂xl+1

)
(3.12)
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It is important to observe from (3.10) that the dependence of the energy of the system
on Ω induces a shift in the centre of mass momentum: the rotation does not influence
the contribution to the energy provided by the relative motion.

One may now solve the Schroedinger equation for Hamiltonian (3.10) by a straight-
forward application of (3.12) and (3.11) to Bethe wavefunction. The energy eigenvalues
will be expressed as a function of the rapidities related to the new coordinates:

EF =
h̄2

2NmF

(
qcom −mFΩR

)2

+
N−1∑
l=1

h̄2

2µF
(qrell )2 + EF

Ω , (3.13)

where µF is the reduced mass of the fermions. The rapidities qcom and qrell are respectively
associated to the center of mass and to the l-th relative coordinate and have been defined
as:

qcom =
N∑
j=1

qj (3.14)

qrell =
1√

l(l + 1)

( l∑
p=1

qp − l ql+1

)
=

1√
l(l + 1)

( l∑
p=1

p (qp − qp+1)
)

(3.15)

In the following, we want to study how the energy of the ground state of the system
varies with respect to the rotation frequency Ω. In order to do this, the first step is to
characterize the ground state fixing the quantum numbers nj labeling the rapidities of
the particles such that the corresponding energy is minimum. It should be noted that to
obtain the ground state of the system it is sufficient to minimize the first term in (3.13)
because, as we have previously noticed, the relative momenta will be not affected by the
transitions induced by the rotation of the particles.
We assume the following conditions:

• In the ground state the real parts of the rapidities of the pairs are reciprocally as
close as possible;

• We introduce an integer n̄ = n1 that labels the lowest energy level and must be
fixed to the value that minimizes the modulus of the summation of the rapidities:
such value will explicitly depend on N .

Let’s now focus on how to characterize excitations in the system of the center of mass
and relative coordinates. First of all, for sake of simplicity, we impose the constraint
that single-particle transitions are inhibited: this corresponds to the assumption that
the bound energy of each pair is greater than the energy difference between two adjacent
energy levels in the spectrum of the center of mass momentum.
Consider now equation (3.8): we observe that a transition to the first excited state can
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be described by an increment of the integer quantum number nj. As a consequence of the
first condition required so far, the transition can be represented by the shift: nj → nj+1.
It’s now immediate to notice, using equation (3.11), that the same process in the center
of mass coordinate presents an enhanced increment of the quantum numbers:

qj → qj +
2π

L
=⇒

N∑
j=1

qj →
N∑
j=1

qj +
2π

L
N (3.16)

The transitions that we have described so far refer to single particles and still are
not related to two-body bound states. Therefore, the grouping of rapidities into pairwise
conjugated complex numbers allows us to label the latters with a set of quantum numbers
ñk, k = 1, ...N/2 that keep into account that the njs of the fermions are pairwise identical
in this framework. Explicitly, we can define:{

nj+1 = nj ≡ ñk j odd
nj+1 = nj + 1 j even

=⇒ ñk+1 − ñk = 1 = nj+2 − nj (3.17)

Once we have introduced such quantum numbers labelling the strings, we may represent
the transition described above for a system of paired fermions as a shift ñk → ñk + 1 =
ñk+1, ∀k = 1, ...N/2. In both cases j odd and even, we have the following relation with
the summation of the quantum number nj that specify the state of the center of mass
momentum:

N/2∑
j=1

n2j =

N/2∑
j=1

n2j−1 =
1

2

N∑
j=1

nj =
N

2
(3.18)

We can now explicitly compute the energy of the ground state using (3.13). Intro-
ducing Λ =

∑N/2
j=1 n2j−1 we have that the corresponding value in the ground state of the

system will be:

Λ∗ =

n̄+N/2−1∑
j=n̄

j =
N(N − 2)

8
+
N

2
n̄, (3.19)

where the second term in the right-hand side depends on N through n̄ and fixes the value
of Λ∗ to the minimum possible value. For instance, we have that for an odd number N/2
of pairs n̄ = −(N − 2)/4 and Λ∗ = 0. Therefore, equation (3.19) allows to label the
spectrum of the center of mass momentum using a quantum number Λ such that:

Λ = Λ∗ +
N

2
l l ∈ Z (3.20)

Finally, the energy levels of the system are given by:

EF − EF
Ω =

h̄2

2NmFR2

(
Λ∗ +

N

2
l −N Ω

Ω0

)2

− m

h̄2 c
2N(N − 1)(N + 1)

48
, (3.21)
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Figure 3.3: Ground state energy (3.21) and first three excited levels in the spectrum as a function of
the rescaled rotation frequency Ω/Ω0 for N/2 = 9. Notice the halved periodicity which is due to the
formation of pairs.

where we have set Ω0 = h̄/(mFR
2) and the last term corresponds to the interaction

energy.
The persistent current can be now computed using the formula:

Ip = −Ω0

h̄

∂(EF − EF
Ω )

∂Ω
=
(

Λ∗ +
N

2
l −N Ω

Ω0

)
(3.22)

From (3.21) one can observe that an increment of 1/2 in the unit element of rotation
frequency Ω0 is equivalent to a transition in the spectrum of the center of mass momen-
tum, displaying a 1/2-periodicity in the latter, as also revealed in Fig.3.3. The very same
behaviour is inherited by the persistent current, as can be easily deduced by (3.22). In
addition, since the Hamiltonian is totally decoupled in an interaction and in an effective
term that depends on Ω, we can infirm that the quantum of artificial gauge flux is the
same at any interaction strength. As a second main result, we find that the periodicity
of the persistent current of pairs is half of the one of non-interacting fermions for any
interaction strength. This is the analog of the case of superconducting pairing, where
the periodicity is h

2e
as predicted by Byers and Yang in reference [14].

It’s worthy to note that the periodicity of the persistent current is univocally defined
by the quantum of artificial flux of the components of the gas. Despite in the high
interacting bosonic limit of the model, i.e. the Tonks-Girardeau gas, such periodicity
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coincides with the one of the non-interacting fermions (see Appendix 1), the scaling
transformation on the mass leading to the crossover compensates the halving that oc-
curs in the attracting model. Remarkably, this last feature makes the quantum of flux
preserves its value during the whole evolution and consequently the periodicity of the
persistent current doesn’t keep track of the different regimes of the crossover.
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Chapter 4

Parity effect

In this section we focus on a mesoscopic effect that occurs in Fermi gases, that is the
parity effect. This phenomenon arises when some observable of the system displays a
dependence on the number of particles to be even or odd. As it is shown in Appendix
A, Bose gases do not undergo the parity effect. Thus, in the system we are studying, we
expect that in the strongly attractive bosonic limit such dependence on the number of
particles is not observed. In order to properly identify such effect, we start displaying
the simpler case of non-interacting spinless fermions confined on a ring and coupled to an
artificial gauge field. Then we generalize the analysis to the case involving the attractive
contact interactions among fermions. The main difference between the two cases relies
on the dependence on N : in the first case the parity effect is conditioned by the number
of particles, while in the second one the relevant parameter is the number of pairs N/2.

Afterwards, we follow the evolution of the observables affected by the parity effect
during the whole BCS-BEC crossover, to detect numerically the continuous weakening
of this phenomenon while the system is driven towards the BEC regime. Such further
analysis is based on the comparison between the two cases of odd pairs N = 2 particles
(one pair) and even pairs N = 4 particles (two pairs). Once again we obtain results that
match the behaviour of Cooper pairs on superconducting rings for which the very same
kind of parity effect was obtained via DMRG analysis in ref [35].

4.1 Parity effect: free fermions
We start from a brief and very general review of the theory of a rotating gas of N spinless
free fermions of mass m on a ring. The Hamiltonian of the system is:

HFF =
N∑
i=1

1

2m

(
−ih̄ ∂

∂xi
−mΩR

)2

+ EF
Ω , (4.1)
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Figure 4.1: Plot of energies of the ground state for N odd (top) and N even (bottom): the relative
shift of an half a period is explicitly displayed.

where as in the previous sections, Ω is the angular velocity of the system. The wave-
function of the N -body system can be written as a Slater determinant:

ΨS(x1..xN) =
∑
P

sgn(P)
N∏
i=1

eipP(j)xj , (4.2)

where sgn(P) is the sign of the permutation P, belonging to the group of all the possible
permutation among the particles. In this case is convenient to include the coupling with
the angular veocity in the boundary conditions, applying a twisting phase such that:

ΨS(0, ...xN) = eiΩ/Ω0ΨS(L, ...xN) (4.3)

where Ω0 has the same definition provided in Section 3.2. Such boundary conditions
yield the following for the rapidities:

pj =
sj
R

+
Ω

Ω0R
. (4.4)

In this case pj ∈ R, ∀j and sj is an integer. The Schroedinger equation yields the
following for the energy:

EFF − EF
Ω =

h̄2

2mR2

N∑
j=1

(
sj +

Ω

Ω0

)2

(4.5)

In order to obtain the energy of the ground state we have to minimize the following
summation:

N∑
j=1

sj =
s̄+N−1∑
j=s̄

j =
N(N − 1)

2
+Ns̄

39



This corresponds to choose a proper value for the arbitrary integer s̄ ∈ Z. It’s immediate
to check that the latter depends on the parity of N . Indeed, for N odd such summation
can be set to zero imposing s̄ = −N−1

2
, while for N even the minimum value is reached

for s̄ = −N−2
2

and the summation is non vanishing. We can see that the periodicity of
the energy respect to the normalized angular velocity Ω

Ω0
is still the same, but there is

a shift in the former of a quantity that is exactly half of a period. In order to further
analyze the periodicity let’s consider the persistent current: using the values of s̄ for the
two cases and the definition reported in Eq. (3.22) yields

IΩ =


N
(
s− Ω

Ω0

)
, N odd

N

(
1
2

+ s− Ω
Ω0

)
, N even,

(4.6)

where s is an integer that has been introduced to label the quantization of the center
of mass momentum, in analogy to what we did in the previous section. From this last
relations, we can see that the zeros of the persistent current, which indicate the extremal
points of the ground state energy in the cases N even and odd, are shifted by a half of
the period as shown in Fig. 4.1. As a consequence, we see that in the lowest energy
level the minima and the maxima of the energy evaluated respect to Ω are exchanged.
In particular, if the system is in the ground state, we have that, for an odd number of
particles, the energy of the non-rotating system Ω/Ω0 = 0 is the lowest possible, while for
an even number of particles the same condition is associated to the maximum energetic
value. In the first case we say that the system displays a diamagnetic behaviour, while
in the second case the system is paramagnetic.

In the following, we will show that the parity effect is also present in the model that
includes attractive contact interactions between the fermions and furthermore it depends
not on the number of particles N but on the number of pairs N/2. On the contrary,
as it’s shown in Appendix A, in the bosonic limit there’s no parity effect: the goal of
the following section will be to use such property to probe the different regimes of the
crossover.

4.2 Parity effect: attractive fermions and crossover
To generalize the results of the previous section to the case of fermions with attractive
contact interaction let’s consider the persistent current in the ground state Eq.(3.22)
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together with (3.19) here reported for sake of convenience:

Ip =
(

Λ∗ +
N

2
l −N Ω

Ω0

)

Λ∗ =

n̄+N/2−1∑
j=n̄

j =
N(N − 2)

8
+
N

2
n̄

As we have already stressed in Chapter 3, Λ∗ can be set to zero by imposing n̄ =
−(N − 2)/4 if N/2 is odd. On the other hand, considering N/2 even this is not possible
since fermionic quantum numbers can only assume integer values: the second of the
previous equation assume the minimum value Λ∗ = N/4 setting n̄ = −(N − 4)/4.
These latter considerations shows that there is a parity effect that shifts the zeros of
the persistent current of a quantity that is halved respect to the non interacting spinless
case described in the previous section. In addition, such effect depends on the number
of pairs in the system rather than on the number of particles.

From what we stated so far, we see that the parity effect is strictly related to the
possibility of choosing a set of quantum numbers such that the kinetic energy of the center
of mass can be set to zero. This is always possible in a bosonic system (see Appendix
A for further details) hence there is no parity effect, while in fermionic systems this is
possible only for an odd number of components.

In the following we will numerically show that, in the case of N = 4, for weakly
interacting particles, it is not possible to obtain a ground state wavefunction in Bethe
Ansatz form that satisfies periodic boundary conditions imposing a vanishing center of
mass momentum. More in detail, the procedure of such numerical analysis has been the
following:

• Imposing the center of mass momentum to be zero and periodic boundary condi-
tions on the eigenfunction of the system;

• Using FindRoot algorithm from Mathematica to solve the constraints of the pre-
vious point and computing the rapidities that satisfied both conditions;

• Repeated such procedure for several values of the coupling constant, starting from
the non-interacting case, then for low interactions and progressively reaching the
high interacting regime.

As we have already seen in Section 3.2, the general theory ensures that in the string
hypothesis stated so far for infinite systems the rapidities associated to the particles are
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Figure 4.2: Ground state wavefunction for N = 4 with strongly attractive interactions cB (above):
the real part of the rapidity is 1.02 π/L and the imaginary one is equal to 0.994 cB . Notice that both
real and imaginary parts are periodic. Wavefunction for the non-interacting system with moving center
of mass (left) and static center of mass (right). The one on the left represents the ground state, while
the one on the right is an excited state

in the form:

k±1 = u± C

2

k±2 = −u± C

2
,

where L is the length of the system and C = 2mF/h̄c. Since both the number of particles
and the number of pairs are even in this case, from what we obtain in Appendix A, if
u = π

L
l, l ∈ Z we find a bosonic behaviour and thus no parity effect will be detected.

On the other hand, if u = 2π
L
l, l ∈ Z the system is in a fermionic regime and the center

of mass momentum cannot be set to zero.
Let’s examine the plots in Fig.4.2. In the one above we are in the strong attractive
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Figure 4.3: Wavefunction in the ground state for zero interactions (above), and weak interactions
10−3 (left) and 10−2 (right) in unit of the high attractive interactions cB used in Fig.4.2. The frame
of reference with vanishing center of mass momentum is straightforwardly imposed. Starting from the
non-interacting model associated with a null eigenfunction, there is a continuous evolution towards the
high-interacting regime described in the first plot of Fig.4.2

regime: the rapidities are complex and u = π
L
l. In this regime the momentum of the

center of mass of the ground state can be set to zero and there are no parity effects,
moreover the imaginary part of the rapidities deviates from the infinite size system.

In the two bottom plots of Fig.4.2 we show the non-interacting wavefunction in two
different energy levels. Imposing the center of mass momentum to be zero, one finds
that the periodic boundary conditions only provide a non-vanishing wavefunction for
real rapidities such that u = 2π

L
. Removing the staticity condition for the center of mass

one obtains a periodic wavefunction for real rapidities such that k±1 = 0 and k±2 = 2π/L.
Comparing the energy of the two states using E = h̄

2m

∑
j(k

+
j )2 +(k−j )2 it’s immediate to

see how the ground state corresponds to the second case. In the non-interacting theory,
we find that a vanishing center of mass momentum is coherent with the periodic boundary
conditions only in an excited state, while for the ground state this configuration is not
possible. As a consequence, we observe the parity effect for non-interacting fermions
disappearing once attractive interactions are increased.

In Fig.4.3 we plot the wavefunction of the ground state at weak interactions. What
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we see is that imposing the center of mass of the system to be at rest we have a zero
wavefunction for the non-interacting theory, then increasing the absolute value of the
coupling constant we obtain non-zero wavefunction. Such state continuously evolves
towards the high-interacting limit shown in the first plot in Fig.4.2

In conclusion, the numerical results show on one hand that in the non-interacting
regime the periodic boundary conditions provide non-zero ground state wavefunction
only for a non-vanishing center of mass momentum. This means that in the ground
state there will be parity effect, as predicted by the general theory. The same behaviour
is inherited when attractive interactions are weakly increased. On the other hand, for
higher absolute values of the coupling constant, in the frame of reference in which the
center of mass is at rest one has a well-defined wavefunction also in the ground state.
This last feature shows how the parity effect disappears at strong interactions.

Figure 4.4: DMRG results showing the sign of the second deriva-
tive of the energy of the ground state for an attractive Hubbard
model as a function of coupling constant U0/t. We can see that
depending on N/2 to be odd or even at low interactions we have
an interchange between respectively a diamagnetic (blue) and a
paramagnetic (red) behaviour, while in the high interacting regime
only the diamagnetic behaviour is detected. This is coherent with
our analysis of the parity effect in attractive ultracold Fermi gases.
Figure from [35].

An interesting remark comes
from the comparison between
our results and the known
theory describing the parity
effect on a system of elec-
trons subjected to attractive
interactions on a supercon-
ducting ring threaded with an
external magnetic flux. In-
deed, starting from the re-
sults obtained in ref.[35] and
shown in Fig.4.4, we can
see that the DMRG algo-
rithm shows the same inter-
change between diamagnetic
and paramagnetic behaviour
depending on the number of
pairs in the system. A re-
markable difference between
our model and the one stud-
ied in [35] is the presence of
the lattice. A future out-
look could be the study of the

atomic model in a periodic potential: we would expect that the latter doesn’t influence
the parity effects.
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Conclusions and future outlooks

Summarizing, in this thesis we have studied the exact solution of a model describing
a quantum gas of ultracold fermionic atoms subjected to attractive interactions and
confined on a strictly one-dimensional ring-shaped potential. In order to study some
mesoscopic properties of the system, we have included the coupling with an external
artificial magnetic field. Exploiting the integrability of the model, we have provided an
exact expression of the many-body wavefunction and of the ground state energy using
the Bethe Ansatz. The first result we obtained is the analytical derivation of the periodic
behaviour of this latter quantity with respect to the artificial gauge flux. Remarkably,
such periodicity is halved if compared to the non-interacting model. This last property
is strictly related to the formation of dimers in the ground state of the system. It’s also
important to underline that the dependence of the ground state energy on the artificial
gauge flux reveals the presence of a non-vanishing persistent current in the ring, defined
as the derivative of the ground state energy with respect to the flux itself. This latter
quantity presents the very same periodic behaviour described so far.

Since the model has been solved at any value of the coupling constant, the analysis of
the persistent current can be extended to different interaction regimes and used to probe
some typical phenomena occurring in ultracold Fermi gases. In the thesis we focused
on the crossover between a system of N weak attractive fermions with mass mF and
the high interacting regime in which the system can be considered as composed by N/2
bosons of mass 2mF which strongly repel each other. Such continuous evolution, called
BCS-BEC crossover, is univocally driven by increasing the absolute value of the coupling
constant and it’s formally implemented by a mapping between the ground state energies
of the attractive Fermi gas and of the hardcore bosons as shown in ref. [33]. An analysis
of the persistent current in the two regimes shows that the period of the latter retains
the same value, demonstrating that it doesn’t depend on interactions. As a consequence,
the periodicity of the current and thus of the ground state energy with respect to the
artificial gauge flux doesn’t keep track of the different regimes of the system.

In the following chapters we focused on another mesoscopic effect related to the per-
sistent current: the parity effect. Such a phenomenon, that occurs only in fermionic
systems, provides a dependence of some observables on the number of components of
the gas. In our case, the physical quantity that has been considered is the energy of the
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ground state: the parity effect can be detected studying the different response of the gas
to the application of the artificial gauge field. There are two possible behaviours whose
names come from the analogy with the magnetic systems: diamagnetic and paramag-
netic. The first one is determined by an increasing, on a single period, of the energy
of the ground state once the artificial gauge field is applied. On the contrary, a param-
agnetic behaviour means that after the coupling with the field the system is driven to
a more stable configuration and thus on a single period the energy of the ground state
decreases.

In this last part, the first result that we obtained is that in the case of attractive
fermions the parity effect is related to the number of pairs rather than on the number
of particles. If this number is odd the system assumes a diamagnetic behaviour, while if
it’s even the gas is paramagnetic.

Consequently, we studied the N = 2 and N = 4 problems and used them to char-
acterize such effect in the presence of attractive interactions. We found that for an odd
number of pairs in the non-interacting and low interacting regimes the system behaves
like a paramagnet, while at strong attractive coupling between the atoms we observe a
diamagnetic response. This is coherent with the behaviour of bosonic systems, as it’s
shown in Appendix A. We deduce that the parity effect represents a good probe for the
different regimes of the BCS-BEC crossover.

Some interesting future outlooks could be the study of the out of equilibrium dynam-
ics of this system to better understand the BCS-BEC crossover in terms of persistent
currents. In addition, this kind of analysis could be generalized to more than two species
of fermionic atoms, thus including more values for the spin degree of freedom. In this
more complicated case, finding an exact solution would require more general techniques
than Bethe Ansatz. In order to progressively pursue this target, some useful intermedi-
ate steps could include external trapping such as a harmonic or a periodic potential. In
such simpler cases, one can exploit some known generalizations [37][38] of Bethe Ansatz for
trapped systems in fixed interacting regime to provide further methods for the solution
at any coupling strength and thus to fully describe the model.
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Appendix A

Tonks Girardeau gas: a Bethe Ansatz
solution

Let’s now consider a rotating system of N bosons of mass M subjected to strong re-
pulsive contact interaction: we can adapt Hamiltonian (3.6) by setting g > 0 and
EB

Ω = −1/2mBΩ2R2. Repeating the procedure followed in the main text, the eigen-
function of the Hamiltonian is:

Φ(x) =
∑
P

A(P) exp
{
i
N∑
j=1

kP(j)xj

}
(A.1)

where in this case the coefficients A(P) are given by:

A(P) =
∏
Tkj

−eiθ(kk−kj), A(1) = 1 (A.2)

eiθ(kk−kj) =
2mBg
h̄2
− ikk + ikj

2mBg
h̄2

+ ikk − ikj
(A.3)

Since we are considering a strong repulsive interaction, we can consider the limit
g →∞ of the last relations:

lim
g→∞

eiθ(kk−kj) =
2mBg
h̄2
− ikk + ikj

2mBg
h̄2

+ ikk − ikj
= 1→ θ(kk − kj) = 0 (A.4)

A(P) =
∏
Tij

(−1) ∀P (A.5)
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Requiring the periodicity of the boundary conditions one obtains the following equa-
tion to be satisfied by the rapidities:

exp{ikjL} = (−1)N−1 =⇒ kj =
2π

L

(N − 1

2
+ rj

)
rj ∈ Z (A.6)

It’s important to stress that since we are considering repulsive interactions, the ra-
pidities kj are real numbers ∀j = 1...N . As a consequence, in this case we don’t need to
split the energy eigenvalues in an bound and effective contributions thus it’s not neces-
sary to introduce the center of mass and relative coordinates. A direct computation of
the energy of the system yields:

EB =
h̄2

2mB

N∑
j=1

k2
j + EB

Ω =
h̄2

2mBR2

N∑
j=1

(
rj +

N − 1

2
+

Ω

Ω′0

)2

+ EB
Ω , (A.7)

where Ω′0 = h̄
mBR2 . It’s important to observe that we can define a new set of quantum

numbers, depending on N , that label the energy levels. Indeed let’s introduce Γj =
rj + N−1

2
: it’s immediate to check that for odd N we have Γj ∈ Z, while Γj is a semi-

integer for even N . From equation (A.7) we see that an increment Ω→ Ω + Ω′0 induces
a shift in each quantum number Γj, showing a periodic behaviour of the energy with
respect to the rotation frequency. In order to obtain the ground state of the system
we have to choose the quantum numbers that make (A.7) assume its minimum value.
Similarly to what we have done in the main text, we fix the conditions:{

Γj+1 − Γj = 1

Γ1 = Γ̃
(A.8)

Where Γ̃ is the integer or the semi integer depending on N that, taking into account
the first of the conditions (A.8) minimizes (A.7). As a consequence, the latter can be
recast in the following form:

EB − EB
Ω =

h̄2

2mBR2

N−1∑
j=0

(
Γ̃ + j +

Ω

Ω′0

)2

(A.9)

It is now possible to calculate the value of the persistent current by keeping the value
of EB

Ω fixed:

I′p = −Ω′0
h̄

∂(EB − EB
Ω )

∂Ω
=

N−1∑
j=1

(
Γ̃ + j

)
+N

Ω

Ω′0
(A.10)

From this last expression we see that also the persistent current shows the same
periodic behaviour of the energy respect to the angular velocity. It’s important to stress
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that such periodicity doesn’t depend on the number of particles N and coincides with
the one of the non interacting fermions.

A further point that has to be discussed concerns the quantum numbers of the system.
We have seen that

for odd number of particles Γjs are integer, while for even N they assume half-integer
values. As a consequence, if we consider the center of mass momentum of the particles
defined by:

KCOM =
2π

L

N∑
j=1

Γj, (A.11)

we see that, as opposed to what we found in Section 4.2, such summation can be set
to zero choosing a proper value for Γ̃ both for even and odd number of particles. This
implies that in the case of a Bose gas we don’t expect any shift neither in the energy of
the ground state nor in the persistent current depending on N and thus no parity effect
should be detected.
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Appendix B

Two particle problem

Consider two fermions, one spin up and one spin down, interacting via a delta-potential
on a 1-dimensional interval of lenght L. The Hamiltonian of the system is:

H = − h̄2

2m

( ∂2

∂x2
1

+
∂2

∂x2
2

)
+ gδ(x2 − x1) (B.1)

To solve the associated Schroedinger equation, consider the Ansatz:

Ψ(x1, x2) = θ(x1 − x2)
(
A11e

ik1x1+ik2x2 + A12e
ik2x1+ik1x2

)
+

+ θ(x2 − x1)
(
A21e

ik2x1+ik1x2 + A22e
ik2x2+ik1x1

)
, (B.2)

where Aij are complex coefficients and ki are the rapidities of the two particles. Notice
that since the two fermions have different spin there is no constraint of antisymmetry of
the wavefunction. Indeed, it has been shown[36] that the ground state of this model is
actually the most symmetric one. In the following we will impose an appropriate number
of conditions on the spatial structure of the eigenfunction in order to determine all the
coefficients Aij and to find an expression for the rapidities.

• Symmetry under exchange of the two particles;

• Discontinuity of the first derivative of the wavefunction;

• Normalization constraint;

• Periodic boundary conditions;
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Symmetry respect to the exchange of the two particles

Using the expression (B.2) it’s immediate to obtain:

Ψ(x1, x2) = Ψ(x2, x1) =⇒

θ(x1 − x2)
(
A11e

ik1x1+ik2x2 + A12e
ik2x1+ik1x2

)
+ θ(x2 − x1)

(
A21e

ik2x1+ik1x2 + A22e
ik2x2+ik1x1

)
=

θ(x2 − x1)
(
A11e

ik1x2+ik2x1 + A12e
ik2x2+ik1x1

)
+ θ(x1 − x2)

(
A21e

ik2x2+ik1x1 + A22e
ik2x1+ik1x2

)
=⇒

A11 = A21 ∪ A22 = A12 (B.3)

Discontinuity of the first derivative of the eigenfunction

Let’s introduce the center of mass and relative coordinate of the particles:{
R = (x1 + x2)/2

r = x2 − x1

(B.4)

In this frame of coordinates, the spatial component of eigenfunction (B.2) can be
recast as:

Ψ(R, r) = θ(−r)eiKcR
(
A11e

ikrr + A12e
−ikrr

)
+ θ(r)eiKcR

(
A21e

−ikrr + A22e
ikrr
)

(B.5)

where the transformed rapidities kr = k2−k1
2
, Kc = k1 + k2 have been defined.

The discontinuity of the first derivative caused by the contact interaction can be
written explicitly as:

∂Ψ

∂r
(R, r = 0+)− ∂Ψ

∂r
(R, r = −0−) = c2Ψ(R, r = 0)→

→ (A22 + A12 + A12 − A11)ikr = c2(A22 + A12 + A12 + A11), c2 =
2m

h̄
g (B.6)

Substituting the symmetry condition (B.3) one obtains the following relation:

A22 = −A11
c2 − i(k1 − k2)

c2 + i(k1 − k2)
(B.7)

Eventually, the coefficient A11 can be fixed by requiring the eigenfunction to be
normalized, thus apart from a moltiplicative constant can be set equal to one.
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Periodic Boundary Conditions

Summarizing, as a consequence of the constraints imposed so far, the eigenfunction can
be written as:

Ψ(x1, x2) ∝ θ(x1 − x2)
(
eik1x1+ik2x2 − c2 − i(k1 − k2)

c2 + i(k1 − k2)
eik2x1+ik1x2

)
+

+ θ(x2 − x1)
(
eik2x1+ik1x2 − c2 − i(k1 − k2)

c2 + i(k1 − k2)
eik2x2+ik1x1

)
(B.8)

Periodic boundary conditions read:

Ψ(x1 = 0, x2) = Ψ(x1 = L, x2) (B.9)

After a straightforward substitution and using the property of the Theta function we
obtain:

(1 +
c2 − i(k1 − k2)

c2 + i(k1 − k2)
)eik2L)eik1x2 + (−c2 − i(k1 − k2)

c2 + i(k1 − k2)
− eik1L)eik2x2 = 0 (B.10)

Assuming k1 6= k2 we have that the two terms in the last equation are linear inde-
pendent: each of them must identically vanish. As a consequence, we obtain the two
following conditions for the rapidities:

e−ik1L = −c2 − i(k2 − k1)

c2 + i(k2 − k1)
(B.11)

e−ik2L = −c2 − i(k1 − k2)

c2 + i(k1 − k2)
(B.12)

It’s worthy to notice that the rapidity of the center of mass of the system does not
depend on interactions:

ei(k1+k2)L = eiKcL = 1

Consider now the structure of the eigenfunction (B.8). Each sector of coordinates is
composed by two plane waves that, apart from a phase shift that keeps into account the
contact interaction, differ for a permutation of the rapidities. We can associate to the
former eik1x1+ik2x2 the permutation P1 = 1 acting on k1,2 and to the second plane wave
the permutation P2 : (k1, k2)→ (k2, k1) . Now we introduce the factor:
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−eiφ(ki−kj) = −c2 − i(ki − kj)
c2 + i(ki − kj)

, (B.13)

where kj is the rapidity associated to the maximum between x1 and x2 in each sector.
It’s immediate to check from (B.8) that this phase maps each term of the eigenfunction
in the other sector of coordinates, in the term that corresponds to the same permutation
of the rapidities. Under this condition, the wavefunction can be recast by considering
only one sector of coordinates:

ΨBA(x1, x2) =
∑
P

A(P ) exp{i
N∑
j=1

kP (j)xj} (B.14)

Where A(P ) = A11 if P = 1 and A(P ) = A22 if P is the permutation that inverts
the rapidities of the particles. The other sector of coordinates can be studied by using
the unitary transformation (B.13). As a consequence, the periodic boundary conditions
in this new frame can be equivalently expressed in the form:

∑
P

A(P ) exp{i
N∑
j 6=1

kP (j)xj} =
∑
P

A(P ) exp{i
N∑
j 6=1

kP (j)xj} exp{ikP (j)L}
(
−eiφ(ki−kj)

)
,

where the phase term in the right-hand side maps the first sector of coordinates in
the second one.

From this expression it’s immediate to see the equivalence with the Bethe Ansatz,
expressed also by equations (B.11) and (B.12) that coincide with the Bethe equations
for the same model.

In order to obtain the solution for the finite ring, we have numerically solved the
coupled equations (B.11) and (B.12). This has been performed using a root-finding
algorithm. The program has been written in Mathematica, using NSolve algorithm to
find the imaginary part of the rapidities and assuming that k1 was the complex conjugate
of k2 in order to have real-valued energy eigenvalues.
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