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Abstract

L’argomento principale della mia tesi di laurea è lo studio della teoria
della gravità non locale e in particolare una generalizzazione, nel formal-
ismo di Ricci, di studi precedenti. Problemi come la materia e l’energia
oscura, l’orizzonte e la piattezza, sottolineano che il Modello Cosmologico
Standard, basato sul Modello Standard delle Particelle e sulla Relatività
Generale, fallisce quando si vuole descrivere l’intero Universo, special-
mente a regimi estremi di scale ultraviolette. Inoltre, la relatività generale
non funziona come una teoria fondamentale in grado di fornire una de-
scrizione quantistica dello spazio-tempo. I risultati di queste carenze e,
prima di tutto, l’assenza di una teoria soddisfacente della gravità quantis-
tica spingono verso una modifica della relatività generale necessaria per
avvicinarsi, almeno, a una descrizione semi-classica.

La non località risulta essere una proprietà esclusiva del mondo quantis-
tico, quindi è plausibile che l’inclusione di tale caratteristica nella relatività
generale possa essere un buon modo per andare verso una teoria quantistica
della gravità.

Questa caratteristica è inclusa nella formulazione lagrangiana, con un
termine che contiene l’inverso dell’operatore di d’Alambert, chiamato
quindi operatore non locale. Allo scopo di ottenere una teoria molto gen-
erale è possibile scrivere la lagrangiana nella seguente forma: f(R,�−1R),
dove per la necessità di gestire questa teoria con un metodo variazionale
si introduce un campo scalare φ = �−1R. È possibile quindi ottenere la
relativa equazione di campo e l’equazioni cosmologiche. In particolare
è possibile selezionare la forma funzionale della f(R, φ) usando il primo
prolungamento del teorema di Noether.

Si ottengono diverse espressioni funzionali le quali ognuna contiene
delle costanti legate al teorema di Noether. In particolare tutte le soluzioni
sono rinormalizabili e riproducono la Relatività Generale. Concludendo
è importante sottolineare che le equazioni cosmologiche riproducono,
in maniera naturale, non solo gli effetti della energia oscura ma anche
l’inflazione cosmologica.
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"Un tempo si pensava che le leggi scientifiche fossero ben stabi-
lite e irrevocabili. Lo scienziato scopre fatti e leggi e aumenta
costantemente la quantità delle conoscenze sicure e indubitabili.
Oggi abbiamo riconosciuto che la scienza non può dare alcuna
garanzia del genere. Le leggi scientifiche possono essere rive-
dute, spesso risulta che esse sono non solo localmente scorrette
ma interamente sbagliate, facendo asserzioni su entità che non
sono mai esistite."

Paul K. Feyerabend (Contro il metodo. Abbozzo di una teo-
ria anarchica della conoscenza).
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INTRODUCTION

The history of the gravitational interaction

Gravity is probably the first fundamental interaction experienced by
mankind, as a matter of fact, it is related to the phenomena of everyday
life. For such motivations, gravity has inspired and it is still fascinating the
minds of scientists.

During the fourth century b.C. the Greek philosopher Aristotle, (384-322
b.C) developed some theories for describing natural phenomena. He be-
lieved that the "four elements", water-fire-air-earth, were the fundamental
constituents of the Earth. Aristotle also considered skies and every particle
made by a fifth element, the ether or quintessence. In particular, in order
to explain motions, he elaborated the "natural places" theory, according to
which the bodies move towards the place closest to them. For example,
smoke and the other light bodies went up because they were similar to air
and on contrary, stones and heavy bodies fell down because they were sim-
ilar to earth. Gravity was not studied only in the the occidental philosophy,
in fact, in ancient India Aryabhata first identified the force to explain the
reason why objects do not fall when the earth rotates, Brahmagupta de-
scribed gravity as an attractive force and used the term "gruhtvaakarshan"
for gravity.

Galileo Galilei, at the end of the 16th century, introduced the scientific
method which is the philosophical base of modern science. With the help
of pendula and inclined planes, he studied terrestrial gravity.

However, it was not until 1665, when Isaac Newton published the
Principia where he introduced the "inverse-square law" or "universal law of
gravitation", that terrestrial gravity was linked with the celestial gravity in
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a single theory. Using his own words:
"...I deduced that the forces which keep the planets in their orbs must be reciprocally
as the squares of their distances from the centres about which they revolve: and
thereby compared the force required to keep the Moon in her Orb with the force of
gravity at the surface of the Earth; and found them answer pretty nearly..."

Newton’s theory is able to correctly predict different phenomena both
at terrestrial scale and planetary scale. Newton founded the conceptual
basis of his theory on two key ideas:

1. the idea of absolute space, that is a rigid and imperturbable arena
where phenomena take place;

2. the Weak Equivalence Principle, which states that inertial and gravi-
tational mass coincide.

Newton’s theory reached its greatest success when it was used to predict
the existence of Neptune based on motions of Uranus. We can legitimately
wonder in which case or sense a theory could be right or not. To be more
specific we have to focus on how large the portion of the physical world
well described by such a theory is.

First doubt took place in 1855 when the astronomer Urban Le Verrier
observed a 35 arc-second excess precession of Mercury’s orbit and then,
in 1882, Simon measured accurately to be 43 arc-second. Le Verrier tried
to explain such precession, supposing the existence of a yet not observed
planet: Vulcan.

Conceptually, in 1893, Ernst Mach stated what was later called by Al-
bert Einstein as "Mach’s Principle". This one is the first important attack to
Newton’s theory. Such as Einstein said, we can summarize Mach’s idea in
the following line:

"...inertia originates in a kind of interaction between bodies...".

This is clearly in opposition with Newton’s idea of inertia always rela-
tive to absolute space. There exists an alternative formulation of Mach’s
principle, which was given by Dicke:

"...The gravitational constant should be a function of the mass distribution in the
Universe...".

Now Newton’s basic axioms of the gravitational constant as being uni-
versal and unchanged, have to be reconsidered.
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Only in 1905, when Albert Einstein completed Special Relativity, New-
tonian gravity was seriously challenged. This new theory of Einstein’s
appeared to be incompatible with Newtonian ideas relative motion and
all linked concepts had to be generalised to non-inertial frames. Finally, in
1905, Einstein published the theory of General Relativity(GR), a generaliza-
tion of Special Relativity that admits gravity and any type of accelerated
frames.

Albert Einstein suggested some test, the so-called "three classical test
of General Relativity" which were: the perihelion precession of Mercury’s
orbit, the deflection of light by the Sun, the gravitational redshift of light. Re-
markably, the theory matched perfectly the experimental results as showed
by Lense-Thirring, in 1918, for Mercury’s precession and by Arthur Edding-
ton, during a solar eclipse in 1919, for deflection of light. Einstein theory
overcomes Newtonian gravity and is still successful and well-accepted.
However, Newton’s theory is still used for some application and it is im-
portant to stress out that every good theory of gravitation has to reproduce
it in weak field limit.

This brief historical introduction, besides its own interest, it has been
proposed for a practical reason. Physicists are facing now some similar
problems about how space and time are made and moreover, there are not
well-understood issues like dark matter and dark energy.

About a Good Theory of Gravity

Every relativistic theory of gravity has to satisfy some minimal phe-
nomenological requirements. First of all, it has to match with the astrophys-
ical observation like the orbits and self-gravitating structures. Hence, as we
have already said, it has to reproduce Newtonian dynamic in the weak-field
limit. Furthermore, it has to pass the well experimented Solar system tests.
Secondly, it has to be consistent with Galactic dynamics considering the
now observed baryonic constituent, as the luminous components like stars.
Last but not least, at the cosmological scale, any theory should reproduce
parameters like expansion rate, Hubble constant, density parameter in a
self-consistent way. General Relativity is the best accepted theory capable
of explaining the observation. It is based on the idea that space-time is
a synolon which, in the case of absence of gravity, leads to Minkowski’s
structure. Any good Theory of gravity, GR of course included, has to fulfill
the following assumption:

• "The Principle of Relativity", that states there is not a preferred inertial
frame that should be chosen a priori (if any exist).
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• "The Principle of Equivalence", that requires inertial effects to be
locally indistinguishable from gravitational effects, in other words,
the equivalence between inertial and gravitational mass.

• "The Principle of General Covariance" which requires field equations
to be covariant in form and invariant under diffeomorphisms.

• "The principle of Causality" affirms that each point of space-time
should admit a universally valid notion of past, present and future.

In his work Einstein postulated the equivalence between the gravitational
potential and the metric tensor gµν , necessary to measure the distance
between the events of the space-time. He introduced, the squared infinites-
imal line element which is not dependent on the coordinates system

ds2 = gµνdx
µdxν .

Therefore, the metric coefficients are the gravitational potential and the
space-time is curved by the distribution of the matter-energy sources. Ein-
stein and Hilbert, using different approaches1, obtained the relation be-
tween metric and the matter-stress-energy tensor Tµν , called the Einstein
field equations:

Rµν −
1
2gµνR = 8πGTµν .

Their choice was totally arbitrary (they chose a torsion-less connection)
motivated by a matter of simplicity, both from the mathematical and the
physical point of view. As Levi-Civita showed, olso in 1919, the curvature
of a manifold is not only a metric notion but it depends on the connection
Γ. While g fixes the causal structure, light cones, the connection Γ fixes the
free-fall.

Some alternative of gravity, which tries to extend GR, start by this
point of view. In fact, there are "Purely Metric Theory" or "Purely Affine
Theory" that works on connection and the "Metric-Affine Theory" or "First
Order Formalism Theories" which contemporary work on g and Γ. Einstein
himself and many others (Eddington, Weyl, Schrödinger) tried to extend the
Einstein-Hilbert action, wondering to unify gravity and electromagnetism
but soon they had to deal with a non-linear theory. The idea to extend
Einstein’s gravity has been taken again to obtain a theoretical consistent
description of observation. These classes of theories focus their attention on
the geometric part of the field equation and they do not take into account
exotic components in the source side, such as dark matter or dark energy.

1The Hilbert’s approach will be useful later in this work.
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Beyond Einstein

The physical world could be divided into microcosm and macrocosm
respectively described by the Standard Model, based on Quantum Field
Theory and the General Relativity. In Quantum Field Theory, space-time is
Minkowskian, even if it exist a generalization, on curved-spacetime, which
supports the idea of quantum field flowing on space-time. That is a first
attempt to make this opposite world coherent with each other, it is known
as the semi-classical model, in the framework in which gravity is still classic
and the remaining are quantum-field.

It is clear that it still represent an open problem, where no one theories
are able to give a satisfying description of quantum-gravity. Anyway a
final proof that gravity should have quantum feature does not exist at all
and consequently there is no proof of the graviton existence.

The Plank scale, 10−35 m, seems currently experimentally inaccessible
and it is doubtful that any experiment in a near future could investigate
these lengths. There are, anyhow, different reasons that lead scientific
resource beyond the curiosity, one above all is the Big Bang. In this scenario,
indeed, the Universe goes necessarily through the scale Plank era, where
interactions are unified.



CHAPTER 1

THE LAGRANGIAN FORMULATION

1.1 The Einstein-Hilbert Action

Einstein, between 1905 and 1915, was not the only one who was working
on the problem, indeed, also the German mathematician David Hilbert was
collaborating. In particular, using a totally different approach, he obtained
the field equation 5 days before Einstein, who despite this, is considered
the father of General Relativity because he achieved this equations on the
base of physics principles and not only by a mathematical point of view.
However, having developed the action describing the gravitational field,
Hilbert’s approach was as well useful; such an action read as:

S =
∫
d4x
√
−g
[ 1
2kR + LM

]
, (1.1)

where g = det(gµν) is the determinant of the metric tensor, R is the Ricci
scalar while LM represents any kind of matter Lagrangian. Before starting
with theoretical calculations it is worth mentioning that LM leads to the
stress-energy tensor on the right side of Einstein field equations:

Tµν = − 2√
−g

δ(√−gLM)
δgµν

. (1.2)

Let us now focus on the first part of the action (1.1). We state that its
variation with respect to the inverse metric tensor gµν , vanishes.

0 = δS = δ(
√
−g)R +

√
−gδgµνRµν +

√
−ggµνδRµν =

=
(
Rµν −

1
2gµνR

)√
−gδgµν +

√
−ggµνδRµν . (1.3)

6
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Where in the last equivalence we use the following relations:

δg = ggµνδgµν , (1.4)

δ(
√
−g) = −1

2
√
−ggµνδgµν , (1.5)

It is now clear where in relation (1.3) Einstein’s tensor arise from:

Gµν = Rµν −
1
2gµνR . (1.6)

In order to finally achieve the field equations, it remains only to evaluate
the last term of the last equivalence in relation (1.3). In fact in the case
it vanishes, the action principle leads us to well known Einstein field
equations:

Rµν −
1
2gµνR = 8πGTµν . (1.7)

1.1.1 The Palatini Relation

In this subsection, we want to exactly determine the contribution of the
previously mentioned term and it is important to remark its vanishing is
not a really trivial question. In particular to show that, it is quite its utility
in the determination of Palatini Identity[4].

First of all, we have to take into account the Riemann tensor:

Rρ
σµν = Γρσν,µ − Γρσµ,ν + ΓnσνΓρµn − ΓnσµΓρνn, (1.8)

labelling comma the partial derivatives. Now we have to vary the last
relation with respect to the inverse metric tensor.

δRρ
σµν = δΓρσν,µ − δΓρσµ,ν + δΓnσνΓρµn + ΓnσνδΓρµn − δΓnσµΓρνn − ΓnσµδΓρνn, (1.9)

Moreover, reminding how the covariant derivative works, it is possible to
rewrite the previous relation as:

δRρ
σµν = ∇µδΓρνσ −∇νδΓρµσ. (1.10)

We may now obtain the variation of the Ricci curvature tensor simply by
contracting two indices of the Riemann tensor variation getting the Palatini
relation:

δRσν = ∇ρ(δΓρνσ)−∇ν(δΓρρσ). (1.11)
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Finally it is possible to get the variation of the Ricci scalar:

δR = Rσνδg
σν + gσνδRσν = Rσνδg

σν + ∇ρ

(
gσνδΓρνσ − gσρδΓµµσ

)
, (1.12)

It is now evident that the last term leads to a negligible surface term, even
if is important pointing out some consideration about that.

In fact, considering the Gauss Ostrogradsky theorem[53]:∫
d4x∇ρ

(
gσνδΓρνσ − gσρδΓµµσ

)
= lim

R→∞
R2
∫ tf

ti

∫
dΩnρ

(
gσνδΓρνσ − gσρδΓµµσ

)
,

(1.13)
we assume an asymptotic radial behaviour:

lim
R→∞

R2
(
gσνδΓρνσ − gσρδΓµµσ

)
= 0 ∀t ∈ [ti, tf ] . (1.14)

The global term will finally vanish and allow us to obtain the Einstein field
equations.



CHAPTER 2

THE EXTENDED THEORIES OF GRAVITY

Different issues arisen from Cosmology, Astrophysics and Quantum
Field Theory suggest to extend the General Relativity in order to over-
come several shortcomings emerging at conceptual and experimental level.
The standard Einstein theory fails when one wants to give a quantum de-
scription of space-time. In particular, the approach based on corrections
and extensions of the Einstein scheme, it is paradigmatic in the study of
gravitational interaction. Otherwise, such theories have acquired great
interest in cosmology since they "naturally" exhibit inflationary behaviours
which can go beyond the issues of standard cosmology. From an astro-
physical point of view, Extended Theories of Gravity do not require to
find candidates for dark energy and dark matter at fundamental level; the
approach starts from considering only the observed ingredients as gravity,
radiation and baryonic matter. This approach fully agree with the early
geometrical description of General Relativity. Scalar-tensor theories (as
Brans-Dicke theory or Non-Local theories) and f(R)-models agree with
observed cosmology, extragalactic and galactic observations and Solar Sys-
tem tests, and they are capable to explain the accelerated expansion of
the universe and the missing matter effect of self-gravitating structures[7].
Despite these preliminary results,there is no final model which satisfies
all the open issues, however the paradigm seems promising in order to
achieve a self-consistent theory.[21][22][23].

9



CHAPTER 2. THE EXTENDED THEORIES OF GRAVITY 10

2.1 Metric f (R) gravity in general

Let us examine now the variational principle and the field equations
of an extended theory of gravity, the f(R) theory in the metric formalism.
The salient feature of these theories is given by the fourth order of field
equations which lets the theory more complicated then Einstein’s one
(which is recovered as particular limit of f(R)). Due to their higher order,
these field equations admit a much richer variety of solutions than the
Einstein equations[8]. A consequence of introducing an arbitrary function,
is related to the necessity of explaining the accelerated expansion and
structure formation of the Universe without adding unknown forms of
dark energy or dark matter[21]. Indeed, we will see how is possible to
reproduce the cosmological constant from geometrical consideration.

We consider the space-time as a pair (M, g) with M a four-dimensional
manifold and g a metric on M . The Lagrangian is an arbitrary function of
the Ricci scalar L[g] = f(R), the relation between the Ricci scalar and the
metric tensor is given taking a Levi-Civita connection on the manifold[22].
The general action can be written as:

S = 1
2kSmet + Smatter, (2.1)

where, as we still said in the previous chapter, the second term is the usual
matter term and the first one is the bulk term:

Smet =
∫
d4x
√
−gf(R), (2.2)

with the convention:

0 = δS =
∫
d4x

[
δ(
√
−g)f(R) +

√
−gf ′(R)δR

]
=
∫
d4x
√
−gδgµν

[
f ′(R)Rνµ −

1
2gµνf(R)

]
+
∫
d4x
√
−gδgµνf ′(R)δRµν , (2.3)

standing f ′(R) = δf
δR

. For the purpose of evaluating the last term is im-
portant to recover the (A.5) relation and discarding a global term from
integration by part, so that we finally get:∫

d4x
√
−gδgµν

[
−∇µ∇νf

′(R) + gµν�f
′(R)

]
. (2.4)

So recollecting all the terms we obtain the field equations:

f ′(R)Rµν −
1
2f(R)gµν = ∇µ∇νf

′(R)− gµν�f ′(R) . (2.5)
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It is easy to show that for f(R) = R we recover the General Relativity.
These equations can be re-arranged in the Einstein-like form:

Gµν = 1
f ′(R)

[
−∇µ∇νf

′(R) + gµν�f
′(R)− gµν

f(R)− f ′(R)R
2

]
. (2.6)

The right-hand side of Eq. (2.6) is then regarded as an effective stress-
energy tensor, which we call curvature fluid energy-momentum tensor
T curvµν sourcing the effective Einstein equations.

It is easy to show that this extension of the Einstein-Hilbert’s Action
gives rise to a model naturally capable to take into account the cosmological
constant. As a matter of a fact, by considering a first order Taylor expansion
of the f(R) function we obtain a linear Lagrangian with a constant term,
namely

f(R) = f0 + f1R. (2.7)

It is always possible to set f0 = −2Λ and f1 = 1, which give rise to

S = 1
2k

∫
d4x
√
−g (R− 2Λ) +

∫
d4x
√
−gLM, (2.8)

that yields

Rµν −
1
2gµνR + Λgµν = 8πGTµν . (2.9)

As it is well-know this equation is capable to reproduce the de-Sitter cosmic
accelerated expansion.

An important fourth-order subcase of f(R) theory, is the Starobinsky
quadratic action [41][42]

SSta = M2
P

2

∫
d4x
√
−g
(
R + αR2

)
, (2.10)

which leads to the following field equations:

Gµν + α
[
2R(Rµν −

1
4gµνR) + 2(gµν�R−∇µ∇νR)

]
= kTµν . (2.11)

With trace:
�R−m2(R + kT ) = 0. (2.12)

being m2 = 1
6α . Equation (2.8) can be seen as an effective Klein-Gordon

equation for the effective scalar field degree of freedomR (sometimes called
Scalaron). Starobinsky model is the one that is best capable to fit with the
2018 Cosmic Microwave Background (CMB) data from Plank satellite [48].
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2.2 The f (R) cosmological equation

In the above discussion we use the Friedmann-Lemaitre-Robertson-
Walker(FLRW) line element:

ds2 = dt2 − a2(t)
[

dr2

1− kr2 + r2dΩ2
]
, (2.13)

Where a(t) is the so called scale factor and k = −1, 0, 1 according respec-
tively to a spherical, flat or hyperbolic universe. The standard approach is
to use a perfect fluid description for matter with stress-energy tensor:

Tµν = (ρ+ p)uµuν − pgµν . (2.14)

With these elements it is possible to obtain the cosmological equations for a
f(R) theory:

3f ′H2 = k
[
ρ+ Rf ′ − f

2 − 3HṘf ′′
]
. (2.15)

2H2f ′ + 3Ḣf ′ = −k
[
p+ Ṙ2f ′′′ + 2HṘf ′′ + R̈f ′′ + 1

2(f −Rf ′)
]
. (2.16)

These are the cosmological equation for the f(R) of gravity.

2.3 The Brans-Dicke Theory

The f(R) gravity is not the only way to extend General Relativity, as
will be shown in this chapter and forthcoming. The Brans-Dicke action
is an example of a scalar-tensor theory, a gravitational theory in which
the interaction is mediated by a scalar field. The gravitational constant
G is no longer assumed to be constant but instead, 1/G is replaced by a
coordinates dependent scalar field φ. The following action contains the
complete description of the Brans-Dicke theory:

SBD = 1
16π

∫
d4x
√
−g
[
φR− ω

φ
gµν∇µφ∇ν − V (φ)

]
+ Sm. (2.17)

The variation of this action with respect to gµν yields to the field equation:

Gµν = 8π
φ
Tµν + ω

φ

(
∇µφ∇νφ−

1
2gµν∇

αφ∇αφ
)

+ 1
φ

(
∇µ∇νφ−gµν�φ

)
− V

2φgµν .
(2.18)

The last equation describes how the stress-energy tensor and scalar field φ
together affect spacetime curvature.
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By varying the action with respect to φ we obtain:

2ω
φ
�φ+R− ω

φ2∇
αφ∇αφ+ 3�φ

φ
+ 2V

φ
= 0. (2.19)

Taking the trace of (3.2),

R = −8πT
φ

+ ω

φ2∇
αφ∇αφ+ 3�φ

φ
+ 2V

φ
(2.20)

and using the last two equation, we get,

�φ = 1
2ω + 3

(
8πT + φ

dV

dφ
− 2V

)
. (2.21)

This equation allow us to say that the trace of the stress-energy tensor acts
as the source for the scalar field φ.

The term proportional to φdV
dφ
− 2V on the right hand-side of previous

equation vanishes if the potential has the form V (φ) = m2 φ2

2 familiar from
the Klein-Gordon equation and from particle physics[12][22].

As we mentioned in the introduction of this chapter, from the equation
(3.1) we can see that the effective coupling constant depends on φ:

Geff = 1
φ
. (2.22)

By this consideration it is possible to observe that φ must be positive if
we want to recover an attractive gravity. It is important to stress that
Barns-Dicke theory is a attempt to include the Mach Principle where G
is considered to be not constant. Also it is generally agreed that the con-
vergence of Brans-Dicke gravity to general relativity can occur during the
matter-dominated era, or even during the inflationary phase of the early
universe[37].

2.3.1 Equivalence between scalar-tensor and f(R) gravity

For the sake of completeness, in this sub-section we want to show how
the scalar-tensor theories and the f(R) are related. In metric f(R) models
if we set φ ≡ R the action

S = 1
2k

∫
d4x
√
−gf(R) (2.23)

is rewritable as
S = 1

2k

∫
d4x
√
−g [ψ(φ)R− V (φ)] (2.24)
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where
ψ = f ′(φ), V (φ) = φf ′(φ)− f(φ), f ′′(φ) 6= 0. (2.25)

It is trivial that by setting R = φ, from the equation (2.24) we recover the
f(R) action (2.23). Vice-versa, varying the action (2.24) with the respect to φ

R
dψ

dφ
− dV

dφ
= (R− φ) f ′′(R) = 0. (2.26)

The equation (2.26) leads us to R = φ if f ′′(R) 6= 0. The action (2.24) has
the Brans-Dicke form when ω = 0. As a matter of fact, by recovering the
Brans-Dicke action (2.17)

SBD = 1
16π

∫
d4x
√
−g
[
φR− ω

φ
gµν∇µφ∇ν − V (φ)

]
+ Sm. (2.27)

and considering ω = 0 we obtain the action (2.24). An ω = 0 Brans-Dicke
theory was originally proposed for obtaining a Yukawa correction to the
Newtonian potential in the weak-field limit [33] and called "O’Hanlon
theory" or "massive dilaton gravity".



CHAPTER 3

NON LOCAL THEORY OF GRAVITY

3.1 The issues about a good quantum theory of
gravity

The physical universe is now well described on one side by Quantum
Mechanics, in particular, Quantum Field Theory and on the other side
by General Relativity. The Standard Model is successfully able to treat
at a fundamental level Electromagnetism, Weak and Strong interaction,
therefore, is questionable whether it is possible to include also gravity in
this model. How could be possible to unify the quantum states of Hilbert
space and observable like Hermitian operator, with General Relativity or in
general with gravity?

The conceptual problem is related to the difference between the prob-
abilistic description of micro-cosmos and the classical so deterministic
framework of Einstein theory. Quantum gravity forces us to modify the
idea of space and time, along the direction opened by Einstein’s GR, in
order to make them fully compatible with quantum theory. In Einstein’s
theory, space and time lose their properties of being a fixed framework in
which the dynamical world is immersed. They are identified with the grav-
itational field and acquire dynamical properties. When we take quantum
mechanics into account, we realize that space-time should be described
like a quantum field, and therefore, it should have a microscopic granular
structure (like the photons or other quantum mediators) and a probabilistic
dynamics. Building the mathematical language and the conceptual struc-
ture for making sense of such notions of quantum space and quantum time
is the challenge for a quantum theory of gravity.

15
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As well as Schrodinger equation is able to describe the time evolution
of a state, a quantum equation of gravity is supposed to be able to provide
us with the probability to have a certain evolution of our spacetime.

It is also interesting to investigate what kind of phenomena need to
be described by a quantum theory of gravity and so which are the scales
where that theory is required. The scale where General Relativity does not
work at all is the so-called Plank Scale, defined by using the natural constant
~, c and G whose characteristic length turns out to be:

lp ≡
√
G~
c3 ; (3.1)

likewise it is possible to define other quantities, like plank energy, time and
so on. The order of such length is lp ∼ 10−35m many order smaller than
subatomic scale, far away inaccessible by our experiment.

Besides these problems, there are other conceptual problems that arise
when we classical consider the metric tensor gµν as a background in Quan-
tum Field Theory, in fact,indeed, in this case space-time is not a simple
arena where fields act on but is at the same time one of these fields. That
becomes more evident when in Einstein theory if we consider that in GR
the background is not given "a priori" but is a solution of field equations.[1]

Anyway is possible to follow a classical procedure of quantization,
treating gravity like the electromagnetic fields and using covariant and
canonical quantization. In the first case, the covariant quantization, the metric
is split in flat term and a perturbation part:

gµν = ηµν + hµν . (3.2)

This approach leads us to two problems the first one is related to renormal-
ization, in fact, the theory has a one-loop divergence for graviton-matter
and two loops for interaction graviton-graviton that cannot be controllable.
The second problem is related to the fact that in General Relativity geometry
and connection are determined by the full metric tensor gµν .[2]

The canonical quantization does not split up the metric in two parts but in
order to be applicable needs a Hamiltonian formulation of Einstein theory.

3.2 Non-Locality induced by Acceleration

When referring to the everyday world we are used to giving a position
to an object, so locality can be interpreted as the capability to determine the
position of given particles or fields. To be more clear, in modern physic the
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principle of locality states that, according to special relativity, an object is
directly influenced only by its immediate surroundings. A theory which
includes the principle of locality it is called a "local theory".

Before Einstein’s theory, Newtonian physics admitted an instantaneous
"action at distance" and the paradigmatic example of this is the universal
law of gravitation. According to Newton, if it was possible to switch off
the source of gravitational interaction, a particle moving inside that field
(like the Earth in relation to the Sun) will instantaneously escape out in
rectilinear trajectory.

Locality hence goes beyond the Newtonian physics, in fact, something
in the space has to mediate the action and so, in simple words, something
may be the information carrier.

In General Relativity, there is not a mediator of this interaction and
interaction at distance is explained in terms of space-time curvature; which,
according to special relativity is supposed to be non-instantaneous.

The non-locality property, is a particular feature which only belongs to
the quantum world and is a kind of instantaneous interaction at distance
and it is coherent with Einstein theory as long as there is no information
transmission.

For example, if we consider a pair of electrons created together, in
order to preserve Pauli’s principle and to let the total angular momentum
to be conserved, they must have opposite spin direction. In quantum
theory, a superposition is also possible, so that the two electrons can be
considered to simultaneously have both clockwise and anti-clockwise spin.
If they are separated by any distance and later observed, the second particle
instantaneously takes the opposite spin with the respect to the first, so that
the pair maintains its zero total spin, no matter how far they are.

The idea is to give a non-local description of gravity, property which is
induced, as we are going to show, by acceleration.

The standard theory of relativity is based on the assumption that an
accelerated observer is point-wise inertial. Thus, the association between
actual accelerated systems and ideal inertial systems is purely local in
the theories of special and general relativity. It is intuitively clear that an
accelerated observer could be considered inertial, during an experiment, if
the observer’s acceleration is such that its motion is uniform and rectilinear
during the experimented process. Lorentz invariance can then be employed
to predict the result of such experiment [16].

Let λ
c

be the intrinsic timescale for the process under consideration, and
let L

c
be the acceleration timescale over which the velocity of the observer

changes appreciably; then, the condition for the validity of the connection
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between theory and experiment is:

λ� L (3.3)

Let us now consider the measurement of the frequency of an incident plane
monochromatic wave of frequency ω by an accelerated observer. Until
the observer with velocity v(t) is considered inertial, then the local inertial
frame of the observer can be related to the background global inertial frame
by a Lorentz transformation. Subsequently, the Doppler effect may be
employed to give:

ω′(t) = γ[ω − v(t)k]. (3.4)

It is necessary to register various oscillations of the incident wave for ob-
taining an adequate determination of its frequency; on the other hand, Eq.
(3.4) holds only if during this time the velocity does not highly change dur-
ing the time considered. We can express this condition from the standpoint
of the fundamental inertial observers as:

nT |v̇(t)| � v(t), (3.5)

where T is the period and n is the number of cycles and in this case, v(t) is
the magnitude of v. Then, considering the relation between period and the
wavelength, it is possible to rewrite the last equation as:

λ� c2

a
. (3.6)

with a being the a is the magnitude of the acceleration. Finally we want to
show how the acceleration is related to the other wave characteristic and
how Lorentz invariance could be extended to the non-inertial system only
when λ� L.

As far as we are concerned, the paradigmatic example of the accelerat-
ing system is represented by the universe and therefore, being the relation
(3.3) no longer valid, an induced Non-Local Theory of gravity has been
developed. These theories are history-dependent and the usual partial
differential equations are replaced by integral-differential equations, like
the Non-Local Poisson’s equation[28]. What we expect is to obtain a La-
grangian formulation of these theories, that allows us to reproduce Dark
Matter and Dark Energy effects.
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3.3 Non-Local Poisson’s Equation

In this theory of non-local gravity, gravitation is described by a local
field that satisfies integrodifferential equations. Thus gravity is a non-local
extension of Newtonian gravity where non-locality is introduced through
a "constitutive" integral kernel. As we are going to show this theory is
capable to reproduce the Dark Matter effect on the source of gravitational
field[28].

The first step is to recover the classical Poisson’s Equation:

∇2ΦN(t, x) = 4πGρ(t, x) , (3.7)

which can be written as:

∇2Φ(x) +
∑
i

∫
d3y

∂k(x, y)
∂xi

∂Φ(y)
∂yi

= 4πGρ(x). (3.8)

Here ΦN stands for the Newtonian gravitational potential and for simplicity,
any kind of temporal dependence of the gravitational potential and matter
density has been neglected. Moreover, the non-local kernel k is a smooth
function of u and v, so that k(x, y) = K(u, v) where:

u = x− y v = |∇yΦ(y)|
|∇xΦ(x)| . (3.9)

For the sake of simplicity is possible to consider a linear k(x, y) = K(u),so
that we obtain ∂k

∂xi = − ∂k
∂yi . Furthermore, let us assume that in the limit |y| →

∞, the quantity |k(x, y)∇yΦ(y)| goes to zero faster than 1/y2; then, using
integration by parts and Gauss’s theorem, Non-Local Poisson’s Equation
can be written as:

∇2Φl(x) +
∫
d3y k(x− y)∇2Φl(y) = 4πGρ(x). (3.10)

That is a Fredholm integral equation of the second kind that has a unique
solution, and which can be expressed in terms of the reciprocal convolution
kernel q(u) as:

∇2Φl(x) = 4πGρ(x) + 4πG
∫
d3y q(x− y)ρ(y). (3.11)

The non-locality gives rise to an additive source term for the gravitational
field that could be interpreted as the Dark Matter term.
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3.4 A first case of Non-Local Theory

In this section, we want to evaluate the consequence of an alteration
of the classical Einstein-Hilbert action, including a non-local term. The
non-locality resides in D’Alambert inverse operator[30]. The new action
has the following form:

SNL = 1
2k

∫
d4x

√
−g(x)R(x)

[
1 + f(�−1R)(x)

]
+
∫
d4x

√
−g(x)Lm. (3.12)

where k = 8πG, R is the Ricci scalar, f is any function of the non-local-
operator, Lm it is the matter Lagrangian and � is the usual D’Alambert
operator. The non-local term can be written in this way:

(�−1f)(x) ≡ G[f(x)] =
∫
d4x′

√
−g(x′)f(x, x′)G(x, x′), (3.13)

where G(x, x′) is f is the retarded Green function evaluated at the Ricci
scalar. It is clear that by setting f(�−1R) = 0 we get the Einstein theory.

3.4.1 The field equations

In order to obtain the new field equation let us focus on the geometric
part of the action, since the matter Lagrangian could be included later.

S = 1
2k

∫
d4x
√
−gR

[
1 + f(�−1R)

]
. (3.14)

It is clear that the first term lead us to Einstein-Hilbert tensor.

1)

S = 1
2k

∫
d4x
√
−gR =⇒ Gµν . (3.15)

2)

δ
[√
−gRf(�−1R)

]
=

= δ(
√
−g)Rf(�−1R +

√
−g(δR)f(�−1R) +

√
−gR(δf(�−1R)) =

= −1
2
√
−ggµνRf(�−1R)δgµν +

√
−g(δgµνRµν + gµνδRµν)f(�−1R)+

+
√
−gRδf(�−1R) =

√
−gδgµνGµνf(�−1R)+

+
√
−g(−∇µ∇νδg

µν + �(gµνδgµν))f(�−1R) +
√
−gRδf(�−1R). (3.16)
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Let us focus on the last term of the previous equation and without going
through the details of the calculation, after some algebra we get[25]:

√
−gRδf(�−1R) =

√
−gRf ′(�−1R)

[
�−1δR−�−1(δ�)�−1R

]
=

=
√
−g�−1(Rf ′(�−1R))[δgµνRµν + (−∇µ∇νδg

µν + �(gµνδgµν))]+
−
√
−g�−1(Rf ′(�−1R))

[
δ(�)R

]
. (3.17)

By using �−1 ×� = 1, neglecting the boundary terms and using (3.13)
we can rewrite the last term of the equation (3.17):

RG
[
Rf ′(G[R])

]
δ(
√
−g)+∂µ

(
G
[
Rf ′(G[R])

])
∂ν(G[R])(gµνδ(

√
−g)+

√
−gδgµν).

(3.18)

All terms are been determined so is finally possible to obtain the field
equations. These showed results are useful to determinate the new field
equations, indeed by using the results from (3.16) to (3.18) we obtain:

Gµν + (−∇µ∇νf(G[R]) + gµν�f(G[R])) +Gµνf(G[R]) +RµνG[Rf ′(G[R])]+

−∇µ∇νG[Rf ′(G[R])] + gµν�(G[Rf ′(G[R])])− 1
2RgµνG[Rf ′(G[R])]+

+ ∂ρ(G[Rf ′(G[R])])∂σ(G[R])(δρµδσν −
1
2g

ρσgµν). (3.19)

Finally, we have the field equations:

Gµν +
(
Gµν + gµν�−∇µ∇ν

){
f(G[R]) + G[Rf ′(G[R])]

}
+

+ ∂ρ(G[Rf ′(G[R])])∂σ(G[R])(δρµδσν −
1
2g

ρσgµν) = 8πGTµν . (3.20)

It is evident now how non-local term affects the Einstein field equations
and what are the additional terms.

3.5 The state of the art

In the figure 4.1 we want to present the state of the art about Non Local
theories[19]. The diagram shows how to recover the different theories of
gravity starting from the scalar-field representation of the general theory
where has been included also the teleparlallel theories.
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Figure 3.1: Diagram of the Non-Local Theories

In this diagram φ = �−1T , ϕ = �−1B and ξ and χ are coupling constants.
The Ricci scalar R and the torsion scalar T may be linked thanks to a
boundary term, in fact:

R = −T + 2√
−g

∂µ
(√
−gT µ

)
= −T +B. (3.21)

and so
�−1R = −�−1T + �−1B = −φ+ ϕ. (3.22)

Clearly, the curvature and torsion representations "converge" only for the
linear theories inR, GR, and in T , Teleparallel Equivalent of General Relativ-
ity(TERG). The TEGR is a gauge description of the gravitational interactions
and torsion defined through the Weitzenbock connection

Γ̃αµν = Eα
a ∂µe

a
ν , (3.23)

instead of the Levi-Civita connection, used by GR. Where has been used
eaµ for tetrads and Eα

a for their inverse[10][19]. Hence, in this theory, the
manifold is flat but endorsed with torsion. The dynamical fields of the
theory are the four linearly independent vierbeins and they are related to
the metric tensor and its inverse by

gµν = ηabe
a
µe
b
ν , gµν = ηabEµ

aE
ν
b , (3.24)
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where ηab is the Minkowskian flat metric. Anyway, the TERG action is
given by

STEGR = − 1
2k

∫
d4xeT +

∫
d4xeLM (3.25)

with e begin e = det(eaµ) = √−g and T is the torsion scalar. It is clear that by
recovering the relation (3.21) the sclars R and T differ only by a boundary
term and so the Einstein-Hilbert action and the TEGR (3.25) are equivalent.
In the teleparallel framework, recently it was proposed a similar kind of
non-local gravity based on the torsion scalar T . In this theory, the action
reads as follows[25]

Steleparlallel−NL = − 1
2k

∫
d4xe(x)T (x) + 1

2k

∫
d4xe(x)T (x)f(�−1T ) + SM,

(3.26)
where the function f depends on the non-local term. The TERG is recovered
by setting f(�−1T ) = 0.

Let us now present a generalization, which we call Generalized Non-
local Teleparallel Gravity (GNTG). Its action is given by

SGNTG = − 1
2k

∫
d4xe(x)T (x)+ 1

2k

∫
d4xe(x) (ξT (x) + χB(x)) f(�−1T,�−1B).

(3.27)
Here, T is the torsion scalar, B is the boundary term previously mentioned
and f(�−1T,�−1B) is a arbitrary function of the non local term and of the
non local boundary term. Instead, the Greek letters ξ and χ are coupling
constant. By setting ξ = −χ = −1 one obtain the Ricci Scalar R. Directly
from the equation (3.21), if f(�−1T,�−1B) = f(−�−1T +�−1B), the action
takes the well-known form Rf(�−1R) of the relation (3.12). Least but
not last if we set χ = 0 and f(�−1T,�−1B) = f(�−1T ), the non local
teleparallel action (3.26) is recovered. The other parameters θ and ζ which
appear in the figure 3:1 are Lagrange multipliers required for including,
respectively, the constrains

�φ− T = 0, �ϕ−B = 0. (3.28)

This aspect, related to constrain, will be better investigated in the fourth
and fifth chapter. Anyhow, the purpose of this section was to show the state
of the art of non-local theories and to briefly present also the teleparallel
theories.
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3.6 A general case of Non-Local Gravity

In this section we set out to describe the main feature of a more general
theory, using what learned in the previous section. As we have just shown,
in order to obtain a new more general field equation, it is important to
select a good Lagrangian term. In the equation (3.12) the Lagrangian is a
product of R and a function of �−1R. Therefore, we want to consider a
more general Lagrangian which depends arbitrary on the variables R and
�−1R, namely:

S = 1
2k

∫
d4x
√
−gf(R,�−1R) +

∫
d4x
√
−gLm. (3.29)

Before starting with the variational method lets focus us on this notation:

f ′ = δf

δR
, f ? = δf

δ(�−1R) , (3.30)

Now we can use the variational method on the geometric term:

δ(
√
−g)f(R,�−1R) +

√
−gδf(R,�−1R) =

= δ(
√
−g)f(R,�−1R) +

√
−g
[
f ′δR + f ?δ(�−1R)

]
=

= δ(
√
−g)f(R,�−1R) +

√
−gf ′(R,�−1R)δR +

√
−gf ?δ(�−1R). (3.31)

It’s clear that the first two terms of the last equivalence are similar to
f(R) in form while the last one, is the non-local term already treated in the
last section. Therefore, using these concepts and studying them separately,
it is possible to get:

1) The first term:

f ′(R,�−1R)Rµν −
f(R,�−1R)

2 gµν −∇µ∇νf
′(R,�−1R) + gµν�f

′(R,�−1R).
(3.32)
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2) The second term[30]:

√
−gf ?δ(�−1R) =

√
−gf ?

[
�−1δR−�−1(δ�)�−1R

]
=

=
√
−gf ?

{
�−1(δ�)�−1R+�−1[δgµνRµν + (−∇µ∇νδg

µν +�(gµνδgµν))]
}

=

=
(
Gµν + gµν�−∇µ∇ν

)
G[f ?] + ∂ρ(G[f ?])∂σ(G[R])

[
δρµδ

σ
ν −

1
2g

ρσgµν
]
.

(3.33)

Recollecting these two terms finally we get the the field equations:

Rµνf
′ − 1

2gµνf −∇µ∇νf
′ + gµν�f

′ +
(
Gµν −∇µ∇ν + gµν�

)
G[f ?]+

+ ∂ρ(G[f ?])∂σ(G[R])
[
δρµδ

σ
ν −

1
2g

ρσgµν
]

= 8πGTµν . (3.34)

We could say in a simple way, that the equation takes the aspected form, in
fact as soon as we wrote the action, it was clear that it would have led us to
something similar to f(R) and non-local theory.

In order to test the last equation we can prove that is possible to obtain
the old equation (3.20). We consider :

f(R,�−1R) = R
[
1 + g(�−1R)

]
, (3.35)

f ′ = δf

δR
= 1 + g(�−1R), f ? = δf

δ(�−1R) = R
δg(�−1R)
δ(�−1R) ≡ Rg′. (3.36)

Now replacing these relations into (3.34) we get the less general case (3.20).
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COINSTRAINED NON-LOCAL GRAVITY BY S2
STAR ORBITS

In this chapter, we consider the non-local theory (3.12) proposed by
Deser and Woodard but in its local representation. We apply the first pro-
longation of Noether Symmetry Approach, discussed in appendix A, in a
spherically symmetric spacetime and find those functional forms of the dis-
tortion function, that leave the point-like Lagrangian invariant. Moreover,
we find the weak field limit of the theory with the exponential coupling
and we also calculate the Post-Newtonian (PN) limit.

The local representation of this non-local model can be formulated as a
biscalar-tensor theory, even if one of the two scalar fields is not dynamical.
The PN analysis gives rise to two new length scales, where only one of them
is physically relevant; the other one is related to the auxiliary degree of
freedom introduced for localizing the original action. Finally, we consider
the orbits of S2 star around the Galactic center and by comparing the PN
terms of our theory with observations, we are able to set some bounds
on the above dynamical length scale. S-stars are the bright stars which
move around the centre of our Galaxy, where the compact radio source
Sagittarius A*(or Sgr A*) is located. For one of them, called S2, a deviation
from its Keplerian orbit was observed [43].

It is clear that the non-localities are not expected to be significantly
relevant at astrophysical and galactic scales, because otherwise they would
have been observed. However, what we see, is that our approach is consis-
tent with the orbits of S2 star around Sgr A*, in order to show its range of
validity at astrophysical and cosmological scales.

26
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4.1 The point-like lagrangian and Noether sym-
metries

In order to obtain a point-like Lagrangian we need to recover the Deser
and Woodard non-local modification of the Einstein-Hilbert action (3.12),
which has the following form:

SNL = 1
2k

∫
d4x

√
−g(x)R(x)

[
1 + f(�−1R)(x)

]
.

In order to localize the action we introduce two auxiliary scalar fields φ and
ξ, where the first one satisfies a Klein-Gordon equation:

�φ−R = 0 (4.1)

and the second one is introduced as Lagrangian multiplier of the constrain
related to φ, namely

SNL = 1
2k

∫
d4x
√
−g [R (1 + f(φ)) + ξ (�φ−R)] , (4.2)

where integrating out the total derivatives we obtain

SNL = 1
2k

∫
d4x
√
−g [R (1 + f(φ)− ξ)−∇µξ∇µφ] . (4.3)

By varying the action with respect to ξ and φ respectively, we get

�φ−R = 0, (4.4)

�ξ = −Rdf
dφ
. (4.5)

Moreover, the variation of the action with respect to the metric we yields

(1 + f(φ)− ξ)Gµν + 1
2gµν∇

αξ∇αφ =

= k2Tµν +∇µξ∇νφ+ (∇µ∇ν − gµν�) (f(φ)− ξ). (4.6)

The method consist in selecting a symmetry for the background spacetime
which, in our case, is spherically symmetric. The metric is given by the
following line element

ds2 = eν(r,t)dt2 − eλ(r,t)dr2 − r2dΩ2, (4.7)
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where ν(r, t) and λ(r, t) are two arbitrary function depending on time t and
on the radial variable r since we do not know a priori if Birkhoff’s theorem
holds in non-local gravity.

Then, substituting this metric in the Lagrangian density in (4.3):

L = e−
1
2 (λ+ν)

(
− eνr2νrφrf

′(φ) + eνr2λtφtf
′(φ)−

− 2eνf(φ)
(
eλ + rλr − 1

)
− 2eλ+ν + 2eν + eνr2ξrφr + eνr2+

+ eνr2νrξr − eλ − eλr2ξtφt − eλr2λtξt + 2eνξ
(
eλ + rλr − 1

)
− 2eνrλr

)
(4.8)

where the subscript denotes differentiation with respect to the variable.
Now taking into account the equation (A.50) related to the first prolon-

gation of the Noether theorem:

X [1]L+ L
(
dξt

dt
+ dξr

dr

)
= dht

dt
+ dhr

dr
, (4.9)

where ht and hr are two arbitrary functions depending on (t, r, ν, λ, φ, ξ).
Expanding the above condition, we find a system of 75 equations with 9
unknown variables, 6 coefficients of the Noether vector (ξt, ξr, ην , ηλ, ηφ, ηφ),
2 unknown functions ht, hr and the form of the distortion function f(φ)[43].
Solving the system we find two possible models that are invariant under
point transformations, that are

f(φ) = c4 + c3φ and f(φ) = c4 + c4

c1
ec1φ. (4.10)

This approach allowed us to select the distortion function and the La-
grangians in agreement with the symmetries of the astrophysical system.

4.2 The weak field approximation

To obtain the weak field approximation we take into account the expo-
nential form of the distortion function and then we compare the result with
the S2 star orbits. As in General Relativity, in order to recover the Newto-
nian potential for time-like particles we have to expand the g00 component
of the metric to Φ ∼ v2 ∼ O(2), where Φ is the Newtonian potential and v is
the 3-velocity of a fluid element. If we want to study the Post Newtonian
limit we have to expand the components of the metric as:

g00 ∼ O(6), g0i ∼ O(5), and gij ∼ O(4). (4.11)
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We also assume that in the weak field approximation the Birkhoff’s Theo-
reme holds and so a static and spherically symmetric metric works as well.
With this position, the metric is

ds2 = A(r)dt2 −B(r)dr2 − r2dΩ2. (4.12)

Since the metric depends only on the radial coordinate, it is reasonable to
consider that the scalar fields φ and ξ depends only on the radial coordinate.
The expansion of the metric components, as well as the scalar fields, is:

A(r) = 1 + 1
c2 Φ(2) + 1

c4 Φ(4) + 1
c6 Φ(6) +O(8) (4.13)

B(r) = 1 + 1
c2 Ψ(2) + 1

c4 Ψ(4) +O(6) (4.14)

φ(r) = φ0 + 1
c2φ

(2) + 1
c4φ

(4) + 1
c6φ

(6) +O(8) (4.15)

ξ(r) = ξ0 + 1
c2 ξ

(2) + 1
c4 ξ

(4) + 1
c6 ξ

(6) +O(8) (4.16)

If we substitute the exponential form f(φ), namely f(φ) = 1 + eφ, into the
the equations (4.4)-(4.6) and if we consider the previously perturbation
expansion we obtain:

A(r) = 1− 2GNMφc
c2r

+ G2
NM

2

c4r2

[
14
9 φ

2
c + 18rξ − 11rφ

6rξrφ
r

]
+

− G3
NM

3

c6r3

[
50rξ − 7rφ

12rξrφ
φc + 16φ3

c

27 −
r2(2r2

ξ − r2
φ)

r2
ξr

2
φ

]
(4.17)

B(r) = 1 + 2GNMφc
3c2r

+ G2
NM

2

c4r2

[
2
9φ

2
c +

(
3

2rξ
− 1
rφ

)
r

]
(4.18)

Similar relations can be obtained for the two scalar field, φ(r) and ξ(r),
showed in [43]. We see that two length scales arise, rφ and rξ, related to the
two scalar fields φ and ξ. Is finally possible to show how the non locality
affects the Newtonian potential, which turns out to be

V (r) = UNL − UN = GNMφc
r

+ G2
NM

2

c4r2

[
14
9 φ

2
c + 18rξ − 11rφ

6rξrφ
r

]
+

− G3
NM

3

c6r3

[
50rξ − 7rφ

12rξrφ
φc + 16φ3

c

27 −
r2(2r2

ξ − r2
φ)

r2
ξr

2
φ

]
(4.19)
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To compare our results with real trajectories we have to find some con-
straints on the two new length scales. This is why, the results of the sim-
ulations are now compared with the orbits of S2 star around the Galactic
Center[43]. The results obtained for rφ and rξ parameters shows that the S2
star orbit in non-local gravity fits the astrometric data better than Keplerian
orbit. The most probable value for the scale parameter rφ it varies from 0.1
to 2.5 AU, otherwise it is not possible to obtain a constrains on the parame-
ter rξ of non-local gravity using only observed astrometric data since this it
is associated with one of the scalar fields which is not dynamical.

The obtained orbital precession of the S2 star in non-local gravity is
of the same order of magnitude as in General Relativity; in the future,
more precise astronomical data will better constrain the non-local gravity
parameters. However, it is reasonable to think that non-local effects do not
have a significant role at scales comparable to the S2 astrophysical scales,
but only at cosmological ones. Finally, as we are going to see in the next
chapters, that the forms of the distortion function f(φ), that leave the action
invariant, are the same as the ones of cosmological minisuperspace.



CHAPTER 5

NON LOCAL COSMOLOGY FROM NOETHER
SYMMETRIES

In the previous chapter, we discussed some methods able to extend Gen-
eral Relativity using the Lagrangian formulation through the variational
approach. In every case, we need a procedure that could be capable to
select a functional form of the functions involved in these theories whether
they are f(R) or for modified non-local theories f(R,�−1R).

Clearly these functions need to be suitable for the symmetries of the
system and the methodology that allows us to select that compatibility
is exactly the Noether Theorem and in particular, for our aim, its first
prolongation. As said before this necessity is related to the fact that in the
Friedman-Lemaitre-Robertson-Walker metric, the action will be point-like.

With a view to studying the Non-Local Theories we need to include the
following constraint in the action:

φ = �−1R. (5.1)

where φ is a scalar field and its inclusion is mediated by using another
scalar field χ which plays the role of Lagrange-multiplier.

Following the procedure showed in the Appendix A we define a con-
figuration space Q ≡ {a,R, φ, χ} and much more important its tangent
space T Q ≡ {a,R, φ, χ.ȧ, Ṙ, φ̇, χ̇}where the generator of the infinitesimal
transformation and the Lagrangian L are defined.

31
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5.1 The point-like Lagrangian

As anticipated we need to recover the Non-Local Action (3.29) and for
the sake simplicity we use the physical units G = c = ~ = 1 and also we do
not consider the matter term. So the action becomes:

S =
∫
d4x
√
−gF (R, φ). (5.2)

where already it has been said:

φ = �−1R or �φ = R (5.3)

this suggests that the scalar field φ must satisfy a Klein-Gordon equation.
However, in particular, is possible to include these constrains into the action
by using the Lagrange multiplier χ, because in any case the term �φ−R is
evidentially zero:

S =
∫
d4x
√
−g
[
F (R, φ) + χ(�φ−R)

]
. (5.4)

Integrating by parts and setting to zero the boundary term it is possible to
rewrite the term which involves the box operator:

S =
∫
d4x
√
−g
[
F (R, φ)− χR−∇µχ∇µφ

]
. (5.5)

Now it is possible to take into account the flat FRLW metric in the flat case
k = 0, namely:

ds2 = dt2 − a2(t)
[
dx2

1 + dx2
2 + dx2

3

]
, (5.6)

then assuming that the scalar field only depends on the time the covariant
derivatives become time derivatives and also the invariant measure gives
rise to 2π2dta3 where t now is the cosmological time. The action therefore is

S = 2π2
∫
dt a3

(
F (R, φ)− χR− φ̇χ̇

)
. (5.7)

To obtain the canonical point-like Lagrangian which depends on all the
variable of the tangent space, above mentioned, we need to set R like a
dynamical constraint by using another Lagrange multiplier λ. In that metric
the Ricci scalar is:

R = −6
(
ä

a
+ ȧ2

a2

)
, (5.8)

and so we obtain:

S = 2π2
∫
dt a3

{
F (R, φ)− χR− φ̇χ̇− λ

[
R + 6

(
ä

a
+ ȧ2

a2

)]}
. (5.9)
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The Lagrange multiplier λ could be obtained by varying the action with
respect to R, that leads us to:

λ = ∂F (R, φ)
∂R

− χ (5.10)

and the the action becomes:

S = 2π2
∫
dt a3

{
F (R, φ)− χR− φ̇χ̇−

(
∂F (R, φ)

∂R
− χ

)[
R + 6

(
ä

a
+ ȧ2

a2

)]}
.

(5.11)
After integrating by parts, it is finally possible to achieve the get point-like
Lagrangian:

L(a,R, φ, χ.ȧ, Ṙ, φ̇, χ̇) = 6a2ȧṘ
∂2F (R, φ)

∂R2 + 6a2ȧφ̇
∂2F (R, φ)
∂R∂φ

+

+ 6aȧ2∂F (R, φ)
∂R

+ a3F (R, φ)− a3R
∂F (R, φ)

∂R
− 6a2ȧχ̇− 6aχȧ2 − a3χ̇φ̇.

(5.12)

This result will be important in the next section where we will determinate
the Noether symmetries of these theories and so the form relative of the
function f(R, φ).

5.2 The Noether Symmetries

As it has been said in the Theorem 4 (First prolongation of Noether
Theorem) a Noether symmetry for the point-like Lagrangian (5.12) exists if
it satisfies the condition (A.50):

X [1]L+ Lξ̇ = ġ(t, qi). (5.13)

By explaining each term and taking into account that our Lagrangian is not
dissipative ∂L

∂t
= 0, the previous condition gives rise to:

ηi(t, q)∂L
∂qi

+ (η̇i − q̇iξ̇)∂L
∂q̇i

+ Lξ̇ = ġ(t, qi). (5.14)

To be clearer we can write each term of the first prolongation of the Noether
vector:

X [1] = α
∂

∂a
+ β

∂

∂R
+ γ

∂

∂φ
+ δ

∂

∂χ
+

+ (α̇− ȧξ̇) ∂
∂ȧ

+ (β̇ − Ṙξ̇) ∂
∂Ṙ

+ (γ̇ − φ̇ξ̇) ∂
∂φ̇

+ (δ̇ − χ̇ξ̇) ∂
∂χ̇

(5.15)
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where the functions α, β, γ, δ, ξ depend on t, a, R, φ, χ and their derivatives:

α̇ = ∂α

∂t
+ ∂α

∂a
ȧ+ ∂α

∂R
Ṙ + ∂α

∂φ
φ̇+ ∂α

∂χ
χ̇ (5.16)

β̇ = ∂β

∂t
+ ∂β

∂a
ȧ+ ∂β

∂R
Ṙ + ∂β

∂φ
φ̇+ ∂β

∂χ
χ̇ (5.17)

γ̇ = ∂γ

∂t
+ ∂γ

∂a
ȧ+ ∂γ

∂R
Ṙ + ∂γ

∂φ
φ̇+ ∂γ

∂χ
χ̇ (5.18)

δ̇ = ∂δ

∂t
+ ∂δ

∂a
ȧ+ ∂δ

∂R
Ṙ + ∂δ

∂φ
φ̇+ ∂δ

∂χ
χ̇ (5.19)

ξ̇ = ∂ξ

∂t
+ ∂ξ

∂a
ȧ+ ∂ξ

∂R
Ṙ + ∂ξ

∂φ
φ̇+ ∂ξ

∂χ
χ̇ (5.20)

with the gauge function g(t, qi):

ġ = ∂g

∂t
+ ∂g

∂a
ȧ+ ∂g

∂R
Ṙ + ∂g

∂φ
φ̇+ ∂g

∂χ
χ̇. (5.21)

With these prescriptions the equation (4.14) leads us to a system of twenty-
eight partial differential equations, related to the collected terms in ȧ2, ȧχ̇,
χ̇φ̇, ȧṘ, Ṙ2 and many others. For entirety i will show the complete system
in the Appendix B.

It is straightforward to show that by setting to zero each term of the
time derivative of the gauge term, namely:

∂g

∂t
= ∂g

∂a
= ∂g

∂R
= ∂g

∂φ
= ∂g

∂χ
= 0, (5.22)

we obtain that α, β, γ, δ, do not depend on time and also and on the contrary
ξ depends only on time and not on the other variables.

After various algebraic manipulation is finally possible to show that
these equations give rise to the most important and fundamental system
composed by only six partial differential equations, which will allow us to
determine the Noether symmetries and the functional form the F (R, φ). In
particular, we first obtain that:

α = α(a); β = β(a,R, φ, χ); γ = γ(a, φ); δ = δ(a, χ); (5.23)

ξ = ξ(t). (5.24)
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So the final system is:

−3R∂F
∂R

α− aR∂
2F

∂R2β + a
∂F

∂φ
γ − aR ∂2F

∂R∂φ
γ + 3Fα− aR∂ξ

∂t

∂F

∂R
+ a

∂ξ

∂t
F = 0

−aδ − αχ+ aγ
∂2F

∂R∂φ
+ α

∂F

∂R
+ aβ

∂2F

∂R2 + a2 ∂2F

∂R∂φ

∂γ

∂a
− a2 ∂δ

∂a
+ a2∂

2F

∂R2
∂β

∂a
− 2aχ∂α

∂a
+

+2a∂F
∂R

∂α

∂a
− a∂ξ

∂t

∂F

∂R
+ aχ

∂ξ

∂t
= 0

6a2∂
2F

∂R2
∂β

∂χ
− 12aα− a3∂γ

∂a
− 6a2∂α

∂a
− 6a2 ∂δ

∂χ
+ 6a2∂ξ

∂t
= 0

−3a2α− a3∂γ

∂φ
− a3 ∂δ

∂χ
+ a3∂ξ

∂t
= 0

6a2 ∂2F

∂R∂φ

∂α

∂a
+ 12a ∂2F

∂R∂φ
α + 6a2∂

2F

∂R2
∂β

∂φ
+ 6a2 ∂3F

∂R2∂φ
β + 6a2 ∂3F

∂R∂2φ
γ + 6a2 ∂2F

∂R∂φ

∂γ

∂φ
+

−a3 ∂δ

∂a
− 6a2∂ξ

∂t

∂2F

∂R∂φ
= 0

6a2∂
2F

∂R2
∂α

∂a
+ 12a∂

2F

∂R2α + 6a2∂
2F

∂R2
∂β

∂R
+ 6a2∂

3F

∂R3β + 6a2 ∂3F

∂R2∂φ
γ − 6a2∂ξ

∂t

∂2F

∂R2 = 0
(5.25)

After long manipulations it is possible to determine how α, β, γ, δ depend
on the variables of the configuration space:

α(a) = k1a; β(R) = −R(6k1 + 2c2); γ(φ) = c3; δ(χ) = c2χ; (5.26)

ξ(t) = (3k1 + c2)t+ c4 (5.27)

and the fundamental partial differential equation for F (R, φ):

F (R, φ)(c2 + 6k1)−R∂F (R, φ)
∂R

(6k1 + 2c2) + c3
∂F (R, φ)

∂φ
= 0, (5.28)

where the constants that appear in previous relations come from the resolu-
tion of differential equations of the system (5.25).

5.3 The model selection

In the previous section, we have obtained a partial differential equation
(5.28) for the function F (R, φ) that characterizes the Lagrangian of our the-
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ory. By using this equation we want to determinate the classes of solution
compatible with the Noether theory in the cosmological framework.

Let us start recovering the partial differential equation (PDE):

F (R, φ)(c2 + 6k1)−R∂F (R, φ)
∂R

(6k1 + 2c2) + c3
∂F (R, φ)

∂φ
= 0.

First of all, we suppose that the function is writeable like a product of two
functions, one of the variable R and the second of the variable φ, namely:

F (R, φ) = A(R)B(φ). (5.29)

that yields to

A(R)B(φ)(c2 + 6k1)−R∂A(R)
∂R

B(φ)(6k1 + 2c2) + c3A(R)∂B(φ)
∂φ

= 0. (5.30)

First Case: Every coefficients are not null

We obtain:[
A(R)(c2 + 6k1)−R∂A(R)

∂R
(6k1 + 2c2)

]
B(φ) = −c3A(R)∂B(φ)

∂φ
. (5.31)

By dividing both sides by A(R)B(φ) we obtain that the left term depends
only on the variable R and the right term only on φ, so we can equal both
members to a constant m, as follow:A(R)(c2 + 6k1)−R∂A(R)

∂R
(6k1 + 2c2) = mA(R)

∂B(φ)
∂φ

= −m
c3
B(φ)

(5.32)

that has the following solution:A(R) = A0R
6k1+c2−m

6k1+2c2

B(φ) = B0 e
−m

c3
φ

(5.33)

Summing up we finally obtain the first solution of the system (5.25):

α(a) = k1a; β(R) = −R(6k1 + 2c2); γ(φ) = c3; δ(χ) = c2χ;

ξ(t) = (3k1 + c2)t+ c4,

F (R, φ) = F0R
6k1+c2−m

6k1+2c2 e
−m

c3
φ
. (5.34)
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It is straightforward and also important to stress that for c2 = 0 and m = 0,
we recover as a limit the General Relativity:

F (R) = F0R. (5.35)

In fact the action becomes:

S =
∫
d4x
√
−gR. (5.36)

that leads, as it has been shown in the first chapter, to the Einstein field
equations.

Second Case: c2 + 6k1 = 0

We obtain:
c2R

∂A(R)
∂R

B(φ) = c3A(R)∂B(φ)
∂φ

. (5.37)

By dividing both sides by A(R)B(φ) we obtain that each sides depends on
a different variable, that is R for the left part and φ for the right part, so we
can equal both to a constant m, as follow:R

∂A(R)
∂R

c2 = mA(R)
∂B(φ)
∂φ

= m
c3
B(φ)

(5.38)

that has the following solution:A(R) = A0R
m
c2

B(φ) = B0 e
m
c3
φ (5.39)

This allow us to determine the second solution of the system (5.25):

α(a) = −c2

6 a; β(R) = −Rc2; γ(φ) = c3; δ(χ) = c2χ;

ξ(t) = c2

2 t+ c4;

F (R, φ) = F0R
m
c2 e

m
c3
φ
. (5.40)

This second case gives rise a less general case of the previous one and
clearly in the same way we get General Relativity as a limit. In fact stating
m = c2 and c3 � m we recover F (R) = F0R that is the Einstein-Hilbert
Lagrangian.
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Third case: 6k1 + 2c2 = 0

It easily could be rewritten as: 3k1 + c2 = 0. This condition leads to an
important consequence:

ξ(t) = c4 =⇒ ∂ξ(t)
∂t

= 0 (5.41)

Such condition, as is possible to see form the equation 5.14, leads us to the
classical Noether Theorem without the prolongation, namely:

LXL = 0 or XL = 0. (5.42)

However we get this equation

−A(R)B(φ)c2 = c3A(R)∂B(φ)
∂φ

. (5.43)

By dividing both sides by A(R) we obtain an equation which depends only
on the function B(φ), as follow

∂B(φ)
∂φ

= −c2

c3
B(φ) (5.44)

and the related solution is:

B(φ) = B0e
− c2

c3
φ
. (5.45)

By merging with the previous results, we finally obtain the third solution
of the system (5.25):

α(a) = −c2

3 a; β(R) = 0; γ(φ) = c3; δ(χ) = c2χ;

ξ(t) = c4;

F (R, φ) = F0A(R)e−
c2
c3
φ
. (5.46)

Furthermore, even in this case, we can obtain the Einstein Theory as a limit,
in fact, by imposing c3 � c2 and expanding at first order A(R) = A0 +A1R,
we obtain the General Relativity with a constant term that can be interpreted
as the cosmological term:

S =
∫
d4x
√
−g
(
R− 2Λ

)
, (5.47)
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that is exactly the Hilbert-Einstein Action in presence of the cosmological
constant.

Fourth case: c3 = 0

In this case, the term related to the φ derivative vanishes and thus we
get: [

A(R)(c2 + 6k1)−R∂A(R)
∂R

(6k1 + 2c2)
]
B(φ) = 0. (5.48)

The term B(φ) clearly is not zero, thus we can get a relation only for A(R):

A(R)(c2 + 6k1) = R
∂A(R)
∂R

(6k1 + 2c2), (5.49)

that has the following solution:

A(R) = A0R
6k1+c2

6k1+2c2 . (5.50)

The fourth solution of the system (5.25) so becomes:

α(a) = k1a; β(R) = −R(6k1 + 2c2); γ(φ) = 0; δ(χ) = c2χ;

ξ(t) = (3k1 + c2)t+ c4;

F (R, φ) = F0R
6k1+c2

6k1+2c2B(φ). (5.51)

Even in this case we obtain the Einstein Theory if we consider B(φ) = B0
and c2 = 0.

Now we want to analyse the situation in which the function F (R, φ) is
writeable like a sum of two functions, one of the variable R and the second
one of the variable φ, namely

F (R, φ) = A(R) +B(φ) (5.52)

that, by means of the equation (5.28), yields

A(R)(c2 + 6k1) +B(c2 + 6k1)−R∂A(R)
∂R

(2c2 + 6k1) + c3
∂B(φ)
∂φ

= 0. (5.53)

First Case: Every coefficients are not null

We obtain:

A(R)(c2 + 6k1)−R∂A(R)
∂R

(2c2 + 6k1) = −B(c2 + 6k1)− c3
∂B(φ)
∂φ

, (5.54)
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where the left term depends only on the variable R and the right term only
on φ, so we can equal both sides to a constant m, as follow:A(R)(c2 + 6k1)−R∂A(R)

∂R
(2c2 + 6k1) = m

−B(c2 + 6k1)− c3
∂B(φ)
∂φ

= m
. (5.55)

It is possible to solve the first one recovering that:

y′ + a(x)y = b(x) (5.56)

has the following solution:

y(x) = e−K(x)
[
C +

∫
dx b(x)eK(x)

]
, (5.57)

where y is a function of x, a(x) and b(x) are generic functions of the x
variable and K(x) =

∫
dx a(x).

The previous system has the following solution:A(R) = A0R
c2+6k1

2c2+6K1 + m
c2+6k1

B(φ) = B0e
− c2+6k1

c3
φ − m

c2+6k1

. (5.58)

We can finally obtain the fifth solution of the system (5.25):

α(a) = k1a; β(R) = −R(6k1 + 2c2); γ(φ) = c3; δ(χ) = c2χ;

ξ(t) = (3k1 + c2)t+ c4;

F (R, φ) = A0R
6k1+c2

6k1+2c2 +B0e
− c2+6k1

c3
φ
. (5.59)

Also, in this case, it is possible to recover the General Relativity, in fact,
if c3 � c2 + 6k1 and c2 = 0 as it has already been shown, we recover the
Einstein Theory.

Second Case: c2 + 6k1 = 0

It corresponds to:

−R∂A(R)
∂R

c2 = −c3
∂B(φ)
∂φ

, (5.60)

where the variables are clearly divided, so we can apply the well-known
procedure, equalling both sidedes to a constant m:R

∂A(R)
∂R

c2 = m

c3
∂B(φ)
∂φ

= m
=⇒

A(R) = m
c2

ln
(
R
R0

)
+ A0

B(φ) = m
c3
φ+B0

(5.61)
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This leads us to the sixth solution of the system (5.25):

α(a) = −c2

6 a; β(R) = −Rc2; γ(φ) = c3; δ(χ) = c2χ; ξ(t) = c2

2 t+ c4;

F (R, φ) = m

c2
ln
(
R

R0

)
+ m

c3
φ+ F0. (5.62)

As well as in the previous cases the General Relativity could be obtained
if we consider c3 � m and if we expand the natural logarithm at the first
order around R0. The constant term also, in that case, can be interpreted as
the cosmological constant term.

Third case: 6k1 + 2c2 = 0

By considering: 3k1 + c2 = 0. A condition that leads to an important
consequence:

ξ(t) = c4 =⇒ ∂ξ(t)
∂t

= 0 (5.63)

which, as it is possible to see from the equation (5.14),let us to recover the
classical Noether Theorem without the prolongation, namely:

LXL = 0 or XL = 0 (5.64)

However we get the following equation:

A(R)c2 = −Bc2 + c3
∂B(φ)
∂φ

, (5.65)

where is clear the dependence on φ of the right term and the the dependence
on R of the left term. So it is possible to equal both to a constant m:A(R)c2 = m

∂B(φ)
∂φ

c3 −B(φ)c2 = m
(5.66)

which admits the following solution:A(R) = m
c2

B(φ) = B0e
c3
c2 − m

c2

(5.67)

Summing up, we obtain the seventh solution of the system (5.25):

α(a) = −c2

3 a; β(R) = 0; γ(φ) = c3; δ(χ) = c2χ;
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ξ(t) = c4;

F (R, φ) = F0e
c2
c3
φ
. (5.68)

Fourth case: c3 = 0

Let us analyse the last solution with equation:

A(R)(c2 + 6k1)−R∂A(R)
∂R

(2c2 + 6k1) = −B(φ)(c2 + 6k1). (5.69)

We can equal each term to a constant m because as before, the right term
depends only on φ and the left term only on R:A(R)(c2 + 6k1)−R∂A(R)

∂R
(2c2 + 6k1) = m

−B(φ)(c2 + 6k1) = m
(5.70)

The first one has already been studied in the first case of function made of
sum of f(φ) and f(R) and so we get the following solution:A(R) = A0R

c2+6k1
2c2+6k1 + m

c2+6k1

B(φ) = − m
c2+6k1

(5.71)

Finally, we get the eighth and the last solution of the system (5.25):

α(a) = k1a; β(R) = −R(6k1 + 2c2); γ(φ) = 0; δ(χ) = c2χ;

ξ(t) = (3k1 + c2)t+ c4;

F (R, φ) = F0R
6k1+c2

6k1+2c2 . (5.72)

It is straightforward to verify for c2 = 0 we recover the General Relativity.



CHAPTER 6

THE COSMOLOGICAL EQUATIONS

In this last chapter, we want to analyse the cosmological equations
related to our model of gravity and also to specialize the obtained equations,
on the functions previously determined. In particular as, we are going to
show, these models are capable to reproduce the de-Sitter solution without
having to introduce the cosmological constant and also two scalar fields
that in this sense they cover the role of inflation field.

6.1 Non-Local Cosmology from Noether Symme-
tries

It is now possible to determine the cosmological equation in general
without the necessity of focusing on the function related to Noether Sym-
metries Approach.

First of all, we have to recover the point-like Lagrangian (5.12):

L(a,R, φ, χ.ȧ, Ṙ, φ̇, χ̇) = 6a2ȧṘ
∂2F (R, φ)

∂R2 + 6a2ȧφ̇
∂2F (R, φ)
∂R∂φ

+

+ 6aȧ2∂F (R, φ)
∂R

+ a3F (R, φ)− a3R
∂F (R, φ)

∂R
− 6a2ȧχ̇− 6aχȧ2 − a3χ̇φ̇,

and the Euler-Lagrange equations:

d

dt

(
∂L
∂q̇i

)
−
(
∂L
∂qi

)
= 0, (6.1)
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where qi = {a,R, φ, χ} and also the energy condition is:

EL = q̇i
∂L
∂q̇i
− L = 0, (6.2)

Now with these relations, we are capable to determine the cosmological
equation, that are:

1
2F (R, φ) + 1

2 χ̇φ̇+
[
3H2 + 3H d

dt

]
χ+

[
3
(
Ḣ +H2

)
− 3H d

dt

]
∂F (R, φ)

∂R
= 0,

(6.3)

1
2F (R, φ)− 1

2 χ̇φ̇+
(
2Ḣ + 3H2

)
χ+

(
Ḣ + 3H2

) ∂F (R, φ)
∂R

+

+
[
d2

dt2
+ 3H d

dt

](
χ− ∂F (R, φ)

∂R

)
= 0, (6.4)

φ̈+ 3Hφ̇+ 6Ḣ + 12H2 = 0, (6.5)

χ̈+ 3Hχ̇+ ∂F (R, φ)
∂φ

= 0, (6.6)

R = −6
(
Ḣ + 2H2

)
. (6.7)

The first one is related to the Energy condition and the others come from
the Euler-Lagrange equation. In all of them, the following relations have
been used :

H(t) = ȧ

a
, (6.8)

ä

a
= Ḣ +H2, (6.9)

� = d2

dt2
+ 3H d

dt
. (6.10)

As it is possible to see, the equation for the scalar field φ (6.5) it only
depends on the choice of H(t) and it does not depends on what kind of
function F (R, φ) we are considering. Such equation can be compared with
the Guth Model[52] of inflation:

φ̈+ 3Hφ̇+ ∂V (φ, T )
∂φ

= 0, (6.11)
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where the potential V (φ, T ) is, in our case:

V (φ, T ) = φ
(
6Ḣ + 12H2

)
, (6.12)

Similar considerations hold also for the scalar field χ that exactly satisfies a
Guth Model of inflation.

Beyond this brief parenthesis, we want to show that these models admit
a de-Sitter solution. In fact, we can consider an exponential expansion rate,
namely:

a(t) = a0e
Λt, (6.13)

so
H(t) = Λ (6.14)

and
R(t) = −12Λ2. (6.15)

The equation (6.5), hence becomes:

φ̈+ 3Λφ̇+ 12Λ2 = 0, (6.16)

that has this general solution:

φ(t) = −c1e
−3Λt

3Λ + c2 − 4Λt. (6.17)

Let us recover the most general F (R, φ) in the first product case (5.34) that
could be rewritten as:

F (R, φ) = F0R
Ke−Cφ, (6.18)

where K and C are arbitrary constant. This choice lead us to the following
form of the equation (6.5):

χ̈+ 3Λχ̇−Qe−Cφ = 0, (6.19)

where Q is only a constant which derive from derivation. The system
formed by the Euler-Lagrangian equations and the energy condition, has
an analytic solution only for certain coefficient values, so we select

φ(t) = c2 − 4Λt, (6.20)

where c1 = 0. This particular case allows us to obtain a simple solution for
the scalar field χ:

χ(t) = 3K4K−1(−Λ)KΛK−2e4Λt−Cc2

4C + 3 − c3e
−3Λt

3Λ + c4, (6.21)
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We are now capable to write the final system:36c4Λ2eCc2+(3−4C)Λt + (4C + 3)12K((4C − 1)K + 3) (−Λ2)K e3Λt = 0
12c4Λ2eCc2+(3−4C)Λt + 12K((4C − 1)Λ + 3) (−Λ2)K e3Λt = 0,

(6.22)
whose solution rises behind the condition:c4 = 0

3−K + 4CK = 0
. (6.23)

and finally leads us to:

K = 3
1− 4C . (6.24)

Summing up we can reproduce a de-Sitter solution, considering:

F (R, φ) = RKe−Cφ, (6.25)

φ(t) = c2 − 4Λt, (6.26)

χ(t) = χ0e
4Λt − c3e

−3Λt

3Λ , (6.27)

where K and C are not independent, as the relation (6.24) shows. The
constant χ0 sums up the other constant in χ.

We can obtain a solution only for de-Sitter in the product case, in fact,
in the sum case we do not have a solution for the cosmological equation.
Following the same procedure that we have shown, is also possible to
investigate a power low solution:

a(t) = a0t
m (6.28)

but it has not a solution both in the product case and in the sum case.
Concluding we can stress that the existence of Noether’s symmetries is

a selection criterion for physically motivated models. In-fact, up to now,
scalar fields, dark matter and dark energy contributions, were choose by
hand in order to solve the cosmological and astrophysical issues. According
to non-local theories, above involved, such quantities comes naturally out.



CHAPTER 7

CONCLUSIONS AND PERSPECTIVES

In this thesis, we have showed the theoretical foundations of the Ex-
tended Theories of Gravity, developed in order to overcome the shortcom-
ings and the inconsistencies of General Relativity. These issues appear at
the infrared and ultraviolet scales, respectively, on one side in the Cosmo-
logical and Astrophysical sectors and on the other side at the quantum
level. Anyway, these theories need to satisfy two requirements:

1. recover the well-know results of the General Relativity, in other words
they have to reproduce GR as a limit.

2. tfollow the geometrical approach, developed by Hilbert, without in-
cluding the dark sector (Dark Matter and Dark Energy) of the cosmic
pie; in-fact there is not a final proof of their existence.

Recently, data coming from astrophysical and cosmological observations
result of extremely high quality and lead to the so-called Precision Cos-
mology. This new era of research is bringing to extend accurate methods
of investigations, appropriate for experimental physics, also to cosmol-
ogy and, generally, to astrophysics. From Precision Cosmology, a picture
emerges in some way surprising, according to which also the relatively
near (at small redshifts) universe results very different to the representation
we had of it until nineties.

In synthesis, the universe can be represented as a spatially flat manifold
with an ordinary matter-energy content (baryonic matter and radiation)
well below the critical value necessary to obtain flatness from the Einstein-
Friedmann equations. Furthermore, cosmological standard candles, used
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as distance indicators, suggest an accelerated expansion phase, hardly ob-
tainable once we consider ordinary fluids as the source of cosmological
equations. Specifically, discrepancy between the observed luminous matter
and the critical density, needed to obtain a spatially flat universe and then
to give rise to the accelerated expansion, can be only filled if one admits the
existence of a cosmic fluid, with negative pressure, which does not result
clustered as in the large scale structure. In the simplest scenario, this myste-
rious ingredient, known as dark energy, can be represented as the Einstein
cosmological constant Λ and would account for about 70% to the global
energy of the Universe. The remaining 30%, instead located in galaxies and
clusters of galaxies, should be constituted for about 4% by baryons and
for the rest by cold dark matter (CDM), theoretically describable through
WIMPs (Weak Interacting Massive Particles) or axions. This cosmological
model, the so-called ΛCDM represents a first step toward a new cosmology.

Beside the concordance with the observations, this model present some
shortcoming in particular relative to the cosmological constant. If the
cosmological constant constitutes the vacuum state of the gravitational
field, we have to explain the 120 orders of magnitude between the observed
value at cosmological level and the one predicted by any quantum gravity
theory[11].

Moreover, there is the un-solved problem of the cosmic coincidence,
for which the dark energy becomes relevant and comparable to the matter
term (dark and baryonic) in too recent epochs, in fact they are of the same
order of magnitude, being for the cosmological evolution, 30% and 70%
very similar numbers.

A first attempt to generalize GR was the Brans-Dicke model, a scalar-
tensor theory of gravity, developed in order to include the Mach’s Principle
in which the gravitational constant G is non longer supposes to be constant
but it depends on φ scalar field.

The Einstein-Hilbert approach, that is linear in R, was extended includ-
ing high order term in the Ricci scalar, like the Starobinsky model that is
quadratic in R. It is possible to naturally generalize the EH action using a
generic function of the Ricci scalar, the so-called f(R) gravity. This model,
as has been showed, do not require to find candidates for dark energy and
dark matter and it exhibit inflationary behaviour.

An alternative approach to gravity based on torsion was presented,
called the teleparallel approach that lead to the same conclusion of General
Relativity without the necessity of introducing the equivalence principle
among inertial masses and gravitational masses. Moreover, as in f(R)
models, extended theory of teleparallel gravity has been developed.

The main subject of my master thesis is the study of the non-local theory
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of gravity and in particular it is a generalization, in Ricci formalism, of
Woodard-Deser action. In these theories the non locality is reproduced
by the inverse of the box operator of the Ricci scalar, φ = �−1R. This
modification of Einstein gravity was developed, not only in order to solve
the astrophysical and cosmological shortcomings but since the non-locality
is a intrinsic and exclusive feature of the quantum world, also as a probable
link to a quantum theory of gravity.

In particular in this work we have studied a Lagrangian which involve
a generic function of Ricci scalar and of the non-local operator, namely
f(R,�−R). This choice is done because the Woodard-Deser theory is linear
in R and also for overcoming the product relation between the R and the
distortion function f(φ).

The aim was to select effective theories of gravity showing Noether
symmetries with physical meaning capable of allowing the exact solution
of related dynamical system. The approach, already developed in other con-
tests, is particularly relevant in view of regularization and renormalization
of theories of gravity. The so called Noether Symmetries Approach in this
perspective allows us to consider reliable astrophysical and cosmological
models whose point-like Lagrangians give rise to integrable dynamical
system. Selecting first integrals of motion was the second part of the project
so that exact cosmological solution can be achieved.

It is important to once more stress that this approach allow us to re-
produced both the dark sector of the cosmic pie, i.e the dark matter and
dark energy contribution and two scalar field compatible with the Guth
inflation model, only via geometrical modification of the Einstein-Hilbert
lagrangian. The hope is to find a physical interpretation of the obtained
results in view of selecting reliable models capable, in principle, of ad-
dressing the behaviours of gravitational field at ultraviolet (quantum) and
infrared(astrophysical, cosmological) scales.



APPENDIX A

THE NOETHER SYMMETRIES APPROACH

A.1 Intrinsic formulation of the Euler-Lagrange
Equations

The Euler-Lagrange equations are widely described in any book of An-
alytic Mechanics and for such motivation, we will not give a complete
treatment about the argument but we will present an uncommon formula-
tion. First of all, we need to introduce the Lagrangian function:

L = T − U, (A.1)

where U is the potential term that is at most a linear function of the velocity:

U(q, q̇) = V (q) + Ai(q)q̇i, (A.2)

such requirement comes from the fact that the generalized forces are not
supposed to be dependent on the accelerations. Then the T term is the
kinetic energy:

T = 1
2aij q̇

iq̇j (A.3)

a Lagrangian it said to be regular if:

det||aij|| = det
∣∣∣∣∣∣∣∣ ∂2L
∂q̇i∂q̇j

∣∣∣∣∣∣∣∣ 6= 0. (A.4)

Finally, we introduce the Euler-Lagrangian Equations in the classical for-
malism:

d

dt

(
∂L
∂q̇i

)
−
(
∂L
∂qi

)
= 0. (A.5)
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In order to get the intrinsic formulation let us consider a point transforma-
tion on T Q = {qi, vi}: q

i 7→ Qi(q)
vi 7→ V i(q) = ∂Qi

∂qk v
k

(A.6)

that transforms the Lagrangian:

L(q, v) 7→ L̃(Q, V ). (A.7)

Now we want to demonstrate that the Euler Lagrange equations transform
like a covector under point-transformation:

∂L̃
∂Qi

= ∂L
∂qk

∂qk

∂Qi
+ ∂L
∂vk

∂vk

∂qj
∂qj

∂Qi
, (A.8)

∂L̃
∂V i

= ∂L
∂vk

∂vk

∂V i
. (A.9)

The (A.6) implies that:
∂vk

∂V i
= ∂q

∂Qi
(A.10)

and so:

d

dt

∂L
∂V i

= d

dt

(
∂L
∂vk

∂vk

∂V i

)
= d

dt

(
∂L
∂vk

∂qk

∂Qi

)

= d

dt

(
∂ L
∂vk

)
∂vk

∂Qi
+ ∂L
∂vk

d

dt

∂vk

∂Qi

= d

dt

(
∂L
∂vk

)
∂vk

∂Qi
+ ∂L
∂vk

∂vk

∂qj
∂qj

∂Qi

(A.11)

By considering the difference between (A.11) and (A.9) we obtain:

d

dt

(
∂L̃
∂V i

)
−
(
∂L
∂Qi

)
=
(
d

dt

∂L
∂vi
− ∂L
∂qi

)
∂qk

∂Qi
(A.12)

This suggests that the Euler-Lagrange can be multiplied by dqi and consid-
ering the vanishing on the trajectories Γ of the one-form1:(

LΓ

(
∂L
∂vi

)
− ∂L
∂qi

)
dqi = 0, (A.13)

1where has been used L for Lie derivative and so it does not stand for the Lagrangian
Function
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as a condition equivalent to Euler-Lagrange thinking to associate the Lie
derivative respect to Γ with the time derivative. A little algebra shows that:(

LΓ

(
∂L
∂vi

)
− ∂L
∂qi

)
dqi =LΓ

(
∂L
∂vi

)
dqi − ∂L

∂qi
dqi

= LΓ

(
∂L
∂vi

dqi
)
− ∂L
∂vi

LΓdq
i − ∂L

∂qi
dqi

= LΓ

(
∂L
∂vi

dqi
)
− ∂L
∂vi

d(LΓq
i)− ∂L

∂qi
dqi

= LΓ

(
∂L
∂vi

dqi
)
− dL = 0

(A.14)

Now we can define the one form:

θL ≡
∂L
∂vi

dqi (A.15)

and finally write the intrinsic formulation of Euler-Lagrange equations:

LΓθL − dL = 0 (A.16)

A.2 Noether Theorem: Coordinate Formulation

In this and in the following section we discuss the connection between
symmetries and constant of motion within the Lagrangian Formalism.
This connection is provided by a fundamental theorem known as Noether
Theorem.

We start defying the Cyclic Variables as a variable qi such that the
Lagrangian L does not depend on it:

∂L
∂qi

= 0. (A.17)

This is equivalent to say that:

d

dt

∂L
∂vi

= 0. (A.18)

By defining the conjugate momentum:

pi ≡
∂L
∂vi

. (A.19)

The equation (A.18) tells us that the conjugate momenta relative to the cyclic
variable are conserved quantities along with the motion. The generalization
of the idea to find conserved quantities is provided by the Noether Theorem
that joins the symmetries of the Lagrangian with constant of motion.
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Theorem 1. (Noether Theorem): Let

X = ai
∂

∂qi
+ ȧi

∂

∂vi
(A.20)

be the infinitesimal generator of the transformation on TQqi 7→ qi + εai

vi 7→ vi + εȧi
(A.21)

If the previous (A.21) transformation is a symmetry for the Lagrangian (XL = 0)
then the quantity:

Σ0 = ai
∂L
∂vi

(A.22)

is a constant of motion for the dynamical system

Proof. Considering the Euler-Lagrange equations and multiplying them
by ai: (

d

dt

(
∂L
∂vi

)
− ∂L
∂qi

)
ai = 0 (A.23)

By using the Leibniz rule on the time derivatives, we get:

d

dt

(
∂L
∂vi

ai
)
− ȧi ∂L

∂vi
− ai ∂L

∂qi
= 0. (A.24)

The second and the third term is the application of the generator X of the
transformation and so:

d

dt

(
∂L
∂vi

ai
)

= XL (A.25)

but for hypothesis the second part vanishes because L is invariant under
the previous mentioned transformation and finally:

d

dt
Σ0 = 0 −→ Σ0 = constant. (A.26)

This theorem could be generalized to the Quasi-Invariant Lagrangians or
rather when the application of the generator X of the transformation gives
rise a total time derivative of a function F = F (t), namely:

XL = dF

dt
. (A.27)
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Theorem 2. (Generalized Noether Theorem): Let consider a dynamical system
whose Lagrangian L is quasi-invariant under the group transformation (A.21):

Σ0 = ai
∂L
∂vi
− F (A.28)

is a constant of the motion.

Proof.To prove this it is enough to go over again the previous proof.
A paradigmatic example is when the function F (t) is the Lagrangian L

itself and in the case that ai = vi the conserved quantities is:

EL = vi
∂L
∂vi
− L (A.29)

that represents the energy conservation.

A.3 Noether Theorem: Intrinsic Formalism

In the previous section, we have discussed the relation between sym-
metries and constant of motion and we have proved that Noether theorem
into the coordinate picture. Let us elaborate it more, to obtain a coordinate
independent formulation.

Let us consider a vector field X ∈ X (Q) that is the infinitesimal gen-
erator of a flow φt on Q, then the tangent lift XT of X is the infinitesimal
generator of the tangent map Tφt. In local coordinates if X = ai(q) ∂

∂qi , then

XT = ai(q) ∂
∂qi

+ ∂ai(q)
∂qj

vj
∂

∂qi
+ dai

dt

∂

∂vi
. (A.30)

Therefore now let go back to the intrinsic formulation of Euler-Lagrange
equations (A.16) in intrinsic form and contract them with a generic vec-
tor field X ∈ X (T Q) that is practically the same procedure done for the
coordinate formalism when we have multiplied by ai.

iX
(
LΓθL − dL

)
= 0, (A.31)

where considering the identity LX = ixd on functions, we obtain:

iXLΓθL − LXL = 0. (A.32)

By using a well know proprieties of Lie derivative and inner product for
any 1-form α:

[LΓ, iX ]α = i[Γ,X]α (A.33)
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By adapting this relation in our case, we get the following equation:

LΓiXθL − i[Γ,X]θL − LXL = 0, (A.34)

Let now put our notion of a constant of the motion (A.28) into the intrinsic
formulation. We have:

d

dt

(
ai
∂L
∂vi
− F

)
= 0 (A.35)

By considering that the derivative of a function along the dynamics is the
same of its total derivative ( d

dt
7→ LΓ) and writing ai ∂L

∂vi like the contraction
iXθL, the relation (A.35) becomes:

LΓ
(
iXθL − F

)
= 0, (A.36)

The quasi-invariant requirement in this formalism leads us to:

LXL = LΓF, (A.37)

So equations (A.34) and (A.37) imply that:

i[Γ,X]θL = 0, (A.38)

These are the conditions that allow us to rewrite the Noether Theorem in
intrinsic formalism. The condition (A.38) is automatically satisfied every
time X is the tangent lift of a vector field onQ as is possible to see by direct
calculation using the following expression:

XT = ai
∂

∂qj
+ (LΓa

i) ∂

∂vi
, (A.39)

Γ = vk
∂

∂qk
+ F k ∂

∂vk
, (A.40)

Finally, we can express the intrinsic formulation of Noether Theorem:

Theorem 3. (Noether Theorem): Let XT be a tangent lift generating an in-
finitesimal transformation such that:

LXTL = LΓF, F ∈ F(T Q), (A.41)

then to the transformation, there is associated with the constant of the motion:

IXT = iXT θL − F, (A.42)
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A.4 Prolongation of a point transformation

In this alternative approach to Noether Theorem, we consider a gen-
eral one parameter group of point transformation involving time as well as
the Lagrangian coordinates, that because in the following chapter we will
discuss the Lagrangian in Friedman-Robertson-Walker metric that is pre-
cisely point-like. The invariance under that point-transformation of the
Lagrangian will allow us to find a posteriori the form of the generator that
gives rise these symmetries.

In general is possible to consider a Lagrangian that depends either on
time from the Lagrangian coordinates and velocities, namelyL = L(t, qi, q̇i),
even if as we will see our Lagrangian does not explicitly depend on time.
Considering an infinitesimal transformation which depends on ε parameter:t′ = t+ εξ(t, q) + ... = t+ εXt

q′i = qi + εηi(t, q) + ... = qi + εXqi
(A.43)

where:

ξ(t, q) = ∂t′

∂ε

∣∣∣∣
ε=0

ηi(t, q) = ∂q′i

∂ε

∣∣∣∣
ε=0

(A.44)

and the generator of the infinitesimal transformation is X defined as:

X = ξ(t, q) ∂
∂t

+ ηi(t, q) ∂
∂qi

. (A.45)

Now is possible to understand how the point transformation works on the
derivatives of the Lagrangian coordinates and how it gives rise to the first,
the second prolongation and so on, even if we only need of the first one
prolongation.

q̇′i = dq′i

dt′
= dqi + εdηi

dt+ εdξ
= q̇i + εη̇i

1 + εξ̇
(A.46)

Using the McLaurin series for 1
1+εξ̇ and stopping it on the first order:

q̇′i = q̇i + ε(η̇i − q̇iξ̇). (A.47)

Theorem 4. (First Prolongation of Noether Theorem): Let

X = ξ(t, q) ∂
∂t

+ ηi(t, q) ∂
∂qi

(A.48)

be the infinitesimal generator of the transformation (A.43) and

L = L(t, qi, q̇i) (A.49)
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be a Lagrangian which describes the dynamical system. The action of this transfor-
mation leaves the Euler-Lagrangian equation invariant, if and only if there exists
a function g = g(t, qi) that holds the following condition:

X [1]L+ Lξ̇ = ġ(t, qi), (A.50)

where X [1] is the first prolongation of X in (A.48), namely:

X [1] = X + (η̇i − q̇iξ̇) ∂
∂q̇i

. (A.51)

So is possible to re-write the equation (A.50):

ξ(t, q)∂L
∂t

+ ηi(t, q)∂L
∂qi

+ (η̇i − q̇iξ̇)∂L
∂q̇i

+ Lξ̇ = ġ(t, qi) (A.52)

For any Noether symmetry there exist a function Σ0 that is a first integral:

Σ0 = ξ

(
q̇i
∂L
∂q̇i
− L

)
− ηi∂L

∂q
+ g (A.53)

Poof. Let consider a transformation of the action that leaves the equation
of motion invariant:∫

dt′L′(t′, q′i, q̇′i) =
∫
dt[L(t, qi, q̇i) + εġ(t, qi)], (A.54)

where the extremes q(tin) and q(tfin) are fixed and the variation of gauge
function g is zero, namely:

δg(t, qi)
∣∣∣∣
ext

= 0 (A.55)

that lead us to:

δ
∫
dt′L′(t′, q′i, q̇′i) = δ

∫
dtL(t, qi, q̇i) (A.56)

So we can perform the variation by using the transformation:∫
dt(1 + εξ̇)L′(t′, q′i, q̇′i) =

∫
dt[L(t, qi, q̇i) + εġ(t, qi)] (A.57)

and so taking only the first order in ε we can replace L′ with L:∫
dt
[
δL(t, qi, q̇i) + εξ̇L(t, qi, q̇i)

]
= ε

∫
dtġ(t, q̇i) (A.58)

and then operating the variation of the Lagrangian inside the last equation
we prove the theorem:

ξ(t, q)∂L
∂t

+ ηi(t, q)∂L
∂qi

+ (η̇i − q̇iξ̇)∂L
∂q̇i

+ Lξ̇ = ġ(t, qi). (A.59)

This result will be fundamental in order to study the the Non-Local cosmo-
logical model.
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APPENDIX B

THE NOETHER SYMMETRIES SYSTEM

In this Appendix we want to show for entirety the complete system
related to the first prolongation of Noether Theorem:

−3R∂F
∂R
α− aR∂2F

∂R2β + a∂F
∂φ
γ − aR ∂2F

∂R∂φ
γ + 3Fα− aR∂ξ

∂t
∂F
∂R

+ a∂ξ
∂t
F = 0

−aδ − αχ+ aγ ∂2F
∂R∂φ

+ α∂F
∂R

+ aβ ∂
2F
∂R2 + a2 ∂2F

∂R∂φ
∂γ
∂a
− a2 ∂δ

∂a
+ a2 ∂2F

∂R2
∂β
∂a
− 2aχ∂α

∂a
+

+2a∂F
∂R

∂α
∂a
− a∂ξ

∂t
∂F
∂R

+ aχ∂ξ
∂t

= 0

12a∂F
∂R

∂α
∂χ

+ 6a2 ∂2F
∂R2

∂β
∂χ

+ 6a2 ∂2F
∂R∂φ

∂γ
∂χ
− 12aχ∂α

∂χ
− 12aα− a3 ∂γ

∂a
− 6a2 ∂α

∂a
− 6a2 ∂δ

∂χ
+

+6a2 ∂ξ
∂t

= 0

6a2 ∂2F
∂R∂φ

∂α
∂χ
− 6a2 ∂α

∂φ
− 3a2α− a3 ∂γ

∂φ
− a3 ∂δ

∂χ
+ a3 ∂ξ

∂t
= 0

6a2 ∂2F
∂R∂φ

∂α
∂a

+ 12a∂F
∂R

∂α
∂φ

+ 12a ∂2F
∂R∂φ

α + 6a2 ∂2F
∂R2

∂β
∂φ

+ 6a2 ∂3F
∂R2∂φ

β + 6a2 ∂3F
∂R∂φ2γ

+6a2 ∂2F
∂R∂φ

∂γ
∂φ
− 12aχ∂α

∂φ
− a3 ∂δ

∂a
− 6a2 ∂δ

∂φ
− 6a2 ∂ξ

∂t
∂2F
∂R∂φ

= 0

6a2 ∂2F
∂R2

∂α
∂χ
− 6a2 ∂α

∂R
− a3 ∂γ

∂R
= 0

6a2 ∂2F
∂R2

∂α
∂a

+ 12a∂F
∂R

∂α
∂R

+ 12a∂2F
∂R2α + 6a2 ∂2F

∂R2
∂β
∂R

+ 6a2 ∂3F
∂R3β + 6a2 ∂2F

∂R∂φ
∂γ
∂R

+
+6a2 ∂3F

∂R2∂φ
γ − 12aχ ∂α

∂R
− 6a2 ∂δ

∂R
− 6a2 ∂ξ

∂t
∂2F
∂R2 = 0

−a3 ∂γ
∂χ
− 6a2 ∂α

∂χ
= 0

6a2 ∂2F
∂R∂φ

∂α
∂φ
− a3 ∂δ

∂φ
= 0

6a2 ∂2F
∂R2

∂α
∂φ

+ 6a2 ∂2F
∂R∂φ

∂α
∂R
− a3 ∂δ

∂R
= 0

6a2 ∂2F
∂R2

∂α
∂R

= 0
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−6a∂F
∂R

∂ξ
∂R

+ 6aχ ∂ξ
∂R
− 6a2 ∂ξ

∂a
∂2F
∂R2 = 0

−6a∂F
∂R

∂ξ
∂φ

+ 6aχ ∂ξ
∂φ
− 6a2 ∂ξ

∂a
∂2F
∂R∂φ

= 0

−6a∂F
∂R

∂ξ
∂a

+ 6a ∂ξ
∂a
χ = 0

6a2 ∂ξ
∂a
− 6 ∂ξ

∂χ
a∂F
∂R

+ 6a ∂ξ
∂χ
χ = 0

−6a2 ∂ξ
∂R

∂2F
∂R2 = 0

−6a2 ∂ξ
∂R

∂2F
∂R∂φ

− 6a2 ∂ξ
∂φ

∂2F
∂R2 = 0

6 ∂ξ
∂R
a2 − 6a2 ∂ξ

∂χ
∂2F
∂R2 = 0

−6a2 ∂ξ
∂φ

∂2F
∂R∂φ

= 0

−6a2 ∂ξ
∂φ
− 6a2 − 6a2 ∂ξ

∂χ
∂2F
∂R∂φ

− a3 ∂ξ
∂a

= 0

6a2 ∂ξ
∂χ

= 0

a3 ∂ξ
∂R

= 0

a3 ∂ξ
∂φ

= 0

a3 ∂ξ
∂χ

= 0

−a3 ∂ξ
∂a
R∂F
∂R

+ a3 ∂ξ
∂a
F + 12a∂F

∂R
∂α
∂t
− 12aχ∂α

∂t
+ 6a2 ∂β

∂t
∂2F
∂R2 + 6a2 ∂γ

∂t
∂2F
∂R∂φ

+
−6a2 ∂δ

∂t
= ∂g

∂a

−a3 ∂ξ
∂R
R∂F
∂R

+ a3 ∂ξ
∂R
F + 6a2 ∂2F

∂R2
∂α
∂t

= ∂g
∂R

−a3 ∂ξ
∂φ
R∂F
∂R

+ a3 ∂ξ
∂φ
F + 6a2 ∂2F

∂R∂φ
∂α
∂t
− a3 ∂δ

∂t
= ∂g

∂φ

−a3 ∂ξ
∂χ
R∂F
∂R

+ a3 ∂ξ
∂χ
F − 6a2 ∂α

∂t
− a3 ∂γ

∂t
= ∂g

∂χ

(B.1)



APPENDIX C

USEFUL RELATION

In this chapter, we want to recollect some useful relation, often used in
this work, about the variation of Christoffel symbol and Ricci scalar. First
of all, we have to remind the simplest expression for anholonomic and
torsionless connection:

Γλµν = 1
2g

λk
[
gµk,ν + gνk,µ − gµν,k

]
(C.1)

where has been used the usual symbol "," for partial derivatives. Then is
possible to determinate the variation of this connection.

δΓλµν = 1
2g

λk
[
gµk,ν + gνk,µ − gµν,k

]
=

= 1
2δg

λk
[
gµk,ν + gνk,µ − gµν,k

]
+ 1

2g
λk
[
δgµk,ν + δgνk,µ − δgµν,k

]
=

= 1
2g

λk
[
∇νδgµk +∇µδgνk −∇kgµν

]
(C.2)

It is also possible to rewrite it in another good form for our purpose.

δΓλµν = −1
2
[
gµσ∇νδg

λσ + gνσ∇µδg
λσ − gµσgντ∇λgστ

]
(C.3)

and also:
δΓλµλ = −1

2gλα∇µ(δgλα) (C.4)

These relations are useful for the main result:

gµνδRµν = −∇µ∇ν(δgµν) + �(gµνδgµν) (C.5)

This relation is really important into extended theories of general relativity,
in particular, his first application for f(R) theory.
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DEDICATION

A Coloro Che Verranno

Davvero, vivo in tempi bui!
La parola innocente è stolta. Una fronte distesa
vuol dire insensibilità. Chi ride,
la notizia atroce
non l’ha saputa ancora.

Quali tempi sono questi, quando
discorrere d’alberi è quasi un delitto,
perché su troppe stragi comporta silenzio!
E l’uomo che ora traversa tranquillo la via
mai più potranno raggiungerlo dunque gli amici
che sono nell’affanno?

È vero: ancora mi guadagno da vivere.
Ma, credetemi, è appena un caso. Nulla
di quel che faccio m’autorizza a sfamarmi.
Per caso mi risparmiano. (Basta che il vento giri,
e sono perduto).
"Mangia e bevi!", mi dicono: "E sii contento di averne".
Ma come posso io mangiare e bere, quando
quel che mangio, a chi ha fame lo strappo, e
manca a chi ha sete il mio bicchiere d’acqua?
Eppure mangio e bevo.
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Vorrei anche essere un saggio.
Nei libri antichi è scritta la saggezza:
lasciar le contese del mondo e il tempo breve
senza tema trascorrere.
Spogliarsi di violenza,
render bene per male,
non soddisfare i desideri, anzi
dimenticarli, dicono, è saggezza.
Tutto questo io non posso: davvero, vivo in tempi bui!
Nelle città venni al tempo del disordine,
quando la fame regnava.
Tra gli uomini venni al tempo delle rivolte,
e mi ribellai insieme a loro.
Così il tempo passò
che sulla terra m’era stato dato.

Il mio pane, lo mangiai tra le battaglie.
Per dormire mi stesi in mezzo agli assassini.
Feci all’amore senza badarci
e la natura la guardai con impazienza.
Così il tempo passò
che sulla terra m’era stato dato.

Al mio tempo le strade si perdevano nella palude.
La parola mi tradiva al carnefice.
Poco era in mio potere. Ma i potenti
posavano più sicuri senza di me; o lo speravo.
Così il tempo passò
che sulla terra m’era stato dato.

Le forze erano misere. La meta era molto remota.
La si poteva scorgere chiaramente, seppure anche per me
quasi inattingibile.
Così il tempo passò
che sulla terra m’era stato dato.
Voi che sarete emersi dai gorghi
dove fummo travolti
pensate
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quando parlate delle nostre debolezze
anche ai tempi bui
cui voi siete scampati.

Andammo noi, più spesso cambiando paese che scarpe,
attraverso le guerre di classe, disperati
quando solo ingiustizia c’era, e nessuna rivolta.

Eppure lo sappiamo: anche l’odio contro la bassezza
stravolge il viso.
Anche l’ira per l’ingiustizia
fa roca la voce. Oh, noi
che abbiamo voluto apprestare il terreno alla gentilezza, noi non
si poté essere gentili.

Ma voi, quando sarà venuta l’ora
che all’uomo un aiuto sia l’uomo,
pensate a noi
con indulgenza.

(Bertolt Brecht)
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