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Abstract

The work presented in this thesis is devoted to the study of geodesic motion in the context
of General Relativity. The motion of a single test particle is governed by the geodesic
equations of the given space-time, nevertheless one can be interested in the collective
behavior of a family (congruence) of test particles, whose dynamics is controlled by the
Raychaudhuri equations. In this thesis, both the aspects have been considered, with
great interest in the latter issue.
Geometric quantities appear in these evolution equations, therefore, it goes without
saying that the features of a given space-time must necessarily arise. In this way, through
the study of these quantities, one is able to analyze the given space-time.
In the first part of this dissertation, we study the relation between geodesic motion and
gravity. In fact, the geodesic equations are a useful tool for detecting a gravitational
field. While, in the second part, after the derivation of Raychaudhuri equations, we
focus on their applications to cosmology. Using these equations, as we mentioned above,
one can show how geometric quantities linked to the given space-time, like expansion,
shear and twist parameters govern the focusing or de-focusing of geodesic congruences.
Physical requirements on matter stress-energy (i.e., positivity of energy density in any
frame of reference), lead to the various energy conditions, which must hold, at least in a
classical context. Therefore, under these suitable conditions, the focusing of a geodesics
“bundle”, in the FLRW metric, bring us to the idea of an initial (big bang) singularity in
the model of a homogeneous isotropic universe. The geodesic focusing theorem derived
from both, the Raychaudhuri equations and the energy conditions acts as an important
tool in understanding the Hawking-Penrose singularity theorems.



Sommario

L’elaborato presentato in questa tesi è incentrato sullo studio del moto geodetico nel-
l’ambito della Relatività Generale. Il moto di una singola particella di prova è governato
dall’equazione geodetica dello spazio-tempo in cui è immersa. Tuttavia, si può essere
anche interessati al comportamento collettivo di una famiglia (congruenza) di particelle
di prova, la cui dinamica è cotrollata dalle equazioni di Raychaudhuri. In questa tesi,
entrambi gli aspetti sono stati presi in considerazione, con maggiore interesse nei con-
fronti del secondo.
Le equazioni di evoluzione coinvolgono termini di natura geometrica caratterizzanti il
dato spazio-tempo, perciò, è scontato che le proprietà di tale spazio-tempo debbano ne-
cessariamente emergere. In questo modo, attraverso lo studio di questi termini, si è in
grado di analizzare la struttura di quest’ultimo.
Nella prima parte della tesi, si studia il legame tra moto geodetico e gravità. Infatti,
le equazioni geodetiche sono un utile strumento mediante il quale rilevare un campo
gravitazionale. Nella seconda parte, invece, in seguito alla derivazione delle equazioni
di Raychaudhuri, ci si concentra sulle loro applicazioni in cosmologia. Tramite queste
equazioni, come si è accennato, si può mostrare in che modo quantità di natura geome-
trica legate allo spazio-tempo considerato, quali espansione, taglio e torsione governino
la focalizzazione o de-focalizzazione delle congruenze geodetiche. Requisiti fisici sulla
materia (la richiesta di positività della densità di energia in ogni sistema di riferimen-
to), portano alle cosiddette condizioni sull’energia, le quali devono valere almeno in un
contesto classico. Sotto queste condizioni, la focalizzazione di un insieme di geodetiche,
considerando la metrica FLRW, conduce all’idea dell’esistenza di una singolarità iniziale
(big bang), in un modello cosmologico omogeneo e isotropo. Il teorema di focalizzazione
geodetica derivato da entrambe, le equazioni di Raychaudhuri e le condizioni sull’energia
riveste un ruolo importante nella comprensione dei teoremi sulle singolarità di Hawking
e Penrose.
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Introduction

The aim of this thesis is to show the fundamental role of geodesic motion in the fields of
General Relativity and Cosmology.
In order to do so, we start from scratch, and define a special topological space, the
manifold M. This structure is essentially a space which is locally similar to Euclidean
space, in that it can be covered by coordinate patches. In such a space, we define a
way of parallel transporting quantities along a given path, and from that, we come up
with geodesics as curves whose parallel vectors are parallely transported along them.
Further, given a generic point P ∈M and its neighborhood UP , the notions of distance
and angles can be introduced through the metric tensor gab. If we consider a manifold
endowed with a metric, namely (M, gab), this manifold corresponds to our intuitive ideas
of the continuity of space and time. So, this brief introduction on differential geome-
try is fundamental in building a suitable mathematical environment, where the General
Theory of Relativity can be developed.
The crucial step from Special to General Relativity is embedded in the definition of ob-
server and of reference frame. From a mathematical point of view, Special Relativity is
based on the principle that “The laws of physics are the same for all inertial observers
and the speed of light in vacuum is invariant”. This is realized by assuming the exis-
tence of global (inertial) reference frames. In contrast, General Relativity is based on
the principle that “The laws of physics are the same in all reference frames (for all ob-
servers)” and so these laws have to be expressed in a form which can be adapted to any
measuring apparatus, regardless of its inertial nature. This is achieved by the use of
tensorial quantities of the space-time manifold, in particular by using the general metric
gab instead of the Minkowski metric ηab = diag(−1, 1, 1, 1) and the covariant derivative
∇a instead of the partial derivative ∂a. In this way, the problem of General Relativity
consists in finding the metric field gab describing the manifold. By means of the relation
between the Ricci and stress-energy tensor, the former describing the curvature of the
metric, the latter the distribution of all forms of matter, we come up with the Einstein’s
field equations.
Since in General Relativity (GR) a freely falling observer is “inertial”, the local metric in
its own reference frame is the canonical Minkowski one. So, test particles follow geodesics
of the given space-time metric. It is for this reason that the study of geodesic motion is

2



fundamental. As a matter of fact, through the evolution of geodesic curves, we are able
to study the properties of the given space-time.

While the motion of a single test particle is governed by the geodesic equations, the
collective behavior of a family (congruence) of test particles is governed by the Ray-
chaudhuri equations. The Raychaudhuri equations are evolution equations along a given
congruence for certain variables (expansion, shear and rotation), and were first obtained
by A. K. Raychaudhuri. His main motivation behind obtaining these equations was,
at that time, restricted to cosmology. It is well known that, in GR, the Friedmann-
Lemaitre-Robertson-Walker (FLRW) cosmology, which is a homogeneous and isotropic
cosmological model of our universe, has an initial big bang singularity. It was during the
middle of the twentieth century, Raychaudhuri tried to address the question whether the
occurrence of the initial singularity in the FLRW model, was an artifact of the space-time
symmetry encoded in the assumptions of homogeneity and isotropy or a generic feature
of the gravity theory (GR). One of his aims was to see whether non-zero rotation (spin),
anisotropy (shear) and/or a cosmological constant can be successful in avoiding the ini-
tial singularity. This is how the quest towards constructing a singularity free model of
our universe led Raychaudhuri to arrive at his well-known and celebrated Raychaudhuri
equations.

As mentioned above, the Raychaudhuri equations are evolution equations along a congru-
ence for a set of kinematic variables known as expansion θ, shear σab and rotation (twist)
ωab (ESR). These are respectively, the trace, symmetric trace-less and anti-symmetric
parts of the covariant gradient of the normalized velocity field Bab = ∇bua. Along the
congruence, θ measures the rate of change of the cross sectional area enclosing a family
of geodesics, σab measures the shear, and ωab measures the rotation or twist. In other
words, the Raychaudhuri equations and their solutions demonstrate how a congruence
evolves as a whole in a given space-time background. A geodesic congruence converges
when θ is negative and diverges when θ is positive. A complete convergence implies
θ → −∞ which is termed as geodesic focusing. Geometric quantities such as the metric
gab , the Riemann tensor Ra

bcd, the Ricci tensor Rab and the Weyl tensor Ca
bcd, appear in

the evolution equations along with the velocity field. It is therefore obvious that generic
geometric features of a given space-time must necessarily be reflected in the evolution of
a congruence.
The above discussion explains the usefulness of the Raychaudhuri equations in examining
the features of a given space-time geometry through studies on the behavior of geodesic
congruences. In addition, we know that the field equations of a given theory of gravity
relates geometry to matter stress energy. Thus, a condition for geodesic focusing, which
in a purely geometric context involves geometric quantities such as the Ricci tensor, may
be translated into conditions on matter stress energy. Such conditions on matter are
generally known as the energy conditions and are considered as independent conditions
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on matter, largely motivated by simple physical requirements such as the positivity of
energy density in a purely classical context. Since their introduction, the Raychaud-
huri equations have appeared and been analyzed in a variety of contexts. Among their
applications within GR, the most important and prominent one is their utility in un-
derstanding the space-time singularity problem. The geodesic focusing theorem derived
from these equations, with the assumption that the convergence condition must be satis-
fied (i.e., Rabu

aub ≥ 0), acts as an important tool in understanding the Hawking-Penrose
singularity theorems. In GR, physically reasonable classical matter satisfying all the
energy conditions, also satisfies the convergence condition. This, together with a min-
imal set of assumptions such as Lorentz signature metrics, causality and the existence
of trapped surfaces, lead to the inevitable existence of a space-time singularity; a result
encoded in the singularity theorems.

Raychaudhuri equations have also been studied and analyzed beyond the context of
gravity theories. It has been conjectured that “wherever there are vector fields describ-
ing a physical or geometrical quantity, there must be corresponding Raychaudhuri equa-
tions”. In other words, wherever one can think of a well defined congruence (i.e., a family
of world-lines) generated by a vector field, there must be corresponding Raychaudhuri
equations.
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Chapter 1

Geodesic motion on manifolds

In this first chapter, we introduce some basic concepts of differential geometry. Starting
off with the definition of parallel transport, we proceed with that of geodesic curve, which
will be the key tool of our study. Immediately after, we describe the main properties
inherent geodesic curves, like: normal frames, metric connection and geodesic deviation.
What we are going to develop in this first chapter is a necessary introduction for our
study. In fact, as we will see later, the Raychaudhuri equations, which will be employed
in different occasions, describe the dynamical evolution of a family of geodesics, and this
makes their motion in a given space(-time) of crucial importance.

1.1 Parallelism and covariant derivatives

On a manifold without the notion of angles (namely, without a metric), the only defi-
nition of parallelism can be given at a point P : two vectors of the tangent space at P ,
TP are parallel if they are linearly dependent. But one then needs a way to confront
vectors belonging to the tangent spaces at different points. In particular, one can define
a rule for transporting a vector “parallely” along a given path. This rule is named affine
connection.

Suppose we have a curve γ defined on a manifoldM and a connection, a rule for parallel
transport. Let the tangent to γ be ~V = d

dλ
. At the point P , pick an arbitrary vector ~W

from TP . Then the connection allows us to define a vector field ~W along the curve γ,
which is obtained by parallel-transporting ~W . Since we can say that ~W does not change
along γ, we can define a derivative with respect to which ~W has zero rate of change.
This is called the covariant derivative along ~V , ∇~V , and we write:

∇~V
~W = 0⇐⇒ ~W is parallel-transported along γ. (1.1)
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If ~W is a vector field defined everywhere on γ, we can define its covariant derivative along
γ. This operation will associate to ~W a second vector ~W

′′

−4λ ∈ TP (λ0), where λ = λ0+4λ
identifies a displaced point on the curve (see Figure 1.1).

We then define the covariant derivative of the vector field ~W with respect to ~V at the
point P (λ0) as the vector given by the limiting process:

∇~V
~W
∣∣∣
λ0

= lim
4λ→0

~W
′′

−4λ − ~W (λ0)

4λ
, (1.2)

whose result is a vector, by definition, and vanishes if the parallely transported vector
coincides with the original vector in P .

Figure 1.1: Parallel transport

We also assume that a change of parameterization of the curve γ → γ
′
, that is λ →

µ(λ), does not affect the notion of parallelism. Let ~V = d
dλ

and ~V ′ = d
dµ

be the tangent

vectors to γ and γ
′

respectively,

d

dλ
=

dµ

dλ

d

dµ
≡ h

d

dµ
. (1.3)

We then impose that

∇h~V
~W = h∇~V

~W , (1.4)

for all smooth functions h, so that ∇~V
~W = 0 implies ∇h~V

~W = 0.
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It is customary to name “covariant derivative of the vector ~W” the formal operator
associated with the above derivative acting on a given ~W , but with no specific curve
(and thus for all vectors ~V ). This object at a point P can be viewed as a type (1,1)
tensor,

∇ ~W : ~V → ∇~V
~W, (1.5)

which associates to any ~V the corresponding derivative of ~W .

1.2 Affine connection

Taken for granted the covariant derivative properties, one can obtain the components
of the covariant derivative of a vector field in terms of the so-called Christoffel symbols.
By expanding both ~V (λ0) and the difference between ~W (λ0) and ~W

′′
(λ0) on a basis of

TP (λ0) we get:

∇~V
~W = ∇V i~ei(W

j~ej)

= V i∇~ei(W j~ej)

= V i[(∇~eiW j)~ej +W j(∇~ei~ej)].
(1.6)

The second term in brackets is called the affine connection (or Christoffel Symbols).

Since
∂ ~ej
∂xi

is itself a vector and is just equivalent to ∇~ei ~ej we introduce the symbol Γkji~ek
to denote the coefficients in this combination:

∇~ei ~ej = Γkji~ek (1.7)

The interpretation of Γkji~ek is that it is the k-th component of
∂ ~ej
∂xi

. It needs three indices:
one (j) gives the basis vector being differentiated; the second (i) gives the coordinate
with respect to which it is being differentiated; and the third (k) denotes the component
of the resulting derivative vector.
Then, Eq. (1.6) can be written in the following manner:

∇~V
~W = V i[(∇~eiW j)~ej +W j(∇~ei~ej)]

= V i
[∂W k

∂xi
+W jΓkji

]
~ek .

(1.8)

From which we can read out the components(
∇ ~W k

)
i

=
∂W k

∂xi
+W jΓkji . (1.9)

Several different notations are in use for these components, for example

∇iW
k = W k

;i = W k
,i + ΓkjiW

j . (1.10)
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Where the last equality underlines the difference between the covariant and partial deriva-
tives, due to the presence of the Christoffel symbols.

1.3 Geodesic curves

A geodesic is a preferred curve along which the tangent vector to the curve itself is
transported parallely. This notion allows us to extend to a general manifold the concept
of “straight line” and, eventually, of extremal curve (on metric manifolds).

Let ~V = d
dλ

be the tangent vector to a curve γ parameterized by λ ∈ R. Then, γ is a

geodesic if ~V satisfies:

∇~V
~V
∣∣∣
P

= 0, ∀P ∈ γ, (1.11)

and λ is then called an affine parameter. From Eq. (1.4), it immediately follows that
this definition is invariant under a change of parameterization of γ, which implies that
the same geodesic can be described by different affine parameters.
Eq. (1.11) can be written in a local coordinate frame, in which γ ∈ M is mapped into
xk = xk(λ) ∈ Rn, as

∇~V
~V = V j

(∂V k

∂xj
+ ΓkjiV

i
)

=
dV k

dλ
+ ΓkjiV

iV j

=
d2xk

dλ2
+ Γkji

dxi

dλ

dxj

dλ
,

(1.12)

which is, given the definition ~V = V k ~ek = dxk\dλ · ∂\∂xk = d
dλ

, a set of n second-order
differential equations for the variables xk = xk(λ).

1.4 Normal frames and metric connection

It is very helpful to use a coordinate system based on geodesics. To construct this system,
we note that the geodesic curves through a point P give a 1-1 mapping of a neighborhood
of P onto a neighborhood of the origin of TP . This map arises because each element
of TP defines a unique geodesic curve through P , so we can associate the vector in TP
with the point an affine parameter 4λ = 1 along the curve from P . Using this map and
choosing an arbitrary basis for TP , one defines the normal coordinates of a point Q to
be the components of the vector in TP it is associated with. This map will generally be
1-1 only in some neighborhood of P , since geodesics may cross on a curved manifold.
For our purposes the principal interest in the normal coordinates is that Γkij = 0 at P

(but not elsewhere in the neighborhood of P ). To see this, note that if a vector ~V with
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components V i(P ) defines a geodesic curve, then the coordinates of the point with affine
parameter λ along that curve are simply xi = λV i(P ), with the convection that λ = 0
at P . Therefore d2xi\dλ2 vanishes, and (1.12) tells us that ΓkijV

i(P )V j(P ) must vanish
along that whole curve. At P , however, V i had an arbitrary direction, which means that
Γkij(P ) = 0. This bring us to the definition of a normal frame:

Γkij

∣∣∣
P

= 0⇒ The system is gaussian (normal) around P. (1.13)

We are obviously really interested in the case in which parallel transport preserves lengths
and angles, which requires the manifold M to be endowed with a metric tensor gij. Let

us then consider two vectors ~A and ~B, and assume they are transported parallely along
a curve of tangent ~V , that is ∇~V

~A = ∇~V
~B = 0. It is natural to demand that the scalar

product between these two vectors does not change along the curve,

∇~V

[
g( ~A, ~B)

]
= 0 , ∀ ~A, ~B, ~V such that ∇~V

~A = ∇~V
~B = 0 , (1.14)

which, from the Leibniz rule, implies

∇~V g = 0 , ∀~V ⇒ ∇g = 0 . (1.15)

Since g is symmetric by definition and through the following relation,

Γijk =
1

2
gil(glk,j + glj,k − gjk,l) , (1.16)

one can immediately see that a metric connection is necessarily symmetric (namely
Γijk = Γikj). All expressions can be simplified by assuming the metric is in canonical form
at a point P , so that it can be expanded as

gij = ±δij +
1

2

∂2gij
∂xk∂xl

∣∣∣
P
δxkδxl + ... . (1.17)

Once we have connected the parallel transport to the metric, we can also see that
geodesics are indeed curves of local extremal length: suppose we take a specific geodesic
γ of parameter λ and construct a Gaussian normal frame around it. In a (sufficiently
small) neighborhood of γ, the metric will take the form (1.17), so that moving off the
geodesic from the point P = P (λP ) along each Gaussian direction ηi, with i = 1, ..., n−1,
(from ds2 = gijdx

idxj) one has

ds2 ' 1

2

∂2gii
(∂ηi)2

∣∣∣∣∣
λ=λP ,η1=...=ηn−1=0

(dηi)2 + ... , (1.18)

where there is no sum over the index i.
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One can therefore conclude that each portion of a geodesic is a local extremum for
the length of a curve. In fact, the above argument about geodesics can be used in order
to derive Eq. (1.16). Let us consider the length of a curve between two fixed points a
and b, namely:

s =

∫ b

a

ds =

∫ b

a

√
gijẋiẋj dλ ≡

∫ λb

λa

√
2L(xk, ẋl) dλ , (1.19)

where a dot denotes the derivative with respect to the affine parameter λ; further we
have gij = gij(x

k). If we identify λ = s, we obviously have 2L = 1 and, varying the
above action is equivalent to varying the action without the square root, that is

δs = δ

∫ sb

sa

√
2Lds =

∫ sb

sa

δL√
2L

ds = δ

∫ sb

sa

L(xk, ẋl) ds , (1.20)

By requiring δs = 0, we find the Euler-Lagrange equations of motion

d

ds

(
∂L

∂ẋm

)
− ∂L

∂xm
= 0 . (1.21)

In particular, one finds
∂L

∂xm
=

1

2
gjk,mẋ

jẋk , (1.22)

and
∂L

∂ẋm
= gmjẋ

j , (1.23)

from which

d

ds

( ∂L
∂ẋm

)
= gmjẍ

j + gmj,kẋ
jẋk

= gmjẍ
j +

1

2
(gmj,k + gjm,k)ẋ

jẋk .

(1.24)

Putting the two parts together and multiplying by gim we obtain

ẍi +
1

2
gil
(
glk,j + glj,k − gjk,l

)
ẋjẋk = 0 , (1.25)

which equals the geodesic equation

ẍi + Γijkẋ
jẋk = 0 . (1.26)
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1.5 Geodesic Deviation

In a curved space, parallel lines when extended do not remain parallel. This can be
formulated in terms of the Riemann tensor.

Figure 1.2: Geodesic Deviation

Consider two geodesics (with tangents ~V and ~V
′
) that begin parallel and near each other,

as in Fig. 1.2, at points A and A
′
. Let the affine parameter on the geodesics be called

λ. We define a “connecting vector” ~ξ which “reaches” from one geodesic to another,
connecting points at equal intervals in λ.
For simplicity, let us adopt a normal coordinate system at A (which, as we will see later
in Chapter 2, is a locally inertial reference frame), in which the coordinate x0 points
along the geodesics and advances at the same rate as λ there.
Then because V α = dxα/dλ we have at A, V α = δα0 . The equation of the geodesic at A
is:

d2xα

dλ2

∣∣∣∣
A

= 0, (1.27)

since all Christoffel symbols vanish at A. The Christoffel symbols do not vanish at A
′
,

so the equation of the geodesic ~V
′

at A
′

is

d2xα

dλ2

∣∣∣∣
A′

+ Γα00(A
′
) = 0, (1.28)

where again at A
′

we have arranged the coordinates so that V α = δα0 . But, since A and

A
′

are separated by ~ξ, we have upon Taylor expanding:

Γα00(A
′
) ∼= Γα00,βξ

β, (1.29)

the right-hand side being evaluated at A. With Eq. (1.28) this gives

d2xα

dλ2

∣∣∣∣
A′

= −Γα00,βξ
β. (1.30)
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Now, the difference xα(λ, geodesic ~V ) − xα(λ, geodesic ~V ′) is just the component ξα of

the vector ~ξ. Therefore, at A, we have

d2ξα

dλ2
=
d2xα

dλ2

∣∣∣∣
A′
− d2xα

dλ2

∣∣∣∣
A

= −Γα00,βξ
β. (1.31)

This, then gives how the components of ~ξ change. But since the coordinates are to some
extent arbitrary, we want to have, not merely the second derivative of ξα but the full
second covariant derivative ∇~V∇~V

~ξ. We can use the general form

∇~V∇~V ξ
α ≈ ∇βB

µ
ν = Bµ

ν,β +Bα
ν Γµαβ −B

µ
αΓανβ (1.32)

so the following equation yields,

∇~V∇~V ξ
α = ∇~V (∇~V ξ

α) = ∇~V (ξα;µ) (1.33)

with ν = 0 and the affine parameter λ ∝ x0, Eq. (1.34). Considering that, at point A,

the Christoffel symbols vanish, we simply obtain for the double covariant derivative of ~ξ:

∇~V∇~V ξ
α =

d

dλ

(
d

dλ
ξα + Γαβ0ξ

β

)
+ 0− 0 =

d2ξα

dλ2
+ Γαβ0,0ξ

β (1.34)

We have also used ξβ,0 = 0 at A, which is the condition that curves begin parallel. So
we get

∇~V∇~V ξ
α =

(
Γαβ0,0ξ

β − Γα00,βξ
β
)
ξβ = Rα

00βξ
β = Rα

µνβV
µV νξβ (1.35)

In the last passage, we remind the relation V α = δα0 .

The Riemann tensor Rα
βµν , is the geometric object which describes in a covariant way the

curvature properties of a manifold. The third equality follows from the identity (with
again vanishing Christoffel symbols):

Rα
βµν := Γαβν,µ − Γαβµ,ν + ΓασµΓσβν − ΓασνΓ

σ
βµ. (1.36)

The final expression is frame invariant, and since A is an arbitrary point, we have, in
any basis,

∇~V∇~V ξ
α = Rα

µνβV
µV νξβ. (1.37)

We note that the geodesic deviation is zero if Rα
βµν = 0 i.e ⇐⇒ the manifold is flat.

Geodesics in flat space maintain their separation; those in curved spaces do not. Eq.
(1.37), called equation of geodesic deviation, determines the relative covariant accelera-

tion of two infinitesimally separated geodesics parameterized by ~ξ.
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Chapter 2

General Relativity

In this Chapter, we are going to sum up some basic ideas, concepts and a few equations of
General Relativity. The importance of this theory stems directly from intuitive thoughts
and observations. Its mathematical interpretation is based on the study of differential
geometry, whose key concepts have been analyzed in the previous Chapter. In particular,
we are going to analyze the geodesic motion of a particle embedded in a curved space-
time and the relation between curvature and gravity. Further, we are going to introduce
the stress-energy tensor and discuss its role inside the Einstein’s equations. The same
tensor is going to be essential even later, during the study of the Raychaudhuri’s equation
for the expansion parameter.

2.1 Basic Principles

Principle of General Relativity: “The laws of physics are the same in all reference
frames (for all observers).”

Assuming that to each physical observer can be associated a reference frame (and, quite
ideally, also the other way around), the principle of General Relativity can be translated
into the mathematical requirement that all physical laws must involve only tensors and
tensorial operations in the sense of differential geometry.

Speaking about gravity, it is a fact that the gravitational attraction between two bodies
cannot be made to vanish; however, gravitational effects can be eliminated from the
picture by considering a freely falling observer, which will not measure any gravitational
acceleration in whatever experiment he or she carries on. The latter two observations
are encoded in the following principle.
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Equivalence Principle: “For all physical objects, the gravitational charge (mass) mg

equals the inertial mass mi.”

From Newton’s second law for a massive particle in a homogeneous and constant gravi-
tational acceleration field ~g, one has

mg~g = mi~a ⇒ ~a = ~g , (2.1)

if mg = mi for all bodies. In particular, both an observer (a physical apparatus) and
a hypothetical test body will sustain the same acceleration, and one cannot devise any
local observation that can tell whether one is not subject to any gravitational attraction
at all (observer inside an elevator situated in free space), or if one is falling freely towards
the center of a gravitational field (observer inside an elevator falling freely towards the
ground).

From this follows that the gravitational effects are locally indistinguishable from the
physical ones experienced in an accelerated frame. Such an equivalence enables us to
eliminate gravity in a sufficiently small region of space-time. This is done by introducing
a suitable chart which supports a locally inertial frame.
One can therefore assume that freely falling, inertial frames can be defined in a suf-
ficiently small neighborhood UP of each space-time point P , and the laws of Special
Relativity, which may strictly hold only at each point P , will also be sufficiently good
approximations of the true laws inside UP for all inertial observers defined therein.
A typical example of such a possibility is provided by a free-falling elevator in the grav-
itational field of the Earth. In fact, a test body inside the falling elevator will fluctuate
freely as if the elevator would be placed in empty space, in a region free from any gravi-
tational field.

Principle of General Covariance: “The laws of physics in a general reference frame
are obtained from the laws of Special Relativity by replacing tensor quantities of the
Lorentz group with tensor quantities of the space-time manifold.”

A fundamental implication of this principle is the following: since a freely falling ob-
server is “inertial”, the local metric in its own reference frame is the canonical Minkowski
metric all along (of course, only in a sufficiently small neighborhood of each point P of
the observer’s trajectory). Let uµ = dxµ/dτ denote the four-velocity of a test particle
subject to no other force (but gravity). In the freely falling frame, it must then move
along a straight line,

0 =
d2xα

dτ 2
=
d2xα

dτ 2
+ Γαµν

dxµ

dτ

dxν

dτ
= uµ∇µu

α , (2.2)
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where we remind the reader of the relation Γαµν ∼ gµν,β = 0. This comes straight from the
definition of Gaussian (normal) system (1.13) and Eq. (1.16). A locally inertial frame of
reference is in fact of the exact same type of the one mentioned above. The final result
(2.2) is frame independent and we can simply say that test particles follow geodesics of
the given space-time metric. These trajectories are usually referred to as world-lines.
This argument further implies that the inertial observer itself moves along a geodesic of
the space-time metric. So, if we consider a free particle instantaneously at rest, since the
spatial components of the four-velocity vanish, the geodesic equation then reduces to

ẍα = −Γα00 . (2.3)

Hence, the Christoffel symbols represent the acceleration of gravity in the chosen refer-
ence frame and finally, we can tell, through (1.16), that the metric gµν can be viewed as
a potential for the gravitational interaction.

2.2 Geodesic motion in General Relativity

In Special Relativity, light propagates along the null cone, which is a geodesic of the
Minkowski metric, and one can easily show that this result generalizes to any space-time
metric. In fact, the modulus uµuµ = 0 of the (parallel transported) tangent vector uµ to
a geodesic is conserved along the geodesic itself, since

uν∂νC = uν(∇νu
µ)uµ + uν(∇νuµ)uµ = 2uνuµ∇νuµ = 2uµ(uν∇νuµ) = 0 . (2.4)

Given a point P along a physical geodesic, its four-velocity must satisfy uµuµ = C. For
massive particles C = −1, which corresponds to time-like geodesic curves. C = 0 for
light, which corresponds to light-like geodesic curves. And by convection we take C = 1
for space-like curves. Further, we also underline the implicit presence of the metric ten-
sor gµν in Eq. (2.4), in this way it determines the causal structure of space-time by
governing the propagation of light and of any other signal.

Previously, we mentioned the Einstein’s conceptual experiment in the case of one test
body inside the free-falling elevator.
However, if we put two test bodies (instead of one) inside the elevator, then there is an
important physical difference between the two configurations previously mentioned i.e.,
free-fall in a given field and real absence of field, which soon clearly emerges.
Suppose, for instance, that the two bodies are initially at rest at the initial time t0.
Then, for t > t0, they will keep both at rest in the absence of a real external field; on
the contrary, they will start approaching each other with a relative accelerated motion
if the elevator is free falling.
The relative motion is unavoidable, in the second case, due to the fact that the test bodies
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are falling along geodesic trajectories which are not parallel, but converging toward the
source of the physical field. So, even if the relative velocity of the two bodies is initially
vanishing, v(t0) = 0, their initial relative acceleration, a(t0), is always non-vanishing.
Here we arrive at the point which is crucial for our discussion.
For any arbitrary gravitational field we can always (and entirely) eliminate the gravita-
tional acceleration at any given point in space and at any given time, but there is no
way to eliminate the acceleration between two different points, no matter how separated
at a given instant of time.
If we take two points on two different geodesics they will be always characterized by a
relative acceleration which cannot be eliminated (not even locally), and which is due
to gravity, whose action tends to distort and focalize the trajectories. In the absence
of gravity, on the contrary, the geodesics of all free bodies, quite independently of the
chosen chart, are the straight lines of the Minkowski space-time, and their relative ac-
celeration is vanishing.
Given a metric defined on the space-time manifold, and given a bundle of geodesic curves
associated to that metric, the relative acceleration between points belonging to different
geodesics only depends on the bending of the world-lines produced by the gravitational
interaction, and can be used to denote, unambiguously, the presence (or the absence) of
a physical gravitational field.

On the basis of the above, the geodesic deviation equation is of crucial importance
in revealing the presence of a gravitational field. And by the equation

uµuν∇µ∇νξ
α = Rα

µνβu
µuνξβ. (2.5)

we can see the fundamental role of the Riemann tensor Rα
µνβ. In fact, in the case

Rα
µνβ = 0, the geodesic deviation vanishes too, and we conclude there is no gravitational

field. In this way, we have just demonstrated mathematically that the tidal forces of a
gravitational field can be represented by the curvature of a space-time in which particles
follow geodesics.
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2.3 Brief look at Einstein’s equations

Before discussing the general properties of the Einstein’s equations we define some geo-
metrical quantities derived from the Riemann tensor and the stress-energy tensor.

• Ricci (Curbastro) tensor:
Rµν := Rα

µαν = Rνµ , (2.6)

• Curvature Scalar:
R := Rµ

µ = gµνRµν , (2.7)

• Einstein tensor:

Gµν := Rµν −
1

2
Rgµν = Gνµ , (2.8)

Further we mention the Bianchi identity,

∇νG
µν = 0 . (2.9)

In General Relativity, continuous matter distributions and fields are described by a
stress-energy tensor Tµν .

Properties of the stress-energy tensor

This tensor for a perfect fluid has the following expression:

Tµν = (ρ+ p)uµuν + pgµν (2.10)

and satisfies the equation:
∇νT

µν = 0 . (2.11)

Where uµ = (1, 0, 0, 0) in a co-moving coordinate system. In this context, uµ is known
as the velocity field of the fluid, and the co-moving coordinates are those with respect to
which the fluid is at rest. ρ is the energy-density of the perfect fluid and p is the pressure.

In general, the matter and field distributions has to be supplemented by an equation
of state. This is usually assumed to be that of a barotropic fluid, i.e. one whose pressure
depends only on its density, p = p(ρ). The most useful of cosmological fluids arise from
considering a linear relationship between p and ρ:

p = ωρ , (2.12)

where ω is known as the equation of state parameter.
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• Dust:
For non-interacting particles, there is no pressure, p = 0, i.e. ω = 0, the energy-
momentum tensor has the simple form

Tµν = ρuµuν (2.13)

and such matter is usually referred to as dust,

dust: p = 0 ⇒ ω = 0 . (2.14)

• Radiation:
This corresponds to ω = 1/3 (in 1+3 dimensions). One way to see this is to note
that the trace of a perfect fluid energy-momentum tensor is

T µµ = −ρ+ 3p . (2.15)

Considering electro-magnetic radiation, for example, the energy-momentum tensor
is that of Maxwell theory and hence trace-less. Therefore we obtain

radiation: p = ρ/3 ⇒ ω = 1/3 . (2.16)

• Cosmological Constant:
A cosmological constant Λ, on the other hand, corresponds to a matter contribution
with p = −ρ, i.e. ω = −1,

cosmological constant: p = −ρ ⇒ ω = −1 . (2.17)

Hence, either ρ is negative or p is negative. Then, from Eq. (2.18), one can deduce
that a cosmological constant Λ is tantamount to adding matter with p = −ρ.

If the tensor in Eq. (2.8) is to be the left hand side of the equation which determines the
metric, the source on the right hand side must have the same mathematical properties:
it must be a symmetric and covariantly conserved (0,2) tensor built out of the matter
content of the system. This tensor corresponds to the just mentioned stress-energy ten-
sor.

The entire content of general relativity may be summarized as follows: “Space-time
is a manifold M on which there is defined a Lorentz metric gµν. The curvature of gµν is
related to the matter distribution in space-time by Einstein’s equation.”

Gµν + Λgµν =
8πGN

c4
Tµν (2.18)

• Gµν : The Einstein’s tensor represents the geometrical curvature of the manifold.
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• Λgµν : Term containing the Cosmological constant.

• 8πGN/c
4: Constant required by demanding that Newton’s gravitational field equa-

tion comes out right.

• Tµν : Stress-momentum tensor, it encapsulates the characteristics of the source.

Since both sides are symmetric, these form a set of ten coupled non-linear partial differ-
ential equations in the metric and its first and second derivatives. However the covariant
divergence of each side vanishes

(Rµν − 1

2
Rgµν + Λgµν);µ = 0 (2.19)

and
T µν;µ = 0 (2.20)

independently of the field equations. Thus, the field equations really provide only six
independent differential equations for the metric. This is, in fact, the correct number of
equations to determine the space-time, since four of the ten components of the metric
can be given arbitrary values by use of the four degrees of freedom to make coordinate
transformations.
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Chapter 3

Raychaudhuri Equations

In classical mechanics, usually, we formulate and solve the equations of motion of a
system for certain initial conditions. In every framework, Newtonian, Lagrangian or
Hamiltonian, the ultimate goal is to develop our understanding of the system through
such solutions, which may be analytical or numerical, or a combination of both. Thus,
the focus is on the behavior of a single trajectory beginning from a given initial condi-
tion. No attempt is made to study the collective behavior of a family of trajectories. We
believe that such a study provides a new perspective towards qualitatively understanding
the configuration space of a dynamical system.
Based on the above observation, we wish to frame a somewhat different question as fol-
lows: how do we understand the behavior of a properly defined family of trajectories?
One way of defining a family of trajectories (i.e. a trajectory congruence) is to vary the
initial conditions on position and velocity around specific values. The family of trajecto-
ries thus obtained may be treated as flow-lines generated by the velocity field ua in the
configuration space of the system. Flows are generated by a vector field; they are the
integral curves of the given vector field. These curves may be geodesic or non-geodesic,
though the former is more useful in our context.

In other words, the aim of this chapter is to study the behavior of a geodesic con-
gruence defined in a generic space-time (M, gab). Once we have defined the velocity
gradient tensor Bab, we decompose it into its trace θ (expansion), symmetric trace-less
σij (shear) and anti-symmetric part ωij (rotation). After that, we analyze the dynamical
evolution of these three parameters; and, from θ, in particular, we obtain the principal
Raychaudhuri equation. A more precise description of that follows.
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3.1 Flow as a congruence of geodesics

Let M be a manifold and let O ⊂M be open. A congruence in O is a family of curves
such that through each point P ∈ O there passes precisely one curve in this family. No
two trajectories within the family can intersect each other in the course of time evolution.
If they do, then the definition of congruence breaks down.

Figure 3.1: The cross-sectional area enclosing a congruence of geodesics

What quantities characterize a flow? If λ denotes the parameter labeling points on
the curves in the flow, then, in order to characterize the flow, we must have different
functions of λ. Once we have defined the velocity field ua with the parameter λ, we shall
decompose the velocity second rank gradient tensor Bab into its trace θ (expansion), sym-
metric trace-less σab (shear) and anti-symmetric part ωab (rotation). Mathematically, we
have

Bab =
1

n
θδab + σab + ωab (3.1)

The corresponding evolution equations in time (Raychaudhuri equations), can thereby
be obtained, for these kinematic variables. Here, n is the dimension of the configuration
space. The initial conditions on these kinematic quantities are then translated into the
perturbed initial conditions on the positions and velocities of all the trajectories within
the family.
The geometric meaning of these quantities is shown through Fig. 3.1 and Fig. 3.2. The
expansion, shear and twist (rotation) are related to the geometry of the cross-sectional
area (enclosing a fixed number of geodesics) orthogonal to the flow lines (Fig. 3.1). As
one moves from one point to another, along the flow, the shape of this area changes. It
still includes the same set of geodesics in the bundle but may be isotropically smaller
(or larger), sheared or twisted. The analogy with elastic deformations or fluid flow is,
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usually, a good visual aid for understanding the change in the geometry of this area.
The kinematic evolution of the family may thus be studied through the solutions of the
evolution equations for the kinematic variables. Through such studies, one can analyze
how the family evolves as a whole.

Figure 3.2: Illustration of expansion, rotation and shear

For example, one may ask; do the trajectories in the family diverge, or converge and
intersect after some finite time? If not, is there a relative shearing or a twist of the area
enclosing the family, or do they remain parallel? Through answers to such questions, we
hope to gain newer insights on the behavior of a given system.
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3.2 Introduction to Raychaudhuri equations

In this section we shall define the expansion, shear, and twist of a time-like and null
geodesic congruence for a generic space-time (M, gab), and derive equations for their
rate of change as one moves along the curves in the congruence.
In order to do that, we are going to start off from the “geodesic formalism” we have
introduced in Chapter 1.

The starting point is a geodesic curve with tangent vector field ua,

ub∇bu
a = 0 , (3.2)

and a deviation vector field ξa characterized by the (symmetric connection) condition

[u, ξ]a = ub∇bξ
a − ξb∇bu

a = 0 ⇔ Dτξ
a = ξb∇bu

a . (3.3)

The rationale for this condition is that, if xa(τ, s) is a family of geodesics labeled by s,
one has the identifications

ua =
∂

∂τ
xa(τ, s) , ξa =

∂

∂s
xa(τ, s) . (3.4)

Since second partial derivatives commute, this implies the relation

∂

∂τ
ξa(τ, s) =

∂

∂s
ua(τ, s) . (3.5)

Condition (3.3) is nothing other than the covariant way of writing (3.5). Now, introducing
the tensor

Bab = ∇bua (3.6)

we can write (3.3) as
Dτξ

a = Ba
b ξ

b , (3.7)

in this way, the matrix Bab describes the evolution and deformation of the deviation
vector ξa along the geodesic. Further, it satisfies

Babu
b = ub∇bua = 0 (3.8)

and

uaBab =
1

2
∇b(u

aua) = 0 , (3.9)

so Bab is transverse to ua. As a consequence one has

uaDτξ
a = 0 (3.10)
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(i.e. Dτξ
a is transverse to ua) and therefore

d

dτ
(uaξ

a) = Dτ (uaξ
a) = uaDτξ

a = 0 . (3.11)

So, this means that uaξ
a is simply constant and contains no interesting information about

the geodesic itself.

In the time-like case this means that a vector of the form ξa = ξua is a deviation
vector only if ξ is constant, and then ξa is simply a translation along the geodesic and
therefore not a deviation vector of interest (and certainly anyhow not a vector of the
kind one has in mind when thinking about a deviation vector, which should point away
from the geodesic). In the null case, the interpretation is slightly different (and we will
return to this later), but the fact that uaξ

a is simply constant for a deviation vector
remains, and we can, without loss of information, choose the deviation vector to satisfy
the condition ξaua = 0.

Given this set-up, we now want to calculate

(Dτ )
2ξa = (DτB

a
b )ξb +Ba

bDτξ
b

= (DτB
a
γ +Ba

bB
b
γ)ξ

γ .
(3.12)

Note that, along with Dτξ
a, also D2

τξ
a is automatically transverse to ua, uaD

2
τξ
a = 0,

regardless of whether or not one imposes the condition ξaua = 0. For the term in brackets
we find, using the geodesic equation for ua,

DτB
a
γ +Ba

bB
b
γ = ub∇b∇γu

a + (∇γu
b)∇bu

a

= ub∇b∇γu
a +∇γ(u

b∇bu
a)− ub∇γ∇bu

a

= ub(∇b∇γ −∇γ∇b)u
a = Ra

δbγu
buδ ,

(3.13)

and plugging this back into (3.12), we obtain straightaway the covariant version of the
geodesic deviation equation in the form

(Dτ )
2ξa = Ra

δbγu
buδξγ . (3.14)

In this way, we have been able to obtain the geodesic deviation equation through the
tensor Bab, which plays a central role in deriving the Raychaudhuri equations.
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3.3 Derivation of the Raychaudhuri equations

Manipulations similar to those of the previous section allow one to derive an equation
for the rate of change of the divergence ∇au

a of a family of geodesics along themselves.
This simple result, known as the Raychaudhuri equation, has important implications and
ramifications in General Relativity, especially in the context of the so-called singularity
theorems of Hawking and Penrose.

Let us consider ua, it now denotes a tangent vector field to an affinely parameterized
geodesic congruence, ua∇au

b = 0 (and uaua = −1 or uaua = 0 everywhere for a time-like
or null congruence). As in Section 3.2, we introduce the tensor field (3.6)

Bab = ∇bua . (3.15)

We recall from Eqs. (3.8) and (3.9) that Bab has components only in the directions
transverse to ua. Its trace

θ = Ba
a = gabBab = ∇au

a (3.16)

is the divergence of ua and is known as the expansion of the (affinely parameterized)
geodesic congruence.

The key equation governing Bab evolution along the integral curves of the geodesic vector
field is (3.13), which comes straight from the geodesic deviation Eq. (3.12):

DτB
a
γ +Ba

bB
b
γ = Ra

bδγu
buδ . (3.17)

By taking the trace of this equation, multiplying both sides by gγδgδa and adjusting the
indexes, we evidently obtain an evolution equation for the expansion θ, namely

d

dτ
θ = −(∇aub)(∇bua)−Rabu

aub . (3.18)

To gain some more insight into the geometric significance of this equation, we now con-
sider the case that the geodesic congruence ua is time-like and normalized in the standard
way as uaua = −1 (so that τ is proper time).

Given this time-like geodesic congruence, we can introduce the tensor

hab = gab + uaub . (3.19)

Point-wise, hab can be interpreted as a metric on the space of vectors transverse to the
geodesic bundle. Its purely algebraic properties are identical to those of the induced
metric.
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In particular,

• hab has the characteristic property that it is orthogonal to ua,

uahab = habu
b = 0 . (3.20)

• It can therefore be interpreted as the spatial projection of the metric in the direc-
tions orthogonal to the time-like vector field ua. This can be seen more explicitly
in terms of the projectors

hab = δab + uaub

habh
b
γ = haγ .

(3.21)

On directions tangential to ua they act as

habu
b = 0 , (3.22)

whereas on vectors ξa orthogonal to ua, uaξ
a = 0 (space-like vectors), one has

habξ
b = ξa . (3.23)

• Thus, acting on an arbitrary vector field ~V , V a = habV
b is the projection of this

vector into the plane orthogonal to ua. In the same way one can project an arbitrary
tensor to a spatial or transverse tensor. E.g. one has

ta...b = Tγ...δh
γ
a...h

δ
b (3.24)

which satisfies
uata...b = ... = ubta...b = 0 . (3.25)

• In particular, the projection of the metric is

gab → gγδh
γ
ah

δ
b = gab + uaub = hab , (3.26)

as anticipated above. Whereas for the space-time metric one obviously has gabgab = δaa =
4, the trace of hab is (in the 4-dimensional case)

gabhab = gabgab + gabuaub = 4− 1 = 3

= (gab + uaub)(gab + uaub)

= gabgab + gabuaub + gabu
aub + uaubuaub

= 4− 1− 1 + 1 = 3 = habhab .

(3.27)
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Thus for an affinely parameterized congruence the properties (3.8) and (3.9) show that
Bab is automatically a spatial or transverse tensor in the sense above,

bab ≡ hγah
δ
bBγδ = Bab . (3.28)

Note that the affine parameterization of the time-like geodesic congruence, expressed
by the normalization condition uaua = −1, is crucial for this entire set-up, since the
projection operator requires a unit vector field. This is in contrast with the case of the
null geodesic congruence ka, where the property kaka = 0 is independent of the param-
eterization.

We now decompose bab into its trace, symmetric trace-less and anti-symmetric part,

bab =
1

3
θhab + σab + ωab , (3.29)

with
θ = habbab = gabBab = ∇au

a , (3.30)

σab =
1

2
(bab + bba)−

1

3
θhab , (3.31)

ωab =
1

2
(bab − bba) . (3.32)

The quantities θ, σab and ωab are known, like we have already said in the previous sec-
tions, as the expansion, shear and rotation tensor of the congruence (family) of geodesics
defined by ua.

Now, returning to the evolution equation for the expansion θ (3.18) we get:

d

dτ
θ = −(∇bua)(∇aub)−Rabu

aub

= −BabBba −Rabu
aub

= −(
1

3
θhab + σab + ωab)(

1

3
θhba + σba + ωba)−Rabu

aub

= −1

9
θ2habhba − σabσba − ωabωba −Rabu

aub

= −1

3
θ2 − σabσab + ωabωab −Rabu

aub

= −1

3
θ2 − σ2 + ω2 −Rabu

aub .

(3.33)

What we have obtained here, is the Raychaudhuri expansion equation for a time-like
geodesic congruence.
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Where we have used, by virtue of construction, the relations:

•
habσab = 0 (3.34)

•
habωab = 0 (3.35)

following the two above we derive:

•
uaσab = uaωab = 0 (3.36)

then by summing over the two indexes:

•
σabωba + ωabσba = −σabωab + ωabσab = 0 (3.37)

We here mention also the symmetric trace-less and anti-symmetric parts of Eq. (3.17)
(for the sake of completeness, we re-write the well-known trace part, too). However, the
two equations are not relevant for our aims:

d

dτ
θ = −1

3
θ2 − σ2 + ω2 −Rabu

aub , (3.38)

uγ∇γσab +
2

3
θσab + σaγσ

γ
b + ωaγω

γ
b −

1

3
hab(σ

2 − ω2)− Cγbaδuγuδ −
1

2
R̃ab = 0 , (3.39)

uγ∇γωab +
2

3
θωab + σγbωaγ − σ

γ
aωbγ = 0 . (3.40)

Where Cγbaδ is the Weil tensor and R̃ab = (haγhbδ − 1
3
habhγδ)R

γδ is the transverse trace-
free part of Rab.

Similarly, one can derive a set of Raychaudhuri equations for the congruence of null
geodesics. Though, we do not go through a very detailed derivation of the equations for
the null geodesic congruence.

The central issue in the case of null geodesic congruences is the construction of the
transverse part of the deviation vector and the space-time metric.
Assuming an affine parameterization in the sense dxa = kadλ with kaka = 0 and kaξa = 0
(with ξa being the deviation vector) we realize that we are in trouble because of the
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above two orthogonality relations. Naively writing hab = gab + kakb will not work here
(kahab 6= 0). The transverse metric is thus defined by introducing an auxiliary null vector
Na with kaN

a = −1 (the choice of −1 is by convention, the essence is that the quantity
must be non-zero). Hence we can choose hab to have the form:

hab = gab + kaNb + kbNa . (3.41)

This satisfies kahab = 0 and Nahab = 0. Note that hab now is entirely spatial two-
dimensional, so we get

habh
ab = hab(g

ab + kaN b + kbNa)

= habg
ab + 0

= gabg
ab + kaN bgab + kbNagab

= 4− 1− 1 = 2 .

(3.42)

Keeping this transverse metric in mind, we can proceed in the same way as for the time-
like case by constructing B̂ab = ∇bka. We quote below the equation for the expansion:

d

dτ
θ̂ = −1

2
θ̂2 − σ̂2 + ω̂2 −Rabk

akb . (3.43)

Note that the structure and geometric features of a given space-time encoded in the
metric gab, the Riemann tensor Ra

bγδ, the Ricci tensor Rab and the Weyl tensor Ca
bγδ,

appears in the evolution equations. Therefore, the structure and geometric features of a
given space-time must necessarily be reflected in the evolution of a congruence.
Using these equations, kinematic evolution of geodesic congruences have been studied in
different space-time backgrounds. These studies explore the role of initial conditions as
well as space-time curvature on the evolution of geodesic congruences using Raychaudhuri
equations.
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Chapter 4

Application to Cosmology

In this chapter we discuss the applications of what we have achieved in Chapter 3. In
particular, after introducing some basic concepts of modern cosmology, we talk about
the solutions of Einstein’s field equations in the context of a FLRW universe. In order to
do that, we substitute the space-time metric into Einstein’s equations. In such a way, we
obtain predictions for the dynamical evolution of the homogeneous and isotropic universe.
Then, in the same context, we consider a family of time-like geodesics (i.e., a congruence)
and use the Raychaudhuri equations in order to get the same evolution equations derived
through the previous method. Hence, we show the dynamical equivalence between the
two different approaches.
Then, through these equations and under simple considerations, we come up with the
existence of a space-time singularity, namely the big-bang singularity.
Immediately after, we present the energy conditions on the stress-energy tensor Tab
and explain the importance of these conditions on matter. Finally, given the previous
conditions and some others, we point out, one more time, the existence of a singularity
in the congruence of time-like geodesics in a FLRW space-time. In other words, we
demonstrate the divergence to ∞ of the expansion parameter θ. This is the same thing
as saying that the geodesic’s affine parameter τ is finite and its path is inexetendible
(i.e., the geodesic is incomplete). As we will see, it is the most effective way of detecting
a singularity. In conclusion, we briefly comment the concept of a space-time singularity,
and the fundamental contribution of the Raychaudhuri equations to the Penrose-Hawking
singularity theorems.
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4.1 Basic concepts of Cosmology

Modern cosmology is mainly based on the following two principles:

Copernican Principle: “We are not a preferred observer in the Universe.”

In other words, it is reasonable to assume that the Universe would look to any other
observer like it looks to us. From the practical point of view, this principle is of limited
use. However, and although it goes a long way ahead to infer from the above, one even-
tually relies on the

Cosmological Principle: “The Universe is homogeneous and isotropic.”

Isotropy is here taken as an observational statement, whereas homogeneity follows from
assuming that isotropy is independent of the observation point according to the Coper-
nican principle.

Loosely speaking, homogeneity means that at any given “instant of time” each point
of “space” should “look like” any other point. A precise formulation can be given as fol-
lows: a space-time is said to be (spatially) homogeneous if there exists a one-parameter
family of space-like hyper-surfaces Σt foliating the space-time (see Fig. 4.1) such that
for each t and for any points p, q ∈ Σt there exists an isometry (a bijective map between
two metric spaces that preserves distances) of the space-time metric, gab, which takes p
into q.

Figure 4.1: The hyper-surfaces of spatial homogeneity in space-time. By definition of
homogeneity, for each t and each p, q ∈ Σt there exists an isometry of the space-time
which takes p into q
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A space-time is said to be (spatially) isotropic at each point if there exists a congruence
of time-like curves (i.e., observers), with tangents denoted ua, filling the space-time (see
Fig. 4.2) and satisfying the following property. Given any point p and any two unit
“spatial” tangent vectors sa1, s

a
2 ∈ Vp (i.e., vectors at p orthogonal to ua), there exists

an isometry of gab which leaves p and ua at p fixed but rotates sa1 into sa2. Thus, in an
isotropic universe it is impossible to construct a geometrically preferred tangent vector
orthogonal to ua. In the present case of a homogeneous and isotropic space-time, the
surfaces Σt of homogeneity must be orthogonal to the tangents, ua, to the world lines of
the isotropic observers.

Figure 4.2: The world lines of isotropic observers in space-time. By definition of isotropy,
for any two vectors sa1, s

a
2 at p which are orthogonal to ua, there exists an isometry of

the space-time which leaves p fixed and rotates sa1 into sa2

Because of that, we may express the four-dimensional space-time metric gab as

gab = −uaub + hab(t) , (4.1)

where for each t, hab(t) is the metric of either a sphere, a flat Euclidean space or a
hyperboloid, on Σt. We can choose convenient coordinates on the four-dimensional
space-time as follows.
We choose, respectively, either (a) spherical coordinates, (b) Cartesian coordinates, or (c)
hyperbolic coordinates on one of the homogeneous hyper-surfaces. We then “carry” these
coordinates to each of the other homogeneous hyper-surfaces by means of our isotropic
observers; i.e., we assign a fixed spatial coordinate label to each observer. Finally, we
label each hyper-surface by the proper time, τ , of a clock carried by any of the isotropic
observers. (By homogeneity, all the isotropic observers must agree on the time difference
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between any two hyper-surfaces). Thus, τ and our spatial coordinates label each event
in the universe. Expressed in these coordinates, the space-time metric takes the form

ds2 = −dτ 2 + a2(τ)


dψ2 + sin2 ψ(dθ2 + sin2 θ dφ2)

dx2 + dy2 + dz2

dψ2 + sinh2 ψ(dθ2 + sin2 θ dφ2)

(4.2)

where the three possibilities in the bracket correspond to the three possible spatial ge-
ometries. [The metric for the spatially flat case could be made to look more similar
to the other cases by writing it in spherical coordinates as dψ2 + ψ2(dθ2 + sin2 θdφ2)].
The general form of the metric, equation (4.2) is called a Robertson-Walker cosmological
model. Thus, our assumptions of homogeneity and isotropy alone have determined the
space-time metric up to three discrete possibilities of spatial geometry and the arbitrary
positive function a(τ) named (cosmic) scale factor.
Equivalently, we can express the above metric (4.2) in the following Friedmann–Lemâıtre
–Robertson–Walker form:

ds2 = −dτ 2 + a(τ)2

[
dr2

1− kr2
+ r2(dθ2 + sin2 θ dφ2)

]
. (4.3)

where k = +1 for the 3-sphere, k = 0 for flat space and k = −1 for the hyperboloid.

Our aim is now to substitute the space-time metric, Eq. (4.3), into Einstein’s equa-
tions (2.18) in order to obtain predictions for the dynamical evolution of the universe.
The first step is to describe the matter content of the universe in terms of its stress-energy
tensor, Tab, which enters the right-hand side of Einstein’s equation. Most of the mass-
energy in the present universe is believed to be found in ordinary matter, concentrated
in galaxies. On the cosmic scales with which we are dealing, each galaxy can be idealized
as a “grain of dust”. The random velocities of the galaxies are small, so the “pressure”
of this dust of galaxies is negligible. Thus, to a good approximation, the stress-energy
tensor of matter of the present universe takes the form

Tab = ρuaub , (4.4)

where ρ is the (average) mass density of matter. However, other forms of mass-energy are
also present in the universe. In fact, a thermal distribution of radiation at a temperature
of about 3K fills the universe. This radiation can also be described by a perfect fluid
stress-energy tensor, but its pressure is nonzero; indeed, for mass-less thermal radiation,
we have p = ρ/3. The contribution of this radiation to the stress-energy of the present
universe is negligible, but, this radiation is predicted to make the dominant contribution
to Tab in the early universe.
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Thus, in treating Einstein’s equations, we shall take Tab to be of the general perfect
fluid form,

Tab = (ρ+ p)uaub + pgab . (4.5)

Computing Gab from the metric and equating it with 8πTab, we will get 10 equations
corresponding to the 10 independent components of a symmetric two-index tensor. How-
ever, it is not difficult to see that on account of the space-time symmetries, there will
be only two independent equations in this case. Namely, the vector Gabub cannot have
off-diagonal components, or isotropy and homogeneity would be violated. Further, con-
sidering that the “space-space” components yield the same equations, the independent
components of Einstein’s equations are simply

Gττ − Λ = 8πTττ = 8πρ , (4.6)

G∗∗ + Λ = 8πT∗∗ = 8πp , (4.7)

where Gττ = Gabu
aub and G∗∗ = Gabs

asb, with sa a unit vector tangent to the homoge-
neous hyper-surfaces.
We now want to compute Gττ and G∗∗ in terms of a(τ) for the case of flat spatial geom-
etry. Through the equations of the Christoffel symbols and Riemann tensor as functions
of the metric, which we here report,

Γijk =
1

2
gil
(
glk,j + glj,k − gjk,l

)
(4.8)

Rij = Rk
ikj = ∂jΓ

ρ
iρ − ∂ρΓ

ρ
ij + ΓliρΓ

ρ
jl − ΓlijΓ

ρ
ρl. (4.9)

we obtain the non-vanishing components of the Christoffel symbols, which are merely

Γτxx = Γτyy = Γτzz = aȧ , (4.10)

Γxxτ = Γxτx = Γyyτ = Γyτy = Γzzτ = Γzτz =
ȧ

a
, (4.11)

hence, the independent Ricci tensor components:

Rττ = −3ä/a , (4.12)

R∗∗ = Rabs
asb

= Rabs
agabsb

= a−2Rxx =
ä

a
+ 2

ȧ2

a2
.

(4.13)

Since we have

R = −Rττ + 3R∗∗ = 6

(
ä

a
+
ȧ2

a2

)
, (4.14)
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we thus obtain

Gττ − Λ = Rττ +
1

2
R− Λ = 3ȧ2/a2 − Λ = 8πTττ = 8πρ , (4.15)

G∗∗ + Λ = R∗∗ −
1

2
R + Λ = −2

ä

a
− ȧ2

a2
+ Λ = 8πT∗∗ = 8πp . (4.16)

Using the first equation, we may write the second equation as

3
ä

a
= −4π(ρ+ 3p) + Λ . (4.17)

Obtaining, in this manner, the equation that, as we will see later, characterize the
evolution of a(τ). Then, considering the conservation of the stress-energy tensor, from
the condition ∇aT

ab = 0, we note that the spatial components of this conservation law

∇aT
ai = 0 (4.18)

turn out to be identically satisfied. In fact, inserting expression (4.5), this is demon-
strated by virtue of the fact that ua are geodesics and that the functions ρ and p are
only functions of time.

The only interesting conservation law is thus the zero-component

∇aT
a0 = ∂aT

a0 + ΓaabT
b0 + Γ0

abT
ab = 0 , (4.19)

which for a perfect fluid with T00 = ρ(t) and Tij = p(t)gij becomes

∂tρ(t) + Γaa0ρ(t) + Γ0
00ρ(t) + Γ0

ijT
ij = 0 . (4.20)

Inserting the explicit expressions for the Christoffel symbols, and for the given metric,
one finds the continuity equations.

ρ̇ = −3(ρ+ p)
ȧ

a
. (4.21)
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4.2 On the initial singular state of the universe

Let’s now consider the continuity equation of the perfect fluid energy-momentum tensor,
just as in the previous paragraph. Further, let’s consider a general velocity field ua with
uaua = −1 and

ua∇aρ = ρ̇ =
dρ

dτ
. (4.22)

Let us now see what the condition ∇aT
ab = 0 implies. We first consider the case p = 0,

so this corresponds to a pressure free perfect fluid. Then one has

Tab = ρuaub ⇒ ∇aT
ab = (ρ̇+ ρ∇au

a)ub + ρua∇au
b . (4.23)

Here ∇au
a = Ba

a = θ is (and measures) the expansion of the velocity field ua (introduced
previously, in the context of the Raychaudhuri equations, Chapter 3), and the last term
ua∇au

b = ab is its acceleration, so that we can also write this equation as

(ρ̇+ θρ)ub + ρab = 0 . (4.24)

Since ua and aa are orthogonal to each other,

uau
a = −1 ⇒ uaa

a = 0 , (4.25)

this equation breaks up into two independent pieces,

∇aT
ab = 0 ⇔ ρ̇+ θρ = 0 and ab = ua∇au

b = 0 . (4.26)

Its time (energy flow) component is a continuity equation, while its space (momentum
flow) part tells us that the particles have to move on geodesics.

Now what happens if we include pressure p? This corresponds to adding p(gab +uaub) ≡
phab, but this tensor is orthogonal to ua (just like in Chapter 3),

uahab ≡ ua(gab + uaub) = ub − ub = 0 . (4.27)

Therefore through the equation ∇aT
ab, we arrive at

∇aT
ab = (ρ̇+ θ(ρ+ p))ub + (ρ+ p)ab + (∇ap)h

ab (4.28)

The part tangent to ub tells us that

ρ̇+ θ(ρ+ p) = 0 , (4.29)

so this is a conservation law, and the part orthogonal to ua gives

(ρ+ p)ab + (∇ap)h
ab = 0 , (4.30)
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which is a curved-space relativistic generalization of the Euler equations for a perfect
fluid.

In particular, now the velocity field is not composed of geodesics unless the derivative of
p in the directions orthogonal to ua (i.e. the spatial derivative) is zero, hab∇ap = 0. This
is precisely the situation we are considering in cosmology, where ρ = ρ(t) and p = p(t)
depend only on t, which is the proper time of co-moving observers described by the
velocity field ua.

Returning thus to the cosmological setting, where we have chosen the matter to move
along geodesics, we are left with the continuity equation, which is now the same as (4.21)
because for ua = (1,0,0,0) in co-moving coordinates one has

θ = ∇au
a =

1√
|g|
∂a(
√
|g|ua) = a(t)−3∂t(a(t)3) = 3ȧ(t)/a(t) . (4.31)

This equality comes from the general expression for the divergence of a vector field, as
follows:

∇ ·V = V i
;i

= ∂iV
i + ΓlilV

i

= ∂iV
i +

1

2

(
Γlikδ

k
l + Γlijδ

j
l

)
V i

= ∂iV
i +

1

2
gjk
(

Γlikglj + Γlijgkl

)
V i .

(4.32)

Then from the following relation

gkj;i = 0 = gkj,i − Γlikglj − Γlijgkl (4.33)

we have
gkj,i = Γlikglj + Γlijgkl (4.34)

and going back to the divergence relation, we get

∇ ·V = ∂iV
i +

1

2
gjk∂igkjV

i

= ∂iV
i +

1

2
tr(gjk∂igkl)V

i

= ∂iV
i +

1

2
tr(g−1∂ig)V i

=
1√

det g
∂i

(√
det g V i

)
.

(4.35)
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Where we used the formula for any non-singular matrix A:

tr
[dA
dτ
A−1

]
=

1

detA

d

dτ
(detA) (4.36)

For details concerning the derivation of this expression, see (Wald, 1984).

So, the derived expression implies:

d

dt
θ = 3(ä/a− ȧ2/a2) . (4.37)

This equation is a special case of the Rachaudhury Eq. (3.38) for time-like geodesic con-
gruences. Indeed, specializing to the family of co-moving observers in a FLRW geometry
and noting that

• the proper time τ is the cosmological time t;

• the rotation is zero (on symmetry grounds);

• the shear is zero (on symmetry grounds);

• the relevant component of the Ricci tensor is Rττ = −3ä/a,

one sees that the Raychaudhuri equation (3.38) reduces to

d

dτ
θ = −1

3
θ2 −Rττ = −3

ȧ2

a2
+ 3

ä

a
. (4.38)

Then, considering the 00-component of the Einstein’s equations

Rττ = 8π(Tττ +
1

2
T aa )− Λ = 4π(ρ+ 3p)− Λ (4.39)

one finds that
d

dτ
θ = −1

3
θ2 −Rττ ⇔ −3

ä

a
= 4π(ρ+ 3p)− Λ (4.40)

which is precisely Eq. (4.17). The aim of the preceding pages was to show that, through
the Raychaudhuri’s equation (3.38), we arrived at the same results achieved by means of
the resolution of the Einstein’s equations in presence of a FLRW metric. This illustrates
the importance of the Raychaudhuri’s equation; in fact, as one can see, we come up with
the equation, which, is going to bring us to the initial singularity.
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In particular, as we mentioned, the two different approaches bring us to the follow-
ing fundamental result: given Eq. (4.17), we note that the model of our universe cannot
be static, provided that ρ > 0 and p ≥ 0 (i.e., under certain energy conditions), which
tell us that ä(τ) < 0. Thus, the universe must always either be expanding (ȧ > 0) or
contracting (ȧ < 0). Note the peculiar nature of this expansion/contraction: the dis-
tance scale between all isotropic observers (in particular, between galaxies) changes with
time, but there is no preferred center of expansion/contraction. Indeed, if the distance
between two isotropic observers at time τ is R, the rate of change of R is

v ≡ dR

dτ
=
R

a

da

dτ
= HR , (4.41)

where H(τ) = ȧ/a is called Hubble’s constant. Equation (4.41) is known as Hubble’s
law. The expansion of the universe in accordance to this equation has been confirmed
by the observation of red-shifts of distant galaxies. Neglecting Λ and considering an
expanding universe, ȧ > 0, and ä < 0 because ρ + 3p > 0, it follows that there cannot
have been a turning point in the past and a(t) must be concave downwards. Therefore,
if the universe had always expanded at its present rate, then at the time T = ȧ/a = H−1

ago a(t) must have reached a = 0. Thus, under the assumptions of homogeneity and
isotropy, GR makes the striking prediction that at a time less than H−1 ago, the universe
was in a singular state. The distance between all “points of space” was zero; the density
of all forms of matter and the curvature of space-time was infinite. This singular state
of the universe is referred to as the big bang.
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4.3 Energy Conditions and The Geodesic Focusing

Theorem

The conditions on the nature of matter present in the universe are essential for the study
of the initial singularity in the FLRW metric.

A generic observer with a four-velocity ua will measure the energy density T abuaub.

The Weak Energy Condition (WEC): if the energy-momentum tensor obeys the
inequality

T abuaub ≥ 0 , (4.42)

for all time-like vectors ua then we say that the energy-momentum tensor obeys the weak
energy condition.
This condition for the energy-momentum tensor is satisfied by most fluids known. It is
basically saying that all time-like observers will measure a positive energy density.

WEC ⇔ ρ ≥ 0 and ρ+ pi ≥ 0 (i = 1, 2, 3) . (4.43)

The Null Energy Condition (NEC): if the energy-momentum tensor obeys the in-
equality

T abkakb ≥ 0 , (4.44)

for all light-like vectors ka then we say that the energy-momentum tensor obeys the null
energy condition.

NEC ⇔ ρ+ pi ≥ 0 (i = 1, 2, 3) . (4.45)

The Strong Energy Condition (SEC): if the energy-momentum tensor obeys the
inequality (

T ab − 1

2
Tgab

)
uaub ≥ 0 , (4.46)

for all time-like vectors ua then we say that the energy-momentum tensor obeys the
strong energy condition.
This condition for the energy-momentum tensor is satisfied by most fluids known. All
time-like observers will measure a positive energy density.

SEC ⇔ ρ+
∑
i

pi ≥ 0 and ρ+ pi ≥ 0 (i = 1, 2, 3) . (4.47)

If we have a barotropic perfect fluid

p = ωρ (4.48)

and all the principal pressures are equal to p, the WEC is equivalent to ω ≥ −1. The
SEC on the other hand, put the stronger constraint ω ≥ −1

3
. Note from Eq. (4.17),
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that if SEC is satisfied then gravity is attractive for observers moving along time-like
geodesics. If a space-time satisfies the Einstein’s equations then we can replace the
energy-momentum tensor with the Ricci tensor (Rab = Tab − 1

2
gabT ). The SEC can

therefore be written as
Rabuaub ≥ 0 (4.49)

for all time-like ua. Hence, the space-time has a positive curvature for time-like vectors.
If we have two neighboring parallel geodesics and if the SEC is satisfied, the geodesics
will converge and at some point meet.

Assume that the matter obeys the SEC (i.e., ρ + 3p ≥ 0), this implies that the last
term of Eq. (3.38) will be negative. Furthermore, we will also assume that the con-
gruence is non-rotating. Hence, from the principal Raychaudhuri equation we get the
inequality

θ̇ ≤ −1

3
θ2 . (4.50)

The relation
d

dτ

[
θ(τ)−1

]
= − θ̇

θ2
, (4.51)

dividing by θ2 yields
d

dθ

(
1

θ

)
≥ 1

3
, (4.52)

considering dθ−1 = −θ−2dθ and hence integrating in the interval [θ, θ0],

1

θ(τ)
≤ 1

θ0
+

1

3
τ . (4.53)

Here, θ0 is the value of θ at τ = 0, and τ ≤ 0. Assume, further, that the geodesic
congruence is expanding at τ = 0, i.e. θ0 > 0 (which would be the case for an expanding
universe). Then, according to Eq. (4.53), the function θ(τ)−1 must have passed through
zero at a finite time τs. In particular, τs is bounded by the inequality |τs| ≤ 3θ−10 . This
means that at the time τs, the expansion scalar was infinite θ(τs) =∞, which indicates
that there was a singularity at τs. Strictly speaking, this only tells that there is a sin-
gularity of the geodesic congruence, however this analysis is one of the key ingredients
for proving the singularity theorem stated below. There are many global aspects that
we have to consider, but we refer the reader to (Wald, 1984) or to (Hawking Ellis, 1973)
for more details. Roughly speaking we can say that:

If the matter obeys the SEC and there exists a positive constant C > 0 such that
θ > C, everywhere in the past of some specific hyper-surface, then there exists a past
singularity where all past directed geodesics end.
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Figure 4.3: An expanding universe containing matter that obeys the SEC, means that
the universe has a past singularity

We underline the fact that the singularity in θ represents merely a singularity in the con-
gruence, not a singularity in the structure of space-time. It simply states that caustics
will develop in a congruence if convergence occurs anywhere. This hold for congruences
in Minkowski space-time and in many other singularity free space-times.

The initial singularity results from a homogeneous contraction of space down to “zero
size”. Since space-time structure itself is singular at the big bang, it does not make sense,
either physically or mathematically, to ask about the state of the universe “before” the
big bang; there is no natural way to extend the space-time manifold and the metric
beyond the big bang singularity. Thus, GR leads to the viewpoint that the universe
began at the big bang. For many years it was generally believed that the prediction of
a singular origin of the universe was due merely to the assumptions of exact homogene-
ity and isotropy, that if these assumptions were relaxed one would get a non-singular
“bounce” at small a(τ) rather than a singularity. However, the singularity theorems (see
Hawking Ellis, 1973) of GR show that singularities are generic features of cosmological
solutions. These theorems have ruled out the possibility of “bounce” models close to
homogeneous and isotropic ones. Of course, at the extreme conditions very near the
big bang singularity one expects that quantum effects will become important, and the
predictions of classical GR are expected to break down.

As the reader may have noticed, we still have not defined what a singularity really
is. Intuitively, a space-time singularity is a “place” where the curvature “blows up” or
other “pathological behavior” of the metric takes place. The difficulty in making this
notion into a satisfactory, precise definition of a singularity stems from the above terms
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placed in quotes. In all physical theories except general relativity, the manifold and the
metric structure of space-time is assumed in advance; we know the “where and when” of
all space-time events, and our task is simply to determine the values of physical quanti-
ties at these events. If a physical quantity is infinite or otherwise undefined at a point in
space-time, we have no difficulty in saying that there is a singularity at that point. Thus,
for example, we easily may give precise meaning to the statement that the Coulomb so-
lution of Maxwell’s equations in special relativity has a singularity at the events labeled
by r = 0.
The situation in GR is completely different. Here we are trying to solve for the manifold
and metric structure of space-time itself. Since the notion of an event makes physical
sense only when the manifold and metric structure are defined around it, the most natu-
ral approach in general relativity is to say that a space-time consists of a manifoldM and
a metric gab defined everywhere onM. Thus, the big bang singularity of FLRW solution
is not considered to be part of the space-time manifold; it is not a “place” or a “time”.
Similarly, only the region r > 0 is incorporated into the Schwarzschild space-time; unlike
the Coulomb solution in special relativity, the singularity at r = 0 is not a “place”.
Further, the general characterization of singularities by the “blowing up” of curvature
is unsatisfactory, too. In fact, curvature is described by a tensor field Ra

bcd, and if one
uses bad behavior of the components of this tensor or its derivatives as a criterion for
singularities, one can get into trouble since this bad behavior of components could be
due to bad behavior of the coordinate or tetrad basis rather than the curvature. The
characterization of singularities by a detailed enumeration of the possible other types
of “pathological behavior” of the space-time metric also appears to be a hopeless task
because of the infinite variety of possible pathological behaviors.

How, then, can one characterize singular space-times? By far the most satisfactory
idea proposed thus far is basically to use the “holes” left behind by the removal of singu-
larities as the criterion for their presence. These “holes” should be detectable by the fact
that there will be geodesics which have finite affine length; more precisely there should
exist geodesics which are inextendible in at least one direction but have only a finite
range of affine parameter. Such geodesics are said to be incomplete. Thus, we could
define a space-time to be singular if it possesses at least one incomplete geodesic. In
such a space-time, it is possible for at least one freely falling particle or photon to end its
existence within a finite “time” (i.e. affine parameter) or to have begun its existence a fi-
nite time ago. Hence, even if one does not have a completely satisfactory general notion
of singularities, one would be justified in calling such space-times physically singular.
It is this property that is proven, by the singularity theorems, to hold in a wide class
of space-times. These theorems, known as the Penrose-Hawking singularity theorems,
have as one of the fundamental tools in their formulation and proof the Raychaudhuri
equations. For a thorough description see (Hawking Ellis, 1973).
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Conclusions

We began this thesis by introducing the idea of parallel transporting quantities along a
given path, on a generic manifold. From this followed the definition of geodesic curve
Eq. (1.11) and other useful properties involving normal frames and geodesic deviation
(Chapter 1). This brief introduction about differential geometry aimed at giving the
suitable basis for treating the following topics.
The geodesic motion and its properties, as we have noticed throughout our study, are
crucial in analyzing the features of a generic space-time. This is done in Chapter 2, where
we explained the relation between curvature of space-time and presence of a gravitational
field. Besides, we also presented the main features and equations of the General Theory
of Relativity, with particular interest on the stress-energy tensor.
In Chapter 3, we presented the Raychaudhuri equations (3.38) as dynamical equations
describing the evolution of some parameters (expansion θ, shear σab and twist ωab) char-
acterizing the geodesic congruence (namely, a bundle of geodesic curves). Immediately
after, we presented, in Chapter 4, the application for which these equations have been
derived by Raychaudhuri. Specifically, the presence of an initial singularity in a ho-
mogeneous and isotropic model of the universe. In order to show that, we described
the FLRW metric and pointed out the reasons leading to this singularity. Then, we
discussed one of our main results: the geodesic focusing theorem. The focusing of a
geodesic congruence, in the FLRW space-time, resulting in θ → −∞, is together with
few additional hypothesis, the proof of the initial (big bang) singularity; independently
of any symmetries encoded in the assumptions of homogeneity and isotropy.
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