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Abstract

The following master thesis is the product of the work carried out during the Erasmus
exchange of the year 2017-2018 that involved the author, exchange student from the
University of Bologna, the Universitat Politècnica de Catalunya , TriM, an italian
company with a strong knowledge of weather data and forecasting, and Meteocat,
the public meteorological company of Catalonia in a collaboration aimed to find new
methodologies for the processing of meteorological data.

The reason that motivated this work is dictated by the increasing amount of
weather data available today, that necessarily drives the weather forecasting in a more
automated procedure that reduces the time needed to generate a forecast and the
intervention of a human, in the figure of a meteorologist, in the analysis of the data.
This allows to process more data and thus having predictions that take advantages of
the usage of many information that could result in improved forecasting.

The development in the field of machine learning allows today to treat a vast amount
of information in an automatic way, leaving the analysis process to the machines, freeing
the user of this time-consuming task. And unsupervised learning is the branch that
can process data that are not labelled nor preprocessed, speeding up the data mining.

The goal of this thesis is to apply unsupervised learning techniques to this scope,
taking inspiration from the available literature that experimented in this field and
combining different solutions into a new technique that aims to reduce the human
decision in the process of the recognition of wind patterns and improve the automation
of the whole process.
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Chapter 1

Introduction

1.1 Meteorology

Meteorology is the science that studies the atmosphere and the events connected to it.
One of the main focus of meteorology is to produce weather forecasting, that is the
application of the principles of meteorology in order to predict the phenomena that
will happen in a given place and time. Various data are collected from instruments and
sensors, and their changes over the time are studied to understand the meteorological
phenomenon that is taking place and to construct models to be used for the prediction.
This process requires the interpretation of a human, to choose the right model for the
prediction and to interpret the results.

Weather forecasting is not only delivered to the general public, but there are some
specific sectors that needs a forecast to operate and grant safety. For example, air
traffic needs accurate weather forecasting to plan airplane routes in order to avoid
thunderstorm or prevent icing of the wings. Furthermore, forecasting is helpful to
prevent and control wildfires.

Lastly, an important application of weather forecasting is for navigation in waterways
as weather can strongly influence the safety of the transit due to the wind, waves and
tides. So, in this case, the wind plays a fundamental role, along with other weather
parameters.

1.2 The scope of the thesis

The scope of the thesis focuses on marine weather forecasting, particularly in the study
of wind patterns. The present master thesis is developed in the framework of the
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Tokyo2020 Olympic Games Weather Project, led by TriM company and funded by
the Austrian Sailing Federation and by Croatia and Cyprus Laser Olympic classes.
Sailing strategy and performance are strongly related to environmental parameters
such as weather, oceanic current and geographical data. A thorough prediction of the
conditions expected during a sailing race is a piece of valuable information for a sailor,
as it completely conditions his/her tactics during the race. Therefore, within the Tokyo
2020 Weather Project a big amount of data are produced both by collecting data on
the sea and by running numerical weather prediction models. All these data are stored
into a cloud database.

1.3 The motivation

The increasing number of meteorological data available from weather models together
with recent developments of technology represent a significant opportunity for the
identification of repeatable weather patterns that can support actors working within
complex environmental systems. Nevertheless, at the moment, the identification of
weather patterns still involves a subjective interpretation from a meteorologist who is
linking data coming from numerical weather prediction models, numerical data collected
on the field and qualitative signs observed in different weather conditions. This process
requires a significant human effort, resulting in a slower analysis of a limited number of
data. Moreover, if the area of interest changes, all the manual process should start from
the beginning. Automatizing this process would mean spending less time in generating
predictions, which would permit the analysis of a wider range of meteorological data
and would provide procedures that can be reused for different places. Consequently,
better forecasting could be produced as it would take into account as many parameters
as possible and it might be more easily quickly updated.

1.4 Objectives

The aim of this work is to find a manner to analyse automatically this data using
machine learning, which is a technique that allows a computer to learn from data
without being specifically programmed. The goal is to give added value to traditional
classification schemes for wind patterns, based on meteorological experience and
manual analysis of synoptic weather charts. A methodology based on clustering able to
automatically induce wind patterns based on collected data, as well as the characteristic
features of these patterns and their evolution through the day, will be developed and
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tested. The different automatic clustering that will be tested could also be able to
describe different behaviours of the wind in different sailing areas, within the same
wind pattern. All these would allow:

• A detailed analysis to determine the representativeness of the wind fields encoun-
tered during training and racing period, their frequency of occurrence, timing,
rate of evolution, and transition probabilities.

• Consequently, a more thorough prediction of the conditions expected before a
sailing race, which is as mentioned a highly valuable information for the sailor.

The system developed will be fed with meteorological data and apply machine
learning in the form of clustering analysis that consists of grouping together elements
that have similarities, to find a common pattern of winds to be used to plan the strategy
in boat racing. Machine learning indeed fits very well this scope as it requires as many
data as possible, and the measurements collected from sensors are many. What will be
explained throughout this document is the technique used to find these patterns.

There are multiple applications of different techniques of clustering for finding
different kinds of weather patterns. For example, Aran et al. [1] apply PCA analysis
in combination with k-means clustering plus Discriminant Analysis to detect weather
patterns associated with strong wind events in Catalonia. In this case, in order to
compute this classification, the chosen algorithms that will be employed are hierar-
chical clustering and k-means. In the literature, there are already attempts to
take advantage of these two algorithms to analyse winds. In particular the works of
Kaufmann and Whiteman [2] and Kaufmann and Weber [3] are two studies where this
methodology was applied. In [2] they analyzed wind pattern in the Gran Canyon using
data coming from meteorological stations. This paper was indeed the main reference
as they proposed solution very suitable for the scope of this work. In spite of that, it is
important to emphasise that the wind patterns object of this work aim to be far more
specific than theirs, since a race in Olympic sailing takes place in a very small area
(around 2-3 nautical miles), and the forecast needed must be far more accurate than a
conventional weather forecast: the solution is aiming for the prediction of variations
in direction of the wind of 5-10 degrees and variations of 2-5 knots in its intensity
during the span of 3-6 hours that the races may last. Furthermore, their work was
more focused on the meteorological aspect, so this research wanted to go deeper in the
machine learning aspect, trying to improve their work using a methodology studied by
Surdeanu et al. [4], that similarly to Kaufmann and Whiteman used clustering to group
documents, but improving the automation of the algorithm, as the choice of the right
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number of clusters after the hierarchical clustering was taken by the algorithm. These
two approaches will be combined together: finding automatically the optimal value for
the number of clusters in hierarchical clustering and apply it in k-means. It should
be noted that, although the ultimate goal is to apply this automatic methodology to
the actual collected data, at the moment of implementing this work these data were
not available yet since the collection of data in Tokyo started in August 2018 (and
will last until 2020). Therefore, our methodology will only be applied to the output
from the numerical weather prediction models. High resolution weather models provide
wind forecasts for specific areas and specific ranges of time. Although of course, it can
always be the case that what is forecasted is not what actually happens in the end, it
can be a good approximation. The idea is to develop and test the methodology, and in
case the results are promising, it will be easy to extrapolate it to whatever geographical
area and whatever type of input data, either collected or generated from the weather
models.

The project was developed to work independently by the site chosen, and, given
that meteorological data of the sites of Tokyo where the races will take place are not
yet available, measurements of Barcelona area were used to study, train and check the
program.

The program was realized in Python chosen firstly for a discreet number of library
dedicated to machine learning. These however revealed not to be suitable for the
context treated in this work, so the algorithm was written by scratch while using
different libraries for the computational part and the processing of the data.

1.5 Structure of the solution

Fig. 1.1 Representation of the components of the solution

In figure 1.1 it’s possible to see how the solution is structured: the available data comes
from two different sources of meteorological data, AROME and WRF. This two
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sources came with different file representation but both covered the area of Barcelona
and they were analyzed in the same way.

The data was firstly processed by hierarchical clustering, in particular in the two
different approaches that were mentioned before: Automatic clustering corresponds
to the work of Surdeanu et al. [4] while the Manual Clustering is a plain execution
of a hierarchical clustering, as done in Kaufmann and Whiteman [2]. This two different
executions both produce k, the number of clusters to be used in k-means.

Once the classifications are complete, it produces a series of statistics and graphs
that are analyzed to check if the resulting classification was able to group wind
patterns characterized by similar measurements values and to compare the two different
approaches.

1.6 Next chapters

In the following chapter 2 the datasets used will be examined, as well as the type of
files used to represent them. Next in chapter 3 the theoretical notion of clustering
regarding the algorithms used will be explained and, after that, in chapter 4 how they
were implemented in this work. Subsequently, chapter 5 is dedicated to the analysis of
the results obtained from the data and the algorithms. Lastly, the conclusion and the
thoughts for further work in chapter 6 close this thesis.





Chapter 2

The meteorological data

2.1 Data collection

The first step in the process that leads to weather forecasting is the data collection. This
is usually done with satellites or weather stations equipped with different instruments,
like barometers, thermometers, anemometers and more. These can be stations on the
ground, or, as this will be the scope of this work, dedicated buoys to measure weather
data in the sea.

2.2 Types of data

As we said the meteorological stations are furnished with many instruments that check
various air parameters. In this work different types of parameters, know by the general
public, are used:

• temperature

• humidity

• pressure

• total precipitation

In addition to these, there are two parameters that are the most important and the
ones used in the algorithm calculations, that are related to the wind. They are the
wind u and v components that are the mathematical representation of the wind flow
as a vector.
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The wind has a speed and a direction. These two elements can be completely
defined by a vector.

Fig. 2.1 Vector representation of the wind flow

From the figure 2.1 [5] is possible to see the vector defined by a wind flow vH . The
components u and v (also called eastward direction and northward direction) are the
projections of the vector on the axis. The representation of the direction, however, is
not simply the angle ϕpolar generated by the vector with the x axis (corresponding to
E in the figure 2.1). There are two conventions to represent the direction: one is the
wind vector azimuth, that is the direction where the wind is blowing, corresponding to
the angle ϕV ECT in the figure. The other is the meteorological wind direction, i.e the
direction from which the wind is blowing, represented by the green arch ϕMET . It is
important to keep in mind this representation in the section of calculation, otherwise,
this could lead to a wrong interpretation of the meteorological data.

In the rest of this document, the direction will be always considered as meteorological
wind direction.
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2.3 Data sources

2.3.1 Numerical Weather Prediction

Numerical Weather Prediction, or NWP, [6, 7] is a method of weather forecasting that
employs mathematical models of the atmosphere that use current weather conditions
to elaborate forecasting. An NWP is calculated with the help of a computer and there
are many distinct models available that differ based on the atmospheric processes
they are applied to or the part of the world that they analyze. The current weather
observations are the input of numerical computer models that calculate outputs of
many meteorological parameters, like temperature, pressure and many more, thanks to
a process called data assimilation. So both the meteorological measurements and the
numerical computer models have great importance in the forecasting.

The numerical models used consist in equations of fluid dynamics and thermody-
namics that describe the atmosphere behaviour and predict it. Such equations are
complex to solve and require to be simulated on super computers. This is a reason
because meteorological forecast can predict weather up to six days, and also because
the equations are nonlinear partial differential that cannot be solved exactly but the
results obtained are approximate solutions, and the error grows with time.

The data that has been used for this work comes from two different weather models:
WRF and AROME.

2.3.1.1 WRF

The Weather Research and Forecasting (WRF) [8] Model is a mesoscale numerical
weather prediction system developed starting in the latter part of the 1990s, designed
for atmospheric research and forecasting application. It was developed in the US by
many research entities and universities and today is maintained by the National Center
for Atmospheric Research (NCAR). It is composed of two dynamical cores, a data
assimilation core and a parallel and extensible software architecture. It can produce
simulations using actual atmospheric conditions or idealized conditions. WRF can
count on a large developers and users community and it is widely used for meteorological
bulletin as well by researchers and laboratories.

This is a high resolution model that serves applications across scales from tens
of meters to kilometers and is not freely available to the public. For this reason,
this meteorological data was provided by Meteocat, the meteorological service of
Catalonia. In this project they collaborated providing the data and the know-how on
how to deal with different kinds of files. From this model, they furnished the files with
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the six weather parameters mentioned earlier needed in this project, in csv (comma
separated values) files.

The data is contained in csv files that cover all month of March and April 2018.
Each file represented a precise time and date of the period and contained the value of
one measurement over different locations of the area of Catalonia. As said in 2.2 the
types of data used are 6. That means that for every timestamp there were 6 different
files each containing one measurement.

Table 2.1 Example of WRF file

41.275 -1.225 6.787735
41.275 -1.175 5.787735
41.275 -1.125 5.58461
41.275 -1.075 5.287735
41.275 -1.025 5.17836

The table 2.1 shows an extract of a csv file: the first column is the latitude, the
second is the longitude and the last one is the measurement. Using this type of files
was particularly easy: first of all, it is a common and spread text file format where
values are separated by commas, or other special characters, stored in tables. It is
also easy to read with just a spreadsheet program, like Microsoft Excel. These files
are small in size and each of them was less than 30 KB, and, even if each of the six
parameters was saved in a single file, the whole data set is, yes composed by more
than 8000 files, but still occupied a total space in local memory of 240 MB, a huge
difference in what will be seen with the AROME dataset. Lastly operating with csv
files in Python is straightforward: the function genfromtxt from numpy, a powerful
library of Python that allows to manipulate data and mathematical functions, read
the all file row by row, and save it in an array.

2.3.1.2 AROME

AROME, Applications of Research to Operations at MEsoscale, [9] is a small scale
numerical weather prediction model, maintained by Meteo-France, designed for short
term forecasting, in particular for severe atmospheric phenomenons, like storms in the
Mediterranean. It covers all France territory and waters and most of Spain.
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Fig. 2.2 The area covered by AROME

AROME collects data from radar networks to produce hourly based models with
a high resolution. It is used to produce five days weather predictions but it has also
proven to be useful with severe precipitations.

This data was provided instead by TriM that was the main partner in this project
that along data contributed with knowledge and collaborated with Meteocat too.

The original data were saved in GeoTIFF files, one for each parameter. TIFF,
Tagged Image File Format, is a tag-based file format designed to store and share raster
images. GeoTIFF is an extension compliant with TIFF specifications used to store
georeferenced information thanks to certain TIFF tags.

It was planned to merge all the measurements of one day in a single file and, as a
result of the meetings and advice from Meteocat, there are two files suitable for this:
GRIB and netCDF.

GRIB files One choice to store the meteorologic data was GRIB (GRIdded Binary
or General Regularly-distributed Information in Binary form) files [10, 11]. This
particular file format is commonly used in meteorology to store weather data. Created
by the World Meteorological Organization (WMO) it is a collection of records of data,
in the form of tables, thought to transfer volumes of gridded data efficiently. Data
packed in a GRIB are more compact than a text-oriented file, which means smaller
files to store large amounts of meteorological data. There are two versions of GRIB
currently used, GRIB1 and GRIB2. They differ for additions of new parameters or
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more precise definitions of the existing ones. A record of a GRIB file represents a
parameter described by gridded values or coefficients. In this case, the parameters
represent the u and v values, temperature, humidity, pressure and total precipitations.

To operate with this kind of files there are different libraries and programs. The
most used is wgrib, available as a bash command in Linux. The usage is quite simple,
it allows to decode GRIB files and read their contents or convert them into other files.

Despite its spread, GRIB files present some disadvantages that prevented to be
used in this project. As said before, there are two main versions of GRIB and to read
GRIB2 is necessary to use wgrib2. It requires many dependencies from other libraries
to be installed therefore it was hard to configure everything correctly. Furthermore the
parameters can be set differently as well as the grid of coordinates used. Lastly the
output decoded from a GRIB file using wgrib is not easy to interpret. For example the
output from a simple wgrib command of a wind measurement file is the following:

$ wgrib Lyon−Baleare s . grb
1 : 0 : d=18092018:UGRD: kpds5 =33: kpds6 =105: kpds7 =10:TR=0:

P1=6:P2=0:TimeU=1:10 m above gnd : 6 hr f c s t : NAve=0
2 : 51186 : d=18092018:VGRD: kpds5 =34: kpds6 =105: kpds7 =10:TR=0:

P1=6:P2=0:TimeU=1:10 m above gnd : 6 hr f c s t : NAve=0
3 :102372 : d=18092018:UGRD: kpds5 =33: kpds6 =105: kpds7 =10:TR=0:

P1=9:P2=0:TimeU=1:10 m above gnd : 9 hr f c s t : NAve=0
4 :153558 : d=18092018:VGRD: kpds5 =34: kpds6 =105: kpds7 =10:TR=0:

P1=9:P2=0:TimeU=1:10 m above gnd : 9 hr f c s t : NAve=0

This an extract of the command result. Firstly it can be noted that it is not very easy
to understand. It includes information on the data like the byte offset, that is not vital
to understand the content, while other data are stored in the values kpds: kpds5 with
value 33 states that it is a u-component of wind; kpds6=105 that it is measured at a
certain value above the ground and lastly kpsd7=10 that the measurement took place
every 3 hours. However, all this information present in kpsd values can be understood
only by checking the tables in the documentation of grib files that explain what each
value represents. This is clearly not very immediate to understand and requires time
to research the meaning of a value. To overcome this problem, it was agreed that all
AROME files used in the project should have been converted into NetCDF files.

netCDF netCDF (Network Common Data Form) [12] is another format to store
array-oriented scientific data in a portable and self-describing file, that means that
this kind of file can be accessed on different platforms, regardlessly how they represent
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integers, floats and characters, and also that the dataset includes a description of the
data that is stored, like the units of measurement.

This type of file is developed and maintained by Unidata that is part of the
University Corporation for Atmospheric Research (UCAR), indeed there are many
tools provided by Unidata to work with geoscience data. As said the data are in form
of arrays and this includes arrays of dimension n > 1, and the data used in this project
are an array of dimension 3, latitude, longitude and time. This can be seen as a 3-D
matrix composed by 24, as the daily hour, 2-D matrices with the dimensions of the
area covered by the meteorological data, each element of the matrix containing the
measurement of the parameter.

This file has evolved through the years and there are different versions released
over the years. Until version 3.6.0 the versions of netCDF employed one binary format.
These are referred to as the classical format. After 3.6.0 a 64-bit offset format was
adopted allowing to use file bigger than 2 GiB. The last version 4.0.0, called netCDF-4,
started using another binary format HDF5, which is a spread data model for storing
and managing data, capable of supporting a wide variety of datatypes. It is designed
to be flexible and efficient thus is portable and extensible.

The new versions allowed the netCDF file to store a larger amount of data with
the 64-bit offset update and with the netCDF-4 format it was possible to use a more
complex representation of data, like groups, nested trees and variable length array.

Despite the improvements of the newer versions, the classic format is the one that
grants the maximum compatibility as the usage of later versions requires the interfaces
and programs to be updated. So in this project, the format for the netCDF files is
classic format.

This kind of file can be read easily via a Unix command, ncdump. In the following
example, we can see an extract of the structure of the variables of one AROME file.

$ ncdump −h AROME_2018−04−06.nc
dimensions :

time = UNLIMITED ; // (48 cu r r en t l y )
l a t = 561 ;
lon = 590 ;

v a r i a b l e s :
double Band1( time , l a t , lon ) ;

Band1 : long_name = " eastward_wind " ;
Band1 : _Fi l lValue = 9.96920996838687 e+36 ;
Band1 : grid_mapping = " c r s " ;
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double Band2( time , l a t , lon ) ;
Band2 : long_name = " northward_wind " ;
Band2 : _Fi l lValue = 9.96920996838687 e+36 ;

A classic format netCDF is composed of two parts, the header and the data. The
-h argument of ncdump shows the header. This describes the type of content and how
it is represented. It is possible to see that the dimensions that describe the variables
are 3, time, latitude and longitude. This means that data vary by these 3 dimensions.
Time, in particular, is defined as unlimited that is used for dimensions that can be
extended, in cases when the total length is not known or it is necessary to add more
data. On the other hand, latitude and longitude are well defined because a specific
area is covered.

Speaking of the variables, two of the total 6 are present in the extract. They are a
3 dimensions array, represented by double values defined by the three dimensions and
are respectively the u and v component. It is possible to specify a default value when
some are missing, a name for the variable and the mapping of the grid used and the
real coordinates.

Using this kind of file within Python was easy, it was just necessary to install a
module, simply called netCDF4 that uses a class called Dataset. Accessing the data
was relatively simple too, accessed as a 4 dimensions array, one dimension for the
variable name (i.e. Band1, Band2, etc.) and 3 for the dimensions time, latitude and
longitude.

Using such files revealed easy and handier than GRIB files, nevertheless, this type
of format had a con, that is its size. The files used to store AROME data were on
average 700 MB for a total of 40 GB for the complete dataset, and this affected the
program performances on the loading of the data, a significant difference with the csv
file of WRF.

A useful program used during this work to inspect and check NetCDF file was
PanoplyJ, developed by NASA. Thanks to this program it was easy to check the types
of variables stored in the file and how they were structured.
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Fig. 2.3 Screenshot from PanoplyJ

From the screenshot of PanoplyJ in figure 2.3 we can understand better the
composition of these files. On the right, there is a pane with the same information
given by ncdump, regarding the dimensions and variables. On the left pane, all the
variables and dimensions are single elements in a table, with additional information.
Long names and the type of data are clearly expressed; it is interesting to note that the
different variables Bands are Geo2D type. Indeed they are a collection of 2D matrices
georeferenced data, in this case 48.

In PanoplyJ, is also possible to plot them on a map and have a visual representation
of the values.
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Fig. 2.4 Georeferenced Plot

Lastly, it is possible to look at the values of these variables.
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Fig. 2.5 Representation of the values stored in the NetCDF file

Every cell is the value of the measurement in a certain place given by the coordinates
in the row and column header. The whole day is represented by 24 of these tables
(even 48 as it is forecast also the following day) that can be selected in the lower part
of the window of figure 2.5. This table is exactly what will be loaded in Python.

During the work on the project however, it surfaced that some values of the
temperature of the days of May were wrong, indeed they had values of more than
10000. Checking the files with Panoply and talking with TriM revealed that there had
been a mismatch during the conversion into netCDF. Firstly a workaround was used
to exclude these wrong values in the code of the program, then the files were fixed,
as those mismatched values referred instead to pressure. This has affected marginally
the initial results during tests because, as said before, the main values used by the
algorithm are u and v. Anyway in the final results, this mistake was corrected.

Choosing netCDF as the format to operate with revealed the best choice, weighting
the compromises between the ease of use and the performance.
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2.3.2 Area of measurements

This calculation is aimed for the area of Tokyo that is where the sailboat races will take
place. However measurements from Japan are not yet available, so to test the program
it was chosen the bay of Barcelona, due to both the availability of high resolution
data and the knowledge of the area from the supervisor of this thesis and TriM. This
knowledge will be very valuable when analyzing the usefulness and coherence of the
results obtained.

As in Kaufmann and Whiteman [2] there were weather stations measuring wind
data, in this project 16 coordinates of the two weather model were taken as to simulate
measuring station. These comprehend both points on the land and in the sea.

Fig. 2.6 The 16 points chosen for WRF

As it is possible to see in figure 2.6 half of the points are on the land while the other
in the sea. In this way, it was possible to test the program with winds that characterise
different locations.

The points chosen for AROME are quite similar but they differ slightly just because
the WRF has a higher resolution, although they can be considered corresponding.
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Fig. 2.7 The 16 points chosen for AROME





Chapter 3

Clustering

3.1 Machine Learning

There are many definitions of machine learning. The most famous is the one gave by
Arthur Samuel, a pioneer in machine learning in 1959: ′′Machine learning is the field of
study that gives computers the ability to learn without being specifically programmed”.

There is also another definition, more formal, gave by Tom Mitchell: "a computer
program is said to learn from experience E with respect to some task T and some
performance measure P, if its performance on T, as measured by P, improves with
experience E" [13].

In some way the aim is to imitate how the human brain learns, using statistical
techniques and algorithms.

There are many and different learning algorithms, but they can be grouped into
two main categories depending on how the algorithm learns: supervised and unsu-
pervised learning.

In supervised learning, given a dataset, it is already known what is the correct
output, so every measurement has a corresponding response. It is like teaching a
computer what is right and what is wrong, giving it examples on how it should answer
with specific inputs and learn the rule that maps inputs with correct outputs. Examples
of supervised learning are regression, where input is mapped on a continuous output,
and classification, where the predicted outputs are discrete, that means starting from
inputs find the corresponding outputs in a series of classes or categories [14].

On the other hand, in unsupervised learning the dataset has no correct output,
so it is not possible to teach the computer how a correct answer should be, it has to
learn it by itself. In this case, it is harder to analyse the results of a learning algorithm
since the correctness of the output is unknown to the programmer too and the goal
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is to find patterns in the data. Nevertheless, the advantage of unsupervised learning
algorithms is that it is easier to find unlabelled data rather than labelled data, that
requires human intervention [15]. Examples of unsupervised algorithm are clustering,
dimensionality reduction and neural networks.

Dimensionality reduction consists of reducing the dimension of the data that need to
be analysed to optimised computing time and costs. It assumes that data is redundant
and that it can be represented with only a fraction of it [16] [17]. There are two popular
algorithms to reduce dimensionality:

• Principal Component Analysis (PCA), that produces a low-dimensionality of a
dataset, finding a linear combination that gives the maximum variance;

• Singular-Value Decomposition (SVD), that allows to represent data as a product
of 3 smaller matrices.

Deep learning is a relatively new approach, based on the use of neural networks, that
tries to imitates how brain cells work, decomposing the problem in smaller tasks
adopting elements called perceptrons that calculate output using functions and weights,
composed in single or multiple layers. [18, 19]

Lastly clustering, that is the topic of this work, will be examined more in detail.

3.2 Fundamentals of clustering

Clustering is a machine learning technique where the aim is to find clusters, or groups,
in a dataset. As said it is part of unsupervised learning, which means the input
data is not labelled by a supervisor nor there is any indication of what defines a good
value or a bad value.

Clustering the observations of a dataset means partition them in groups of objects
that are similar to each other, while clustering objects that are different in other groups.
′′Similar”, however, is a generic concept and depends on the domain of application.
[14]

As an example, it can be taken a series of clinical data from cancer patients. The
samples of the dataset are expected to be heterogeneous, depending on the patient data.
However certain aspects or subgroups of them could be similar between some, defining
a certain type of cancer or other common characteristics. Clustering these data could
help to find this common subgroups without having to classify them previously.

The field of application of this kind of method are numerous, thanks to the fact
that data does not need to be preprocessed. As said they can be used with clinical
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data, but also in marketing to group clients that have common characteristics who
can be the target of an effective advertising campaign or to drive them to the most
suitable purchase.

Also they can cluster documents, for example, newspaper articles, dividing them in
bags of words, and can be categorized by type (sport, economics, politics, etc.)

There are many clustering algorithms: hierarchical clustering and k-means
are among the most spread and are the ones adopted in this project, but there are
other important clustering algorithms such as DBSCAN and Expectation-Maximization,
which have been discarded because they do not apply to our specific methodology, as
described in section 1.5. However, they will be briefly mentioned as well due to their
importance in the clustering group.

DBSCAN [20, 21] is a density-based cluster algorithm that is a class of clustering
where clusters are defined as an area of higher density compared to the rest of the data,
while sparse objects are considered noise. With this kind of clustering is possible to
discover clusters of arbitrary shape. DBSCAN, in particular, is based on the concept
of density-reachability that defines a cluster as a maximal set of density-connected
object. Objects are divided into three categories:

• core, that are the objects which have a minimum number, defined as a parameter,
of other objects within a distance threshold;

• border objects have fewer elements than the minimum number in their neighbour,
but are in the neighbour of a core object;

• outlier or noise object, that are neither core nor border objects.

So a cluster is composed of core and border points.
DBSCAN pros are that it is able to ignore noise and handle clusters of different

shapes and sizes. However, it needs an area where the density is lower to recognise the
border of a cluster.

The distribution of objects can be also hypothesised to be a mixture of distributions
where every group is generated by a single distribution but all the groups together
appear as generated by a unique one.

The goal of Expectation-Maximisation (EM ) [4, 22–24] is to find the original
distributions. To simplify the process they are considered all the same type, usually
Gaussian. EM tries to find the parameters of the distributions calculating the log-
likelihood, a simplification of the maximum likelihood estimation. EM executes
iteratively the two steps Expectation and Maximisation: in the expectation phase,
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the expected value of the log-likelihood is calculated, while in the maximisation phase
the expected value previously calculated is maximised to determine the distribution
parameters. The process is repeated until convergence, that assured since the algorithm
maximises the likelihood at every step.

3.3 Hierarchical Clustering

Hierarchical Clustering [14, 25] is one type of clustering that uses a distance function to
establish if two objects are similar and thus be in the same cluster. Usually, Euclidean
distance is used when attributes have the same scale

d(x, y) = n

√√√√ n∑
i=1

(xi − yi)2 (3.1)

There are also other distance functions, like correlated-base distance. It considers two
observations similar if their features are correlated, even if they are far with Euclidean
distance. For example, customers that buy few items can be clustered together, but
maybe their shopping preferences might be very different; correlation-base distance
would pair people with similar preferences independently of the number of purchases.

Hierarchical clustering can be bottom-up or agglomerative, i.e. it starts with N
clusters, each containing only one element and each step of the clustering consists in
merging the two most similar until only one cluster is obtained. The opposite is the
top-down or divisive clustering that starts from a unique group and divides it until
every observation is in one group. This work will use the agglomerative version, which
is also the most common one, starting from a group for every wind observation.

The result of Hierarchical clustering is a dendrogram, a tree-based representation of
the observations. The leaves represent all the observation and the tree shows how they
are merged.
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Fig. 3.1 Examples of dendrograms

Figure 3.1[14] shows some examples of dendrograms. From the y axis we can see
how distant two elements are: the shorter vertical line that connects two observations
is, the more similar the observations are. And moving up the tree gives an indication
of the order of the merging because the two closest elements are the ones chosen to be
joined, so the first horizontal line that connects two elements is the first cluster to be
created.

The dashed lines in the second and third dendrograms is the height at which the
dendrograms are cut, respectively 9 and 5. The number of intersections with the vertical
lines represents the number of clusters that will be formed. Cutting the dendrogram at
a height of 9 gives two clusters that contain respectively the elements in red and green.
Instead, the height of 5 gives three final clusters. The height of the cut controls the
number of clusters obtained.

The downside of this technique is the choice of the height, so the choice of the
number of clusters. This is usually done by observing the clusters and picking an
arbitrary height. Clearly, this is not the best solution, as it could require more attempts
or either is not easy to understand for complex data if a cluster has effectively similar
observations.

3.3.1 The algorithm

The algorithm of this method, illustrated in Algorithm 1, is really easy. It first needs a
dissimilarity measure to sort the observations. Usually, for simple elements, Euclidean
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distance is a common choice. The algorithm works iteratively, starting from the leaves
of the dendrogram where each of the observation has its own cluster. At each step the
two most similar groups are merged, so after there are n − 1 cluster. At the next step,
they become n − 2 and so on until all of them are grouped in a unique cluster.

During the execution the algorithm merges the two closest clusters it finds. This
concept is straightforward when two single elements are considered, but for clusters
with more than one element is necessary to choose a point that will be used to calculate
the distance. So to extend the notion of distance to groups of observations, the linkage
function was introduced, that calculates the distance between arbitrary subsets of the
dataset. The most common types are single, complete, average and centroid linkage.

Table 3.1 Types of linkage

Linkage Description

Single linkage
Computes all the possible distances between
the elements of cluster A and cluster B and
chooses the shortest distance of all.

Complete Linkage
Computes all the possible distances between
the elements of cluster A and cluster B and
chooses the largest distance.

Average Linkage
Computes all the possible distances between
the elements of cluster A and cluster B and
calculates the average of them.

Centroid Linkage The distance is the point distance between the
means, i.e. the centroids, of cluster A and B.

Mathematically they can be expressed as follows

LSingle(A, B) = min
x∈A,y∈B

d(x, y) (3.2)

LComplete(A, B) = max
x∈A,y∈B

d(x, y) (3.3)

LAverage(A, B) =
∑

x∈A,y∈B d(x, y)
|A| · |B|

(3.4)
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LCentroid(A, B) = d

(∑
x∈A x

|A|
,

∑
y∈B y

|B|

)
(3.5)

Complete and average linkage are preferred over single linkage as they produce a
more balanced dendrogram. Moreover, average and centroid linkage offer an advantage
because take into account the shape of the cluster, differently than single and complete
linkage that compute the distance between points.

Algorithm 1: Hierarchical agglomerative clustering
input : dataset D, linkage function
output : The dendrogram representing the clustering

Initialization of data: one single cluster per every object;
Compute the distance matrix, a squared matrix representing the distance
between each cluster using the chosen distance function;

while the number of cluster > 1 do
find the pair X, Y of closest cluster;
merge them;
Update the distance matrix removing the rows and columns of X and Y and
adding a new row and a new column with the distances of the new cluster;

end
return the dendrogram formed;

3.4 K-means

The other clustering method taken in exam is k-means [14, 25, 26]. This simple
algorithm partitions the data in K non-overlapping clusters. It requires the number k
of clusters to be firstly specified, then it proceeds iteratively to assign all the elements
to one of the k clusters. K-means is based on the idea that in a good cluster the
within-cluster distance (or variance) is as small as possible. The within distance is
a measure that indicates how the elements that belong to a cluster differ from each
other: if it is small it means that the elements within the cluster are all very similar.

minimize
C1,...,CK

{
K∑

l=1
W (Cl)

}
(3.6)

The formula means that for all partitions Ci we seek to minimise the within distance.
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The within-cluster distance has to be defined and, similarly to hierarchical clustering,
this can be the squared Euclidean distance.

W (Ck) = 1
|Ck|

∑
i,i′∈Ck

p∑
j=1

(xij − xi′j)2 (3.7)

is sum of the pairwise squared Euclidean distances of the objects of the k-th cluster,
divided by the number of elements in the cluster, denoted by |Ck|.

Using Euclidean distance implies that the clusters generated will be hyperspheres.
The most used algorithm, known as Lloyd’s algorithm, is a heuristic algorithm of the
k-means problem, which is NP-complete, which means that it cannot find a global
optimum in an efficient way. It can be generalised as follows.

Algorithm 2: K-means algorithm
input : dataset D, value of K
output : K clusters

Randomly initialise K vectors C1, ..., CK ;
repeat

foreach cluster do
compute the cluster centroid as the mean of cluster elements;

end
assign each observation of D to the cluster of the closest centroid;

until no changes in C1, ..., CK ;
return the clusters C1, ..., CK ;

The algorithm partitions the data in initial random clusters and then at every
iteration assigns the elements to the cluster of the closest centroid, recalculating the
centroids for every cluster.

K-means algorithm is guaranteed to decrease the within-distance of clusters at
every step, thus the clustering always improves until there are no more changes. When
it stops it means that it has reached a local optimum, but that does not assure that
it is the best solution possible. For this reason, it suggested running the algorithm
different times with different or randomized initial clusters.

The disadvantages of k-means regard the choice of k. It’s not easy to establish
a priori the best value, so it requires multiple runs to choose the outcome with the
minimum within-distance. Of course, the number of k affects also the performance as
larger values require more computing time.
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3.4.1 K-means variant

In this work a variant of the k-means was adopted, as done in Kaufmann and Whiteman
[2], the Wishard’s variant[27], that aims to remove outliers from the clusters. As
mentioned previously, outliers are observation points that are distant from the others.
They can be due to measurement errors and cause problems in the calculation, so it is
better to discard them.

The key element of this variation is the threshold that discriminates between outliers
and regular elements.

The algorithm is the following:
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Algorithm 3: K-means algorithm - Wishard’s variant
input : dataset D, value of K, THRESHOLD, MINSIZE, MAXITER, MINC
output : MINC clusters

Randomly initialize K vectors C1, ..., CK ;
repeat

repeat
foreach cluster do

compute the cluster centroid as the mean of cluster elements;
end
foreach element x in D do

compute the distance of x from the centroids;
if distance of x > THRESHOLD then

assign x in the outliers residue;
end
else

if x is in residue or in another cluster then
assign x to the cluster of the closest centroid;

end
end

end
if size of any cluster Cj < MINSIZE then

assign cluster to the residue;
end

until no changes in C1, ..., CK OR number of cycles > MAXIT ;
calculate pairwise similarities between clusters and merge the two most
similar;

until the number of cluster == MINC ;
return the clusters;

This algorithm maintains the k-means principles, but for every element checks if it
is an outlier examining their distance from the centroids, and if it is greater than the
threshold, it is moved in the outliers group. Nevertheless, it can exit the group if the
clusters and their centroids change such that its distance from one centroid becomes
smaller than the threshold: it is moved out from the outliers and admitted back as
regular elements. The MINSIZE defines the size, usually small, that characterize the
minimum cluster dimension to be considered regular, otherwise, it would represent a
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group of outliers. The MINC assures that a certain number of clusters will be returned
since small clusters are marked as outliers and similar ones are merged, operations
that reduce the total number of clusters.

This algorithm is thought to construct only the most likely partitions. In this
method, true outliers are likely to be all assigned to the residue. However during the
execution elements can enter and exit the residue due to the changes in the clusters,
for this reason, there is the MAXIT parameter to prevent infinite loops.

In the implementation of this project it was planned to consider the MINSIZE =
1, thus every cluster with only one element that could not join with other elements
was discarded as an outlier. However, it was not enforced the merging of the two most
similar clusters as it was intention to preserve the input clusters configuration.

3.5 Distance measure

In the previous sections, talking about the distance used to measure similarity between
elements, the Euclidean distance was indicated as the prevailing measure used. Nev-
ertheless in this work the Euclidean distance was not suitable for the kind of data
used. The u and v component, explained in section 2.2, are the two parameters that
determine the similarities of wind flows, but it is necessary to take into account the
timestamps and the location of the measurements.

In order to consider all these variables, Kaufmann and Whiteman [2] introduced a
specific distance measure for wind patterns:

dab = 1
Nab

Nab∑
j=1

√
(ũaj − ũbj)2 + (ṽaj − ṽbj)2 (3.8)

that measures the distance between two timestamps a and b, where Nab is the total
number of sites that are available at both times a and b, j is the current location and
ũ and ṽ are the u and v values normalized.

3.6 Automatic and manual clustering

As said in the introduction in this project two different approaches were used to produce
a clustering of the wind patterns, both based on the two clustering methods explained
before.
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One consists of firstly analyse data with hierarchical clustering, choosing manually
the number of clusters and refine the classification with k-means, since it allows elements
to move back and forth to the best cluster. This method is based on the work of
Kaufmann and Whiteman [2] and it is the object of comparison with another method
adopted by Surdeanu, Turmo, and Ageno [4], that, similarly to Kaufmann, uses two
clustering algorithms, hierarchical clustering and Expectation-Maximization to cluster
a collection of documents. The interesting part of this paper is that the number
of clusters resulting from the hierarchical clustering is chosen automatically by the
algorithm and it does not require human intervention. So, the very interest of this
work will be to compare these two methods, using for both hierarchical clustering and
k-means and analyze the results to understand if the automatic clustering is able to
deliver an outcome that is meaningful for the scope of this work and if can perform
even better than the manual clustering.

3.6.1 Manual clustering

From now on the technique used in Kaufmann and Whiteman [2] will be referred to as
manual clustering. As briefly explained before it adopts both hierarchical clustering and
k-means. The form of hierarchical clustering used is complete linkage since Kaufmann
and Whiteman found that it is more suitable in classifying wind patterns and it creates
clusters that are more balanced in size. The motivation in using both the two clustering
algorithms is the effect of outliers: they extend the boundary of a cluster away from
its correct mathematical centre, thus producing incorrect results, and in hierarchical
clustering objects assigned to a cluster cannot move to another one during the analysis.
On the other hand k-means allows elements to change cluster and they can be assigned
to a more relevant cluster.

However k-means still needs the number of clusters k and it cannot be decided
previously because there is no information on the number of wind patterns that can
be found. To solve this inconvenient, the input to k-means are the clusters formed
by the hierarchical. This does not completely solve the inconvenient of choosing a
proper number of clusters, because also in hierarchical clustering has to be decided,
starting from the dendrogram. Kaufmann and Whiteman employed a simple method
for determining this number. Since hierarchical merges two clusters at every step,
they measured the dissimilarities of all the merging clusters. In compete linkage, they
correspond to the maximum dissimilarity within the newly formed cluster. If the
dissimilarity between a merge is high, it means that two rather different clusters were
joined, so it is better to stop the merging before such a jump takes place. To make
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this decision the dissimilarities are represented in a graph, that has on the x-axis the
number of clusters decreasing, and on the y-axis, the distance of the cluster merged
and the points of the graph are connected by segments. The likely point (or points) to
be chosen is the one before a steep segment that connects the following point of the
plot.

3.6.2 Automatic clustering

The technique proposed by Surdeanu, Turmo, and Ageno will be mentioned as automatic
clustering. The reason for this method comes from the fact that nowadays data mining,
with all the resources available, is becoming more difficult to be handled manually, and,
even if unsupervised techniques do not require data to be libelled, it was shown that
algorithms like hierarchical clustering and k-means require the choice of a parameter
by a human. So they wanted to increase the automation of the clustering process in a
procedure that elects an adequate number of clusters by itself, without human decision.
In [4] the authors based their work on the studies of Caliński and Harabasz [28], that
proposed maximising the ratio of between and within cluster distances as a method to
detect the number of clusters.

Surdeanu et al.’s method searches for the best model in all the clusters created
from the hierarchical clustering:

1. the dendrogram’s clusters are sorted descending by their quality that is expressed
by some quality measures that intuitively assess the likeliness that a cluster
contains all and only similar elements. The higher it is, the best the cluster is;

2. from the clusters ordered the first that contains a certain percentage of all the
dataset is chosen. This percentage γ represents the factor of confidence given to
the hierarchical clustering algorithm;

3. lastly the obtained clusters in the previous step are filtered to remove elements
that are already contained in bigger clusters. The result of this step is a candidate
with a γ confidence and a certain quality measure since there are many as it will
be explained later.

The ratio defined by Caliński and Harabasz is the score of a model. Maximising its
value means finding the model that has well separated clusters that within have very
similar elements. Indeed it is calculated as:

C = B(n − k)
W (k − 1) (3.9)



34 Clustering

where B is the between distance, i.e. the distance between each cluster and the others
and W is the within distance, that measure the distance of the elements of a cluster to
their centroid.

B =
k∑

i=1
ni dist(centroid, meta_centroid)2 (3.10)

W =
k∑

i=1

ni∑
j=1

dist(dj, centroid)2 (3.11)

n is the total number of elements of the dataset, k is the dimension of the current
model, ni is the size of the i-th cluster, centroidi is the mean of the elements of a
cluster and meta_centroid is the mean of the all dataset.

The algorithm of this procedure can be describe as follows:

Algorithm 4: Automatic clustering algorithm

bestModel = null, bestScore = 0;
forall quality measures do

currentScore = first local maximum of C as γ decreases from 100% to 0% ;
if currentScore > bestScore then

bestModel = model associated with current quality measure and γ;
bestScore = currentScore

end
end
return bestModel;

3.6.2.1 Quality measures

Surdeanu et al. used different quality measures to asses the quality of the clusters in
the dendrogram, that starts from 4 observations.

Minimising the within distance corresponds in having clusters that contain
objects that are similar, thus that are closer to each other.

W(ci) = 1
ni(ni − 1)

∑
xr∈ci

∑
xs∈ci,s ̸=r

dist(xr, xs) (3.12)

is the measure that aims to have small pairwise distances of the objects of the clusters.
It favours clusters with small W values.
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Objects that are similar should be contained in one cluster and be well separated
from other clusters, so the between distance of clusters should be maximised.
The measure B is the following:

B(ci) = 1
ni(n − ni)

∑
xr∈ci

∑
xs /∈ci

dist(xr, xs) (3.13)

that calculates the pairwise distance of objects in the i-th cluster with the remaining
objects of the dataset.

Using B and W as post-filtering function of clusters may cause issues: B tends
to be large for most clusters, as the criteria for clustering algorithms is to maximise
inter-cluster distance; W instead has great variations as it is applied through all
the dendrogram, where clusters have very different sizes. So in clustering comparing
functions, W has more influence. Thus maximising the distance in the cluster
vicinity allows measuring the separation of a cluster with just its neighbours, without
introducing the noise of the whole collection.

N(ci) = dist(ci, sibling(ci)) (3.14)

Using W and B as quality measures has also two potential drawbacks: they favor small
and compact clusters, separated from the rest of the dataset and groups represented
by denser clusters. In the first case, the system produces many categories with smaller
coverage, in the other one it will miss information in the ignored categories. So it is
necessary to pay attention also to other properties of clusters, apart from the density,
like the growth G, characterised as the cluster expansion at the last merge occurred
in the dendrogram, relative to the density of the cluster’s two children. It is defined
as the ratio of the between distance of the children ci1 and ci2 and the average of the
pairwise distances between the objects within the two children.

w_sum(ci) =
∑

xr∈ci

∑
xs∈ci,s ̸=r

dist(xr, xs) (3.15)

within_children(ci) = w_sum(ci1) + w_sum(ci2)
ni1(ni1 − 1) + ni2(ni2 − 1) (3.16)

G(ci) = dist(ci1,, ci2)
within_children(ci)

(3.17)
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where w_sum(ci) is the sum of all distances between objects within the cluster ci

and within_children(ci) is the average distance between objects of the children of the
cluster. Good models have a small growth factor which means two close clusters
are merged; on the other hand, a big growth factor means that two far and distant
clusters were joined.

From this observations Surdeanu et al. [4] derived 6 quality measures, where
observations that have to be maximized (B and N) are at the numerator of the formula,
while the others that have to be minimized are at the denominator (W and G).

Table 3.2 Quality measures

Name W WB WN GW GWB GWN

Formula 1/W B/W N/W 1/GW B/GW N/GW

These formulas will be implemented in the part of the algorithm Automatic cluster-
ing.

3.7 Clustering comparison

Since this work will adopt two different techniques on the same data, it is important
to know how they perform and how similar they are. For this reason is important to
compare them, not only in a qualitative way, that could be subjective, but also with a
quantitative technique that can asses numerically the similarity of the two methods,
and thus the correctness of the automatic clustering.

A good source to find methods to quantify this correspondence comes from Wagner
and Wagner [29]. They reviewed a series of measures to compare different clusterings,
as the applications for this investigation are many, like checking if the algorithm is too
sensitive to small perturbations or if the order of the data can produce very different
results or see how does a clustering compare to an optimal solution. Wagner and
Wagner classified the measures in 3 groups:

1. counting pairs of elements;

2. summation of the set overlaps;

3. use of the mutual information.

In the first category the various measures count pairs of objects that are in the same
cluster in both clusterings, so that are classified in the same way. Specifically, it is
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necessary to count the elements that are all in the same or all in different clusters for
both clusterings or if they are in the same in one clustering but nor in the other, then
calculating this for all the pairs gives the result of the similarity. These measures can
also be calculated through the confusion matrix, i.e. a matrix where the ijth element
is the number of elements in the intersection of two clusters of the two clusterings.

However this measures have drawbacks: some of these are sensitive to certain
parameters like cluster size or number of clusters; others make strong null hypothesis
assumptions like independence of the clusterings, although this is not the case of this
work, but also ones that are more strict like fixed number of clusters and fixed cluster
sizes, indeed none of the algorithms work with the last requirements.

The other group of measures match clusters that have the maximum overlap,
absolute or relative, but they don’t take into account the unmatched parts of the
clusters. There are case where, given two clusterings variation of the original one, where
in one of the two, part of the elements of one cluster is reassigned to the subsequent
one, while in the other this part is reassigned evenly between all clusters, this kind of
measures produce the same value, but it is obvious that the two clustering variations
are not identical.

Lastly the category of mutual information is based on the entropy applied to
clusterings that informally represent the measure for the uncertainty about the cluster
of a randomly chosen element. It can also be applied to two different clusterings and
takes the name of mutual information that describes how much can we reduce the
uncertainty about the cluster of a random element when knowing its cluster in another
clustering.

The pros of this group based on information-theoretical considerations is that
it does not have the drawbacks of the other groups, like strict requirements and
assumptions. However these measures are quite recent and they are not deeply treated
in the literature, so they might suffer from drawbacks that are not yet discovered.

Given that the first group is composed of measures that have too many limitations
while the third one is still not well studied, the choice in this work was for the second
group, in particular, the Maximum Match Measure MM(C, C ′): it searches in the
confusion matrix M for the largest entry mab and match the corresponding clusters Ca

and Cb, removes the ath row and bth and repeat this step until the matrix has size 0.
All the entries are summed up and divided by the total number of elements.

MM(C, C ′) = 1
n

min{k,l}∑
i=1

mii′ (3.18)
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where i′ is the index in of the cluster in C ′ clustering. If the number of clusters in the
two clusterings is different k ̸= l, this measure does not take into account the |k − l|
remaining clusters in the clustering with bigger cardinality.

3.8 Classification

With classification, it is meant a technique to find the right group or class to new
elements given a previous knowledge. The previous knowledge can be a training set,
a set of observations to classify to find their corresponding clusters. In this work
classification was implemented using a previous clustering, that differs from supervised
classification, indeed the data used here is not labelled, but the classification obtained
is tested against the results of a normal clustering. This technique was adopted to
verify how the algorithm behaves with a variation in the dataset and to see if the
results are consistent.
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The implementation

In order to realise this project, the platform chosen was Python. Python is a program-
ming language born in the late 1980s that through the years has gain a lot of success
and has been updated many times, reaching the actual version 3.7.0. It is an interpreted
language, which means that it does not need a compiler, and the interpreter is in charge
of the task of portability, so there is no need to adapt the code to different platforms,
as the output from the interpreter will always be the same. It has a clean syntax and is
dynamically type, which means that variables type is never declared. It follows Object
Oriented Programming and allows also the paradigm of functional programming. The
programmer can count on many libraries, both built-in and portable, and furthermore
it allows cross-application communication and can load C/C++ libraries [30].

Python has now many applications, in particular in the field of web development.
It is largely used in backend programming of web applications. Along this also GUI
programming and software prototyping has a discrete success.

But the reason for its choice is that it has become very common for scientific and
numeric computing. Python’s popularity in this field is possible thanks to the fact
that it is a free and open source language, so programmers can modify the code by
their needs. Then there are also many powerful libraries specific for this area of study,
like NumPy, SciPy, Pandas, matplotlib and more, and some of these are used in this
project. Thanks to these factors, Python became preferred over other paid solutions
like Matlab.

4.1 First attempts

Initially the idea was to use one of the many libraries dedicated to machine learning
available. SciPy is one these, indeed it has many functions for clustering and hierarchical
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clustering was already realised and optimised, ready to be used, like scikit-learn another
powerful library with an implementation of k-means. However testing SciPy library it
was shortly clear that it was not suitable for this scope: it was easy to use, but too
simplistic to be used with the data of this project. It allowed to use few implemented
distance functions, Euclidean by default, but it was not possible to define a custom
one that take into accounts u and v values, along with timestamps, i.e. the distance
function 3.8.

So instead of using modules of Python it was decided to write manually the
algorithm for the hierarchical clustering and k-means.

4.2 Data Loading

The first step of the solution presented is the data loading. When running the
application, the user is prompted with a window where he can choose the values of the
parameters.

Fig. 4.1 Initial screen of the application.

First which of the two available data source, WRF or AROME. Secondly if he
wants to test both the automatic and manual clustering or not. Then the parameters
for the date and time. In figure 4.1 are displayed the default values. The interval 9-18
was chosen as the sailing race will take place during the day, so it was not meaningful
to load the night files that could have influenced the results. The default values for the
days take the whole period of data available.

As said in 2.3.1.1 the WRF files are csv and numpy library has a function to load
them, genfromtxt. To represent a timestamp and its measurement was used a custom
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class, HourData, characterised by a date and a list of 16 Parameters one for every
coordinate (cf. 2.3.2), a different class with fields for the coordinates and the weather
parameters. So, an HourData object contained all the locations parameters. It chosen
to group all the locations in a single object because the data is more often accessed by
the date and time rather than by coordinates. Thus, since different parameters of a
timestamp measurement where split in different files, in the program all the 6 different
files for each timestamp (one per each weather parameter, cf. 2.2) were merged, so,
for every file read was necessary to verify if the object with the timestamp read was
already created and in this case, updates its list of parameters.

On the other hand, with AROME a single file contained all information of the
locations, so the object for a given timestamp was built in a single step, without
searching the dataset for existing objects, like in WRF. With this kind of files, the
reading was made with netCDF4 library, accessing the parameters, or Bands, inside
the files and reading the values of the 16 locations.

Algorithm 5: Data loading procedure
input : data source, algorithm mode, time and date intervals
output : dataset

Shows the application window with inputs;
Read inputs within date and hour ranges;
if data source is WRF then

read files;
if timestamp already in dataset then

retrieve the correspondent HourData object and update it;
end
else

create a new HourData object and add it to the dataset;
end

end
else if data source is AROME then

read files one by one, create an HourData object and add it to the dataset
end
return the dataset;

After these steps, the dataset is loaded and ready to be used.
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4.3 Normalisation

Fig. 4.2 Section of data normalisation.

Before diving into the calculation, the data must go through a preliminary process,
called normalisation. The normalisation is a preprocessing step, necessary when a
distance function is used, because it is required that all the objects have the same
weight, so that the distance is not influenced by a scale factor of the data [31, 32].

There are different types of normalisation but this process depends on the data used.
In this scope the normalisation used is the one defined by Kaufmann and Whiteman
[2] that intended to prevent situations where stations characterised by high wind
speeds could overweight other stations and measurements in the distance function. The
normalisation adopted normalises u and v component first by the time-average speed:

u′
ij = uij

sj

, v′
ij = vij

sj

, (4.1)

that means u and v at each time i and station j were normalised by the time-average
speed sj at each site, that is:

sj = 1
Mj

Mj∑
i=1

√
u2

ij + v2
ij, (4.2)

where Mj is the total number of hourly winds at the site j. After this normalisation of
the hourly wind measurements, the individual wind patterns were normalised in the
following way:

ũij =
u′

ij

s′
i

, ṽij =
v′

ij

s′
i

(4.3)
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where u′
ij and v′

ij are the normalized values calculated previously, and s′
i is the spatial-

average speed at each time i:

s′
i = 1

Ni

Ni∑
j=1

√
u′

ij
2 + v′

ij
2, (4.4)

and Ni is the total number of sites at time i.
Thanks to the normalisations 4.1 and 4.3, wind flows that differs by a scaling factor

are grouped together.
In the application a copy of the dataset is normalised, since the original values of

the data are necessary for later calculations and for the report.

4.4 Hierarchical Clustering

Fig. 4.3 Section of hierarchical clustering.

After the normalization it is the turn of the core of the program, the hierarchical
clustering. As explained in section 3.6 two variations of hierarchical clustering are run,
the automatic and the manual.

4.4.1 Automatic clustering

Fig. 4.4 Section of automatic hierarchical clustering.

The algorithm implemented follow closely the one described in section 3.6.2. Firstly the
distance matrix is built to track the distances of every cluster, which at the beginning
will contain only one object. Then is the turn of the dendrogram, that is created
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thanks to a custom class that extends a library made to build trees, called anytree. At
the creation the dendrogram contains only the leaves with one object.

The clustering process progresses searching for the two closest clusters in the
distance matrix, it merges them and then the distance matrix is updated with the
newly formed cluster, while in the dendrogram the new cluster is added as parents of
the respective leaves. This procedure continues until there is only one cluster left that
contains all the elements of the dataset.

After that the dendrogram is built, the next step is the quality measures calculation.
Every node of the dendrogram is processed to calculate each of the six quality measures
indicated in table 3.2. In order to optimise the calculations, the quality measures
are computed only if the node has more than one object, since the W observation
formula 3.12 has the denominator ni(ni − 1), this would return an error, and neither
would be possible to measure the distance to other objects. For this reason the quality
measure W in this case was set to 0, and since all other quality measure depends on
W , they were not calculated but saved as zero. The same method was applied for
quality measures that depended on G as a leaf does not have any child.

Once all the quality measures are calculated and their results saved in as many
arrays, the score calculation algorithm looks for the best model. The result of this
process are the k clusters, but they are not complete yet, as, based on the confidence γ,
not all the objects are contained in those clusters, so the excluded objects are assigned
to the closest cluster. After this reassignment, the clusters are formed and ready to be
processed by k-means.
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Algorithm 6: Automatic hierarchical clustering
input : dataset
output : k clusters

Initialize the distance matrix;
initialize the dendrogram;
while the number of cluster ̸= 1 do

look for the two closest clusters;
merge them;
update the distance matrix and the dendrogram with the new cluster;

end
foreach node of the dendrogram do

calculate the quality measures;
end
sort the quality measures arrays descending;
bestModel = null, bestScore = 0;
foreach quality measure do

γ = 100%;
while γ ≥ 0 do

load the γn best nodes of the current measure;
calculate the score C;
if current score > bestScore and local optimum then

bestModel = current model;
bestScore = current score;

end
γ = γ - 10

end
end
reassign elements out of γ return the clusters;

4.4.2 Manual clustering

The clustering core of the so-called manual clustering does not differ much from the
automatic. It is somewhat simpler, since it does not calculates the distance measure.
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Fig. 4.5 Section of manual hierarchical clustering.

Similarly to the automatic, the first step is the creation of the distance matrix,
however the dendrogram is built differently: since not all the nodes of the dendrogram
are necessary, as it is very unlikely that the chosen number of clusters is a high value,
in order to save memory only the current active clusters are kept saved in an array.

Another difference with the automatic clustering are the dissimilarities that are
calculated at every merge, to make a graph and help decide the correct number of
clusters.

Algorithm 7: Manual hierarchical clustering
input : dataset
output : k clusters

Initialize the distance matrix;
add every object to an array;
while the number of cluster ̸= 1 do

look for the two closest clusters;
merge them;
measure the dissimilarity;
update the distance matrix and replace the old cluster with the new one;

end
show the dissimilarities graph;
rerun the algorithm but stops when the number of cluster == the number chosen;
return the clusters;

It is worth mentioning that the algorithm is run twice: the first is to merge all the
object in one cluster and calculate the dissimilarities, the second to obtain the clusters
formed. This was planned to save memory. Executing twice the algorithm did not
affected much the performance, indeed the processing time was much faster compared
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to the automatic clustering, that requires 5 minutes 1 for the whole process, while the
manual clustering can complete the computing in around 50 seconds 1 using WRF
dataset. This however can be object for further work.

4.5 K-means

The resulting clusters of both automatic and manual clustering are the input for
k-means, but before proceeding with the algorithm it is required to define a threshold
value, needed in the Wishard’s variant (3.4.1).

The procedure to use an appropriate threshold comes from Kaufmann and Weber
[3], where for each cluster, the distance of its mean to other clusters is calculated, and
then the frequency distribution was analysed, choosing a local minimum. This step
was preliminary to k-means execution.

Fig. 4.6 Section of k-means.

So firstly the user pick a threshold, then starts the k-means execution.
1Using an Intel i7 quad-core processor, 16 GB of RAM computer
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Algorithm 8: Threshold choice procedure
input : clusters from hierarchical clustering
output : threshold

foreach cluster do
calculate centroid;
foreach other objects of the dataset do

calculate distance to centroid;
collect information on the distribution;

end
end
plot the distance distribution;
read choice of the user;
return the threshold;
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Algorithm 9: K-means procedure
input : clusters from hierarchical clustering
output : final clusters

repeat
foreach cluster do

calculate centroid;
end
foreach objects of the dataset do

calculate distance to all centroids;
if distance to closest centroid > threshold then

put element in outliers;
end
else

put element in the cluster of the closest centroid if different to its
cluster;

end
end

until there are no more changes;
if any cluster has size == 1 then

put element of this cluster in outliers;
end
return the clusters;

So the program asks for an appropriate threshold and it runs the k-means algorithm
that allows objects to change cluster and move to the most appropriate one, operation
that is not possible with hierarchical clustering. The threshold could be chosen
automatically picking the local minimum, but currently for testing purposes it was
preferred a choice by the user. The result of the algorithm is the final clustering.

4.6 Results report

Fig. 4.7 Section of results report and analysis.
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The end of the execution of k-means indicates the end of the clustering algorithm and
the final composition of clusters is available. At this point the clusters are analysed
to extract the characteristics that distinguish each cluster and to compare automatic
and hierarchical clusterings. Here a report file is created that contains statistics and
information about the clusters, useful for the meteorologist to evaluate the grouping.

The clustering comparison in 4.7 represents what is explained in section 3.7, a
quantitative measure to assess similarity between clusterings. Other than that, the
common elements of the clusters were studied, to see if grouping contained similar
elements. It was implemented in the following way.

Algorithm 10: Clustering comparison procedure
input : hierarchical and automatic clusterings
output : Maximum Match Measure

Build the confusion matrix;
repeat

take the highest value in the confusion matrix;
count the identical elements in the matching clusters;
update the Maximum Match Measure;
remove from the confusion matrix the row and column corresponding to the
clusters;

until there are no more elements in confusion matrix ;
return the Maximum Match Measure;

Thus, the result of this procedure is the Maximum Match Measure, while the
number of identical objects between clusters was saved and displayed in a table of the
report file. The last comparison in particular is not a standard procedure, but an easy
way to compare the similarity. Information on all of the clusters are included with this
measure. First of all there are the logs coming from the execution, in particular the
input chosen by the user, that are the days interval and the hour range. In addition
the execution time of the algorithms is included to evaluate the performance, as well as
information on the results, like the number of clusters resulting from the hierarchical
clustering and the updated number after k-means execution. Plots of the threshold
that are showed to the user are included too.

After the logs a series of tables contain information on the composition of clusters.
The first characteristic is the number of elements, then the maximum and minimum
values of each parameter and their averages. Subsequently there are the ranges of the
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parameters: the minimum and maximum values of the complete dataset are taken and
the interval is divided into 5 ranges and for each cluster it is showed the percentage of
the distribution. These results in particular were really useful for the meteorologist to
check the clustering, especially wind direction and speed. Ideally a cluster should have
winds flowing in a certain direction with a certain speed and be different from other
clusters. These values are calculated examining each element of the clusters, keeping
track of their means and ranges.

More information is provided by the transition matrix. It shows how the clusters
change to one another. To do so, it was checked to which cluster belong the following
timestamp of a given element of the cluster, representing in percentages these values.
So the representation is a square matrix with as many rows and columns as the number
of clusters. The intersection of a row a and a column b is the percentage of elements
that transition from cluster a to cluster b. For example if 5 out 10 elements have the
following element in the same cluster, the matrix will contain 50% on the diagonal,
while on the other columns the rest of the 5 elements that transition to the other
clusters.

Lastly the hourly distribution of the winds is expressed with a bar plot for each
cluster. Dividing the abscissa axis for each hour in the time span 9 to 18, the ordinate
axis is the percentage of elements of the cluster that occurs at that hour. This graph
is an immediate visualisation of the distribution of the winds to help the meteorologist
in the analysis.

All these information are returned in the form of a pdf file to be analysed by a
meteorologist to check the validity of the clustering.

4.7 Classification

Along with the unsupervised clustering, it was implemented a classification part to
test the validity of the implemented clustering. It was planned to use the same WRF
dataset, except for a group of days, and run the automatic hierarchical clustering. The
result of the execution was then compared with the results of the whole dataset. The
days were chosen spread in the period of the available data, i.e. every 8th, 17th and
26th day of each month, and this included the whole days, so from 9 to 18.

The implementation was straightforward: firstly is loaded the dataset without
the mentioned days and the automatic clustering is executed. Then the automatic
clustering is run with all the days of the dataset and the results of the two are compared.
To do this the clustering comparison illustrated in the previous section, and also a
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pairwise comparison of the clusters that contained each timestamp to check if the
elements contained are similar. Again, this is not a standard procedure, but a useful
way to see if the elements classified were grouped with the same objects.

Algorithm 11: Classification procedure

Load the dataset without the chosen days;
run the automatic algorithm;
Load the original dataset;
run the automatic algorithm;
Run the clustering comparison with the results of the two automatic clustering;
foreach element to be classified do

take the cluster of the first clustering that contains the element;
take the cluster of the second clustering that contains the element;
count and save the identical elements of the two clusters;

end
return the number of identical elements of each pair of clusters for every object

The results of this algorithm is saved in a table where each entry contains the
timestamp, the clusters it belongs to and the number of identical objects in the clusters.
This tables helps to evaluate the results of the classification and the correctness of the
algorithm. Indeed, if the two clusters coming from the two different clusterings contain
many elements in common, it means that the elements with certain values are grouped
together, independently of the clustering type.



Chapter 5

Results Analysis

The program was tested with WRF dataset but it was not possible to compare the
results with AROME data because the available data for the latter differ, as not all
March and April are available, but only the period from the 25th of March to the 16th

of May.
The result report generated at the end of the program execution, as illustrated in the

previous chapter, is the source for the analysis. The statistics and information contained
are helpful for the meteorologist to evaluate the clustering obtained, starting from the
table containing ranges of winds directions and speed. These allow understanding how
well the clustering performed, if the elements in the clusters are well separated by each
other. The results obtained are illustrated in the Appendix.

5.1 Meteorological analysis of clustering results

Currently, an analysis of meteorological data, able to lead to the identification of
weather scenarios, having well-defined weather characteristics, is performed manually
by the user and for instance by the meteorologist.

A subjective interpretation of each day experienced on the field and the comparison
with similar days experienced previously allows for the identification of repeating
weather conditions called weather patterns. In sailing, the most important weather
variable is wind. However, it is important to stress that each wind pattern is strongly
related to other meteorological variables, such as temperature, air pressure and humidity.
Therefore, despite the main focus of the present work is the identification of repeating
wind scenarios, we will refer to the more general name of weather patterns.

The first step for the identification of weather patterns for sailing is to split the
whole wind direction range (0-360 degree) into several smaller ranges or called direction
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sectors. Indeed, the wind is behaving in a similar way within each specific wind direction
sector. Secondly, additional information concerning the wind speed, the air temperature
or the air pressure are also analysed to obtain a more in-depth categorisation.

The goal of the present work is to assess the challenges and opportunities of
using automatic clustering for the identification of weather patterns for sailing. The
identification of these patterns can be performed either for a well-known site, where
qualitative weather conditions are familiar to the user, but scientific causes for the
existence of repeating weather conditions are not well-known. On the other hand, the
same approach can be used for a relative new sailing venue, to make a first assessment
of existing weather patterns. In this case, the first identification is followed by further
analysis to validate and calibrate the patterns. Since the chosen area is already known,
the idea is to evaluate how much the clustering process has been able to capture the
existing wind patterns and what information can be extracted from them, according to
the different meteorological features that have been described in the previous section.
An extensive analysis is completely outside the scope of this thesis, therefore we
have just tried to draw a sample of conclusions that simply show that the automatic
methodology used can make the meteorological analysis far easier. As this analysis
requires additional meteorological knowledge, it has been carried out by the author of
this thesis with the help of an expert in the field.

The usual wind direction ranges used to create weather patterns are the following:

1. NNE 0-45

2. ENE 45-90

3. ESE 90-135

4. SSE 135-180

5. SSW 180-225

6. WSW 225-270

7. WNW 270-315

8. NNW 315-360

So the categories derived from the automatic and manual classifications have been
divided according to the above mentioned direction sectors.
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5.1.1 Automatic clustering

The following results come out from the analysis of the automatic classification table
A.8 of the appendix:

• Cluster 1 and 2 belong to NNE wind sector, both with a percentage of data
about 90%

• Cluster 3 and cluster 13 belong to both NNE and ENE sectors, with about 90%
of the data. However cluster 3 has more data belonging to the ENE sector and
the 13 has more data belonging to NNE sector

• Cluster 4 has about 90% of the data belonging to sectors ENE and ESE, with
the majority of the data, 75% , belonging to sector ESE

• Cluster 5 has, similarly to cluster 4, 75% of the data belonging to sector ESE but
the rest of the data belongs to sector SSE. So this cluster represent data coming
from a ′′more right direction” compared with the cluster 4

• Cluster 6 has 90% of the data belonging to sectors NNW and NNE

• Cluster 7 is having about 90% of the data belonging to sector ENE. So this
cluster might have some similarities with cluster 3 and 13

• Clusters 8 and 11 have about 90% of the data belonging to sector WSW

• Clusters 9 and 10 have about 70% of the elements inside sector WNW

• Cluster 12 is the only one having more than 80% of the inside sector NW

• Cluster 14 represent mainly sectors SSE and SSW, so mainly southerly winds

• Cluster 15 represents sector WSW with 85% of the elements, while cluster 16
has 36% of the elements within the same sector of 15, so WSW, but 45% of the
elements within sector WNW

• Finally cluster 17 is having elements not belonging to one specific sector. Data
are going from sector NNE to E

An analysis of the above mentioned results shows that different clusters contain
elements having very similar directions. It is therefore difficult to understand the
reason why different clusters exist. Therefore, an analysis of other meteorological
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characteristics such as wind speed, atmospheric pressure and temperature has been
performed to identify specificities for each cluster.

Probably due to the little amount of data, it is hard to find reasons why data belong
to different clusters. However, for some of the clusters some interesting information
can be found.

For instance, cluster 8 is one of the clusters having the highest values of atmospheric
pressure and the lowest values of wind speed. It is also one of the clusters having no
precipitation at all. Finally, it has temperatures going up to 22◦ C, so it is one of the
warmer clusters.

On the other hand cluster 11, which is similar to cluster 8 in wind direction and
speed, is for sure a cluster characterised by colder temperatures, having only 1% of the
data going above 16◦ C. It also has values of atmospheric pressure lower than cluster 8.

Patterns include additional useful information, which is the probability of transition
from one pattern to another along the day. This allows predicting the behaviour of
the wind whenever we identify that one set of data belongs to one cluster (or wind
pattern). In our case, it is also interesting to notice that the transition from cluster 8
to other clusters is in the most of the cases, 44% , to cluster 11. Therefore, it is likely
that cluster 11 represents an initial phase of a WSW gradient wind, colder and with
lower values of pressure. Once the heating start to affect the atmospheric conditions,
there is a transition to cluster 8.

Another interesting information is coming out from the analysis of cluster 6. Ac-
tually, we noticed that in most cases the transition is to cluster number 2. On the
other hand, as previously mentioned, just by looking at wind direction clusters 1 and 2
look pretty similar. A more in-depth analysis shows that cluster 1 almost only goes
to cluster 2 and vice versa. Therefore cluster 2 should have some specificities relating
it to cluster 6. Cluster 2 has a bit lower values of the speed compared with cluster 1,
similarly to cluster 6. Moreover, cluster 6 seems to be mainly related with morning
hours. Therefore a possible scenario can be a morning light NNW-NNE, going to light
NNE (cluster 2) and finally going to a bit stronger NNE (cluster 1). In case of dropping
of the speed, the cluster 1 will change to cluster 2. In addition, cluster 2 has a bit
more probability of being associated with some precipitation, while cluster 1 not. This
point justifies even more the lighter speed related with cluster 2.

Finally, the analysis of the transition from cluster 15 to other clusters shows that
most of the times cluster 15 changes to cluster 9, and only in few cases to cluster 10.
However, by the analysis of the wind direction, cluster 9 and 10 are very similar. Both
are characterised by light wind speed values, being cluster 10 just a bit lighter than
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9. Cluster 10 has a bit higher values of atmospheric pressure. However, no significant
differences in Temperature, Precipitation of Humidity parameters are found.

One of the main issues of the above mentioned classification is that some data are
split into different clusters, despite having very similar values of wind speed, direction
and of additional meteorological variables. In these cases, it is therefore very difficult
to understand exactly, what each cluster represents and why it changes to another.

5.1.2 Manual clustering

The same analysis has been performed for the two manual classifications described in
the previous section, the one containing identified as ′′Manual 10” (though it contains
9 clusters when the outliers are eliminated) and the one identified as “Manual 17”
(containing 14 clusters when outliers are eliminated). As we did with the automatic
clustering, we are going to ignore the cluster of outliers, since we consider that it does
not provide any significant meteorological information.

The table below shows which clusters belong to the different direction sectors for
all the three classifications.

Table 5.1 Clusters division by direction

Automatic Manual 10 Manual 17
0-45 1, 2, 3, 6, 13, 17 1, 3, 9 1, 2, 4, 12, 14
45-90 3, 4, 7 5, 9 2, 5, 14
90-135 4, 5, 13 4, 9 5, 7, 14
135-180 5, 14 7, 9 10, 14
180-225 14 7 11
225-270 8, 9, 11, 15, 16 2, 8 3, 8, 9, 13
270-315 9, 10, 16 6 6, 8, 9
315-360 6, 10, 12, 17 3, 6 4, 6, 12

Firstly, it should be noticed that cluster 9 of the Manual 10 and cluster 14 of
Manual 17, are quite spread all over the direction sectors and might be considered as
additional outliers.

Secondly, without considering cluster 9, the Manual 10, due to the limited number
of clusters, is the only one where every direction sector corresponds to one or maximum
two clusters. This does not mean, however, that its division into actual patterns is
more accurate than the clustering with more clusters, as commented below.
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Both the automatic and the Manual 17 have mainly two or more clusters inside
every direction range. Therefore, by comparing the Automatic cluster and the Manual
17 clusters, no particular advantage is noticed in performing a manual classification.

On the other hand, a more comprehensive analysis of the Manual 10 clustering has
been performed, and in particular, starting from the transition matrix.

Cluster 1, NNE wind, when changing to another cluster, goes to cluster 3 or 5.
Cluster 3 contains both elements belonging also to cluster 1 or elements of the NNW
sector. Cluster 5 is representing ENE winds. Therefore it is important to understand
in which cases there is the transition from 1 to 3 or from 1 to 5. Analysing the
wind speed direction, it is evident that cluster 3 represents lighter wind than cluster
5. Moreover, cluster 5 has higher wind speeds than cluster 1. Therefore one can
conclude that increasing NNE wind will most likely change to ENE, while decreasing
NE winds will most likely stay within the same sector or change to NNW. This partly
confirms the analysis made on the transition from cluster 6 to clusters 1 or 2 within
the automatic classification. A point which confirms the analysis made also by the
automatic classification is that cluster 3 has more chance of precipitation than clusters
1 or 5. Therefore in case of precipitation, the scenario of lighter winds changing from
NNE to NNW is most likely.

In conclusion, by performing this last analysis on the Manual 10 classification, we
can sum up the following advantages and disadvantages:

1. An automatic classification is faster and repeatable but generates many clusters,
some of them containing very similar elements.

2. The analysis of the results derived from the automatic clustering requires a more
in-depth ‘human interpretation’ to identify main reasons and probabilities of the
transition from one class to another.

3. A manual clustering having a similar number of clusters to that of the automatic
clustering does not present any particular advantage.

4. A manual clustering with fewer clusters than the automatic one requires less
human effort to find out conclusions. On the other hand, conclusions that can
be derived both by the Manual 10 and the automatic clustering are very similar

5.1.3 Automatic clustering revisited

On the base of the above mentioned conclusions and in order to try to obtain well-
defined direction categories, it was decided to change table 5.1 in the previous section,
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and analyse the results of only the automatic classification by using the following wind
direction ranges (table 6a of the previous section):

Min Max Direction sector
0 22.5 N
22.5 45 NNE
45 67.5 NE
67.5 90 ENE
90 112.5 E
112.5 135 ESE
135 157.5 SE
157.5 180 SSE
180 202.5 S
202.5 225 SSW
225 247.5 SW
247.5 270 WSW
270 292.5 W
292.5 315 WNW
315 337.5 NW
337.5 360 NNW

We noticed that, with this new classification, the number of clusters having su-
perposed wind direction ranges decreases significantly. This makes much easier the
identification of unique wind direction sectors and the analysis of the probability of
transition from one cluster to another.

A very interesting feature we can notice comes out from the analysis of the transition
from cluster 16 to other clusters. Cluster 16 has mainly data representing mighty
winds from SW to NW sectors. In 50% of the cases the transition is to cluster 10
(WNW), while in 50% of the cases is to sector 8 (SW) or 9 (W), with same probability.
Cluster 8 is clearly the one related with lower wind speed, higher values of the pressure
and lower probability of rain. While clusters 9 and 10 look very similar. One useful
conclusion can be that, in case of initial light wind from SW to NW, dry weather,
increasing pressure and no increase of the speed, the wind will go most likely to the
SW. This theory is even more justified by the fact that cluster 16 is most likely in the
morning while cluster 8 is most likely in the afternoon.
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Analysis of transition between cluster 1, 2 and 3 is also significant. Clusters 1 and
2 have data belonging mainly to every hour of the day, while cluster 3 is clearly related
with afternoon hours. Cluster 1 (N) can change to cluster 2 (NNE) or 3 (NE). On
the other hand, cluster 2 mainly changes to cluster 1, so going from NNE to N, but
not to cluster 3. Finally, cluster 3 changes to cluster 2 but almost never to cluster
1. Therefore the first conclusion can be that N wind can become NNE or NE. On
the other hand, a NNE wind will mainly change to N and in very few cases to NE.
By looking at the wind speed, we can notice that cluster 2 is lighter than 1 and 3.
Therefore, the second conclusion is that, when increasing, the NNE wind will most
likely become N. On the other hand, a N wind decreasing will become NNE, and if
maintaining the same wind speed, it will become NE.

The latter are just examples of the information that can be extracted from the
features of the identified clusters. We believe that this new analysis can be very helpful
for two main reasons:

• It allows the identification of almost unique wind direction categories.

• It allows the identification of additional weather variables contributing to the
transition from one cluster to another.

We can therefore conclude that, from a subjective meteorological point of view, the
use of the automatic clustering offers slightly better results than the manual one, and
the finer description of each cluster according to frequency of elements in 16 wind
sectors makes far easier the identification of the weather patterns. Of course, it must
be considered that we have only dealt with two months of data and therefore more
thorough tests would be in order, but it allows us to confirm that it is a promising
approach.

5.2 Classification results

Given the results obtained, in order to test our classification algorithm, it was necessary
to check that the classification of the days chosen to be classified grouped them with
the same objects as the normal clustering. Since there is no gold standard classification
for the 2 months that are used as a dataset, in order to evaluate it there are two
options:

1. Evaluate it manually, looking at the meteorological features of the day and looking
at what cluster suits the best. This would be a subjective method dependent on
the criterion of the meteorologist.
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2. Computing the equivalence between the clustering with these days and the
clustering without them. Then, it is possible to look if the clusters in which
these days were originally in the complete clustering are equivalent to the ones
in which they have been classified.

It was decided to adopt the second possibility, in order to have quantitative measures to
assess this equivalence. It was taken the automatic clustering obtained in the previous
section as a reference complete clustering. The equivalence between clusters is shown
in table 5.2, and the results obtained for each days’ timestamps are shown in table 5.4.
The obtained Maximum Match Measure of the two clusterings is quite high and has a
value of 83%. It can also be noted that, for 83% of the elements, the cluster in which
the element has been classified is equivalent to the cluster in which the element was
originally. It is reasonable to consider that these results confirm that the classification
algorithm performs correctly.

Table 5.2 Clusters matching

Cluster automatic with classification Cluster automatic Common elements
1 (91) 1 (87) 84
3 (68) 2 (68) 61
4 (62) 3 (60) 57
5 (55) 4 (55) 54
8 (41) 5 (37) 37
2 (74) 8 (34) 32
9 (37) 6 (37) 30
10 (35) 7 (35) 29
6 (46) 9 (30) 27
7 (40) 10 (28) 23
12 (16) 14 (19) 14
11 (18) 13 (21) 13
13 (4) 11 (26) 0
14 (4) 12 (25) 0
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Table 5.4 Clusters similarity

Timestamp Clustering w/ classification Clustering w/o classification Common El
08/03 09:00 8 (41) 14 (19) 1
08/03 10:00 8 (41) outlier 0
08/03 11:00 8 (41) outlier 0
08/03 12:00 3 (68) 17 (3) 1
08/03 13:00 9 (37) 6 (37) 30
08/03 14:00 9 (37) 6 (37) 30
08/03 15:00 1 (91) 1 (87) 84
08/03 16:00 4 (62) 3 (60) 57
08/03 17:00 4 (62) 3 (60) 57
08/03 18:00 4 (62) 3 (60) 57
17/03 09:00 5 (55) 4 (55) 54
17/03 10:00 5 (55) 4 (55) 54
17/03 11:00 5 (55) 4 (55) 54
17/03 12:00 5 (55) 4 (55) 54
17/03 13:00 10 (35) 13 (21) 6
17/03 14:00 4 (62) 3 (60) 57
17/03 15:00 4 (62) 3 (60) 57
17/03 16:00 5 (55) 7 (35) 1
17/03 17:00 5 (55) 4 (55) 54
17/03 18:00 10 (35) 7 (35) 29
26/03 09:00 8 (41) 5 (37) 37
26/03 10:00 12 (16) 14 (19) 14
26/03 11:00 2 (74) 15 (16) 13
26/03 12:00 6 (46) 9 (30) 27
26/03 13:00 7 (40) 10 (28) 23
26/03 14:00 7 (40) 10 (28) 23
26/03 15:00 14 (4) 6 (37) 1
26/03 16:00 9 (37) 6 (37) 30
26/03 17:00 3 (68) 2 (68) 61
26/03 18:00 1 (91) 3 (60) 1
08/04 09:00 2 (74) 11 (26) 25
08/04 10:00 2 (74) 15 (16) 13
08/04 11:00 6 (46) 15 (16) 1
08/04 12:00 6 (46) outlier 0

Continues on Next Page...
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Table 5.4 Clusters similarity

Timestamp Clustering w/ classification Clustering w/o classification Common El
08/04 13:00 8 (41) 5 (37) 37
08/04 14:00 8 (41) 5 (37) 37
08/04 15:00 8 (41) 5 (37) 37
08/04 16:00 5 (55) 4 (55) 54
08/04 17:00 4 (62) 3 (60) 57
08/04 18:00 4 (62) 3 (60) 57
17/04 09:00 5 (55) 4 (55) 54
17/04 10:00 5 (55) 4 (55) 54
17/04 11:00 11 (18) 13 (21) 13
17/04 12:00 1 (91) 1 (87) 84
17/04 13:00 1 (91) 1 (87) 84
17/04 14:00 1 (91) 1 (87) 84
17/04 15:00 1 (91) 1 (87) 84
17/04 16:00 1 (91) 1 (87) 84
17/04 17:00 1 (91) 1 (87) 84
17/04 18:00 1 (91) 1 (87) 84
26/04 09:00 6 (46) 9 (30) 27
26/04 10:00 7 (40) 12 (25) 17
26/04 11:00 9 (37) 6 (37) 30
26/04 12:00 3 (68) 2 (68) 61
26/04 13:00 1 (91) 1 (87) 84
26/04 14:00 1 (91) 1 (87) 84
26/04 15:00 4 (62) 3 (60) 57
26/04 16:00 4 (62) 3 (60) 57
26/04 17:00 4 (62) 3 (60) 57
26/04 18:00 10 (35) 7 (35) 29

End.
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Conclusion

A subjective interpretation of weather conditions experienced each day on the field and the
comparison with similar days experienced previously allows for the identification of repeating
weather conditions usually called ′′weather patterns”. In sailing, the most important weather
variable is wind. However, it is important to stress that each wind pattern is strongly related
to other meteorological variables, such as temperature, air pressure and humidity. Currently,
an analysis of meteorological data, able to lead to the identification of wind patterns, having
well-defined characteristics, is performed manually by the user (normally a meteorologist).
However, as happens in many other domains, nowadays we have an increasing number of
available data, which makes it very difficult for a human to analyse them all. The idea was
to investigate if an added value to the human interpretation is derived from an automatic
analysis of the data.

The specific goal of the present work has been to assess the challenges and opportunities
of using automatic clustering for the identification of weather patterns for sailing. The
identification of these patterns can be applied either for a well-known site, where qualitative
weather conditions are familiar to the user, but scientific causes for the existence of repeating
weather conditions are not well-known. On the other hand, the same approach can be used
for a relative new sailing venue, to make a first assessment of exiting weather patterns. In
this case, the first identification is followed by further analysis to validate and calibrate the
patterns.

We have initially based our methodology on existing work, but have extended it to make
the system completely automatic, so that the intervention of the user will be restricted to the
mere analysis of the thorough statistical results provided by the system. We have compared
the performances of both the manual and automatic approaches, applied to numerical weather
prediction models outputs. Due to computational constraints of producing numerical weather
prediction data for long time periods, we have been able to test our system on a limited
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amount of data: two months. Despite the limited dataset, very promising information was
derived. For instance, we can conclude that:

• Both the manual and automatic clustering systems provide very interesting information,
as to the identification of almost unique wind direction categories (the wind patterns)
and as to the identification of additional weather variables contributing to the transition
from one pattern to another along the day. This allows furthermore to predict the
behaviour of the wind whenever we identify that one set of data belongs to one cluster
(or wind pattern).

• A manual clustering having a similar number of clusters to that of the automatic
clustering does not present any particular advantage. In fact, for our limited test set
and from a subjective meteorological point of view, the use of the automatic clustering
offers slightly better results than the manual one, and the finer description of each
cluster according to the frequency of elements in 16 wind sectors makes far easier the
identification of the weather patterns. Of course, it must be considered that we have
only dealt with two months of data and therefore more thorough tests would be in
order, but it allows us to confirm that it is a promising approach.

6.1 Future Work
Considering the conclusions reported above, a first step forward should be the test of the same
approach on bigger volumes of data. In fact, an ongoing collaboration with the Meteorological
Service of Catalunya (Meteocat) can allow the availability of longer time-series for the WRF
model. This step would allow the assessment of the results obtained by the system with more
data of the same type (in this case, spring weather patterns, which can be different from
other periods of the year).

The second step should be, once enough quantity of actual data will be collected in Tokyo
2020 sailing venue, to start testing the system with these data. Since we never worked with
real data before, it might be useful to compute two clusterings, one with the output from
weather models for the area (either Arome or WRF) and another one with the collected data
for the same days, and evaluate that the results, though maybe not equal, are relatively
consistent.

Thirdly, in our system, only wind data are used to infer the underlying clusters. Therefore,
a possible extension might be the use of additional weather data (which would mean an
obvious complication of the distance function).

Moreover, the implemented code has room for improvement. Although the current perfor-
mance of the program are quite good, the availability of more data would consequently mean
also more computational power needed, therefore code optimisation is required. Obviously, a
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simple laptop used for the development of this work would not be enough and the shift to
server will be necessary, but, despite having a more powerful machine, some optimisations ap-
plied to code would grant faster results. Some of these could concern the manual hierarchical
clustering that, as said in section 4, is run twice. Using a powerful machine allows to have
more memory available, and keeping a complete dendrogram saved would not be a problem
and, most importantly, would reduce the execution time. Another improvement that would
benefit the time required to run the program could be the parallelisation of the task that
regards the quality measures of the automatic clustering. It is noted as the heaviest process
of the program and improvements would reduce the time to analyse big amounts of data.

Finally, there is a whole span of alternatives to extract additional information from the
current data. It is clear that with the availability of more and more data, it is possible to
extract more specific information (according to the time of the year, to the different specific
locations inside the area of study, to the dynamic evolution of the parameters. . . ). The
idea would be to keep on extending the actual system by making it able to extract more
and more useful information. We strongly believe that the real added value of data is not
represented by only having a big amount of data but by making sense out of them, and this
is particularly true while analysing complex and fast-changing environmental systems.
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Appendix A

Automatic clustering results

Chosen hours: from 9 to 18
Chosen days: from 01/03/2018 to 30/04/2018
The coordinates chosen are: [[41.325, 2.125], [41.325, 2.175], [41.325, 2.225], [41.325, 2.275],
[41.35, 2.1], [41.35, 2.15], [41.35, 2.2], [41.35, 2.25], [41.375, 2.125], [41.375, 2.175], [41.375,
2.225], [41.375, 2.275], [41.4, 2.1], [41.4, 2.15], [41.4, 2.2], [41.4, 2.25]]
Elapsed time to load 3660 files: 22.182 s
Dataset has 610 elements
Elapsed time to normalize data with time average speed was: 0.306 s
Elapsed time to normalize data with space average speed was: 0.280 s

A.1 Automatic clustering infos
Completion of hierarchical clustering took 52.696 s
The calculation of the quality measures required 160.392 s
The best model was found in 156.867 s and is obtained from the measure GWB with gamma
= 0.10
Assigning all the elements out of gamma took 0.280
The best model is composed of 17 clusters



76 Automatic clustering results

The threshold chosen is: 0.60

A.2 K-means infos
Execution time of k-means: 6.707 s
Number of iterations in k-means: 20
Elements that have changed cluster: 371
Number of outliers with distance greater than threshold: 17
Number of outliers with their own cluster: 0

A.3 Clustering Results
Number of clusters: 17
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Appendix B

Manual clustering results

Chosen hours: from 9 to 18
Chosen days: from 01/03/2018 to 30/04/2018
The coordinates chosen are: [[41.325, 2.125], [41.325, 2.175], [41.325, 2.225], [41.325, 2.275],
[41.35, 2.1], [41.35, 2.15], [41.35, 2.2], [41.35, 2.25], [41.375, 2.125], [41.375, 2.175], [41.375,
2.225], [41.375, 2.275], [41.4, 2.1], [41.4, 2.15], [41.4, 2.2], [41.4, 2.25]]
Elapsed time to load 3660 files: 22.182 s
Dataset has 610 elements
Elapsed time to normalize data with time average speed was: 0.306 s
Elapsed time to normalize data with space average speed was: 0.280 s

B.1 Manual clustering infos
Generation of complete dendrogramThe hierarchical clustering algorithm execution time
was 70.385Hierarchical clustering for k values chosenThe hierarchical clustering algorithm
execution time was 54.963

B.2 K-means infos
The chosen k are: [17, 10]
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B.3 Manual clustering results, k = 17

B.3.1 Threshold

The threshold chosen is: 0.60

Execution time of k-means: 2.095 s
Number of iterations in k-means: 9
Elements that have changed cluster: 144
Number of outliers with distance greater than threshold: 10
Number of outliers with their own cluster: 3
Execution time of k-means: 3.219 s
Number of iterations in k-means: 14
Elements that have changed cluster: 250
Number of outliers with distance greater than threshold: 34
Number of outliers with their own cluster: 1
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Number of clusters: 14
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B.3 Manual clustering results, k = 17 107

B.3.2 Comparison with automatic clustering

Table B.13 Clusters matching

Cluster automatic Cluster manual k = 17 Common elements
1 (87) 1 (135) 84
3 (60) 2 (99) 60
4 (55) 5 (62) 44
6 (37) 4 (62) 37
8 (34) 3 (67) 29
9 (30) 8 (29) 28
5 (37) 7 (38) 27
10 (28) 6 (42) 24
14 (19) 11 (15) 14
16 (12) 9 (23) 12
15 (16) 13 (3) 2
2 (68) 12 (3) 1
7 (35) 10 (16) 0
11 (26) 14 (3) 0

Maximum Matching Measure = 0.593

B.3.3 Comparison with manual clustering k = 10

Table B.14 Clusters matching

Cluster manual k = 17 Cluster manual k = 10 Common elements
1 (135) 9 (151) 115
3 (67) 8 (88) 67
2 (99) 1 (80) 62
4 (62) 7 (85) 62
5 (62) 6 (84) 43
6 (42) 2 (63) 39
11 (15) 4 (18) 15
13 (3) 3 (3) 3
14 (3) 5 (3) 3
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Maximum Matching Measure = 0.670



B.4 Manual clustering results, k = 10 109

B.4 Manual clustering results, k = 10

B.4.1 Threshold

The threshold chosen is: 0.60

Execution time of k-means: 2.095 s
Number of iterations in k-means: 9
Elements that have changed cluster: 144
Number of outliers with distance greater than threshold: 10
Number of outliers with their own cluster: 3
Execution time of k-means: 3.219 s
Number of iterations in k-means: 14
Elements that have changed cluster: 250
Number of outliers with distance greater than threshold: 34
Number of outliers with their own cluster: 1
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Number of clusters: 9
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B.4.2 Comparison with automatic clustering

Table B.27 Clusters matching

Cluster automatic Cluster manual k = 10 Common elements
1 (87) 1 (151) 87
4 (55) 4 (84) 54
2 (68) 3 (85) 39
7 (35) 5 (80) 35
8 (34) 2 (88) 34
10 (28) 6 (63) 28
14 (19) 7 (18) 17
15 (16) 8 (3) 2
3 (60) 9 (3) 0

Maximum Matching Measure = 0.485

B.4.3 Comparison with manual clustering k = 17

Table B.28 Clusters matching

Cluster manual k = 10 Cluster manual k = 17 Common elements
1 (151) 1 (135) 115
2 (88) 3 (67) 67
3 (85) 4 (62) 62
5 (80) 2 (99) 62
4 (84) 5 (62) 43
6 (63) 6 (42) 39
7 (18) 11 (15) 15
8 (3) 13 (3) 3
9 (3) 14 (3) 3

Maximum Matching Measure = 0.670
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