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Sommario

Esiste una discrepanza a livello di 3.5–4σ tra la misura del momento
magnetico anomalo del muone aµ = (g − 2)/2 e la sua previsione basata
sul Modello Standard. La previsione teorica, di precisione relativa pari a
0.4 ppm, è limitata dagli effetti dell’interazione forte, i quali sono valutati in
base alle misure time-like, agli acceleratori e+e− [1]. Il contributo adronico al
prim’ordine aHLOµ , noto con precisione relativa dello 0.4%, è quello che con-
tribuisce maggiormente all’errore teorico [2]. Si ritiene che il metodo basato
su misure di annichilazione e+e− abbia raggiunto il suo limite di precisione.

Alla misura realizzata dal Brookhaven National Laboratory, di errore
relativo di 0.54 ppm [3], si aggiungerà la misura dell’esperimento E989, in
corso al Fermilab [4]. L’obiettivo è di ridurre l’incertezza di un fattore 4
(0.14 ppm).

Affinché il confronto tra teoria ed esperimento possa essere in futuro mag-
giormente affidabile e solido, è necessario ridurre l’incertezza teorica dovuta
al contributo adronico.

L’esperimento MUonE propone un metodo innovativo ed indipendente
per misurare aHLOµ . Come recentemente proposto in letteratura [5, 6], è pos-
sibile ottenere aHLOµ tramite la misura del contributo adronico al running
dell’accoppiamento elettromagnetico ∆αhad in regione space-like. Il proces-
so di scattering individuato è quello elastico muone su elettrone a riposo.
Usando i muoni della linea di fascio M2 del CERN [7] da 150 GeV su ber-
sagli sottili, è possibile in 2 anni, con un unico esperimento, ottenere una
precisione statistica dello 0.3%. La sfida teorica e sperimentale consiste nel
contenere i sistematici allo stesso livello di precisione. Data l’entità dell’effet-
to da misurare (∆αhad ∼ 10−3), è necessario contenere gli errori sistematici
entro 10−5 (10 ppm), per poter competere con le misure tradizionali.

Obiettivo della Tesi è stato realizzare lo studio della fattibilità di questa
proposta. A questo scopo, sono stati realizzati due test beam, nel 2017
e nel 2018, per analizzare rispettivamente il multiple Coulomb scattering
su bersagli sottili e la correlazione elastica tra gli angoli di scattering di
muone ed elettrone. L’attività di Tesi ha coperto tutte le fasi dell’analisi,
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dall’allineamento dei sensori fino alle analisi finali di fisica per rivelare gli
eventi elastici µe. I risultati sono oggetto di pubblicazione [8, 9].

Per quanto concerne il primo test beam, sono stati ottenuti risultati origi-
nali sull’accordo tra dati e Monte Carlo. Utilizzando fasci di elettroni da 12 e
20 GeV su bersagli di spessore variabile (8, 20 mm di grafite), abbiamo misu-
rato la deflessione angolare dovuta al MCS usando il telescopio di precisione
della collaborazione CERN UA9 [10], di risoluzione intrinseca ∼ 0.015 mrad.
L’accordo ottenuto tra dati e simulazione, che ho contribuito a costruire, è
a livello del percento. Ho inoltre ideato e testato algoritmi di tracciamento
e pattern recognition che hanno permesso la prima ricostruzione degli eventi
di scattering elastico µe.

Visto l’utilizzo per l’allineamento di run pioni e muoni ad energie elevate
(80, 160, 180 GeV), si è misurato il profilo della risoluzione angolare dell’ap-
parato in funzione dell’energia. Basandomi su questa misura, ho proposto
un modello parametrico della risposta di un modulo di rivelazione. Esso ha
consentito la costruzione di una simulazione Monte Carlo veloce (fast-MC),
di cui ho collaborato allo sviluppo, che permette di aggirare il limite della
statistica necessaria. Per raggiungere lo 0.3% di errore relativo su aHLO

µ , è
richiesto un numero di eventi di segnale elastico µe molto elevato, dell’ordine
di 1012. Ottenere tale statistica, con una simulazione completa del detector,
richiederebbe risorse di calcolo proibitive.

Ho contribuito inoltre all’analisi del secondo test beam. L’apparato è
costituito da tracciatori con risoluzione intrinseca di ∼ 0.1-0.05 mrad [11] ed
una DAQ automatizzata che ha permesso di estendere la presa dati per diversi
mesi. In particolare, mi sono occupato dello studio della risoluzione angolare
dai dati e del confronto con l’apparato UA9, usato nel precedente test beam.
Dai risultati, è emersa la necessità di vincolare la risoluzione intrinseca del
setup finale MUonE ad un valore inferiore a 0.03 mrad, ottenibile con moduli
di braccio 1 m e sensori con risoluzione spaziale di almeno 20µm.

Infine, ho studiato una prima strategia di misura per ottenere aHLO
µ , ba-

sandomi su fast-MC ed inoltre ho proposto un metodo generale per quanti-
ficare l’impatto dei sistematici, che ha confermato le precedenti stime.

Nonostante il notevole obiettivo di precisione, i risultati della Tesi non
hanno mostrato impedimenti riguardo alla fattibilità della misura.

La proposta di esperimento MUonE è stata inserita all’interno del comi-
tato CERN Physics Beyond Colliders [12, 13]. La collaborazione ha recente-
mente presentato una Letter of Intent [14] al comitato di SPS.



Abstract

The present discrepancy between the theoretical prediction and the mea-
surement of the muon anomalous magnetic moment aµ = (g−2)/2 is at level
of 3.5-4 σ. The Standard Model prediction has relative precision of 0.4 ppm.
The error is dominated by the hadronic contributions because of the non
perturbative caracter of the QCD. The leading order hadronic contribution
aHLO
µ is the main source of the theoretical error [2]. aHLO

µ has been evaluated
with time-like measurements obtained with e+e− annihilation in hadrons [1].
This method seems to reach its precision limit.

The error of the existing measurement performed at BNL is 0.54 ppm [3].
New measurement of the muon g-2 is ongoing at Fermilab [4]. Aim of the
measurement is to reduce the uncertainty by a factor 4 (0.14 ppm).

It is necessary to reduce the theoretical uncertainty due to hadronic con-
tribution to the anomaly.

MUonE proposed a new method to determine aHLO
µ . As recently proposed

in literature [5, 6], it is possible to measure aHLO
µ by means of the hadronic

contribution to the electromagnetic effective coupling ∆αhad in the space-like
region. The scattering process is the muon elastic scattering on electron at
rest. Using the CERN M2 muon beam [7] of 150 GeV on thin targets, it is
possible in 2 years, with a single experiment, to obtain a statistical accuracy
of 0.3% on aHLO

µ . The theoretical and experimental challenge is to keep
the systematics at the same level of precision. The effect to be measured
is ∆αhad ∼ 10−3 so the systematic errors must be contained within 10−5

(10 ppm) in order to be competitive with the traditional measurements.
The aim of the Thesis was the feasibility study of the MUonE proposal.

On the purpose we performed two test beam in 2017 and 2018 to measured
the multiple scattering effect on thin targets and to detect elastic µe events
measuring the scattering angles of muons and electrons. The Thesis covered
all the aspect of the test beam analysis, from the sensors alignment to the
analysis to select the µe elastic events. The results are been submitted for
publication [8, 9].

Aim of the first test beam has been to compare GEANT4 predictions
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of the MCS effects with data. We used 12 and 20 GeV electron beams
hitting on graphite target of different thickness. We measured the angular
deflection to the MCS, used the UA9 telescope [10] operating of intrinsic
angular resolution of 0.015 mrad. The agreement within MC simulation and
data has been verified at the percent level. I developed and used the tracking
and the patter recognition also that allowed me to reconstruct µe scattering
events.

Exploiting the alignment runs performed with high energy pions and
muons (80, 160, 180 GeV), I measured the angular resolution of the detector
as a function on the energy. I proposed to use an analytical representation
of the resolution function to develop a fast MC. I used this instrument to
generate high statistics data samples. Considered that in order to reach the
statistical precision of 0.3% on aHLO

µ , the number of elastic events is huge, of
the order of 1012.

Such a high statistics cannot be reached with the full simulation within a
reasonable time even with large computing farm. I then contributed to the
analysis of the result of the second test beam. The main result is that MUonE
cannot work with an intrinsic angular resolution worst than 0.03 mrad.

I studied the workflow to get aHLO
µ using the fast MC. I proposed a method

to evaluate the effect of the main systematics uncertainties on aHLO
µ . The

main result of the Thesis is that there are not limitation preventing MUonE
to perform the performed experiment.

The MUonE proposal has been made part of the CERN Physics Beyond
Colliders committee [12, 13]. The collaboration has recently presented a
Letter of Intent [14] to the SPS Committee.
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Chapter 1

The muon anomalous magnetic
moment

In this chapter we will introduce the puzzle of the muon anomalous mag-
netic moment and therefore the physics case underlying the MUonE proposal
[5, 6]. This quantity, together with the corresponding electron anomalous
magnetic moment, is one of the most precise measurements in the whole
physics landscape. Tracing its history means to cover that of the particle
physics, from the Dirac’s prediction to the modern quantum field theory.

1.1 Magnetic moments

In classical mechanics, the magnetic moment of an electrically charged
particle determines the mechanical interaction with the magnetic field. In
the case of a charge e that orbits around an axis in a magnetic field ~B, we
define the magnetic moment (orbital):

µ = i · A =
ev

2πr
πr2 =

e ·mvr
2m

, (1.1)

where i is the current due to the charge motion, A is the area defined by this
motion, v is the tangent velocity, r is the orbit ratio and m is the particle
mass. In vector notation:

~µ = gl
e

2m
~L, gl = 1, (1.2)

where gl is the gyromagnetic factor defined as the ratio between magnetic
and angular momentum ~L (properly normalized), in this case identically
equal to the unit. The magnetic field ~B has a mechanical action on the

1



2 The muon anomalous magnetic moment

charge, because of the magnetic moment, through a torque:

~M = ~µ× ~B. (1.3)

These considerations hold for any angular momentum, even for what quan-
tum mechanics (QM) intrinsically assigns to each particle, i.e. the spin. This
quantity has suggested the idea that particles are like “spinning top”, with
an intrinsic rotation. This image, as useful as it is, is wrong: the spin is a
quantum property of matter that has no classical counterpart.

In non-relativistic quantum mechanics, as well as in the Hamiltonian
formalism, the orbital angular momentum is an operator with a complete set
of eigenvectors for an electron that moves for example in a central field like
the one of the nucleus [15]:

Ĥu = Enu

L̂2u = ~2l(l + 1)u

L̂zu = mz~u
(1.4)

The possible values of the magnetic quantum number mz are 2l + 1. The
definition of magnetic moment is still valid, but it is usual to introduce the
Bohr’s magneton: for a generic angular momentum ~J

~µ = gj
µB
~
~J, µB =

e~
2m

. (1.5)

The gyromagnetic factor g is simply called “g-factor”. The first evidence of
the spin dates back to the famous experiment of Stern and Gerlach (1922)
with electrons. The discovery of the fourth degree of freedom for an electron
is however attributed to Uhlenbeck and Goudsmith (1932) [16]: according to
the Pauli exclusion principle, the spin allowed to explain in a natural way the
atomic spectra under study. In particular the Zeeman effect, caused by the
interaction between the external magnetic field and the angular momentum
~L (orbital) and ~S (intrinsic), that is the so-called spin-orbit coupling. For
a particle with spin, the magnetic moment is an intrinsic property and is
obtained by replacing the angular momentum operator ~L with the spin ~S:

~S =
~σ

2
, (1.6)

where σi (i = 1, 2, 3) are Pauli matrices. The extension of the ~L operator
properties to the spin ~S was immediate:{

Ŝ2u = ~2s(s+ 1)u

Ŝzu = ms~u
(1.7)
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together with the definition of the intrinsic magnetic moment:

~µs = gs
µB
~
~S. (1.8)

From the observations, the possible values of the spin quantization had to be
only 2, which implies s = 1/2 according to the relation 2s+ 1 = 2. Moreover
unlike the angular contribution (gl =1), the one related to the spin had to
satisfy:

gs = 2, (1.9)

to explain the experimental observations.
The theoretical explanation of this empirical fact is included in the Dirac’s

theory [17]. In the non-relativistic limit, the Dirac equation for an electron
interacting in an electromagnetic field

Aµ = (φ, ~A), (1.10)

gives the Pauli equation:

i~
∂

∂t
φ =

((~p− e ~A)2

2me

− e

me

~S · ~B + eφ
)
, (1.11)

where in the right, the first factor represents the kinetic term, the second
is the coupling between the spin and the magnetic field, and the last one
is the electrical potential. Comparing the second contribution with (1.8),
the theory predicts for the spin g-factor gs = 2, as well as for all the point-
like particles of spin s = 1/2. As intrinsic property of matter, the spin
arises naturally from Dirac’s field equation and is one of its most remarkable
achievement. As Dirac said: “my equation proved to be more intelligent than
me”.

1.2 QED virtual process: g-2 anomaly
This is not the end of the story. Later on it was discovered that proton and

neutron have magnetic moments that differ significantly from those expected
for point particles and that was one of the first indications they are fermions
with an internal structure, i.e. interacting substructures, quarks and gluons
as we know. Even for electron and muon a slight difference was discovered for
the g-factor from the predicted value. This is still related to the existence of
interactions that occur with the fermions, but not due to internal structure:
the virtual processes of quantum electrodynamics (QED). Quantum fields
theory predicts a deviation from Dirac’s prediction. We will now go into
more detail on this subject.
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Figure 1.1: The main QED radiative contributions to the Lamb shift.

1.2.1 Renormalization and running coupling constants

The Standard Model predictions, cross sections and decay widths, are
obtained by a perturbative method, that is calculating Feynman diagrams at
subsequent orders of a series expansion in powers of the coupling constant:
the calculation converges, that is it gives finite results, if the successive con-
tributions tend to zero quickly enough [18].

Each single diagram is calculated by integrating over all possible momenta
of the virtual particles that are present: it was immediately realized, from the
QED perturbative calculations, that already the first diagrams of higher order
are divergent when the momentum becomes high. The solution to handle the
infinites arrived with the analysis of the Lamb shift [19] (fig. 1.1): the breakup
in the degeneration between two hydrogen lines, unexpected in the Dirac’s
theory. To account for this problem, the simplest radiative correction was
calculated, consisting in the emission and absorption of a virtual photon γ:
the energy levels are slightly modified by a kind of self-energy of the bound
electrons.

The calculation is divergent for Eγ → Emax
γ , the upper energy limit in

the integral, that is it depends on the cut chosen to make the result finite,
a situation obviously inconsistent. In 1947, Bethe proposed that also the
free electron should bring a self-energy contribution, that is it could interact
with the electromagnetic field created by itself, and that therefore its kinetic
energy should be modified [20]. Here is the fundamental step: he inserted
this modification in a redefinition of the observed mass

mobs ≈
(

1 + αEM
4Emax

γ

3πmc2

)
·m ⇒ mobs = mobs(E

max
γ ), (1.12)

where m is interpreted as the so-called bare mass of the electron, that is
the one that would be measured without any virtual process occurring. The
remarkable consequence of this procedure, called renormalization, is that the
mass (renormalized), which can be measured, depends on the energy scale
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of the observation. From that moment, this procedure was considerably
developed: by redefining the theory parameters, in particular the particle
mass and charge, it was possible to obtain finite results1.

The interaction strength depends on the energy/distance scale at which
we probe the microscopic world. The closer we get to a charged particle, the
greater the observed effect of the virtual processes that take place around it,
which screen the charge, modify its value and therefore modify that of the
electromagnetic coupling, which in particular increases with energy.

The renormalization of the charge e can therefore be expressed in terms
of running of the electromagnetic coupling α = e2/4π. From the theory:

α(q2) =
α

1−∆α(q2)
(1.13)

where q2 is the energy scale. The different contributions to the running of
α come from the 3 charged leptons and 5 quarks (neglecting the top, too
heavy to contribute significantly). This statement will be explained in detail
below: the MUonE experiment is essentially aimed at measuring the hadronic
contribution to this running, in a region of space-like transferred momenta
suitable to estimate the muon anomaly.

1.2.2 Schwinger calculus: first QED result

Fig. 1.2 shows the first order contribution to the magnetic moment by
the virtual vacuum polarization processes of QED. In 1948 Schwinger calcu-
lated the impact of this diagram to the electron g-factor [21]. Recalling the
eq. (1.8), it is possible to define the anomaly aµ as the deviation from Dirac’s
prediction:

gµ = 2(1 + aµ) ⇒ aµ =
gµ − 2

2
. (1.14)

Hence the expression “g-2” becomes a synonym for anomalous magnetic mo-
ment. Schwinger’s famous QED calculation predicts at first order [21]:

aµ =
α

2π
∼ 0.001161 ⇒ gthµ = 2 · 1.001161, (1.15)

so:
~µs = g

µB
~
~S = 2

(
1 +

α

2π

) µB
~
~S (1.16)

1In 1971 Veltman and ’t Hooft demonstrate the renormalizability of non-abelian gauge
theories with spontaneous symmetry breaking, i.e. of Glashow-Weinberg-Salam’s elec-
troweak theory. A few years later quantum chromodynamics was inserted as SU(3) gauge
theory, definitively building the Standard Model as the renormalizable theory of funda-
mental interactions.
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Figure 1.2: Lowest order QED contribution to the muon anomalous magnetic
moment.

In the same year, Kusch and Foley (1948) [22] obtained experimentally:

gexpµ = 2 (1.00119± 0.00005). (1.17)

This result is in agreement with the Schwinger’s prediction and is one of the
first QED triumphs. The brilliant confirmation of the perturbative method
has given the start to the calculation of higher orders and fixed the stan-
dard framework within which most of the future calculations of the radiative
corrections will be obtained. From the ∼5 significant figures of the Kusch
and Foley measurement, we have moved on to the 9 of the BNL measure
(sec. 1.4).

1.3 Muon g-2 in the Standard Model
In the Standard Model, the anomaly aµ can be expressed as the sum of

three contributions:

aSMµ = aQEDµ + aEWµ + ahadµ . (1.18)

As the theory is renormalizable, a precise and unambiguous prediction of this
quantity is possible, so the anomalous magnetic moment has become one of
the best observables to test it. The first two terms, electromagnetic and weak,
can be calculated with extreme precision by perturbative calculation. The
hadronic one, instead, must rely on experimental data and for that reason
presents the biggest uncertainty. The g-2 is a low energy observable and in
this region it is not possible the perturbative QCD treatment, because of the
confinement. The issue of the hadronic contribution will be addressed in the
following paragraphs.

1.3.1 QED contribution

In QED, the anomaly aµ becomes a perturbative expansion in α/π:

aµ = ΣjCj

(α
π

)j
. (1.19)
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Figure 1.3: Second-order QED diagrams that contribute to anomaly.

To date, theoretical calculations have reached the fifth perturbative order.
Below the successive contributions and the main authors of the relative cal-
culations [23, 24]:

aQEDµ =
1

2

α

π
[Schwinger 1948]

+ 0.765857426(16)
(α
π

)2
[Sommerfield 1957]

+ 24.05050988(28)
(α
π

)3
[Remiddi, Laporta 1995, 1996]

+ 130.8796(63)
(α
π

)4
[Kinoshita 1981, 2012]

+ 753.29(1.04)
(α
π

)5
[Kinoshita 2004]

(1.20)

If we add these five contributions, which are dominated by the first order
calculated by Schwinger (1.15), we get:

aQEDµ = 0.00116584718951(22)(77) (1.21)

or:
aQEDµ = 11658471.8951(0.0022)(0.0077) · 10−10. (1.22)

The first error arises from the coefficients of the perturbative development,
the second from the fine structure constant α, measured with Rubidium
nuclei, which provides a new determination of the constant independent of
the electron magnetic anomaly ae, from which α was traditionally extracted
[25].
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Figure 1.4: Electroweak contributions to the muon anomalous magnetic mo-
ment.

1.3.2 Electroweak contribution

The electroweak contribution is the smallest one, as it is suppressed by
the factor (mµ/MW )2, compared to the QED: it involves the massive bosons
W±, Z0 and the Higgs one (fig. 1.4). One-loop calculation leads to [26]:

aEWµ [1 loop] =
5Gµm

2
µ

24
√

2 π2

[
1 +

1

5

(
1− 4 sin 2 θW

) 2
+ O

(
m2

µ

M2
Z,W,H

)]
= 19.48× 10−10,

(1.23)

where sin2 θW = 1 −M2
W/M

2
Z ≈ 0.223 is the electroweak angle and Gµ ≈

1.166 × 10−5 GeV−2 is the Fermi coupling constant. The contribution to
two loops also contains an hadronic part and must be included as it is not
negligible (and negative). Using the new Higgs boson mass value MH =
(125.6± 1.5) GeV, one can get:

aEWµ [2 loop] = −4.12(0.10)× 10−10, (1.24)

where the error essentially depends on the hadronic loop uncertainties. Adding
up the two terms, one obtain:

aEWµ = 15.36(0.10)× 10−10. (1.25)

1.3.3 Hadronic contribution: time-like approach

Strong interactions allow perturbative calculations only for energy scales
higher than few GeV, where one enters the regime of asymptotic freedom.
The hadronic bubble in fig. 1.5 cannot be calculated with the same method
used for the first two contributions, EM and EW. Fortunately most of the
hadronic effects are vacuum polarization corrections, divided as usual into
leading order and next-to-leading2:

ahadVP
µ = aHLO

µ + aHNLO
µ . (1.26)

2The hadronic contribution to aµ consists of a further contribution in addition to the
one from vacuum polarization (VP), the Light-by-Light which will be discussed later.
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Figure 1.5: Hadronic contribution at leading order (HLO) to the muon
anomalous magnetic moment.

Figure 1.6: Hadronic ratio R from PDG [26]: this plot shows the whole range
from mπ to 200 GeV

The hadronic contribution to the vacuum polarization is calculated by ex-
ploiting the analyticity (causality) and the unitarity of the theory (optical
theorem). Experimental measurements of the annihilation cross section of
e+e− to hadrons are used to extract the hadronic contribution to the anomaly
aµ. The vacuum polarization effects can be calculated by replacing the free
photon propagator with the “dressed” one:

1

q2
⇒

∫ ∞
0

ds

s

1

q2 − s
1

π
ImΠhad(s), (1.27)

The imaginary part of the Πhad(s) function, the photon self-energy, is tradi-
tionally determined through the optical theorem from low energy measure-
ments of the total cross section of hadronic production in e+e− annihilation:
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σ(s)(e+e− → γ∗ → had) =
4π2α

s

1

π
ImΠhad(s). (1.28)

The hadronic leading order contribution is shown in figure 1.5 and corre-
sponds to the exchange of a “massive photon” of mass

√
s, according to the

1.28. In general, the anomaly aµ can be determined with the following dis-
persion integral and the associated kernel function K(s):

aHLO
µ =

α

π

∫ ∞
0

ds

s

1

π
ImΠhad(s)K(s), K(s) =

∫ 1

0

dx
x2(1− x)

x2 + s/m2
µ(1− x)

.

(1.29)
The time-like method relies on the use of the optical theorem and the well-
known R hadronic ratio, normalized to the cross section e+e− → µ+µ−

(figg. 1.6, 1.8):

R(s) ≡ σ(0) (e+e− → γ∗ → hadrons)

4πα2/3s
, (1.30)

which shows that the hadronic leading order contribution3 aHLO
µ can be ob-

tained from the following dispersion integral:

aHLO
µ =

(αmµ

3π

)2(∫ E2
cut

m2
π0

Rdata(s)K̂(s)

s2
ds+

∫ ∞
E2

cut

RpQCD(s)K̂(s)

s2
ds

)
,

(1.31)
where Ecut is the energy up to which the data must be used and from where
it is safe to use the perturbative QCD (pQCD); the rescaled kernel function
K̂(s) = 3s/m2

µK(s) is a smooth function rising from 0.39 for s = m2
π0 to 1

for s→∞. The hadronic ratio R is shown in fig. 1.6 and in particular in
fig. 1.8, together with the relative contributions of the different energies. It is
clear that the low-energy region is largely dominated by mesonic resonances
that cannot be treated perturbatively. The ρ meson region is the one that
makes the biggest contribution ∼ 75% (figg. 1.7 and 1.9): the dispersive
integral is in fact controlled by the 1/s2 factor, so the low energy regions are
dominant on the other ones. Time-like e+e− data can be used up to about
40 GeV, where interference γ − Z0 comes into play. However the pQCD
becomes reliable from ≈ 5 GeV, after the J/ψ resonances, even though this
region accounts only for a few percent in the final aHLO

µ account.
It is important to note the hadronic blob we want to know is not what

we measure, i.e. it is not a physical observable: in reality the insertions
with virtual photons attached to the hadronic bubbles are “dressed” photons

3The following notations are used in literature: aHLO
µ , ahadLO

µ o ahadVP
µ .
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Figure 1.7: Contributions and error squares from different energy regions.
Different evaluations of the available datasets may lead to slight differences
in the relative contributions.

(propagators with all possible radiative corrections). The dispersive method
requires the bare (“undressed”) cross section σ(0)(s) (1.30). The physical cross
section (measured / dressed) is proportional to e4 or α2 = α2(s), due to the
running of the charge e. The bare cross section is obtained by replacing
the running α(s) with the classic α = α(0) and subtracting all radiative
corrections not present in the hadronic blob line:

σ(0)
(
e+e− → hadrons

)
= σ

(
e+e− → hadrons

)(α(0)

α(s)

)2

. (1.32)

The standard measurement of σhad (and therefore indirectly of σ(0)
had) is ob-

tained as a set of experimental points corresponding to a scan for variable
energy of the beams. However KLOE at DAΦNE (Frascati) has introduced
a novel mode, the so-called radiative return (RR) method, which is particu-
larly interesting for machines that work on-resonance like φ and B factories,
illustrated in fig. 1.10: it consists in extracting the measurement itself using
one of the contributions (ISR=initial state radiation) which must in any case
be subtracted to obtain the wanted quantity, that is the hadronic bubble.

In fig. 1.11, all the recent evaluations of aHLO
µ are shown. The latest

results consist in a complete re-evaluation of all the measurements. The two
most recent evaluations are the least conservative about the error. One of
these is the current value (2018) reported by the PDG [26]:

aHLO
µ = 693.1(3.3)(0.7) · 10−10, (1.33)

where the first error is experimental and dominated by systematic uncertain-
ties, while the second one is due to the pQCD used at intermediate and higher
energies, to predict the contribution of the continuum quark-antiquark. Pre-
vious results with a more conservative evaluation of the uncertainties ended
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Figure 1.8: Hadronic R ratio from data obtained at the various e+e− storage
rings, in the region of interest. New data of KEDR detector (Novosibirsk)
are shown between 1.84 and 3.72 GeV. The perturbative prediction of quark-
antiquark production cross-section (pQCD) is also displayed [2].

up to an uncertainty of 4-5 · 10−10. These errors should be compared with
the total errors of the perturbative contributions QED and EW, respectively
of 0.008 · 10−10 and 0.10 · 10−10.

The next-to-leading hadronic contributions are relevant. The next or-
ders of vacuum polarization (shown in figure 1.12) are determined from the
data using the same dispersive method (NLO, NNLO). The Light-by-Light
contributions (HLbL, NLO and NNLO) can be estimated at present only
theoretically:

ahadµ = aHLO
µ + aHNLO

µ︸ ︷︷ ︸
VP

+aHLbL
µ . (1.34)

In tab. 1.1, some of the most recent estimations for the hadronic contribu-
tions. The LbL term contributes only marginally to the central value (at
the same level of the EW), but has a large uncertainty, comparable with
that of the leading order contribution. It produces a tension between the
different total hadronic estimates, depending on its evaluation. There is the
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Figure 1.9: Contributions of different decay channels at hadronic R ratio:
up to 2 GeV more than 30 exclusive channels must be measured [27]. The
dominant channel is e+e− → π+π−.

Figure 1.10: a) Principle of the radiative return. b) Standard measurement
[1].

so-called “Glashow consensus” on the HLbL NLO part [31]. Recently a dis-
persive approach has been proposed for the calculation of this contribution
which could allow reduce the uncertainty in the future: according to first
estimations one could hope for a reduction of the LbL error contribution to
the level of 1 × 10−10, so the expectation is to reduce the relative error to
10%.

In recent years, considerable progress has been made on the Lattice QCD
(LQCD) in particular in the numerical calculation of the aHLO

µ from first
principles. However, the current precision of LQCD calculation is still non
competitive (fig. 1.11): most of the uncertainties arise from the need for ex-
trapolations (finite volume, lattice spacing). To date, LQCD estimates reach
the level of 3% error on aHLO

µ , against 0.4-0.5% error of e+e− measurements.
Substantial improvements are expected in the next decade on this front.

Progress in traditional time-like measurements was expected in these
years [31], just up to the level of the most recent one (KNT18 [27]), that
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Figure 1.11: Left: recent time-like evaluations of aHLO
µ [27]. Right: summary

of recent lattice QCD results for the leading order aHLO
µ , in units 10−10 [2, 28].

The gray vertical band represents Jegerlhener evaluation [29, 30]. The yellow
band represents the required hadronic vacuum polarization such that theory
matches the experimental BNL result. Some recent time-like estimates are
shown for comparison.

reduced the absolute error on aHLO
µ below 3× 10−10 (<0.4%). Further reduc-

tion in the error on the leading contribution is considered unlikely. Many of
the estimates reported in the tab. 1.1 are already judged not to be “conser-
vative”. According to S. Eidelman, the time-like method, through the e+e−
annihilation measurements, could have reached the limit by now.4.

1.3.4 Running of α

As mentioned the virtual effects of vacuum polarization can be absorbed
in a redefinition of the fine structure constant, resulting in an electromagnetic
coupling that depends on the q2 energy scale:

α(q2) =
α(0)

1−∆α(q2)
=

α(0)

1−∆αlep(q2)−∆αhad(q2)
, (1.35)

Vacuum polarization derives from loops where leptons and hadrons (quarks)
are included. The leptonic shift ∆αlep(q

2), with q2 = t < 0 for space-like
momenta or q2 = s > 0 for time-like, is well known and can be calculated

4Private communication.
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Figure 1.12: Next-to-leading order hadronic contributions to the muon
anomalous magnetic moment.

order-by-order in perturbation theory: it’s known up to 3-loops in QED (4-
loops in some regions). From [34]:

∆αlep
(
q2
)

= −ReΠlep

(
q2
)
, (1.36)

that develops in a perturbative series of α/π, similar to the leptonic contri-
bution to the anomaly aµ:

Πlep

(
q2
)
∝ Σk

(α
π

)k
Π

(k)

lep

(
q2
)
, (1.37)

with k perturbative order: k = 1 (1 loop), k = 2 (2 loops) and so on. Fig. 1.13
shows the corrections to the propagator with one and two loops.

The hadronic shift ∆αhad, i.e. the quark blobs, cannot be determined
in the same way, due to the quark confinement in low-energy QCD. It is
traditionally determined as aHLO

µ , that is by low-energy e+e− annihilation
measurements (q2 = s > 0). What is used is always the hadronic ratio R
(eq. (1.30)), from which the running of α(s) can be obtained as [35]:∣∣∣∣α(s)

α(0)

∣∣∣∣2 =
dσdata(R)/d

√
s

dσ0
MC/d

√
s

, (1.38)

where dσ0
MC/d

√
s is the MC cross section with running “off”, i.e. α = α(0)

and where ECM =
√
s is the e+e− center-of-mass energy. Fig. 1.14 shows
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aµ contributions value (×1010) rel. error ref.
QED (5-loops) 11658471.895± 0.008 7 · 10−10 [26]
EW (2-loops) 15.36± 0.10 0.65% [26]
Hadronic
LO VP 693.1± 3.4 0.49% DMHZ17 [32, 26]

688.1± 3.4 0.49% FJ17 [29]
693.3± 2.5 0.36% KNT18 [27]

NLO VP −9.87± 0.09 0.91% [26]
−9.82± 0.04 0.41% KNT18 [27]

NNLO VP 1.24± 0.01 0.81% [26]
NLO LbL 10.5± 2.6 25% [26]

9.8± 2.6 27% [33]
NNLO LbL 0.3± 0.2 67% [26]
SM total 11659182.3± 4.3 0.37 ppm DMHZ17 [32, 26]

11659177.6± 4.4 0.38 ppm FJ17 [29]
11659182.1± 3.6 0.31 ppm KNT18 [27]

Experimental 11659209.1± 6.3 0.54 ppm BNL [3, 26]
∆aµ(exp - SM) 26.8± 7.6 (3.5σ) DMHZ17

31.5± 7.7 (4.1σ) FJ17
27.0± 7.3 (3.7σ) KNT18

Table 1.1: Standard Model evaluation of the muon anomaly, with the exper-
imental measurement. The final goal of the new experiment at Fermilab is
1.6 · 10−10 as absolute error on aµ (sez. 1.4).

the results of a KLOE analysis measuring the running of α extraction in
the time-like region of the ρ-ω resonances. As mentioned above, the MC
cross section must be corrected for other radiative effects than those to be
determined (in the case of KLOE, for final state photon radiation [35, 1]).

1.4 Muon g-2: measurements
This section describes the principles underlying the direct measurement

of the muon anomalous magnetic moment. CERN has carried out three
experiments to measure aµ, with increasing accuracy: CERN I (1965, 4300
ppm), CERN II (1968, 270 ppm) and CERN III (1979, 7 ppm). Currently
the reference measurement is the one made in Brookhaven (BNL) by the
experiment E821 with an accuracy of 0.54 ppm (1999) [36, 3]. The new
experiment E989 “g-2” at Fermilab (FNAL) is in the running phase with
the aim of improving the accuracy by a factor of 4, to 0.14 ppm [37]. A
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Figure 1.13: One and two loops contributions to the running of α [34].

Figure 1.14: Recent KLOE measurements (red points) of ratio |α(s)/α(0)|2
(eq. (1.38)): evidence of the hadronic contribution to the α(s) in the ρ-ω
resonance region [35].

complementary experiment is planned in Japan, at J-PARC [38], with the
same precision goal.

1.4.1 Muon storage rings: CERN, BNL, FNAL

The experiments carried out at CERN and Brookhaven, as well as the
current Fermilab experiment (fig. 1.16), have used muons of relatively high
energy in storage rings. Polarized muons moving on a circular orbit under the
action of a uniform magnetic field are subject to the effect of the anomaly
aµ which causes a Larmor precession. The spin precedes along the orbit
around the motion direction, that is around the momentum vector, with an
anomalous frequency ωa which depends on the fact that aµ 6= 0.

Protons incident on target produce large quantities of charged pions. By
considering as reference the positive pions, they decay through the weak
process:

π+ → µ+
L + νµL (1.39)

This decay violates in a maximum way the parity (fig. 1.15): the neutrino
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Figure 1.15: Pion and muon CP violation decays.

must be left-handed, therefore since the pion spin is zero, the positive muon
must also be left-handed, as illustrated in figure. Its spin is opposite to the
momentum since it is emitted back-to-back with respect to the neutrino in
the pion rest frame. Opposite helicity is obtained for negative muons, from
negative pion decay. Muons have therefore “wrong” helicity and this is why
the pion decay into electron is suppressed. By exploiting this parity-violating
process, highly polarized muon beams are obtained, i.e. with a well-defined
spin direction. This is the first necessary ingredient.

The positive / negative muons decay in turn into positrons / electrons,
through weak decay in which an analogous violation of the parity occurs
(fig. 1.15):

µ+
L → e+R + νeL + ν̄µR (1.40)

Responsible of the violation are always the neutrinos / antineutrinos in
left/right-handed state: they are both present after the decay, therefore the
muon spin is correlated to the helicity of the emitted positron, that is to its
direction. High-energy positrons are preferentially emitted along the posi-
tive muon spin direction. The tracking and energy measurement of decay
positrons therefore provides a measure of the spin direction of the parent
muon: this is another key point to observe the induced precession from aµ
along the orbit.

The third element is the muon storage ring in which they can orbit for long
enough to observe their decay, in relation to the relativistic factor γ (γτµ ≈
64.4µs): a highly uniform and constant magnetic field provides for circular
deflection (fig. 1.17). The muon orbital frequency is the known cyclotron
frequency:

~ωc =
e ~B

mµγ
. (1.41)

The frequency of precession in magnetic field due to the spin includes the
well-known Larmor term with the Thomas relativistic term:

~ωs = gµ
e ~B

2mµ

+ (1− γ)
e ~B

mµγ
. (1.42)
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Figure 1.16: Left: BNL / Fermilab measurement scheme. Right: Spin pre-
cession.

Figure 1.17: Left: BNL magnetic field measured by pNMR probes inside
the storage ring [36]. Right: Recent measurement of the magnetic field by a
single probe (in ppm, relative to the nominal value).

If gµ = 2 that is aµ = 0 (Dirac’s prediction), then ~ωs = ~ωc. If the anomaly
is not zero, ωs > ωc. The net spin precession frequency along the orbit is
defined as the anomalous frequency:

~ωa ≡ ~ωs − ~ωc = aµ
e ~B

mµ

. (1.43)

In principle from the measurement of ωa and the knowledge of the mag-
netic field or rather the field integral experienced by the muon along the orbit,
we obtain a measurement of the anomaly aµ. In the experiments performed
at CERN, BNL and now FNAL, a quadrupole electric field is also needed to
focus the beam. This electric field is seen by the muon in orbit as another
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external magnetic field that modifies the anomalous precession frequency:

~ωa =
e

mµ

[
aµ ~B −

(
aµ −

1

γ2 − 1

) ~β × ~E

c

]
. (1.44)

From the CERN III experiment, a special condition has been used called
“magic moment”, then applied to BNL and FNAL: for γ = 29.3, that is for
p = 3.094 GeV/c, it is found:(

aµ −
1

γ2 − 1

)
≈ 0, (1.45)

so as to remove the dependence on the necessary electric field5 and recover
the (1.43). This kind of experiments were and are built to work with muon
momenta around the magic one; however they will have a certain beam spread
and therefore a small correction is applied to the anomalous frequency to
take into account the muon below or above the magic moment. Also modest
vertical oscillations, compared to the orbit plane (of betatron) are induced
by the electric field and also produce a correction for ωa [37, 36].

1.4.2 Measuring aµ
In fig. 1.18, the so-called “wiggle plot” that shows the anomaly in action:

the muon exponential decay is overlapped by a modulation with a higher
frequency, due to the net frequency of anomalous precession, that is the
fact that gµ 6= 2 ⇒ aµ 6= 0. As we said the direction of positron emission
corresponds to that of spin of the parent muon, therefore the time distribution
of the decay positrons (or electrons) is modulated by ωa and is described by
the following function:

N(t) = N0 exp (−t/γτµ) [1 + A cos (ωat+ φ)] , (1.46)

where N0 is the normalizing factor, while A and φ are fully dependent on the
Eth threshold energy used to select the decay positrons: for Eth = 2 GeV,
A ≈ 0.4.

The precise knowledge of the magnetic field is necessary, together with ωa,
to determine aµ through eq. (1.43): it is obtained through a local sampling
along the whole storage ring, carried out through the technique of nuclear
magnetic resonance with protons (pNMR) using probes of water or vaseline
(fig. 1.17). The proton precession frequency ωp is proportional to the local

5At J-PARC [38], in a different way, the muon beam is such that E = 0 ⇒ ~β× ~E = 0.
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Figure 1.18: Effect of the muon anomaly as seen in the wiggle plot [36]. The
high-frequency modulation is fitted with (1.46) to get the Larmor frequency
ωa, due to the anomaly aµ.

magnetic field. The frequency ω̃p averaged along the ring is therefore the
second observable frequency measured, together with ωa: table 1.2 shows a
summary of experimental uncertainties for the BNL muon g-2 measurement
and goals for the new experiment at Fermilab. Using:

ωa = aµeB/mµ

B = ~ωp/2µp
µµ = (1 + aµ)e~/2mµ

(1.47)

the anomaly aµ is extracted as a frequency ratio:

aµ =
ωa/ω̃p

λ− ωa/ω̃p
, (1.48)

where λ is the muon-to-proton magnetic moment ratio:

λ =
µµ
µp

= 3.183345107(84) (26 ppb), (1.49)

obtained by measurements of the muonium hyperfine structure (µ+e−) from
the same E821 experiment [3], recently updated [26].
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aµ incertainty source BNL E821 (ppb) [3] FNAL E989 (ppb) [4]
ωa statistics 480 100
ωa systematics 180 70
ωp systematics 170 70

Total 540 140

Table 1.2: Overview of the statistical and systematic uncertainties for the
BNL measurement and projections for the Fermilab determination.

Figure 1.19: Results for the E821 individual measurements of aµ (×1010) by
running year [3], together with the final average and the last SM prediction
(Keshavarzi et al. [27]).

The final aµ result by BNL is obtained by combining the individual aµ
results from all running periods. All E821 results are plotted in fig. 1.19
together with the final average. With the new value of λ, the updated ex-
perimental results for µ+ and µ− are [26]:

aexp
µ+ = 11659204(6)(5) · 10−10

aexp
µ− = 11659215(8)(3) · 10−10.

(1.50)

Assuming CPT invariance and taking into account correlations between sys-
tematic uncertainties, one finds for their average

aexp
µ = 11659209.1(5.4)(3.3) · 10−10, (1.51)

where the first errors are statistical and the second systematic: in quadrature,
6.3 · 10−10 gives 0.54 ppm as relative precision usually quoted for the BNL
measurement.
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1.5 Discussion about the muon g-2 discrepancy
The discrepancy between the BNL measurement and the Standard Model

prediction is at the level of about 3.5-4σ depending on the theoretical eval-
uations (tab. 1.1). It constitutes one of the most intriguing issues in the
particle physics landscape. There are three possible origins to explain this
long-standing discrepancy:

• experimental: it may be the result of statistical fluctuations or under-
estimation of systematic uncertainties of the E821 experiment;

• theoretical: some ingredients that appear in the theory predictions are
not fully understood and cause correlated systematic shifts;

• new physics: the discrepancy is real and can be explained by physics
beyond Standard Model (BSM).

Concerning the first point, the Fermilab E989 experiment is expected to
publish the first result by 2019, with similar precision as the previous BNL
measurement. The final targeted precision is four times better. The other
planned measurement of aµ from J-PARC would be very important, because
by means of different technique it should reach the same level of precision.
Direct measurements are extremely difficult (proof of this is the fact that
the new one will be published almost 20 years after the previous one), but
it would be essential to have at least two independent measurements with
comparable accuracy.

On the theory side the hadronic corrections dominate the uncertainty of
the SM prediction, as shown in tab. 1.1. The traditional estimates seem to
have reached their limit precision. Lattice QCD calculations are promising
but not yet competitive with them.

To follow the improvement of the experimental accuracy and to ensure
that the future theory / data comparisons are reliable, the theoretical predic-
tions are expected to improve. In 2017 the “Muon g-2 theory initiative” was
created to facilitate interactions between the different groups and to bring
together theorists from the different communities to discuss, assess, and com-
pare the status of the various efforts, and to map out strategies for obtaining
the best theoretical predictions for the hadronic corrections.

The MUonE experiment provides an alternative and completely novel
way to contribute to the control and improvement of the accuracy of hadronic
contribution at the leading order. The final goal, as we will see, is an accuracy
of aHLO

µ below the percent, i.e. at level of the traditional measurements.
Recently F. Jegerlehner stated [2] about the time-like measurements com-

bination necessary to obtain aHLO
µ : «There is no unambiguous method to
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combine systematic errors. Uncertainties are definitely squeezed beyond
what can be justified beyond doubt, I think. Therefore, the very different
Euclidean approach, lattice QCD and the proposed alternative direct mea-
surement of the hadronic shift ∆α(−q2) [5, 6] (MUonE), in the long term
will be indispensable as complementary cross-checks.»

About the last point, new physics BSM as an explanation of the discrep-
ancy, we know that the anomaly al is an observable sensitive to new physics
as [26]:

aNPl ∼ m2
l

Λ2
(1.52)

where ml is the lepton mass (l = e, µ, τ) and Λ is the energy scale of new
physics. The muon anomaly aµ is a better observable than ae because of
(mµ/me)

2 ∼ 4 · 104. The BSM explanation is the most fascinating option.
The likely candidate is still the supersymmetry with relatively small chargino
and neutralino masses. Here the interplay with direct measurements at the
LHC is crucial, but so far there is no contradiction between the LHC data
and the masses of the supersymmetry particles required to explain the muon
anomaly [39].



Chapter 2

MUonE proposal

We have seen that the LO hadronic contribution dominates the uncer-
tainty associated with the theoretical prediction of aHLO

µ . Therefore it has
been studied for many years by the theory community of the muon g-2. The
MUonE experiment [6] aims to contribute to this effort having proposed a
new method to extract aHLO

µ , complementary to the traditional time-like ap-
proach.

2.1 Space-like approach to aHLO
µ

The leading-order hadronic contribution (HLO) to the muon g-2 is cal-
culable with the relation introduced in sec. 1.3.3:

aHLO
µ =

α

π2

∫ ∞
0

ds

s
ImΠhad(s)K(s), (2.1)

where the kernel K(s) is defined in eq. (1.29) of the previous chapter and α is
the fine structure constant. The integral defining aHLO

µ is determined by the
optical theorem [40], which links the e+e− hadronic production cross section
to the imaginary part of Πhad(s), the hadronic contribution to the photon
vacuum polarization.

This is the heart of the MUonE proposed method [5]: by exchanging the
integration order between x and s, to get:

aHLO
µ =

α

π 2

∫ 1

0

dxm 2
µx

2

∫ ∞
0

ds

s

ImΠhad(s)
x 2m 2

µ

1−x + s
. (2.2)

Using this dispersion relation:

Πhad [t(x)] ≡ Πhad(t)− Πhad(0) =
t

π

∫ ∞
0

ds

s

ImΠhad(s)

s− t (2.3)

25
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Figure 2.1: (left) Leptonic and hadronic contribution to the running of α.
(right) The integrand in eq. (2.8) from which it can be determined aHLO

µ [6].

and defining the variable t as:

t(x) ≡ x2m2
µ

x− 1
< 0, (2.4)

with −∞ < t < 0, eq. (2.2) can be written as:

aHLO
µ =

α

π

∫ 1

0

dx(x− 1)Πhad [t(x)] . (2.5)

This relation indicates that t can be interpreted as the Mandelstam t variable.
As ImΠhad(t) = 0 for negative t, eq. (2.5), can be rewritten in the form:

aHLO
µ =

α

π

∫ 1

0

dx (x− 1)ReΠhad [t(x)] . (2.6)

∆α(t) is linked to the photon vacuum polarization by:

∆α [t(x)] = −ReΠlep [t(x)]− ReΠhad [t(x)] . (2.7)

So considering ∆αhad(t) we can rewrite (2.6) as:

aHLO
µ =

α

π

∫ 1

0

dx(1− x)∆αhad [t(x)] . (2.8)

This is the master formula underlying the MUonE proposal: it allows to
calculate aHLO

µ on the basis of ∆αhad(t), that is the hadronic contribution to
the QED coupling running for space-like transferred momenta.
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The “rotation” of the Feynman diagram we have described, from annihi-
lation (s-channel) to scattering (t-channel), simplifies enormously the calcu-
lation of the integral for aHLO

µ . The space-like integrand function in eq. (2.8),
shown in fig. 2.1, is smooth and free of resonances, contrarily what happens
in the time-like approach. Thanks to this feature, it could be possible with
a single scattering experiment to determine aHLO

µ .

2.2 MUonE method

2.2.1 Introduction

We can determine ∆αhad(t) as:

∆αhad(t) = 1−∆αlep(t)− α

α(t)
, (2.9)

since of the well know relation:

α(t) =
α

1−∆αlep(t)−∆αhad(t)
. (2.10)

The MUonE experiment proposes to measure the effective electromag-
netic coupling α(t) by means of the elastic scattering of high energy muons
on electrons at rest. The high intensity CERN M2 muon beam [7] provides
150 GeV muons, allowing to cover most of the master integral (2.8). The
MUonE proposal is appealing for the following key points [6]:

• the elastic scattering µ-e is a pure t-channel process, ideal to measure
the running of α(t);

• the M2 muon beam at CERN is a high intensity source of high energy
muons;

• the highly boosted kinematics allows to cover the whole acceptance
with a single and homogenous detector: the angular deflections will be
contained within a cone of 50 mrad;

• the kinematics of the 2→ 2 elastic scattering is completely determined
by the angular observables. The signal region is identified by the cor-
relation between the muon and electron scattering angles.

However, the clear signature of the elastic scattering is modified by the
radiative corrections and by the detector resolution. Radiative corrections to
the µ-e cross section requires NLO and NNLO calculations, never performed



28 MUonE proposal

Figure 2.2: Apparatus scheme (not to scale), from the Letter of Intent [14].

until now at the required level of precision [41]. From the experimental side,
the scattering occurs in a target and not in vacuum, so the control of the
multiple Coulomb scattering is essential. Controlling these two effects to the
required precision is the main challenge of the experiment.

The goal of MUonE is to determine aHLO
µ with a relative precision of 0.3%

comparable to the time-like traditional approach. Since the hadronic running
gives a maximum contribution to the cross section at the permille level for
high squared transferred momentum t, the systematics must be kept below
10−5 (10 ppm). This requirement is equivalent to measuring the shape of the
elastic µ-e differential cross section to 10 ppm.

The effort of the MUonE collaboration in reaching the precision target is
therefore twofold, both on the experimental and the theoretical front.

2.2.2 The workflow scheme

The MUonE concept is based on the precise measurement of the scatter-
ing angles (θe, θµ) of the outgoing electrons and muons, with respect to the
direction of the incoming muons. Let’s see how α(t) can be obtained from
the angular measurement, by means of (2.8) and (2.10) and from there how
to get aHLO

µ :

(θe, θµ) → α(t) → ∆αhad(t) → aHLO
µ . (2.11)

A sketch of the experimental apparatus [14] is shown in fig. 2.2. It con-
sists of a sequence of 40 identical stations. Each station contains a 15 mm
Beryllium target and 3 tracking layers, which are placed along a lever arm of
about 1 m. The thin targets allows to minimize multiple scattering effects.
Angles of the scattered particles are measured by tracking layers. The appa-
ratus is also equipped with an electromagnetic calorimeter (ECAL), placed
downstream the stations. It provides particle identification (PID) and possi-
bly a measurement of the electron energy. In order to control the low residual
contamination of pions in the muon beam ∼ 10−6 [42], a muon filter, instru-
mented with muon chambers will be added, downstream the ECAL.
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Figure 2.3: In blue, the differential cross section as a function of θe at LO.
In red, the sensitivity to the hadronic running as defined in eq. (2.12).

To determine α(t), we will measure the following counting ratio:

dσdata/dθi
dσ0

MC/dθi
=
dNdata/dθi
dN0

MC/dθi
=

∣∣∣∣α(t)

α

∣∣∣∣2 =
1

|1−∆αlep(t)−∆αhad(t)|2 , (2.12)

where the observables θi are the scattering angles θµ and θe of muons and
electrons, dNdata/dθi e dσdata/dθi are the observed counts and the differen-
tial cross section respectively; dN0

MC/dθi e dσ0
MC/dθi are instead counts and

differential cross section Monte Carlo (MC) determined assuming as α(t) the
value of the fine structure constant α. The method does not rely on the
knowledge of the luminosity.

Figure 2.3 shows the signal that MUonE aims to measure (in red), i.e. the
ratio dNdata/dN

0
MC defined in (2.12) as a function of θe, with the LO differ-

ential cross section dσ/dθe (in blue) which will be analytically determined in
sec. 2.6.2.

The relation (2.12) directly connects ∆αhad(t) to the counting ratio. In
the kinematical range of interest: ∆αlep(t) . 10−2 and ∆αhad(t) . 10−3.

In the complete NLO and NNLO calculations, the ratio of the observed
angular distributions dNdata/dθi and the theoretical predictions dN0

MC/dθi do
not have a mathematical expression. They must be evaluated numerically
by MC methods.

The extraction of the hadronic contribution ∆αhad(t) is carried out by
a template fit method [14]. It is a powerful tool [43] that allows to fit the
parameters of ∆αhad(t), in the lack of analytical expressions for the cross
section at higher orders.
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Figure 2.4: Tree level diagram of the µ-e scattering processes.

In the following sections, we will mainly discuss about:

• the elastic scattering kinematics, to establish the fundamental correla-
tion between θµ and θe;

• the requested luminosity needed to ensure the experiment can achieve a
statistical precision on aHLO

µ competitive with respect to the traditional
time-like method, in a time scale of about 2 years;

• the CMS Silicon sensors to be used to perform the precise measurement
of the angular deflections.

• the DAQ and trigger system foreseen to readout the detector.

The design of ECAL is still under optimization. We will briefly discuss it to
describe the required performance. In the last chapter, we will present the
first exercise performed to determine aHLO

µ discussing a parametrization of
∆αhad(t).

2.3 µ-e elastic scattering

2.3.1 Kinematics properties

At Born level the muon-electron elastic scattering 2→ 2 (fig. 2.4) can be
represented as:

µ±(p1) + e−(p2)→ µ±(p3) + e−(p4), (2.13)

where p1 and p2 are the 4-momenta in the initial state, p3 and p4 are the 4-
momenta in the final state. In the laboratory system, referring to the fig. 2.5,
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Figure 2.5: µ-e elastic scattering in the laboratory rest frame [44].

the particles 4-momenta are given by:

p1 = (Eµ, ~pµ) = (Eµ, 0, 0, pµ)

p2 = (Ee, ~pe) = (me, 0, 0, 0)

p3 = (E ′µ, ~p
′
µ) = (E ′µ, p

′
µ cos θµ, 0, p

′
µ sin θµ)

p4 = (E ′e, ~p
′
e) = (E ′e, p

′
e cos θe, 0, p

′
e sin θe),

(2.14)

with me and mµ are the electron and muon mass respectively, pµ = |~pµ|,
Eµ = Ebeam

µ , and after the scattering p′µ = |~p′µ| e p′e = |~p′e|.
The differential cross section at leading order (LO) in QED is given by

[41, 44]:
dσ0
dt

=
4πα2

0

λ(s,m2
e,m

2
µ)

[
(s−m2

e −m2
µ)2

t2
+
s

t
+

1

2

]
, (2.15)

where α0 = α is the fine structure constant, s and t are the Mandelstam
variables and λ is the Källén function:

s ≡ (p1 + p2)
2 = (p3 + p4)

2 = m2
e +m2

µ + 2meEµ

t ≡ (p1 − p3)2 = (p2 − p4)2 = 2me(me − E ′e) = 2me(E
′
µ − Eµ)

λ(s,m2
e,m

2
µ) ≡ (s−m2

e −m2
µ)2 − 4m2

em
2
µ = 4m2

e(E
2
µ −m2

µ).

(2.16)

In the LO cross section (2.15), the electromagnetic coupling is an overall
factor. The effect of vacuum polarization can be accounted by the running
of α as:

dσ/dt

dσ0/dt
=

∣∣∣∣α(t)

α

∣∣∣∣2 =
1

|1−∆α(t)|2 . (2.17)
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Figure 2.6: LO differential cross section in t for the µ-e elastic scattering [44].

When considering NLO and NNLO radiative corrections (virtual and real
photons) α(t) is not more factorizable (see section 2.6.3).

Figure 2.6 shows the cross section as a function of t as defined in eq. (2.15):
it is peaked at low values of the squared transferred momentum (t→ 0). Note
that according to eq. (2.15) t ∝ −E ′e. It implies that a lower limit on the
scattered electron energy corresponds to an upper limit on t.

With good approximation the atomic electrons can be considered as at
rest in the laboratory frame. In fact, the center-of-mass (CM) energy is

s ≈ 0.164463 GeV2 → ECM =
√
s ≈ 405.5 MeV, (2.18)

while the electron binding energy for Beryllium is of the order of a few tens
of KeV.

The collision is highly boosted in the forward direction, with respect to
the laboratory frame since of the Lorentz factor:

γ = (Ebeam
µ +me)/

√
s ≈ 369.9. (2.19)

The integrand function of eq. (2.8), plotted in fig. 2.1, is peaked at
xpeak ≈ 0.914 that corresponds to a transferred momentum of:

tpeak ≈ −0.108 GeV2 ≈ −(329 MeV)2. (2.20)

The beam energy Eµ = 150 GeV is large enough to explore the integral
beyond the peak, down to:

tmin = −λ/sM2 ≈ −0.142893 GeV2, (2.21)
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Figure 2.7: (Left) Coverage of aHLO
µ according to eq. (2.8), for Eµ = 150 GeV.

(Right) Fraction of aHLO
µ as a function of beam energy.

corresponding to xmax ≈ 0.93212. The integral from 0 to xmax provides a
coverage of 87% for aHLO

µ (fig. 2.7). In order to obtain the complete value
of aHLO

µ , we can extrapolate ∆αhad(t) to the whole x range [0,1], using an
appropriate parametrization [14] (see last chapter). Figure 2.7 shows how
the integral defining aHLO

µ depends on the M2 beam energy.

2.3.2 θµ – θe correlation

Given the energy of the incoming muons and the squared transferred
momentum t, by using 4-momentum conservation, all the other kinematic
variables can be univocally determined. Moreover, the scattering process is
planar, i.e the three vectors of the incoming muon and outgoing electron and
muon lie on the same plane.

The fundamental correlation between θµ and θe can be obtained from the
transverse momentum conservation:

sin θµ =
p′e sin θe
p′µ

=

√
E ′2e (θe)−m2

e sin θe√
(Eµ +me − E ′e(θe))2 −m2

µ

(2.22)

where p′e and p′µ are the 3-momenta after the scattering of the electron and
muon and E ′e(θe) is the electron energy after the scattering. The electron
energy is given by (2.57) of section 2.6.1. Angles θe and θµ are defined with
respect to the direction of the incoming muon. The correlation between the
scattering angles is shown in fig. 2.8. This is the main signature to recognize
and to select the signal. We call this correlation the “elasticity curve”.

The kinematics of the elastic scattering (sec. 2.6.1) limits the muon angle
to ∼ 5 mrad, while the electron ones are within ∼ 50 mrad. The angu-
lar acceptance ∆θ of 50 mrad can be obtained using a Silicon tracker of
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Figure 2.8: Kinematic correlation between θµ and θe, for Eµ = 150 GeV [6].
In blue the electron energies (2.57) and the corresponding x values.

10 cm × 10 cm and a length of a station L = 100 cm:

∆θ =
d/2

L
=

10 cm

2 · 100 cm
= 50 mrad (2.23)

The whole detector acceptance can be covered with a single Si planar sensor:
it is a key aspect in order to control the systematic effects.

Figure 2.9 shows the angular correlation corresponding to 3 different beam
energies: each beam energy Eµ selects a different curve. To be noticed that
the maximum difference between the curves occurs in the low θe region. This
feature inspired us to define a method based on the kinematics inversion to
measure very precisely the beam energy using the both the angles (θµ,θe).
Such a fundamental aspect will be discussed in the last chapter.

2.4 The requested luminosity

The ultimate goal of the experiment is to reach a statistical precision of
0.3% on the value of aHLO

µ . By exploiting the M2 high intensity, it will be
possible to obtain this statistical precision in about 2 years.
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Figure 2.9: Correlation between muon and electron scattering angles, for 3
different energies: red, green, blue for Eµ = 150, 160, 170 GeV.

2.4.1 Integrated luminosity

To evaluate the required luminosity, we use the error propagation applied
to the eq. (2.17). The absolute error on the cross section, affecting α(t),
reads:

δ

(
dσ

dt

)
= δ

(
α2(t)

α2(0)

dσ0
dt

)
, (2.24)

where
δ

(
α2(t)

α2(0)

)
= δ

(
1

(1−∆α(t))2

)
=

2δ∆α(t)

(1−∆α(t))3
. (2.25)

Then the absolute error is

δ

(
dσ

dt

)
=

2 δ∆αhad(t)

(1−∆α(t))3
dσ0
dt
, (2.26)

assuming here that the absolute error on the running δ∆α(t) is entirely due
to the hadronic contribution δ∆αhad(t).

The relative error on the cross section is:

δσ

σ
≡ δ(dσ/dt)

dσ/dt
=

2 δ∆αhad(t)

1−∆α(t)
≈ 2 δ∆αhad(t), (2.27)

so the uncertainty on ∆αhad(t) is given by

δ∆αhad(t) ≈ 1

2

δσ

σ
. (2.28)
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Figure 2.10: Results of 3000 pseudo-experiments to study the statistical ac-
curacy and to determined the required integrated luminosity.

The number of entries Ni in a given i-th bin of the observable distribution is
related to the cross section by

Ni = σi · L, (2.29)

where σi is the integrated cross section in the i-th bin while L is the time
integrated luminosity. So the error on the hadronic running can be evaluated
as

δ∆αhad,i ≈
1

2

δσi
σi

=
1

2

δNi

Ni

=
1

2

1√
Ni

=
1

2

1√
σi · L

. (2.30)

We can now estimate the required luminosity L. According to the available
time-like measurements, it is possible to calculate the expected ∆αhad(t) func-
tion in the space-like region, by rotation of the dispersion integral (sec. 2.1).
It has been done by using the routines provided us by F. Jegherlener. One
can then apply a statistical smearing to the calculated ∆αhad,i according to
eq. (2.30). Using a polynomial parametrization of ∆αhad(t) and the MUonE
master formula (2.8), it is possible to estimate the corresponding value of
anomaly aHLO

µ . By performing an ensemble of pseudo-experiments [43], it is
possible to evaluate the statistical error due to the luminosity L. In fig. 2.10
the results of the pseudo-experiments, with

L = 1.5 · 107 nb−1. (2.31)

Fitting the distribution of aHLO
µ with a gaussian the mean is in perfect agree-

ment with the reference value and the standard deviation is compatible with
a statistical precision of about 0.3%.
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Figure 2.11: The M2 flux per spill for positive muons, from 1.3 · 1013 pro-
tons per cycle extracted from SPS [7]. At 160 GeV, measurements made by
COMPASS provide a peak flux of 200 MHz/spill corresponding to Īµ ∼ 13
MHz of average intensity. The green curve is the result of a Monte Carlo
simulation.

2.4.2 The M2 intensity, the target thickness and the
event rate

The M2 muon beam is one of the secondary lines provided by SPS and is
unique in terms of high energy, high intensity and low contamination. The
main characteristics of this facility will be described to calculate the required
target thickness.

The CERN SPS beam line M2 can be set to run with high intensity of
muon beams, of momenta varying from 60 to 190 GeV/c. M2 is obtained
from an intense proton beam, extracted from the SPS at 400 GeV/c, that
impinges on a Beryllium target of 50 cm. Secondary particles fly trough
the decay tunnel and the hadrons defocusing system. Muons are then se-
lected and focused after a dedicated hadron absorber. The residual hadron
contamination is of the order of 10−6 [42], to be compared to the typical
contamination of secondary beams at the percent level.

The SPS ensures a constant protons flux: the spill duration is 4.8 s, with
variable duty cycle (ratio of spill to cycle length). In the so-called “slow
extraction” mode, the time of the extraction cycle is 15.6 s. The duty cycle
is of about 4.8 s/15.6 s = 31% [7].

Figure 2.11 shows the maximum number of muons per spill versus the
beam energy. The average beam intensity for energies at 150 GeV can be
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estimated in:

Īµ = duty cycle× Ipeakµ ∼ 0.31× 50 MHz ∼ 1.5 · 107 µ/s. (2.32)

Assuming a running time ∆t0 per year:

∆t0 ∼ 2 · 107 s/year (63% year), (2.33)

and 2 years of data taking ∆t, given L = 1.5 · 107 nb−1, the instantaneous
luminosity must be [6]:

Lrequest =
L

∆t
=

L

2 ∆t0
∼ 3.8 · 1032 cm−2s−1. (2.34)

To determine the thickness of the Beryllium target, one can rely on the
expression of the instantaneous luminosity:

L = Īµ · ρe d = Īµ ·
NA ρBe Z

W
d, (2.35)

where ρe is the density of the electron scattering centers, ρBe the Beryllium
density, Z and W the atomic number and atomic weight, d the total target
thickness and NA the Avogadro’s number.

Assuming the M2 mean intensity Īµ of eq. (2.33), ρBe = 1.85 g/cm3 and
(Z/W )Be = 0.44, the target thickness turns out to:

d =
WLrequest
NA ρBe Z

= 60 cm. (2.36)

Given the leading order total cross section σµe = 245µb (for θe < 30 mrad),
the number of required signal events, i.e. the total statistics MUonE must
collect, can be estimated as:

Ntot = L · σµe ∼ 3.7 · 1012. (2.37)

In conclusion, the high intensity of the M2 beam allows to collect the required
statistical precision in a time scale of about 2 years.

In order to evaluate the expected elastic event rate one can rely on the
following relation:

dpµe/dx = σµe · ρe = 245µb · ρe ∼ 1.21 · 10−4 /cm, (2.38)

where dpµe/dx is the probability of elastic interaction per unit of length, ρe is
the density of scattering centers (i.e. atomic electrons) for Beryllium, given
by

ρe =
NA ρBe ZBe

WBe

= 4.95 · 1023 e−/cm3. (2.39)
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For a target of 1.5 cm per station, this probability is:

pstationµe ∼ 1.81 · 10−4. (2.40)

For a total of 60 cm of Beryllium, we have

ptotµe ∼ 1.21 · 10−4 · 60 ∼ 7.26 · 10−3. (2.41)

Now it is possible to estimate the expected signal rate per module and the
total rate, for Ipeakµ = 50 MHz:

f station
µe = pstationµe · Ipeakµ ∼ 7.4 kHz → f tot

µe ∼ 450 kHz. (2.42)

2.5 The detector

We have set a series of fixed points, some of which have been tested in
two test beams performed in 2017 and 2018 [8, 9].

The tracking system represents the heart of the detector concept. The re-
quirements are compelling [14]: high intrinsic angular resolution (< 0.03 mrad),
large surface area (∼ 10 cm side), high uniformity and efficiency (∼ 100%)
over the q2 range of interest, high rate sustainability and easy integration
in trigger system. An active area of 10 × 10 cm2 for the tracking modules
contains all the kinematics of the event.

Muons can be distinguished from electrons using solely the angular infor-
mation, with the exception of a limited ambiguity region, which is determined
by the the angular resolution itself.

Very high and uniform detection efficiency in a high beam rate environ-
ment is an important requirement. Silicon detector with high signal-to-noise
ratio (S/N ∼ 25) as the ones currently developed for use at colliders can
achieve detection efficiency close to 100% and sustain high rate (∼ 70 MHz).

Given the requested high rate, it was natural to study existing detectors
developed for the high-luminosity upgrade at LHC. The focus was mainly on
Silicon strip detectors (SSD), with maximum readout rate. We also consid-
ered the possibility of pixel detectors. Although a large number of channels
and the small sizes, they can provide significant improvements from the point
of view of the material budget. In the case of MUonE, occupancy is not a
problem, so standard thickness SSDs are appropriate to keep a high S/N
ratio.
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Figure 2.12: S2 module [45].

2.5.1 CMS 2S trackers

Thanks to CMS experts and collaborators, a feasible solution has been
found for the trackers: these are the 2S modules trackers with CBC3 readout
ASIC [46, 47], developed by CMS for the Hi-Lumi upgrade [48]. These are
Silicon strip detectors single-sided, double layer, that have gone through a
development phase of at least 10 years. They will be used by CMS as external
trackers at a distance of ∼ 70-120 cm from the vertex and thanks to the high
readout frequency for the first trigger hardware (L1).

The CMS L1 trigger will select high transverse momentum tracks (pt > 1-
2 GeV) and is realized thanks to a double layer system (fig. 2.13): each
coordinate x/y is read by two adjacent Si layers, controlled by the CBC3
chips. These ASICs generate at 40 MHz raw track segments (stubs), if the
hits of adjacent layer are within a selected correlation window. At 40 MHz
MUonE can rely on these stubs to quickly reconstruct the tracks in order to
cope the high M2 intensity (∼ 50-60 MHz). The readout is digital to ensure
high speed. The pitch readout is 90 µm, for 300 µm thickness for each layer.
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Figure 2.13: Efficiency and uniformity test of CMS 2S trackers [47], recently
done by Imperial College group. It shown the response of a single area of the
sensor surface read by one ASIC.

These parameters provide an intrinsic point resolution of:

σx =
p√

2
√

12
=

90µm√
24
∼ 18µm (binary). (2.43)

The additional factor
√

2 is due to the fact that each coordinate is read
by two adjacent layers, so we basically have two measurements of the same
coordinate. Given this hit resolution, a single MUonE station could achieve
an intrinsic angular resolution of:

∆θi =
√

2
σi
L

=
√

2
18µm

100 cm
∼ 0.025 mrad. (2.44)

The CMS 2S efficiency and uniformity has been measured by the CMS col-
laboration: recent results are shown in fig. 2.13.

2.5.2 The DAQ concept

The output rate of the MUonE readout system is determined by the
intensity of the M2 muon beam and by the induced detector’s modules oc-
cupancy. The intensity of the beam is rather high, in average of the order of
50-60 MHz. The induced occupancy instead is expected to be quite small,
since large fraction of the muons will cross the detector undisturbed. How-
ever, although the occupancy of the detector’s modules will be small, we
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Figure 2.14: DAQ scheme of the MUonE experiment.

aim sampling the detector at 40 MHz, as for the LHC experiments. The
high sampling rate will allow us limiting the pileup to just a few overlapping
events per clock cycle, easing pattern recognition and tracking.

As a consequence of the small detector occupancy, the DAQ system does
not need a custom hardware trigger to reduce the data throughput (fig. 2.14).
A triggerless acquisition is therefore planned, as designed for LHCb upgrade
[49]. Data will flow at the clock frequency of 40 MHz from the frontend (FE)
to the Event Builder (EB). The connection between FE and EB will be made
through the electronic interface board Serenity [50], developed by Imperial
College (London) for CMS, which we are working with. The board receives
optical fiber and transmits via Ethernet protocol.

The dedicated EB will aggregate events fragments recorded in the differ-
ent modules of the detector to provide the global picture. The functionality
of the EB can be obtained with order of 10 servers. Interesting events can-
didates will be then selected by means of a software trigger, implemented as
algorithms running on a Event Filter Farm (EFF).

Thanks to the GEANT4 detailed simulation of the detector, we estimated
the data flow produced by a station, in order to evaluate the needs of the
acquisition system. The relevant parameters:

• 12 bits for coding a stub;
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• The mean number of stubs recorded by a CBC per crossing muon, turns
out to be 0.07 (fig. 2.15);

• 16 CBC per tracking station;

• 6 tracking module per station;

• clock frequency at 40 MHz.

• pileup of about 3 events per clock cycle, determined as 60 MHz (M2
frequency) / 40 MHz × 21

From these numbers we can determine the expected rate of the data, flowing
from a station to the EB, as:

flux = 12× 0.07× 16× 6× 4 · 107 × 3 ∼ 10Gb/s/station. (2.45)

This flow is sustainable with a network of modest size (∼ 10 servers), rela-
tively easy to implement. The EB network is expected to handle an aggre-
gate amount of data of less than 0.5 Tb/s2. A single network switch with
100 Gb/s ports is sufficient. In addition, the Serenity readout boards can be
programmed in order to implement a first hardware selection, which could
reduce the data flow to the EB, i.e the computing requirements.

The size of the computing farm (EFF) for the online selection of the
events can be estimated once knowing the latency of the selection algorithm
needed to process an event. The scale of the farm depends on the latency
according to the steady state equation. Since the input frequency is 40 MHz,
in order to keep nCPU relatively small, we require the processing latency to
be of the order of about 10 µs per event:

nCPU ∼ latency× input frequency ∼ 10µs×40MHz = 400CPUcore. (2.46)

The selection criterion cannot simply be based on the hits multiplicity
of hits (i.e. at least 2 hits per module produced by scattered µ and e), as
it has been shown by simulations. Each track generates 6 stubs per station,
i.e. 12 stubs per µe elastic scattering event. The distribution of the registered
stubs per station, per passing muon, is shown in fig. 2.16. The probability
of obtaining more than 10 stubs per module, a conservative assumption, is

1The factor 2 depends on the need to extend the signals persistence to at least 2 clock
cycles (clock gate), as the MUonE electronics cannot be synchronized with the arrival of
the muons produced by the SPS protons, which is intrinsically random [14]. On the other
hand, the CMS DAQ is synchronous with the collisions of the LHC bunches.

2For comparison, LHCb plans for its upgrade ∼ 400 PCs for the Event Building, for a
total of about 30 Tb/s to manage [49]
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Figure 2.15: (Left) Spot on the sensors plane of the M2 muon beam from
GEANT4 simulation. The red boxes are the area readout by the different
CBC3 ASIC (8 per side). (Right) Stub fraction on the hottest ASIC [14].

Figure 2.16: Number of stubs per station per passing muon.

estimated by the distribution around 6%. Considering a pileup of 3 events per
clock, the probability becomes 18% per station. In the case of the complete
detector, on 40 modules the probability of getting this patterns turns to
certainty.

In addition, the expected elastic event rate (signal) per module of ∼ 7 kHz
(sec. 2.4.2) is much lower than the total expected rate:

rate (signal + background) ∼ 40 MHz× 18% ∼ 7 MHz/station. (2.47)

The signal-to-background ratio is of the order of 1:1000. More sophisticated
criteria have to be studied to select interesting events, based on the track χ2

and on the vertex constraint in the target. The challenge will be to design
efficient filters on the signal, with low latency.
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Muon FilterECAL#1 #2 #3 #38 #39 #40
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Figure 2.17: Use of the electromagnetic calorimeter (ECAL), assuming 40
tracking stations. The yellow tracks belong to high angle electrons (θe & 20-
25 mrad).

2.5.3 Preliminary considerations about the calorimeter

The calorimeter is needed to perform the particle ID at small angle,
around 2-4 mrad, where electrons and muons cannot been distinguished re-
lying solely on the emission angles [14].

An homogeneous ECAL has been proposed placed downstream all the
tracker stations, composed of lead tungstate (PbWO4) crystals, similar to
those used by the CMS electromagnetic calorimeter, whose performances are
described in [32]. Crystals (section 2.5 x 2.5 cm2, 23 cm long, 26 X0) can be
readout by solid state sensors (SiPM or APD).

With a surface of 1 m × 1 m, the calorimeter can cover an angular
acceptance of about 30 mrad for the closest 15 stations (from station 25 to
40, see fig. 2.17):

z =
∆y

θe
=

0.5 m

0.03 rad
∼ 15 m (2.48)

where ∆y is half of the transverse size and z is the distance from the calorime-
ter surface. For an angular acceptance of few mrad, relevant for the PID,
the same surface can largely cover the entire detector acceptance. With this
surface the calorimeter can been used also to registerer redundant informa-
tions useful to study the energy response of the closest tracking stations and
account (and correct) for possible background effects all the other stations.
The use of a calorimeter of such area (1x1 m2), with relative readout system,
is therefore still under study, as reported in the Letter of Intent [14].

2.6 Theory of µe→ µe elastic scattering

2.6.1 Kinematics of elastic scattering

The electron is at rest in the laboratory system, so that |~pe| = 0. The
invariant s is set by the energy Eµ of the incoming muons. For an elastic
scattering the squared transferred 4-momentum t can be expressed as (with
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Figure 2.18: Correlations between muon scattering angle and t (left) and
between electron scattering angle and t (right) for three different energies:
150 GeV (red), 160 GeV (green), 170 GeV (blue).

the notations of eq. (2.14)):

tµµ ≡ (p1 − p3)2 = 2me(E
′
µ − Eµ)

tee ≡ (p2 − p4)2 = 2me(me − E ′e).
(2.49)

Because of 4-momentum conservation, at leading order it must be:

tµµ = tee = t. (2.50)

For a given beam energy Eµ and a given value of t, any other kinematic
variable is uniquely defined, namely E ′µ,E ′e and θµ,θe energies and angles of
the scattered particles:

E ′µ =
2meEµ + t

2me

(2.51)

E ′e =
2m2

e − t
2me

. (2.52)

cos θµ =
2m2

e(t− 2m2
µ) + 2meEµ(2meEµ + t)√

λ(s,m2
e,m

2
µ)
√
λ(s+ t,m2

e,m
2
µ)

(2.53)

cos θe =
−2me(Eµ +me)t√

λ(s,m2
e,m

2
µ)
√
t2 − 4m2

et
. (2.54)

Figure 2.18 shows the electron and muon scattering angles as a function of
t as defined in eqq. (2.53) and (2.54): one can notice that the higher the
transferred momenta the smaller the electron scattering angles.

It is useful to express the energies in the laboratory frame as a function
of the observable scattering angles. For the muon one obtains:

E ′µ(θµ) =
a± b p2µ cos θµ

d
, (2.55)
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Figure 2.19: Correlations between the energies and the angles for muon (left)
and electron (right) for three different energies: 150 GeV (red), 160 GeV
(green), 170 GeV (blue).

where

a ≡ (Eµ +me)(m
2
µ +meEµ)

b = b(θµ) ≡
√
m2
e −m2

µ sin2 θµ

d = d(θµ) ≡ (Eµ +me)
2 − p2µ cos2 θµ.

(2.56)

The corresponding relation for the electron is:

E ′e(θe) = me

(Eµ +me)
2 + p2µ cos2 θe

(Eµ +me)2 − p2µ cos2 θe
= me

1 + r2 cos2 θe
1− r2 cos2 θe

(2.57)

with

r ≡ pµ
Eµ +me

=

√
E2
µ −m2

µ

Eµ +me

. (2.58)

E ′µ and E ′e as a function of the respective scattering angles θmu, θe are shown
in fig. 2.19.

The relation (2.57) can be reverted as:

cos θe =
1

r

√
E ′e −me

E ′e +me

. (2.59)

Since me < mµ the eq. (2.56) shows that

sin θµ <
me

mµ

→ θmaxµ = arcsin
me

mµ

∼ 4.83 mrad (2.60)

so there is a maximum scattering angle θmaxµ for the muon, determined by
the ratio between the electron and muon masses.
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The physical meaning of the sign ambiguity of eq. (2.55) is clear from
fig. 2.19: for each muon angle there are two possible muon energies, corre-
sponding to two different electron scattering angles, expect for the peak.

The electron kinematics does not show this feature: there is a biunivocal
relation between the electron energy E ′e and the corresponding scattering
angle θe.

The relation (2.57) implies there is a maximum energy for the scattering
electron, corresponding to cos θe = 1, i.e. θe = 0:

Emax
e = me

(Eµ +me)
2 + p2µ

(Eµ +me)2 − p2µ
. (2.61)

For Eµ = 150 GeV, Emax
e ∼ 139.8 GeV corresponding to a squared momen-

tum transfer |t| ∼ 0.1429 GeV2.

2.6.2 Differential cross section

Experimental observables are the scattering angles (θµ, θe), so it is useful
to determine the angular differential cross sections expressed as their func-
tion. They can be obtained analytically from the differential cross section
express as a function of t (eq. 2.15).

The differential cross section as a function of the electron scattering angle
is given by:

dσ

dθe
=
dσ

dt

dt

dθe
. (2.62)

From the expression of t in lab frame (2.49) and the expression of the energy
of scattering electron (2.57), we obtain:

t = tee = 2me (me − E ′e(θe))

= 2m2
e

(
1− 1 + r2 cos2 θe

1− r2 cos2 θe

)
=

4m2
er

2 cos2 θe
r2 cos2 θe − 1

.

(2.63)

So the differential cross section in the electron scattering angle is (fig. 2.20):

dσ

dθe
=

4m2
er

2 sin 2θe

(r2 cos2 θe − 1)2
dσ

dt
. (2.64)

In the case of θµ there is a complication due to the double value function,
as already seen. The differential cross section in θµ shown in fig. 2.20 can be
calculated as

dσ

dθµ
=
dσ

dt

dt

dθµ
. (2.65)
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Figure 2.20: Differential cross section at leading order as a function of θe
(top) and θµ (bottom). Here the integrated luminosity L is 1.5 · 103 nb−1,
i.e. 104 times less the requested luminosity determined in sec. 2.4.

Here we need the expression of t as a function of θµ of eq. (2.49) and E ′µ(θµ)
of eq. (2.55):

t = tµµ = 2me

(
E ′µ(θµ)− Eµ

)
= 2me

(
a± b p2µ cos θµ

d
− Eµ

)
.

(2.66)

Coefficients a, b = b(θµ), d = d(θµ) are given in the eq. (2.56). The θµ
derivative of (2.66) in θµ is:

dt

dθµ
=
±2mep

2
µ sin θµ

d2b

{
∓ 2ab cos θµ + p2µ cos2 θµ(m2

µ −m2
e)

+(Eµ +me)
2
[
m2
µ(1− 2 cos2 θµ)−m2

e

]}
.

(2.67)
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Figure 2.21: Radiative corrections scheme within Standard Model to the µe
scattering (from a lecture of M. Passera). The red box includes the contri-
bution that MUonE plans to determine, from the scattering measurement.

2.6.3 Higher-order corrections

The theorist community is engaged in a significant effort aiming to de-
termine all the necessary corrections and the related errors of higher order
contributions to the µe elastic scattering.

In the SM, the cross section σexp can be calculated with perturbative
method that involves a large number of terms. It can be schematically rep-
resented as it is shown in fig. 2.21:

σexp ∝ LO (QED) + NLO (QED) + NNLO (QED)

+ NLO (EW) + NLO (had) + NNLO (had)
(2.68)

where LO corresponds to the Born level in eq. (2.15), NLO and NNLO (QED)
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Figure 2.22: Ratio of the NLO and LO cross section in QED of the µ− e− →
µ− e− (first and second upper panels) and µ+ e− → µ+ e− (third and fourth
panels) process, as a function of tee and tµµ [41].

are the leptonic contributions, NLO (EW) is a small electroweak term. The
two last terms are the hadronic contributions: the first one NLO (had) is
exactly what MUonE aims to determine by subtraction of the others.

Some of the NLO (QED) contributions are due to vacuum polarization
process with one and two loops: as we already said, their effects are accounted
by using the effective charge, as an overall factor by the replacement of α
with α(t) in the LO cross section.

Recently the full set of the NLO QED corrections has been calculated
without any approximation [41]. It has been developed a fully differential
Monte Carlo code. The authors also computed the full set of NLO (EW)
corrections.
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Figure 2.23: The correlation between θµ and θe for the process at LO (elastic
curve) and NLO QED (points), for different selection criteria [41].

The results of these calculations are shown in fig. 2.22. They show the
ratio of the NLO (QED) differential cross section with respect to the LO
(QED), for both the process µ± e− → µ± e−, as a function of the squared
momentum transfer tee and tµµ in the electron and muon legs respectively.
They are no more the same, because of the radiative process.

Compared to the leading order, the NLO contributions to the cross section
are of the order of 5-10% at low electron angle, i.e. they play an important
role. In order to study their effects on the measurement strategy, an inten-
sive work with MC simulations has begun, in particular the analysis of the
theoretical and experimental cuts, which are necessary to select the signal
region of interest.

Figure 2.23 shows the results of a first study perform to evaluate the effect
of a cut in acoplanarity for the selection of the elastic events. In this figure,
there are not experimental effects (multiple scattering, intrinsic resolution) or
backgrounds. The dispersion of the events is due to the radiative corrections:
the elastic region therefore is subject to a migration of counts because of NLO,
especially towards the muon low angle.

Both the angular distributions of muon and electron will be used the
measurement. Muon is more robust, because is subjected to a lower radiation.

This is an important aspect as far as the sensitivity to the running is
concerned. The sensitivity can be measured as [14, 41]:

Ri =
dσi(∆αhad(t) 6= 0)

dσi(∆αhad(t) = 0)
. (2.69)
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(a)

(b)

Figure 2.24: Sensitivity to the hadronic running as defined in eq. (2.69) as a
function of θe (a) and θµ (b) [41].

the ratio between the cross section with and without the hadronic correction
to the running of α.

Figures 2.24 show how the QED corrections affect the ratio Ri for different
selection criteria (for the two processes µ±e− → µ±e−).

In the absence of elasticity cuts, the ratio for the electrons is strongly
affected by the QED radiation, especially in the region of small angles, where
is the highest sensitivity to the running. This sensitivity is largely recovered
by applying an acoplanarity cut, that removes most of the contribution of
the radiative processes. On the other hand, the muon ratio appears to be
robust to the the radiative corrections and applied cuts.

It is important to note that the distribution of the hadronic running as
a function of θe is strongly peaked: this naturally makes two regions on θe,
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Figure 2.25: Correlation plots θµθe in mrad, with the NLO QED effects and
experimental smearings. (Top) Without and (bottom) with a cut around the
elasticity curve to select the signal.

at high and low q2, where ∆αhad becomes less than 10−5 for θe & 20 mrad.
There is therefore the possibility that the low transferred momenta region
can be used as a "normalization" region, i.e. an area where the effect to be
measured is less than the required precision, so that it can be considered
negligible. This is an important aspect currently under study, as it would
allow a better control of some systematics.

Figure 2.25 show the detector resolution on top of MC NLO. The selection
of the elasticity region obtained taking into account the effect of detector
resolution preserve about 95% of signal events and allows to recover the full
sensitivity to the hadronic running.

The calculation of the NNLO QED corrections is in progress [51, 52, 53,
54]. The expected contribution should be of the order of one percent or less.
In fig. 2.21, some of the NNLO diagrams are shown.



Chapter 3

Experimental effects and
simulations

We have seen that the µe elastic scattering in MUonE will take place in
matter, since the scattering centers are the target atomic electrons. Particles
crossing the target undergo several interaction processes. We focused the at-
tention on multiple Coulomb scattering (MCS), ionization and bremsstrahlung.
MCS is particularly important as it acts as a randomizer of the scattering
angles, breaking the exact kinematic correlations between the muon and elec-
tron scattering angles.

3.1 Multiple Coulomb scattering

When a charged particle traverses a layer of matter because of MCS it
is deflected from the original path (often without appreciable energy loss).
The dominant contribution to the MCS is due to the nuclei. The effect
of the atomic electrons is the screening of the nuclear electromagnetic field
[55]. A detailed theory of the MCS, accounting for the effects of the nuclear
potentials and electronic screening, is rather complicated [56, 57, 58]. A
great help in evaluated MCS effects came from the Highland theory [59].
However, the only way to treat multiple scattering precisely is with Monte
Carlo simulations [60, 61].

Particle propagation through the material is a stochastic process: charged
particles follow a random walk, undergoing a very large number of elemen-
tary Coulomb scattering with nuclei. As a consequence the direction and
the position are random variables. The statistical properties are directly
measurable quantity.

For particles moving along the z-axis, perpendicular to a target, MCS can

55
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Figure 3.1: Quantities used to describe multiple Coulomb scattering. The
particle is incident in the plane of the figure [26].

be measured in two perpendicular planes, xz and yz, by two random vari-
ables: the projected angle θplane, x by the lateral displacement x, and θplane, y
by the lateral displacement y (fig. 3.1). In a layer of thickness d, it turns
out to be that for relatively small deflections the probability density func-
tion of the projected scattering angles θplane can be described by a gaussian
distribution:

f(θplane) =
1√

2πθMS

exp

(
−
θ2plane
2θ2MS

)
(3.1)

where the standard deviation

θMS =
√
< θ2plane > = θ rmsplane (3.2)

is defined by the Highland-Molière formula [26]:

θMS =
13.6

E

√
d

X0

(
1 + 0.038 log

(
d

X0

))
. (3.3)

Here E is the particle energy, d the layer thickness and X0 the radiation
length of target material. The MCS is a white noise, as it is unbiased,
i.e. the average angular distribution is zero, < θplane >= 0, and statistically
it increases the width of the beam angular distribution by θMS. This formula
(historically obtained as a fit to the [...]) is considered accurate to ∼ 10% or
better, for 10−3 < d/X0 < 100. This is a key relation to estimate multiple
scattering effects, although as a first approximation. Figure 3.2 shows a
result we obtained in a test beam (performed in 2017 [8]), which confirms
the behavior of θMS of eq. (3.3) with the thickness d. Effects of the material
are all included in the radiation length X0, whose approximated value is

X0 ≈
180A

Z2
g/cm2. (3.4)
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Figure 3.2: Multiple scattering angles as a function of the target thickness,
from our 2017 test beam data.

MCS is linearly dependent on Z of the material, and on the inverse of the par-
ticle energy. The inverse dependence with the energy is due to the Rutherford
cross-section, going as 1/p2. The logarithmic correction has been determined
with the fit of data sets available to Highland [59].

The probability density function of θspace, i.e. the unprojected angular
distribution, is given by:

f(θspace) ≡ f(θx, θy) = f(θx) · f(θy) =
1

2πθ2MS

exp

(
−θ

2
space

2θ2MS

)
. (3.5)

Because of the symmetry of the scattering processes with respect to the
azimuth angle φ the projections of the deflection angles in the zx and zy
planes are uncorrelated and identically distributed, that is:

< θ2x >=< θ2y >=
1

2
< θ2space > → θ2space ≈ θ2x + θ2y. (3.6)

It can be shown that the distributions of the x and y variables, corre-
sponding to the hits coordinates measured by a tracker, are related to θplane
by:

< y2plane >=
1

3
d2 < θ2plane >=

1

3
d2 θ2MS → yrmsplane =

1√
3
d θMS. (3.7)

Note that the lateral displacement is reduced by a factor
√

3 with respect to
the track projection d × θMS. To prove this relation we built up a toy-MC,
whose results are presented in the appendix A.1.
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Figure 3.3: Stopping power of electrons in Graphite [62].

3.2 Energy loss for high energy electrons and
muons

The probability of large scattering angles in MCS are small and are ex-
pected because of the Rutherford cross section [26]. The energy loss due
to the bremsstrahlung adds large contribution to the tails of the angular
distribution, amounting to about 5-10%.

3.2.1 Electrons

Electrons energies involved in the µ-e elastic scattering vary from few
GeV up to about 140 GeV, depending on the energy of the M2 muon beam.
In this energy range electrons lose energy by the emission of photons in the
electric field of the atomic nucleus. For the electron energies, in the range of
interest, the energy loss by bremsstrahlung is by far the dominating process.
This energy loss is proportional to the electron energy, while the ionization
loss depends logarithmically on it. Figure 3.3 shows the energy loss per unit
length of electrons in graphite.

The energy loss per unit length due to the bremsstrahlung is:

−dE
dx

= k
E

X0

(3.8)

with an explicit dependence on the radiation length X0, in turn related to
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Figure 3.4: Angular deflection of 12 GeV electrons on 8 mm graphite: result
of a GEANT4 simulation. In red, the electrons that have lost less than 1%
of their initial energy, in blue those that have lost more than 90%.

the material density, the atomic weight W and the atomic number Z:

X0 ∝
W

ρZ2
(cm). (3.9)

Figure 3.4 shows the result of a GEANT4 simulation. The core of the
distribution is due to multiple scattering events occurring without significant
energy loss, while the long tails are due to electrons that have lost much of
their energy by bremsstrahlung (dE/E & 90%). The core of the distribution
covers about 90% of the integral and within a few percent can be described
by a gaussian. Instead tails instead do not show a gaussian profile.

3.2.2 Muons

The emission probability of bremsstrahlung photons is dependent on the
mass m of the particle and is proportional to 1/m2. It is not relevant for
muon energies up to several hundreds GeV. Muons of these energies can be
considered as minimum ionizing particles. The mean stopping power for
high-energy muons in a material can be described by [63]:

< dE/dx >= a(E) + b(E)E, (3.10)

where E is the total energy, a(E) is the electronic stopping power, and b(E)
is a term accounting for radiative processes, namely bremsstrahlung, pair
production and photonuclear interactions:

b(E) ≡ bbrems(E) + bpair(E) + bnucl(E). (3.11)
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Figure 3.5: Contributions to the muon radiative energy loss as a function of
the muon energy [63] according to eq. (3.10).

a(E) and b(E) are slowly varying functions of E. For E . 100 GeV, b(E)E
is less than 1% of a(E). Figure 3.5 shows the role of the different radiative
muon processes.

The angular deflection for high-energy muons does not present long tails
that are typical of electron angular distributions. High energy muons allow to
align the detector and to perform a precise scanning of the apparatus needed
to measure the detector angular resolution, as explained in the following
chapter.

3.3 Detector angular resolution

Electrons and muons will be tracked by means of silicon detectors. Track-
ing errors are due to MCS and to the detector intrinsic resolution.

The effect of the intrinsic resolution on the hit detection translates in the
angular uncertainty ∆θi of the reconstructed track as:

∆θi =
√

2
σx
L
, (3.12)

where σx is the hit detector resolution and L is the length of the tracking
station, corresponding to the distance between first and last sensor.

The intrinsic resolution is statistically independent from the resolution
effect due to MCS. The detector resolution ∆θdet is therefore the sum in
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Figure 3.6: Hit resolution comparison for signal events. On the left, the
angular correlation between θµ and θe for σx = 7µm. On the right the
corresponding correlation for σx = 40µm.

quadrature of intrinsic and multiple scattering:

∆θdet(E) =
√

∆θ2i + θ2MS(E). (3.13)

Figures 3.6 show the performance of detectors with different intrinsic
resolution1 of 7µm and 35µm respectively, for 150 GeV muons colliding on
a 8 mm thick graphite target. The resolution effects generate horizontal and
vertical counts migrations in the 2D histogram. In particular the vertical
migrations, occurring along the muon angle are mainly due to the intrinsic
resolution. The intrinsic resolution is relevant for energies greater than 20-
30 GeV, depending on the detector material budget.

The resolution model of eq. (3.13) allowed us to develop a fast simulation
algorithm used to study the experimental effects on events generated accord-
ing to the LO (and NLO) cross section (see sec. 3.4). The model includes
various experimental effects, as target and trackers multiple scattering, aver-
age energy loss in the target, energy spread of the muon beam and intrinsic
resolution.

Figures 3.7 show the multiple scattering effect of 2S CMS trackers on
the differential LO cross sections. Multiple scattering gives a relevant con-
tribution for high electron and muon angles, where both particles have small
energies. The intrinsic resolution of the sensors are included.

The MCS induces a counting migration depending on the shape of the
cross section. Event counts accumulate at large angles, where the electron
energies are of few GeV, because of the resolution flux due to the detector
resolution and the growing of the differential cross section: for a given angular
interval, more events migrate from larger angles than from lower ones. In
the case of the muon angular distribution, the main effect is in the smearing

1used in the 2017 and 2018 test beam, as we will discussed in the following chapter.
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Figure 3.7: The resolution effects on the differential cross sections in the
scattering angles θe and θµ.

of the peak around the maximum θµ ∼ 4.8 mrad, where the muon energy is
about 20 GeV.

The validity of the resolution model, expressed by the eq. (3.13), has been
verified in the 2017 test beam [8].

3.4 Fast simulation

A complete GEANT4 simulation is CPU time consuming. Generate the
required large data samples of µe elastic scattering (of the order of 1012

events) within a reasonable time interval is prohibitive, even if exploiting
farms of several hundreds of servers. To study the detector effects with high
statistics, we developed a parametrization of the apparatus response.
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Figure 3.8: Angular resolution as a function of particles energy, as ob-
tained with 2017 test beam data. Fit parameters p0 (in mrad) and p1
(in mrad/GeV) correspond to A and B coefficients in the fit curve (3.14),
respectively.

3.4.1 Detector resolution model

Figure 3.8 shows the angular resolution as a function of the particle en-
ergy, as measured in the 2017 test beam. Data has been collected with test
beam runs with different particle beams: 12 GeV e− and 20 GeV e−, 80 GeV
π+, 160 GeV µ+ and 180 GeV π+. It shows the width of the gaussian core
(90% of the angular deflection distribution) as a function of the particles
energy.

Running without target (i.e. without the target MCS effects), made it
possible to measure the tracking resolution function at different energies.
The fit function:

f(E) =

√
A2 +

(
B

E

)2

(3.14)

allows to unfold the two resolution effects. The parameters A and B repre-
sent the contribution of the intrinsic angular resolution and of the MCS of
the tracking apparatus (per unit of energy) respectively. This effective para-
metric model is a key instrument for the development of the fast simulation,
which will be explained in sec. 3.4.2.

As interesting check, the nominal intrinsic resolution turns out to be:

σi =

√
2 ∆x

L
∼
√

2× 7µm

900 mm
∼ 0.011 mrad, (3.15)

to be compared to the fit result A = 0.013 mrad obtained from data.
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Figure 3.9: Angular resolution as a function of the particle energy.

To validate the parametric model, we performed a GEANT4 resolution
scanning for electron energies varying between 1 and 130 GeV. The tracking
algorithm, developed for the analysis of test beams data, has been used to
reconstruct the simulated events with a length of a tracking station of 50 cm.

Figure 3.9 shows the result of the fit. The resulting fit parameters are:

A = p1 = ∆θi =
√

2
σi
L

=
√

2
90µm/

√
24

40.2 cm
∼ 0.065 mrad,

B = p0 = θMS(1 GeV) = 13.6

√
4 · 300µm

X0(Si)

(
1 + 0.038 log

4 · 300µm

X0(Si)

)
∼ 1.28 mrad GeV

(3.16)

The simulation confirms the validity of the parametrization.
The complete detector resolution model requires to consider the effect of

the target. The parameterization in this case contains 2 + 1 parameters:

f(E) =

√
A2 +

(
B

E

)2

+

(
C

E

)2

, (3.17)

where A and B are related to the tracking resolution, while C is due to the
multiple scattering in the target, calculated assuming the average collision
depth of half the target thickness (uniform depth scattering probability).

Figure 3.10 shows the 6 modules configuration, corresponding to the CMS
detector used for the simulation. Figure 3.11 shows the impact of the target
material budget in the resolution model. The effect of the detector material
budget and of the target are comparable.
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Figure 3.10: CMS 2S module with 2 sensors per view with L = 50 cm used
in the simulation.

Figure 3.11: Angular resolution of a CMS module: in red and blue the result
obtained without and with the target.

3.4.2 The algorithm

The analytic resolution model can be easily interfaced to the LO scat-
tering generator and the recently available NLO generator, to produce the
required simulated events in rather a short time. For these studies at large
statistics, we have used the computing farm of LHCb Bologna.

Figure 3.12 shows the events distribution generated (in about 3 hours)
with the LO cross section generator. The running of the electromagnetic
coupling α(t) has been considered. It has been calculated using the routine
of prof. F. Jegerlehner [1]. The LO algorithm works similarly to the toy-MC
but more efficiently. The main steps of the algorithm used to implement the
simulation code are:

• fine sampling of the differential cross section as a function of the elec-
tron scattering angle, up to the maximum generation angle of 60 mrad;

• determination of the kinematics variable for the accompanying muon;
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Figure 3.12: Scatter plot θµ-θe generated with the fast simulation.

• calculation of t = q2, and the corresponding value of α(t);

• smearing of the observable angles, according to the resolution model of
eq. (3.17).

The maximum generation angle plays an important role since due to
the resolution it creates distortions of the angular spectrum at high angles.
However, a trade-off between accuracy of the model and CPU time is needed.
Since of the cross section grows linearly with the electron angle, it is necessary
to limit the maximum angle.

Figure 3.13 shows two examples obtained cutting the generation of the
events at 50 and 60 mrad. Differences of the order of 1% appears with the
cuts at 30-35 mrad in the angular distribution, with respect to the case of
a cut applied at 100 mrad. The cut at 60 mrad (Ee > 280 MeV) has been
chosen to consider the electron angular range up to 40 mrad. With this
choice the generation efficiency is of about 60%, i.e. the rest of the events
produced at high electron angles are useless. The fast-MC idea opened the
way for detailed studies to determine aHLO

µ .

3.4.3 Preliminary studies on CMS 2S trackers

We are currently performing studies to assess the performance of a CMS
sensors based detector, which has been described in the previous chapter,
and to optimize the detector geometry of the final tracker stations. We
aim to evaluate the performance with high statistics of this implementation
of the MUonE detector, considering the hit resolution of 18 µm and the
material budget of the double Silicon layers foreseen for a single CMS 2S
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Figure 3.13: Ratio between cross sections with experimental effects for dif-
ferent maximum generated angles, 50 mrad (top), 60 mrad (bottom) with
respect to the case of 100 mrad.

module, amounting to 2× 300µm. We have assumed a length of the station
of L = 50 cm. Assuming here a measure arm of a station of L = 50 cm.

Figures 3.14 show some first high statistics results about the comparison
between the CMS trackers and an ideal solution with Si sensors of intrinsic
resolution of 10 µm and single layers per view of thickness of 300 µm. In
fig. 3.14(top) is shown the ratio of the LO cross sections with and without
the resolution effects (MCS and intrinsic resolution). The impact of the ex-
perimental resolution on the cross section is evident: at high electron angles
there is a counts accumulation of the order of +2% at θe = 30 mrad. There
is a difference of maximum 1% at large angles (low electron energy) between
CMS and the ideal solution, essentially due to the multiple scattering con-
tribution of the 2S double layers.

Figure 3.14(bottom) shows a zoom at low angle region that corresponds
to high electron energy where the intrinsic resolution is the dominant con-
tribution. Therefore the difference due to the CMS double layers is smaller
because of lower MCS impact. However, a little bump of the relative or-
der of 10−4 emerges for θe . 2 mrad due to the counts accumulation near
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Figure 3.14: Results of the fast simulation: CMS solution (red) in comparison
with the best one under analysis (green).

the angle boundary (angular deflections cannot be negative). Thanks to the
high statistics provided by fast-MC, we identified this effect as due to the
CMS 2S intrinsic resolution of 18 µm against the ideal one of 10 µm, using
a configuration with stations of L = 50 cm.

Thanks to this preliminary analysis, we have established that a station
length of L = 100 cm (as quoted in the previous chapter) is required to
achieve an angular resolution of about 0.02 mrad with 18 µm of point reso-
lution, equivalent to what could be achieved approximately with 10 µm and
L = 50 cm.

3.5 Background studies

3.5.1 GEANT4

Monte Carlo simulations have been performed to study the resolution
effects due to the target and the detector, and to evaluate the background.

We have developed a GEANT4 simulation code to describe the response
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of the apparatus2, used to describe the the two test beam data taking.
A detailed detector simulation is essential to prove we can control the

experimental effects with the required precision. We implemented the silicon
detectors as homogeneous volumes. This is the most relevant simplification
we have adopted. The detailed simulation of the hit formation (clustering)
has to be developed.

GEANT4 classes have been edited to get relevant information: tracking
angles, hits positions in the silicon volumes, energies and identifiers of the
secondary particles, and of the interactions that have produced them3.

We assumed a gaussian beam energy distribution with a relative spread
of 3 relying on measurements performed by CERN accelerator experts.

The angular profile of the beam has been measured directly by recording
the incoming particles angles.

Particles incoming directions have been defined in GEANT using the
discrete inverse cumulative method.

Particular attention has been dedicated to the comparison of the different
electromagnetic physics lists (settings of the relevant interactions) that can
be selected and tuned in GEANT4. To describe the multiple scattering,
we considered the so called opt3 and opt4 options, which offer two different
models describing the multiple scattering. GEANT4 authors declared to be
interested in the 2017 test beam results and collaborated with us in tuning
the code, because of the lack of MCS experimental data in the literature for
electrons in the energy range 10-20 GeV hitting on low Z targets.

Several GEANT4 results about the comparison with the analyzed data
will be shown in the next chapter on test beams.

3.5.2 Simulation results

In order to study the background, we performed a GEANT4 simulation of
5 ·108 events4, with 150 GeV muons colliding on 2 cm thick Beryllium target.
We recorded events with the muon and at least one secondary charged particle
leaving the target.

This was a preliminary study performed to determine the secondary parti-
cle multiplicity, the sources of the physics background and validate GEANT4
settings. In this simulation we considered the interactions of the muon with
the target neglecting any detector effects.

2We started by modifying GEANT4 examples: by studying in particular TestEm5 and
editing the classes DetectorConstruction, TrackingAction and SteppingAction.

3 One of the main issues with GEANT4 is to extract the interesting information as
efficiently as possible.

4At the M2 nominal intensity (∼ 50 MHz), this statistics can be achieved in only 10 s.
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counts final track multiplicity fraction
497537 m > 1 1 · 10−3 of tot
495084 m = 2 99.5% of m > 1
2449 m = 3 ∼ 0.5% of m > 1
4 m = 4 < 10−5 of m > 1

Table 3.1: Counts of the exit charged multiplicity, by using 5 · 108 in-
coming muons of 150 GeV on 2 cm of Beryllium, for final particle energy
E > 100 MeV, within 50 mrad.

Figure 3.15: GEANT process for the secondary electrons.

We have considered charged particles with E > 100 MeV, within the
angular acceptance of 50 mrad. This corresponds to the geometrical accep-
tance of a station of L = 100 cm, with a Silicon sensor of 10 cm × 10 cm, as
planned for the MUonE detector.

Muons passing the target without detectable secondary are 99.9% of the
total. The recorded multiplicities are shown in tab. 3.1.

Figure 3.15 shows the GEANT4 processes that have produced at least
one secondary charged particle. 70% of these events are elastic µe scattering
(“muon collision”). 30% of them are background events due to pair produc-
tion: by far the most important source of background. In case one of the two
charged particles of a pair is not detected, the event can mimic the elastic
scattering.

Figure 3.16(a) shows where these events are located in the (θe, θµ) plane.
Background events have low muon angles. There is a certain degree of con-
tamination of the signal region at large electron angles.

The level of the background obtained selecting the events within the res-
olution around the elasticity curve is shown in fig. 3.16(b). It can be noticed
there is an exponential decrease of the background level (in red) as a function
of θe and the total contamination of the signal region (in green) at level of
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(a)

(b)

(c)

Figure 3.16: (a) Correlation θµ-θe: in red the background events. (b) The
background behavior as a function of θe (in red) and the accepted background
(in green) in the elastic region. (c) Energy selection for Ee > 1 GeV.
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Figure 3.17: Full GEANT4 simulation of 2017 / 2018 test beam [64], without
and with an energy cut: E > 500 MeV. (Top) With good resolution of test
beam 2017 of 7 µm. (Bottom) With the resolution of test beam 2018 of 35
µm.

3 · 10−3, for θe & 40 mrad.
The differential contamination is of the order of percent level for θe & 35-

40 mrad and about 10−3 at low angle region.
Figure 3.16(c) shows the result of an energy selection requiring E > 1

GeV. The residual high energy component is confined at very low muon and
electron angles.

To further check GEANT4 settings, we evaluated the rate of µe scattering
process within 30 mrad (corresponding to Ee & 1 GeV). We selected 1.23 · 105

signal events of the initial 5 ·108 incoming muons. The resulting signal rate is
2.46 · 10−4 in agreement with the theoretical calculation that gives 2.42 · 10−4

for 2 cm of Beryllium (see sec. 2.4.2). For high order simulations the interface
of GEANT to specific NLO generator is needed.

Figures 3.17 explain the role of the intrinsic resolution on the background
rejection capabilities. A good intrinsic resolution below 10 µm allows to
distinguish signal from background up to 35-40 mrad. As a consequence a
simple geometrical cut on the muon angle, for instance θµ > 0.1 mrad remove
most of this background, preserving with good efficiency the signal region.

We estimated that with the best angular resolution background is still
present in the low electron angular region (θe . 10 mrad), with a differential
contamination at the level of about 10−3 bin-by-bin.
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To control the background contamination at level of 10−5 or less, MUonE
can count on the combined action of the GEANT4, with a precision of about
percent level, and of the use of the calorimeter.

Another important information to control this background is the copla-
narity. The coplanarity cut works since the e+e− pairs production is not
constrained to the same plain of the elastic scattering, determined by the
incoming muon and outgoing particles. The χ2 of the tracks, i.e. the quality
of the tracks, is also important, since it can be used to limit the presence of
very low energy particles, which are affected by huge MCS effects.





Chapter 4

Test Beams analysis

In 2017 and 2018 two test beams were performed at CERN, the first
dedicated to study of the MCS, the second focused on the analysis of elastic
scattering events µ-e. In both cases we have performed:

• Silicon trackers alignment;

• studies of data quality for the detectors characterization;

• tracking, with particular attention to the errors treatment;

• construction of pattern reconstruction algorithms to recognize elastic
events candidates;

• comparisons between the analysis physics results and GEANT4 simu-
lations.

The analysis of the 2017 test beam data (TB17) has been completed and the
results are currently being published, while the 2018 test beam (TB18) is
still being analyzed by two different groups.

4.1 The apparatus

4.1.1 Generalities

In both the test beams we used single sided1 Silicon strip detectors (SSD)
with different characteristics and tracking capabilities. During the TB17, we
used the telescope by UA9 collaboration [10], built for precision studies of
angular deflection of particles. The UA9 has been optimized to provide a very

1Two layers are needed to read x and y coordinates.

75
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Si strip features test beam 2017 test beam 2018
Strip pitch 60 µm 242 µm
Floating strip yes yes
(Quoted) Point resolution 7 µm 35 µm
Si bulk thickness 320 µm 300 µm
Transverse active area 3.8 x 3.8 cm2 9.3 x 9.3 cm2

Single sided yes yes
Readout analogue analogue
Max readout rate 140 kHz 10 kHz

Table 4.1: Main sensors characteristics used in the test beams.

(a) (b)

Figure 4.1: Sketches of the TB setups (not to scale): (a) TB17 and (b)
TB18 in the first configuration with two targets and two upstream tracking
modules. Detailed descriptions of TB18 apparatus is in ref. [71].

precise hits resolution and to operate at high couting rate with fast readout
electronics. The setup consists of a rather long upstream arm of about 10 m,
equipped with two tracking stations, and the downstream arm (∼ 0.9 m),
equipped with 3 tracking stations (fig. 4.1). Between the two parts we put the
target. The beam-line was the H8 of CERN SPS. For these measurements we
used electrons and positrons of energies 12 and 20 GeV, muons of 160 GeV,
and pions of 80 and 180 GeV (see next sec. 4.4.2). As targets we used
graphite tiles of 2, 4, 8 and 20 mm thickness. We aimed at measuring multiple
scattering effects to be compared to GEANT4 simulations. Events for MCS
studies are selected as single tracks, crossing the whole detector with a single
hit per sensor. Analysis of events with multiple tracks have been performed
only with muons, looking for elastic collisions on atomic electrons.

The TB18 was a long run, that lasted about 5 months. We used sil-
icon sensors of the AGILE experiment [11, 65] (originally used to the de-
tect gamma rays on satellite). We set an automatic DAQ system remotely
controlled and managed by the group of INFN Insubria. The apparatus
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composed by two modules of about 50 cm each. The setup was placed down-
stream COMPASS [66], at the M2 muon beam line of the CERN SPS. We
detected muons from pion beams hitting on 8 mm graphite targets at energy
of about 187 GeV and also M2 muons, according to the COMPASS requests
(see next sec. 4.5). Aim of the TB18 has been to track µ-e elastic events.
We have foreseen to measure the energy of the scattered particles exploiting
a calorimeter located downstream the apparatus. Characteristics of the two
setups used in TB17 and TB18 are reported in tab. 4.1 and in fig. 4.1.

In both cases the material budget is similar, since the thickness of the
silicon trackers are comparable. Distances between sensors and the hit res-
olution are quite different, implying different intrinsic angular resolutions:

∆θi ∼ 0.011 mrad (TB17), ∆θi ∼ 0.10(0.05) mrad (TB18). (4.1)

In a second phase of the TB18, the second target has been removed, so a
double measure arm was obtained. As a consequence the intrinsic resolution
improved.

4.1.2 DAQ

An important difference between the two detectors is in the readout elec-
tronics and the data acquisition (DAQ) rate capabilities. The UA9 appara-
tus (TB17) uses fast electronics developed by CMS. The readout ASIC is the
APV25, designed to operate at LHC frequencies of 40 MHz. The maximum
operational readout trigger rate was νmax

m = 140 kHz, suitable to the L1 CMS
trigger. When used at the H8 CERN SPS beam line the dead time was about
1% [10].

The dead time measures the fraction of the time the DAQ is busy [55, 67].
It is defined as the product of the DAQ readout frequency νm (measured rate)
and the acquisition time tD (processing time):

D(%) ≡ νm · tD. (4.2)

The maximum trigger rate is νmax
m = 1/tD. As shown in fig. 4.2, the input or

physics rate f is related to the dead time by:

νm = f (1−D) ⇒ νm =
f

1 + f tD
, (4.3)

and to trigger efficiency εtrig:

εtrig =
νm
f

= 1−D. (4.4)
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— — —
no dead time    → 𝝂m = f 

tD = 100 𝝁s  → 𝝂max = 10 kHz 
tD = 10 𝝁s    → 𝝂max = 100 kHz 

Figure 4.2: DAQ readout frequency νm as a function of the input (physics)
rate f from eq. (4.3), for different processing times tD.

Therefore the higher the dead time D the greater the inefficiency of the DAQ
system.

In general at relative high frequencies, a DAQ system (i.e. νm) progres-
sively loses its ability to follow the input data rate of frequency f as shown
in fig. 4.2:

lim
f→∞

νm = 1/tD = νmax
m . (4.5)

To circumvent this limitation, pipelines, buffers and multi-level triggers ar-
chitectures are usually used, in order to reduce or completely remove the
dead time.

In this respect, the sensors developed for AGILE and the corresponding
readout have been designed with less demanding performance requirements,
to run at significant lower frequencies. The maximum readout rate νmax

m we
managed to run with TB18 hardware is

νmax
m = 10 kHz ⇒ tD = 1/νmax

m = 100µs, (4.6)

to be compared to νmax
m = 140 kHz for the TB17 acquisition. The intensity

of muon rate f was extremely variable during the test beam, tuned to satisfy
the COMPASS requests. As a result we recorded data at variable frequencies,
from about 5 to 70-80 kHz per SPS spill (4.8 s), so the input frequency was
f = 1÷ 15 kHz as peak rate.

Considering f = 15 kHz, it can be estimated the related dead time and
the trigger efficiency of TB18, by using eqq. (4.2)(4.4), from the readout rate
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νm in eq. (4.3):

νm =
15 kHz

1 + 15 kHz× 100µs
∼ 6 kHz

⇒ D ∼ 6 kHz× 100µs ∼ 60%

⇒ εtrig ∼ 40%.

(4.7)

The maximum DAQ rate resulted in quite a small trigger efficiency, and the
need of a long data taking to collect high statistics data sample.

4.2 Tracking
As envisaged for the MUonE experiment, in both the setups used for test

beams, we didn’t use any external magnetic field. This makes the reconstruc-
tion of charged tracks rather simple since the track model is linear. A global
tracking algorithm was then chosen for the track fitting [68]. It minimizes
the χ2 according to the Generalized Least Squares (GLS) method:

χ2 =
n∑
i

n∑
j

(yi − f(zi, ~p)) (V−1)ij (yj − f(zj, ~p)) , (4.8)

where f(zi, ~p) = p0 + p1zi represents the linear fitting function (linear model)
calculated at the i-th layer of coordinate zi along the beam direction, yi is
the hit coordinate recorded at the i-th silicon layer, ~p = (p0, p1) is the vector
of the track parameters, and finally V is the errors covariance matrix.

In general V is a non-diagonal matrix. Off-diagonal terms depend on
the correlations between hits recorded at successive layers and induced by
the multiple Coulomb scattering. The mechanism in place is conceptually
simple to describe. MCS effects in the detector plane n.1 induces correlations
between the hits recorded at planes 2-3, 2-4, 3-4 and so on, depending on
their relative z distances. The Vij element of the covariance matrix is the
average track deviation products δx on the layer i, j-th with respect to the
incoming direction:

Vij ≡< δxiδxj >= θ2MS

i−1∑
k=1

((zi − zk)(zj − zk)) for i ≤ j = 1...n, (4.9)

where θMS is the Highland-Molière dispersion angle. The covariance matrix
V by construction is symmetrical. As we will see off-diagonal terms turns
out to be negligible, due to the higher particle energies, because of the 1/E
MCS dependency.
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The χ2 to be minimized (4.8) can be expressed in matrix notation as:

χ2 = (Y −AP)TV−1(Y −AP), (4.10)

where theY, A and P are the measurement vector (hits), the so-called design
matrix and the track parameters vector respectively:

Y =


y1
y2
...
yn

 A =


1 z1
1 z2
...

...
1 zn

 P =

[
p0
p1

]
. (4.11)

The problem to solve is linear so it possible to obtain an exact solution,
avoiding numerical minimization methods (e.g. Minuit). The criterion of the
minimum squares requires that

∂χ2

∂P
= 0 → ATV−1 (Y −AP) = 0, (4.12)

By solving it for A, we get the fit parameters vector we are interested as:

P̂ = (ATV−1A)−1ATV−1Y (4.13)

with errors matrix given by:

C = (ATV−1A)−1. (4.14)

A recursive algorithm has been built to solve (4.13): for each track what
changes in the iteration step is the hits vector Y, while the other matrices
are calculated only ab initio, given a certain setup. As a result the procedure
of track reconstruction has turned out to be very fast.

4.3 Alignment
High energy pion runs were used for detector alignment in the TB17,

while traversing muons were used to align the detectors in TB18. The align-
ment procedure has been based on a recursive procedure minimizing tracks
residuals.

Two translational misalignments can affect a silicon detector: misalign-
ments along the x and y axis, transverse to the beam z axis, and rotational
misalignment of the sensors around the z-axis. Peculiar attention has been
put in controlling longitudinal shifts of the detector positions with respect to
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= measured hit
= expected hit

ref layer ref layer

Residual = -

Figure 4.3: Definition of the residual: rx/y in eq. (4.15) are the means of the
residual statistical distributions over all the selected tracks.

x

y

z

= fired hit (strip)
= expected strip
= rotation pole

ay = resy /hitx

ay

Figure 4.4: Rotational misalignment: ay is the correction angle to applied at
the y hits in eq. (4.15).

the nominal position. Rotation along the x or y axis (tilts) are more difficult
to discover and correct, as they are second-order effects.

Only tracks that have released a single hit in each sensor are selected
for the alignment. Straight lines have been defined tracking through two
reference planes, to get the expected coordinates and measure hits residuals
at different planes.

Residuals at a given plane are defined as differences between measured
hits coordinates and the estimated positions at plane as shown in fig. 4.3. The
mean values of the distributions measure the transverse shift to be corrected.
Residual mean values have been iteratively corrected to reach the zero within
statistical errors.

Rotations along z-axis induce a correlation (fig. 4.4) between residuals
measured along the transverse direction in view x (or y) and the correspond-
ing hits of the same tracking module in the orthogonal view y (or x). Ro-
tational misalignments have been corrected iteratively by minimizing these
correlations, independently for the x and y coordinates.
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Figure 4.5: Alignment parameters as a function of iteractions, TB17.

Corrections for the alignment have applied to the hits coordinates con-
sidering the first order approximation:{

x′ = x− rx − ax · y
y′ = y − ry − ay · x

(4.15)

where (x,y) and (x′,y′) indicate the hits coordinates before and after the
alignment, (rx,ry) and (ax,ay) are the parameters related to the transverse
translations and rotations along the beam axis respectively, calculated as the
summing up what is obtained at each iteration:

rx,y ≡
n∑
i=1

r(i)x,y ax,y ≡
n∑
i=1

a(i)x,y. (4.16)

We observed that the procedure converges after just a few iterations and
the correction coefficients obtained at each step tend rapidly to zero, as it
is shown in fig. 4.5, where both r(i) → 0 and a(i) → 0. The high statistics
of the data samples (N & 3 · 105) used for the alignment allows to reach
an accuracy in the correction of the transverse offsets of 1 µm and less than
0.1 mrad for the rotational angles, as quoted in [10]. Large corrections may
cause non-linearity effects, in this case the alignment procedure may not
converge.

Once the alignment parameters have been determined they are used to
operate the coordinate transformation (4.15) of the data samples. Correction
of the transverse plane rotation correlates the x and y hits: to be applied it
requires both the (x, y) coordinates of one hit have to be detected. In case
one of the two coordinates is missing the hit cannot be corrected and must be
discarded. This implies that inefficiencies on a detection layer propagate to
the layer measuring the orthogonal coordinate in the same tracking module.
In case more than a single hits has been recorded then multiple combinations
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(pairing) have to be generated to reproduce the true hit combination to be
exploited in the pattern reconstruction procedure for track finding.

Residual misalignments may induce systematics effects in the angular ob-
servables affecting angular measurements. In particular, any longitudinal
misalignments would affect the angular distributions, because the direct pro-
portionality between reconstructed angles and the relative distance between
sensors. In both the test beams distances between the layers have been mea-
sured with an estimated uncertainty of the order of 1 mm. The longitudinal
misalignment turned out to be hard to measure with the data, as we will
discuss.

4.4 Test beam 2017 results

4.4.1 Pre-alignment studies

For the alignment we used high-energy pions runs. Figure 4.6 shows the
residuals measured at the three downstream planes before and after a pre-
liminary alignment performed from the data with the electron runs without
target. Indications of a good alignment procedure can be obtained from the
residuals distributions: mean values go to zero within the errors and distri-
bution widths progressively reduce.

We started to test GEANT4 results already at this stage, by applying
to the simulated hits the same reconstruction procedure used for real data.
Detectors in the simulations are perfectly aligned. Results of the simulations
turn out to be in good agreement with the measurements: residuals in the
gaussian cores agree quite well. The tails of the residuals distributions are
instead asymmetrical along y as visible in fig. 4.6.

Figure 4.7 shows the electron beam spot in the first silicon layer. The elec-
tron beam enters the detector hitting the edge of the first upstream sensors
creating the asymmetric beam profile we observed. This asymmetry required
us to pay attention to the fiducial cuts and to track quality cuts (χ2) to be
applied in order to get reliable comparisons with the MC simulations.

4.4.2 Pion runs and alignment parameters

The pion runs at 80 and 180 GeV have been used to determine the defini-
tive alignment parameters and calibrate the detector. The reference planes
chosen for the alignment are the plane 0 and plane 1, since their distance
was set to 10 m. The muon runs have been aligned relying on the muons
themselves, as an intervention on the setup prevented the still use pions.
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Figure 4.6: Distributions of the residuals from the preliminary alignment
using electron runs. From top to bottom, downstream planes 2, 3 and 4, see
fig. 4.1(a).



4.4 Test beam 2017 results 85

Figure 4.7: Beam spot at first upstream layers 0 and 1: 12 GeV electron run.

Figure 4.8: Beam spot at first layer of 180 GeV pion runs.

The hits recorded at plane 0 and plane 1 were aligned in the laboratory
reference system, eliminating transverse offsets. A fiducial cut centered at
the beam axis, of radius 5 mm, was then applied to select events around the
beam spot as shown in fig. 4.8. We then aligned the downstream planes 2, 3
and 4, independently in the x and y directions. The quality of the alignment
and the quality of the tracking have been checked looking at distribution of
the χ2, calculated for the three downstream planes and for a global fit to all
the five planes.

Fig. 4.10(a) shows that χ2 presents a bump, indicating an excess of tracks
with high χ2. Displays of these events show that they are likely due to
noise instead of activities related to the pions. Run with muons is shown in
fig. 4.10(b): it confirms the pattern.

The quality alignment seems to be anyway very good. Table 4.2 collects
the alignment parameters extracted from the central 180 GeV pion run. Dur-
ing one week we collect 5 runs using 180 GeV pions and possible constants
variations in time have been checked: figg. 4.9 show transverse shifts and an-
gles of these runs. Numerous interventions have been made during the test
beam, which may have caused slight variations in the sensors positioning.
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layer rx (mm) ry (mm) ax (mrad) ay (mrad)
0 (ref) 19.882 -17.609 < 0.01 < 0.01
1 (ref) 19.388 -19.162 < 0.01 < 0.01
2 0.408 -3.140 -0.500 -10.647
3 6.023 -7.819 17.803 -29.901
4 4.452 -1.417 5.682 -6.402

Table 4.2: Alignment parameters measured from the central pion run (n=3
in figg. 4.9).

Figure 4.9: Variations of alignment constants as a function of pion runs.

Therefore for the alignment of the electron runs, it was decided to use the
single sets of the alignment constants measured from each pion run closest
in time.

After few iterations, values of the residual alignment constants are well
below the precision goal. Widths of the residual distribution, as expected,
are very close to the intrinsic resolution, since the multiple scattering for high
energetic pions and muons is small.

Alignment runs allowed us to measure the intrinsic angular resolution of
the apparatus. Angular deflections measured without target with 80 GeV
and 180 GeV pions runs, and with and without target (8 mm graphite) with
160 GeV muons are shown in figure 4.11.

The observed widths of the angular distributions ∆σ include the intrinsic
resolution σi and the resolution σMS due to the MCS:

σi =
√

∆σ2 − σ2
MS. (4.17)

The contribution due to the intrinsic resolution can be determined calculating
σMS by means of the Highland-Molière formula.

Such a procedure returned the values of the intrinsic resolution of the
apparatus of about 0.012 mrad, in agreement with the expectations. As a



4.4 Test beam 2017 results 87

(a) (b)

Figure 4.10: χ2 distribution of 5 planes fit: (a) pion and (b) muon runs.

further cross-check of the goodness of the alignment, we can observe the
angular distributions do not present appreciable offsets.

4.4.3 Tracking electrons

All electron and positron runs have been aligned using constants deter-
mined from pion runs.

Figures 4.12 and 4.13 (a) show the incoming (upstream the target) and
outgoing (downstream the target) electrons angular distributions for elec-
trons of 12 GeV crossing the detector without target and for 12 GeV electrons
colliding on 8 mm thick graphite target, respectively.

Figures 4.12 and 4.13 (b) show the corresponding angular deflections de-
fined as the difference between the downstream and upstream track angles.
Note that the distribution of the angular deflections span over 4 to 5 orders
of magnitude.

We observe that the information from the third downstream tracking layer
turns out to be relatively less important for tracking. Hits coordinates mea-
sured at the third plane have relatively large error, because of the cumulative

Figure 4.11: Angular resolution from pions (left) and muons (right).
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Figure 4.12: Angular distributions from 12 GeV electrons without target.
(Top) Incoming and outgoing directions. (Bottom) Deflection distribution.

effect of the multiple scattering.
The hit resolution of the three downstream tracking planes in tab. 4.3 can

be obtained from the square root of the diagonal elements of the covariance
matrix V of the hits, shown in the following equations for 12 GeV particles:

V (12 GeV) =

4.761 · 10−5 0 0
0 0.00150 0.00263
0 0.00263 0.00578

mm2 (4.18)

and for 20 GeV:

V (20 GeV) =

4.761 · 10−5 0 0
0 0.000570 0.000948
0 0.000948 0.00229

mm2 (4.19)

These matrices was calculated by eq. (4.9) and used in χ2 minimization for
tracking, with the following parameters:

• nominal TB17 layers positions z = (0, 9390, 9788, 10290, 10698) mm,

• MCS contributions θMS for a single tracking module (0.640 mm of Si)
of 0.0759 mrad and 0.0456 mrad, for 12 and 20 GeV respectively.
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Figure 4.13: Angular distributions from 12 GeV electrons on 20 mm graphite.
(Top) Incoming and outgoing directions. (Bottom) Deflection distribution.

The results shown in the figg. 4.12 and 4.13 (b) have been obtained with-
out fiducial cuts on the recorded events. We studied how the distributions
possibly vary applying selection cuts to the event used for the analysis.

4.4.4 Fiducial analysis

We observed that the angular deflections are not symmetric, since the
electron and muon beams were not well centered. In addition, there may
be other source of asymmetry as for instance the contamination in the halo

layer σ (µm)
for 12 GeV for 20 GeV for 100 GeV

2 6.9 6.9 6.9
3 39 24 8.3
4 76 48 12

Table 4.3: Hits errors per layer, obtained from covariance matrix V in
eq. 4.18. It is shown for comparison the case of 100 GeV particles.
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Figure 4.14: First row: x and y incoming angles for 20 GeV electrons. Second
row: x and y angular deflection on 8 mm graphite target as a function of the
incident angle.

beam. Figures 4.14 and 4.15 confirm that anomalous effects are correlated
to the beam halo and are also visible at the edges of sensors. There should
be no correlation between the angular deflection and the particle incoming
direction. Effects due to the effective path length in the detector caused by
the different crossing angles are negligible. Fig. 4.15 in addition shows that
the quality of the tracks get progressively worse at the sensor edges.

Fiducial cuts in the upstream sensors have been optimized to get sym-
metrical angular deflections in the x, y direction.

Figures 4.16 show the effect of the cut applied to the incoming angles:

Figure 4.15: χ2 distribution as a function of the impact point on the sensor.
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Figure 4.16: Effect of the quality cuts, (top) before and (bottom) after.

σ res 2 (µm) res 3 (µm) res 4 (µm)
DATA 1.33 2.82 33.3

GEANT4 1.27 2.72 32.7

Table 4.4: Core RMS of the tracking residuals: comparison MC - data.

• incoming angle θ between −2 and +2 mrad,

• impact point in the first sensor: −12 < x < 8 and −11 < y < 11 mm,

• loose χ2 cut: χ2
x + χ2

y < 100; for the final analysis we reduce the cut
value to 20 (see next sec. 4.4.7).

Before these cuts were applied, asymmetries in the left / right distributions
were at percent level; after having applied the cuts the asymmetries get
down below 10−3. This cuts let to preserve the tails of the distributions, for
a statistically reliable MC to data comparison. As expected, the combined
effects of these quality cuts improve the shape of the distributions in both
the x and y directions.
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Figure 4.17: Comparison of residuals distributions for 12 GeV electrons hit-
ting on 8 mm graphite. Data in green and GEANT4 in blue. From top to
bottom, x view downstream layers 2, 3 and 4.
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Figure 4.18: Profile histogram of χ2 as a function of the angular deflection for
different maximum χ2 cuts. Data are in blue, in red are the MC simulations.

Comparison of MC and data residual distributions benefit of these quality
cuts, as shown in fig. 4.17. Table 4.4 summarizes the standard deviation of
the cores of these distributions. The agreement looks quite good also in the
tails. This is an important cross-check of the detailed full simulation.

4.4.5 χ2 analysis

In the previous chapter we observed that the long tails in the angular
deflection are due to electrons that because of the bremsstrahlung have lost
most of their energy in the target. To calculate the χ2 of a track one needs
to correctly estimate the errors on the hits measurements. The nominal
beam energy is used to estimate the MCS effects and evaluate the covariance
matrix.

As a result of the multiple scattering the errors depend on the particles
energy. Most of the tracks in the core of the angular distribution (order of
90%) are well reconstructed with a good χ2 since the particle energy cor-
responds to the beam energy. Energies of the particles undergoing large
deflections are instead much lower than the beam energy and as a result the
χ2 can be largely wrong.

We have observed this effect studying the correlation between the χ2

and the particles deflection angle. Figures 4.18 show the correlations for
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12 GeV electrons hitting on 8 mm graphite, for different χ2 cutting values,
compared to Monte Carlo simulation. As a consequence of the energy loss
the χ2 gets progressively larger with the increasing deflection angles. Strong
cut on the χ2 allows to select particles with the “correct” energy: electrons
that keep most of their energy survive the selection. However, tracks that
have lost most of their energy can still have a good χ2 because the minimum
deflection angle is always the most probable one.

Our simulation shows the possibility of a good control of the χ2 variable at
different energies, as shown in figg. 4.19(a). Figures 4.19(b) show for MC and
data separately how tails due to the bremsstrahlung radiation can be rejected
by a χ2 cut on the track quality, recovering the gaussian behavior of the
angular deflection distribution. We stress the need of a detailed simulation
of detector response to precisely evaluate the cut efficiency and its possible
systematic effect on the final measurement.

4.4.6 Test of the Highland-Moliere formula

Estimates of the MCS performed using the Highland-Molière formula are
stated to be reliable at the few percent level (as in the PDG [26]). Data we
collected for different particle energies and different target thickness allow to
test the validity of this model.

The observed variance can be written in gaussian approximation as:

∆σ2 = σ2
target + σ2

0. (4.20)

We measured both ∆σ and σ0, with and without the target. σ0 represents
the MCS contribution of the tracking apparatus, downstream the targets. So
fitting with a simple gaussian the measured distributions cores of ∆σ and σ0,
we can determine σtarget by deconvolution:

σtarget =
√

∆σ2 − σ2
0. (4.21)

These values can be compared to the GEANT4 results, as shown in tab. 4.6,
or to the predictions of the Highland-Moliere formula.

Figure 4.20 shows the values of σtarget as a function of the target thickness
for electron energy of 12 GeV. The curve:

σtarget =
13.6

E

√
d

X0

(1 +B), (4.22)

corresponding to the Highland-Moliere formula, fits quite well the data.
The fit returns the beam energy, the target radiation length and the cor-
rection term B, which result in good agreement with the nominal values
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(a)

(b)

Figure 4.19: (a) GEANT4 simulations for 12 and 20 GeV electrons on 8 mm
graphite with different χ2 cuts. (b) Comparison MC-data for 12 GeV elec-
trons on 8 mm graphite.
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Figure 4.20: Fit with the Highland-Moliere formula of the RMS of the target
scattering distributions, obtained with 12 GeV electrons, as a function of the
target thickness.

Ebeam = 12 GeV, X0(C
2) = 23.3 cm with B negative and around the per-

cent:

• E = (11.9± 0.4) GeV,

• X0 = (23.1± 0.7) cm,

• B = −0.04± 0.01.

Although high relative errors, these results provide another cross-check of
our analysis method.

4.4.7 Comparison MC-data

Different GEANT4 versions and different physics lists has been carried
out, since of the known differences in the models adopted to simulate multiple
scattering.

Figure 4.21 allows to compare the effects of the selection cuts on data
and on the full MC simulations. The plot covers the whole angular range to
evaluate the distribution including the extreme tails. The result looks quite
good. A gaussian fit of the distribution shows the agreement between the
standard deviations are within 3.5%. The agreement of the cores of the dis-
tributions, although crucial as they covering 90% of the angular distributions
is at the percent level. A much more compelling method for the comparison
is based on bin-by-bin ratios, between normalized data and MC histograms.

2The target material is a particular graphite of ρ = 1.83 g/cm3 and X0 = 23.32 cm.
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Figure 4.21: Comparison MC-data: 12 GeV electrons hitting on 8 mm
graphite. Data in blue and MC in red.

Figures 4.22 show the results of the comparisons between data and full
GEANT4 simulations about the electron runs of (a) 12 GeV hitting on 20 mm,
(b) 12 GeV on 8 mm and (c) 20 GeV on 8 mm of graphite respectively.
For all samples (data and MC) we applied a quality cut corresponding to
χ2
x + χ2

y < 20. Table 4.5 summarizes the corresponding results of the gaus-
sian fits of the angular distribution cores. The data systematic errors are
estimated according to ref. [8]. The main source is related to the beam scale
energy: it is at level of 1%.

We tested the GEANT4 physics lists [61] “opt3” and “opt4” for compari-
son. It can be seen that in the region nearby the core data values lies between
the two GEANT4 distribution. The bin-by-bin ratios show discrepancy are
larger in the tails region.

Decreasing the target thickness the agreements look progressively worse,
especially in the tail region. We interpreted the disagreement as due to
the bad modeling of trackers. The good agreement obtained with 12 GeV
electrons on 20 mm hides the inaccurate apparatus simulation. Discrepancies
gradually emerges decreasing the target thickness since target effects get
comparable to those due to the downstream tracking modules.

In order to directly compare data, full MC previsions and the Highland
formula predictions, tab. 4.6 reports the angular distributions cores due to
the target contribution only, obtained by using eq. (4.21). Data and MC are
in agreement within 2-3%. The Highland predictions present a discrepancy,
uniform on the samples, of about 8.5%. This discrepancy is in agreement
with as stated in the PDG [26].

To overcome the lack of an accurate simulation of the sensors, we devel-
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(a)

(b)

(c)

Figure 4.22: Comparison between data and full GEANT4 simulation with
bin-by-bin ratio data/MC. (a) 12 GeV electrons hitting on 20 mm graphite.
(b) 12 GeV electrons hitting on 8 mm graphite. (c) 20 GeV electrons hitting
on 8 mm graphite. Different GEANT4 physics lists are shown (see text).
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e− sample ∆σ (mrad)
with target DATA GEANT4 ∆(exp-MC)
12 GeV 8 mm 0.2392± 0.0002± 0.003 0.2488± 0.0001 −3.8%
20 GeV 8 mm 0.1441± 0.0001± 0.002 0.1485± 0.0001 −3.0%
12 GeV 20 mm 0.3538± 0.0003± 0.005 0.3564± 0.0001 −0.7%

e− sample σ0 (mrad)
no target DATA GEANT4 ∆(exp-MC)
12 GeV 0.1314± 0.0004± 0.002 0.1542± 0.0001 −15%
20 GeV 0.0803± 0.0002± 0.001 0.0928± 0.0001 −13%

Table 4.5: RMS of the core region (90% of the events) of the angular deflec-
tions ∆σ with target and σ0 without target. For data, the first uncertainty
is statistical, the second systematic corresponding to 1.3% [8]. For MC the
uncertainties are statistical only.

Sample σtarget (mrad)
DATA GEANT4 Highland

12 GeV e− 8 mm 0.200± 0.003 0.1952± 0.0001 0.1831
20 GeV e− 8 mm 0.120± 0.002 0.1158± 0.0001 0.1099
12 GeV e− 20 mm 0.329± 0.005 0.3213± 0.0001 0.3011

Table 4.6: Target MCS contribution σtarget obtained deconvolving the mea-
sured apparatus resolution σ0 from the measured angular deflection ∆σ with
targets, by using eq. (4.21) and the values in tab. 4.5.

oped a method to combine the GEANT simulation of the target TMC(E0, θ)
with the apparatus resolution function Adata(E0, θ) measured with data. The
response of the apparatus has been obtained from the measurements per-
formed without targets. On this basis one can compare the effect of the
target as determined with GEANT4 to the deflection distributions measured
with real data [8]:

f
(0)
MC(E0, θ) = TMC(E0, θ)⊗ Adata(E0, θ), (4.23)

where E0 is the nominal beam energy.
This method requires a correction since the resolution function Adata

does not take into account effects of energy loss in the target. This cor-
rection is particularly important to compare the tails of the distribution,
as they are populated by electrons that have lost much of their energy for
bremsstrahlung, as we have already pointed out.
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Figure 4.23: Comparisons data with the results of the convolution method
(see text). (Left) 12 GeV electron hitting on 8 mm graphite. (Right) 12 GeV
electron on 20 mm graphite. The effect of the air is particularly evident in
the black dot distribution obtained without air in the detector simulation.

The corrected model to be compared with the data can be written as:

fMC(E0, θ) = f
(0)
MC(E0, θ)⊗ f corr

MC (E0, θ) (4.24)

where f corr is:

f corr
MC (E0, θ) =

SMC(E0, θ)

TMC(E0, θ)⊗ AMC(E0, θ)
. (4.25)

where SMC is the complete simulation (target plus apparatus), TMC and AMC

represent the MC simulation of the target and the apparatus respectively.
Moreover, we have observed that energy losses in the air cannot be ne-

glected, due to the long upstream part of the detector of 10 m. It is necessary
therefore to consider all the upstream and downstream material budget.

In figure 4.23 a bin-by-bin comparison between data and the simulations
obtained with the convolution method in the different cases: without air,
and with the two physics lists. With the model we proposed the agreement
appears remarkable.

Figures 4.24 show the comparison of the core distribution between the
convolution model fMC and data of different samples. Considering the bin-
by-bin ratios, the agreements looks very good, within the percent level. Com-
paring the gaussian width of the distributions, data and MC are in agreement
below 1%.

We tried to slightly modify the GEANT4 detector model, varying the
density and thickness of the material budge without significant differences in
the simulation results. We then studied how uncertainties in the distances
between sensors propagate their effects on the observable angular distribu-
tions. During the alignment stage, we attempted to evaluate possible z shift
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(a)

(b)

(c)

Figure 4.24: Comparison between data and the results of convolution method
(see text) with bin-by-bin ratio MC/data. (a) 12 GeV electrons hitting on
20 mm graphite. (b) 12 GeV electrons hitting on 8 mm graphite. (c) 20 GeV
electrons hitting on 8 mm graphite. The RMS of the core regions of MC and
data are in agreement within 0.7%, 0.8% and 0.5% respectively.
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Figure 4.25: (Left) The efficiency of the tagging procedure performing PID
using χ2 selection. (Right) Fraction of events without tagging in red and
tagged ambiguously in blue as a function of χ2 values.

of the layers positions, with respect to the the nominal positions, but with
ambiguous results. Therefore we decided to rely on the nominal distances.

4.4.8 µ-e correlation

We collected data colliding 160 GeV muon colliding on 8 mm target. The
goal was to gather events to study the correlation between the muon and
electron elastic scattering angles, to be able to test the pattern recognition
algorithm and to make preliminary studies of the background and of possible
selection variables.

The UA9 apparatus used for this test beam had no stereo planes for x,y
disambiguation. The ambiguities generates ghosts that made the pattern
reconstruction difficult. We have chosen to test an algorithm with a minimum
requirement, of two and only two hits per plane.

Angular measurements requires tracking the incoming muons with the
upstream modules, and tracking the two outgoing muon and electron. The
upstream section allowed tracking with very good resolution. No particle ID
detectors were available to distinguish the scattered particles.

A pattern recognition algorithm had been developed with track finding
capabilities and for track fitting. A procedure for tracking the scattered
muon based the best track χ2 has been developed. It acts selecting the best
track candidate as the muon my means of the sum of the χ2 in both views,
a choice that proved to be very powerful:

• we have selected a downstream topology of 2 and only 2 hits per layer,
to identify elastic candidates. The χ2 requires at least 3 hits per track,
and in this case there were just 3 downstream layers;
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Figure 4.26: Event displays of selected µe scattering candidates.

Figure 4.27: First angular θµ-θe correlation plot.

• all the possible hits combinations have been used to determination the
track parameters and χ2 on separate x and y views;

• we have chosen the best track pairs among all the combinations as the
best χ2, lower than a given threshold;

• in case of ambiguities, i.e. several good pairs are selected, events were
further analyzed to understand their patterns.

Figures 4.25 show the results of the study performed to determine the
optimal values of the χ2. As expected a loose selection increases the number
of ambiguous tracks combination, while a tight cut minimizes the ambiguity,
but increasing the probability of an untagged event. A good condition is
found for χ2

x + χ2
y around a value of 15.

Some of the event displays of the 2 → 2 selected candidates are shown
in the fig. 4.26. The track fitting has been performed by tracking in the two
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Figure 4.28: Angular correlation θµ-θe. There are about 250 selected events.
It is shown the kinematics prediction convoluted with the multiple scattering
effect and the beam energy spread.

separate views and constructing the angular deflection α in space through:

cosα =
mixmox +miymoy + 1√

(m2
ix +m2

iy + 1)(m2
ox +m2

oy + 1)
, (4.26)

here mi and mo are the slopes of the incoming and outgoing tracks respec-
tively in the x and y views.

We found 251 events surviving the selection. Figure 4.27 shows the ex-
pected angular correlation. Many events are close to the predicted elasticity
curve. Few points in the horizontal band are expected as background from
e+e− pairs and from high order radiative processes.

In blue we indicates the ambiguous combinations, classified by the algo-
rithm [numeri] They have been found mostly where they are expected: in the
region where the angles and energies of muon and electron are approximately
the same. In this region both the tracks χ2 are good (particles have high en-
ergies), so a discrimination algorithm based on χ2 is not able to identify the
muon and the electrons. This important aspect will be further explored in
data analysis of the 2018 test beam.

Figure 4.28 shows the foreseen region for multiple scattering and beam
spread effect: the experimental points seem very well contained within the
resolution function.

Considering the low statistics it is impossible to perform a quantitative
study of the selection efficiency of the selection of cuts. However, we have
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Figure 4.29: Acoplanarity distribution, with the definition in eq. (4.27).

Figure 4.30: Displays of events with higher multiplicity: 1→ 3 events.

tested the effects of the acoplanarity cut. The input and output tracks should
belong to the same plane, because of the momentum conservation. Copla-
narity is violated because of experimental effects (multiple scattering and
intrinsic resolution) and because of the radiative corrections. Here we used
the following definition:

A1 =
π

2
− arccos

~µi · (~µo × ~eo)
|~µi||~µo × ~eo|

(4.27)

As shown in fig. 4.29, the expected events are distributed around zero, which
corresponds to the ideal coplanarity condition, defined by the outgoing di-
rections ~µo and ~eo. This definition does not seem very selective and in the
next section we tested a second definition more efficient to reject background.
Finally some event displays corresponding to three particles final state are
shown fig. 4.30. Most probably these events are due to e+e− couple back-
ground, see sec. 3.5.2.

The results of the 2017 are currently being published [8]. The analysis
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Figure 4.31: TB18 setup layers (not to scale).

of the scattering events shows that signal clearly appears with the expected
characteristics, although the apparatus was not optimally designed to accom-
plish this task.

4.5 Test beam 2018 results
The 2018 test beam was dedicated to the study of µ-e elastic scattering

events. On this purpose we used two modules prototype, similar to those
foreseen for final apparatus: length of the module 50 cm and 1 m in the
second part of the test beam, high sensors transverse dimension of 10×10 cm2,
muon energy around 180 GeV and also an electromagnetic calorimeter located
downstream the modules. The test beam has been executed parasitically,
putting the detector downstream COMPASS.

This test was a proof-of-concept of the measurement, performed in order
to verify the experimental constraints that will have to be addressed by the
MUonE apparatus. Results about data quality, alignment and the prelim-
inary physics analysis will be shown. The analysis instead is still ongoing.
Details about the hardware and the DAQ system have been given in [9].

Aim of this section is not report in detail all the setups used in the
test beam: the technical details together with an independent analysis are
reported in [71]. We present the results on the quality analysis of the sensors,
how we coped with the encountered problems and how these aspects have
affected the final physics analysis.

4.5.1 Data quality analysis

First we studied the hits quality. Then by performing a preliminary align-
ment and a strictly analysis of each layer residuals distribution, we realized
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Figure 4.32: Hits profile of some problematic layers (3y, 10x) in comparison
with 5y and 4x that no show hits inefficiencies.

that several sensors have serious problems:

• partial or total inefficiencies, i.e. suppression of hits counting, by single
readout ASICs;

• severe systematic shifts of the readout positions of entire blocks of
strips;

• dead strips at the boundaries of the region covered by different ASICs;

• non-uniform point resolution along the sensor.

A sketch of the apparatus is shown in fig. 4.31. The strips are read by 3
ASICs. Figure 4.32 shows the typical structure of the detected inefficiencies.
They are clearly due to the read-out system of the silicon sensors. These
problems overlap and modify the measured beam profile which looks like
uniform in y (as visible from the 5y hits distribution in red) and almost
linearly in x (from the 4x distribution in green).

Most serious inefficiencies, such as 10x layer, led to the replacement of
the related sensors during the beam test. Thanks to the collaboration with
the Insubria group, more moderate problems, such as the one presented by
5y layer, have been quickly interpreted as due to the high intensity of the
incoming muons, with regards to the front-end electronics. The electronics
appears to be beyond the limit, as stated in sec. 4.1.2. from the point of view
of dead time. Therefore, some ASICs, especially those at the beginning of
the apparatus, suffer from the high counting rate especially when COMPASS
has requested a higher muon rate.

We have aligned the sensors, using the procedure already described. To
construct the residuals we used the first sensor of the upstream module and
the last one of the downstream module. They were selected to maximize
the distance. For this test beam were used ∼ 187 GeV muons only. Muons
themselves had been employed for the detectors alignment.
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Figure 4.33: Residual distribution for 5y layer, with a cut on 3y to select
the ASIC 1 and 3 (green) or the central one (blue). (Left) Before correction,
(right) after correction.

Figure 4.34: Profile of 5y residuals as a function of the same 5y hits, (left)
before and (right) after the systematic shift correction of about +65µm.

The preliminary evaluations of the residuals have allowed us to detect
further problems. Figure 4.33 (left) shows the residuals of 5y layer that
present a bump. We have detected two components generating it, by selecting
different regions on the 3y sensor as reference. The alignment algorithm
automatically tried to mediate between the two components. By using only
as reference the hits readout by the outer ASIC (first and third) of 3y layer,
the 5y residuals distribution looks like as should be as shown in fig. 4.33
(right): a gaussian shape well aligned without bumps or other structures,
with a width in agreement with the quoted intrinsic resolution.

The central ASIC clearly does not work properly: it can be noticed limits
in the read-out capabilities of the central ASIC. For 5y layer we measured a
systematic shift on the measured hits of +65µm, as shown in fig. 4.34 (left),
while for 3y sensors it is −25µm (fig. 4.37). These shifts were identified
as due to the high counting rate. They were corrected during the offline
analysis stage by applying the corresponding offsets: see fig. 4.34 (right) and
the related fig. 4.35.

Dead strips were found in all the layers. They have caused further prob-
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Figure 4.35: Scatter plot of 5y residuals as a function of 5y hits, after sys-
tematic shift correction of the central ASIC.

Figure 4.36: Profile of the residuals RMS of 5y layer as a function of 5y hits.

lems. As we can see in figg. 4.37 and 4.38, these inactive strips generate
systematic shifts in the neighboring ones. In fact, because of the analogue
readout, dead strip affects clusters measurement since the hits positions are
reconstructed using the centre of gravity method (see appendix C.2). If a
strip does not read the deposited charge, the clustering algorithm takes in
account only signals of the adjacent ones, producing a systematic bias (up
to ∼ 100 µm) higher than the intrinsic precision that needs to be corrected.

The points dispersion in the residuals scatter plots as a function of the
hits should be correspond to the hit intrinsic resolution (∼ 30-35 µm), given
the high energy muons. Considering the high statistics samples used for the
alignment (N > 105), the residuals means must be around zero within the
errors because they scale as

√
N .



110 Test Beams analysis

Figure 4.37: (Top) Scatter plot of 3y residuals as a function of 3y hits.
(Bottom) Corresponding profile plot. To notice the systematic shift of about
−25µm in the measured hits by the central ASIC (& 3.1 cm).

Figures 4.36 and 4.38 show the point resolution analysis of individual
strips as a function of their position. A detailed analysis of the residuals
width enables to scan the uniformity of the sensors response. It is a fine-
grained “muography”, strip by strip, allowed by high energy muons.

In addition to the problems already discussed, fig. 4.36 shows that 5y
sensor presents also a serious problem of resolution uniformity. Strips read
from the central ASIC have a significant lower precision than those read by
the others: 40-45 µm in comparison to 30-35 µm of first and third ASICs.
Figg. 4.38 show the same analysis performed on 13y sensor, one of the layers
with less hits efficiency problems. Although it should be notice they are
several dead strips at the ASIC boundaries and also a non-uniform resolution
which appears to be changing (in 2 cm range) from 25 to 30 µm.

We can analyze the direct impact of this resolution uniformity problems
on the angular deflections. Figure 4.39 (top) shows the angular deflection
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(a)

(b)

(c)

Figure 4.38: Residual analysis of 13y, one of best layer of the setup: zoom
at the boundary between the first and second ASICs. (a) Scatter plot of
residuals as a function of hits. (b) Corresponding profile plot. (c) Profile
plot of the corresponding residuals width.
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Figure 4.39: (Top) Angular deflection of passing muons of 187 GeV through a
first graphite target of 8 mm, selecting different hits of the 5y layer. (Bottom)
Profile of the angular resolution as a function of the 5y sensor: ∼ 0.11 mrad
is how we expect for the intrinsic angular resolution of the two targets con-
figuration of TB18.

of the passing muons θOUT − θIN (due to the intrinsic resolution) produced
through the first target, explicitly taken the problematic 5y hits to construct
the incoming tracks. Selecting different groups of hits corresponding to the
different ASIC, the distributions appear well aligned thanks to the bias cor-
rection already explained.

However, one can notice that the angular deflection widths are signif-
icantly different: 0.113 mrad (first and third ASICs) versus 0.145 mrad
(central ASIC), with a difference of about 22%. This discrepancy perfectly
matches the difference between the hits resolution seen in fig. 4.36: a mean of
33 µm (first and third ASICs) in comparison with 43 µm, with a difference of
∼ 23%. Therefore an uniformity scansion of the hits resolution, as a function
of the sensor surface, can be perform also on the angular deflection, by using
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Figure 4.40: Scatter plot of residuals as a function of hits (in cm) for the 7y
layer, to explain the action of the fiducial mask, in blue.

Figure 4.41: Residuals before (8x and 7y planes) and after the alignment (8x
plane).

the huge data samples of passing muons as shown in fig. 4.39 (bottom). This
is an important analysis which will have to perform on the definitive sensors
of the MUonE apparatus.

Due to the limited availability of spare sensors, all these problems led
us to create quality mask to remove the groups of bad strips and to cope
with the imperfections. The figure 4.40 shows the actions of this mask on
a single layer. No hits were eliminated, but those identified as problematic
were tagged with a flag, available to the analysts. In tab. 4.7, we reported
the fractions of the critical hits encountered per layer with respect to the
total.

4.5.2 Alignment

Figures 4.41 and 4.42 show the corrections to the transverse shifts and
rotations with respect to the z axis of the beam. As in the case of the 2017
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Figure 4.42: Correlation between residuals of a layer as a function of the one
in the same box.

Figure 4.43: Sensor images reconstructed from 11u and 12x hits (left) and
after the rotation of stereo 11u hits (right).

test beam, the first ones had been corrected within 1 µm, while rotations
had been corrected within 0.1 mrad.

In this setup there are also stereo planes, useful to disambiguate multiple
hits patterns, typically produced by strip detectors. As a preliminary step,
the hits of all the planes have been rotated and aligned in the same way as
the others (fig. 4.43). The discrimination power was used in the next pattern
recognition phase. To notice that the xy planes, obtained from stereo layers,
are “blunted” because of the lack of the corresponding coordinate in one view
x or y.

From an accurate evaluation of the interdistances between sensor layers,
we discovered the presence of tilts with respect to the x axis. Particularly
relevant this appearing in the 9y plane. Although it is a second order effect,
we were able to identify and correct it from the data thanks to the wide
open muon beam. Figure 4.44 (right) shows the tilt scheme; on the left,
the incoming beam angular profile in y view. In figg. 4.45 we report the
correlation between the 9y residuals as a function of the same hits, before
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1 cm / 50 cm = 20 mrad 
(tilt angle) 
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Figure 4.44: (Left) Incoming beam angular profile in y view. (Right) Esti-
mated tilt along x axis of 9y layer (figure not to scale).

Figure 4.45: Tilt of 9y layer, from correlation between residuals and hits of
the same 9y plane, before and after the tilt correction.

and after correction, that we identified as necessary to analyze this effect.
The measured angular tilt of 9y from the data is about 18 mrad. This value
corresponds to the one assumed by the interdistances survey. The applied
geometrical correction to the 9y hits is:

y′9 = cos θ · y 9

y′9 ∼ (1− θ2/2) · y 9

θ2/2 ∼ 0.00017 rad2 ⇒ θ ∼ 0.018 rad,

(4.28)

where y 9 and y′9 are the 9y hits before and after correction, while θ is the
tilt angle (see fig. 4.44 for reference).

4.5.3 Hits and event efficiencies

For the analysis of the elastic µ-e events we used an algorithm of pattern
recognition, analogous to that developed for the TB17 (see sec. 4.4.8). It has
been extended to include in the selection of downstream multiplicities other
topologies, with respect to the simple “222”, (that is two and only two hits
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layers σres (µm) bad hits (%) hit eff (%) event eff ε (%)
1y 49 34 94.6
2x 38 13 95.1
3y 43 6 73.9
4x 40 3 76.8
5y 31 19 98.6
6x 32 10 98.8
7y 26 7 96.1 67.5
8x 25 5 96.7 54.4
9y 28 4 59.9 78.2
10x 40 65 59.2 25.0
11y 39 1 98.2 81.3
12x 25 1 98.4 88.6
13y 31 8 94.8 83.8
14x 41 1 94.3 79.5
15y 45 5 82.1 80.6
16x 48 16 83.4 85.2

Table 4.7: Layer residual widths, fiducial mask and hits, event efficiencies.

per layer), which in any case represents our golden selection mode. Since of
the large number of inefficiency problems, we tried to evaluate:

• the hit efficiency per tracking module,

• the overall event efficiency.

Table 4.7 shows the hit efficiencies. We have made a fit through all the layers
excluding those under investigation, by choosing one and only one hit per
layer and determining the correct covariance matrix. We have evaluated how
many times there are not hit on the reference plane within a tolerance window
of 3σ, with σ equal to the angular resolutions of the planes, estimated by
the amplitudes of the residues. To clean the reference data sample used to
determine the efficiency, a χ2 cut was also applied to the tracks: χ2

x+χ2
y < 26,

equal to a probability for the χ2 with 8 degrees of freedom of the order of
1 · 10−3.

As expected from the quality analysis appeared that the worst sensors
was the 10x layer (fig. 4.32). This layer has been replaced during the data
taking process. In general, we measured the efficiency of a silicon layer to
be more than 99%. The values of these efficiencies, excluding the critical
hits, were not evaluated using the strip mask we prepared. However, the low
values certainly have an effect on the reconstruction of elastic events.
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(a)

(b)

Figure 4.46: (a) Selections of different efficiencies on the same run. (b)
Angular reconstruction θµ-θe related to the selections in (a).

In order to estimate the impact of the detection problems on the final
physics analysis, we determined the event efficiency per layer. The estimation
of the event efficiency is more complicated than the hit efficiency, because
in order to avoid bias it is important to select with accuracy the reference
sample.

For this reason we have chosen a limited topology for the input tracks (1
hits per layer) and for the output tracks: 2 and only 2 hits per layer, without
conditions for the sensor under analysis. Table 4.7 shows the results of this
multiplicity analysis. All layers have efficiency per event below 90%. Beyond
the known low value of the efficiency expected for the 10y, we detect a bad
behavior also for the 7y and 8x layers, which have shown relatively high hits
efficiency. These two layers are the locate immediately after the T1 target, at
a distance of 10 cm. We understood the bad performance on event efficiency
were due to the capability to discriminate two close hits. Our collaborators,
who set up the TB18 apparatus, confirmed this hypothesis.

To quantitatively check the validity of these estimates, it was decided to
divide the events of a large run into two categories of different event efficiency
to analyze exactly in the same conditions. We selectedNµ = 18.4 · 106 incom-
ing muons. We considered the coincidence of the three best layers response
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per view getting:

εmax = ε11u · ε12x · ε13y · ε14v · ε15y · ε16x
= 0.81 · 0.89 · 0.84 · 0.80 · 0.81 · 0.85 ∼ 33%

(4.29)

and the three worst:

εmin = ε7y · ε8x · ε9y · ε10x · ε15y · ε16x
= 0.68 · 0.54 · 0.78 · 0.25 · 0.81 · 0.85 ∼ 5%

(4.30)

as explained in fig. 4.46(a). We measured the best efficiency for double
track detection to be about 33% (to note the absence of the second target).
The pattern recognition algorithm was then applied by reconstructing the
events of this same run, selected with these two sets of detectors. Results of
the reconstruction are shown in fig. 4.46(b). The ratio Rcounts between the
candidates number identified in the two cases corresponds precisely to the
ratio Rε between efficiencies:

Rcounts = 7240/1120 = 6.5± 0.3,

Rε = 33% / 5% = 6.6.
(4.31)

Considering the number of the incoming muons Nµ selected for this analysis,
we can calculate the observed integral rate rtot of the total events (signal +
backgrounds) within 50 mrad corrected for the estimated inefficiency. For
the sample with the best efficiency:

rtot ∼
7240/33%

18.4 · 106
∼ 1.2 · 10−3 for θe < 50 mrad. (4.32)

This event number per incoming muon matches the order of magnitude found
with the preliminary GEANT4 simulation reported in sec. 3.5.2 of about
10−3. In that case, the target was 20 mm of Beryllium, here we have 8 mm
graphite. Scaling for the different thickness and scattering centers number,
it obtains a factor 2 in favor of the MC. A detailed GEANT4 simulation
is under construction to check these preliminary estimations and also the
differential efficiencies as a function of the electron angle.

4.5.4 Final results

One of the most interesting results we obtained is the angular resolutions
measured in TB17 and TB18 as shown in fig. 4.47. The muon energy in the
two cases is similar: 160 GeV in 2017, 187 GeV in 2018. The thickness of
the silicon layers is not significantly different. Figure shows how the angular
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Figure 4.47: Comparison between the angular resolution for 2017 and 2018
test beams, by using muons of 160 GeV and of 187 GeV respectively.

deflections (determined as the difference between downstream and upstream
directions) are substantially different. The widths of the distributions include
the small contribution of the multiple scattering. The dominant effect is due
to the intrinsic trackers resolution.

The relatively poor angular resolution identified in TB18 motivated us
to remove the second target (T2) in the final phase of the data taking, in
order to get a larger downstream arm. It was also essential for tracking the
electrons to the calorimeter.

The calorimeter measured the energies of the scattering electron: details
are reported in ref. [71].

To select the incoming muons sample, we applied a strong selection of one
and only one hit for all upstream layer and all x/y view (first 3 tracking mod-
ule). The aim was to safely clean the initial sample, considering the problems
of this setup. The resulting number of incoming muons is ∼ 58.2 · 106.

Figure 4.48 shows a preliminary result about the µ-e angular correlation
obtained by using the described pattern recognition method and the experi-
mental cuts discussed below. With the same combinatorial method already
used in TB17 to discriminate the muon from the electron, based on the best
χ2 to recognize the muon, we evaluated topologies with 3 hits per layer.
It has not been possible so far to evaluate the efficiency of this algorithm.
GEANT4 simulations are ongoing to estimate this efficiency, as well as that
of possible alternative methods.

The region of small electrons angles seems to be scarcely populated. The
reason is still under investigation. It is not clear because due to the cross
section just few events are expected below 5-10 mrad. The integrated elastic
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Figure 4.48: Angular correlation µ-e with kinematical cuts only (without
using calorimeter data).

cross sections between 4.5 and 5.5 mrad is ∼ 2 µb, while between 39.5 and
40.5 mrad is ∼ 20.2 µb: so we expect an order of magnitude difference
between counts around elasticity the curve in these two regions (µ-e events
for Ee > 1 GeV). The layers inefficiencies, mentioned above, could partially
explain this apparent lack, both there could be other possible inefficiencies
in the tracking and pattern recognition algorithms.

In this analysis (fig. 4.48) only kinematic cuts had been applied as we
now discuss:

• quality cut on track χ2: χ2
x + χ2

y < 30;

• an interaction vertex cut of 200 µm to constraint incoming and outgoing
directions at the target nominal position;

• a loose coplanarity cut of 0.4 rad with the definition A2 in eq. (4.34).

We have tried different definitions of acoplanarity and also a common vertex
constraint to the target that has demonstrated a good capability to reject pair
background. Let’s recall the definition of acoplanarity we gave in sec. 4.4.8:

A1 =
π

2
− arccos

~µi · (~µo × ~eo)
|~µi||~µo × ~eo|

. (4.33)

It is based on the scalar product between the incoming muon direction ~µi
and the plane generated by outgoing directions of muon ~µo and electron ~eo.
This variable is not particularly effective to reject e+e− pairs background.
It doesn’t consider that two particles are not back-to-back in the transverse
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Figure 4.49: Acoplanarity definition A1 (left) and A2 (right).

Figure 4.50: Distribution of residuals, in x (red) and y (blue) view, defined
by the difference between outgoing (of muons on the left and electrons on
the right) and incoming µ direction at the nominal position of the target.

plane, as one can expect for the momentum conservation. For this reason,
we have introduced a second definition:

A2 = π − arccos
(~µi × ~µo) · (~µi × ~eo)
|~µi × ~µo||~µi × ~eo|

(4.34)

In this case, A2 ∼ 0 only for back-to-back particles. Figures 4.49 show the
relative effects of the two definition. By using some analyzed samples we
realized that A1 ∼ 0 for both the cases A2 ∼ 0 and A2 ∼ π, Therefore a
cut in this second definition is more efficient on the background that still has
good coplanarity in A1.

We have then constructed the distributions of residuals defined as the
differences between incoming muons and scattering muons and electrons at
the nominal position of the target. Figure 4.50 show the related distributions
for muons and electrons and demonstrated the good definition of this variable:
the distribution are well centered to zero and the width for the muons of
about 40 µm is in agreement with what can be expected from the intrinsic
resolution.
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Figure 4.51: Angular µ-e correlation with all applied cuts (see text), kine-
matic and on the electron energy: Ee > 1 GeV.

Figure 4.51 shows the selection on the electron energy with Ee > 1 GeV,
applied in addition to the previous kinematic cuts, in order to expose the
elastic scattering signal in the MUonE region of interest (θe < 30 mrad). The
effect is what we expect that is a strong efficiency in rejecting the background
at the low muon angles. Roughly the counting drop observable at 30 mrad
corresponds to the cutting value for kinematics.

Finally we can evaluated if the candidates number is in agreement with
the expectation from µe cross section. Considering:

• the total number of incoming muons (∼ 58.2 · 106) under analysis cor-
responding to the first three months of data taking,

• the probability of elastic scattering ∼ 1.1 · 10−4 for Ee > 1 GeV and
8 mm graphite, see sec. 2.4.2,

• the 3 best trackers of efficiency of 33%,

the expected integrated number of signal events (µe elastic scattering for
θe . 30 mrad) is of the order of 2 · 103. After all the preliminary cuts
applied, we found a number of candidate signal events of about 6 · 102, so a
factor 3 of difference. Which becomes about a factor 10, not considering the
estimated efficiency.

This conclusion is in agreement with the one of the parallel and indepen-
dent analysis in [71]: ∼ 3 · 103 signal candidate events for Ee > 1 GeV with
respect to ∼ 5 · 108 incoming muons, i.e. an estimated signal rate of about
10−5 against the expected of the order of 10−4.
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Figure 4.52: Correlation between electron energy Ee and scattering angle θe,
with the predicted curve from kinematics.

However in these evaluations, we did not take in account the efficiency
of the calorimeter, the pattern reconstruction efficiency, the effects of the
acoplanarity cuts, vertex constraint and χ2 selection cuts. And also the inef-
ficiency due to geometrical acceptance because of the fact that the incoming
muons impinge almost uniformly on all the sensors surface, causing a not
quantified boundary effect.

Further analysis with the GEANT simulation could explain this lack of
signal events, allowing to evaluate the efficiencies of all the selection variables.

Finally we show the preliminary analysis about the correlation between
electron energy and angle, predicted by the kinematics. Figure 4.52 shows
this results with all the applied cuts: many events collect around the kine-
matics prediction for 187 GeV incoming muons, qualitatively confirming the
action of the downstream calorimeter.





Chapter 5

Extracting the anomaly

In this chapter we described the workflow to determine aHLO
µ starting

from the measurement of the running of α. Aim of the analysis is to verify
the reliability of the method and assess the precision achievable in the de-
termination of the aHLO

µ . It paves the way to future works and more refined
analysis on this fundamental aspect of the MUonE experiment. We will show
results obtained in the leading order approximation. Moreover we discussed
the effects of some experimental systematic errors on aHLO

µ .

5.1 Fitting the LO cross section

5.1.1 Statistical exercises

As a first exercise we have determined the value of aHLO
µ in the simplest

case, generating simulated events by using the LO cross section with the
running of α(t). The running is an high order effect, but has been factorized
as an overall factor depending of the transferred momentum that modifies
the LO cross section.

We want to fit the angular distribution of the elastic scattering events,
collected in a fast-MC sample with muon beam energy of 160 GeV, using the
analytical expression of the LO differential cross section as a function of θe:

f(θe) = A ·
(
dσ

dθe

)
LO

= A · 4πα2(t)

λ(s,m2
µ,m

2
e)

(
(s−m2

µ −m2
e)

2

t2
+
s

t
+

1

2

)∣∣∣∣∣ dtdθe
∣∣∣∣∣,

(5.1)
whereA is a normalization constant, dt/dθe and dσ/dθe are given by eq. (2.64).
The running of α is expressed as:

α(t) =
α

1−∆α(t)
=

α

1−∆αlep(t)−∆αhad(t)
(5.2)

125
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𝝌2 / ndf = 369 / 163 
B =  -0.009139 ± 0.000082 
C =  -0.0178 ± 0.0048 
D =  -0.0308 ± 0.0081

Figure 5.1: Fit result of the leading order cross section without resolution
effects (black). Blue curve is the fitting function in eq. (5.1).

where α is the fine structure constant, ∆αlep(t) is the leptonic contribution
(known with high precision), while ∆αhad(t) has to be determined with the
fit to calculate aHLO

µ with the MUonE master formula (5.3):

aHLO
µ =

α

π

∫ 1

0

(1− x)∆αhad[t(x)]dx. (5.3)

To parametrize ∆αhad(t) we have chosen a third-order polynomial with
the constraint ∆αhad(0) = 0 as:

∆αhad(t) = B · t+ C · t2 +D · t3. (5.4)

This function has been proved to represent effectively the value of ∆αhad can
be determined with time-like measurements [44]. Other general parametriza-
tions can be used, as proposed in [14].

With this model of the hadronic running, the fit function has 3 free pa-
rameters to be determined by fitting pseudo-data.

Figure 5.1 shows the results of the fit of an high-statistics sample (1/13 of
the MUonE requested statistics) in the ideal case, without detector resolution
effects. The fit returns:

B = −0.009139± 0.000082

C = −0.0178± 0.0048

D = −0.0308± 0.0081

(5.5)

The value of aHLO
µ , calculated with the master formula in the interval x ∈ [0.378, 0.936]

using the fitted value of ∆αhad, returns:

aHLO
µ (fit) = (565± 9) · 10−10 (5.6)
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𝝌2 / ndf = 347 / 163 
B =  -0.009154 ± 0.000091 
C =  -0.0177 ± 0.0051 
D =  -0.0302 ± 0.0092

Figure 5.2: Fit result of the leading order cross section with experimental
resolution effects (red). Blue curve is still the fitting function (5.1).

to be compared to the reference value:

aHLO
µ (ref) = (564.4± 3.4) · 10−10 (5.7)

obtained integrating the reference ∆αhad function in the same interval. The
integration interval corresponds to scattered electron energies in the observ-
able range between about 1 GeV and 150 GeV (the maximum energy achiev-
able by the electrons, considering a beam energy of 160 GeV).

The error associated to aHLO
µ (fit) is calculated by the error propagation

of the statistical errors on the fit parameters.

As a second exercise we generated pseudo-experiments with the fast sim-
ulation considering the experimental resolution. In this case to fit data with
the analytical model, requires the unfolding of the LO differential cross sec-
tion [43].

The first step is to determine by MC the correction histogram hMC
corr defined

as:

hMC
corr =

hLO,s
hLO,0

∣∣∣
MC

, (5.8)

where hLO,0 is the LO data distribution and hLO,s includes the resolution
effects.

The unfolded LO cross section can be represented as the ratio of the
histograms:

hexpLO =
hexp

hMC
corr

, (5.9)
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where hexp is the result of an independent sample. Correction by ratios is the
simplest unfolding procedure and is not free from possible bias [43], however
it is suitable to solve this exercise.

Figure 5.2 shows the result of the fitting procedure applied to the data
sample produced with fast-MC, for angular resolution achievable with the
CMS 2S trackers. The values of the fit parameters are:

B = −0.009154± 0.000091

C = −0.0177± 0.0051

D = −0.0302± 0.0092.

(5.10)

The corresponding value of aHLO
µ is:

aHLO
µ (fit) = (563± 10) · 10−10, (5.11)

in agreement with aHLO
µ (ref) in eq. (5.7) within the errors. Remarkably this

result has been obtained with 1/10 of the MUonE required statistics.

5.1.2 Uncertainty on the MCS model

We studied the systematic effect induced by the uncertainty on the knowl-
edge of the multiple scattering. This is the systematic error that could be
introduced by the GEANT4 model, expected to be of the order of 1% accord-
ing to the 2017 test beam analysis. In order to study the effect, we produced
MC samples with angular resolution uniformly modified by 1% on the whole
particle energy range.

Figure 5.3(a) presents a relative comparison of the cross section calculated
with the nominal resolution and the cross section calculated with the uniform
systematic.

Figure 5.3(b) shows the effect of the systematics with respect to the ideal
case by the ratio between the two curve in fig. 5.3(a). It shows a quadratic
behavior. Fitting it with a second order polynomial in a range [10,20] mrad
allows to extrapolate the correct behavior of the cross section for small angles.
Considering the CMS 2S resolution the fitting function is

fsyst = 0.579 θ2e + 10−6. (5.12)

Using this quadratic correction function (maximum correction is of the order
of 10−4), it is possible to correct bin-by-bin the experimental histogram hexpLO

in eq. (5.9) and then to fit with the analytical model (5.1).
Figure 5.3(c) shows the final result of the fit performed after the correction

of the systematic effect has been applied, using a data sample of 1/10 of the
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(a)

(b)

𝝌2 / ndf = 334 / 163 
B =  -0.009173 ± 0.000091 
C =  -0.0178 ± 0.0052 
D =  -0.0312 ± 0.0091

(c)

Figure 5.3: (a) Ratio between the LO cross section, convoluted with the
experimental resolution, and the tree level cross section: in green the nominal
CMS 2S resolution, in red with the +1% systematic. (b) Relative effect on the
LO cross section of +1% mis-knowledge of the width of the MCS distribution.
Parabolic fits determined in two different θe intervals are extrapolated to the
full angular region. (c) Result of the fit using a MC sample with +1% of
systematic on the MCS contribution.
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full statistics. The fit value is in agreement with the reference value of aHLO
µ

in eq. (5.7) within the error:

aHLO
µ (fit) = (559± 10) · 10−10. (5.13)

5.2 Effect of the systematics

The ratio used to expose the hadronic running has been introduced in
sec. 2.6.3:

Rsignal(t) ≡
dσ(∆αhad(t) 6= 0)/dt

dσ(∆αhad(t) = 0)/dt

∼ |1−∆αlep(t)|2

|1−∆αlep(t)−∆αhad(t)|2

∝ |1−∆αlep(t)|2 · [1 + 2 (∆αlep(t) + ∆αhad(t))] .

(5.14)

At the numerator there is the cross section with the “full running”, while at
the denominator there is only the leptonic contribution. From eq. (5.14) one
can determine ∆αhad(t) by:

∆αhad(t) = 1−∆αlep(t)− 1−∆αlep(t)√
Rsignal(t)

. (5.15)

In order to evaluate the effects of the experimental systematic, we propose
to consider an analogous ratio of cross sections defined as:

Rsyst(t) ≡
dσsyst/dt

dσref/dt
≡ dσ(∆α′had(t) 6= 0)/dt

dσ(∆αhad(t) 6= 0)/dt

∼ |1−∆αlep(t)−∆αhad(t)|2

|1−∆αlep(t)−∆α′had(t)|2

∝ |1−∆αref(t)|2 · [1 + 2(∆αlep(t) + ∆α′had(t))]

(5.16)

where at the denominator there is the reference cross section with “full run-
ning”, while at the numerator there is the differential cross section with the
modified hadronic running by the systematic effect under study.

From eq. (5.16) we can determine the perturbed ∆α′had(t), as a function
of t with:

∆α′had(t) = 1−∆αlep(t)− 1−∆αlep(t)−∆αhad(t)√
Rsyst(t)

. (5.17)
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Let’s calculate Rsyst(t) as a function of θe. The differential cross section in
θe is (eq. (2.64)):

dσ

dθe
=
dσ

dt

dt

dθe
=
dσ

dt

4m2
er

2 sin 2θe

(r2 cos2 θe − 1)2
, (5.18)

with

r = r(Eµ) ≡ pµ
Eµ +me

=

√
E2
µ −m2

µ

Eµ +me

, (5.19)

where Eµ = Ebeam
µ while pµ is the muon beam momentum. Using (5.18) and

(5.16), the ratio Rsyst(t) can be written as a function of θe:

Rsyst(θe) ≡
dσsyst/dt

dσref/dt

(dt/dθe)syst
(dt/dθe)ref

= Rsyst[t(θe)] ·
(dt/dθe)syst
(dt/dθe)ref

∼ |1−∆αref [t(θe)]|2

|1−∆αlep[t(θe)]−∆α′had[t(θe)]|2
r2syst
r2ref

(r2ref cos2 θe − 1)
2(

r2syst cos2 θe − 1
)2 , (5.20)

where ∆αref(t) = ∆αlep(t) + ∆αhad(t) is the reference value of the running.
Values rref and rsyst are different only if we want to evaluate the energy mis-
calibration effect, because of the beam energy dependence r = r(Ebeam

µ ). In
case of other systematics (multiple scattering, beam spread), the cross section
ratio in θe observable simply reads

Rsyst(θe) = Rsyst[t(θe)] ∼
|1−∆αref [t(θe)]|2

|1−∆αlep[t(θe)]−∆α′had[t(θe)]|2
. (5.21)

In conclusion, from the cross section ratio Rsyst(θe) we can estimate the effect
of systematic biases or uncertainties on the extracted ∆αhad(t).

5.2.1 Systematic related with the beam energy

Let’s study the systematic error related to the mis-calibration ∆E of the
energy scale with respect to the nominal value E0. In this case Rsyst is:

Rsyst =
dσ(E0 + ∆E)

dσ(E0)
, (5.22)

from which we can extract ∆α′(t), using (5.17).
Figures 5.4 show the effect of a mis-calibration of the beam energy of

∆E = ± 5 MeV on E0 = 150 GeV (relative difference of 3.3 · 10−5) on the
LO differential cross section as a function of t and θe. The effect mainly
affects the distribution for small θe values, i.e. large transferred momenta,
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Figure 5.4: Beam scale mis-calibration on the differential cross sections in t
(top) and θe (bottom): the effect in t is wider at a level above 1 · 10−5 over
almost the whole range.

with a pronounced peak of the order of 10−5 on θe and with maximum level
of 2 · 10−5 on the t differential cross section.

Let’s see how the systematic effect propagates to ∆αhad(t) and then on
the final value of aHLO

µ .
Figures 5.5 (a) and (b) show the results of a single pseudo-experiment

from the point of view of ∆αhad(t) and of the final integrand function of
eq. (5.3) respectively. Together with the systematic due to the momentum
shift of +5 MeV, we consider the statistical fluctuations, given the total
luminosity (sec. 2.4). As expected, the results deviate significantly from the
reference only at high |t| (low electron scattering angles).

Figure 5.6 shows the systematic effect on aHLO
µ , obtained with 3000 pseudo-

experiments, considering an error on the energy scale of −5 and −2 MeV.
The systematic error on aHLO

µ due to an energy shift of ±5 MeV agrees with
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(a)

(b)

Figure 5.5: (a) Systematic effect on ∆αhad(t) due to an error of +5 MeV
on the energy calibration in logarithmic and linear scale. (b) The same
systematic effect on I(x) = α/π(1 − x)∆αhad(t), integrand of the master
formula in eq. (5.3).
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Figure 5.6: Distributions of aHLO
µ obtained of 3000 pseudo-experiments with

absolute error on the energy scale on −2 MeV (blue) and −5 MeV (magenta).
In green the distribution of aHLO

µ with statistical contribution only.

the previous approximate estimation. It corresponds to ∼ 1% systematic
error on aHLO

µ .
To keep this systematic uncertainty at the level of the statistical precision

of 0.3%, the beam energy scale must be known to 2-3 MeV, i.e. with a relative
precision of 2 · 10−5 on the energy scale.

Considering such precision request, it is not possible event by event to
invert kinematics to estimate the incoming muon momentum, because of
multiple scattering, intrinsic resolution effect and radiative corrections that
take events off the elasticity curve. A well known process or a physical aspect
given by the kinematics will be fundamental to fix the energy calibration.
A condition has been identified that allows to invert the elastic kinematics
univocally connected to the energy scale as stated in [14]. Let’s discuss the
principles underlying the proposed method.

From the elastic scattering kinematics, it can be demonstrated there is
an equal scattering angle θeq condition that depends only on the incoming
particle energy. Identifying this condition a posteriori from the data allows,
from kinematics inversion, to measure the energy scale.

We start from the transverse momentum conservation:

p′µ sin θµ = p′e sin θe (5.23)

with p′e, p′µ are the final-state electron and muon momenta, E ′e(θe) the elec-
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tron energy and Eµ = Ebeam
µ is the energy scale to be estimated. Imposing

that θe = θµ ≡ θeq, one can obtain for the quantities after scattering:

p′µ = p′e

E ′e(θeq) =
(Eµ +me)

2 +m2
e −m2

µ

2(Eµ +me)

E ′µ(θeq) =
(Eµ +me)

2 +m2
µ −m2

e

2(Eµ +me)
.

(5.24)

By using (5.24) and the expression of the electron scattering angle as a func-
tion of its energy

cos θe =
1

r

√
E ′e −me

E ′e +me

, (5.25)

so the scattering angle θeq read as:

cos2 θeq =
(Eµ +me)

2

(Eµ + 2me)2 −m2
µ

, (5.26)

which depends only on the beam energy scale Eµ. By developing in me/Eµ:

cos θeq ∼
Eµ +me

Eµ + 2me

→ 1− θ2eq
2
∼ 1− me

Eµ
(5.27)

from which we obtain

θeq ∼
√

2me

Eµ
. (5.28)

For Eµ = 150 GeV, θeq ∼ 2.51 mrad and both the particle energies are ∼
75 GeV.

Figure 5.7 shows the absolute angular difference ∆θeq between the two
equal-angle states corresponding to the modified and the nominal energy
scale. We use these values to estimate whether the method has the sensi-
tivity to distinguish two energies that differ from few MeV. It is necessary
to discriminate scattering angles at ∆θeq ∼ 2 · 10−5 mrad absolute level to
achieve the requested precision of ∼ 2 MeV on the energy scale. Consider-
ing an angular resolution σθ in the equal angle region, we can estimate the
required statistics as needed events number Neq with:

∆θeq =
σθ√
Neq

→ Neq =

(
σθ

∆θeq

)2

=
( σθ
k ·∆E

)2
, (5.29)
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Figure 5.7: Angular sensitivity from eq. (5.26) of the equal angle method
for the nominal value E0 = 150 GeV. ∆ = ∆θeq is the absolute difference
between equal angle condition for E0 + ∆E and E0. In order to translate the
∆E request (MeV) in ∆θeq (mrad) a very good approximation, by a simple
fit of this behavior, is: ∆θeq = −7.7 · 10−6∆E, for 150 GeV.

where k = 7.7·10−6 mrad/MeV for E0 = 150 GeV (fig. 5.7) and ∆E is the ab-
solute request of precision on the energy scale. By assuming σθ = 0.03 mrad
as the angular resolution of the CMS trackers around few mrad, dominated
by the intrinsic resolution, we get:

Neq =

(
0.03 mrad

2 · 10−5 mrad

)2

∼ 2.3 · 106 events. (5.30)

The differential cross section at θeq = 2.5 mrad is dσ/dθe ∼ 1 µb/mrad: with
a bin width of 1 mrad, the integrated cross section is about 1 µb. Multiplying
by the instantaneous luminosity with a module only L1 = 0.38 nb−1s−1/40,
the expected event rate in the equal-angle bin is Req ∼ 6.3 s−1. Therefore a
measurement of the average beam energy with the required precision can be
obtained within a time interval:

∆t =
Neq

Req

∼ 3.6 · 105 s, (5.31)

i.e. ∼ 7 days, given a running cycle of about 60%. Such required time appears
reasonable.

The method to measure the calibration energy essentially relies on the
very precise measurement on the angular deflections, at a relative level of
10−5. This request has a direct impact also on the precision about the trackers
longitudinal alignment, that is about the sensors position. Considering a
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Figure 5.8: (left) Beam spread effect on the differential cross section as a
function of θe. (right) Systematic error due to two different spectrometer
(BMS) precisions on the momentum measurement.

tracking station of L = 1 m, a precision of 10−5 on the angles requires
a systematic control within 10−5 m = 10 µm on the sensors longitudinal
position. As we have seen in the test beams analysis, it is not possible
to control precisely this aspect from the data. Only an optical survey, laser-
based for instance, allows to check the longitudinal alignment at this precision
level.

5.2.2 Beam energy spread

Another important aspect related to the M2 beam is the energy spread.
The beam width of about 3-4%1 directly affects the differential µe cross
section. Still looking at fig. 5.4, the impact on the differential cross section is
not symmetric for symmetric energy compared to the central value E0. Such
effect is at relative level of 10−4.

In order to measure the beam energy profile, the MUonE collaboration
proposed to use the beam momentum spectrometer (BMS) of COMPASS
experiment [14] upstream the apparatus. This detector can reach a rela-
tive precision below 0.8% on the momentum measurement. The resulting
systematic will arise from the spectrometer resolution knowledge.

Here we considered the worst case, that is the propagation on the final
aHLO
µ of the momentum measurement precision assuming no knowledge about

the spectrometer resolution. According to the present study, the systematic
error can be evaluated by:

Rsyst =
dσ(wbeam ⊕ wBMS)

dσ(wbeam)
, (5.32)

1From a private communication with J. Bernhard, coordinator of the M2 beam line,
the natural spread at 160 GeV is 3.75%.
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(a)

(b)

Figure 5.9: (a) ∆αhad(t) and the integrand of the master formula altered by
BMS precision systematic at level of 0.8%. (b) Statistical distributions of
3000 pseudo-experiments on aHLO

µ : comparison between two different BMS
precisions. In green with the statistical contribution only.
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Figure 5.10: MCS systematic effect on the LO differential cross section: com-
parison between two different mis-knowledge.

where wbeam ⊕wBMS is the measured beam width by the spectrometer, con-
sidering the nominal spread wbeam and the precision wBMS on the momentum
measurement.

Figure 5.8 (left) show the relative effect of the natural spread on the cross
section with respect to the case of monochromatic beam. Figure 5.8 (right)
shows the relative impact of the BMS precision using Rsyst from which we
can extract modified value ∆α′(t) in order to evaluate the related systematic
error. As well as the energy scale effect, there are a peak at level of 10−5, at
low scattering angle, i.e. high |t|.

Figures 5.9(a) show the effect of 0.8% BSM precision on ∆αhad(t) and
on the integrand of master formula in eq. (5.3). In order to quantify the
systematic shifts, the results of 3000 pseudo-experiments, using two different
BMS precision of 0.8% and 0.5%, are shown in fig. 5.9(b).

Even if we do not assume any knowledge of the BMS resolution, a spec-
trometer of precision of about 0.5% gives a systematic shift below the percent
level. Assuming to know the spectrometer resolution to 20-25%, the impact
on aHLO

µ should be negligible [14].

5.2.3 Multiple scattering

Now we considered systematic uncertainties of the MCS model at the level
of +1%, +0.1% and +0.05%. Figure 5.3(b) shows that the relative effect on
the cross section of the systematic uncertainty of +1% is less or of the order
of 10−4. Figure 5.10 shows that the effects of 0.1% or 0.05% are below 10−5.
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Figures 5.11 (a) and (b) show the effect of the multiple scattering sys-
tematic uncertainty on the hadronic running ∆αhad(t) and on the integrand
function of the master formula in eq. (5.3) respectively.

For the +1% systematic uncertainty, the fit to determine the hadronic
running does not converge. Going to mis-calibration of 10−3 or less, the fits
become reasonably good and give results close to the reference. In particular
for a mis-calibration in the MCS model of the order of 5 ·10−4, the systematic
error due to multiple scattering is at the percent level on aHLO

µ , as it is shown
in fig. 5.12.

The required accuracy on the MCS model we think we can be reached
by combining GEANT simulation and data-driven corrections, which has to
determine possible systematic trend at large scattering angle, corresponding
to the small energy region.

The studies about the systematics errors presented in this chapter will
need to be updated in the light of the high order corrections to the cross
section (sec. 2.6.3) by means of the final workflow presented in sec. 2.2.2,
and recently in the Letter of Intent of the MUonE proposal [14].
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(a)

(b)

Figure 5.11: (a) Effect on the MCS systematic uncertainty of 1%, 0.1% and
0.05% on ∆αhad(t), in linear and log scale. (b) Same effects on the master
formula integrand.
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Figure 5.12: Distributions of aHLO
µ obtained performed 3000 pseudo-

experiments for systematic uncertainties of MCS model of +0.1% (magenta)
and +0.05% (blue). In green the statistical contribution only.



Conclusions and outlook

The thesis concerns the feasibility study of the MUonE experiment. The
proposed high precision experiment, to be performed at M2 beam at CERN,
aims to measure the electromagnetic coupling α as a function of squared
transferred momentum t using high energy muon elastic scattering on elec-
tron at rest. Knowing α(t) we can determine the hadronic contribution to
the running and calculate the leading order hadronic contribution to the
muon anomalous magnetic moment aHLO

µ . The innovative method proposed
by MUonE is complementary to the traditional time-like approach to deter-
mine aHLO

µ . The MUonE collaboration aims to reach a precision of 0.3%,
comparable to the time-like approach in two years of data taking.

To detect µe elastic scattering events, we developed the concept of a
modular detector, consisting of independent and identical tracking stations.
The work done for this thesis has contributed to the optimization of the
tracking stations design by means of GEANT4 based simulation code. Each
station will be equipped with a thin target of Beryllium and three tracking
layers of Silicon strip detectors.

I contributed to the test beams performed at CERN to assess the perfor-
mance of a detector prototype. I developed the tracking algorithm used for
the alignment of the strip Silicon strip detectors and to the reconstruction
of the scattering events. The results of these measurements allowed us to
study the effect of multiple scattering of high energy electrons hitting on low
Z material targets. The results have been submitted for publication [8, 9].
They show that GEANT4 multiple scattering models allow to reproduce the
experimental data within 1-2%.

I proposed an analytical model to describe the angular resolution of the
tracking station. It allowed me to develop a fast Monte Carlo used to generate
large data sample. This instrument enabled us to study with high statistical
precision the analysis workflow to determine aHLO

µ and to evaluate the effects
of the main systematic uncertainties on the observables.

I confirmed that MUonE can reach the statistical precision goal of 0.3%.
In this work the most important experimental systematics have been identi-
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fied and studied, in particular the effects due to multiple scattering, to the
intrinsic resolution, and to the knowledge of the beam energy. I assessed
the level of the main systematic uncertainties can be controlled to keep the
systematic error on aHLO

µ on the same level of the statistical error. The re-
quired precise knowledge of the average beam energy, to 5 MeV or better, is
probably the most challenging constraint that emerged from this study.

I contributed to the Letter of Intent [14] submitted to the CERN SPSC by
the MUonE collaboration beginning of June 2019. The plan is to performed
a Pilot Run in 2021, to test the final version of the detector, of the DAQ and
trigger system to then performed the experiment in the years 2022-2024.

The detector stations will be equipped with the 2S CMS strip sensors,
developed by CMS collaboration for the upgrade of detector foreseen for
Hi-Lumi phase of LHC. The CMS 2S sensors have revealed to be an ideal
tracking detector providing a single hit resolution of 18 µm and allowing
MUonE to reach the design angular resolution of 0.02 mrad on a detection
scale of 1 m.



Appendix A

Monte Carlo

A.1 Correlations induced by MCS: a toy-MC
study

In order to prove this relationship and derive other important properties
that are useful in the data analysis of the first test beam data (2017) we built
a simple toy-MC. Let’s suppose the thickness indicated in fig. 3.1 represents
the region between two consecutive trackers, that is the region between two
hits. The angle ψplane of fig. 3.1 is the angle reconstructed using the hits in
the two adjacent planes (the only one accessible), while θplane (of width θMS)
is the true angle of the particle when leaving the second tracking plane.

So:

< y2plane >= L2 < ψ2
plane > → ψrmsplane =

1√
3
θrmsplane =

1√
3
θMS, (A.1)

The measurable ψplane and the true θplane angular distributions have signif-
icantly different widths when leaving the scattering region. If the particles
cross several regions, for example separated by the presence of a target, then
the distribution of the incoming particles in the second region is the true one,
although the only available for measurement is the reconstructed one. If the
effect of the multiple scattering is large in the first part of the system, as in
the case of the 2017 test beam, the difference between the two distributions
is significant. In the TOY-MC, upstream station of 2017 test beam is di-
vided in N steps and in each one scattering angle and y are calculated and
used for next step (fig. A.1). Only angles are random, the angle generator
is simply gaussian with mean=0 and sigma=θMS ((3.3)) for thickness L / N:
lateral displacement (hits) and so theta distribution from hits are determined
geometrically from random angles. Geant, in an extremely complex mode,
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Figure A.1: Toy-MC to study correlations between lateral displacement (hits)
and scattering angles.

acts in this way to simulate particles transport through matter. Figure A.2
shows what we expected: the width of the lateral displacement is reduced by
a factor

√
3 compared to the true distribution one: 0.0953 ·

√
3 ∼ 0.165 mrad.
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Figure A.2: Results of toy-MC: (top) true exit angle distribution, (bottom)
reconstructed angle distribution from hits, that is lateral displacement.





Appendix B

Relativity

B.1 Summary
As useful reference, the most important relations about µe elastic scat-

tering are summarized. Some of these have been introduced in chapter 2.

µ±(p1) + e−(p2)→ µ±(p3) + e−(p4)

• 4-momenta in the lab frame (electron rest frame):

p1 = (Eµ, ~pµ) = (Eµ, pµ, 0, 0)

p2 = (Ee, ~pe) = (me, 0, 0, 0)

p3 = (E ′µ, ~p
′
µ) = (E ′µ, p

′
µ cos θµ, p

′
µ sin θµ, 0)

p4 = (E ′e, ~p
′
e) = (E ′e, p

′
e cos θe,−p′e sin θe, 0),

(B.1)

with (PDG values)

me = 0.000510998928 GeV

mµ = 0.1056583715 GeV,
(B.2)
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where pµ = |~pµ| ≡ pbeamµ , Eµ ≡ Ebeam
µ ; after scattering p′µ = |~p′µ| and p′e = |~p′e|.

• Mandelstam’s invariants s, t and λ (Kallen or triangular function) in
lab frame:

s ≡ (p1 + p2)
2 = (p3 + p4)

2 = m2
e +m2

µ + 2meEµ

t ≡ (p1 − p3)2 = (p2 − p4)2 = 2me(me − E ′e) = 2me(E
′
µ − Eµ)

λ(s,m2
e,m

2
µ) ≡ (s−m2

e −m2
µ)2 − 4m2

em
2
µ = 4m2

e(E
2
µ −m2

µ).

(B.3)

• 4-momenta in the CM frame (applying momentum conservation and
mass-shell relations):

p∗1 = (E∗µ, p
∗, 0, 0)

p∗2 = (E∗e ,−p∗, 0, 0)

p∗3 = (E∗µ, p
∗ cos θ∗, p∗ sin θ∗, 0)

p∗4 = (E∗e ,−p∗ cos θ∗,−p∗ sin θ∗, 0),

(B.4)

where

E∗µ =
s+m2

µ −m2
e

2
√
s

E∗e =
s+m2

e −m2
µ

2
√
s

p∗ =

√
λ(s,m2

µ,m
2
e)

2
√
s

=
pµme√

s

t = −2p∗2(1− cos θ∗) < 0 ,

(B.5)

√
s is CM energy,

√
|t| the transferred momentum, p∗ is the 3-momentum of

particles in CM before scattering and λ function defined above.

• From (5), cos θ∗ = −1 gives the max transferred momentum |t|, i.e.
min t < 0 in 2→ 2 µ-e scattering:

|t|max = (2p∗)2 → tmin = −4p∗2 = −λ(s,m2
µ,m

2
e)

s
= −4

p2µm
2
e

s
(B.6)

• LAB (electron rest frame) - CM boost:

βCM = v∗e =
p∗

E∗e
=

pµ
Eµ +me

,

γCM =
E∗e
me

=
Eµ +me√

s

(B.7)

where pµ ≡ pbeamµ and Eµ ≡ Ebeam
µ defined in (1).
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• Lorentz boost (7) along x axis, for the components of muon final mo-
mentum ~p′µ:

p′µ sin θµ = p∗ sin θ∗

p′µ cos θµ = γCM(p∗ cos θ∗ + βCME
∗
µ)

(B.8)

• Angular relations LAB - CM, using this Lorentz boost:

tan θµ =
p′yµ
p′xµ

=
sin θ∗

γCM
(
cos θ∗ + βCME∗µ/p

∗
)

tan θe =
p′ye
p′xe

=
sin θ∗

γCM (− cos θ∗ + βCME∗e/p
∗)

=
sin θ∗

γCM (− cos θ∗ + 1)

(B.9)

B.2 Kinematics correlations 2→ 2 scattering
• Energies and angles in t invariant:

E ′µ =
s+ t−m2

e −m2
µ

2me

=
2meEµ + t

2me

(B.10)

E ′e =
2m2

e − t
2me

. (B.11)

cos θµ =
2m2

e(t− 2m2
µ) + 2meEµ(2meEµ + t)√

λ(s,m2
e,m

2
µ)
√
λ(s+ t,m2

e,m
2
µ)

(B.12)

cos θe =
−2me(Eµ +me)t√

λ(s,m2
e,m

2
µ)
√
t2 − 4m2

et
. (B.13)

• Correlation E ′µ / θµ:

E ′µ(θµ) =
a± b p2µ cos θµ

d
, (B.14)

where
a ≡ (Eµ +me)(m

2
µ +meEµ)

b = b(θµ) ≡
√
m2
e −m2

µ sin2 θµ

d = d(θµ) ≡ (Eµ +me)
2 − p2µ cos2 θµ.

(B.15)

By reverting (2.4), one can write the useful inverse formula:

x =

(
1−

√
1− 4m2

µ

t

)
t

2m2
µ

. (B.16)
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• Correlation E ′e / θe:

E ′e(θe) = me

(Eµ +me)
2 + p2µ cos2 θe

(Eµ +me)2 − p2µ cos2 θe
= me

1 + r2 cos2 θe
1− r2 cos2 θe

(B.17)

with

r ≡ pµ
Eµ +me

=

√
E2
µ −m2

µ

Eµ +me

. (B.18)

• Inverse:

cos θe =
1

r

√
E ′e −me

E ′e +me

. (B.19)

• Maximum muon scattering angle from (15):

sin θµ <
me

mµ

→ θmaxµ = arcsin
me

mµ

∼ 4.83635 mrad

E ′µ(θmaxµ ) =
a

d(θmaxµ )

E ′e(θ
max
µ ) = Eµ +me − E ′µ(θmaxµ )

(B.20)

• Correlation between θµ and θe:

sin θµ =
p′e sin θe
p′µ

=

√
E ′2e (θe)−m2

e sin θe√
(Eµ +me − E ′e(θe))2 −m2

µ

(B.21)

where scattering electron energy E ′e(θe) is given by (16) and Eµ = Ebeam
µ .

This simply formula holds only for me < mµ.

• From (16)(20), an equal angle condition exists, i.e. θeq ≡ θe = θµ:

p′µ = p′e

E ′e(θeq) =
(Eµ +me)

2 +m2
e −m2

µ

2(Eµ +me)

E ′µ(θeq) = Eµ +me − E ′e(θeq)

cos2 θeq =
(Eµ +me)

2

(Eµ + 2me)2 −m2
µ

.

(B.22)

• From above formulae, some reference values for Eµ = Ebeam
µ = 150

GeV:
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ECM ≡
√
s ∼ 405.541 MeV

λ(s,m2
e,m

2
µ) ∼ 0.02350078 GeV4

E∗µ ∼ 175.627 MeV

E∗e ∼ 153.300 MeV

p∗ ∼ 189.006 MeV

γCM ∼ 369.877

tmin ∼ −0.142893 GeV2 →
√
|t|max ∼ 378.012 MeV

E ′µ(|t|max) = E ′µ(min) ∼ 10.1827 GeV

E ′e(|t|max) = E ′e(max) ∼ 139.818 GeV

E ′µ(θmaxµ ) ∼ 19.0694 GeV (at peak)

E ′e(θ
max
µ ) ∼ 130.931 GeV (at peak)

θe(θ
max
µ ) ∼ 0.70438 mrad (at peak)

θeq(θe = θµ) ∼ 2.51339 mrad

E ′µ(θeq) ∼ 75.0003 GeV

E ′e(θeq) ∼ 75.0002 GeV

(B.23)

B.3 Differential cross sections in t, θe and θµ

• The differential unpolarized cross section at leading order (LO):

dσ

dt
=

4πα2

λ(s,m2
e,m

2
µ)

[
(s−m2

e −m2
µ)2

t2
+
s

t
+

1

2

]
, (B.24)

where α = α fine structure constant: α = 1/137.035999139.

• For NLO vacuum polarization, the running of α is factorizable:

α→ α(t) =
α

1−∆αlep(t)−∆αtop(t)−∆αhad(t)
(B.25)

• Cross section in θe (using (23) and chain rule):

dσ

dθe
=
dσ

dt

dt

dθe
. (B.26)
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From t expression in lab frame (3) and (16):

t = tee = 2me (me − E ′e(θe))

= 2m2
e

(
1− 1 + r2 cos2 θe

1− r2 cos2 θe

)
=

4m2
er

2 cos2 θe
r2 cos2 θe − 1

.

(B.27)

So deriving this formula in θe, the differential cross section (at LO) in the
electron scattering angle is:

dσ

dθe
=

4m2
er

2 sin 2θe

(r2 cos2 θe − 1)2
dσ

dt
(B.28)

• Cross section in θµ (using (23)):

dσ

dθµ
=
dσ

dt

dt

dθµ
. (B.29)

In the same way1, from (3):

t = tµµ = 2me

(
E ′µ(θµ)− Eµ

)
= 2me

(
a± b p2µ cos θµ

d
− Eµ

)
,

(B.30)

where coefficients a, b = b(θµ), d = d(θµ) are given by (15). The derivative
in θµ is

dt

dθµ
=
±2mep

2
µ sin θµ

d2b

{
∓ 2ab cos θµ + p2µ cos2 θµ(m2

µ −m2
e)

+(Eµ +me)
2
[
m2
µ(1− 2 cos2 θµ)−m2

e

]} (B.31)

1For 2 → 2 scattering, from 4-momenta conservation t = tee = tµµ holds, i.e. is valid
at LO and also at NLO vacuum polarization (a subset of NLO radiative corrections).



Appendix C

Detector

C.1 Calorimeter

A calculation is proposed to estimate how much of an electromagnetic
shower induced by a scattering electron, in the trackers section, will reach
the final calorimeter. By considering the material budget of a CMS trackers,
one can estimate the radiation length X0 offered by a single station, using
the values of tab. C.1:

∆D(X0) = tmod =
d

X0

∣∣∣
Be

+
d

X0

∣∣∣
Si

+
d

X0

∣∣∣
Air

=
1.5 cm

X0

∣∣∣
Be

+
0.24 cm

X0

∣∣∣
Si

+
100 cm

X0

∣∣∣
Air

∼ 0.0425Be + 0.0256Si + 0.00329Air

∼ 0.0714X0 per station.

(C.1)

Mat. X0 (cm) EC (MeV) RM (cm) Z/W (mol/g) ρ (g/cm3)
Be 35.28 113.7 6.6 4/9.012 ∼ 0.444 1.848
Si 9.37 40.2 4.9 14/28.09 ∼ 0.498 2.329
Air 303.9·102 87.9 73.3·102 <Z/A>∼ 0.5 1.205·10−3

Table C.1: Module materials parameters. X0 is the radiation length, EC the
critical energy, RM the Moliere radius, Z/W is the atomic number on atomic
weight and ρ is the material density.

155
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The position of the maximum of an electron induced electromagnetic shower
can be estimated with:

tmax ∼ log
E0

EC
− 1 ∼ 0.9X0 (E0 = 500 MeV)

∼ 1.6X0 (E0 = 1 GeV)

∼ 3.9X0 (E0 = 10 GeV)

∼ 9.0X0 (E0 = 100 GeV)

(C.2)

given an average critical energy EC (between Be and Si) of ∼ 77 MeV. For
example, an electron of low energies (Ee . 1 GeV) and low angle (θe . 5
mrad) could induce an e.m. shower before reaching the end of the stations.
Such electron would pass through about ten stations, before leaving the ge-
ometric acceptance of the trackers. Such particles should be background,
since at small angles signal electrons have high energy.

C.2 Silicon strip detectors and point resolution
A charged particle passing through the silicon bulk creates free charge

carriers as electron-hole pairs. In the case of silicon, a small amount of
energy (∼ 3.6 eV) is enough to generate a pair. The current produced is
measured by a series of strips (electrode). Together with this process, there
is a certain probability of generation for higher energy electrons (delta-rays),
some of which can travel inside the bulk even for hundreds of microns: this
process sets a lower limit, within few µm, to the spatial precision achievable
by silicon detectors.

The main design factors limiting the spatial resolution σx of an SSD are:

• the granularity: read-out pitch p, that is the physical distance between
the strips;

• readout: digital (binary) or analogue.

For the digital readout, a threshold counter is used to indicate whether a
strip was hit or not: in this case, the resolution is determined only by the
readout pitch p. Since the distribution of particle hit positions in between
strips can be assumed to be uniformly distributed, the standard deviation
of the measurements, thus the spatial resolution, is given by the standard
deviation of the uniform distribution:

σx =
p√
12

(binary). (C.3)



C.2 Silicon strip detectors and point resolution 157

Figure C.1: SNR and Si detector capacitance.

This is an upper limit to the intrinsic point resolution. To improve it, one
has to use analog readout what essentially means to measure the signal (si)
of every strip. The mean of the strip positions xi, weighted with the signals
of the strips than gives a better measurement of the position, provided that
more than one strip has been hit. Of course only strips whose signals exceed
a certain threshold can contribute. Such a group of strips is called a strip-
cluster. The weighted mean of the strip positions is referred to as Center of
Gravity (CoG):

xCoG =
Σsi xi
Σsi

(C.4)

and a sophisticated cluster algorithm è incaricato di determinarlo. The reso-
lution than becomes dependent on the signal/noise ratio (SNR), because an
error on si distorts the weighted mean. The larger SNR is, better resolutions
can be achieved. So for analog readout, the intrinsic resolution reads:

σx ∼
p

SNR
(analog). (C.5)

The fact that more strips sharing the produced charge, leads to a significant
resolution improvement. A further development is the well-known floating
strip technique: the aim of intermediate strips is to improve this ability,
i.e. the occurrence of single strip clusters should decrease, what is beneficial
for the calculation of the cluster’s center of gravity (CoG).

To a given signal in charge QS = si (fig. C.1), collected from the strips,
corresponds a voltage:

VS =
QS

Cd + Ci
, (C.6)

where Cd and Ci are the capacities of the Si sensor and the amplification
stage. The read voltage therefore depends on the detector capacity and the
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amplification inevitably adds an input noise voltage VN . So the signal-to-
noise ratio (SNR or S/N) is defined as:

SNR =
VS
VN

=
QS

VN(Cd + Ci)
. (C.7)

To preserve a high SNR it is necessary to keep the collected charge high, with
a bulk thickness not too small, and to limit the capacity, i.e. its action as a
capacitor: it is therefore a trade-off between these requirements.

The intrinsic point resolution defines the intrinsic one on the angles,
i.e. the observables of the experiment, according to the known relation:

∆θi =
√

2
σx
L
, (C.8)

where L is the module arm, i.e. in first approximation the distance between
the extreme Si detectors within a single module. Then given a certain σx
depending on the tracker design, the angular resolution can be optimized by
varying L, depending on the total space available.
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