Integrating Deep Contextualized Word Embeddings into Text Summarization Systems

Mastronardo, Claudio (2019) Integrating Deep Contextualized Word Embeddings into Text Summarization Systems. [Laurea magistrale], Università di Bologna, Corso di Studio in Informatica [LM-DM270]
Documenti full-text disponibili:
[img] Documento PDF (Thesis)
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato

Download (9MB)

Abstract

In questa tesi saranno usate tecniche di deep learning per affrontare unodei problemi più difficili dell’elaborazione automatica del linguaggio naturale:la generazione automatica di riassunti. Dato un corpus di testo, l’obiettivoè quello di generare un riassunto che sia in grado di distillare e comprimerel’informazione dall’intero testo di partenza. Con i primi approcci si é provatoa catturare il significato del testo attraverso l’uso di regole scritte dagliumani. Dopo questa era simbolica basata su regole, gli approcchi statistici hanno preso il sopravvento. Negli ultimi anni il deep learning ha impattato positivamente ogni area dell’elaborazione automatica del linguaggionaturale, incluso la generazione automatica dei riassunti. In questo lavoroi modelli pointer-generator [See et al., 2017] sono utilizzati in combinazionea pre-trained deep contextualized word embeddings [Peters et al., 2018]. Sivaluta l’approccio sui due più grossi dataset per la generazione automaticadei riassunti disponibili ora: il dataset CNN/Daily Mail e il dataset Newsroom. Il dataset CNN/Daily Mail è stato generato partendo dal dataset diQuestion Answering pubblicato da DeepMind [Hermann et al., 2015], concatenando le frasi di highlight delle news e formando cosı̀ dei riassunti multifrase. Il dataset Newsroom [Grusky et al., 2018] è, invece, il primo datasetesplicitamente costruito per la generazione automatica di riassunti. Comprende un milione di coppie articolo-riassunto con diversi gradi di estrattività/astrattività a diversi ratio di compressione.L’approccio è valutato sui test-set con l’uso della metrica Recall-Oriented Understudy for Gisting Evaluation (ROUGE). Questo approccio causa un sostanzioso aumento nelle performance per il dataset Newsroom raggiungendo lo stato dell’arte sul valore di ROUGE-1 e valori competitivi per ROUGE-2 e ROUGE-L.

Abstract
Tipologia del documento
Tesi di laurea (Laurea magistrale)
Autore della tesi
Mastronardo, Claudio
Relatore della tesi
Scuola
Corso di studio
Indirizzo
CURRICULUM A: TECNICHE DEL SOFTWARE
Ordinamento Cds
DM270
Parole chiave
Deep learning,natural language processing,Text summarization,Sequence-to-sequence,machine learning
Data di discussione della Tesi
17 Luglio 2019
URI

Altri metadati

Statistica sui download

Gestione del documento: Visualizza il documento

^