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Scuola di Scienze

Dipartimento di Fisica e Astronomia

Corso di Laurea Magistrale in Fisica

Big Data Analytics towards Predictive
Maintenance at the INFN-CNAF

computing centre

Relatore:

Prof. Daniele Bonacorsi

Correlatore:

Dott.ssa Barbara Martelli

Presentata da:

Simone Rossi Tisbeni

Anno Accademico 2018/2019





Abstract

La Fisica delle Alte Energie (HEP) è da lungo tra i precursori nel gestire e proces-

sare enormi dataset scientifici e nell’operare alcuni tra i più grandi data centre per

applicazioni scientifiche. HEP ha sviluppato una griglia computazionale (Grid) per

il calcolo al Large Hadron Collider (LHC) del CERN di Ginevra, che attualmente

coordina giornalmente le operazioni di calcolo su oltre 800k processori in 170 centri

di calcolo e gestendo mezzo Exabyte di dati su disco distribuito in 5 continenti.

Nelle prossime fasi di LHC, soprattutto in vista di Run-4, il quantitativo di

dati gestiti dai centri di calcolo aumenterà notevolmente. In questo contesto, la

HEP Software Foundation ha redatto un Community White Paper (CWP) che

indica il percorso da seguire nell’evoluzione del software moderno e dei modelli di

calcolo in preparazione alla fase cosiddetta di High Luminosity di LHC. Questo

lavoro ha individuato in tecniche di Big Data Analytics un enorme potenziale per

affrontare le sfide future di HEP.

Uno degli sviluppi riguarda la cosiddetta Operation Intelligence, ovvero la ri-

cerca di un aumento nel livello di automazione all’interno dei workflow. Questo

genere di approcci potrebbe portare al passaggio da un sistema di manutenzione

reattiva ad uno, più evoluto, di manutenzione predittiva o addirittura prescrittiva.

La tesi presenta il lavoro fatto in collaborazione con il centro di calcolo dell’INFN-

CNAF per introdurre un sistema di ingestione, organizzazione e processing dei log

del centro su una piattaforma di Big Data Analytics unificata, al fine di prototipiz-

zare un modello di manutenzione predittiva per il centro. Questa tesi contribuisce

a tale progetto con lo sviluppo di un algoritmo di clustering dei messaggi di log ba-

sato su misure di similarità tra campi testuali, per superare il limite connesso alla

verbosità ed eterogeneità dei log raccolti dai vari servizi operativi 24/7 al centro.
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Introduction

High Energy Physics (HEP) has been a driver in managing and processing enor-

mous scientific datasets and the largest scale high throughput computing cen-

ters. Part of the HEP community developed a large scientific computing Grid for

the Large Hadron Collider (LHC) at CERN in Geneva, that nowadays regularly

overview the operations of 800k computer cores from over 170 sites in 42 countries,

and half of an exabyte of disk storage distributed on 5 continents.

With the upcoming start of Run-3, and especially Run-4, the amount of data

managed by the Tiers centres is expected to massively increase. In this view, the

HEP Software Foundation — that published a Community White Paper providing

a roadmap for the future research in software and computing in preparation for

the HL-LHC — highlighted the enormous potential advantages that might come

from applying Big Data Analytics techniques in the LHC physics endeavour.

One of the advancements discussed in that context is in Operations Intelligence

in computing systems. A team effort has recently been promoted by a group of

HEP computing teams, and one of the goals is to explore the logging data and

apply data mining and analytics approaches to extract actionable insight and hence

increase the level of automation in various systems. This effort, once applied to

computing centers, may result into stepping out of Reactive maintenance to a

Predictive or even Prescriptive approach.

This thesis will present the preliminary steps taken to introduce a unified Log

ingestion and analytics platform at the INFN-CNAF Tier-1 across its services,

with the purpose of exploring possible solutions for the development of a Predic-

tive Maintenance model to detect and anticipate failures. This thesis explores the

1



design and deployment of such an infrastructure as well as the development of

proper algorithms to extract insight from log data.

This dissertation is divided in two parts: in Part I this work is contextualised,

introducing the evolution in HEP, the structure of WLCG and discussing the

concept of maintenance. Part II, instead, will focus on the exploratory work

started at INFN-CNAF Tier-1 in the last year revolving around the analysis of

the log data of the centre and their possible use to define a Predictive Maintenance

model to apply in the future.

In particular, Chapter 1 will discuss the upgrade schedule of LHC and the

plan defined by the HSF to prepare for the future improvements in software and

computing. The main concepts of Big Data, Analytics and Machine Learning will

be briefly presented as well as an overview of the interest of LHC experiments in

these fields.

Chapter 2 will focus on the WLC Grid, presenting the various tiers and later

focusing on the INFN-CNAF Tier-1; the structure of the computing centre will be

discussed, highlighting the main challenges as a major WLCG Tier-1.

Chapter 3 will close Part I, and will offer an overview on the different Main-

tenance classes, reviewing their characteristics and use cases; some examples of

effective use of various maintenance models in data centres will be briefly pre-

sented, concluding with a description of most advanced Prescriptive Maintenance

models.

Chapter 4 will open Part II by showcasing the types of data logged at INFN-

CNAF; it will present the recent developments of a Log Repository solution to

unify and collect all the log sources of the data centre; it will also include an

overview about the log files from StoRM that will be analysed in the last chapter.

Chapter 5 focuses on the set up of a first Log ingestion and processing dis-

tributed platform to analyse the data stored in the Log Repository; the chapter

also includes a brief description of the open source technical components used to

design and deploy the platform.

Finally, Chapter 6 concludes this work by presenting an algorithm for clus-

2



tering in an unsupervised way the verbose event log files from StoRM, using text-

based similarity measures. The Chapter will begin by discussing the previous work

done during the CNAF Summer School program, it will then follow the develop-

ment of the log clustering algorithm discussing the choice of similarity measure

and the parameters that can influence the results. The developed procedure will

be tested on different log files and the results compared to highlight their ability

to detect possible anomalous behaviours. The concluding section in the chapter

will focus on future developments of this work.

3
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Part I

Big Data Analytics on WLCG

Tiers
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Chapter 1

HEP Computing evolution and

Big Data Analytics

1.1 Computing in HEP in the next decades

In the long path that will bring the existing LHC systems towards new life in the

High Luminosity regime, several technical upgrades are envisaged in the course

of the next few years. The upgrade plans towards the HL-LHC are pictorially

depicted in Figure 1.1.

The LHC is currently in its Long Shutdown 2 (LS2), scheduled to last until

2020 included, and in which experts are busy on the Phase-I upgrade of the LHC

injectors, with aim of reaching the 14 TeV centre-of-mass energy and increasing

the instantaneous luminosity by a factor of 3, for the start of the Run-3 data taking

period. Subsequently, the Phase-II upgrade will take place between 2024 and 2026,

and will eventually complete the increase in luminosity, yielding to HL-LHC with

a peak luminosity of about L = 7 × 1034cm−2s−1. An integrated luminosity of

250fb−1 per year will be made possible thanks to the installation of new elements

including new focusing magnets and crab cavities. In the final luminosity scenario,

the expected mean number of 200 interactions per bunch crossing will be reached.

Such a large and wide scope project requires large investments also in the

R&D of software and computing systems needed to acquire, manage, process,

7



Figure 1.1: Upgrade schedule for the LHC/HL-LHC. Shutdown periods and data-taking
periods, each with its intended instantaneous luminosity and centre-of-mass energy, are
shown [1].

and analyse the huge amount of data that will be recorded. In fact, despite the

programme evidently requires investments in detector hardware - both to build

new facilities or experiments, and to upgrade existing ones - it is also true (and

often mistakenly underestimated) that a commensurate financing effort is needed

on software and computing in order to efficiently and successfully exploit the future

facilities.

In this view, the HEP Software Foundation (HSF) [2] made a planning exercise

in 2016 and published a Community White Paper (CWP) [3]. The document

provides a roadmap for software and computing R&D in preparation for the HL-

LHC and for other HEP experiments on a similar timescale: it clearly identifies

areas of work and priorities in the investments. Quoting from [3], these priorities

are:

• to achieve improvements in software efficiency, in its scalability and perfor-

mance, and make use of all possible advances in CPU, storage and network

technologies in order to cope with the challenges in front of the HEP com-

munity;

• to enable new approaches to software and computing that could radically

extend the physics reach of the upgraded detectors;
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• to ensure the long-term sustainability of the software through the entire

lifetime of the HL-LHC;

• to ensure data (and knowledge) preservation beyond the specific lifetime of

each individual experiment;

• to attract the required new expertise by offering appropriate career recogni-

tion to physicists that specialise in software development and/or computing

systems design and development, and by effective training efforts able to

target all software-level contributors in the community.

A description of the activities that started already and will bring the LHC

community to stage that will ensure that software and computing will still be -

as they have been in Run-1 and Run-2 - an enabling technology for HL-HLC, will

bring us far out of the scope of this thesis. In this thesis, instead, a focus will

be maintained on two specific aspects of this vast community effort, namely the

effectiveness of Big Data Analytics and the raise of Machine Learning and Deep

Learning.

1.2 Big Data Analytics

Big Data (BD) nowadays is a widespread term, defining almost any type of data

analysis and statistics performed on large amount of data, but most of the time is

used as a buzzword with almost no relation to the original meaning.

Gandomi et al. [4] follow the definition of BD back to sparse references in the

mid-nineties through its widespread use since 2011, and suggests that as low as 4

different definitions are mainly used in the industry to understand BD.

The current widespread use of the term can be attributed to the promotional

initiatives of IBM that also brought to the mass public attention the concept of the

“five Vs”. First defined by [5], the original definition described BD by just three

characteristics that elaborate on the dimensions of challenges in data management.

The original report listed the three following Vs:
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• Volume - Refers to the magnitude of data, reported in multiple terabytes or

even petabytes. The definition of BD volumes is not strict since it strictly

correlates to Variety: two datasets of the same size may require different

magnitude of work if one of them is strictly numerical values, while the

other are structured objects.

• Variety - Refers to the structural heterogeneity in a dataset. Structured data

refers to the tabular data found in databases while unstructured data are for

example raw images, text, numerical values etc. A characteristic of BD is

the high level of variety between structured and unstructured data and their

content.

• Velocity - Velocity refers to the rate at which data are generated and the

speed at which it should be analysed and acted upon. Traditional data

analysis systems are not able to handle fast flowing data streams, while BD

technologies should be developed to ingest large amount of data quickly.

An additional term is commonly used, after IBM coined it in [6]:

• Veracity - Represents the unreliability inherent in some sources of data.

Another big factor in defining BD is the need to deal with imprecise and

uncertain data, often derived from human subjectivity and lack of standards.

This situation is usually managed through the use of data mining and fuzzy

matching.

More recently Oracle [7] introduced a new term as a defining attribute of BD:

• Value - Refers to the ability to extract value from the data. The assumption

is that the value density in BD is low, since the information is spread into

an higher volume of data.

Based on these definition, the data source from LHC respect the concept of

Variety, Volume and Velocity; it is harder to find correspondence for the other Vs,

the output data from the experiment is strictly structured and follow a defined
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Figure 1.2: Infographic break down of the 4 Vs, as defined by IBM data scientists:
volume, variety, velocity and veracity. For higher resolution see [6].

pattern that is not subject to Veracity and most of the information is relevant with

high Value density.

With the definition of Big data often comes the term Big Data Analytics

(BDA). BDA encompasses the process of decision making and analysis that extract

value from BD. The overall process can be broken down into the five stages shown

in Figure 1.3. These five stages are divided into two processes: data management

and analytics. Data management involves processes and supporting technologies

to acquire the data, store it in a structured database, and prepare it for analysis

by extracting the relevant features, cleaning the data and integrating the miss-

ing values. Analytics, on the other hand, refers to techniques used to analyse

and interpret the information from BD; this process can either involve data min-

ing techniques, classical statistical methods or the more recent Machine Learning

approaches.

The application of BDA of interest in this thesis is related to LHC experi-

ments at CERN. As it will be discussed and introduced in Chapter 2, LHC is a
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Figure 1.3: Processes for extracting insights from big data as defined by [4].

major worldwide scientific enterprises, one of the largest and most complicated

pieces of experimental apparatus that were ever constructed. At the same time,

the LHC experiments are enormous, extremely complicated detectors that are able

to extract physics information from proton-proton and heavy-ion collisions at ex-

ploiting the most advanced detecting techniques existing nowadays. In addition,

the overall data handling and processing relies on a scientific computing Grid that

now regularly operates O(1M) processor cores and half of an exabyte (EB) [8]

of disk storage located on 5 continents through hundreds of connected comput-

ing facilities, and orchestrating all this through a large set of different software

services.

This extreme complexity, at various levels, is concretely able to eventually

produce physics results via the capability to manage -in a wide sense - extremely

large volumes of data.

The application of BD techniques in the LHC physics endeavour is hence cru-

cial. At the same time, such application is different in face of a very diverse variety

of existing LHC data. The data produced at LHC is of different types, e.g. original

collisions data (coming from particle collisions), non-collisions data (e.g. alignment

and calibration data), simulation data (coming from Monte Carlo techniques), de-

rived data (coming from users’ manipulation of original data through selections,

skimming, reconstructions, etc), and various type of additional data like logging

data (data coming from messages of running systems and servers) and meta-data

(namely, data that contains information on the data itself).
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In this thesis, the focus is on the application of BDA techniques on logging data

coming from services running at the INFN-CNAF computing centre. While this

might seem a limitation to a relatively small subset of LHC BD, a few numbers

should suffice to clarify that actually this is indeed a subset, but its size is far from

being small and easy to manage.

The CNAF centre hosts of the orders of O(100) different services of various

complexity. Some consist of just one machine, and some other of dozens or hun-

dreds of different nodes. Each node/machine regularly prompts a log with most

relevant operational messages. To give an example - as it will be described in more

details in Chapter 4 - the machines that are currently logging and whose log data

are being kept into the BD infrastructure described in this thesis are a total of

1130; each one archives several types of logs, on average around 17 different log

files; the size of each log ranges from few MBs to tens of GB; all this logging hap-

pens daily: a rough count gives an average of 12 GBs of logs daily, for an estimate

of 4 to 5 TB of data each year.

The work presented in Part 2 of this thesis will focus on the development of

a BDA framework to ingest this type of data, and the development of an exper-

imental algorithm for extracting information from the log files, this falls into the

Data Management process of BDA described above; future development would

likely involve a dive into Analytics tool, possible with the aid of Machine Learning

approaches.

1.3 Machine Learning in HEP and at LHC

Machine learning (ML) is defined as the study of statistical models used to perform

a specific task without using explicit instructions, but by inferring and relying on

pattern in the data.

Machine Learning (ML) is a very rapidly evolving approach over recent years

for building data-driven models, as it is able to characterise any class of data and

extract information from it in the form of pattern extraction and eventually predic-

tions. Despite it is being massively used so far, but in specific HEP applications,
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it is worth saying that ML is - in general - an approach to data that brings the

potential to eventually change radically how HEP data is conceived, reduced and

analysed.

The application of ML techniques in HEP are diverse in scope and objectives.

A recent review and prospect of future usage of ML in HEP can be found in [9].

Some applications are aimed directly at qualitatively improving the physics reach

of datasets. Other applications serve physics in a more indirect way, e.g. they

allow a much more efficient use of all processing and storage resources, which are

expensive and complex to set-up and run (in terms of hardware and people), thus

indirectly extending the physics reach of experiments by effectively allowing the

HEP community to achieve the same physics “throughput” by spending less money

on computing.

As a first approximation, the majority of HEP community is not re-writing

entirely all code to meet the ML paradigm, but it is actually building/upgrading

its own, domain-specific applications on top of existing toolkits and ML algorithms

and frameworks. The latter have not been developed in-house, and HEP faces such

toolkits and frameworks as a customer community, exactly as the bioinformatics

and genomics community, the earth sciences community, as well as commercial

and finance sectors, etc. Examples of such tools in the ML domain are scikit-learn

[10], Tensorflow [11], Keras [12], Pytorch [13], etc.

These tools have been developed by computer scientists, data scientists, and

scientific software developers from outside the HEP world. A large part of the

work that is being done in this context is to understand where HEP problems

do not actually map well onto existing paradigms and solutions, and how such

HEP problems might be recast into an abstract formulation that might be of more

general interest, and thus meet possibly existing solutions.

1.4 The raise of operation intelligence

An advancement towards more AI in HEP experiments recently came on the floor

in the discussions around what is being called “Operations Intelligence” (OpsInt).
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In this Section a brief overview of this topic is given, and connections to the work

presented in this thesis are discussed.

It is becoming evident that, in the near future, very large international scientific

collaborations that operate in the High Energy Physics and Astro-particle Physics

sectors will face unprecedented computing challenges in terms of quantity of data

to manage, quality of software, requirements on computing operations, etc. Some

concrete examples can be given.

The task of processing and storing very large (multi-PetaByte) datasets will

require ad advanced, globally federated computing infrastructure of distributed

resources. Despite the existing system has proven to be working, and to be mature

enough to meet current data taking challenges and to deliver physics results in a

timely manner (e.g. Run-1 and Run-2 at LHC), all post data taking analyses

indicate a heavy crucial contribution from manual interventions by computing

experts and shifters on duty. In other words, the existing infrastructures are able to

work coherently and deliver experimental results as expected, but the cost in terms

of operations of such heterogeneous infrastructures is far from being negligible.

At the same some, the computing operations of so many systems and ser-

vices yielded a massive amount of logging information, and all this data has been

archived on BD systems like ElasticSearch [14], Hadoop [15], no-SQL databases,

etc. With respect to few years ago, when all this data was indeed archive but

rarely - or never - accessed by anyone, this data has recently started to be ex-

plored by various experts in HEP computing teams with a shared goal: try to

extract actionable insight from this massive amount of data. The initial goal is

evidently to explore the data with data mining and analytics approaches, but the

ultimate goal is to be able to understand the data well enough to model how

experiments run computing operations, and eventually develop next-generation,

intelligent, adaptive systems.

Such an ambitious plan, needless to say, can only be realized in subsequent

steps. At the time of this thesis, there are various effort in this direction in different

experiments, and all these efforts are recently steered into a unique “OpsInt” team,

who kicked-off its activities in Spring 2019 under the umbrella of WLCG [16] and
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the HEP Software Foundation (HSF) [17]. The goal of the team is to explore

the richness of information in all logging data and work on specific project that

increase the level of automation in computing operations in various systems. Given

the need of data-driven modelling, this work implies the use of adequate techniques,

such as ML or even Deep Learning (DL), with solutions tailored to attack specific

problems.

Examples of these efforts exist from the past, before this group was created.

For example, ML models have been designed and applied to the prediction of data

transfer efforts, with goal to predict a possible network congestion. Similar ML

methods were applied for the prediction of data access patterns across a distributed

storage systems, aiming at increasing the efficiency in resource exploitation. Time-

series applications have been used to estimate the time needed for the completion

of certain tasks, such as processing a certain number of events. Anomaly detection

techniques have been employed to predict system failures. The act of recording and

analysing shifters’ actions started to be used to automatise tasks such as creating

tickets (i.e. notifying issues with a problem tracking system) to computing centers’

administrators, as well as suggesting possible solutions to typical issues that can

be encountered.

In general, all these efforts aim at increasing the efficiency of HEP computing

operations, i.e. the overall throughput of the experiments’ distributed computing

infrastructures (in other words, to perform “more computing at the same cost”).

This effort will result in stepping from a Reactive approach to maintenance, were

the intervention is performed after the rise of a problem, to a Predictive or possibly

Prescriptive maintenance, were the human intervention is guided or even replaced

by the Analytics framework. This argument will be further discussed in Section 3.1.

The following chapter will present an overview of the WLCG Project, with

focus on the INFN-CNAF Tier-1 system, that will be the subject of our work in

Part 2 of this thesis.
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Chapter 2

LHC Computing Tiers

2.1 The WLCG project

The Worldwide LHC Computing Grid (WLCG) project is a global collaboration

of more than 170 computing centres in 42 countries, linking up national and in-

ternational Grids to build and maintain of a distributed computing infrastructure

arranged in so-called “tiers” – giving near real-time access to LHC data [16].

The WLCG cooperates with several Grid projects such as the European Grid

Infrastructure (EGI) [18] and Open Science Grid (OSG) [19]. WLCG provides

seamless access to computing resources which include data storage capacity, pro-

cessing power, sensors, visualisation tools and more. The main Grid building

blocks the infrastructure is composed of are:

• the Computing Element (CE) service, that manages the user requests;

• the Worker Node (WN), the resource where the computation actually hap-

pens;

• the Storage Element (SE), that gives access to storage and data. Data can

be stored on disks, for quick data access (e.g. end-user analysis), or on tapes,

for long term storage and custody;

• the User Interface (UI), the front-end (FE) resource on which users interact

with other Grid components and services;
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Users can submit jobs which is turn are made of a complex set of atomic

requests — such as a request for data in input, a request to apply algorithms and

hence need for processing power, a request to write and save the outcome of such

processing, etc — and this can happen from one of the many entry points into

the system. The Grid systems check the credentials of the user, and search for

available sites that can provide resources adequate to satisfy the user’s requests,

without any need for the user to have a deep technical knowledge on the available

computing resources and systems that are serving her/his needs behind the scenes.

For a omni-comprehensive overview in more details about Grid services, see e.g.

[20]. Focus in this thesis is given the operational needs of grid computing centres,

which are described in the next section.

2.2 Tiers in the Grid

The WLCG is composed of computing centres organised by levels, called “Tiers”.

Each Tier provides specific services, storage capacity, CPU power and network

connectivity. This structure made by Tiers was formalised in the work done by

the “Models of Networked Analysis at Regional Centres for LHC Experiments”

team (MONARC), which produced a model still referred today as “the MONARC

model” [21]. Following this model, the Tier levels are labelled with numbers from

0 to 3, with the number intended to indicate the level and complexity of services

offered by the centre: namely, the lower the number the higher the level and

quantity of services.

• Tier-0 is responsible for the safe-keeping of the RAW data (first copy), first

pass reconstruction, distribution of RAW data and reconstruction output to

the Tier-1s, and reprocessing of data during LHC down-times. The Tier-0

centre for LHC is located at the European Organisation for Nuclear Research

(CERN) laboratory in Geneva, Switzerland. The role of the Tier-0 is to

receive RAW data from detectors and store them onto tapes for safe-keeping

(first copy), as well as perform first pass reconstruction. The Tier-0 also

distributes the RAW data and the reconstructed output to Tier-1s.
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Figure 2.1: Schematic representation of the Tier levels, as defined by the MONARC
model [21]. See text for details.

The integrity and availability of the data is guaranteed by a redundancy

mechanism that stores the data (at least) in two copies: one at CERN (the

so-called “cold” copy) and (at least) one distributed to Tier-1s (the so-called

“hot” copy).

To securely transfer data and ensure high performance, a dedicate high-

performance network infrastructure based on fiber optic - called LHCOPN

[22] has been designed and deployed to connect the Tier-0 to all the Tier-1s

and later expanded to also cover all the Tier-1 to Tier-1 connection, adding

a crucial redundancy to the overall system.

Despite all the data from LHC passes through this central hub, the Tier-0

itself provides a relatively low fraction of the total Grid computing capacity,

of the order of less than 20%.

• Tier-1 centers are thirteen large computer centres, spread all around the

globe, with sufficient storage capacity to store LHC data round-the-clock

support for the Grid. They are responsible for storing a proportional share of

RAW and reconstructed data, the “hot copies”, on both disk caches (for high

performing access) and tapes (for persistent archive). They manage large-

scale reprocessing and safe-keeping of corresponding output and distribution
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of data to Tier-2s and safe-keeping of a share of simulated data produced at

these Tier-2s.

• Tier-2s are typically universities and other scientific Institutes, which can

store sufficient data and provide adequate computing power for specific anal-

ysis tasks. There are currently around 160 Tier-2 sites in WLCG, covering

most of the globe capable of handling analysis requirements and a propor-

tional share of simulated event production and reconstruction.

• Tier-3 centers typically refer to local computing resources through which

individual scientists access the WLCG facilities. Unlike Tier-2 centres, Tier-

3 sites do not sign any Memorandum of Understanding (MoU) with WLCG,

meaning there is no formal engagement between WLCG and Tier-3 resources.

This implies no check on their availability is regularly made, and resources

should not be relied upon on a stable basis — despite some can be extremely

important for the needs of local communities of analysts.

A schematic representation of the Tier levels, as defined by the MONARC

model, is shown in Figure 2.1.

2.3 The INFN-CNAF Tier-1

The National Institute for Nuclear Physics (INFN) is the Italian research agency

dedicated to the study of nuclear, particle and antiparticle physics [23]. INFN

carries out research activities in many facilities across Italy, including the National

Centre for Research and Development in Information Technology (INFN-CNAF),

based in Bologna [24].

CNAF is one of the central actors in the overall INFN strategy on computing in

Italy. Since the creation of the WLCG distributed computing system, CNAF has

been deeply involved in the development of its middleware and in taking its share

of the load in managing part of this efficient and complex infrastructure. Since

2003, CNAF also hosts the Italian Tier-1 data centre, providing the resources,

support and services needed for data storage, data distribution, data processing
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and data analysis, including a high load of Monte Carlo simulation, for all 4 LHC

experiments, but also for more than 20 other experiment in both experiment and

theoretical high-energy physics, astroparticle physics, geophysics, and beyond [24].

The Tier-1 operations inside CNAF are structured in few major groups: the

Farming group, the Data Management group, and the Network group will be

described below; the Facility Management group manages the general facilities of

the centre, and the Experiment Support group provides support to all researchers

while exploiting the deployed infrastructure.

2.3.1 Farming

The bulk of the computing resources (WNs, UIs and grid services) are operated

by the Farming group.

The computing farm infrastructure acts as the service underlying the workload

management system of all experiments connected with the processing resources at

CNAF. The jobs running on the farm have direct access to files stored at CNAF,

with the disk storage system organised by several file systems directly mounted

on the WNs. Each experiment has at least a dedicated queue, and the computing

resources are centrally managed by a unique batch system.

On average, a total of the order of 100k batch jobs are executed every day at

CNAF, with resources available 24/7.

2.3.2 Storage

Disk and tape storage services, together with the data transfer services - that

constitute a middleware layer on top of them - are operated by the Data storage

group.

Magnetic tapes are used as the main long-term storage medium, with more than

50 million experiment files stored as of today. The high-speed disks are mostly

SATA, a good-performance/low-cost solution, with SSDs used for applications with

higher requirements in I/O access.

The storage is managed by StoRM [25], a Storage Resource Manager solution
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developed at CNAF, based on a home-made integration of IBM General Parallel

File System (GPFS) for disk access with the IBM Tivoli Storage Manager (TSM)

for tapes. More details on StoRM are available in Section 4.3.

The amount of data currently stored and being processed at CNAF is in the

order of tens of Petabyte, with a breakdown - at the time of this thesis - of about

23 PB of data on disk, and 48 PB of data on tape. This is expected to grow

massively in the following years[24].

2.3.3 Networking

All the network connectivity and network security related activities are in charge

of the Network group of the Tier-1.

Network resources must be distinguished between Wide Area Network (WAN)

and Local Area Network (LAN): CNAF is connected to the WAN with links at

various level of performances and redundancies, and the WAN connectivity is pro-

vided by GARR (the Italian National Research and Educational Network) [26];

Ethernet is the main technology used for the local interconnection LAN, designed

and continuously updated to allow all the data to be efficiently distributed inter-

nally to the site.

The needs for the processing of huge amount of data with a great number

of CPUs led to recent effort to provide a data access bandwidth of the order

of hundreds Gigabit per second, and to the implementation of the Datacenter

Interconnection with CINECA at a rate of 400 Gbps [24].

A more in-depth description of the WLCG Tiers in general, or of the INFN-CNAF

Tier-1 centre in particular, from either the technical set-up point of view or the

experiment applications point of view, would go beyond the needs and scope of

this thesis. In fact, the brief description offered in this chapter is sufficient for the

second part of this thesis, which will focus on the design and implementation of a
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new Big Data Analytics infrastructure inside the INFN-CNAF Tier-1 computing

centre.

The work described in this thesis is part of a major INFN-CNAF project,

namely a first coherent and Tier-1 wide effort towards equipping the centre with

a modern analytics framework that would be able to efficiently process the vast

(and increasing) amount of data coming from services operated at a Tier-1 centre,

with the purpose of extracting insight as of how to monitor, support and maintain

the computing centre in the most effective way.
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Chapter 3

Overview of maintenance

strategies

The Oxford dictionary define Maintain as the act of keeping something in good

condition by checking or repairing it regularly. Webster extends this definition to

the act of preserving it from failure and decline.

In trying to define Maintenance, one needs to answer the following questions:

What defines the good condition of a system? When is a system efficiency declining

or failing? Moubray [27] answers these question by determining that every system

is put into service because someone wants it to do something. As such, he proposes

the following definition for maintenance:

Ensuring that physical assets continue to do what their users wants

them to do.

This user-centred view stands at the basis of the industry standard definitions

of maintenance processes. Over time, multiple different terms have been used

to categorised the various practices, depending on their cost, intervention time,

criticality and resources needed.
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3.1 Maintenance classification

While it is easy to qualitatively distinguish maintenance processes based on these

factors, standard definitions have never been established and the incorrect use of

adopted names and neologisms in literature can be a barrier for the definition and

understanding of clear concepts when deciding on the most appropriate mainte-

nance type to apply for a system.

Trojan et al. [28] reviewed multiple traditional classifications and presented a

proposal for dividing types of maintenance in four distinct groups: Reactive (or

Corrective) maintenance, Preventive (or Proacting) maintenance, Predicting main-

tenance and Advanced maintenance. The Reactive class includes every mainte-

nance model in which the maintenance procedure follows the failure of the system.

The intermediate classes operate based on preventive detection of failure, the dif-

ference between the two being determining the course of action based on expected

behaviour and lifetime for the former, or by constantly monitoring the behaviour

of the system for the latter. The Advanced class includes models that requires

higher planning and investments. These include Reliability-centred maintenance

processes, in which every single aspect of a product line is monitored to ensure a

high reliability, and prescriptive models, where the system adapts automatically

to avoid stress-related failures and reduces the need of manual intervention.

These classes of maintenance processes show a sort of chronological evolution,

where the complexity of the model increases with the growth of the industry ex-

pectations and needs (Figure 3.1). But while the efficiency of the latest models is

indisputable, the older reactive models are still the most widely used.

The following sections review the different classes listed so far, and present

an example of the more advanced prescriptive models and their possible future

applications in fields such as OpsInt (See Section 1.4).

3.2 Reactive Maintenance

Reactive Maintenance (RM) is a type of maintenance process that occurs after

failure or loss of device performance. In this operation, intervention is performed
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Figure 3.1: Timeline of maintenance generations [28]. See text for details.

as needed and reacts to emergencies as they arise; it is often defined as a “fire

fighting” strategy [29].

When a breakdown occurs, the operator must move fast and make the decisions

necessary to minimise the effect of the breakdown on the production system: it is

worth underlining that “minimise” here is indeed the keyword. In fact, in many

cases, temporary repairs may be made so that the facility can return to function

quickly and be repaired — correctly, or permanently — at a later time.

The cost of RM is virtually zero, and is based on a loss control policy that

minimises downtime. If a repair is needed, the cost of maintenance — being either

an actual cost of repair or replacement, or a cost in manpower — is accounted for,

otherwise the maintenance cost is nonexistent. The downside being that, in case

of a serious breakdown or more time-consuming repairs, the system is more prone

to unplanned downtimes, whose duration is completely unpredictable.

Another disadvantage to RM is the inefficient use of staff resources, that often

need to be redirected to maintenance upon needs, unexpectedly stopping standard

production activity.

Even with all the apparent disadvantages, RM is still the most recurrent main-

tenance policy applied in industries [30] and data centers [31].
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3.3 Preventive Maintenance

The Preventive Maintenance (PM) class includes all the maintenance model based

on recurrent preemptive maintenance operations that are performed on a system

to improve its reliability, reduce the chance of breakdowns and in general increase

its lifetime expectancy.

On a PM model, the health of a system is checked on a schedule, with the

objective of having the equipment make it from one service to the next without any

failures. This services may include partial or complete overhauls or replacements

at specific periods [29].

3.3.1 Planned Preventive Maintenance

When the schedule of the preventive maintenance services is based only on the age

of the system it is commonly referred as Planned Preventive Maintenance (PPM).

PPM is pre-planned, at fixed time intervals, on specific dates, or based on

the equipment running hours. The scheduled service ensures that the system is

operational and fixes the faulty equipment to avoid breakdowns and failures.

The cost of the single maintenance service is often low but, being based on a

fixed timetable, often time involves unnecessarily maintenance services on perfectly

functioning systems.

3.3.2 Condition-based Maintenance

A slight improvement over standard Planned maintenance models is Condition-

based Maintenance (CBM). It is the first maintenance model in this brief review

in which Data Analytics is actually used in support of maintenance operations

[27].

The principle of operation of CBM is to use real-time data to observe the

health of the system, in a process known as Condition Monitoring. While still

often based on a pre-planned schedule, in CBM maintenance is only performed if

the Condition Monitoring system deems it necessary.
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CBM models have great advantages over standard PPM models: the mainte-

nance cost is lower, mainly because of the lower number of unnecessary mainte-

nance services performed. This also reduces downtimes, improving the reliability

of the system [29].

On the other side, this type of models brings several challenges. In order to be

reliable, the system requires monitoring instrumentation on all the equipment that

needs to be maintained, adding a high initial cost. Also, the raw data from the

monitoring system may not be directly correlated to the health of the equipment,

requiring a prior analysis of the data. The CBM installation, moreover, adds itself

to the number of parts that need to be maintained.

3.4 Predictive Maintenance

A step forward from CBM, Predictive Maintenance (PdM) methods utilise mea-

surements on the actual equipment in combination with measurement of process

performance, measured by other devices, to trigger equipment maintenance. PdM

uses this data in conjunction with analysed historical trends to evaluate the system

health and predict a breakdown before it happens [32].

The “predictive” component of PdM stems from the goal of predicting the fu-

ture trend of the system’s condition. This approach uses principles of statistical

process control to determine at what point in the future maintenance activities

would be appropriate. The ultimate goal of the approach is to perform mainte-

nance at a scheduled point in time only when the maintenance activity is most

cost-effective and before the system loses performance, going below an acceptable

threshold.

PdM can be offline when the monitoring is periodic, or online when the mon-

itoring is performed continuously from a stream of data.

The PdM approach is based on fast analysis of large amount of data, as such

it needs accurate and complete information for optimal decision-making. As big

data technology is getting mature, systematic analysis of massive streaming data

have been developed for exploring hidden patterns.
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The literature on PdM techniques is vast and varied. These models are in-

creasingly widely used in industry and science. Some of the most recent works

on PdM focus on large-scale data centres, and highlight the most effective tech-

niques applied. For example, [32] and [33] use disk sensors’ data to predict the

likelihood of disks failures in large-size data centres; [34] applies time series based

PdM to predict the future workload of the Wikimedia Grid data centre; [35] uses

a large openly available industrial data centre’s dataset to perform prediction on

catastrophic data centre’s failure.

3.4.1 Log-based Predictive Maintenance

A more involved approach to monitoring the system status used in the field of

computer management and intelligence, is the log file analysis.

Modern equipment is usually operated via software applications. These appli-

cations produce logs while they operate. Such logs reflect the developers’ original

ideas about what are the valuable events to report out, and hence contain in-

formational/warning/error messages, but also internal states, or exceptions. By

analysing a service’s log files, one can trace back how a system has performed.

Mining such rich information may result in a precious tool to detect symptoms of

issues in advance with respect to their occurrence. Log datasets can be large and

have the advantage that they can be collected for PdM techniques without any

special need to implement specific monitoring equipment or sensors.

It must be underlined, though, that since logs are mainly used for debugging

purposes, they rarely contain explicit information that could be used for failure

prediction. Moreover, they contain heterogeneous data including symbolic se-

quence, numeric time series, categorical variables and unstructured text and, in

general, can be very verbose (and hence result in large size files), posing some

computational challenges to the log analysis efforts, especially if a relatively low

latency requirements do apply [36]. Another point to consider is that, due to their

purpose, log files are usually written in a human-readable form, that includes re-

dundant data and descriptive text that may not be needed for any PdM. To make

use of this data, as a consequence, a first step is usually to interpret the logs by
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filtering out all the irrelevant text that acts as noise with respect to the predictive

features that one wants to extract.

Some recent examples of Log-based PdM including the following approaches:

the use of simple parsing techniques to extract data from event log to predict

failures in medical equipment [36]; the use of clustering techniques to assign differ-

ent IDs to the log messages to predict failures in telecommunication data centres

[37]; the use of dictionaries to classify system event logs in order to predict switch

failures in the network of a data centre [38].

A well-designed PdM program can minimise unscheduled breakdowns of all

equipment in the system and ensure that the system performance is always kept

above an acceptable threshold. The method can also identify problems before

they become serious. If the problem is detected early, major repairs can usually

be prevented. Note however that PdM is not a substitute for the more traditional

Planned maintenance routines. It is, instead, a valuable addition to a comprehen-

sive, total maintenance program.

As for CBM, the downside of the PdM approach is the cost of installation, the

necessity of performing deep analysis on the data, and often, for bigger system,

the implementation of a scalable big data management infrastructure to store not

only the most recent measurements from the equipment but also all the relevant

historical data.

It should be noted that the investment in PdM is made earlier than when those

costs would be incurred if equipment were run until failure. Even though the cost

will be incurred earlier, and may even be larger than the cost for RM methods,

the benefits in terms of system availability should be substantially greater from

doing preventive tasks. These solutions, although, are not usually affordable for

small centres: often they require specialists to have PdM processes in place, and

to be able to understand and digest the vast amount of logging data [39].

31



Figure 3.2: Stage model for characterising data analytics use cases [40].

3.5 Prescriptive Maintenance

A further advancement over PdM is the so called Prescriptive Maintenance (PsM).

This maintenance methods fall under the Advanced maintenance class presented in

Section 3.1. AI-enabled PsM is unique in that instead of just predicting impending

failure it strives to produce outcome-focused recommendations for operations and

maintenance from analytics.

When a change in the system occurs, PsM will not only show what and when a

failure is going to happen, but why it is happening. Taking it one step further, PsM

will take the analysis and determine different options and the potential outcomes,

suggesting a plan of action to the support team. Leading up to the maintenance

action, the data will be continuously analysed, constantly adjusting the potential

outcomes and making revised recommendations, improving the accuracy of the

results. Once the maintenance activity is completed, the analytics engine will

continue to monitor the system and determine if the maintenance activity was

effective.

PsM systems are able not only to make recommendations (Decision support)

but also to act on those recommendations (Decision automation). See Figure 3.2.

For example, a PdM solution might recommend that a system get checked
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based on analysis of log data and measurements, but a PsM system would kick

off a work order to support staff based on this information and oversee the entire

maintenance workflow. Systems like these must be able to understand the causes

of an event, and differentiate between the services normally applied in response to

a given signal. This technology makes large use of big data analytics techniques

and machine learning algorithms.

It is straightforwards that, in principle, PsM can be a great improvement over

a standard maintenance system, as it would greatly improve the reliability and

reduce the human intervention for maintenance, which in turn leads to reduced

costs of operation. On the other side, the disadvantage is - as discussed for pre-

viously mentioned methods - the high cost of implementation, in terms of needed

equipment as well as in the necessary knowledge to put the process in place and

keep it effective.

With respect to other approaches, the literature on PsM is relatively scarce,

as it is a fairly recent advancement in maintenance technologies, with industry

being the major stakeholder and actor. To quote a couple of examples, a proposal

on how to implement a PsM strategy in manufacturing companies can be found

in [41]; a commercial PsM model acting as a ’maintenance control centre’, which

presents an application in the automotive sector, can be found in [42].
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Towards predictive maintenance
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Chapter 4

Logging data at CNAF

As briefly discussed in Chapter 2, the INFN-CNAF Tier-1 manages and stores

tens of Petabytes of data from various scientific experiments. Among all this data,

only a small percentage is produced by the data centre in the form of service logs

and monitoring data. Still, the amount of data produced is sizeable and requires

a proper infrastructure to be efficiently and effectively managed and analysed.

4.1 Metrics and Logs

Most of machines in the centre are monitored to extract metrics of their oper-

ation (e.g. the percentage of memory in use, the number or synchronous and

asynchronous requests, the average load, etc). All these metrics are stored in a

relational database.

In addition to these metrics, every machine and service running on them

prompts the writing of one or multiple log files containing various sort of informa-

tion (e.g. the type of requests send and their status, the shell command launched,

debug information on the condition of the machine, etc).

All these log files present heterogeneous structures, often non standard and

specific for the machine they originate from. Frequently, even when the type of

log files is the same across different machines, its generation is different based on

which team developed that logger.
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4.1.1 Rsyslog

The system used to collect the log files from every machine is rsyslog.

The Rocket-fast system for Log processing (rsyslog) is an open source project

used for forwarding log messages in a network [43]. The service is based on syslog

which is a common standard for messaging logging.

The standard consists in adding to the log message information such as the

hostname, the timestamp of the logging and in some case a tag corresponding to

the severity level (i.e. INFO, WARN, ERROR etc.).

The log messages collected by the system are usually directed to a text file in

the machine that produced the log.

4.1.2 InfluxDB

Some information not included in log messages are acquired by a monitoring sys-

tem, that collects various metrics from the machines in the centre and stores them

into a database called InfluxDB.

InfluxDB is a time-series database used to store large amount of timestamped

data [44]. The data collected from the monitoring system is stored into different

tables in the database, one for each metric acquired.

A database table is indexed by the timestamps and contains a column corre-

sponding to the hostname of the machine to which that measure corresponds and

the value of the measure. Various tags are used to group the different machine

corresponding to the same service or experiment.

The system grants the use of different retention policies according to the lifetime

of the data — i.e. the measurements are logged every 5 minutes for a week, with the

‘one week’ retention policy; every 15 minutes for one month, with the ‘one month’

retention policy, etc.

The data collected this way is then visualised through the use of a Grafana

web interface. Grafana is an open source platform used to visualise InfluxDB data

(and data from other sources) into dynamic dashboards [45]. The dynamicity of the

dashboard allows the user to filter the data coming from the InfluxDB databases
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without the need of manually typing queries.

4.2 Log Repository

In April 2019, the CNAF management, started exploring the development of a

single Log repository to be used in the centre. The purpose of this repository is

to unify the collection of log files and store them into a single storage system both

for safe-keeping and to ease the collection and analysis effort in view of future

improvement to the maintenance process of the centre.

The system developed so far makes use of rsyslog to redirect the flow of logs

from every machine in the centre to the same repository. The repository is struc-

tured in the way shown in Table 4.1.

host 1

year

month

day 1

log file 1

log file 2

day 2

log file 3

host 2

year

month 1

day

log file 4

month 2

day

log file 5

Table 4.1: Sample directory structure for the Log Repository. Details in the text.

This platform allows for easier retrieval of the log files. The access to the

repository is allowed via Network File System (NFS), a distributed file system

that allows to access files over network as if they were in local storage. The NFS

is an open standard defined in a Request For Comments (RFC) [46].
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Figure 4.1: Total size of the log files stored into the Log Repository as a function of
time.

The number of log files redirected into the Log Repository increased gradually

in the last month, while more and more machines were configured to start logging

into the repository. At the time of this thesis, the machines that are logging into

the Log Repository are 1133 and include all of the Storage hosts, all of the Network

hosts and all of the Farm hosts with every Worker Node included. Each machine

stores daily an average of 16 log files, for an average of 14 GB and a maximum

of 19 GB of data daily. Figure 4.1 shows the amount of data stored in the Log

Repository in the last two weeks. Every day more than 18000 log files are stored;

the number of log files in the repository at the time of recording was 577585, for

a total of 502 GB of data.

Few characteristic log files from StoRM will be briefly presented in the following

section. These log types are relevant since they are the type of log files studied in

the last part of this thesis.
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4.3 StoRM logs

StoRM is a storage manager service for generic disk-based storage systems [25].

StoRM is the storage management solution adopted by the INFN-CNAF Tier-1,

and it has been developed in the context of WLCG computational Grid framework

with the specific aim of providing high performing parallel file systems to manage

the resource distribution for the storage of data in disks. StoRM has a multilayer

architecture made by two stateless components, called Frontend (FE) and Backend

(BE), and one database use to store the SRM requests and its metadata. A simple

StoRM architecture is shown in Figure 4.2.

StoRM supports the Storage Resource Manager (SRM) protocol dividing the

operation int synchronous and asynchronous requests. The asynchronous requests

include srmPrepareToPut, srmPrepareToGet, srmBringOnLine, srmCopy; while

synchronous requests are Namespace operations (srmLs, srmMkdir,etc.), Discovery

operation (srmPing) and space operations (srmReserveSpace, srmGetSpaceMeta-

data, etc.).

The logging activity represents an important functionality of both BE and FE

StoRM components, and of the services linked to them. There are different kind

of files in which specific information is stored. A summary of the roles of the two

main components is discussed below, with example of their log files.

4.3.1 Frontend server

The FE provides the SRM web service interface available to the user, manages

user credentials and authentication, stores SRM requests data into a database,

retrieves the status of ongoing requests, and interacts with the BE.

Frontend services logs into two different files: storm-frontend-server.log and

monitoring.log. The former has been the first log type analysed throughout Section

6.2; a sample line of the log file is shown in Table 4.2.

When a new SRM request is managed, the FE logs a new line on the file. A

log line contains information on the type of request, the user, the success of failure

of the request and the token that links it to the BE process.
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Figure 4.2: Simple StoRM Service Architecture schema with one Backend and one Fron-
tend.

12/07 03:16:09.282 Thread 28 - INFO [0c79ddfe-07cd-48e8-
8547-53d9ca38d154]: Result for request ’PTP’ is
’SRM REQUEST QUEUED’. Produced request token: ’cae6a710
-d292-4404-9bdf-c7a67dad4759’

Table 4.2: Sample log line from storm-frontend-server.log from 8/12/2018.
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00:00:00.144 - INFO [xmlrpc-5916] - srmRm: user ¡/DC=ch/DC=
cern/OU=Organic Units/OU=Users/CN=atlpilo1/CN=614260/CN=
Robot: ATLAS Pilot1¿ operation on [SURL: srm://storm-fe
.cr.cnaf.infn.it/atlas/atlasdatadisk/rucio/mc15 13TeV/bf/
b0/log.16290046. 051554.job.log.tgz.1.rucio.upload]
failed with: [status: SRM INVALID PATH: File does not exist]

Table 4.3: Sample of log line from storm-backend-server.log from 8/12/2018.

00:00:17.827-synch.ls [(count=10669590, m1 rate=329.633,
m5 rate=362.073, m15 rate=501.721) (max=613.200, min
=9.381, mean=41.350, p95=171.993, p99=378.712) ]
duration units=milliseconds , rate units=events/minute

Table 4.4: Sample of log line from storm-backend-metrics.log from the 8/12/2018.

4.3.2 Backend server

The BE is the core of StoRM service since it executes all synchronous and asyn-

chronous SRM functionalities. It processes the SRM requests managing files and

space, it enforces authorisation permissions and it can interact with other Grid

services.

Table 4.3 shows a sample line of the storm-backend-server.log file.

The BE server log files provide information on the execution process of all

SRM requests, error or warning. BE logging is based on the logback framework.

Logback provides a way to set the level of verbosity depending on the use case.

The level supported are FATAL, ERROR, INFO, WARN, DEBUG. At the INFO

level, the BE logs for each SRM operation who has requested the operation (DN),

on which files (SURLs) and with which result.

Backend logging also consists of the heartbeat log file, that contains information

on the number requests processed by the system from its startup, adding new

information at each beat, and the storm-backend-metrics.log log file. An example

of the latter is shown in Table 4.4.

The information stored in this logfile are the type of operation, the number

of operation in the last minute, the number of operation from last startup, the
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maximum, minimum and average duration of the operation from the last minute

and the highest duration of the last 95th and 99th percentile of operation.
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Chapter 5

Infrastructure setup

As explained in the previous section, the amount of data being regularly stored in

the Log Repository averages to 12 GB of data per day. This amount of data, while

still being manageable is more and more close to the definition of BD, discussed

in Section 1.2.

To elaborate this amount of data, a standard computer may prove insufficient.

A single machine can perform elaboration in parallel on its cores, but oftentimes

this parallelisation is not enough for BD. A step forward from core parallelisation

is distributed computing: A distributed system is a system whose components

are located on different networked computers, which communicate and coordinate

their actions to divide a problem into many tasks, each of which is solved by one

or more computers.

In many cases it may be more cost-efficient to obtain the desired level of per-

formance by using a cluster of several low-end computers, in comparison with a

single high-end computer.

Since April 2019, CNAF started studying different system concept to develop

a distributed system for Log Ingestion and Analysis, loosely inspired by previous

works at CERN and at the Fermi National Accelerator Laboratory (FNAL).

I.e at CERN a complex system of heterogeneous log ingestion and analysis

has been put in place to consolidate the data managing structure. A schematic

representation of the framework in use at CERN is shown in Figure 5.1.

45



Figure 5.1: Schematic representation of the unified monitoring system in use at CERN
[47].

It is worth mentioning that the tools and techniques used to extract and analyse

data from such a large and complicated “dataset” at CERN are many, and very

different in scope and functions. While some have been developed by HEP experts

for handling big HEP datasets, there is an increasing need within the field to make

an effective use of industry developments, i.e. tools that have not been developed

in-house but - given the synergy among HEP and non-HEP on BD-related need -

they nevertheless seem to offer exactly what HEP needs.

The adoption of industry techniques that have not been developed in-house by

HEP experts implies (at least) a training curve and (for sure) additional work to

implement some level of adaptation of such tools to the specific details of HEP

work-flows, which is often a far from trivial work. At the same time, industry tech-

niques, mainly if open source, can rely on a large and open developers communities,

whose knowledge is capable to streamline technology adoption and troubleshoot-

ing on a stable basis and in a sustainable fashion, which is a hard to meet goal

for CERN specific products, which suffer from risk related to inability to guar-

antee stable funding schemes for hardware, software and human resources on a

multi-year scale.

Following the same structure, albeit with less complexity, the framework de-
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Figure 5.2: Schematic representation of the distributed log ingestion and analysis plat-
form being implemented at CNAF.

veloped to satisfy the need of the new CNAF log repository is schematically rep-

resented in Figure 5.2.

A complete description of the technical components of this framework is beyond

the scope of this thesis, but few highlights on the major software toolkits in use is

given in the following sections.

5.1 DODAS

The infrastructure developed is based on Openstack [48], a cloud operating system

that controls and manages the resources of the datacentre. The instances created

through Openstack form a cloud network over which is distributed the software

that defines the framework described above.

47



The distribution is done via the Dynamic On Demand Analysis Service (DO-

DAS), a Platform as a Service tool which allows to instantiate on-demand container-

based clusters [49]. DODAS as been developed by the INDIGO-DataCloud H2020

project [50] and has been funded in the scope of the European Open Science Cloud

hub (EOSC-hub) Horizon 2020 project[51].

The purpose of DODAS is to reduce the learning curve, as well as the opera-

tional cost of managing community specific services running on distributed cloud,

by automating the process of provisioning, creating, managing and accessing com-

puting and storage resources. DODAS can deploy both HTCondor batch systems,

and platforms for Big Data analysis based on Spark or Hadoop such as our case.

DODAS has already been integrated by the Submission Infrastructure of CMS,

as well as by the Alpha Magnetic Spectrometer (AMS-02) computing environment.

5.2 Hadoop-HDFS-Yarn

Apache Hadoop is a collection of open-source software utilities that facilitate using

a distributed platform to run jobs [15]. The main software that compose this

toolkit are:

• Hadoop Distributed File System (HDFS) - a distributed file-system that

stores data on machines, with a very high bandwidth across the cluster;

It has many similarities with existing distributed file systems but is designed

to be deployed on low-cost hardware with a high failure tolerance. It is

tuned to manage vast volumes and can easily scale to hundreds of nodes.

The main difference between HDFS and other file systems such as NFS, is

that it follows the assumption that is better to migrate the computation

closer to where the data is located rather than moving the data to where the

application is running. As such is suitable for application with large data

sets, supporting tens of millions of files in a single instance.

• MapReduce - MapReduce is the implementation of a programming model for

processing and generating big data sets with parallel, distributed algorithms
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on the cluster. A MapReduce framework is defined by two operations: Map:

a function that each worker node applies to the local data, writing the output

to a temporary storage and Reduce: a function applied to the data based

on the result of the mapping function. The role of the MapReduce is to

redistribute the data resulting from the map function such as all the data

with the same result is Reduced by the same worker node.

• Yet Another Resource Negotiator(YARN) - YARN is the middleware between

HDFS and the processing engines being used to run applications and can

dynamically allocate resources to applications as needed. By decentralising

the execution and monitoring of processing jobs YARN removes performance

bottlenecks and scalability problems that appears as the cluster sizes and the

number of applications increased.

Using YARN to separate HDFS from MapReduce allows the Hadoop environ-

ment to be more suitable for real-time processing and online applications that

would suffer from serialisation of processes [52].

5.3 Flume-Kafka

On the log ingestion side of the framework, two software manages the stream of

logs:

• Apache Flume - Apache Flume is a distributed, software for efficiently col-

lecting, aggregating, and moving large amounts of log data [53]. It has an

architecture based on streaming data flows. It uses a simple extensible data

model that allows for online analytic application. Flume can be used to

transport massive quantities of event data in a reliable way: A Flume source

consumes events delivered to it by an external source; the events are then

staged in a channel, and are removed from it only after they are stored in

the next channel or in the terminal repository. This ensures that the set of

events are reliably passed from point to point in the flow.
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• Apache Kafka - Apache Kafka is a distributed streaming platform to manage

streams of data [54]. The platform can publish and subscribe to streams of

records, similar to a message queue, reading incoming data and outputting

data on the same stream. The software allows also to process the stream as

it occurs making it possible to transform data as it arrives.

The combination of these two software, Flume for the stream of the logs and

Kafka for its ability to transform the data of the stream as it occurs allows to

process event with sub-second latency and scales greatly with large amount of

data [55].

5.4 Spark

The previous software discussed, following the definitions of Figure 1.3, deals with

the Data Management part of a BDA process.

Apache Spark is a fast and general-purpose cluster computing system used to

perform Analytics investigation on data [56]. It provides high-level APIs in four

different coding languages for data management and analysis: Java, Scala, Python

and R. In addition, it provides an optimised engine for graphs, higher-level tools

for dealing with relational databases and implements an efficient Machine Learning

library.

• Spark Core - Spark Core is the base of the framework. It manages the

dispatch of distributed and basic I/O functionalities.

• Spark SQL - Spark SQL is a component on top of Spark Core that introduced

a DataFrames based data abstraction, which provides support for structured

and semi-structured data and standard SQL queries for extract data.

• Spark MLlib - Spark MLlib is a distributed machine-learning framework

on top of Spark Core. Many common machine learning and statistical al-

gorithms have been implemented simplifying large-scale machine learning

pipelines
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All of these functions are optimised to run on distributed computing following

the MapReduce model.

The system presented is still in development, and as such it is not yet in

active use and no software has been yet developed that fully makes use of the

platform. This type of infrastructure is still being experimented on at CNAF,

with low prior knowledge and experience: using open source tools with industry

wide acknowledgement and distribution is, therefore, a great advantage for the

success of this type of experimentation.

The next and final chapter of this dissertation presents the development of a

BDA algorithm for the clustering of Log files. The script presented is developed

with the objective of presenting a preliminary work that could be performed on

the distributed platform described above.

However, due to the still in-development state of the system, the algorithm is

not yet optimised to be run on a distributed system and future efforts are needed

to adapt the code presented and employ it on the platform in a real use-case

scenario.
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Chapter 6

Log files analytics

In Summer 2018, the INFN-CNAF management decided to launch an exploratory

effort to investigate the feasibility of the collection of various log data from CNAF

services and systems and the potential extraction of useful and actionable infor-

mation. The form of this effort happened to be based on a bottom-up approach,

in terms of technical choices and manpower: namely, a small group consisting of

3 young physicists with computer science skills (the author of this thesis has been

one of them) were hired for a two-months period in the CNAF Summer School

program, with the precise goal to investigate the aforementioned direction, under

the guidance of technologists from the centre and personnel from the University

of Bologna.

The CNAF Summer School program focused on the investigation of log files

collected by StoRM, that proved to be the most well documented and readily

accessible service. More details on the service are discussed in Section 4.3 with an

overview of the log files that will be discussed in the following.

This CNAF Summer School program paved the way for further efforts in the

development of a consolidated log ingestion pipeline that resulted in the Log Repos-

itory presented in Section 4.2. The rest of this thesis will discuss a first example

of an Analytics work that can be performed on this new platform and as a con-

sequence of the preliminary activities done in the context of the CNAF Summer

School program.
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6.1 Preliminary investigation of CNAF log files

The Summer School period was from the beginning of September 2018 to the end

of October 2018 (even if a fraction of activities continued also beyond). In this

section, the work done by the students’ team is briefly described. The preliminary

exploration of a first log ingestion pipeline at CNAF is presented in Section 6.1.1.

The development of a series of algorithms for the parsing of log files is discussed

in 6.1.2. The definition of a prototype of Machine Learning algorithm for feature

selection is shown in Section 6.1.3. These works have been presented at the In-

ternational Symposium on Grids & Clouds 2019 (ISCG 2019) and released in the

proceedings book of the conference [57, 58].

6.1.1 Log ingestion and visualisation

This work focused on the creation of an indexed system with structured informa-

tion from CNAF system logs by using the Elastic stack (ELK), an open source

project developed by the Elastic company [14] that is the union of three different

software: Elasticsearch, Logstash and Kibana.

Logstash allowed the creation of a well defined pipeline collecting log files from

the Storage Manager, the different files were then parsed using various filters.

Based on Regular Expression, these filters selected a specific portion of text by

creating a series of patterns. Some patterns were predefined and universal (i.e. IP

address, timestamp, etc.), but the majority were custom made for each log file.

Then, using the Kibana User Interface, the information extracted from the log

parsing were plotted with several histograms and charts.

Elasticsearch provided a tool with Machine Learning functionality to predict a

future time interval given a specific portion of past data for training.

The tool available in the free version of the software, although, was not optimal

and no parameters could be adjusted, resulting in a system that did not take into

account any possible quick fluctuation of the examined metric; as such, for a

predictive scenario and a proactive identification of failures, this did not prove to

be the optimal solution.
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TIME - STRING [(count= NUM, m1 rate= NUM,m5 rate= NUM,
m15 rate= NUM ) (max= NUM, min= NUM, mean= NUM, p95= NUM,
p99= NUM ) ] duration units=milliseconds, rate units=
events/minute

Table 6.1: Log line from storm-backend-metrics.log with fields replaced by identi-
fiers.

6.1.2 Log parsing and structuring

The activity of the second student, fully independent from the ELK implementa-

tion discussed in the previous section, focused instead on the parsing of the raw

log files into structured .csv files.

The logs collected by the system vary a lot, and their content depends on the

machine from which such logs are acquired. Most log files consist of a heteroge-

neous array of measurements, events, descriptor keys and separators. Usually one

event log file is written in a way that makes it more readable for users, which

turns into ad advantage for a human reader but also adds redundancy which is

not meaningful information for a machine.

In order to extract the relevant information from a log file, a parsing algorithm

can be applied to pre-process the data and convert the log text file into a form

that is more adequate for database-like manipulation applications.

Depending on its source and purpose, log files themselves can follow very dif-

ferent structures. The log line in Table 4.4 in Chapter 4, for example, is from the

Backend (BE) metrics file from a storage machine managing the resources for the

ATLAS experiment. This log line includes numerous descriptors that define the

subsequent metrics, and every relevant metric is divided into blocks with the use

of separation symbols such as parenthesis and square brackets. Every line in this

log follows the same structure, with an apparent template easy to extract from the

information fields (Table 6.1).

The result of the manipulation is a csv file (shown in Table 6.2), that is easy to

read and, more importantly, easy to manipulate for any statistical analysis (even

machine learning techniques).

55



timestamp type count m1 rate m5 rate m15 rate max ...
00:00:17.827 synch.ls 10669590 329.633 362.073 501.721 613.200 ...

Table 6.2: Truncated storm-backend-metrics parsed .csv file.

12/01 03:48:09 Thread 59 - INFO [e701...]: ns1 srmPutDone : Request: Put done. IP:...

12/01 03:48:09 Thread 12 - ERROR [d857...]: Result for request ’Release files’ is ’SRM...

12/01 03:48:10 Thread 41 - INFO [41ee...]: Request ’PTP status’ from Client IP=’200...

12/01 03:48:15 Thread 3 - INFO [76f8...]: ns1 srmPing : Request: Ping. IP: 2001:145...

Table 6.3: Four sample lines from storm-frontend-server.log.

The log in Table 4.4, in Chapter 4, is an example of one of the easier log file to

parse: the template is well structured and maintained throughout the entire log

file, with little to no weird lines.

Other logs, although, follow a looser structure. Service message log files are

more verbose, the log lines are heterogeneous, and the relevant information are

hidden between descriptors with varying length and in different orders.

For StoRM, an example of this type of log file is the service log for the frontend

(FE). Details on this log files are available in Section 4.3.1. Table 6.3 shows some

sample lines from the log file. While a loose structure can be inferred from the

log lines, one could notice how — beyond the timestamp, the information on

the thread and the type of log (INFO, WARN, ERROR) — the verbose message

containing the information on the service does not follow a strict template.

Because of this, a log file of this type is loosely parsed, and the information

present in the message are to be retrieved manually. The results of the parsing via

the same script described above are shown in Table 6.4.

Most service events’ log files follow a structure similar to the one shown in Table

6.3, with a verbose message written without a strict structure, with heterogeneous

log lines.

The repository containing the algorithm described in this Section is available

in [59].

The results of this algorithm were employed in the third preliminary work, to
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timestamp thread type request id message

12/01 03:48:09 59 INFO e701... ns1 srmPutDone : Request: Put done. IP...

12/01 03:48:09 12 ERROR d857... Result for request ’Release files’ is ’SRM F...

12/01 03:48:10 41 INFO 41ee... Request ’PTP status’ from Client IP=’200...

12/01 03:48:15 3 INFO 76f8... ns1 srmPing : Request: Ping. IP: 2001:14...

Table 6.4: Sample of a truncated storm-frontend-server.csv file.

further extract information from the FE log files. The following Section discussed

this last example.

6.1.3 Log features extraction with ML

This study analysed two different sources of log files from the Storage Resource

Manager system of CNAF and correlated the extracted features in two different

critical periods.

The work focused on some InfluxDB metrics from the ATLAS hosts, and the

corresponding log files from the FE. For both sources, using various Machine Learn-

ing algorithms, the authors defined the most important features for the discrimi-

nation between ”good” and ”bad” days.

The critical periods were manually labelled after investigating the system for

anomalies and reading ticket reports.

The log files coming from StoRM for FE have been parsed using the same

algorithm presented in 6.1.2, and after studying the content of the log lines, some

key fields in the messages were selected as the input features for successive steps

of the process.

The parsed message was then converted through one hot encoding to determine

if those specific value were present or not. This allowed to prepare the log lines for

Machine Learning algorithm, by converting the large, verbose and unstructured

message into a feature vector.

The resulting data was used to train various supervised learning algorithm to

determine which of the extracted features correlated more with the supervised
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labels.

The work presented followed a strictly supervise approach, that required the

input from experts to label the critical periods and a careful study of the log files

to manually define a method to extract the interested fields.

6.2 Case study: text-based log clustering

All the previously discussed approaches, designed and developed during the Sum-

mer School period in 2018, required a deep study of the log files, and an appropriate

amount of custom filtering on the logs to extract the information. The approach

presented in this thesis builds on those experiences, and it is based on a performing

and effective algorithm to clusterise the log entries of all logs into classes based on

the textual content of the log message.

The algorithm should be able to:

• Perform the clusterisation in a totally unsupervised way: no prior knowledge

on the logs, and no manual support in the classification should be needed;

• Maintain a good resolution in the classification reducing at minimum the

loss of information;

• Scale well with the size of the log files;

• Perform the clusterisation in a relatively short time;

• Be applicable to different types of log files with basically no adjustments.

By dividing the log lines into clusters, a log file can be analysed in a quantitative

way, providing direct information on the type of messages and their frequency in

a given log file. If this process is performed every day, after collecting the log lines

of a given service from the day before, the team working on the support for such

a service would benefit from receiving a daily summary of the status of a service;

the added information can be used in conjunction with the already available data,
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INPUT: p a r s ed l og
PARAMETERS: MinimumSimilarityThreshold
INIT c l u s t e r s = {}
FOR every log l i n e msg IN pa r s ed l og

Anonymise msg
INIT s i m i l a r i t i e s = {}
FOR every c l u s t e r { i } IN c l u s t e r s

s i m i l a r i t y { i } = s i m i l a r i t y ( c l u s t e r r e f e r e nc e , msg)
IF s i m i l a r i t y { i } i s min ( s i m i l a r i t i e s )

IF s i m i l a r i t y { i } > MinimumSimilarityThreshold
Add msg to c l u s t e r { i }

IF no c l u s t e r matched msg
Add new c l u s t e r
Add msg as new c l u s t e r r e f e r e n c e

Table 6.5: Pseudocode of the log clustering algorithm. Details in the text.

and can provide a quick glance on the behaviour of a service, possibly highlighting

anomalous trends.

To reach this goal (i.e. treating the service support team as a customer to

satisfy), the proposed algorithm must perform the clustering on the log file for a

specific day in a way that the clustering processing completes in less than 6 to 8

hours, as to be performed around midnight and and be ready by the morning of

the next day.

The algorithm is shown in pseudocode in Table 6.5. The algorithm has been de-

veloped in Python 3.6, using the open source scientific computing package NumPy

[60] and the data structures and data analysis tools from the Python Data Anal-

ysis Library (Pandas) [61]. The repository containing the algorithm developed for

this thesis work is available at [62].

In the following sections the main steps of the algorithm are discussed.

Unless specified otherwise, the images and tables shown refer to the results of

the clustering performed on storm frontend server20181202.log. This is the log file

corresponding to the StoRM FE service for the ATLAS host for the 2/12/2018.

See Section 4.3.1 for details on this specific log file.
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srmPing : Request: Ping. IP: 2001:1458:301:4a::100:5a
srmLs : Client DN: /DC=ch/DC=cern/OU=Organic Units: ATLAS Data Management
Request ’PTP’ Requested ’1’ SURL(s): srm://storm-fe.cr.cnaf.infn.it/atlas/

Table 6.6: Sample log messages with highlighted fields to be masked.

srmPing : Request: Ping. IP: IP
srmLs : Client DN: PATH ATLAS Data Management
Request ’PTP’ Requested ’1’ SURL(s): SURL

Table 6.7: Sample log messages with masked fields.

6.2.1 Log anonymisation

Service log files, such as those from FE and BE of StoRM, can contain numerous

information on the user and the machine from which the service was launched.

These information are useful for tracking the source of a problem, but translates

into an added level of complexity for a clustering algorithm.

Every information on a verbose log, indeed, is an additional word to compare to

determine the similarity between cluster members. To improve the performance of

this algorithm, these types of information must be masked. This procedure is often

defined as “anonymisation”, since is usually applied to hide personal information

and sensible data.

A sample of log lines to be anonymised is shown in Table 6.6. To perform

the anonymisation the software uses compiled regular expression to identify the

underline structure of this fields. The process is quick and, since the masked values

are general enough, is easily adaptable to different logs and can be often used as

is.

The result of the masking process is shown in Table 6.7.

6.2.2 Comparison of similarity measures

The algorithm clusterises the log messages based on the similarity between the

message to clusterise and the reference messages of the clusters.
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Three different similarity measurements have been applied, testing the speed

of the algorithm, the number of clusters created and the cluster variance, that

defined how similar members of the same cluster are between each other.

J : Jaccard index

The first distance evaluated is the Jaccard Index. It is defined as the ratio between

the size of the intersection of two sets and the size of the union of the same sample.

J (A,B) =
A ∩B
A ∪B

(6.1)

The resulting value 0 ≤ J (A,B) ≤ 1 measure the similarity between the two

sets: with 0 corresponding to two sets with no intersection and 1 corresponding to

two coincident sets.

When the two sets are a series of words, the union corresponds to the set of all

the unique words in the strings, and the intersection corresponds to the common

words between the two strings.

Jaccard similarity has been extensively used with sets of strings to compare

search queries ([63] [64] [65]), with positive results when used on small sets. Its

use is therefore applied to large collection of small sets, such as search queries or

bit vectors.

One of the main advantages of this method is its speed, requiring only O(n) to

find the intersection between the two sets, with n the size of the union of the two

sets.

The disadvantage of this method is that it does not take into account multiple

occurrences of the same words in a set, and it loses information on the order of

the words.

C: Cosine similarity

The cosine similarity is a measure of similarity between two non-zero vectors. It

works by computing the cosine of the angle between the two vectors:
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C(A,B) = cos(θ) =
A ·B
‖A‖‖B‖

(6.2)

as such the cosine similarity is bounded by −1 ≤ C(A,B) ≤ 1, with 1 cor-

responding to two parallel vectors with the same direction, 0 to two orthogonal

vectors and -1 two parallel vectors with opposite directions.

When the two sets are series of words, the vectors are defined by the occurrences

of every words in the two sets. The cosine similarity is naturally bounded between

[0, 1] since negative values are impossible.

Cosine similarity is widely used in text analysis, especially to compare docu-

ments and large corpus based data mining ([66] [67]). In [68], cosine similarity is

the metrics of choice for the log clustering algorithm this work is based on.

Cosine similarity algorithm are very efficient for sparse vectors, and as such are

used to compare documents. Their efficiency is lowered when used with small sets,

and as such prove to be slow when used with large collection of small sentences.

The time complexity of cosine similarity is, in fact, O(n2) with n the dimensions

of the vectors.

Again, while keeping track of the occurrences of every word in the sentences,

this algorithm does not take into account the relative position and the order of

appearance of the words.

This algorithm was implemented in the code through the scikit-learn library

[10].

L: Levenshtein distance

The last similarity measure analysed is based on the Levenshtein distance. The

Levenshtein distance is defined as the distance between two string sequences, as

the minimum number of character edits necessary to change a sequence into the

other.

Given |S| the length of a string S, the distance between two strings A and B
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Figure 6.1: Fuzzy string search in a common web search engine.

is given by:

LA,B(i= |A| , j= |B|) =



max(i, j), if min(i, j)=0

min


LA,B(i− 1, j) + 1

LA,B(i, j − 1) + 1

LA,B(i− 1, j − 1) + 1Ai 6=Bj

otherwise.

(6.3)

where 1Ai 6=Bj
is equal to 1 when the i-th letter of A and the j-th letter of B are

different, and 0 otherwise; LA,B(i, j) is the Levenshtein distance between the first

i characters of A and the first j characters of B.

As per 6.3 the Levenshtein distance between two strings is measured recursively

as the minimum amount of deletion (the first element in the minimum), insertion

(for the second element) and edits (third element) needed to change A into B.

The Levenshtein distance is 0 if the two strings are identical, and at most is

the size of the longer strings if every character mismatch.

Levenshtein distance is mostly used in fuzzy string search, where the objective

is to find a string that approximately match a pattern (One common example is

seen in Figure 6.1). In log files this distance is used to anonymise data [37], and

to cluster search queries both in [69] and [63].

This algorithm is very efficient when comparing a short string with a large

text, but is used also for comparing long strings to each other. The computational
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Sample Phrases J C L
“Test sample”

0.333 0.500 0.667
“Test trial”

“Test sample”
1.000 1.000 0.545

“Sample test”

“Test sample”
0.333 0.500 0.909

“Test smaple”

“Test sample test”
1.000 0.949 0.815

“Test sample”

Table 6.8: Comparison of the results between different similarity measure applied
on sample sentences.

complexity, although, increases since it is O(nm), with n and m the respective

length of the two strings compared.

This distance measure has the advantage of taking into account the order of

appearance of the words.

Since this metric is a measure of distance between words, for our uses must be

converted into a measure of similarity:

Lsym(A,B) = 1− L(A,B)

max(|A| , |B|)
(6.4)

This algorithm as been implemented through the use of the Levenshtein Python

C extension module, available at [70].

Comparison between J , C and L

Although the similarity is measured in different ways, all three algorithms bound

the similarity between 0 and 1, as the percentage of similarity between to texts.

Table 6.8 shows the results of the application of the three algorithms on some

sample sentences.

The Table shows the different behaviour of each algorithm. The second row

shows how neither J nor C weighs the order of the words. By comparing the third

and first row one can infer how J and C do not consider small difference in the
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word, such as spelling error or difference between plural and singular. The last

row shows the difference between the weighs of words occurrences in the sentences

with J that does not account for repetitions at all.

By measuring the number of log lines clustered per second, the Cosine similarity

was immediately discarded. Even with a low similarity threshold, that produces a

small amount of clusters, this similarity greatly under-performed with respect to

the other algorithms. A small sample log files of 20k lines was parsed in over a

minute, while the other algorithms managed to parse the log file in less than 10

seconds. Table A.1, A.2 and A.3 in Appendix A.1 list the number of lines parsed

per second by each algorithm at different similarity threshold. Assuming a linear

time trend — assumption that will be verified in the next Section — the Cosine

similarity, with a low threshold, could parse a log file of 2M lines in over 2 hours,

resulting in only four clusters with a high variance (See Figure A.2).

The Jaccard index, on the other end, proved to be really fast, parsing the

sample file in 8 seconds with the more restrictive similarity threshold, but resulted

in a very large number of clusters even at low similarity threshold, each with an

high variance despite their number (See Figure A.1).

For these reasons the measure of similarity selected is the Levenshtein similar-

ity, that will be used throughout the rest of this work.

6.2.3 Time complexity

The algorithm is employed to parse single log files corresponding to a day of logged

events, running it from a medium range laptop. A new cluster is created once a log

line results too dissimilar to every existing clusters to be merged to any of them,

as such the number of clusters increases sequentially.

The plot in Figure 6.2 shows how the number of clusters increases steadily at

the very beginning of the file, and only few clusters are created in the middle and

the end of the files. More specifically 80% of the clusters are created in the first

250000 lines of the log file. Appendix A.2 shows the same results for the log files

from other days.

The number of log lines clustered, as a function of the running time of the
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Figure 6.2: Number of clusters as a function of lines per log, in FE server log
(02/12/2018) with similarity threshold = 0.7.

algorithm, follow an almost linear trend for the second half of the cluster. This

can be seen in Figure 6.3.

The majority of the clusters are created in the first seconds of computation

and, by plotting the same data for the first seconds of running time (Figure 6.4),

it seems that the number of log lines clustered decreases every time a new cluster

is created.

Since most of the log are created in the first seconds, in Figure 6.3 the number

of log lines clustered per second seems to be linear with the maximum number of

clusters.

Once the similarity measure to use has been determined - in this case, as

discussed, the Levenshtein one - the only parameter in the algorithm left to be

determined is what can be referred to as the “similarity threshold”, i.e. the lower

limit of similarity that a message must have with respect to a cluster to be merged

with it.

As such, the similarity threshold is a key parameter as it determines the number

66



Figure 6.3: Number of log lines parsed as a function of the running time, and the
matching fit line for FE server log (02/12/2018). The markers correspond to the creation
of a new cluster.
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Figure 6.4: Close up of Figure 6.3 for the first seconds of runtime. The markers corre-
spond to the creation of a new cluster.

of clusters that gets created from a log file. Figure 6.5 shows how the number of

log lines clustered, as a function of the running time, is lower for higher similarity

thresholds.

Table 6.9 shows the maximum number of clusters created for each similarity

threshold and the slope of the fit line, that roughly corresponds to the average

number of log lines clustered per seconds.

6.2.4 Levenshtein similarity threshold

The similarity threshold used determines the number of clusters and consequently

the time needed to cluster the log file. Since there is no stochasticity in the

clustering of a specific log file with a specific similarity threshold, this value also

determines the size, the shape and the reference message line of each cluster.

The similarity threshold to be chosen should, therefore, minimise the loss in

information in the clustering, by both having low overlap between clusters and
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Figure 6.5: Number of log lines clustered as a function of the running time for the FE
server log (02/12/2018). The slope of the curve decreases for higher similarity thresholds.

Similarity threshold Clusters Slope

0.40 5 2445
0.50 7 2031
0.60 9 1778
0.62 10 1655
0.65 12 1403
0.68 17 1105
0.70 19 1041
0.80 32 677
0.90 64 357

Table 6.9: Total number of clusters and slope of the fit line for the evaluation time
of the FE server log (02/12/2018) at different similarity thresholds.
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Figure 6.6: Mean in-cluster variance as a function of the similarity threshold and the
corresponding number of cluster for the FE server log (02/12/2018).

small variance in the same cluster. The computation time should also be taken

into account, since it should satisfy the requirement — discussed at the start of

this Section — of clustering a daily log file in less than 6-8 hours. By that, it was

meant the following: if the developed algorithm, when run even on a medium range

personal laptop only (and not on a high end CNAF server), will end up in being

able to perform clustering on an average log file within the 6-8 hours threshold,

it will be considered a success. Indeed, there is not need to achieve higher speed

in such prototype, as it will eventually run on more performing hardware (or even

on a BDA platform).

Figure 6.6 shows the mean cluster variance as a function of the similarity

threshold and the corresponding number of cluster. The variance is measured as

the squared deviation from the mean of the members of a cluster’s similarity from

the reference message of the cluster. The mean cluster variance is the average of

this value across all of the clusters created with a specific similarity threshold.

Figure 6.6 shows how the mean cluster variance is higher for lower similarity
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threshold and lower for higher threshold, as expected, but with a low value at

similarity threshold of 0.4.

Since the criteria for the choice of similarity was a low cluster variance and low

computation time, a similarity of 0.4 seems to be the best choice for this particular

log file.

Although, by considering only the clusters containing the highest amount of

log lines, the behaviour changes. Figure 6.7, shows the mean cluster variance as

a function of the similarity threshold and consequently the number of clusters

for different percentages of the log file. In the plot, the solid line (referred to as

“p100”) matches the line in Figure 6.6. The dashed and dotted lines corresponds

to different percentiles of the data, i.e. “p80” corresponds to the mean cluster

variance of the lowest number of most populated clusters that collect at least 80%

of the log lines, and “p90” (“p95”) corresponds to at least 90% (95%) respectively.

Even if a similarity of 0.4 seems to yield a small mean cluster variance, by

removing the less populated clusters, the mean cluster variance increases drasti-

cally: the most populated clusters collect log lines with higher distance from the

reference message. For higher threshold the mean cluster variance decreases no-

ticeably, while the number of clusters increases. This indicates a high number of

highly specific clusters; a similarity threshold of 1 would result in a number of

cluster equals to the number of unique messages in the log files.

For this log file, the similarity threshold that seems to satisfy well the require-

ments is between 0.675 and 0.7; in both cases, in fact, the mean cluster variance

is similar even for smaller percentile of data.

This result seems to be consistent with the same analysis performed on log files

from the same source at different days; the results can be seen in Appendix A.3.

The result of the clustering algorithm with similarity threshold 0.675 is visible

in Figure 6.8 where every bar is labelled with the cluster’s reference message.

The same results are shown in logarithmic scale in Figure 6.9 to show the trend

of the least populated clusters. Table 6.10 lists the clusters population and the

corresponding reference message.
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Figure 6.7: Mean cluster variance at different similarity levels for the entire log file
(p100) for the 95th percentile (p95) for the 90th percentile (p90) and the 80th percentile
(p80) for the FE server log (02/12/2018).
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Cluster ID Occurrences Reference message

0 79117 ns1 srmPutDone : Request: Put done. IP: IP Client[...]
1 460708 Result for request ’Release files’ is ’SRM SUCCESS[...]
2 337391 Request ’PTG status’ from Client IP=’::IP’ Client [...]
3 340976 process request : Connection from IP
4 351179 ns1 srmLs : Request: Ls. IP: ::IP. Client DN: PAT[...]
5 349696 Result for request ’PTP status’ is ’SRM REQUEST IN[...]
6 36551 ns1 srmGetSpaceTokens : Request: Get space tokens[...]
7 72440 Result for request ’PTP’ is ’SRM REQUEST QUEUED’. [...]
8 9948 Result for request ’Mkdir’ is ’SRM INVALID PATH’
9 87 process file requestUSER : Protocol check failed[...]
10 174 process file requestUSER : Received - 5 - protoc[...]
11 139 ns1 srmRm : Request: Rm. IP: ::IP. Client DN: PAT[...]
12 1 storm::BolStatusRequest::loadFromDB() : No tokens [...]
13 10 rpcResponseHandler AbortFiles : arrayOfFileStatuse[...]
14 84975 Request ’BOL’ from Client IP=’IP Client DN=’PATH U[...]
15 26 ns1 srmCheckPermission : Request: Check permissio[...]
16 3415 ns1 srmReleaseFiles : Request: Release files. IP:[...]

Table 6.10: Cluster population and reference message for FE server log file
(02/12/2018) with similarity threshold 0.675.
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6.2.5 Reference message

To determine if a log line is to be merged to a preexisting cluster, the algorithm

compares the log line to the reference message of the cluster. The reference message

of a cluster corresponds to the first log line added to that specific cluster; this

is done to ensure that the time complexity of the algorithm does not increase

exponentially with the number of log lines clustered.

The downside is that the reference message does not change during the run,

and can result in a non-optimal choice, determined only by the order of appearance

of the messages in the log file.

The assumption made is that, since a log message follows a template defined

by the developer when printing the log, the number of unique type of log messages

is finite; if the log file is clustered correctly, every message belonging to a specific

cluster comes from the same template.

If this assumption is true, the order of appearance of the logs should not alter

significantly the result of the clustering. By comparing the result of the algorithm

for random samples of a log files, any significant difference due to the order of

appearance of the log lines should be readily visible.

Figure 6.10 shows the clusters population for the FE log file of 2/12/2018,

clustered with a similarity threshold of 0.7. The label on each bar corresponds to

the cluster’s reference message.

The same log file has been randomly sampled for 90% of its rows. Figure 6.11

shows the result of the same clustering algorithm performed to a sample of the log

file.

The two plots follow a nearly identical distribution, and even if the reference

messages differ from each other, the most popular clusters seem to refer to the same

message template. This gives confidence that the usage of the cluster’s reference

message as from this work does not induce any relevant bias (more considerations

on this point, regarding possible next steps of this work, can be found in 6.4.

Additional sampling results are shown in Appendix A.4
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Figure 6.10: Clusters population for FE server log file (02/12/2018), with similarity
threshold 0.7. Every bar is labelled with the cluster’s reference message.

Figure 6.11: Clusters population for a random sample of 90% of the FE server log file
(02/12/2018), with similarity threshold 0.7. Every bar is labelled with the cluster’s
reference message.
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6.3 Backend log clustering

Since the algorithm was built to be employable on different log files with little to

no manual intervention, it was tested on a different type of log from StoRM: the

logs from the BE. Details on this type of logs are shown in Section 4.3.2.

A week of log files from the StoRM host related to the CMS experiment

was analysed, in particular the week studied was the one from 22/05/2019 to

28/05/2019. In this week there was a noticeable trend in the log files as shown in

Table 6.11. In particular, the file from one specific day was marked as critical on

the Table, as it had a considerably larger size than the rest of the log files.

The clustering performed followed the same analysis discussed in the previous

section: the similarity measure used to clusterise the log files is the Levenshtein

similarity; to determine the correct threshold, the mean cluster variance and the

running time of the algorithm were evaluated for a single day; the results are shown

in Figure B.1 and B.2 in Appendix B.

The similarity threshold selected was 0.6. The plot shows that the mean clus-

ter variance decreases form 0.6 to 0.7, but the mean cluster variance at lower

percentile is almost the same; this may indicate that the 4 cluster difference be-

tween the clusters created with similarity threshold 0.6 and 0.7 are between the

least populated, including less than 5% of the log lines, and probably results from

the split of already low populated clusters.

The plots from the clustering with 0.6 similarity threshold are shown in Ap-

pendix B.1. The Figure 6.12 corresponds to the critical day, where the file size

passed 4 GB, with the same plot in logarithmic scale in Figure 6.13 to highlight

the distribution of the least populated clusters.

6.3.1 Results

By comparing the results from the critical day in Figure 6.13 with those shown

in Appendix B.1 one could observe how the main difference between the two files,

aside from the number of log lines, is not the distribution of the most populated

clusters, but the occurrence of multiple low populated clusters, either not present

78



F
ig

u
re

6.
12

:
C

lu
st

er
s

p
op

u
la

ti
on

fo
r

B
E

se
rv

er
cr

it
ic

al
lo

g
fi
le

(2
3/

05
/2

01
9)

,
w

it
h

si
m

il
ar

it
y

th
re

sh
ol

d
0.

65
.

E
v
er

y
b

ar
is

la
b

el
le

d
w

it
h

th
e

cl
u

st
er

’s
re

fe
re

n
ce

m
es

sa
ge

.

79



F
ig

u
re

6.13
:

C
lu

sters
p

o
p

u
la

tio
n

fo
r

B
E

server
critical

log
fi

le
(23/05/2019)

w
ith

sim
ilarity

th
resh

old
0.6,

in
logarith

m
ic

sca
le.

D
eta

ils
in

th
e

tex
t.

80



Filename Date Size

2019-05-22-storm-backend.log 22/05/2019 1.541 GB
2019-05-23-storm-backend.log 23/05/2019 4.061 GB
2019-05-24-storm-backend.log 24/05/2019 1.756 GB
2019-05-25-storm-backend.log 25/05/2019 1.197 GB
2019-05-26-storm-backend.log 26/05/2019 1.263 GB
2019-05-27-storm-backend.log 27/05/2019 1.707 GB
2019-05-28-storm-backend.log 28/05/2019 1.568 GB

Table 6.11: File size of the log files from StoRM CMS’s BE in the week from
22/05/2019 to 28/05/2019. The highlighted row marks the critical day. Details in
the text.

in the other days, or scarcely populated.

This type of information, that can be provided each morning, summarising the

most relevant anomalies in a log file can be incredibly valuable for the support

team. While normally requiring to manually study the log files, an analytics

software like this can provide a quick overview of the previous days.

To be informed of an anomaly the support team needs receive a ticket from a

user — that usually does not provide any information on the source of the problem

— or be aware of a critical failure in the system that can result in unnecessary

downtime. A system such the one described in the previous Section will be able to

provide an automatic warning when the clustering of the log files from the previous

days varies from the usual trend.

While this type of analysis still does not provide information on the source of

the problem or its gravity, can noticeably ease the debugging process by reducing

the size of the data to analyse, and can be a useful approach to prepare the logging

data for successive ML efforts.

The following Section will present some possible future steps to take to improve

on this work.
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6.4 Future developments

This work presented an experimental approach towards an unsupervised analytics

tool to parse and clusterise verbose log files. The developed system proved to

be able to handle different type of logs at a sufficiently high speed while yielding

summarised and valuable information that improves the standard one obtainable

from tedious and time-consuming human parsing of large logs.

Regarding the algorithms, the one used in this thesis showed to perform as

necessary to a large extent. There are remarkable points to be improved, though,

which should be part of the continuation of this work in the future. As an exam-

ple, the definition and use of a cluster’s reference message in the cluster creation

procedure has been shown not to induce any particular bias but this choice could

be improved in favour of designing one that by construction cannot induce biases.

This method can also be used to prepare data for further application of ML

techniques. Algorithms such as those tested in [57], for example, require data

structured into array. A clustering algorithm such as the one described in this

chapter would allow to classify the information from the log files into a simple one

hot encoding, where the cluster id is represented as a state in a vector where every

value is a 0 except a single 1 in correspondence of the cluster id.

Visualisation is another area in which relatively easy improvements could be

achieved. In the previous Section, we presented a way to represent the results of

the clustering through a bar plot, that quickly showed the population distribution

in the cluster and the corresponding reference messages. Another representation

could be by visualising the log message at time of logging, by plotting the time

on the x-axis of a scatter plot and the clusters id on the y-axis. An example of

the resulting graph is visible in Figure 6.14. This kind of representation highlights

the frequency of the more common clusters and showcase the order of appearance

of the least populated. By studying this type of graph, it is possible to define

patterns in the order of appearance of the logs. This type of analysis is performed

by [68] and [71], where the repetition of series of sequential clusters is used to

predict failure in error logs. Similar improvements in visualisation methods could

be an asset in future directions to be pursued.

82



Figure 6.14: Log messages at time of logging, visualised after the cluster creation process.
The y-axis refers to the clusters id generated by the cluster creation algorithm. The x-
axis is the time. Every dot in the graph represents an actual message from the log,
showing its mapping to one of the discovered clusters.

Another aspect that could bring improvements is the study of correlation across

days (or even across log files). On the other hand, any study of correlation between

the results of two different runs of the procedure is far from trivial, since the results

are unlikely to share the same clusters, in the same order, or even with the same

reference message. For example, one could consider computing the correlation as

a measure of similarity between the reference message of each cluster in order to

overcome this shortcoming. An example of this was actually investigated, and

it is shown in Figure 6.15. In Figure 6.15 it is apparent how some clusters are

strictly correlated, such as cluster 0 from the log file of 7/12/2018 and cluster 1

from 6/12/2018. From Table A.6 and A.7 is obvious how the two clusters follow

the same exact template; cluster 14 from the 7/12/2018, instead, does not seem

to be similar to any clusters from 6/12/2018. The Table indeed confirms that this

log message did not occur on the previous day.

As a final remark, another direction to improve the results from this work could

be adapting the code to run on a distributed platform. The framework presented
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Figure 6.15: Correlation between clusters created from two different log days measured as
the similarity between their reference message. Lighter red shades for similarities lower
than the threshold of 0.675, darker greens for similarities higher than the threshold.

in Chapter 5 can run parallelised software through the use of the Spark engine

and YARN. The code developed in this work would have a large benefit in perfor-

mance if adapted for such purpose, but the effort is large i.e. most of the functions

should be rewritten to follow the Map Reduce programming model. The program

clusterises the log file line by line, as the clustering cannot be vectorised, since it

depends on the results from the previous lines, but the measure of similarity is

performed independently for each cluster and, as such, it can be a perfect target

for parallelisation. This is considered to be a non trivial but largely promising

investment of efforts for CNAF in the future.

All the mentioned improvements, some of which have already been explored

in a preliminary manner, stand as concrete suggestions to any future effort to

continue the work of this thesis, but go beyond the scope of the thesis itself. The

thesis focused on the development of a preliminary infrastructure for analytics at

CNAF on one side, and an experimental analytics algorithm for text-based log
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analysis on the other side. It is worth noting that part of the work suggested

above is already being worked on by either CNAF developers or new students

(both in Physics and in Data Science and Computation). It is crucial to underline

that the INFN-CNAF centre is strongly interested in progressing on this project

and in supporting efforts towards further developing more powerful and versatile

monitoring systems able to automatically correlate log files and metrics coming

from heterogeneous sources and devices [72].
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Conclusions

This thesis presents the work done at the INFN-CNAF Tier-1 Centre aimed at

the deployment of a platform for log ingestion and processing oriented towards

the development of algorithms and procedures towards a Predictive Maintenance

model for anomaly detection at the data centre. The original contribution of

this work is the development of a clustering algorithm based on measures of text

similarity that, after parsing and anonymising a verbose event log file, classifies

each log lines into community according to their level of similarity.

After testing different text-based similarity measures, an algorithm based on

the Levenshtein distance was selected as the one offering the highest number of sig-

nificant clusters, while keeping the running time of the clustering algorithm below

an acceptable threshold. A careful evaluation was performed to determine the best

values for the clustering parameters, selecting the Minimum Similarity Threshold

that resulted in the lowest mean cluster variance, both for every cluster and for

just the most populated ones. This is done to ensure that the clusters have enough

resolution to maintain information, while avoiding unnecessary separations.

The clustering algorithm has been run on two different type of log files, be-

longing to the two main components of the Storage Resource Manager (StoRM)

of the INFN-CNAF centre. As a particular example, a week of log files of the

backend StoRM server from the CMS experiment was analysed, as it presented

an anomalously large log file size; the algorithm allowed to spot discrepancies in

the number and type of clusters identified, enabling a clear visualisation of the

anomalous behaviour to assist the service support team with an effective tool.

The results obtained prove that the algorithm satisfies the expected require-
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ments: it follows a totally unsupervised procedure with no need of any manual

intervention to classify the log lines; it is applicable to different types of log with

minimum adjustments; it offers a good cluster resolution with low loss of log mes-

sages information; it scales well with the log file size, performing the clusterisation

in less than 6-8 hours for the average CNAF log on a standard, medium range

laptop.

This thesis also presents a distributed analysis platform based primarily on

Apache and Openstack software that is being developed as part of the same efforts

at CNAF towards Predictive Maintenance. As possible future development of this

work, the algorithm could be adapted to run on such platform to increase its

performance and open up to the possibility of streaming the log data directly into

the clustering procedure.

Software like this could be of great help to the support team of the various

services at CNAF, opening the path towards the implementation of various au-

tonomous routines to perform maintenance actions, requiring less and less effort

and time from the operators.
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Appendix A

Frontend plots

A.1 Measures comparison

Figure A.1: Mean variance in clusters for Jaccard similarity applied on a sample file of
20000 lines from FE.
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Similarity threshold Clusters Slope

0.50 17 4129
0.60 26 3763
0.70 37 3224
0.80 65 2511

Table A.1: Number of clusters and iteration per second for Jaccard similarity with
different similarity thresholds on sample file of 20000 lines from FE.

Similarity threshold Clusters Slope

0.50 4 298
0.60 8 170
0.70 13 115
0.80 24 59

Table A.2: Number of clusters and iteration per second for Cosine similarity with
different similarity thresholds on sample file of 20000 lines from FE.

Figure A.2: Mean variance in clusters for Cosine similarity applied on a sample file of
20000 lines from FE.
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Similarity threshold Clusters Slope

0.50 4 3471
0.60 6 2791
0.70 9 1846
0.80 19 966

Table A.3: Number of clusters and iteration per second for Levenshtein similarity
with different similarity thresholds on sample file of 20000 lines from FE.

Figure A.3: Mean variance in clusters for Levenshtein similarity applied on a sample file
of 20000 lines from FE.
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A.2 Time trend

Figure A.4: Number of clusters as a function of lines per log, in FE server log
(06/12/2018) with similarity threshold = 0.7.
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Similarity threshold Clusters Slope

0.40 5 2338
0.50 7 1964
0.60 8 1761
0.62 9 1684
0.65 14 1267
0.68 16 1148
0.70 19 1027
0.80 34 610
0.90 73 328

Table A.4: Total number of clusters and slope of the fit line for the evaluation
time of the FE server log (06/12/2018) at different similarity threshold.

Figure A.5: Number of log lines clustered as a function of the running time for the FE
server log (06/12/2018). The slope of the curve decreases for higher similarity threshold.
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Figure A.6: Number of clusters as a function of lines per log, in FE server log
(07/12/2018) with similarity threshold = 0.7.

Figure A.7: Number of log lines clustered as a function of the running time for the FE
server log (07/12/2018). The slope of the curve decreases for higher similarity threshold.
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Similarity threshold Clusters Slope

0.40 5 2373
0.50 8 1787
0.60 10 1418
0.62 10 1424
0.65 13 1255
0.68 15 1138
0.70 18 999
0.80 34 629
0.90 72 331

Table A.5: Total number of clusters and slope of the fit line for the evaluation
time of the FE server log (07/12/2018) at different similarity thresholds.

A.3 Mean cluster variance

Figure A.8: Mean cluster variance at different similarity levels for the entire log file
(p100) for the 95th percentile (p95) for the 90th percentile (p90) and the 80th percentile
(p80) from the FE server log (06/12/2018).
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Figure A.9: Mean cluster variance at different similarity levels for the entire log file
(p100) and for lower percentiles (p80, p90, p95) from the FE server log (07/12/2018).

A.4 Sampling

Figure A.10: Clusters population for a second random sample of 90% of the FE log file
(02/12/2018), with similarity threshold 0.7.
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Figure A.11: Clusters population for a third random sample of 90% of the FE log file
(02/12/2018), with similarity threshold 0.7.

A.5 Clusters histograms and tables

Figure A.12: Clusters population for FE server log file (06/12/2018), with similarity
threshold 0.675. Every bar is labelled with the cluster’s reference message.
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Cluster ID Occurrences Reference message

0 118644 Request ’BOL status’ from Client IP=’::IP’ Client [...]
1 320314 process request : Connection from IP
2 817928 Result for request ’BOL status’ is ’SRM REQUEST IN[...]
3 94810 ns1 srmReleaseFiles : Request: Release files. IP:[...]
4 99434 Result for request ’PTG’ is ’SRM REQUEST QUEUED’. [...]
5 435536 ns1 srmLs : Request: Ls. IP: ::IP. Client DN: PAT[...]
6 52069 ns1 srmGetSpaceTokens : Request: Get space tokens[...]
7 84846 Request ’PTG’ from Client IP=’::IP’ Client DN=’PAT[...]
8 509 process file requestUSER : Protocol check failed[...]
9 1018 process file requestUSER : Received - 5 - protoc[...]
10 401040 Request ’PTG status’ from Client IP=’::IP’ Client [...]
11 270841 Result for request ’Mkdir’ is ’SRM INVALID PATH’
12 62 rpcResponseHandler AbortFiles : arrayOfFileStatuse[...]
13 59 storm::BolStatusRequest::loadFromDB() : No tokens [...]
14 26 ns1 srmCheckPermission : Request: Check permissio[...]
15 1233 ns1 srmAbortRequest : Request: Abort request. IP:[...]

Table A.6: Cluster population and reference log for FE server log file (06/12/2018)
with similarity threshold 0.675.

Figure A.13: Clusters population for FE server log file (07/12/2018), with similarity
threshold 0.675. Every bar is labelled with the cluster’s reference message.
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Cluster ID Occurrences Reference message

0 359469 process request : Connection from IP
1 550170 Request ’BOL status’ from Client IP=’::IP’ Client [...]
2 754453 Result for request ’BOL status’ is ’SRM REQUEST IN[...]
3 437153 ns1 srmPing : Request: Ping. IP: ::IP. Client DN:[...]
4 80704 Result for request ’PTG’ is ’SRM REQUEST QUEUED’. [...]
5 47215 ns1 srmGetSpaceTokens : Request: Get space tokens[...]
6 51154 ns1 srmReleaseFiles : Request: Release files. IP:[...]
7 901 process file requestUSER : Protocol check failed[...]
8 1802 process file requestUSER : Received - 4 - protoc[...]
9 80 storm::BolStatusRequest::loadFromDB() : No tokens [...]
10 122 rpcResponseHandler AbortFiles : arrayOfFileStatuse[...]
11 250777 Result for request ’Mkdir’ is ’SRM INVALID PATH’
12 216 ns1 srmRm : Request: Rm. IP: ::IP. Client DN: PAT[...]
13 28 ns1 srmCheckPermission : Request: Check permissio[...]
14 23 rpcResponseHandler Ls : ERROR: XML-RPC Fault: RPC [...]

Table A.7: Cluster population and reference log for FE server log file (07/12/2018)
with similarity threshold 0.675.
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Appendix B

Backend plots

Figure B.1: Number of log lines clustered as a function of the running time for the BE
server log (25/05/2019). The slope of the curve decreases for higher similarity thresholds.
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Figure B.2: Mean cluster variance at different similarity levels for the entire log file
(p100) for the 95th percentile (p95) for the 90th percentile (p90) and the 80th percentile
(p80) from the BE server log (25/05/2019)
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B.1 Clusters histograms

Figure B.3: Clusters population for BE log file (22/05/2019), with similarity threshold
0.6.

Figure B.4: Clusters population for BE log file (22/05/2019), with similarity threshold
0.6. Y-axis in logarithmic scale to highlight the least populated clusters.
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Figure B.5: Clusters population for BE log file (24/05/2019), with similarity threshold
0.6.

Figure B.6: Clusters population for BE log file (24/05/2019), with similarity threshold
0.6. Y-axis in logarithmic scale to highlight the least populated clusters.
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Figure B.7: Clusters population for BE log file (25/05/2019), with similarity threshold
0.6.

Figure B.8: Clusters population for BE log file (25/05/2019), with similarity threshold
0.6. Y-axis in logarithmic scale to highlight the least populated clusters.
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Figure B.9: Clusters population for BE log file (26/05/2019), with similarity threshold
0.6.

Figure B.10: Clusters population for BE log file (26/05/2019), with similarity threshold
0.6. Y-axis in logarithmic scale to highlight the least populated clusters.
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Figure B.11: Clusters population for BE log file (27/05/2019), with similarity threshold
0.6.

Figure B.12: Clusters population for BE log file (27/05/2019), with similarity threshold
0.6. Y-axis in logarithmic scale to highlight the least populated clusters.

109



Figure B.13: Clusters population for BE log file (28/05/2019), with similarity threshold
0.6.

Figure B.14: Clusters population for BE log file (28/05/2019), with similarity threshold
0.6. Y-axis in logarithmic scale to highlight the least populated clusters.
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