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Abstract

La Fisica delle Alte Energie (HEP) & da lungo tra i precursori nel gestire e proces-
sare enormi dataset scientifici e nell’operare alcuni tra i piu grandi data centre per
applicazioni scientifiche. HEP ha sviluppato una griglia computazionale (Grid) per
il calcolo al Large Hadron Collider (LHC) del CERN di Ginevra, che attualmente
coordina giornalmente le operazioni di calcolo su oltre 800k processori in 170 centri
di calcolo e gestendo mezzo Exabyte di dati su disco distribuito in 5 continenti.

Nelle prossime fasi di LHC, soprattutto in vista di Run-4, il quantitativo di
dati gestiti dai centri di calcolo aumentera notevolmente. In questo contesto, la
HEP Software Foundation ha redatto un Community White Paper (CWP) che
indica il percorso da seguire nell’evoluzione del software moderno e dei modelli di
calcolo in preparazione alla fase cosiddetta di High Luminosity di LHC. Questo
lavoro ha individuato in tecniche di Big Data Analytics un enorme potenziale per
affrontare le sfide future di HEP.

Uno degli sviluppi riguarda la cosiddetta Operation Intelligence, ovvero la ri-
cerca di un aumento nel livello di automazione all’interno dei workflow. Questo
genere di approcci potrebbe portare al passaggio da un sistema di manutenzione
reattiva ad uno, piu evoluto, di manutenzione predittiva o addirittura prescrittiva.

La tesi presenta il lavoro fatto in collaborazione con il centro di calcolo dell'INFN-
CNAF per introdurre un sistema di ingestione, organizzazione e processing dei log
del centro su una piattaforma di Big Data Analytics unificata, al fine di prototipiz-
zare un modello di manutenzione predittiva per il centro. Questa tesi contribuisce
a tale progetto con lo sviluppo di un algoritmo di clustering dei messaggi di log ba-
sato su misure di similarita tra campi testuali, per superare il limite connesso alla

verbosita ed eterogeneita dei log raccolti dai vari servizi operativi 24/7 al centro.
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Introduction

High Energy Physics (HEP) has been a driver in managing and processing enor-
mous scientific datasets and the largest scale high throughput computing cen-
ters. Part of the HEP community developed a large scientific computing Grid for
the Large Hadron Collider (LHC) at CERN in Geneva, that nowadays regularly
overview the operations of 800k computer cores from over 170 sites in 42 countries,

and half of an exabyte of disk storage distributed on 5 continents.

With the upcoming start of Run-3, and especially Run-4, the amount of data
managed by the Tiers centres is expected to massively increase. In this view, the
HEP Software Foundation — that published a Community White Paper providing
a roadmap for the future research in software and computing in preparation for
the HL-LHC — highlighted the enormous potential advantages that might come
from applying Big Data Analytics techniques in the LHC physics endeavour.

One of the advancements discussed in that context is in Operations Intelligence
in computing systems. A team effort has recently been promoted by a group of
HEP computing teams, and one of the goals is to explore the logging data and
apply data mining and analytics approaches to extract actionable insight and hence
increase the level of automation in various systems. This effort, once applied to
computing centers, may result into stepping out of Reactive maintenance to a

Predictive or even Prescriptive approach.

This thesis will present the preliminary steps taken to introduce a unified Log
ingestion and analytics platform at the INFN-CNAF Tier-1 across its services,
with the purpose of exploring possible solutions for the development of a Predic-

tive Maintenance model to detect and anticipate failures. This thesis explores the



design and deployment of such an infrastructure as well as the development of

proper algorithms to extract insight from log data.

This dissertation is divided in two parts: in Part[] this work is contextualised,
introducing the evolution in HEP, the structure of WLCG and discussing the
concept of maintenance. Part instead, will focus on the exploratory work
started at INFN-CNAF Tier-1 in the last year revolving around the analysis of
the log data of the centre and their possible use to define a Predictive Maintenance

model to apply in the future.
In particular, Chapter (1] will discuss the upgrade schedule of LHC and the

plan defined by the HSF to prepare for the future improvements in software and
computing. The main concepts of Big Data, Analytics and Machine Learning will

be briefly presented as well as an overview of the interest of LHC experiments in
these fields.

Chapter 2| will focus on the WLC Grid, presenting the various tiers and later
focusing on the INFN-CNAF Tier-1; the structure of the computing centre will be
discussed, highlighting the main challenges as a major WLCG Tier-1.

Chapter (3| will close Part I, and will offer an overview on the different Main-
tenance classes, reviewing their characteristics and use cases; some examples of
effective use of various maintenance models in data centres will be briefly pre-
sented, concluding with a description of most advanced Prescriptive Maintenance
models.

Chapter 4| will open Part II by showcasing the types of data logged at INFN-
CNAF; it will present the recent developments of a Log Repository solution to
unify and collect all the log sources of the data centre; it will also include an
overview about the log files from StoRM that will be analysed in the last chapter.

Chapter |5/ focuses on the set up of a first Log ingestion and processing dis-
tributed platform to analyse the data stored in the Log Repository; the chapter
also includes a brief description of the open source technical components used to

design and deploy the platform.
Finally, Chapter [6] concludes this work by presenting an algorithm for clus-

2



tering in an unsupervised way the verbose event log files from StoRM, using text-
based similarity measures. The Chapter will begin by discussing the previous work
done during the CNAF Summer School program, it will then follow the develop-
ment of the log clustering algorithm discussing the choice of similarity measure
and the parameters that can influence the results. The developed procedure will
be tested on different log files and the results compared to highlight their ability
to detect possible anomalous behaviours. The concluding section in the chapter

will focus on future developments of this work.






Part 1

Big Data Analytics on WLCG

Tiers






Chapter 1

HEP Computing evolution and
Big Data Analytics

1.1 Computing in HEP in the next decades

In the long path that will bring the existing LHC systems towards new life in the
High Luminosity regime, several technical upgrades are envisaged in the course
of the next few years. The upgrade plans towards the HL-LHC are pictorially
depicted in Figure 1.1}

The LHC is currently in its Long Shutdown 2 (LS2), scheduled to last until
2020 included, and in which experts are busy on the Phase-I upgrade of the LHC
injectors, with aim of reaching the 14 TeV centre-of-mass energy and increasing
the instantaneous luminosity by a factor of 3, for the start of the Run-3 data taking
period. Subsequently, the Phase-II upgrade will take place between 2024 and 2026,
and will eventually complete the increase in luminosity, yielding to HL-LHC with
a peak luminosity of about L = 7 x 103%em™2s7!. An integrated luminosity of
250 fb~! per year will be made possible thanks to the installation of new elements
including new focusing magnets and crab cavities. In the final luminosity scenario,
the expected mean number of 200 interactions per bunch crossing will be reached.

Such a large and wide scope project requires large investments also in the

R&D of software and computing systems needed to acquire, manage, process,

7



Run 1 | Run 2 | Run 3
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nominal o oo mentuparade | | —————— | upgrade phase 2
B [ 150 7 | a0o b ingrated

Figure 1.1: Upgrade schedule for the LHC/HL-LHC. Shutdown periods and data-taking
periods, each with its intended instantaneous luminosity and centre-of-mass energy, are

shown |[1f.

and analyse the huge amount of data that will be recorded. In fact, despite the
programme evidently requires investments in detector hardware - both to build
new facilities or experiments, and to upgrade existing ones - it is also true (and
often mistakenly underestimated) that a commensurate financing effort is needed
on software and computing in order to efficiently and successfully exploit the future
facilities.

In this view, the HEP Software Foundation (HSF) [2] made a planning exercise
in 2016 and published a Community White Paper (CWP) [3]. The document
provides a roadmap for software and computing R&D in preparation for the HL-
LHC and for other HEP experiments on a similar timescale: it clearly identifies
areas of work and priorities in the investments. Quoting from , these priorities

are:

e to achieve improvements in software efficiency, in its scalability and perfor-
mance, and make use of all possible advances in CPU, storage and network
technologies in order to cope with the challenges in front of the HEP com-

munity;

e to enable new approaches to software and computing that could radically

extend the physics reach of the upgraded detectors;



e to ensure the long-term sustainability of the software through the entire
lifetime of the HL-LHC;

e to ensure data (and knowledge) preservation beyond the specific lifetime of

each individual experiment;

e to attract the required new expertise by offering appropriate career recogni-
tion to physicists that specialise in software development and/or computing
systems design and development, and by effective training efforts able to

target all software-level contributors in the community.

A description of the activities that started already and will bring the LHC
community to stage that will ensure that software and computing will still be -
as they have been in Run-1 and Run-2 - an enabling technology for HL-HLC, will
bring us far out of the scope of this thesis. In this thesis, instead, a focus will
be maintained on two specific aspects of this vast community effort, namely the
effectiveness of Big Data Analytics and the raise of Machine Learning and Deep

Learning.

1.2 Big Data Analytics

Big Data (BD) nowadays is a widespread term, defining almost any type of data
analysis and statistics performed on large amount of data, but most of the time is
used as a buzzword with almost no relation to the original meaning.

Gandomi et al. [4] follow the definition of BD back to sparse references in the
mid-nineties through its widespread use since 2011, and suggests that as low as 4
different definitions are mainly used in the industry to understand BD.

The current widespread use of the term can be attributed to the promotional
initiatives of IBM that also brought to the mass public attention the concept of the
“five Vs”. First defined by [5], the original definition described BD by just three
characteristics that elaborate on the dimensions of challenges in data management.

The original report listed the three following Vs:

9



e Volume - Refers to the magnitude of data, reported in multiple terabytes or
even petabytes. The definition of BD volumes is not strict since it strictly
correlates to Variety: two datasets of the same size may require different
magnitude of work if one of them is strictly numerical values, while the

other are structured objects.

o Variety - Refers to the structural heterogeneity in a dataset. Structured data
refers to the tabular data found in databases while unstructured data are for
example raw images, text, numerical values etc. A characteristic of BD is
the high level of variety between structured and unstructured data and their

content.

o Velocity - Velocity refers to the rate at which data are generated and the
speed at which it should be analysed and acted upon. Traditional data
analysis systems are not able to handle fast flowing data streams, while BD

technologies should be developed to ingest large amount of data quickly.

An additional term is commonly used, after IBM coined it in [6]:

e Veracity - Represents the unreliability inherent in some sources of data.
Another big factor in defining BD is the need to deal with imprecise and
uncertain data, often derived from human subjectivity and lack of standards.
This situation is usually managed through the use of data mining and fuzzy

matching.

More recently Oracle [7] introduced a new term as a defining attribute of BD:

o Value - Refers to the ability to extract value from the data. The assumption
is that the value density in BD is low, since the information is spread into

an higher volume of data.

Based on these definition, the data source from LHC respect the concept of
Variety, Volume and Velocity; it is harder to find correspondence for the other Vs,

the output data from the experiment is strictly structured and follow a defined

10
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Figure 1.2: Infographic break down of the 4 Vs, as defined by IBM data scientists:
volume, variety, velocity and veracity. For higher resolution see @]

pattern that is not subject to Veracity and most of the information is relevant with
high Value density.

With the definition of Big data often comes the term Big Data Analytics
(BDA). BDA encompasses the process of decision making and analysis that extract
value from BD. The overall process can be broken down into the five stages shown
in Figure These five stages are divided into two processes: data management
and analytics. Data management involves processes and supporting technologies
to acquire the data, store it in a structured database, and prepare it for analysis
by extracting the relevant features, cleaning the data and integrating the miss-
ing values. Analytics, on the other hand, refers to techniques used to analyse
and interpret the information from BD; this process can either involve data min-
ing techniques, classical statistical methods or the more recent Machine Learning
approaches.

The application of BDA of interest in this thesis is related to LHC experi-
ments at CERN. As it will be discussed and introduced in Chapter 2| LHC is a
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Figure 1.3: Processes for extracting insights from big data as defined by .

major worldwide scientific enterprises, one of the largest and most complicated
pieces of experimental apparatus that were ever constructed. At the same time,
the LHC experiments are enormous, extremely complicated detectors that are able
to extract physics information from proton-proton and heavy-ion collisions at ex-
ploiting the most advanced detecting techniques existing nowadays. In addition,
the overall data handling and processing relies on a scientific computing Grid that
now regularly operates O(1M) processor cores and half of an exabyte (EB) [§]
of disk storage located on 5 continents through hundreds of connected comput-
ing facilities, and orchestrating all this through a large set of different software
services.

This extreme complexity, at various levels, is concretely able to eventually
produce physics results via the capability to manage -in a wide sense - extremely
large volumes of data.

The application of BD techniques in the LHC physics endeavour is hence cru-
cial. At the same time, such application is different in face of a very diverse variety
of existing LHC data. The data produced at LHC is of different types, e.g. original
collisions data (coming from particle collisions), non-collisions data (e.g. alignment
and calibration data), simulation data (coming from Monte Carlo techniques), de-
rived data (coming from users’ manipulation of original data through selections,
skimming, reconstructions, etc), and various type of additional data like logging
data (data coming from messages of running systems and servers) and meta-data

(namely, data that contains information on the data itself).
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In this thesis, the focus is on the application of BDA techniques on logging data
coming from services running at the INFN-CNAF computing centre. While this
might seem a limitation to a relatively small subset of LHC BD, a few numbers
should suffice to clarify that actually this is indeed a subset, but its size is far from
being small and easy to manage.

The CNAF centre hosts of the orders of O(100) different services of various
complexity. Some consist of just one machine, and some other of dozens or hun-
dreds of different nodes. Each node/machine regularly prompts a log with most
relevant operational messages. To give an example - as it will be described in more
details in Chapter 4| - the machines that are currently logging and whose log data
are being kept into the BD infrastructure described in this thesis are a total of
1130; each one archives several types of logs, on average around 17 different log
files; the size of each log ranges from few MBs to tens of GB; all this logging hap-
pens daily: a rough count gives an average of 12 GBs of logs daily, for an estimate
of 4 to 5 TB of data each year.

The work presented in Part 2 of this thesis will focus on the development of
a BDA framework to ingest this type of data, and the development of an exper-
imental algorithm for extracting information from the log files, this falls into the
Data Management process of BDA described above; future development would
likely involve a dive into Analytics tool, possible with the aid of Machine Learning

approaches.

1.3 Machine Learning in HEP and at LHC

Machine learning (ML) is defined as the study of statistical models used to perform
a specific task without using explicit instructions, but by inferring and relying on
pattern in the data.

Machine Learning (ML) is a very rapidly evolving approach over recent years
for building data-driven models, as it is able to characterise any class of data and
extract information from it in the form of pattern extraction and eventually predic-

tions. Despite it is being massively used so far, but in specific HEP applications,
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it is worth saying that ML is - in general - an approach to data that brings the
potential to eventually change radically how HEP data is conceived, reduced and
analysed.

The application of ML techniques in HEP are diverse in scope and objectives.
A recent review and prospect of future usage of ML in HEP can be found in [9).
Some applications are aimed directly at qualitatively improving the physics reach
of datasets. Other applications serve physics in a more indirect way, e.g. they
allow a much more efficient use of all processing and storage resources, which are
expensive and complex to set-up and run (in terms of hardware and people), thus
indirectly extending the physics reach of experiments by effectively allowing the
HEP community to achieve the same physics “throughput” by spending less money
on computing.

As a first approximation, the majority of HEP community is not re-writing
entirely all code to meet the ML paradigm, but it is actually building/upgrading
its own, domain-specific applications on top of existing toolkits and ML algorithms
and frameworks. The latter have not been developed in-house, and HEP faces such
toolkits and frameworks as a customer community, exactly as the bioinformatics
and genomics community, the earth sciences community, as well as commercial
and finance sectors, etc. Examples of such tools in the ML domain are scikit-learn
[10], Tensorflow [11], Keras [12], Pytorch [13], etc.

These tools have been developed by computer scientists, data scientists, and
scientific software developers from outside the HEP world. A large part of the
work that is being done in this context is to understand where HEP problems
do not actually map well onto existing paradigms and solutions, and how such
HEP problems might be recast into an abstract formulation that might be of more

general interest, and thus meet possibly existing solutions.

1.4 The raise of operation intelligence

An advancement towards more Al in HEP experiments recently came on the floor

in the discussions around what is being called “Operations Intelligence” (OpsInt).
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In this Section a brief overview of this topic is given, and connections to the work

presented in this thesis are discussed.

It is becoming evident that, in the near future, very large international scientific
collaborations that operate in the High Energy Physics and Astro-particle Physics
sectors will face unprecedented computing challenges in terms of quantity of data
to manage, quality of software, requirements on computing operations, etc. Some

concrete examples can be given.

The task of processing and storing very large (multi-PetaByte) datasets will
require ad advanced, globally federated computing infrastructure of distributed
resources. Despite the existing system has proven to be working, and to be mature
enough to meet current data taking challenges and to deliver physics results in a
timely manner (e.g. Run-1 and Run-2 at LHC), all post data taking analyses
indicate a heavy crucial contribution from manual interventions by computing
experts and shifters on duty. In other words, the existing infrastructures are able to
work coherently and deliver experimental results as expected, but the cost in terms

of operations of such heterogeneous infrastructures is far from being negligible.

At the same some, the computing operations of so many systems and ser-
vices yielded a massive amount of logging information, and all this data has been
archived on BD systems like ElasticSearch |14], Hadoop [15], no-SQL databases,
etc. With respect to few years ago, when all this data was indeed archive but
rarely - or never - accessed by anyone, this data has recently started to be ex-
plored by various experts in HEP computing teams with a shared goal: try to
extract actionable insight from this massive amount of data. The initial goal is
evidently to explore the data with data mining and analytics approaches, but the
ultimate goal is to be able to understand the data well enough to model how
experiments run computing operations, and eventually develop next-generation,

intelligent, adaptive systems.

Such an ambitious plan, needless to say, can only be realized in subsequent
steps. At the time of this thesis, there are various effort in this direction in different
experiments, and all these efforts are recently steered into a unique “Opslnt” team,
who kicked-off its activities in Spring 2019 under the umbrella of WLCG [16] and
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the HEP Software Foundation (HSF) [17]. The goal of the team is to explore
the richness of information in all logging data and work on specific project that
increase the level of automation in computing operations in various systems. Given
the need of data-driven modelling, this work implies the use of adequate techniques,
such as ML or even Deep Learning (DL), with solutions tailored to attack specific
problems.

Examples of these efforts exist from the past, before this group was created.
For example, ML models have been designed and applied to the prediction of data
transfer efforts, with goal to predict a possible network congestion. Similar ML
methods were applied for the prediction of data access patterns across a distributed
storage systems, aiming at increasing the efficiency in resource exploitation. Time-
series applications have been used to estimate the time needed for the completion
of certain tasks, such as processing a certain number of events. Anomaly detection
techniques have been employed to predict system failures. The act of recording and
analysing shifters’ actions started to be used to automatise tasks such as creating
tickets (i.e. notifying issues with a problem tracking system) to computing centers’
administrators, as well as suggesting possible solutions to typical issues that can
be encountered.

In general, all these efforts aim at increasing the efficiency of HEP computing
operations, i.e. the overall throughput of the experiments’ distributed computing
infrastructures (in other words, to perform “more computing at the same cost”).
This effort will result in stepping from a Reactive approach to maintenance, were
the intervention is performed after the rise of a problem, to a Predictive or possibly
Prescriptive maintenance, were the human intervention is guided or even replaced
by the Analytics framework. This argument will be further discussed in Section[3.1}

The following chapter will present an overview of the WLCG Project, with

focus on the INFN-CNAF Tier-1 system, that will be the subject of our work in
Part 2 of this thesis.
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Chapter 2

LHC Computing Tiers

2.1 The WLCG project

The Worldwide LHC Computing Grid (WLCG) project is a global collaboration
of more than 170 computing centres in 42 countries, linking up national and in-
ternational Grids to build and maintain of a distributed computing infrastructure
arranged in so-called “tiers” — giving near real-time access to LHC data [16].
The WLCG cooperates with several Grid projects such as the European Grid
Infrastructure (EGI) |18] and Open Science Grid (OSG) [19]. WLCG provides
seamless access to computing resources which include data storage capacity, pro-
cessing power, sensors, visualisation tools and more. The main Grid building

blocks the infrastructure is composed of are:

e the Computing Element (CE) service, that manages the user requests;

e the Worker Node (WN), the resource where the computation actually hap-

pens;

e the Storage Element (SE), that gives access to storage and data. Data can
be stored on disks, for quick data access (e.g. end-user analysis), or on tapes,

for long term storage and custody;

e the User Interface (UI), the front-end (FE) resource on which users interact

with other Grid components and services;
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Users can submit jobs which is turn are made of a complex set of atomic
requests — such as a request for data in input, a request to apply algorithms and
hence need for processing power, a request to write and save the outcome of such
processing, etc — and this can happen from one of the many entry points into
the system. The Grid systems check the credentials of the user, and search for
available sites that can provide resources adequate to satisfy the user’s requests,
without any need for the user to have a deep technical knowledge on the available
computing resources and systems that are serving her/his needs behind the scenes.
For a omni-comprehensive overview in more details about Grid services, see e.g.
[20]. Focus in this thesis is given the operational needs of grid computing centres,

which are described in the next section.

2.2 Tiers in the Grid

The WLCG is composed of computing centres organised by levels, called “Tiers”.
Each Tier provides specific services, storage capacity, CPU power and network
connectivity. This structure made by Tiers was formalised in the work done by
the “Models of Networked Analysis at Regional Centres for LHC Experiments”
team (MONARC), which produced a model still referred today as “the MONARC
model” [21]. Following this model, the Tier levels are labelled with numbers from
0 to 3, with the number intended to indicate the level and complexity of services
offered by the centre: namely, the lower the number the higher the level and

quantity of services.

e Tier-0 is responsible for the safe-keeping of the RAW data (first copy), first
pass reconstruction, distribution of RAW data and reconstruction output to
the Tier-1s, and reprocessing of data during LHC down-times. The Tier-0
centre for LHC is located at the European Organisation for Nuclear Research
(CERN) laboratory in Geneva, Switzerland. The role of the Tier-0 is to
receive RAW data from detectors and store them onto tapes for safe-keeping
(first copy), as well as perform first pass reconstruction. The Tier-0 also
distributes the RAW data and the reconstructed output to Tier-1s.
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Figure 2.1: Schematic representation of the Tier levels, as defined by the MONARC
model . See text for details.

The integrity and availability of the data is guaranteed by a redundancy
mechanism that stores the data (at least) in two copies: one at CERN (the
so-called “cold” copy) and (at least) one distributed to Tier-1s (the so-called
“hot” copy).

To securely transfer data and ensure high performance, a dedicate high-
performance network infrastructure based on fiber optic - called LHCOPN
has been designed and deployed to connect the Tier-0 to all the Tier-1s
and later expanded to also cover all the Tier-1 to Tier-1 connection, adding

a crucial redundancy to the overall system.

Despite all the data from LHC passes through this central hub, the Tier-0
itself provides a relatively low fraction of the total Grid computing capacity,
of the order of less than 20%.

e Tier-1 centers are thirteen large computer centres, spread all around the
globe, with sufficient storage capacity to store LHC data round-the-clock
support for the Grid. They are responsible for storing a proportional share of
RAW and reconstructed data, the “hot copies”, on both disk caches (for high
performing access) and tapes (for persistent archive). They manage large-

scale reprocessing and safe-keeping of corresponding output and distribution

19



of data to Tier-2s and safe-keeping of a share of simulated data produced at

these Tier-2s.

e Tier-2s are typically universities and other scientific Institutes, which can
store sufficient data and provide adequate computing power for specific anal-
ysis tasks. There are currently around 160 Tier-2 sites in WLCG, covering
most of the globe capable of handling analysis requirements and a propor-

tional share of simulated event production and reconstruction.

e Tier-3 centers typically refer to local computing resources through which
individual scientists access the WLCG facilities. Unlike Tier-2 centres, Tier-
3 sites do not sign any Memorandum of Understanding (MoU) with WLCG,
meaning there is no formal engagement between WLCG and Tier-3 resources.
This implies no check on their availability is regularly made, and resources
should not be relied upon on a stable basis — despite some can be extremely

important for the needs of local communities of analysts.

A schematic representation of the Tier levels, as defined by the MONARC

model, is shown in Figure [2.1]

2.3 The INFN-CNAF Tier-1

The National Institute for Nuclear Physics (INFN) is the Italian research agency
dedicated to the study of nuclear, particle and antiparticle physics [23]. INFN
carries out research activities in many facilities across Italy, including the National
Centre for Research and Development in Information Technology (INFN-CNAF),
based in Bologna [24].

CNAF is one of the central actors in the overall INFN strategy on computing in
Italy. Since the creation of the WLCG distributed computing system, CNAF has
been deeply involved in the development of its middleware and in taking its share
of the load in managing part of this efficient and complex infrastructure. Since
2003, CNAF also hosts the Italian Tier-1 data centre, providing the resources,

support and services needed for data storage, data distribution, data processing
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and data analysis, including a high load of Monte Carlo simulation, for all 4 LHC
experiments, but also for more than 20 other experiment in both experiment and
theoretical high-energy physics, astroparticle physics, geophysics, and beyond [24].

The Tier-1 operations inside CNAF are structured in few major groups: the
Farming group, the Data Management group, and the Network group will be
described below; the Facility Management group manages the general facilities of
the centre, and the Experiment Support group provides support to all researchers

while exploiting the deployed infrastructure.

2.3.1 Farming

The bulk of the computing resources (WNs, Uls and grid services) are operated
by the Farming group.

The computing farm infrastructure acts as the service underlying the workload
management system of all experiments connected with the processing resources at
CNAF. The jobs running on the farm have direct access to files stored at CNAF,
with the disk storage system organised by several file systems directly mounted
on the WNs. Each experiment has at least a dedicated queue, and the computing
resources are centrally managed by a unique batch system.

On average, a total of the order of 100k batch jobs are executed every day at
CNAF, with resources available 24 /7.

2.3.2 Storage

Disk and tape storage services, together with the data transfer services - that
constitute a middleware layer on top of them - are operated by the Data storage
group.

Magnetic tapes are used as the main long-term storage medium, with more than
50 million experiment files stored as of today. The high-speed disks are mostly
SATA, a good-performance /low-cost solution, with SSDs used for applications with
higher requirements in I/O access.

The storage is managed by StoRM [25], a Storage Resource Manager solution
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developed at CNAF, based on a home-made integration of IBM General Parallel
File System (GPFS) for disk access with the IBM Tivoli Storage Manager (TSM)
for tapes. More details on StoRM are available in Section

The amount of data currently stored and being processed at CNAF is in the
order of tens of Petabyte, with a breakdown - at the time of this thesis - of about
23 PB of data on disk, and 48 PB of data on tape. This is expected to grow

massively in the following years|24].

2.3.3 Networking

All the network connectivity and network security related activities are in charge
of the Network group of the Tier-1.

Network resources must be distinguished between Wide Area Network (WAN)
and Local Area Network (LAN): CNAF is connected to the WAN with links at
various level of performances and redundancies, and the WAN connectivity is pro-
vided by GARR (the Italian National Research and Educational Network) [26];
Ethernet is the main technology used for the local interconnection LAN, designed
and continuously updated to allow all the data to be efficiently distributed inter-
nally to the site.

The needs for the processing of huge amount of data with a great number
of CPUs led to recent effort to provide a data access bandwidth of the order
of hundreds Gigabit per second, and to the implementation of the Datacenter
Interconnection with CINECA at a rate of 400 Gbps [24].

A more in-depth description of the WLCG Tiers in general, or of the INFN-CNAF
Tier-1 centre in particular, from either the technical set-up point of view or the
experiment applications point of view, would go beyond the needs and scope of
this thesis. In fact, the brief description offered in this chapter is sufficient for the

second part of this thesis, which will focus on the design and implementation of a
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new Big Data Analytics infrastructure inside the INFN-CNAF Tier-1 computing
centre.

The work described in this thesis is part of a major INFN-CNAF project,
namely a first coherent and Tier-1 wide effort towards equipping the centre with
a modern analytics framework that would be able to efficiently process the vast
(and increasing) amount of data coming from services operated at a Tier-1 centre,
with the purpose of extracting insight as of how to monitor, support and maintain

the computing centre in the most effective way.
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Chapter 3

Overview of maintenance

strategies

The Oxford dictionary define Maintain as the act of keeping something in good
condition by checking or repairing it reqularly. Webster extends this definition to

the act of preserving it from failure and decline.

In trying to define Maintenance, one needs to answer the following questions:
What defines the good condition of a system? When is a system efficiency declining
or failing? Moubray [27] answers these question by determining that every system
is put into service because someone wants it to do something. As such, he proposes

the following definition for maintenance:

Ensuring that physical assets continue to do what their users wants

them to do.

This user-centred view stands at the basis of the industry standard definitions
of maintenance processes. Over time, multiple different terms have been used
to categorised the various practices, depending on their cost, intervention time,

criticality and resources needed.
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3.1 Maintenance classification

While it is easy to qualitatively distinguish maintenance processes based on these
factors, standard definitions have never been established and the incorrect use of
adopted names and neologisms in literature can be a barrier for the definition and
understanding of clear concepts when deciding on the most appropriate mainte-
nance type to apply for a system.

Trojan et al. [28] reviewed multiple traditional classifications and presented a
proposal for dividing types of maintenance in four distinct groups: Reactive (or
Corrective) maintenance, Preventive (or Proacting) maintenance, Predicting main-
tenance and Advanced maintenance. The Reactive class includes every mainte-
nance model in which the maintenance procedure follows the failure of the system.
The intermediate classes operate based on preventive detection of failure, the dif-
ference between the two being determining the course of action based on expected
behaviour and lifetime for the former, or by constantly monitoring the behaviour
of the system for the latter. The Advanced class includes models that requires
higher planning and investments. These include Reliability-centred maintenance
processes, in which every single aspect of a product line is monitored to ensure a
high reliability, and prescriptive models, where the system adapts automatically
to avoid stress-related failures and reduces the need of manual intervention.

These classes of maintenance processes show a sort of chronological evolution,
where the complexity of the model increases with the growth of the industry ex-
pectations and needs (Figure 3.1)). But while the efficiency of the latest models is
indisputable, the older reactive models are still the most widely used.

The following sections review the different classes listed so far, and present

an example of the more advanced prescriptive models and their possible future
applications in fields such as OpsInt (See Section [1.4).

3.2 Reactive Maintenance

Reactive Maintenance (RM) is a type of maintenance process that occurs after

failure or loss of device performance. In this operation, intervention is performed
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Figure 3.1: Timeline of maintenance generations . See text for details.

as needed and reacts to emergencies as they arise; it is often defined as a “fire
fighting” strategy [29].

When a breakdown occurs, the operator must move fast and make the decisions
necessary to minimise the effect of the breakdown on the production system: it is
worth underlining that “minimise” here is indeed the keyword. In fact, in many
cases, temporary repairs may be made so that the facility can return to function

quickly and be repaired — correctly, or permanently — at a later time.

The cost of RM is virtually zero, and is based on a loss control policy that
minimises downtime. If a repair is needed, the cost of maintenance — being either
an actual cost of repair or replacement, or a cost in manpower — is accounted for,
otherwise the maintenance cost is nonexistent. The downside being that, in case
of a serious breakdown or more time-consuming repairs, the system is more prone

to unplanned downtimes, whose duration is completely unpredictable.

Another disadvantage to RM is the inefficient use of staff resources, that often
need to be redirected to maintenance upon needs, unexpectedly stopping standard

production activity.

Even with all the apparent disadvantages, RM is still the most recurrent main-
tenance policy applied in industries and data centers [31].
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3.3 Preventive Maintenance

The Preventive Maintenance (PM) class includes all the maintenance model based
on recurrent preemptive maintenance operations that are performed on a system
to improve its reliability, reduce the chance of breakdowns and in general increase
its lifetime expectancy.

On a PM model, the health of a system is checked on a schedule, with the
objective of having the equipment make it from one service to the next without any
failures. This services may include partial or complete overhauls or replacements

at specific periods [29).

3.3.1 Planned Preventive Maintenance

When the schedule of the preventive maintenance services is based only on the age
of the system it is commonly referred as Planned Preventive Maintenance (PPM).
PPM is pre-planned, at fixed time intervals, on specific dates, or based on
the equipment running hours. The scheduled service ensures that the system is
operational and fixes the faulty equipment to avoid breakdowns and failures.
The cost of the single maintenance service is often low but, being based on a
fixed timetable, often time involves unnecessarily maintenance services on perfectly

functioning systems.

3.3.2 Condition-based Maintenance

A slight improvement over standard Planned maintenance models is Condition-
based Maintenance (CBM). It is the first maintenance model in this brief review
in which Data Analytics is actually used in support of maintenance operations
[27].

The principle of operation of CBM is to use real-time data to observe the
health of the system, in a process known as Condition Monitoring. While still
often based on a pre-planned schedule, in CBM maintenance is only performed if

the Condition Monitoring system deems it necessary.
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CBM models have great advantages over standard PPM models: the mainte-
nance cost is lower, mainly because of the lower number of unnecessary mainte-
nance services performed. This also reduces downtimes, improving the reliability
of the system [29].

On the other side, this type of models brings several challenges. In order to be
reliable, the system requires monitoring instrumentation on all the equipment that
needs to be maintained, adding a high initial cost. Also, the raw data from the
monitoring system may not be directly correlated to the health of the equipment,
requiring a prior analysis of the data. The CBM installation, moreover, adds itself

to the number of parts that need to be maintained.

3.4 Predictive Maintenance

A step forward from CBM, Predictive Maintenance (PdM) methods utilise mea-
surements on the actual equipment in combination with measurement of process
performance, measured by other devices, to trigger equipment maintenance. PdM
uses this data in conjunction with analysed historical trends to evaluate the system
health and predict a breakdown before it happens [32].

The “predictive” component of PAM stems from the goal of predicting the fu-
ture trend of the system’s condition. This approach uses principles of statistical
process control to determine at what point in the future maintenance activities
would be appropriate. The ultimate goal of the approach is to perform mainte-
nance at a scheduled point in time only when the maintenance activity is most
cost-effective and before the system loses performance, going below an acceptable
threshold.

PdM can be offiine when the monitoring is periodic, or online when the mon-
itoring is performed continuously from a stream of data.

The PAM approach is based on fast analysis of large amount of data, as such
it needs accurate and complete information for optimal decision-making. As big
data technology is getting mature, systematic analysis of massive streaming data

have been developed for exploring hidden patterns.
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The literature on PdM techniques is vast and varied. These models are in-
creasingly widely used in industry and science. Some of the most recent works
on PdM focus on large-scale data centres, and highlight the most effective tech-
niques applied. For example, [32] and [33] use disk sensors’ data to predict the
likelihood of disks failures in large-size data centres; [34] applies time series based
PdM to predict the future workload of the Wikimedia Grid data centre; [35] uses
a large openly available industrial data centre’s dataset to perform prediction on

catastrophic data centre’s failure.

3.4.1 Log-based Predictive Maintenance

A more involved approach to monitoring the system status used in the field of
computer management and intelligence, is the log file analysis.

Modern equipment is usually operated via software applications. These appli-
cations produce logs while they operate. Such logs reflect the developers’ original
ideas about what are the valuable events to report out, and hence contain in-
formational /warning/error messages, but also internal states, or exceptions. By
analysing a service’s log files, one can trace back how a system has performed.
Mining such rich information may result in a precious tool to detect symptoms of
issues in advance with respect to their occurrence. Log datasets can be large and
have the advantage that they can be collected for PdAM techniques without any
special need to implement specific monitoring equipment or sensors.

It must be underlined, though, that since logs are mainly used for debugging
purposes, they rarely contain explicit information that could be used for failure
prediction. Moreover, they contain heterogeneous data including symbolic se-
quence, numeric time series, categorical variables and unstructured text and, in
general, can be very verbose (and hence result in large size files), posing some
computational challenges to the log analysis efforts, especially if a relatively low
latency requirements do apply [36]. Another point to consider is that, due to their
purpose, log files are usually written in a human-readable form, that includes re-
dundant data and descriptive text that may not be needed for any PdM. To make

use of this data, as a consequence, a first step is usually to interpret the logs by
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filtering out all the irrelevant text that acts as noise with respect to the predictive

features that one wants to extract.

Some recent examples of Log-based PdM including the following approaches:
the use of simple parsing techniques to extract data from event log to predict
failures in medical equipment [36]; the use of clustering techniques to assign differ-
ent IDs to the log messages to predict failures in telecommunication data centres
[37]; the use of dictionaries to classify system event logs in order to predict switch

failures in the network of a data centre [38].

A well-designed PAM program can minimise unscheduled breakdowns of all
equipment in the system and ensure that the system performance is always kept
above an acceptable threshold. The method can also identify problems before
they become serious. If the problem is detected early, major repairs can usually
be prevented. Note however that PdM is not a substitute for the more traditional
Planned maintenance routines. It is, instead, a valuable addition to a comprehen-

sive, total maintenance program.

As for CBM, the downside of the PAM approach is the cost of installation, the
necessity of performing deep analysis on the data, and often, for bigger system,
the implementation of a scalable big data management infrastructure to store not
only the most recent measurements from the equipment but also all the relevant

historical data.

It should be noted that the investment in PAM is made earlier than when those
costs would be incurred if equipment were run until failure. Even though the cost
will be incurred earlier, and may even be larger than the cost for RM methods,
the benefits in terms of system availability should be substantially greater from
doing preventive tasks. These solutions, although, are not usually affordable for
small centres: often they require specialists to have PAM processes in place, and

to be able to understand and digest the vast amount of logging data [39).
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Figure 3.2: Stage model for characterising data analytics use cases .

3.5 Prescriptive Maintenance

A further advancement over PdM is the so called Prescriptive Maintenance (PsM).
This maintenance methods fall under the Advanced maintenance class presented in
Section Al-enabled PsM is unique in that instead of just predicting impending
failure it strives to produce outcome-focused recommendations for operations and

maintenance from analytics.

When a change in the system occurs, PsM will not only show what and when a
failure is going to happen, but why it is happening. Taking it one step further, PsM
will take the analysis and determine different options and the potential outcomes,
suggesting a plan of action to the support team. Leading up to the maintenance
action, the data will be continuously analysed, constantly adjusting the potential
outcomes and making revised recommendations, improving the accuracy of the
results. Once the maintenance activity is completed, the analytics engine will
continue to monitor the system and determine if the maintenance activity was

effective.

PsM systems are able not only to make recommendations (Decision support)

but also to act on those recommendations (Decision automation). See Figure

For example, a PAM solution might recommend that a system get checked
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based on analysis of log data and measurements, but a PsM system would kick
off a work order to support staff based on this information and oversee the entire
maintenance workflow. Systems like these must be able to understand the causes
of an event, and differentiate between the services normally applied in response to
a given signal. This technology makes large use of big data analytics techniques
and machine learning algorithms.

It is straightforwards that, in principle, PsM can be a great improvement over
a standard maintenance system, as it would greatly improve the reliability and
reduce the human intervention for maintenance, which in turn leads to reduced
costs of operation. On the other side, the disadvantage is - as discussed for pre-
viously mentioned methods - the high cost of implementation, in terms of needed
equipment as well as in the necessary knowledge to put the process in place and
keep it effective.

With respect to other approaches, the literature on PsM is relatively scarce,
as it is a fairly recent advancement in maintenance technologies, with industry
being the major stakeholder and actor. To quote a couple of examples, a proposal
on how to implement a PsM strategy in manufacturing companies can be found
in [41]; a commercial PsM model acting as a 'maintenance control centre’, which

presents an application in the automotive sector, can be found in [42].
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Chapter 4

Logging data at CNAF

As briefly discussed in Chapter [2, the INFN-CNAF Tier-1 manages and stores
tens of Petabytes of data from various scientific experiments. Among all this data,
only a small percentage is produced by the data centre in the form of service logs
and monitoring data. Still, the amount of data produced is sizeable and requires

a proper infrastructure to be efficiently and effectively managed and analysed.

4.1 Metrics and Logs

Most of machines in the centre are monitored to extract metrics of their oper-
ation (e.g. the percentage of memory in use, the number or synchronous and
asynchronous requests, the average load, etc). All these metrics are stored in a
relational database.

In addition to these metrics, every machine and service running on them
prompts the writing of one or multiple log files containing various sort of informa-
tion (e.g. the type of requests send and their status, the shell command launched,
debug information on the condition of the machine, etc).

All these log files present heterogeneous structures, often non standard and
specific for the machine they originate from. Frequently, even when the type of
log files is the same across different machines, its generation is different based on

which team developed that logger.
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4.1.1 Rsyslog

The system used to collect the log files from every machine is rsyslog.

The Rocket-fast system for Log processing (rsyslog) is an open source project
used for forwarding log messages in a network [43]. The service is based on syslog
which is a common standard for messaging logging.

The standard consists in adding to the log message information such as the
hostname, the timestamp of the logging and in some case a tag corresponding to
the severity level (i.e. INFO, WARN, ERROR etc.).

The log messages collected by the system are usually directed to a text file in

the machine that produced the log.

4.1.2 InfluxDB

Some information not included in log messages are acquired by a monitoring sys-
tem, that collects various metrics from the machines in the centre and stores them
into a database called InfluxDB.

InfluxDB is a time-series database used to store large amount of timestamped
data [44]. The data collected from the monitoring system is stored into different
tables in the database, one for each metric acquired.

A database table is indexed by the timestamps and contains a column corre-
sponding to the hostname of the machine to which that measure corresponds and
the value of the measure. Various tags are used to group the different machine
corresponding to the same service or experiment.

The system grants the use of different retention policies according to the lifetime
of the data — i.e. the measurements are logged every 5 minutes for a week, with the
‘one_week’ retention policy; every 15 minutes for one month, with the ‘one_month’
retention policy, etc.

The data collected this way is then visualised through the use of a Grafana
web interface. Grafana is an open source platform used to visualise InfluxDB data
(and data from other sources) into dynamic dashboards [45]. The dynamicity of the
dashboard allows the user to filter the data coming from the InfluxDB databases
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without the need of manually typing queries.

4.2 Log Repository

In April 2019, the CNAF management, started exploring the development of a
single Log repository to be used in the centre. The purpose of this repository is
to unify the collection of log files and store them into a single storage system both
for safe-keeping and to ease the collection and analysis effort in view of future
improvement to the maintenance process of the centre.

The system developed so far makes use of rsyslog to redirect the flow of logs

from every machine in the centre to the same repository. The repository is struc-
tured in the way shown in Table [4.1]

| _host 1
Lyear
| month
day 1
tlog file 1
log file 2
day 2
| 1log file 3

| host 2
L ear

month 1

Lday

| log file 4
month 2
Lday

| 10g file 5

Table 4.1: Sample directory structure for the Log Repository. Details in the text.
This platform allows for easier retrieval of the log files. The access to the
repository is allowed via Network File System (NFS), a distributed file system

that allows to access files over network as if they were in local storage. The NFS

is an open standard defined in a Request For Comments (RFC) [46].
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Figure 4.1: Total size of the log files stored into the Log Repository as a function of
time.

The number of log files redirected into the Log Repository increased gradually
in the last month, while more and more machines were configured to start logging
into the repository. At the time of this thesis, the machines that are logging into
the Log Repository are 1133 and include all of the Storage hosts, all of the Network
hosts and all of the Farm hosts with every Worker Node included. Each machine
stores daily an average of 16 log files, for an average of 14 GB and a maximum
of 19 GB of data daily. Figure |4.1| shows the amount of data stored in the Log
Repository in the last two weeks. Every day more than 18000 log files are stored;
the number of log files in the repository at the time of recording was 577585, for
a total of 502 GB of data.

Few characteristic log files from StoRM will be briefly presented in the following
section. These log types are relevant since they are the type of log files studied in
the last part of this thesis.
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4.3 StoRM logs

StoRM is a storage manager service for generic disk-based storage systems [25].
StoRM is the storage management solution adopted by the INFN-CNAF Tier-1,
and it has been developed in the context of WLCG computational Grid framework
with the specific aim of providing high performing parallel file systems to manage
the resource distribution for the storage of data in disks. StoRM has a multilayer
architecture made by two stateless components, called Frontend (FE) and Backend
(BE), and one database use to store the SRM requests and its metadata. A simple
StoRM architecture is shown in Figure 4.2

StoRM supports the Storage Resource Manager (SRM) protocol dividing the
operation int synchronous and asynchronous requests. The asynchronous requests
include srmPrepareToPut, srmPrepareToGet, srmBringOnLine, srmCopy; while
synchronous requests are Namespace operations (srmLs, srmMkdir,etc.), Discovery
operation (srmPing) and space operations (srmReserveSpace, srmGetSpaceMeta-
data, etc.).

The logging activity represents an important functionality of both BE and FE
StoRM components, and of the services linked to them. There are different kind
of files in which specific information is stored. A summary of the roles of the two

main components is discussed below, with example of their log files.

4.3.1 Frontend server

The FE provides the SRM web service interface available to the user, manages
user credentials and authentication, stores SRM requests data into a database,
retrieves the status of ongoing requests, and interacts with the BE.

Frontend services logs into two different files: storm-frontend-server.log and
monitoring.log. The former has been the first log type analysed throughout Section
6.2} a sample line of the log file is shown in Table 4.2

When a new SRM request is managed, the FE logs a new line on the file. A
log line contains information on the type of request, the user, the success of failure
of the request and the token that links it to the BE process.
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Figure 4.2: Simple StoRM Service Architecture schema with one Backend and one Fron-

tend.

12/07 03:16:09.282 Thread 28 - INFO [0c79ddfe-07cd-48e8-
8547-53d9ca38d154]: Result for request 'PTP’ is
'SRM_REQUEST_QUEUED’. Produced request token: 'cae6a710
-d292-4404-9bdf-c7a67dad4759’

Table 4.2: Sample log line from storm-frontend-server.log from 8/12/2018.

42



00:00:00.144 - INFO [xmlrpc-5916] - srmRm: user j/DC=ch/DC=
cern/OU=O0Organic Units/OU=Users/CN=atlpilol /CN=614260/CN=
Robot: ATLAS Pilotl; operation on [SURL: srm://storm-fe
.cr.cnaf.infn.it /atlas/atlasdatadisk/rucio/mc15.13TeV /bf/

b0 /log.16290046._051554.job.log.tgz.1.rucio.upload]

failed with: [status: SRM_INVALID _PATH: File does not exist]

Table 4.3: Sample of log line from storm-backend-server.log from 8/12/2018.

00:00:17.827-synch.ls [(count=10669590, m1_rate=329.633,
mb_rate=362.073, m15_rate=501.721) (max=613.200, min
=9.381, mean=41.350, p95=171.993, p99=378.712) ]
duration_units=milliseconds , rate_units=events/minute

Table 4.4: Sample of log line from storm-backend-metrics.log from the 8/12/2018.

4.3.2 Backend server

The BE is the core of StoRM service since it executes all synchronous and asyn-
chronous SRM functionalities. It processes the SRM requests managing files and
space, it enforces authorisation permissions and it can interact with other Grid
services.

Table shows a sample line of the storm-backend-server.log file.

The BE server log files provide information on the execution process of all
SRM requests, error or warning. BE logging is based on the logback framework.
Logback provides a way to set the level of verbosity depending on the use case.
The level supported are FATAL, ERROR, INFO, WARN, DEBUG. At the INFO
level, the BE logs for each SRM operation who has requested the operation (DN),
on which files (SURLs) and with which result.

Backend logging also consists of the heartbeat log file, that contains information
on the number requests processed by the system from its startup, adding new
information at each beat, and the storm-backend-metrics.log log file. An example
of the latter is shown in Table 4.4l

The information stored in this logfile are the type of operation, the number

of operation in the last minute, the number of operation from last startup, the
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maximum, minimum and average duration of the operation from the last minute

and the highest duration of the last 95th and 99th percentile of operation.

44



Chapter 5
Infrastructure setup

As explained in the previous section, the amount of data being regularly stored in
the Log Repository averages to 12 GB of data per day. This amount of data, while
still being manageable is more and more close to the definition of BD, discussed

in Section [L.2

To elaborate this amount of data, a standard computer may prove insufficient.
A single machine can perform elaboration in parallel on its cores, but oftentimes
this parallelisation is not enough for BD. A step forward from core parallelisation
is distributed computing: A distributed system is a system whose components
are located on different networked computers, which communicate and coordinate
their actions to divide a problem into many tasks, each of which is solved by one
or more computers.

In many cases it may be more cost-efficient to obtain the desired level of per-
formance by using a cluster of several low-end computers, in comparison with a
single high-end computer.

Since April 2019, CNAF started studying different system concept to develop
a distributed system for Log Ingestion and Analysis, loosely inspired by previous
works at CERN and at the Fermi National Accelerator Laboratory (FNAL).

[.e at CERN a complex system of heterogeneous log ingestion and analysis
has been put in place to consolidate the data managing structure. A schematic

representation of the framework in use at CERN is shown in Figure [5.1]
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Figure 5.1: Schematic representation of the unified monitoring system in use at CERN

7).

It is worth mentioning that the tools and techniques used to extract and analyse
data from such a large and complicated “dataset” at CERN are many, and very
different in scope and functions. While some have been developed by HEP experts
for handling big HEP datasets, there is an increasing need within the field to make
an effective use of industry developments, i.e. tools that have not been developed
in-house but - given the synergy among HEP and non-HEP on BD-related need -
they nevertheless seem to offer exactly what HEP needs.

The adoption of industry techniques that have not been developed in-house by
HEP experts implies (at least) a training curve and (for sure) additional work to
implement some level of adaptation of such tools to the specific details of HEP
work-flows, which is often a far from trivial work. At the same time, industry tech-
niques, mainly if open source, can rely on a large and open developers communities,
whose knowledge is capable to streamline technology adoption and troubleshoot-
ing on a stable basis and in a sustainable fashion, which is a hard to meet goal
for CERN specific products, which suffer from risk related to inability to guar-
antee stable funding schemes for hardware, software and human resources on a
multi-year scale.

Following the same structure, albeit with less complexity, the framework de-
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Figure 5.2: Schematic representation of the distributed log ingestion and analysis plat-
form being implemented at CNAF.

veloped to satisfy the need of the new CNAF log repository is schematically rep-
resented in Figure

A complete description of the technical components of this framework is beyond
the scope of this thesis, but few highlights on the major software toolkits in use is

given in the following sections.

5.1 DODAS

The infrastructure developed is based on Openstack , a cloud operating system
that controls and manages the resources of the datacentre. The instances created
through Openstack form a cloud network over which is distributed the software

that defines the framework described above.
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The distribution is done via the Dynamic On Demand Analysis Service (DO-
DAS), a Platform as a Service tool which allows to instantiate on-demand container-
based clusters [49]. DODAS as been developed by the INDIGO-DataCloud H2020
project [50] and has been funded in the scope of the European Open Science Cloud
hub (EOSC-hub) Horizon 2020 project[51].

The purpose of DODAS is to reduce the learning curve, as well as the opera-
tional cost of managing community specific services running on distributed cloud,
by automating the process of provisioning, creating, managing and accessing com-
puting and storage resources. DODAS can deploy both HT Condor batch systems,
and platforms for Big Data analysis based on Spark or Hadoop such as our case.

DODAS has already been integrated by the Submission Infrastructure of CMS,
as well as by the Alpha Magnetic Spectrometer (AMS-02) computing environment.

5.2 Hadoop-HDFS-Yarn

Apache Hadoop is a collection of open-source software utilities that facilitate using
a distributed platform to run jobs [15]. The main software that compose this

toolkit are:

e Hadoop Distributed File System (HDFS) - a distributed file-system that
stores data on machines, with a very high bandwidth across the cluster;
It has many similarities with existing distributed file systems but is designed
to be deployed on low-cost hardware with a high failure tolerance. It is
tuned to manage vast volumes and can easily scale to hundreds of nodes.
The main difference between HDFS and other file systems such as NFS, is
that it follows the assumption that is better to migrate the computation
closer to where the data is located rather than moving the data to where the
application is running. As such is suitable for application with large data

sets, supporting tens of millions of files in a single instance.

e MapReduce - MapReduce is the implementation of a programming model for

processing and generating big data sets with parallel, distributed algorithms
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on the cluster. A MapReduce framework is defined by two operations: Map:
a function that each worker node applies to the local data, writing the output
to a temporary storage and Reduce: a function applied to the data based
on the result of the mapping function. The role of the MapReduce is to
redistribute the data resulting from the map function such as all the data

with the same result is Reduced by the same worker node.

o Yet Another Resource Negotiator(YARN) - YARN is the middleware between
HDFS and the processing engines being used to run applications and can
dynamically allocate resources to applications as needed. By decentralising
the execution and monitoring of processing jobs YARN removes performance
bottlenecks and scalability problems that appears as the cluster sizes and the

number of applications increased.

Using YARN to separate HDFS from MapReduce allows the Hadoop environ-
ment to be more suitable for real-time processing and online applications that

would suffer from serialisation of processes [52].

5.3 Flume-Kafka

On the log ingestion side of the framework, two software manages the stream of

logs:

e Apache Flume - Apache Flume is a distributed, software for efficiently col-
lecting, aggregating, and moving large amounts of log data [53]. It has an
architecture based on streaming data flows. It uses a simple extensible data
model that allows for online analytic application. Flume can be used to
transport massive quantities of event data in a reliable way: A Flume source
consumes events delivered to it by an external source; the events are then
staged in a channel, and are removed from it only after they are stored in
the next channel or in the terminal repository. This ensures that the set of

events are reliably passed from point to point in the flow.
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e Apache Kafka - Apache Kafka is a distributed streaming platform to manage
streams of data [54]. The platform can publish and subscribe to streams of
records, similar to a message queue, reading incoming data and outputting
data on the same stream. The software allows also to process the stream as

it occurs making it possible to transform data as it arrives.

The combination of these two software, Flume for the stream of the logs and
Kafka for its ability to transform the data of the stream as it occurs allows to
process event with sub-second latency and scales greatly with large amount of
data [55].

5.4 Spark

The previous software discussed, following the definitions of Figure[1.3] deals with
the Data Management part of a BDA process.

Apache Spark is a fast and general-purpose cluster computing system used to
perform Analytics investigation on data [56]. It provides high-level APIs in four
different coding languages for data management and analysis: Java, Scala, Python
and R. In addition, it provides an optimised engine for graphs, higher-level tools
for dealing with relational databases and implements an efficient Machine Learning

library.

e Spark Core - Spark Core is the base of the framework. It manages the
dispatch of distributed and basic I/O functionalities.

e Spark SQL - Spark SQL is a component on top of Spark Core that introduced
a DataFrames based data abstraction, which provides support for structured

and semi-structured data and standard SQL queries for extract data.

e Spark MLIlib - Spark MLIib is a distributed machine-learning framework
on top of Spark Core. Many common machine learning and statistical al-
gorithms have been implemented simplifying large-scale machine learning

pipelines
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All of these functions are optimised to run on distributed computing following

the MapReduce model.

The system presented is still in development, and as such it is not yet in
active use and no software has been yet developed that fully makes use of the
platform. This type of infrastructure is still being experimented on at CNAF,
with low prior knowledge and experience: using open source tools with industry
wide acknowledgement and distribution is, therefore, a great advantage for the
success of this type of experimentation.

The next and final chapter of this dissertation presents the development of a
BDA algorithm for the clustering of Log files. The script presented is developed
with the objective of presenting a preliminary work that could be performed on
the distributed platform described above.

However, due to the still in-development state of the system, the algorithm is
not yet optimised to be run on a distributed system and future efforts are needed
to adapt the code presented and employ it on the platform in a real use-case

scenario.
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Chapter 6
Log files analytics

In Summer 2018, the INFN-CNAF management decided to launch an exploratory
effort to investigate the feasibility of the collection of various log data from CNAF
services and systems and the potential extraction of useful and actionable infor-
mation. The form of this effort happened to be based on a bottom-up approach,
in terms of technical choices and manpower: namely, a small group consisting of
3 young physicists with computer science skills (the author of this thesis has been
one of them) were hired for a two-months period in the CNAF Summer School
program, with the precise goal to investigate the aforementioned direction, under
the guidance of technologists from the centre and personnel from the University

of Bologna.

The CNAF Summer School program focused on the investigation of log files
collected by StoRM, that proved to be the most well documented and readily
accessible service. More details on the service are discussed in Section [4.3 with an

overview of the log files that will be discussed in the following.

This CNAF Summer School program paved the way for further efforts in the
development of a consolidated log ingestion pipeline that resulted in the Log Repos-
itory presented in Section The rest of this thesis will discuss a first example
of an Analytics work that can be performed on this new platform and as a con-
sequence of the preliminary activities done in the context of the CNAF Summer

School program.
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6.1 Preliminary investigation of CNAF log files

The Summer School period was from the beginning of September 2018 to the end
of October 2018 (even if a fraction of activities continued also beyond). In this
section, the work done by the students’ team is briefly described. The preliminary
exploration of a first log ingestion pipeline at CNAF is presented in Section [6.1.1}
The development of a series of algorithms for the parsing of log files is discussed
in[6.1.2] The definition of a prototype of Machine Learning algorithm for feature
selection is shown in Section [6.1.3] These works have been presented at the In-
ternational Symposium on Grids & Clouds 2019 (ISCG 2019) and released in the
proceedings book of the conference [57, 58].

6.1.1 Log ingestion and visualisation

This work focused on the creation of an indexed system with structured informa-
tion from CNAF system logs by using the Elastic stack (ELK), an open source
project developed by the Elastic company [14] that is the union of three different
software: Elasticsearch, Logstash and Kibana.

Logstash allowed the creation of a well defined pipeline collecting log files from
the Storage Manager, the different files were then parsed using various filters.
Based on Regular Expression, these filters selected a specific portion of text by
creating a series of patterns. Some patterns were predefined and universal (i.e. IP
address, timestamp, etc.), but the majority were custom made for each log file.

Then, using the Kibana User Interface, the information extracted from the log
parsing were plotted with several histograms and charts.

Elasticsearch provided a tool with Machine Learning functionality to predict a
future time interval given a specific portion of past data for training.

The tool available in the free version of the software, although, was not optimal
and no parameters could be adjusted, resulting in a system that did not take into
account any possible quick fluctuation of the examined metric; as such, for a
predictive scenario and a proactive identification of failures, this did not prove to

be the optimal solution.
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TIME - STRING [(count= NUM, m1 rate= NUM,m5 _rate= NUM,

m15 rate= NUM ) (max= NUM, min= NUM, mean= NUM, p95= NUM,
p99= NUM ) | duration_units=milliseconds, rate_units=

events/minute

Table 6.1: Log line from storm-backend-metrics.log with fields replaced by identi-
fiers.

6.1.2 Log parsing and structuring

The activity of the second student, fully independent from the ELK implementa-
tion discussed in the previous section, focused instead on the parsing of the raw

log files into structured .csv files.

The logs collected by the system vary a lot, and their content depends on the
machine from which such logs are acquired. Most log files consist of a heteroge-
neous array of measurements, events, descriptor keys and separators. Usually one
event log file is written in a way that makes it more readable for users, which
turns into ad advantage for a human reader but also adds redundancy which is
not meaningful information for a machine.

In order to extract the relevant information from a log file, a parsing algorithm
can be applied to pre-process the data and convert the log text file into a form
that is more adequate for database-like manipulation applications.

Depending on its source and purpose, log files themselves can follow very dif-
ferent structures. The log line in Table in Chapter [4] for example, is from the
Backend (BE) metrics file from a storage machine managing the resources for the
ATLAS experiment. This log line includes numerous descriptors that define the
subsequent metrics, and every relevant metric is divided into blocks with the use
of separation symbols such as parenthesis and square brackets. Every line in this

log follows the same structure, with an apparent template easy to extract from the
information fields (Table [6.1]).

The result of the manipulation is a csv file (shown in Table[6.2), that is easy to
read and, more importantly, easy to manipulate for any statistical analysis (even

machine learning techniques).
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timestamp type count ml_rate mb_rate mlb_rate max
00:00:17.827 synch.ls 10669590 329.633 362.073 501.721 613.200

Table 6.2: Truncated storm-backend-metrics parsed .csv file.

12/01 03:48:09 Thread 59 - INFO [e701...]: nsl__srmPutDone : Request: Put done. IP:...
12/01 03:48:09 Thread 12 - ERROR [d857...]: Result for request 'Release files” is 'SRM...
12/01 03:48:10 Thread 41 - INFO [41ee...]: Request 'PTP status’ from Client IP="200...
12/01 03:48:15 Thread 3 - INFO [76f8...]: nsl_srmPing : Request: Ping. IP: 2001:145...

Table 6.3: Four sample lines from storm-frontend-server.log.

The log in Table [£.4] in Chapter [4] is an example of one of the easier log file to
parse: the template is well structured and maintained throughout the entire log
file, with little to no weird lines.

Other logs, although, follow a looser structure. Service message log files are
more verbose, the log lines are heterogeneous, and the relevant information are
hidden between descriptors with varying length and in different orders.

For StoRM, an example of this type of log file is the service log for the frontend
(FE). Details on this log files are available in Section {4.3.1} Table [6.3| shows some
sample lines from the log file. While a loose structure can be inferred from the
log lines, one could notice how — beyond the timestamp, the information on
the thread and the type of log (INFO, WARN, ERROR) — the verbose message
containing the information on the service does not follow a strict template.

Because of this, a log file of this type is loosely parsed, and the information
present in the message are to be retrieved manually. The results of the parsing via
the same script described above are shown in Table [6.4]

Most service events’ log files follow a structure similar to the one shown in Table
[6.3] with a verbose message written without a strict structure, with heterogeneous
log lines.

The repository containing the algorithm described in this Section is available
in [59].

The results of this algorithm were employed in the third preliminary work, to
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timestamp thread type request_id message

12/01 03:48:09 59 INFO e701...  nsl_srmPutDone : Request: Put done. IP...

12/01 03:48:09 12 ERROR  d857...  Result for request 'Release files’ is 'SRM_F...

12/01 03:48:10 41 INFO 4lee...  Request 'PTP status’ from Client IP="200...

12/01 03:48:15 3 INFO T618... nsl_srmPing : Request: Ping. IP: 2001:14...

Table 6.4: Sample of a truncated storm-frontend-server.csv file.

further extract information from the FE log files. The following Section discussed

this last example.

6.1.3 Log features extraction with ML

This study analysed two different sources of log files from the Storage Resource
Manager system of CNAF and correlated the extracted features in two different
critical periods.

The work focused on some InfluxDB metrics from the ATLAS hosts, and the
corresponding log files from the FE. For both sources, using various Machine Learn-
ing algorithms, the authors defined the most important features for the discrimi-
nation between ”good” and "bad” days.

The critical periods were manually labelled after investigating the system for
anomalies and reading ticket reports.

The log files coming from StoRM for FE have been parsed using the same
algorithm presented in [6.1.2, and after studying the content of the log lines, some
key fields in the messages were selected as the input features for successive steps
of the process.

The parsed message was then converted through one hot encoding to determine
if those specific value were present or not. This allowed to prepare the log lines for
Machine Learning algorithm, by converting the large, verbose and unstructured
message into a feature vector.

The resulting data was used to train various supervised learning algorithm to

determine which of the extracted features correlated more with the supervised
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labels.
The work presented followed a strictly supervise approach, that required the
input from experts to label the critical periods and a careful study of the log files

to manually define a method to extract the interested fields.

6.2 Case study: text-based log clustering

All the previously discussed approaches, designed and developed during the Sum-
mer School period in 2018, required a deep study of the log files, and an appropriate
amount of custom filtering on the logs to extract the information. The approach
presented in this thesis builds on those experiences, and it is based on a performing
and effective algorithm to clusterise the log entries of all logs into classes based on
the textual content of the log message.

The algorithm should be able to:

e Perform the clusterisation in a totally unsupervised way: no prior knowledge

on the logs, and no manual support in the classification should be needed;

e Maintain a good resolution in the classification reducing at minimum the

loss of information;
e Scale well with the size of the log files;
e Perform the clusterisation in a relatively short time;

e Be applicable to different types of log files with basically no adjustments.

By dividing the log lines into clusters, a log file can be analysed in a quantitative
way, providing direct information on the type of messages and their frequency in
a given log file. If this process is performed every day, after collecting the log lines
of a given service from the day before, the team working on the support for such
a service would benefit from receiving a daily summary of the status of a service;

the added information can be used in conjunction with the already available data,
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INPUT: parsed_log
PARAMETERS: MinimumSimilarityThreshold
INIT clusters = {}
FOR every log line msg IN parsed_log
Anonymise msg
INIT similarities = {}
FOR every cluster{i} IN clusters
similarity{i} = similarity (cluster reference, msg)
IF similarity{i} is min(similarities)
IF similarity{i} > MinimumSimilarityThreshold
Add msg to cluster{i}
IF no cluster matched msg
Add new cluster
Add msg as new cluster reference

Table 6.5: Pseudocode of the log clustering algorithm. Details in the text.

and can provide a quick glance on the behaviour of a service, possibly highlighting

anomalous trends.

To reach this goal (i.e. treating the service support team as a customer to
satisfy), the proposed algorithm must perform the clustering on the log file for a
specific day in a way that the clustering processing completes in less than 6 to 8
hours, as to be performed around midnight and and be ready by the morning of

the next day.
The algorithm is shown in pseudocode in Table 6.5} The algorithm has been de-

veloped in Python 3.6, using the open source scientific computing package NumPy
[60] and the data structures and data analysis tools from the Python Data Anal-
ysis Library (Pandas) [61]. The repository containing the algorithm developed for

this thesis work is available at [62].
In the following sections the main steps of the algorithm are discussed.

Unless specified otherwise, the images and tables shown refer to the results of
the clustering performed on storm._frontend_server20181202.log. This is the log file
corresponding to the StoRM FE service for the ATLAS host for the 2/12/2018.
See Section for details on this specific log file.
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srmPing : Request: Ping. IP: 2001:1458:301:4a::100:5a
srmLs : Client DN: /DC=ch/DC=cern/OU=0rganic Units: ATLAS Data Management
Request 'PTP’ Requested 1’ SURL(s): srm://storm-fe.cr.cnaf.infn.it/atlas/

Table 6.6: Sample log messages with highlighted fields to be masked.

srmPing : Request: Ping. IP: IP
srmLs : Client DN: PATH ATLAS Data Management
Request 'PTP’ Requested '1” SURL(s): SURL

Table 6.7: Sample log messages with masked fields.

6.2.1 Log anonymisation

Service log files, such as those from FE and BE of StoRM, can contain numerous
information on the user and the machine from which the service was launched.
These information are useful for tracking the source of a problem, but translates
into an added level of complexity for a clustering algorithm.

Every information on a verbose log, indeed, is an additional word to compare to
determine the similarity between cluster members. To improve the performance of
this algorithm, these types of information must be masked. This procedure is often
defined as “anonymisation”, since is usually applied to hide personal information
and sensible data.

A sample of log lines to be anonymised is shown in Table To perform
the anonymisation the software uses compiled regular expression to identify the
underline structure of this fields. The process is quick and, since the masked values
are general enough, is easily adaptable to different logs and can be often used as
is.

The result of the masking process is shown in Table [6.7]

6.2.2 Comparison of similarity measures

The algorithm clusterises the log messages based on the similarity between the

message to clusterise and the reference messages of the clusters.
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Three different similarity measurements have been applied, testing the speed
of the algorithm, the number of clusters created and the cluster variance, that

defined how similar members of the same cluster are between each other.

J: Jaccard index

The first distance evaluated is the Jaccard Index. It is defined as the ratio between

the size of the intersection of two sets and the size of the union of the same sample.

ANB
J(A,B) = +55 (6.1)

The resulting value 0 < J(A, B) < 1 measure the similarity between the two
sets: with 0 corresponding to two sets with no intersection and 1 corresponding to
two coincident sets.

When the two sets are a series of words, the union corresponds to the set of all
the unique words in the strings, and the intersection corresponds to the common
words between the two strings.

Jaccard similarity has been extensively used with sets of strings to compare
search queries ([63] [64] [65]), with positive results when used on small sets. Its
use is therefore applied to large collection of small sets, such as search queries or
bit vectors.

One of the main advantages of this method is its speed, requiring only O(n) to
find the intersection between the two sets, with n the size of the union of the two
sets.

The disadvantage of this method is that it does not take into account multiple
occurrences of the same words in a set, and it loses information on the order of

the words.

C: Cosine similarity

The cosine similarity is a measure of similarity between two non-zero vectors. It

works by computing the cosine of the angle between the two vectors:
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A-B

C(A, B) = 008(9) = W

(6.2)

as such the cosine similarity is bounded by —1 < C(A, B) < 1, with 1 cor-
responding to two parallel vectors with the same direction, 0 to two orthogonal

vectors and -1 two parallel vectors with opposite directions.

When the two sets are series of words, the vectors are defined by the occurrences
of every words in the two sets. The cosine similarity is naturally bounded between

0, 1] since negative values are impossible.

Cosine similarity is widely used in text analysis, especially to compare docu-
ments and large corpus based data mining ([66] [67]). In [68], cosine similarity is

the metrics of choice for the log clustering algorithm this work is based on.

Cosine similarity algorithm are very efficient for sparse vectors, and as such are
used to compare documents. Their efficiency is lowered when used with small sets,

and as such prove to be slow when used with large collection of small sentences.

The time complexity of cosine similarity is, in fact, O(n?) with n the dimensions

of the vectors.

Again, while keeping track of the occurrences of every word in the sentences,
this algorithm does not take into account the relative position and the order of

appearance of the words.

This algorithm was implemented in the code through the scikit-learn library
[10].

L: Levenshtein distance

The last similarity measure analysed is based on the Levenshtein distance. The
Levenshtein distance is defined as the distance between two string sequences, as
the minimum number of character edits necessary to change a sequence into the

other.

Given |S| the length of a string S, the distance between two strings A and B
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Al L] Images [*] Videos = Maps = News ! More Settings  Tools

About 612,000 results {0.54 seconds)

Showing results for Levenshtein
Search instead for Levhenstein

Figure 6.1: Fuzzy string search in a common web search engine.

is given by:
(max(i,j), if min(s, j)=0
. . Lap(i—1,7)+1
ﬁA,B(F |A| = |B|) = . .
min{ Lap(i,j—1)+1 otherwise.
\ £A7B(i—1,j—1)+1Ai¢Bj
(6.3)

where 1,4,2p; is equal to 1 when the i-th letter of A and the j-th letter of B are
different, and 0 otherwise; L4 p(7, j) is the Levenshtein distance between the first
i characters of A and the first j characters of B.

As per[6.3the Levenshtein distance between two strings is measured recursively
as the minimum amount of deletion (the first element in the minimum), insertion
(for the second element) and edits (third element) needed to change A into B.

The Levenshtein distance is 0 if the two strings are identical, and at most is
the size of the longer strings if every character mismatch.

Levenshtein distance is mostly used in fuzzy string search, where the objective
is to find a string that approximately match a pattern (One common example is
seen in Figure . In log files this distance is used to anonymise data [37], and
to cluster search queries both in [69] and [63].

This algorithm is very efficient when comparing a short string with a large

text, but is used also for comparing long strings to each other. The computational
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Sample Phrases J C L

“Test sample”
“Test trial”

0.333 0.500 0.667

“Test sample”

“Sample test” 1.000 1.000 0.545

“Test sample”

“Test smaple” 0.333 0.500 0.909

“Test sample test”

“Test sample” 1.000 0.949 0.815

Table 6.8: Comparison of the results between different similarity measure applied
on sample sentences.

complexity, although, increases since it is O(nm), with n and m the respective
length of the two strings compared.

This distance measure has the advantage of taking into account the order of
appearance of the words.

Since this metric is a measure of distance between words, for our uses must be

converted into a measure of similarity:

L(A, B)

Lo (AB)=1— =00
oA B) =1 = AT, 1 B)

(6.4)

This algorithm as been implemented through the use of the Levenshtein Python

C extension module, available at [70].

Comparison between J, C and L

Although the similarity is measured in different ways, all three algorithms bound
the similarity between 0 and 1, as the percentage of similarity between to texts.
Table shows the results of the application of the three algorithms on some
sample sentences.
The Table shows the different behaviour of each algorithm. The second row
shows how neither 7 nor C weighs the order of the words. By comparing the third

and first row one can infer how J and C do not consider small difference in the
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word, such as spelling error or difference between plural and singular. The last
row shows the difference between the weighs of words occurrences in the sentences
with J that does not account for repetitions at all.

By measuring the number of log lines clustered per second, the Cosine similarity
was immediately discarded. Even with a low similarity threshold, that produces a
small amount of clusters, this similarity greatly under-performed with respect to
the other algorithms. A small sample log files of 20k lines was parsed in over a
minute, while the other algorithms managed to parse the log file in less than 10
seconds. Table [A.1] [A.2] and [A.3]in Appendix list the number of lines parsed

per second by each algorithm at different similarity threshold. Assuming a linear

time trend — assumption that will be verified in the next Section — the Cosine
similarity, with a low threshold, could parse a log file of 2M lines in over 2 hours,
resulting in only four clusters with a high variance (See Figure .

The Jaccard index, on the other end, proved to be really fast, parsing the
sample file in 8 seconds with the more restrictive similarity threshold, but resulted
in a very large number of clusters even at low similarity threshold, each with an
high variance despite their number (See Figure .

For these reasons the measure of similarity selected is the Levenshtein similar-
ity, that will be used throughout the rest of this work.

6.2.3 Time complexity

The algorithm is employed to parse single log files corresponding to a day of logged
events, running it from a medium range laptop. A new cluster is created once a log
line results too dissimilar to every existing clusters to be merged to any of them,
as such the number of clusters increases sequentially.

The plot in Figure [6.2] shows how the number of clusters increases steadily at
the very beginning of the file, and only few clusters are created in the middle and
the end of the files. More specifically 80% of the clusters are created in the first
250000 lines of the log file. Appendix shows the same results for the log files
from other days.

The number of log lines clustered, as a function of the running time of the
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0.00 0.25 0.50 0.75 1.00 125 1.50 1.75 2.00
log lines le6

Figure 6.2: Number of clusters as a function of lines per log, in FE server log
(02/12/2018) with similarity threshold = 0.7.

algorithm, follow an almost linear trend for the second half of the cluster. This
can be seen in Figure [6.3]

The majority of the clusters are created in the first seconds of computation
and, by plotting the same data for the first seconds of running time (Figure ,
it seems that the number of log lines clustered decreases every time a new cluster
is created.

Since most of the log are created in the first seconds, in Figure the number
of log lines clustered per second seems to be linear with the maximum number of
clusters.

Once the similarity measure to use has been determined - in this case, as
discussed, the Levenshtein one - the only parameter in the algorithm left to be
determined is what can be referred to as the “similarity threshold”, i.e. the lower
limit of similarity that a message must have with respect to a cluster to be merged
with it.

As such, the similarity threshold is a key parameter as it determines the number
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Figure 6.3: Number of log lines parsed as a function of the running time, and the
matching fit line for FE server log (02/12/2018). The markers correspond to the creation
of a new cluster.
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Figure 6.4: Close up of Figure for the first seconds of runtime. The markers corre-
spond to the creation of a new cluster.

of clusters that gets created from a log file. Figure 6.5/ shows how the number of
log lines clustered, as a function of the running time, is lower for higher similarity
thresholds.

Table shows the maximum number of clusters created for each similarity
threshold and the slope of the fit line, that roughly corresponds to the average

number of log lines clustered per seconds.

6.2.4 Levenshtein similarity threshold

The similarity threshold used determines the number of clusters and consequently
the time needed to cluster the log file. Since there is no stochasticity in the
clustering of a specific log file with a specific similarity threshold, this value also
determines the size, the shape and the reference message line of each cluster.
The similarity threshold to be chosen should, therefore, minimise the loss in

information in the clustering, by both having low overlap between clusters and
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Figure 6.5: Number of log lines clustered as a function of the running time for the FE
server log (02/12/2018). The slope of the curve decreases for higher similarity thresholds.

Similarity threshold Clusters Slope

0.40 Y 2445
0.50 7 2031
0.60 9 1778
0.62 10 1655
0.65 12 1403
0.68 17 1105
0.70 19 1041
0.80 32 677
0.90 64 357

Table 6.9: Total number of clusters and slope of the fit line for the evaluation time
of the FE server log (02/12/2018) at different similarity thresholds.
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Figure 6.6: Mean in-cluster variance as a function of the similarity threshold and the
corresponding number of cluster for the FE server log (02/12/2018).

small variance in the same cluster. The computation time should also be taken
into account, since it should satisfy the requirement — discussed at the start of
this Section — of clustering a daily log file in less than 6-8 hours. By that, it was
meant the following: if the developed algorithm, when run even on a medium range
personal laptop only (and not on a high end CNAF server), will end up in being
able to perform clustering on an average log file within the 6-8 hours threshold,
it will be considered a success. Indeed, there is not need to achieve higher speed
in such prototype, as it will eventually run on more performing hardware (or even
on a BDA platform).

Figure shows the mean cluster variance as a function of the similarity
threshold and the corresponding number of cluster. The variance is measured as
the squared deviation from the mean of the members of a cluster’s similarity from
the reference message of the cluster. The mean cluster variance is the average of
this value across all of the clusters created with a specific similarity threshold.

Figure shows how the mean cluster variance is higher for lower similarity
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threshold and lower for higher threshold, as expected, but with a low value at
similarity threshold of 0.4.

Since the criteria for the choice of similarity was a low cluster variance and low
computation time, a similarity of 0.4 seems to be the best choice for this particular

log file.

Although, by considering only the clusters containing the highest amount of
log lines, the behaviour changes. Figure [6.7], shows the mean cluster variance as
a function of the similarity threshold and consequently the number of clusters
for different percentages of the log file. In the plot, the solid line (referred to as
“p100”) matches the line in Figure . The dashed and dotted lines corresponds
to different percentiles of the data, i.e. “p80” corresponds to the mean cluster
variance of the lowest number of most populated clusters that collect at least 80%

of the log lines, and “p90” (“p95”) corresponds to at least 90% (95%) respectively.

Even if a similarity of 0.4 seems to yield a small mean cluster variance, by
removing the less populated clusters, the mean cluster variance increases drasti-
cally: the most populated clusters collect log lines with higher distance from the
reference message. For higher threshold the mean cluster variance decreases no-
ticeably, while the number of clusters increases. This indicates a high number of
highly specific clusters; a similarity threshold of 1 would result in a number of

cluster equals to the number of unique messages in the log files.

For this log file, the similarity threshold that seems to satisfy well the require-
ments is between 0.675 and 0.7; in both cases, in fact, the mean cluster variance

is similar even for smaller percentile of data.

This result seems to be consistent with the same analysis performed on log files
from the same source at different days; the results can be seen in Appendix [A.3]
The result of the clustering algorithm with similarity threshold 0.675 is visible
in Figure where every bar is labelled with the cluster’s reference message.
The same results are shown in logarithmic scale in Figure to show the trend
of the least populated clusters. Table lists the clusters population and the

COI'I'eSpOIldiIlg reference message.
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Figure 6.7: Mean cluster variance at different similarity levels for the entire log file
(p100) for the 95th percentile (p95) for the 90th percentile (p90) and the 80th percentile
(p80) for the FE server log (02/12/2018).
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Figure 6.8: Clusters population for FE server log file (02/12/2018), with similarity threshold 0.675. Every bar is labelled

with the cluster’s reference message.



Cluster ID  Occurrences

Reference message

0 79117
1 460708
2 337391
3 340976
4 351179
5 349696
6 36551
7 72440
8 9948
9 87
10 174
11 139
12 1
13 10
14 84975
15 26
16 3415

nsl_srmPutDone : Request: Put done. IP: IP Client]...]
Result for request 'Release files’ is 'SRM_SUCCESS]...]
Request 'PTG status’ from Client IP="::IP’ Client [...]
process_request : Connection from IP

nsl_srmLs : Request: Ls. IP: ::IP. Client DN: PAT]...]
Result for request 'PTP status’ is 'SRM_REQUEST_INJ...]
nsl__srmGetSpaceTokens : Request: Get space tokens]...
Result for request 'PTP’ is 'SRM_REQUEST_QUEUED’. [..]
Result for request "Mkdir’” is 'SRM_INVALID_PATH’
__process_file_requestUSER : Protocol check failed]...]
__process_file_requestUSER : Received - 5 - protoc]...]
nsl_srmRm : Request: Rm. IP: ::IP. Client DN: PAT]...]
storm::BolStatusRequest::loadFromDB() : No tokens |...]
rpcResponseHandler_AbortFiles : arrayOfFileStatuse]...]
Request 'BOL’ from Client IP="IP Client DN="PATH UJ...]
ns1__srmCheckPermission : Request: Check permissio]...]
nsl_srmReleaseFiles : Request: Release files. IP:]...]

Table 6.10: Cluster population and reference message for FE server log file
(02/12/2018) with similarity threshold 0.675.
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Figure 6.9: Clusters population for FE server log file (02/12/2018) with similarity threshold 0.675, in logarithmic scale.

Details in the text.



6.2.5 Reference message

To determine if a log line is to be merged to a preexisting cluster, the algorithm
compares the log line to the reference message of the cluster. The reference message
of a cluster corresponds to the first log line added to that specific cluster; this
is done to ensure that the time complexity of the algorithm does not increase
exponentially with the number of log lines clustered.

The downside is that the reference message does not change during the run,
and can result in a non-optimal choice, determined only by the order of appearance
of the messages in the log file.

The assumption made is that, since a log message follows a template defined
by the developer when printing the log, the number of unique type of log messages
is finite; if the log file is clustered correctly, every message belonging to a specific
cluster comes from the same template.

If this assumption is true, the order of appearance of the logs should not alter
significantly the result of the clustering. By comparing the result of the algorithm
for random samples of a log files, any significant difference due to the order of
appearance of the log lines should be readily visible.

Figure shows the clusters population for the FE log file of 2/12/2018,
clustered with a similarity threshold of 0.7. The label on each bar corresponds to
the cluster’s reference message.

The same log file has been randomly sampled for 90% of its rows. Figure [6.11]
shows the result of the same clustering algorithm performed to a sample of the log
file.

The two plots follow a nearly identical distribution, and even if the reference
messages differ from each other, the most popular clusters seem to refer to the same
message template. This gives confidence that the usage of the cluster’s reference
message as from this work does not induce any relevant bias (more considerations
on this point, regarding possible next steps of this work, can be found in [6.4]
Additional sampling results are shown in Appendix [A.4]
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Figure 6.10: Clusters population for FE server log file (02/12/2018), with similarity

threshold 0.7. Every bar is labelled with the cluster’s reference message.

cluster

Figure 6.11: Clusters population for a random sample of 90% of the FE server log file
7

(02/12/2018), with similarity threshold 0.7. Every bar is labelled with the cluster’s

reference message.



6.3 Backend log clustering

Since the algorithm was built to be employable on different log files with little to
no manual intervention, it was tested on a different type of log from StoRM: the
logs from the BE. Details on this type of logs are shown in Section [4.3.2]

A week of log files from the StoRM host related to the CMS experiment
was analysed, in particular the week studied was the one from 22/05/2019 to
28/05/2019. In this week there was a noticeable trend in the log files as shown in
Table [6.11} In particular, the file from one specific day was marked as critical on
the Table, as it had a considerably larger size than the rest of the log files.

The clustering performed followed the same analysis discussed in the previous
section: the similarity measure used to clusterise the log files is the Levenshtein
similarity; to determine the correct threshold, the mean cluster variance and the
running time of the algorithm were evaluated for a single day; the results are shown
in Figure and in Appendix

The similarity threshold selected was 0.6. The plot shows that the mean clus-
ter variance decreases form 0.6 to 0.7, but the mean cluster variance at lower
percentile is almost the same; this may indicate that the 4 cluster difference be-
tween the clusters created with similarity threshold 0.6 and 0.7 are between the
least populated, including less than 5% of the log lines, and probably results from
the split of already low populated clusters.

The plots from the clustering with 0.6 similarity threshold are shown in Ap-
pendix The Figure corresponds to the critical day, where the file size
passed 4 GB, with the same plot in logarithmic scale in Figure to highlight
the distribution of the least populated clusters.

6.3.1 Results

By comparing the results from the critical day in Figure [6.13| with those shown
in Appendix one could observe how the main difference between the two files,
aside from the number of log lines, is not the distribution of the most populated

clusters, but the occurrence of multiple low populated clusters, either not present
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Figure 6.12: Clusters population for BE server critical log file (23/05/2019), with similarity threshold 0.65. Every bar is

labelled with the cluster’s reference message.



"1X99) 9} UL S[IeJO(] "O[eoS

OIWYHLIRSO[ UL ‘9°() P[oysoIy) Ajrefruns Y3m (610¢/S0/€) oY So[ [eonid roames iy 10§ uoryendod smojsnf) :g1°9 omnsig

l=23snp

6C O TE 92 [Z28BZ 02 TZ $Z GC €2 EZ TT OT ET § (L +vTI 21 6T 6 ST 9 + 9T 8 € LT 8T T € O

occurrences
) ) o o =) o o

=
1

re
[ E

& 5]
1

[l
1

L

zn

srmRsleasefiles:
srmPing: USER]
‘Checksurn valus is not availak
Finished handling Bol chunk foru
ADVANCED PICKER: dispatching 2
Complated Bol request [REQ_ID);file succe
srmRm: user USER operation on [SURL: SURL]
srmMkdir: Path specified exists as a file

Subrmitting GPFS quata infa computation for s roate
srmBm: File doas not exist

Task status s=t to SUCCESS. groupTaskld=AEQ_|D request]
Skipping the status upadate operation;the status already s!
VA _ERROR

FTP CHUNE DAO! 1 chunks of PFTP requests were updated to 5P
Updated space availability information for all guota-enabled SAs
Triggering on demand GPFS quota computation.

GARBAGE COLLECTOR remaved USER recall} older than B6400 sacon
REQUEST SUMMARY DAD - purgeExpiredRequests - Delated 300 expirad r:
REQUEST SUMMARY DAD - findNew: Unable to complete picking. Error: Can't call com
PICKERZ: roll back failed! Can't call rellback when autocommit=true

Unable to find a group with GID="2003"

Unable to get StorageSpaceData from alias name CMSDISK-FS

S0L Error: The last packet successfully received from the server was 43181032 milliseconds ago. The
Received a tape recall status update but na Recall Group Task found with ID = "REQ_ID"

No tasks found with GroupTaskld="REQ_ID'

ERROR in PtGChunk! Thers was a failure building the TURL. : TURLBuildingException Unable to build th
Unable to get the pool member ta be used to build the tur. BalancerException © No remote services

Ha one remote service is responsiva!

Unable to perform the PTP request;surl busy {engoing put an the same surl)

TReturnStatus: Explanation string truncated at 255 characters: The surl SURL

The ¥ML-RPC request security token is missing. The calling service is probably miscenfigured.

80



Filename Date Size

2019-05-22-storm-backend.log  22/05/2019 1.541 GB
2019-05-23-storm-backend.log  23/05/2019 4.061 GB
2019-05-24-storm-backend.log  24/05/2019 1.756 GB
2019-05-25-storm-backend.log  25/05/2019 1.197 GB
2019-05-26-storm-backend.log  26/05/2019 1.263 GB
2019-05-27-storm-backend.log  27/05/2019 1.707 GB
2019-05-28-storm-backend.log 28/05/2019 1.568 GB

Table 6.11: File size of the log files from StoRM CMS’s BE in the week from
22/05/2019 to 28/05/2019. The highlighted row marks the critical day. Details in
the text.

in the other days, or scarcely populated.

This type of information, that can be provided each morning, summarising the
most relevant anomalies in a log file can be incredibly valuable for the support
team. While normally requiring to manually study the log files, an analytics

software like this can provide a quick overview of the previous days.

To be informed of an anomaly the support team needs receive a ticket from a
user — that usually does not provide any information on the source of the problem
— or be aware of a critical failure in the system that can result in unnecessary
downtime. A system such the one described in the previous Section will be able to
provide an automatic warning when the clustering of the log files from the previous

days varies from the usual trend.

While this type of analysis still does not provide information on the source of
the problem or its gravity, can noticeably ease the debugging process by reducing
the size of the data to analyse, and can be a useful approach to prepare the logging

data for successive ML efforts.

The following Section will present some possible future steps to take to improve

on this work.
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6.4 Future developments

This work presented an experimental approach towards an unsupervised analytics
tool to parse and clusterise verbose log files. The developed system proved to
be able to handle different type of logs at a sufficiently high speed while yielding
summarised and valuable information that improves the standard one obtainable
from tedious and time-consuming human parsing of large logs.

Regarding the algorithms, the one used in this thesis showed to perform as
necessary to a large extent. There are remarkable points to be improved, though,
which should be part of the continuation of this work in the future. As an exam-
ple, the definition and use of a cluster’s reference message in the cluster creation
procedure has been shown not to induce any particular bias but this choice could
be improved in favour of designing one that by construction cannot induce biases.

This method can also be used to prepare data for further application of ML
techniques. Algorithms such as those tested in [57], for example, require data
structured into array. A clustering algorithm such as the one described in this
chapter would allow to classify the information from the log files into a simple one
hot encoding, where the cluster id is represented as a state in a vector where every
value is a 0 except a single 1 in correspondence of the cluster id.

Visualisation is another area in which relatively easy improvements could be
achieved. In the previous Section, we presented a way to represent the results of
the clustering through a bar plot, that quickly showed the population distribution
in the cluster and the corresponding reference messages. Another representation
could be by visualising the log message at time of logging, by plotting the time
on the x-axis of a scatter plot and the clusters id on the y-axis. An example of
the resulting graph is visible in Figure[6.14] This kind of representation highlights
the frequency of the more common clusters and showcase the order of appearance
of the least populated. By studying this type of graph, it is possible to define
patterns in the order of appearance of the logs. This type of analysis is performed
by [68] and [71], where the repetition of series of sequential clusters is used to
predict failure in error logs. Similar improvements in visualisation methods could

be an asset in future directions to be pursued.

82



30
25 1

20 = = s e m o= omm o= o sm = = =

Cluster id

15 1

10 1

T T T T
04:00 08:00 12:00 16:00 20:00
2019-May-23

Figure 6.14: Log messages at time of logging, visualised after the cluster creation process.
The y-axis refers to the clusters id generated by the cluster creation algorithm. The x-
axis is the time. Every dot in the graph represents an actual message from the log,
showing its mapping to one of the discovered clusters.

Another aspect that could bring improvements is the study of correlation across
days (or even across log files). On the other hand, any study of correlation between
the results of two different runs of the procedure is far from trivial, since the results
are unlikely to share the same clusters, in the same order, or even with the same
reference message. For example, one could consider computing the correlation as
a measure of similarity between the reference message of each cluster in order to
overcome this shortcoming. An example of this was actually investigated, and
it is shown in Figure In Figure [6.15] it is apparent how some clusters are
strictly correlated, such as cluster 0 from the log file of 7/12/2018 and cluster 1
from 6/12/2018. From Table and is obvious how the two clusters follow
the same exact template; cluster 14 from the 7/12/2018, instead, does not seem
to be similar to any clusters from 6/12/2018. The Table indeed confirms that this
log message did not occur on the previous day.

As a final remark, another direction to improve the results from this work could

be adapting the code to run on a distributed platform. The framework presented
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Figure 6.15: Correlation between clusters created from two different log days measured as
the similarity between their reference message. Lighter red shades for similarities lower
than the threshold of 0.675, darker greens for similarities higher than the threshold.

in Chapter |5| can run parallelised software through the use of the Spark engine
and YARN. The code developed in this work would have a large benefit in perfor-
mance if adapted for such purpose, but the effort is large i.e. most of the functions
should be rewritten to follow the Map Reduce programming model. The program
clusterises the log file line by line, as the clustering cannot be vectorised, since it
depends on the results from the previous lines, but the measure of similarity is
performed independently for each cluster and, as such, it can be a perfect target
for parallelisation. This is considered to be a non trivial but largely promising
investment of efforts for CNAF in the future.

All the mentioned improvements, some of which have already been explored
in a preliminary manner, stand as concrete suggestions to any future effort to
continue the work of this thesis, but go beyond the scope of the thesis itself. The
thesis focused on the development of a preliminary infrastructure for analytics at

CNAF on one side, and an experimental analytics algorithm for text-based log
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analysis on the other side. It is worth noting that part of the work suggested
above is already being worked on by either CNAF developers or new students
(both in Physics and in Data Science and Computation). It is crucial to underline
that the INFN-CNAF centre is strongly interested in progressing on this project
and in supporting efforts towards further developing more powerful and versatile
monitoring systems able to automatically correlate log files and metrics coming

from heterogeneous sources and devices [72].
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Conclusions

This thesis presents the work done at the INFN-CNAF Tier-1 Centre aimed at
the deployment of a platform for log ingestion and processing oriented towards
the development of algorithms and procedures towards a Predictive Maintenance
model for anomaly detection at the data centre. The original contribution of
this work is the development of a clustering algorithm based on measures of text
similarity that, after parsing and anonymising a verbose event log file, classifies

each log lines into community according to their level of similarity.

After testing different text-based similarity measures, an algorithm based on
the Levenshtein distance was selected as the one offering the highest number of sig-
nificant clusters, while keeping the running time of the clustering algorithm below
an acceptable threshold. A careful evaluation was performed to determine the best
values for the clustering parameters, selecting the Minimum Similarity Threshold
that resulted in the lowest mean cluster variance, both for every cluster and for
just the most populated ones. This is done to ensure that the clusters have enough

resolution to maintain information, while avoiding unnecessary separations.

The clustering algorithm has been run on two different type of log files, be-
longing to the two main components of the Storage Resource Manager (StoRM)
of the INFN-CNAF centre. As a particular example, a week of log files of the
backend StoRM server from the CMS experiment was analysed, as it presented
an anomalously large log file size; the algorithm allowed to spot discrepancies in
the number and type of clusters identified, enabling a clear visualisation of the

anomalous behaviour to assist the service support team with an effective tool.

The results obtained prove that the algorithm satisfies the expected require-
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ments: it follows a totally unsupervised procedure with no need of any manual
intervention to classify the log lines; it is applicable to different types of log with
minimum adjustments; it offers a good cluster resolution with low loss of log mes-
sages information; it scales well with the log file size, performing the clusterisation
in less than 6-8 hours for the average CNAF log on a standard, medium range
laptop.

This thesis also presents a distributed analysis platform based primarily on
Apache and Openstack software that is being developed as part of the same efforts
at CNAF towards Predictive Maintenance. As possible future development of this
work, the algorithm could be adapted to run on such platform to increase its
performance and open up to the possibility of streaming the log data directly into
the clustering procedure.

Software like this could be of great help to the support team of the various
services at CNAF, opening the path towards the implementation of various au-
tonomous routines to perform maintenance actions, requiring less and less effort

and time from the operators.
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Appendix A

Frontend plots

A.1 Measures comparison
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Figure A.1: Mean variance in clusters for Jaccard similarity applied on a sample file of
20000 lines from FE.
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Similarity threshold Clusters Slope

0.50 17 4129
0.60 26 3763
0.70 37 3224
0.80 65 2511

Table A.1: Number of clusters and iteration per second for Jaccard similarity with
different similarity thresholds on sample file of 20000 lines from FE.

Similarity threshold Clusters Slope

0.50 4 298
0.60 8 170
0.70 13 115
0.80 24 99

Table A.2: Number of clusters and iteration per second for Cosine similarity with
different similarity thresholds on sample file of 20000 lines from FE.

cosine
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Figure A.2: Mean variance in clusters for Cosine similarity applied on a sample file of
20000 lines from FE.
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Similarity threshold Clusters Slope

0.50 4 3471
0.60 6 2791
0.70 9 1846
0.80 19 966

Table A.3: Number of clusters and iteration per second for Levenshtein similarity
with different similarity thresholds on sample file of 20000 lines from FE.
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Figure A.3: Mean variance in clusters for Levenshtein similarity applied on a sample file
of 20000 lines from FE.
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A.2 Time trend

clusters
o
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T T T T T T T T T T T
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log lines 1e6

Figure A.4: Number of clusters as a function of lines per log, in FE server log
(06/12/2018) with similarity threshold = 0.7.
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Similarity threshold Clusters Slope

0.40 5 2338
0.50 7 1964
0.60 8 1761
0.62 9 1684
0.65 14 1267
0.68 16 1148
0.70 19 1027
0.80 34 610
0.90 73 328

Table A.4: Total number of clusters and slope of the fit line for the evaluation
time of the FE server log (06/12/2018) at different similarity threshold.

leb
2.54
2.0+ —
Similarity Threshold
— 0.4
0 15
e 2 0.5
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— 0.65
— 0.675
0.5 1 0.7
— 0.8
00 ! 0.9
T T T T T T T T T
0 1000 2000 3000 4000 5000 6000 7000 8000

time (s)

Figure A.5: Number of log lines clustered as a function of the running time for the FE
server log (06/12/2018). The slope of the curve decreases for higher similarity threshold.
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Figure A.6: Number of clusters as a function of lines per log, in FE server log
(07/12/2018) with similarity threshold = 0.7.
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Figure A.7: Number of log lines clustered as a function of the running time for the FE
server log (07/12/2018). The slope of the curve decreases for higher similarity threshold.
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Similarity threshold Clusters Slope

0.40 ) 2373
0.50 8 1787
0.60 10 1418
0.62 10 1424
0.65 13 1255
0.68 15 1138
0.70 18 999
0.80 34 629
0.90 72 331

Table A.5: Total number of clusters and slope of the fit line for the evaluation
time of the FE server log (07/12/2018) at different similarity thresholds.

A.3 Mean cluster variance
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Figure A.8: Mean cluster variance at different similarity levels for the entire log file
(p100) for the 95th percentile (p95) for the 90th percentile (p90) and the 80th percentile
(p80) from the FE server log (06/12/2018).
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Figure A.9: Mean cluster variance at different similarity levels for the entire log file
(p100) and for lower percentiles (p80, p90, p95) from the FE server log (07/12/2018).
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Figure A.10: Clusters population for a second random sample of 90% of the FE log file
(02/12/2018), with similarity threshold 0.7.
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Figure A.11: Clusters population for a third random sample of 90% of the FE log file

(02/12/2018), with similarity threshold 0.7.
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Figure A.12: Clusters population for FE server log file (06/12/2018), with similarity

threshold 0.675. Every bar is labelled with the cluster’s reference message.
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Cluster ID  Occurrences Reference message

0 118644 Request 'BOL status’ from Client IP="::IP’ Client |...]

1 320314 process_request : Connection from IP

2 817928 Result for request 'BOL status’ is 'SRM_REQUEST_IN.. ]
3 94810 nsl_srmReleaseFiles : Request: Release files. IP:]...]

4 99434 Result for request 'PTG’ is 'SRM_REQUEST_QUEUED". [..]]
5 435536 nsl_srmLs : Request: Ls. IP: =:IP. Client DN: PAT].. ]

6 52069 nsl_srmGetSpaceTokens : Request: Get space tokens]...]
7 84846 Request 'PTG’ from Client IP="::IP’ Client DN="PAT...]
8 509 __process_file_requestUSER : Protocol check failed]...]

9 1018 __process_file_requestUSER : Received - 5 - protoc]...]

10 401040 Request '"PTG status’ from Client IP="::IP’ Client [...]

11 270841 Result for request 'Mkdir’ is ’'SRM_INVALID_PATH’

12 62 rpcResponseHandler_AbortFiles : arrayOfFileStatuse]...]
13 59 storm::BolStatusRequest::loadFromDB() : No tokens |...]
14 26 nsl_srmCheckPermission : Request: Check permissiol...]
15 1233 nsl_srmAbortRequest : Request: Abort request. IP:]...]

Table A.6: Cluster population and reference log for FE server log file (06/12/2018)
with similarity threshold 0.675.
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Figure A.13: Clusters population for FE server log file (07/12/2018), with similarity
threshold 0.675. Every bar is labelled with the cluster’s reference message.
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Cluster ID  Occurrences Reference message

0 359469 process_request : Connection from IP

1 550170 Request 'BOL status’ from Client IP="::IP’ Client [...]

2 754453 Result for request 'BOL status’ is 'SRM_REQUEST _INJ...]

3 437153 nsl_srmPing : Request: Ping. IP: ::IP. Client DN:[...]

4 80704 Result for request 'PTG’ is 'SRM_REQUEST_QUEUED". [...]
5 47215 nsl_srmGetSpaceTokens : Request: Get space tokens...]

6 51154 nsl_srmReleaseFiles : Request: Release files. IP:]...]

7 901 __process_file_requestUSER : Protocol check failed]...]

8 1802 __process_file_requestUSER : Received - 4 - protoc]...]

9 80 storm::BolStatusRequest::loadFromDB() : No tokens |...]

10 122 rpcResponseHandler_AbortFiles : arrayOfFileStatuse]...]

11 250777 Result for request 'Mkdir’ is 'SRM_INVALID _PATH’

12 216 nsl_srmRm : Request: Rm. IP: ::IP. Client DN: PAT]...]

13 28 nsl_srmCheckPermission : Request: Check permissiol...]

14 23 rpcResponseHandler Ls : ERROR: XML-RPC Fault: RPC [..]]

Table A.7: Cluster population and reference log for FE server log file (07/12/2018)
with similarity threshold 0.675.
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Appendix B

Backend plots
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Figure B.1: Number of log lines clustered as a function of the running time for the BE
server log (25/05/2019). The slope of the curve decreases for higher similarity thresholds.
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Figure B.2: Mean cluster variance at different similarity levels for the entire log file
(p100) for the 95th percentile (p95) for the 90th percentile (p90) and the 80th percentile
(p80) from the BE server log (25/05/2019)
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Figure B.3: Clusters population for BE log file (22/05/2019), with similarity threshold

0.6.

uo yofiuo) Asng pns:; did ays uopad 0 2jgeun

S3HSIOSD Awey seye woy eegaiedgebeing 126 o) sigeu
3uL ‘0Be SpUSIBSHIL (7 £0ZZED SEM J3rI3S 3L WOy Pan=Ia Alinyss3aons 33yped e 3y Jeug 105
n 10y punoj S4A 3|qeyaeaidde oy URNAQ HIVASHUN HLd 5950 50} THNS HAS 10} UaJs & pjing 0} ajqeun)
8005, =019 Yaua dnaib & puy o3 2|qeun
.00y =pPseLdn0ID Yim punay s4sE3 ON
07034, = Q1 3w punoy 3se ] dnoun |28y ou Ing S1epdn SqEls (1E3) ade) & pEnEIsy
SML=HULI0INE USYM AROI0L 1B LUED | PRIIE} IR (104 ZUIIN
M w3 (182 1 ue3 Jos3 Guppid ajeidwos o) AIgENN “WENBUY - OV AVAWINS 1S3N03Y

I dx3 CrE FR3EIR0 - d - 00 AEVIHIINS L53N03Y

‘SPU225 (0IS USY3 JZRI0 (12331 IS PRROWSS HOLDETION 30VEEND
108y W5 93 Pe3Epdn 21am sysanbas glg jo SIUN T 0V ANMHD did

‘uogendwos e3onb S4a0 puewep uo BusBhly

0l 12 Joj UoREWOu K3y patepdn
HOHHI WA
18013 30U 520P 3|13 ‘UULS

sanba) Qf bIy=pRseLdneIl ‘5533005 09 355 STaEls yseL

Apeaije smaels 2upuoeiado 2jzpedn smes 2y Guiddos.

13001 541 10y uopelndwo3 ojul exonb S4d9 BusIGns

ay & s StspE payIaads yied LIPS
[T4NS T4n5] ue uoneiada YN Jasn wyws

2ans 2)yai D3y} 1snba Jog paraiduiny

cluster

105

4 13 6 10 14 5 12 18 11 9 15 8 7 22 19 21 20 23 25 26 27 24

1 17 16 2

3

0

3 Bungajedsip uiId OTINEATY

23 uniya Tog Bujpuey paysil

AEns J0u 51 BnjEN WASEELD

[4350 :Buiguus.
gojsedaiguus
us
T T T T T T
© " B m ~ -
(=1 (=] (=] (=] (=] (=]
= = = = = =
$32U3.4N220
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0.6. Y-axis in logarithmic scale to highlight the least populated clusters.
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Figure B.5: Clusters population for BE log file (24/05/2019), with similarity threshold
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Figure B.6: Clusters population for BE log file (24/05/2019), with similarity threshold

0.6. Y-axis in logarithmic scale to highlight the least populated clusters.
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Figure B.7: Clusters population for BE log file (25/05/2019), with similarity threshold

0.6.
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Figure B.8: Clusters population for BE log file (25/05/2019),

0.6. Y-axis in logarithmic scale to highlight the least populated clusters.
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Figure B.9: Clusters population for BE log file (26/05/2019), with similarity threshold

0.6.
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Figure B.10: Clusters population for BE log file (26/05/2019), with similarity threshold
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0.6. Y-axis in logarithmic scale to highlight the least populated clusters.



UnjIE] ] SUONESIUNWLIOY J0LT 05 [

21 “obe SpUO3ESIIY £OTYOTY SEM JAAISS BU) W01} PBRIBIAI AINySs805ns FYIed 158 BUL JoU3 05

S44SISHD ALeu Seife Wy exegadedgabelnts 136 0 ageun -

o3 punog 54 BqEyaECIddE O UNISQ HLYASHUN HLYG 5550 6} THNS HNS 10} U0t & png o3 sigeun

9005, =0ID Yl dnaub € puy o3 a/qeun [

SMUI=3LLOTOINE USYM ARG 01 [IE3 3 UED {PRIIE} HI5T (12 ZUIHM [

=JULCI0INE UM L3 (123 L ue) -10u3 Burpid 238/dwod O] SqEUN SMANBUL - DY AEVIINNS LSEND3Y

s3senbal pandxs FEE pade(eq - sisenbaypandx3abind - OW0 AVIWNG 153NDTY [~

(Q3LYOBY WES 93 Paepdn 2iam sisanbal d1d 40 SAUNAD T0¥0 ANNHD did [~

‘SPUO2ES (QF9G UBYR BRI (11225) Y35 PRROWS) YOLDITION 3vELYD [

Hivg=ud QI DIy =usiapsanbad aIy=ppseLdne.b 5530005 0 355 Snaeis gL -

pepiacid sun nau By oy jenba 5| pasals Apessje syeys Uyuonesada sepedn smes 3 Buidds

ueneinduo3 e1onb $440 puewsap uo bbby -

S5 pa|geus-2jonb |2 soj uonewaow Kyiqeene aeds pajepdy)

woyss v -

35P@ 30U 520P Bl “WwPuLs [

KL 2€ p1001 S oy uogeinduwsed oy exonb 309 Busywgns [

THNS “adey wouy paje3z Anyssazans ajy'(qimH3yl 1sanbal j0g paszidwey [

a1 @ e SisiKa PaUadS Uieg IpAAULS [

9 13 10 17 7

52 00 S30p 2113 HLY QAN WHS “STeis] G paiie) (14015 T40S] we uogerada 350 =5 s
SIS S HNS3 TUNS TTHNS 104 ‘1UIDT HIVAI=ILLED HIYd N 4950 10 yuny> Jeg Buipuey paysiug -

“szsanbay 7 Buiyaiedsip uI3A0Ie QIONVATY -|

HIvd : 311 o) SqEIEAR J0U 51 SMER WNSH3SLT

(4350 ‘Buiguus

N0 J0f 153nbay ¥3EAS BUOGINGLLS

[T4NS] TNS] Joy 153nbsy ¥ISN Jasn TS

[=] [=] =3 [=] (=]
(=] [=1 =3 (=]
o o (=] [=]
o o b=} o
o o Q [=]
g R ] g

(] —

S$32U3.4IN230

11 4 18 16 19 23 24 22 25

6 21 20 5

12 15 8

2

cluster

Figure B.11: Clusters population for BE log file (27/05/2019), with similarity threshold

0.6.

AINjIE] YUl SUDENUNWWIND 013 105

21 0B SPU3ESIIY £0TYOTY SEM JAAISS BU) W01} PBRBTA1 AInySs803ns 1Yaed 158) UL J0U3 105

S44SISKD ALEU Seife Wy exegjasedgatielns a6 0] aeun

1 403 punGy 541, BIqEyIE0LdE O “URUSQ HIVASHUN HLYE S5 0} THNS HNS 10j Uols © pIng o} igeun

L9005, =010 Y3k dnaub & puy o3 2|qeun

SNU3=YWIIEIOINE UBYM HIEG)IS €3 J,UED ;PR(IE} $2q (104 ZETAIN

BN L0 (|82 3 UET oa3 Busiid 233D 03 8QEUN SMENPLI - 0F0 AYVIRIWNG L53NDT4

“sjsanba paudxa EEE PaIREQ - sisenbaypaudx3atand - OYO AWYWWNS 153N0TY

QELYOBY WES 93 pRiepdn 2sam sis2nba dld 40 UMy T/0¥0 ANMHD dld

SPUSIZE (079G USYI SFPI0 (12230 YISN PAAOWRI HOLDITIOD IDVEUYD

4 g bIy=uasiogsanbas g HI=PPseLAno.E "553D0NS 03 385 SAIE)S yseL

1 jenbs 5 Apessje seps 4

4 buddeys

6 21 20 5 11 4 18 16 19 23 24 22 25

cluster

uogeynduwios e3onb 5490 puewsp uo Buusbhiy
SyS Pa|geua-ejonb |2 o) uoewInu KIgeeAE 3deds pajepdy) ©
HOWET A 4

35128 10U 520D 2013 WS o

3¢ P304 51 10} UoREINdW0D oy E3onb S99 BuIgRS ~
Pa[233 AInyssanIns a)1y'(Qi"H3y) 153nbal Jog parE|dwod ~
30 © <E e pRyITAHS 3Eg UL =]

salie} [1415 T4NS] ue UBREsAd 35N Jasn WIS Ju]
1% ‘NG 450 1o} un> Tog Bujpuey paysi o

&2 7 Buyaiedsip ‘y3y0ld QIINVATY

S[QEIEAE 10U 51 FNER WNS{EYT

3 14 2

14350 :Buiguus.

TUBsn BUDmINGULS

us

T u T u T u

w n 1 m ~ -

=] [=] o o =} =]

=1 =] =1 =] =1 =]
S33Ua.In320

with similarity threshold

Figure B.12: Clusters population for BE log file (27/05/2019),

0.6. Y-axis in logarithmic scale to highlight the least populated clusters.
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Figure B.14: Clusters population for BE log file (28/05/2019), with similarity threshold

0.6. Y-axis in logarithmic scale to highlight the least populated clusters.
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