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Sommario

L’oggetto di tale tesi é lo studio di sistemi gassosi in rotazione assisimmetrica con
distribuzioni barocline.

Nella prima parte dell’elaborato, vengono discussi i concetti fondamentali della
dinamica dei fluidi; le equazioni del moto di fluidi in rotazione soggetti ad un potenziale
gravitazionale vengono derivate e studiate.

Successivamente viene introdotta l’analisi sulla stabilità lineare e vengono derivati
i criteri di Schwarzschild e di Rayleigh. Tali criteri vengono poi generalizzati intro-
ducendo il criterio di Solberg-Hoiland.

Soluzioni stazionarie per fluidi in rotazione assisimmetrica vengono introdotte e
vengono discusse le differenze nei casi barotropico e baroclino.

Viene poi presentata una famiglia di sistemi baroclini in equilibrio in un potenziale
gravitazionale assisimmetrico.

Successivamente ho considerato una famiglia di tori gassosi con una distribuzione
di densità a legge di potenza. Sono stati studiati due casi: tori auto-gravitanti e tori
in equilibrio in presenza della loro auto-gravità e di un buco nero centrale.

Infine, il criterio di Solberg-Hoiland é stato utilizzato per determinare in quali
condizioni i sistemi toroidali auto-gravitanti sono linearmente stabili e per ottenere
una formulazione analitica della condizione di stabilità per tori in equilibrio in presenza
della loro auto-gravità e di un buco nero centrale.





Abstract

The subject of this thesis is the study of axisymmetric rotating gaseous systems
with baroclinic distributions.

In the first part of the thesis, the basic concepts of fluid dynamics are discussed.
The equations of motion of a rotating fluid subjected to a gravitational potential are
derived.

Furthermore the linear stability analysis is presented and the Schwarzschild and
Rayleigh criteria are derived. These criteria are then generalized introducing the
Solberg-Hoiland criterion.

Stationary solutions for axisymmetric rotating fluids are introduced and the dif-
ferences between the baroclinic and barotropic cases are discussed.

A family of baroclinic systems in equilibrium in an axisymmetric gravitational
potential is presented.

Then I have considered a family of gaseous tori with power-law density distribution.
Two cases have been studied: self-gravitating tori and tori in equilibrium in the
presence of their self-gravity and a central black hole.

Finally the Solberg-Hoiland criterion is used to determine whether the consid-
ered self-gravitating toroidal systems are linearly stable and to obtain an analytical
formulation of the stability condition for tori in equilibrium in the presence of their
self-gravity and a central black hole.





Introduction

The goal of this thesis is to construct physical models of astrophysical fluids ro-
tating in equilibrium in a gravitational potential.

In an intuitive way, we can define fluids as those objects that flow. A first question
we can ask ourselves is therefore how these objects flow and under what conditions
they reach equilibrium. Fluids are composed of particles at the microscopic level,
but their description through the fluid dynamics equations treats them as a contin-
uous medium with well-defined macroscopic properties. Such a description therefore
presupposes that we are dealing with such large numbers of particles locally that
it is meaningful to average their properties rather than following individual particle
trajectories.

From an astrophysical point of view, many objects can be modeled as fluids: some
examples are the stars, the gas components of the interstellar medium, the intracluster
medium, the stellar winds, jets and accretion disks. These objects are distributed on
scales that can vary from tens of kilometers to Mpc.

In details, in this work I will use a fluid stationary model to study toroidal gaseous
systems in baroclinic configuration. These tori were originally proposed as collisionless
stellar systems, but the isotropic case can be interpreted as a gaseous system. One
of the possible astrophysical applications of these toroidal structures are the Active
Galactic Nuclei (AGNs).

From observational constraints and statistical arguments, current belief is that
every galaxy contains a super massive black hole (SMBH) at its gravitational center.
Most of these SMBHs are quiescent, but approximately 1% - 10% are called ”active”.
One of the most important characteristics of these AGNs is that their bolometric
luminosities ranges from ∼ 1042 to ∼ 1048 erg/s. 1

Although there are numerous AGN classes, a unified scheme has been emerging
(e.g. [Antonucci 1993], [Heckman & Best 2014]). According to this unification scheme
one can construct two different categories: IR-optical-UV-X-ray unification and radio
unification. Here we consider the IR-optical-UV-X-ray unified models.

For a typical AGN the nuclear activity is powered by a supermassive black hole and
its accretion disk, and this central engine is surrounded by a dusty toroidal gaseous
structure. Much of the observed diversity is simply explained as the result of viewing

1The luminosity of an AGN can be even higher than that of the host galaxy.



this axisymmetric structure from different angles.
The current model to explain the origin of the AGN emitted energy admits the

presence of hot accretion disk surrounding a SMBH. In details energy is generated by
gravitational infall of rotating gas that converts its gravitational and kinetic energy
into electromagnetic emission.

The geometric structure of a typical AGN is showed in Fig.(1).

Figure 1: Typical structure of an AGN.
(Source: https:fermi.gsfc.nasa.gov/science/eteu/agn/)

In Fig. (1) we can identify the principal components of most AGNs:

• SMBH: a super massive black hole is an extremely massive object whose typical
masses2 are 106- 109 M� [Peterson 2004];

• Accretion disk: a sub-pc rotating structure around the black hole that transports
gas into the center;

• Jets: collimated outflows of relativistic accelerated particles (associated to γ-ray
emission) whose emission is mainly attributed to the inverse Compton mecha-
nisms and to synchrotron radiation;

• Broad-Line Region (BLR): it is a zone above the accretion disk in which massive
ionized clouds can be found, and it becomes noticeable with broad spectral lines.
These gas clouds move at distance of 0.01− 1 pc from the SMBH;

2M� = 1.99× 1033 g is the mass of the sun.
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• Narrow-Line Region (NLR): it is beyond the BLR. NLR extends to hundreds
and even thousand of parsec along the general direction of the opening in the
torus (”ionization cones”). It is formed by massive ionized clouds, with velocity
dispersion lower than the BLR;

• Molecular torus: a circum-nuclear toroidal structure. Current belief is that these
tori can be composed by a molecular-gas component of solar metallicity and by
a dusty part [Fritz et al. 2005]. For instance, the typical size is ∼ 10 pc for
MBH ∼ 107 M�.

From observational data, we know that these toroidal structures can assume different
orientations along the line of sight and from this it is possible to build various astro-
nomical classes: type-I AGNs, type-II AGNs, LINERs, Lineless AGNs, radio galaxies
and radio loud quasar [Netzer 2015].

• Type-I AGNs: sources showing broad (1000− 20000 kms−1) semi-permitted or
forbidden emission lines and a bright, non stellar, central point source visible at
all wavelength.

• Type-II AGNs: sources containing strong narrow (300 − 1000 kms−1) NIR-
optical-UV emission lines that are broader than the emission line galaxies of
similar type observed.

• LINERs: AGNs that are characterized by their low ionization, narrow emission
lines from gas which is ionized by non stellar sources.

• Lineless AGNs: in this group one can find AGNs with extremely weak emission
lines.

In the simplest possible model the molecular tori can be considered in equilibrium
in the gravitational potential of the central black hole. In some cases the mass of
the torus can be of the order of the SMBH, so the self-gravity of the torus can be
important. Therefore these models studied in this thesis could be used as simple
models of AGN tori. Though idealized, these models are physical, in the sense that
they are consistent stationary solutions of the fluid equations.

We will discuss how gaseous toroidal structures modify their kinematic properties
as a function of the assigned density distribution in a self-gravitating configuration
and in the presence of a black hole. Among these models we will identify restricted
families of tori that are linearly stable.

Finally we note that some of these methods studied in this thesis allow to build
general baroclinic rotating distributions, which can be applied to astrophysical systems
different from AGN tori (e.g. galactic coronae).
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Structure of the thesis

In Chapter 1, I discuss how one can apply the fluid theory to the astrophysical
systems. I introduce the gravitational potential and the Poisson’s equation that will
permit to construct density-potential pairs. The fluid equations of mass and momen-
tum are discussed in their most general formulation. Then, since most of astrophysical
objects have non-negligible angular momentum, I focus the case of axial symmetry
to study rotating flows. The perfect gas model is introduced and its behavior under
isothermal and adiabatic transformations is described.

Chapter 2 introduces the fluid instability theory. Considering small (linear) per-
turbations, I study the dispersion relation in two cases: a uniform medium and a
stratified atmosphere. For both of them I discuss the stability conditions of the sys-
tem. Then, I present the Schwarzschild criterion. Afterwards, the focus of the chapter
moves on the incompressible shear flow in axisymmetric conditions and the Rayleigh
stability criterion is derived. Lastly, I show the behavior of a compressible rotating
flow in axisymmetric conditions and I derive the Solberg-Hoiland stability criterion.

In Chapter 3, I present families of hydrostatic models for the rotation of gas in
axisymmetric conditions. I start from the Poincaré-Wavre theorem that permits to
link the gas distribution (barotropic or baroclinic) to the velocity field. With partic-
ular reference to baroclinic models, I derive the sufficient condition to have a physical
acceptable solution by knowing the gas density distribution and the gravitational po-
tential. This chapter concludes the introductory theories that will be used in chapter
four to present the original results of the thesis.

In Chapter 4, I present toroidal gaseous system. I focus on power-law tori where
the analytic density-potential pair is given by Ciotti and Bertin [Ciotti, Bertin 2005].
Two physical conditions are discussed: a self-gravitating case and tori in equilibrium
in the presence of their self-gravity and a central black hole. For both cases, by solving
the fluid-dynamics equations, I determine the rotation velocity field and a family of
physical solutions is found. Then I use the Solberg-Hoiland criterion to determine
whether these self-gravitating tori are linearly stable or unstable, and finally I obtain
an analytic formulation in cylindrical coordinates of the Solberg-Hoiland criterion for
the self-gravitating fluid in presence of the black hole.

In Appendix A, by means of the Fourier analysis, I discuss the axisymmetric
instability and I obtain, with an alternative approach, the instability criteria, already
presented in Chapter 2, from the dispersion relation.

In Appendix B, I show how to construct the projection of the vector ∇ ·F (where
F is a generic vector) on the n direction, that is useful when one needs to express
this quantity on a generic mathematical basis, as, for instance, for the case of the
transformation in cylindrical coordinates of the Euler equation.
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Chapter 1
Astrophysical fluid Dynamics

In this chapter we will analyze the fundamental concepts, taken by theoretical
physics, that permit to formulate a consistent theory to understand the behavior of
many astrophysical objects. In fact, as we will show, the study of classical fluids
makes it possible to create models in agreement with observational phenomena.

We will show the conservative equations, Poisson’s equation and we will study how
an axial symmetry reduces the degrees of freedom of the fluid rotating systems.

In this chapter we follow the treatment from ”Principles of Astrophysical Fluid
Dynamics” [Clarke, Carswell 2007].



1.1 A fluid approach to astrophysics

Since many astronomical objects can be discussed with the fluid theory, it is impor-
tant to fix in which situations hydrodynamic approach is able to simplify the physical
problems and under which conditions it is applicable. To this purpose we need to
introduce what in the literature is called ”fluid element”.

The equations of dynamics governing fluids are based on the concept of fluid
element, which is a region of space in which we can define macroscopic variables such
as pressure, temperature and density. We assume this area is such that:

1. it is small enough that we can ignore systematic variations across it for any
variable we are interested in, for example the region size lregion is much smaller
than a scale length for change of any relevant variable q.

So
lregion � lscale ∼

q

|∇q|
, (1.1.1)

2. it is large enough that the element contains sufficient particles for us to ignore
fluctuations due to the finite number of particles; thus if we define the number
density of particles per unit volume n, we require that:

nl3region � 1, (1.1.2)

The description of fluid-dynamics equations

To formulate the equations of fluid-dynamics for mass density, momentum and
energy in the literature two different descriptions can be adopted:

i. Eulerian description

We consider a small volume at a fixed spatial position. The fluid flows through
the volume with physical variables specified as functions of time and the position,
which is kept fixed. This means, for example, that we can write the density as
ρ = ρ(r, t) or the temperature as T = T (r, t). So, the change of any measurable
quantity as a function of time is ∂/∂t of the quantity, evaluated at the fixed
position r.

ii. Lagrangian description

In this approach the spatial reference system is comoving with the fluid; in fact
one chooses a particular fluid element and studies the change in variables in
that. Thus, adopting this description, we examine the behavior of ρ = ρ(a, t),
where a is a label for a particular fluid element. Following this approach the
time derivative is a partial one at a fixed a, and the rate of chance with respect
to the time for a fixed element is denoted by the Lagrangian derivative: D/Dt.
In this description, position is not an independent variable because r = r(a, t).

In conclusion the Eulerian description refers to the world as seen at a fixed spatial
position, while the Lagrange description refers to the world as seen by an observer
riding on a fluid element.
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Relation between the Eulerian and Lagrangian descriptions. The two pre-
sented approaches are obviously connected to each other. We now see how one can
move from one to another.

Consider a quantity Q in a fluid element which is at position r at a time t. At a
time t+ δt the element is at r + δr, and from the definition

DQ

Dt
= lim

δt→0

[
Q(r + δr, t+ δt)−Q(r, t)

δt

]
. (1.1.3)

The numerator in the square brackets can be expressed as

Q(r + δr, t+ δt)−Q(r, t) =Q(r + δr, t+ δt)−Q(r, t) +Q(r, t+ δt)−Q(r, t+ δt) =

=Q(r, t+ δt)−Q(r, t) +Q(r + δr, t+ δt)−Q(r, t+ δt) =

=
∂Q(r, t)

∂t
δt+ δr ·∇Q(r, t+ δt) =

=
∂Q(r, t)

∂t
δt+ δr ·

[
∇Q(r, t) +

∂∇Q

∂t
δt+ . . .

]
.

If we neglet second order terms we get in the limit:

DQ

Dt
= lim

δt→0

[
Q(r + δr, t+ δt)−Q(r, t)

δt

]
=

= lim
δt→0

[
1

δt

(
∂Q(r, t)

∂t
δt+ δr ·∇Q(r, t)

)]
=

=
∂Q(r, t)

∂t
+ u ·∇Q(r, t),

where u is the fluid velocity.
So the relation between the two descriptions is given by the following equation

DQ(r, t)

Dt
=
∂Q(r, t)

∂t
+ u ·∇Q(r, t). (1.1.4)

We point out that the Lagrangian time derivative has two terms. The first one is due
to the rate of change at a fixed location (which is the Eulerian time derivative), while
the second one is due to the fact that the fluid element has moved to a new location
where the variable assumes a different value. The Lagrangian derivative is called also
‘convective derivative’.

1.2 The gravitational potential

In order to describe the gravitational potential, we must take into account conser-
vative forces. These are defined as

∮
F · dl = 0 and can be written, thanks to Stokes’

theorem, as
F = ∇Ψ, (1.2.1)

where Ψ is a scalar potential.
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In this particular case we define a scalar gravitational potential Φ such that the
acceleration g is given by

g = −∇Φ. (1.2.2)

Since the result is independent of the path taken, the work required to take a point
object of unitary mass from the position r to infinity is given by

−
∫ ∞
r

g · dl =

∫ ∞
r

∇Φ · dl = Φ(∞)− Φ(r), (1.2.3)

where Φ(∞) is the value of the potential far from any gravitational source, and it is
often taken to be zero in many relevant astrophysical applications: in fact it is only
potential differences and gradients that have physical significance.

1.2.1 Poisson’s equation

Poisson’s equation is a partial differential equation of elliptic type with broad
utility in theoretical physics. It arises, for instance, to describe the potential caused
by a given charge or mass density distribution; with the potential known, one can
then calculate gravitational field.

Consider a surface S and a point P located in the space. We define the solid angle
subtended at P by dS as

dΩ =
dS · r̂
r2

. (1.2.4)

Integrating over the whole surface

∫
S

r̂ · dS
r2

=

{
4π if P is anywhere inside S,

0 if P is anywhere outside S.

Proof. We may derive this equation by placing the origin of coordinates at P.

The left hand side may be written as∫
S

r̂ · dS
r2

=

∫
S

f · dS,

where

r̂

r2
= f .

Provided that f is finite over the volume enclosed by S (hence P is outside S), we can
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use the divergence theorem in Cartesian coordinates:∫
S

f · dS =

∫
V

∇ · f dV =

=

∫
V

∇ ·
(

xx̂ + yŷ + zẑ

(x2 + y2 + z2)3/2

)
dV =

=

∫
V

[
∂

∂x

(
x

(x2 + y2 + z2)3/2

)
+

∂

∂y

(
y

(x2 + y2 + z2)3/2

)
+

+
∂

∂z

(
z

(x2 + y2 + z2)3/2

)]
dV =

=

∫
V

[
1

(x2 + y2 + z2)3

(
(x2 + y2 + z2)3/2 − 3x2(x2 + y2 + z2

)1/2
+

+ (x2 + y2 + z2)3/2 − 3y2(x2 + y2 + z2
)1/2

+

+ (x2 + y2 + z2)3/2 − 3z2(x2 + y2 + z2
)1/2
)]

dV =∫
V

[
1

(x2 + y2 + z2)3

(
3(x2 + y2 + z2)3/2−

− 3(x2 + y2 + z2)1/2(x2 + y2 + z2)

)]
dV = 0.

So we obtain, if P is outside S: ∫
S

r̂ · dS
r2

= 0. (1.2.5)

In the case that P is inside S, then f is undefined at P , in order to apply the divergence
theorem we need to place a small interior surface, named S ′, around P so that P is
excluded from the volume of integration. We can write∫

S

r̂ · dS
r2

+

∫
S′

r̂ · dS
r2

= 0. (1.2.6)

We are free to choose S ′ as we please so long as it excludes P ; i.e. we could choose S ′

to be a sphere of radius a. In this case we have 1

r̂ · dS
r2

=
−4πa2

a2
= −4π.

Hence if P is inside S we get ∫
S

r̂ · dS
r2

= 4π. (1.2.7)

1The negative sign results from the fact that the outward normal from S′ is in the inward radial
direction with respect P .

9



Suppose we put a mass M placed at the point P inside S. Since g = −(GM/r2)r̂,
g · dS = −GMdΩ, and since the product GM is constant2, we must have∫

S

g · dS = −4πGM. (1.2.8)

If we distribute masses throughout the volume enclosed by S, we obtain∫
S

g · dS = −4πG
∑
i

Mi = −4πG

∫
V

ρ dV. (1.2.9)

Using the Gauss theorem we get∫
S

g · dS =

∫
V

∇ · g dV, (1.2.10)

that is ∫
V

(∇ · g + 4πGρ) dV = 0. (1.2.11)

Since this must hold for any volume,

∇ · g + 4πGρ = 0. (1.2.12)

Now considering eq. (1.2.2), we get

∇ · (−∇Φ) + 4πGρ = 0, (1.2.13)

which can be written in the usual Poisson equation formulation

∇2Φ = 4πGρ. (1.2.14)

1.3 The fluid equations

The equations that describe the motion of fluid elements are based upon conser-
vation principles such as conservation of mass and momentum.

1.3.1 Conservation of mass

Consider a region of fixed volume V enclosed by a surface S.
If the mass density of the fluid inside the surface is given by ρ, the rate of change

of mass of the fluid contained in the volume V is

∂

∂t

∫
V

ρ dV. (1.3.1)

If there are no sources or sinks for matter, this quantity must be equal to the net
inflow of mass integrated over the whole surface.

2G is the Newtonian constant of gravitation.
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The outward mass flow across an infinitesimal element dS is ρu · dS.
Suppose the velocity vector u forms an angle θ with the surface element vector

dS. The distance traveled by the fluid particles per unit time in the direction of dS is
then u cos θ = u · dS/|dS|. The mass of fluid crossing the surface in that time is given
by ρu · dS.

The mass gained by the volume is obtained by integrating over the surface and
applying the divergence theorem one gets

−
∫
S

ρu · dS = −
∫
V

∇ · (ρu) dV. (1.3.2)

Hence combining eq. (1.3.1) and eq. (1.3.2) we get

∂

∂t

∫
V

ρ dV = −
∫
V

∇ · (ρu) dV. (1.3.3)

Since this must be true for all volumes, we obtain the Eulerian form of the continuity
equation:

∂ρ

∂t
+ ∇ · (ρu) = 0, (1.3.4)

To write this in Lagrangian form, we recall eq. (1.1.4), so setting Q = ρ, we obtain

Dρ

Dt
=
∂ρ

∂t
+ u ·∇ρ = −∇ · (ρu) + u ·∇ρ = −ρ∇ · u. (1.3.5)

That is the Lagrangian form of the conservation of mass:

Dρ

Dt
+ ρ∇ · u = 0. (1.3.6)

For what we have said, we can define an incompressible flow as a fluid that has the
property Dρ/Dt = 0. This means that individual fluid elements preserve their density
along their paths, hence this does not imply that the density is constant everywhere,
but we can affirm ∇ · u = 0. Therefore incompressible flows have the special and
useful property of being divergence free.

1.3.2 The Euler equation

We want to set up the momentum equations which involve forces within fluid: this
means we have to take into account collisional fluid elements and their interactions
through the laws of thermodynamics.

From a microscopical point of view, at a finite temperature, molecules or atoms in
a gas are in a state of random motion and we can define the pressure as the one-side
momentum flux associated with these motions. We notice that in a fluid with uniform
properties, this momentum flux is balanced by an equal and opposite momentum flux
through the other side of the hypothetical surface and there is no net acceleration of
the fluid. However the pressure is different from zero.
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If we define the stress tensor σij and the unit normal vector ŝj, the forces across a
surface are given by

Fi = σij ŝj. (1.3.7)

One can decompose any stress tensor into the sum of a diagonal one with equal
elements plus a residual tensor. This mathematical transformation permits to define
the pressure as the elements of the diagonal tensor, which can be written as pδij,
where δij is the Kronecker delta.

Taking advantage of this definition we can say that any effect on a microscopic
scale that involves the appearance of a term of stress in this form can be inserted in
the equations of fluids as a term of pressure.

We now discuss about the momentum equation. Consider a fluid subject to

1. gravity, with local acceleration due to g;

2. pressure, from the surrounding fluid.

On the infinitesimal surface element dS of the fluid we are going to consider, the force
caused by the pressure of the surrounding elements can be written as −pdS 3.

If we are interested on the force component in a generic direction n̂, we will have
−pn̂ · dS; therefore, using the divergence theorem, the net force acting over the whole
surface in the direction n̂ is

F =−
∫
S

pn̂ · dS (1.3.8)

=−
∫
V

∇ · (pn̂) dV. (1.3.9)

In order to find the equation of motion for the fluid element, in the direction n̂, we
have to impose that the rate of change of momentum for the element must be equal
to the force in that direction:(

D

Dt

∫
V

ρu dV

)
· n̂ = −

∫
V

∇ · (pn̂) dV +

∫
V

ρg · n̂ dV. (1.3.10)

We can develop the integrand in the first integral on the right hand side of the equation
(1.3.10) as

∇ · (pn̂) = n̂ ·∇p+ p∇ · n̂ = n̂ ·∇p.

In the limit when the fluid lump is small, we can replace
∫
dV by δV , and we get

D

Dt
(ρuδV ) · n̂ = −δV n̂ ·∇p+ δV ρg · n̂. (1.3.11)

Using the product rule we obtain:

n̂ · u D

Dt
(ρδV ) + ρδV n̂ · Du

Dt
= −δV n̂ ·∇p+ δV ρg · n̂. (1.3.12)

3The minus sign arises because the surface element vector is outwards, and the force acting on
the element is inwards.
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The first term is the rate of change of mass of the lump of fluid we are following and
since mass is conserved, this is zero, so we are left with

ρδV n̂ · Du

Dt
= −δV n̂ ·∇p+ δV ρg · n̂. (1.3.13)

This is true for all δV and n̂, so we conclude that in a Lagrangian formulation the
momentum equation reads

ρ
Du

Dt
= −∇p+ ρg. (1.3.14)

To transform to the Eulerian form we use the relation (1.1.4) and then

ρ
∂u

∂t
+ ρu ·∇u = −∇p+ ρg, (1.3.15)

which is called the Euler or momentum conservative equation.

1.3.3 Fluid equations in cylindrical coordinates

Most astrophysical bodies have an angular momentum associated with them, hence
there are many problems in which one have to consider fluid flows in presence of
rotation.

Therefore it is useful to express the fluid equations in cylindrical coordinates: (R,
ϕ, z). Equation (1.3.4) gives

∂ρ

∂t
+ (∇ · ρ)u + ρ

(
∂uR
∂R

+
uR
R

+
1

R

∂uϕ
∂ϕ

+
∂uz
∂z

)
= 0, (1.3.16)

while the momentum equation we have (see Appendix B)

∂uR
∂t

+ uR
∂uR
∂R

+ uz
∂uR
∂z

+
uϕ
R

∂uR
∂ϕ
−
u2
ϕ

R
= −1

ρ

∂p

∂R
− ∂Φ

∂R
,

∂uϕ
∂t

+ uR
∂uϕ
∂R

+ uz
∂uϕ
∂z

+
uϕ
R

∂uϕ
∂ϕ

+
uRuϕ
R

= − 1

ρR

∂p

∂ϕ
− ∂Φ

∂ϕ
,

∂uz
∂t

+ uR
∂uz
∂R

+ uz
∂uz
∂z

+
uϕ
R

∂uz
∂ϕ

= −1

ρ

∂p

∂z
− ∂Φ

∂z
.

(1.3.17)
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1.4 The ideal gases

To solve eq. (1.3.4) and eq. (1.3.15), we need relationships that link Φ and p to the
other variables ρ and u. Thanks to the Poisson’s equation we have seen, in principle,
how to get the potential starting from a distribution ρ, but we still have to find out
how to deal with the pressure term.

The relationship between p and other thermodynamic properties of the system is
called the equation of state.

Ideal gases are theoretical fluids composed of many randomly moving point-like
particles whose only interactions are perfectly elastic collisions. They are characterized
by the fact that the other kinds of interaction among their constituents are negligible:
most of the internal energy of these systems is contained into the kinetic term and
therefore makes it a function of the only temperature.

From an astrophysical point of view we know that the gas in the Universe is very
different in its properties, but it is almost all extremely dilute by terrestrial standards
and the ideal gas condition is readily met 4.

1.4.1 The equation of state

The ideal-gas law of a classical system that contains n moles of the gas can be
written as

pV = NkBT = nRT, (R = kBNA) (1.4.1)

where p is the gas pressure, N = nNA, NA is the Avogadro number and R is the gas
constant per mole.

Equation (1.4.1) can be written as

p =
R∗
µ∗
ρT (1.4.2)

where µ∗ is the mean molecular weight of the constituents of the gas and R∗ ≡
1000×R is the modified gas constant with physical measures of joules per molecular
weight of the substance in kilograms.

Here we present a special class of gas transformations in which pressure is a func-
tion of density only, the so called ”barotropic cases”.

The isothermal case. An isothermal transformation requires that the temperature
can be considered constant. This can represent the case in which the cooling and the
heating process force the temperature to lie within a narrow range. For what concern
an ideal gas we can simplify the equation of state as p ∝ ρ.

4Some exceptions to this behavior are realized in the interior of giant planets, where the high
pressure and density imply a significant deviation from the ideal conditions, or the interior of neutron
stars and white dwarfs where the densities are such that the distribution of particle energies becomes
restricted by quantum mechanical requirements on the number of particles that can populate a given
energy level.
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In the case of time-dependent problems, it is also necessary that the system can
relax to this constant temperature thermal equilibrium on timescales that are short
compared with the flow times.

The adiabatic case. We start with the first law of thermodynamics, which is an
expression of energy conservation:

d̄Q = dE + pdV. (1.4.3)

In this equation d̄Q represents the quantity of heat absorbed by unit mass of fluid
from the reservoir, dE is the change in the internal energy content of unit mass of the
fluid and p dV is the work done by unit mass of fluid if its volume changes by dV .

For an ideal gas, we can express the internal energy as a function of the only
temperature E = E(T ), so eq. (1.4.3) can be written as

d̄Q =
dE
dT

dT + pdV, (1.4.4)

or, using (1.4.2)

d̄Q = CV dT +
R∗T
µ∗V

dV, (1.4.5)

where we have introduced the specific heat capacity at constant volume as

CV =
dE
dT

. (1.4.6)

If the adiabatic transformation is reversible (d̄Q = 0) we have

CV dT +
R∗T
µ∗V

dV = 0. (1.4.7)

That is

CV

∫
dT

T
= −R∗

µ∗

∫
dV

V

CV lnT + A = −R∗
µ∗

lnV + A′

where A and A′ are integration constants. This implies

V ∝ T−
CV µ∗
R∗ . (1.4.8)

Substituting the equation of state we obtain the scaling relations

p ∝ T 1+
CV
R∗/µ (1.4.9)

and
p ∝ V

−1+ R∗
µ∗CV . (1.4.10)
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Usually these relations are expressed as the ratio between specific heat at constant
pressure and specific heat at constant volume, denoted by γ. From the perfect gas
equation of state we get

pV =
R∗
µ∗
T

d(pV ) = d

(
R∗
µ∗
T

)

=⇒ V dp+ pdV =
R∗
µ∗
dT.

Thus

d̄Q =
dE
dT

+ pdV =

=
dE
dT

dT +
R∗
µ∗
dT − V dp =

=

(
dE
dT

+
R∗
µ∗

)
dT − V dp,

(1.4.11)

from which we can define

CP ≡
(
dE
dT

+
R∗
µ∗

)
(1.4.12)

and we get the Mayer’s relation for ideal gases:

CP − CV =
R∗
µ∗
. (1.4.13)

We now define γ as

γ =
CP
CV

(1.4.14)

and we may write the relations between p, V and T for reversible adiabatic changes
as

V ∝ T−1/(γ−1), (1.4.15)

p ∝ T γ/(γ−1), (1.4.16)

p ∝ V −γ. (1.4.17)

Since the volume V in the above equations refers to that occupied by unit mass of
gas, the density is just the reciprocal of V and we can write the equation for a gas
undergoing reversible adiabatic changes in the barotropic form:

p = Kργ (1.4.18)

where K is a constant.
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Chapter 2
Fluid instability theory

In its most general sense, the stability theory refers to the stability of the solutions
of the differential equations and the trajectories of the dynamical systems in the
presence of small perturbations of initial conditions.

The importance of this mathematical branch in astrophysics is clear. As we said
many astrophysical objects can be modeled as fluid, so let us suppose we have to study
a fluid in a steady state. If we find that the small perturbations to this configuration
grow with time, then our chance of finding the initial configuration are very small,
and the configuration is said to be unstable with respect those perturbations. Instead
the stable configurations are those in which the perturbations diminish or there is the
possibility of oscillations about the equilibrium configuration.

In this chapter we follow the treatment of ”Principles of Astrophysical Fluid Dy-
namics” [Clarke, Carswell 2007], ” The Physics of Fluids and Plasma: an Introduction
for Astrophysicists” [Choudhuri 1998], and ”Astrophysical Flow” [Pringle, King 2007].



2.1 Hydrostatic equilibrium

In order to discuss fluid instabilities we need to introduce the concept of equilib-
rium.

Hydrostatic equilibrium is a particular configuration reached by the system in
which u = 0 everywhere and that ∂/∂t = 0.

Since the continuity equation is trivially satisfied under these conditions, the only
one to be solved is the momentum equation in which the only non-zero terms are
gravity and pressure, which must therefore balanced. So we have

1

ρ
∇p = g, (2.1.1)

or, using the relation (1.2.2)
1

ρ
∇p = −∇Φ. (2.1.2)

This means that if we are dealing with a barotropic distribution (p = p(ρ)), we can
use the Poisson’s equation to solve for the density distribution ρ(r) corresponding to
hydrostatic equilibrium everywhere.

2.2 Sound waves

Sounds waves provide the principal mechanism by which disturbances propagate
in fluids.

2.2.1 Sound waves in a uniform medium

Assuming that g = 0, the Eulerian form of the continuity (1.3.4) and momentum
equations (1.3.15) can be written as

∂ρ

∂t
+ ∇ · (ρu) = 0, (2.2.1)

∂u

∂t
+ u ·∇u = −1

ρ
∇p. (2.2.2)

Let us assume that the unperturbed state of the fluid represents an equilibrium state,
characterized by uniform density ρ0, pressure p0 and zero velocity u = 0. Let us
consider perturbations to this equilibrium in the form

p = p0 + ∆p,

ρ = ρ0 + ∆ρ,

u = ∆u.

(2.2.3)

We note that these perturbed equations are written in a Lagrangian form, but in this
case Eulerian and Lagrangian perturbations are the same because

∇p0 = ∇ρ0 = ∇u0 = 0. (2.2.4)
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If we consider a general property of the flow X, then the perturbation to X according
to (2.2.3) causes its value at a point P to change from its unperturbed value X0 for
two reasons:

(a) the perturbation may have changed the value of X of the local fluid element,

(b) the perturbation may have moved a fluid element with a different unperturbed
value of X so as to be located at a point P .

If the displacement of a fluid element at P is denoted by the vector ξ then, to the
first order, the change in X at a point P is given by 1

δX = ∆X − ξ ·∇X. (2.2.5)

In this case, the unperturbed quantities are all uniform, hence the term ξ ·∇X = 0
and all δ quantities are equal to the ∆ quantities.

Substituting in the fluid equations, and retaining only first order terms in the
perturbed quantities, we have for the mass equation:

∂∆ρ

∂t
+ ρ0∇ · (∆u) = 0. (2.2.6)

Proof. From (2.2.1) we get

∂ρ

∂t
+ ∇ · (ρu) = 0

∂

∂t
(ρ0 + ∆ρ) + ∇ · ((ρ0 + ∆ρ)∆u) = 0

∂∆ρ

∂t
+ ρ0∇ · (∆u) + ∇ · (∆ρ∆u) = 0

∂∆ρ

∂t
+ ρ0∇ · (∆u) = 0.

For the momentum equation we get

∂∆u

∂t
= −

(
dp

dρ

)
0

∇∆ρ

ρ0

. (2.2.7)

Proof. From (2.2.2), assuming a barotropic fluid for which a given change in den-
sity maps onto a unique change in pressure, and keeping just the first order in the

1we use ∆ to represent Lagrangian perturbations and δ for Eulerian perturbations
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expansion in serie we have

∂∆u

∂t
+ ∆u ·∇(∆u) = − 1

ρ0 + ∆ρ
∇(p0 + ∆p),

∂∆u

∂t
= − 1

ρ0 + ∆ρ
∇∆p

= − 1

ρ0

(
1 + ∆ρ

ρ0

)∇∆p

= − 1

ρ0

(
1 +

∆ρ

ρ0

)−1

∇∆p

= − 1

ρ0

(
1− ∆ρ

ρ0

)
∇∆p

= − 1

ρ0

∇∆p

= − 1

ρ0

(
dp

dρ

)
0

∇∆ρ.

Combining equations (2.2.6) and (2.2.7), one obtain

∂2∆ρ

∂t2
=

(
dp

dρ

)
0

∇2∆ρ. (2.2.8)

Equation (2.2.8) is a wave equation, and in one dimension has the solution

∆ρ = ∆ρ0 exp{i(kx− ωt)}, (2.2.9)

where ω is the angular frequency and k is the wavenumber. The general form of
(2.2.9) in higher dimensions can be written as

∆ρ = ∆ρ0 exp{i(k · x− ωt)}. (2.2.10)

Substituting this solution into the (2.2.8) we see that

ω2

k2
=

(
dp

dρ

)
0

. (2.2.11)

One can recognize the l.h.s. of eq. (2.2.11) the squared value of the speed of the
propagation of points of constant phase. Hence the wave travels at speed

cs =

√(
dp

dρ

)
0

.

We can use this mathematical formulation for the other perturbed quantities. Hence
the perturbed quantity ∆X can be put in form

∆X = ∆X0 exp{i(kx− ωt)}.
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2.2.2 Sound waves in a stratified atmosphere

Now we examine what happens if there are external forces by considering sound
waves propagating in an isothermal atmosphere with a potential defined by

g = −∇Φ = −dΦ

d z
, (2.2.12)

acting in the z direction.
Considering the z-dependent terms, the fluid equations assume the form

∂ρ

∂t
+

∂

∂z
(ρu) = 0,

∂u

∂t
+ u

∂u

∂z
= −1

ρ

∂p

∂z
− g

(2.2.13)

and the equilibrium conditions are

u0 = 0,

ρ0(z) = ρ̃ exp
{
− z

H

}
,

(2.2.14)

where the scale height H = R∗T
gµ∗

has been introduced. Furthermore we have to define
the pressure as

p0(z) = p̃ exp
{
− z

H

}
. (2.2.15)

We now apply the perturbative theory using the transformations

u→ ∆u, ρ0 → ρ0 + ∆ρ and p0 → p0 + ∆p.

In order to evaluate the perturbed equations we need to find two useful relationships
between ∆u, ∆ρ and the derivatives of the Lagrangian displacement ξ.

The first,

∆u =
dξ

dt
=
∂ξ

∂t
+ u ·∇ξ (2.2.16)

is the time derivative of the perturbed displacement of a particular fluid element that
is just the perturbed velocity of the element. Since in the present case the unperturbed
velocity is zero, this reduces to

∆u =
∂ξ

∂t
. (2.2.17)

To gain a link between ∆ρ and the derivative of ξ, we have to consider the Lagrangian
continuity equation

Dρ

Dt
+ ρ∇ · u = 0. (2.2.18)

Over a time ∆t, we have

∆ρ+ ρ0

(
∇ · ∂ξ

∂t

)
∆t = 0. (2.2.19)
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Therefore we obtain
∆ρ+ ρ0∇ · ξ = 0. (2.2.20)

We can substitute the expressions of the Eulerian perturbations

δu = ∆u, δρ = ∆ρ− ξz
∂ρ0

∂z
, δp = ∆p− ξz

∂p0

∂z
(2.2.21)

into the conservation equations and we get the following results

∂∆ρ

∂t
+ ρ0

∂∆uz
∂z

= 0 (2.2.22)

that is the perturbated continuity equation.
If we assume that the perturbations obey an equation of state in which p = p(ρ),

and use the formula cs =

√(
dp/dρ

)
0

we get the momentum equation

∂∆uz
∂t

= − 1

ρ0

∂∆p

∂z
= − c

2
s

ρ0

∂∆ρ

∂z
. (2.2.23)

If we now differentiate the continuity equation (2.2.22) with respect time, we get

∂2∆ρ

∂t2
− c2

s

∂2∆ρ

∂z2
− c2

s

H

∂∆ρ

∂z
= 0. (2.2.24)

Supposing that a solution can be written as

∆ρ ∝ exp{i(kz − ωt)}, (2.2.25)

we find

ω2 = c2
s

(
k2 − ik

H

)
. (2.2.26)

This relation is called dispersion relation.
In the case of a disturbance of real k, the dispersion relation indicates whether ω

is real or imaginary and hence determines the stability of the system. In details we
have

• if ω is a real quantity, we have an oscillating solution,

• if ω has a negative imaginary part, we have an exponentially decaying (damped)
solution,

• if ω has a positive imaginary part, we have an exponentially growing (unstable)
solution.

For real ω the dispersion relation indicates the spatial properties of the wave:

• if k is a real quantity, we have an oscillating solution,

• if k has a negative imaginary part, we have an exponentially growing solution,

• if k has a positive imaginary part, we have an exponentially decaying solution.
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2.3 Instability criteria

In this section we are going to present some applications of stability theory to the
fluids in a gravitational field in order to find out how they react to perturbations.

In Appendix A we show a different method to obtain the instability criteria here
presented.

2.3.1 The Schwarzschild criterion

The first case we are going to analyze is the convective instability.
Consider an ideal gas in hydrostatic equilibrium in a uniform gravitational field.

We are free to choose the z-axis so that gravity acts in the z direction; this choice
has been made in order to have a decreasing pressure p(z) and a decreasing density
ρ(z) as z increase. Let us take a fluid element at the same density and pressure as its
surrounding, and displace it upward by a small amount δz, and we suppose that the
surrounding density and pressure are respectively ρ′ and p′. Pressure imbalances are
removed very quickly by acoustic waves, but heat exchange takes considerably longer,
so initially we can consider that the region of gas will change adiabatically to be in
pressure equilibrium at the new position.

As a result, we can define a new density ρ∗ at the new position. If ρ∗ < ρ′, thanks
to Archimedes’ principle, we can affirm that the displaced region will be buoyant and
given that it will continue to move away from the initial position, we can assert that
the system is unstable. Instead, if ρ∗ > ρ′ the region will try to come back to its
original position, so the system will be stable.

As we said, the region is displaced adiabatically, so

ρ∗ = ρ

(
p′

p

) 1
γ

, (2.3.1)

and, recalling that the pressure gradient is dp
dz

, to first order we can expand

p′ = p+
dp

dz
δz. (2.3.2)

Hence

ρ∗ = ρ+
ρ

γp

dp

dz
δz. (2.3.3)

For the medium outside the displaced element we can expand density in a similar way
as

ρ′ = ρ+
dρ

dz
δz. (2.3.4)

So the condition of instability becomes

ρ

γp

dp

dz
<
dρ

dz
. (2.3.5)
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Conversely, the system is stable if

ρ

γp

dp

dz
>
dρ

dz
.

This stability criterion is named ”Schwarzschild criterion”.
We would like to convert this criterion, in which we are dealing with pressure and

density, to one linking the entropy and pressure gradients.
Now we show that the instability condition can be written as

dp

dz

dS

dz
< 0. (2.3.6)

Proof. From (2.3.5) we get

ρ

pγ

dp

dz
<
dρ

dz
,

1

p

(
dp

dz

)2

< γ
dp

dz

1

ρ

dρ

dz
,

dp

dz

1

p

dp

dz
− γ dp

dz

1

ρ

dρ

dz
< 0,

dp

dz

d ln p

dz
− γ dp

dz

d ln ρ

dz
< 0,

dp

dz

(
d ln p

dz
− d ln ργ

dz

)
< 0.

(2.3.7)

If we define

S ∝ ln
p

ργ
, (2.3.8)

we get eq. (2.3.6).

2.4 Incompressible shear flow in axisymmetric con-

ditions

In this section we take into account an incompressible fluid, and we analyze its
rotational behavior within an hypothetical rigid cylinder.

Hence we adopt cylindrical coordinates and write down the unperturbed flow ve-
locity as

u0 = (0, V (R), 0), (2.4.1)
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where the relation between the azimuthal velocity V (R) and the angular velocity Ω(R)
holds:

V (R) = RΩ(R). (2.4.2)

For such a flow, with fluid velocity u = (uR, uϕ, uz) the equations of motion are given
by (1.3.17). In addition we require the mass conservative equation, which for an
incompressible fluid is just given by (1.3.16).

We now perturb this solution, so that the velocity field becomes

u = (u′R, V (R) + u′ϕ, u
′
z). (2.4.3)

Since ρ is constant, the equilibrium pressure distribution is given by

p(R) = ρ

∫
V 2

R
dR, (2.4.4)

and we define the useful quantity

W ≡ p′

ρ
. (2.4.5)

Therefore to first order, the perturbed Euler equations are given by

∂uR
∂t

+
V

R

∂uR
∂ϕ
− 2V uϕ

R
= −∂W

∂R
,

∂uϕ
∂t

+
V

R

∂uϕ
∂ϕ

+

(
V

R
+
dV

dR

)
uR = − 1

R

∂W

∂ϕ
,

∂uz
∂t

+
V

R

∂uz
∂ϕ

= −∂W
∂z

.

(2.4.6)

Proof. We have for the R-component:

∂uR
∂t

+ u · (∇uR)−
u2
ϕ

R
= −1

ρ

∂p

∂R
,

∂u′R
∂t

+ u · (∇u′R)−
(V (R) + u′ϕ)2

R
= −1

ρ

∂p

∂R
,

∂u′R
∂t

+
V (R)

R

∂u′R
∂ϕ
−
V 2(R) + u′2ϕ + 2V (R)u′ϕ

R
= −1

ρ

∂p

∂R
,

∂u′R
∂t

+
V (R)

R

∂u′R
∂ϕ
−

2V (R)u′ϕ
R

= −∂W
∂R

.

(2.4.7)

For the ϕ-component:

∂uϕ
∂t

+ u · (∇uϕ) +
uϕuR
R

= − 1

Rρ

∂p

∂ϕ
,

∂u′ϕ
∂t

+ u ·
(
∇(V (R) + u′ϕ)

)
+

(V (R) + u′ϕ)u′R
R

= − 1

Rρ

∂p

∂ϕ
,

∂u′ϕ
∂t

+ u′R
dV (R)

dR
+
V (R)

R

∂u′ϕ
∂ϕ

+
V (R)

R
u′R = − 1

R

∂W

∂ϕ
,

∂u′ϕ
∂t

+
V (R)

R

∂u′ϕ
∂ϕ

+

(
V (R)

R
+
dV (R)

dR

)
u′R = − 1

R

∂W

∂ϕ
.

(2.4.8)
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Finally for the z-component

∂uz
∂t

+ u · (∇uz) = −1

ρ

∂p

∂z
,

∂u′z
∂t

+
V (R)

R

∂u′z
∂ϕ

= −∂W
∂z

.

(2.4.9)

We have dropped the primes in order to simplify the notation in the eq. (2.4.6).

We write explicitly the mass conservation equation as

∂uR
∂R

+
uR
R

+
1

R

∂uϕ
∂ϕ

+
∂uz
∂z

= 0 (2.4.10)

to point out that is already linearized.
Since the equilibrium configuration is independent of time, and of ϕ and z, we

may now Fourier analyze in t, ϕ and z. Thus we assume that all the linear variables
are of the form2

q′(R,ϕ, z, t)→ q′(R) exp{i(ωt+mϕ+ kz)}. (2.4.11)

We define the local Doppler-shifted frequency as

σ(R) = ω +mΩ(R). (2.4.12)

The linearized equations can now be written in the form

iσuR − 2Ωuϕ = −dW
dR

, (2.4.13)

iσuϕ +

[
Ω +

d

dR
(RΩ)

]
uR = −imW

R
, (2.4.14)

iσuz = −ikW, (2.4.15)

duR
dR

+
uR
R

+
imuϕ
R

+ ikuz = 0. (2.4.16)

Proof. In fact we have to replace into the equations (2.4.6), for example

∂uR
∂t

= iωuR = i
(
σ(R)−mΩ(R)

)
uR,

∂uR
∂ϕ

= imuR,
(2.4.17)

for the radial component, and

∂uϕ
∂t

= iωuϕ = i
(
σ(R)−mΩ(R)

)
uϕ,

∂uϕ
∂ϕ

= imuϕ,

− 1

R

∂W

∂ϕ
= −imW

R
,

(2.4.18)

2We note that to keep q′ a single-valued function of azimuth ϕ we require that m is an integer.
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for the ϕ-component. Using this approach one can obtain the two others equations.

We now look for an expression to describe the Eulerian velocity field perturbation
in terms of the Lagrangian displacement ξ.

The velocity field of the perturbed fluid is given by

u(r, t) =
Dr

Dt
. (2.4.19)

In a similar way, we can write for a fluid particle in motion in the unperturbed fluid
with a time function trajectory defined as r0(t) the function

u0(r0, t) =
Dr0
Dt

. (2.4.20)

Hence, in considering the difference, we have by definition

δu = u(r, t)− u0(r0, t). (2.4.21)

We note that to the first order in ξ eq. (1.1.4) holds and we can write it as

δu =
∂ξ

∂t
+ u · ∇ξ. (2.4.22)

Now, for definition we have u′ = u(r, t) − u0(r0, t) and given that to the first order
δu = u′ + ξ · ∇u, we obtain

u′ =
∂ξ

∂t
+ u0 · ∇ξ − ξ · ∇u0. (2.4.23)

In the case we are considering, with the unperturbed velocity field in the azimuthal
direction and dependent only on radius R, we have

uR = iσξR, (2.4.24)

uz = iσξz (2.4.25)

and

uϕ = iσξϕ −R
dΩ

dR
ξR. (2.4.26)

Using these relations to write the linearized equations in terms of ξ we obtain

(σ2 − 2RΩΩ′)ξR + 2iσΩξϕ =
dW

dR
, (2.4.27)

σ2ξϕ − 2iσΩξR =
imW

R
, (2.4.28)

σ2ξz = ikW, (2.4.29)

dξR
dR

+
ξR
R

+
im

R
ξϕ + ikξz = 0, (2.4.30)
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where Ω′ = dΩ/dR.
Combining these equations to eliminate ξϕ and ξz we get

σ2

(
dξR
dR

+
ξR
R

)
− 2mΩσ

R
ξR =

(
m2

R2
+ k2

)
W, (2.4.31)

and

[σ2 −R(R)]ξR =
dW

dR
+

2mΩ

σR
W, (2.4.32)

where R is the Rayleigh discriminant defined as

R(R) =
2Ω

R

dJ(R)

dR
, (2.4.33)

where we have introduced the specific angular momentum J(R) = R2Ω.

2.4.1 The Rayleigh’s criterion

Here we consider axisymmetric modes in which m = 0 and therefore σ = ω. Then
we have from eq. (2.4.31)

1

R

d

dR
(RξR) =

k2

ω2
W, (2.4.34)

and using the equation (2.4.32) we obtain

[ω2 −R]ξR =
dW

dR
. (2.4.35)

If we eliminate W between these two equations we get

d

dR

(
1

R

d

dR
(RξR)

)
− k2ξR = −k

2R(R)

ω2
ξR. (2.4.36)

This equation is an example of a Sturm-Liuville problem with eigenvalue λ = k2/ω2,
if we assume the boundary conditions ξR = 0 at R = R1, R2.

Solving eq. (2.4.36) we have
ω2

k2
=
I1

I2

, (2.4.37)

where we have defined

I1 =

∫ R2

R1

R(R)Rξ2
R dR,

and

I2 =

∫ R2

R1

[
1

R

(
d(RξR)

dR

)2

+ k2Rξ2
R

]
dR.

Now we discuss about the stability of the models in which this dispersion relation
holds true. Hence we are going to give the Rayleigh’s criterion for the stability of a
circular shear flow.
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For any k, the second integral is positive definite, and therefore the sign of ω2

depends on the sign of I1. Since the sign of I1 depends on R(R) we need to focus on
the Rayleigh discriminant.

If R > 0, then ω2 > 0 and the flow is stable to axisymmetric modes. Conversely,
if R < 0 at some point in the flow, we may choose a trial function ξ(R) which makes
I1 < 0, which implies the existence of an unstable mode. To conclude, this criterion
states that the flow is stable to axisymmetric disturbances if and only if the specific
angular momentum J(R) increase outwards.

2.5 Compressible rotating flow in axisymmetric con-

ditions

Since realistic fluids are generally compressible, we must consider the case in which
density variations are allowed.

In rotating astrophysical gases we must take into account two contributes: on
one hand there is the contribute given by an effective radial gravitational force that
requires we must consider the Schwarzschild stability criterion, and on the other hand
we have seen that axisymmetric incompressible fluids stability is ruled by the Rayleigh
criterion. Hence we can suppose that a generic rotating compressible fluid stability
criterion will be a sort of combination of these two criteria. We will find out that this
generalization is the called Solberg-Hoiland criterion.

We start by considering an axisymmetric fluid flow in a fixed axisymmetric grav-
itational potential Φ(R). The total energy of the unperturbed flow is given by the
sum of the kinetic energy, thermal energy and gravitational potential energy and can
be written as

E =
1

2

∫
V

J2

R2
dm+

∫
V

e dm+

∫
V

Φ dm. (2.5.1)

The angular velocity and the corresponding angular momentum are Ω(R) and J(R) =
R2Ω, respectively. In eq. (2.5.1) dm = ρ dV is the mass of a fluid element and e is
the internal energy.

We want to compute the change δE when the flow is subject to an axially symmetric
perturbation ξ(R). The angular momentum J of each fluid element is conserved
because the perturbation is taken axisymmetric, therefore the variation in the kinetic
term occurs because the radius of each fluid element is changed; this is

δ
1

2

∫
V

J2

R2
dm = −

∫
V

J2

R3
ξR dm. (2.5.2)

Moreover if we assume that the change is isentropic (DS
Dt

= 0) we have

De

Dt
+
p

ρ
∇ · u = 0. (2.5.3)

Proof. From the first thermodynamic law:

TdS = de+ pdV, (2.5.4)
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we get

TdS = de− p

ρ2
dρ. (2.5.5)

Hence the rate of change of the heat content of a particular fluid element of unit mass
is given by

T
DS

Dt
=
De

Dt
− p

ρ2

Dρ

Dt
=
De

Dt
− p

ρ2

(
− ρ∇ · u

)
=

=
De

Dt
+
p

ρ
∇ · u.

(2.5.6)

Therefore in adiabatic condition relation (2.5.3) holds.

Hence we can write the change of internal energy as

δe = −p
ρ
∇ · ξ. (2.5.7)

Integrating this equation, we find that

δ

∫
V

e dm =

∫
V

1

ρ
ξ · ∇p dm. (2.5.8)

In addition, since the potential Φ is fixed, we obtain

δΦ = ξ · ∇Φ, (2.5.9)

this can be integrated as

δ

∫
V

Φ dm =

∫
V

ξ · ∇Φ dm. (2.5.10)

In conclusion our change in the energy is given by

δE =

∫
V

ξ ·
(
∇Φ +

1

ρ
∇p− J2

R3
R̂

)
dm. (2.5.11)

For a fluid in equilibrium we require that δE = 0 for all vector fields ξ. This means
that the net force per unit mass acting on any fluid element must vanish everywhere

F ≡ −∇Φ− 1

ρ
∇p+

J2

R3
R̂ = 0. (2.5.12)

Hence equation (2.5.11) in equilibrium condition becomes

δE = −
∫
V

ξ · F dm = 0. (2.5.13)

In order to study the stability of the configuration we need to consider the second-
order perturbation to the energy. Using the equilibrium condition (2.5.12) this is
given by

δ(δE) = −
∫
V

ξ · δF dm. (2.5.14)

30



The configuration is stable if δ2E > 0.
Therefore we must consider the integral expression

δ2E =

∫
V

ξ ·
[
δ

(
∇Φ +

1

ρ
∇p
)

+
3J2

R4
ξRR̂

]
dm. (2.5.15)

Identifying with a prime the Eulerian perturbation, we can write the first term in the
square brackets of (2.5.15) in the form

δ

[
∇Φ +

1

ρ
∇p
]

=

[
∇Φ +

1

ρ
∇p
]′

+ ξ ·
[
∇Φ +

1

ρ
∇p
]
. (2.5.16)

For the first term in the r.h.s. of the (2.5.16), we have that[
∇Φ +

1

ρ
∇p
]′

=
1

ρ
∇p′ − ρ′

ρ2
∇p. (2.5.17)

While in virtue of eq. (2.5.12), the second term of (2.5.15) can be written as

ξ · ∇
[
∇Φ +

1

ρ
∇p
]

= ξ · ∇
[
J2

R3
R̂

]
. (2.5.18)

Hence by noting that

3J2

R4
ξRR̂ + ξ · ∇

[
J2

R3
R̂

]
= (ξ · ∇J2)

R̂

R3
, (2.5.19)

we discover that for axisymmetric perturbations the following equation holds

δ2E = −
∫
V

ξ · (Lξ) dm, (2.5.20)

in which we have introduced the linear operator L defined as

Lξ = −∇p
′

ρ
+
ρ′

ρ2
∇p− (ξ · ∇J2)

R̂

R3
, (2.5.21)

where (from the mass conservation)

ρ′ = −ρ∇ · ξ − ξ · ∇ρ, (2.5.22)

and (from the energy conservation)

p′ = −γp∇ · ξ − ξ · ∇ p. (2.5.23)

Integrating by parts equation (2.5.20) and using eq. (2.5.21), eq. (2.5.22) and eq.
(2.5.23) we have

δ2E =

∫
V

ξiMijξj dm+

∫
V

[
p′2

γpρ

]
dm (2.5.24)

in which we defined the second order tensor Mij as

Mij =

[
1

ρ
∇p
]
i

[
1

ρ
∇ρ− 1

γp
∇p
]
j

+
1

R3
(∇R)i(∇J2)j. (2.5.25)
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2.5.1 The Solberg-Hoiland criterion

In order to find the stable configurations we need to study the positivity of eq.
(2.5.24). The second term of the r.h.s is positive definite, hence we will deal with
those perturbations for which this term vanishes. We restrict our analysis to the first
integral in the r.h.s of eq. (2.5.24).

We first note that M is a symmetric tensor.

Proof. Defining the following vectors:

A =
1

γp
∇p− 1

ρ
∇ρ,

A′ = −1

ρ
∇p,

B =
1

R3
∇J2,

B′ = ∇R = R̂,

(2.5.26)

we may break up the tensor as

Mij = AiA
′
j +BiB

′
j. (2.5.27)

Now we take the curl of the eq. (2.5.12) to obtain

∇
(

1

ρ

)
∧∇p =

1

R3
∇J2 ∧ R̂, (2.5.28)

which implies that
A ∧A′ + B ∧B′ = 0. (2.5.29)

And in suffix notation this means that

εijkMjk = 0. (2.5.30)

Therefore M is symmetric.

The condition for a real symmetric second-rank tensor to give a positive defi-
nite expression when contracted twice with a vector is simply that tr(M) > 0 and
det(M) > 0. This give us the Solberg-Hoiland criterion.

Theorem 1 (Solberg-Hoiland criterion). A fluid configuration is stable to axisym-
metric, adiabatic perturbations if and only if

1

R3

∂J2

∂R
+

1

cp
(−g · ∇S) > 0 (2.5.31)

and

−gz
(
∂J2

∂R

∂S

∂z
− ∂J2

∂z

∂S

∂R

)
> 0 (2.5.32)
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Where S is the specific entropy, we have defined gravity g as

g =
1

ρ
∇p = −A′ (2.5.33)

and we have noted that

A =
∇S
cP

. (2.5.34)

Thus we obtain a blend of the Rayleigh and Schwarzschild stability criteria as we
can see by successively assuming that either S or J2 are spatially constant.
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Chapter 3
Stationary models of rotating gas with
baroclinic distribution

In this chapter we present stationary models of gas rotating with baroclinic dis-
tributions in axisymmetric conditions.

For these models we derive the sufficient condition to have a physical acceptable
solutions by knowing the gas density distribution and the gravitational potential.

Families of baroclinic models in the recent astrophysical literature have been stud-
ied, for instance, by [Barnabé et al. 2006] and [Sormani et al 2018]. In this chapter
we follow the treatment of Barnabé.



3.1 The Poicaré-Wavre theorem

We consider a gaseous axisymmetric distribution ρ(R, z) in permanent rotation,
under the influence of an axisymmetric gravitational potential Φtot(R, z). The ax-
ial symmetry imposes that all the physical variables depend only on the cylindrical
coordinates R and z.

We exclude the possibility of meridional motion, so we assume uR = uz = 0.
This assumption implies that the continuity equation is always satisfied, whereas the
stationary Euler equation can be written as

1

ρ

∂p

∂z
= −∂Φ

∂z
(3.1.1)

1

ρ

∂p

∂R
= −∂Φ

∂R
+ Ω2R (3.1.2)

where ρ, p and Ω denote the gas density, pressure and angular velocity, respectively.
The gas rotational velocity is uϕ = ΩR, where in general Ω = Ω(R, z). The

rotational velocity is said to be constant over cylinders when Ω = Ω(R). In general Φ
represents the total gravitational potential, including also the gas contribution; in this
chapter we will assume that the gas is not self-gravitating, so that Φ is an external
gravitational potential. For instance, in the case of a disk galaxy, Φ is the sum of the
dark halo and the stellar potentials.

We recall that a fluid is said barotropic if its density is a function of pressure only:

p = p(ρ), (3.1.3)

whereas it is said baroclinic if pressure is not expressible just as a function of ρ:

p 6= p(ρ). (3.1.4)

In order to better understand the behavior of these fluid systems, we recall the
Poincaré-Wavre Theorem1.

Theorem 2 (Poincaré-Wavre theorem). For an ideal axisymmetric fluid in a station-
ary azimuthal rotation the following statements are equivalent:

1. the fluid is in cylindrical rotation;

2. the pressure is stratified over the density;

3. an effective potential Φeff (R, z) exists.

When these conditions occur

Φeff (R, z) = Φ(R, z)−
∫ R

R0

Ω2(R′)R′ dR′, (3.1.5)

where R0 is an arbitrary cylindrical radius. In addition the isobaric, isopycnic and
effective isopotential surfaces coincide.

1For a detailed proof of this theorem see [Tassoul 1978].
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Now we verify that when Ω = Ω(R) eq. (3.1.1) and (3.1.2) can be written as

∇p = −ρ∇Φeff . (3.1.6)

Proof. Using the equations of motion (3.1.1) and (3.1.2)

1

ρ

∂p

∂z
= − ∂

∂z

[
Φeff (R, z) +

∫ R

R0

Ω2(R′)R′ dR′
]

=

= −∂Φeff (R, z)

∂z
− ∂

∂z

∫ R

R0

Ω2(R′)R′ dR′ =

= −∂Φeff (R, z)

∂z
,

1

ρ

∂p

∂R
= − ∂

∂R

[
Φeff (R, z) +

∫ R

R0

Ω2(R′)R′ dR′
]

+ Ω2R =

= −∂Φeff (R, z)

∂R
− ∂

∂R

∫ R

R0

Ω2(R′)R′ dR′ + Ω2R =

= −∂Φeff (R, z)

∂R
,

and we can write the equation of motion for an effective potential in the form

1

ρ
∇p = −∇Φeff . (3.1.7)

The Poincaré-Wavre theorem states that the baroclinic stratification is a necessary
and sufficient condition to obtain a rotational velocity vertical gradient. In fact, by
definition, for any displacement on a level surface Φeff = constant, one has ∇Φeff =
0. Since eq. (3.1.7) shows that ∇p = 0 on the same surface, it follows at once that
the isobaric surfaces coincide with the level surfaces. So we can write

p = p(Φeff ), Φeff = Φeff (p). (3.1.8)

By virtue of eq. (3.1.7), one readily sees that

1

ρ
= −dΦeff (p)

dp
, ρ = ρ(p). (3.1.9)

When the distribution is barotropic, one fixes the gravitational potential Φ and
a specific function p(ρ), and integrates the equation (3.1.1) for example by assigning
ρ(R, 0) or imposing ρ(R,∞) = 0; the angular velocity Ω is then obtained from the
equation (3.1.2).
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3.2 The construction of a rotating barotropic equi-

librium

The construction of a rotating barotropic equilibrium is quite straightforward: by
assuming polytropic distribution p = kργ

′
, the solution of eq. (3.1.1) and (3.1.2) is:

ρ = ρ0

[
1 +

γ′ − 1

γ′
β0(Φeff,0 − Φeff )

] 1
γ′−1

(3.2.1)

where ρ0 ≡ ρ(x0), Φeff,0 ≡ Φeff (x0), β0 = µ′mp
kBT0

and x0 is a defined fixed point in the
space and T0 is a fixed temperature.

Proof. Starting from the first equation,

1

ρ
∂zp = −∂zΦeff

and using the identity p = kργ
′

we have

1

ρ
∂z(kρ

γ′) = −∂zΦeff .

The left-hand side of this equation can be written as

1

ρ
∂z(kρ

γ′) =
1

ρ
kγ′ργ

′−1∂zρ = kγ′ργ
′−2∂zρ,

so

ργ
′−2∂zρ = − 1

kγ′
∂zΦeff .

From the equality

∂zρ
γ′−1 = (γ′ − 1)ργ

′−2∂zρ,

we have

∂zρ
γ′−1

γ′ − 1
= − 1

kγ′
∂zΦeff ,

or

∂zρ
γ′−1 = −γ

′ − 1

kγ′
∂zΦeff .
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Integrating this equation from z0 to z, one finds∫ z

z0

dz ∂zρ
γ′−1 = −γ

′ − 1

kγ′

∫ z

z0

dz ∂zΦeff ,

ργ
′−1(z)− ργ′−1(z0) =

γ′ − 1

kγ′
(Φeff (z0)− Φeff (z)),

ργ
′−1(z) = ργ

′−1(z0) +
γ′ − 1

kγ′
(
Φeff (z0)− Φeff (z)

)
,

ρ(z) =

[
ργ
′−1(z0) +

γ′ − 1

kγ′
(
Φeff (z0)− Φeff (z)

)] 1
γ′−1

.

So we get

ρ(z) = ρ(z0)

[
1 +

γ′ − 1

γ′
1

kργ′−1(z0)

(
Φeff (z0)− Φeff (z)

)] 1
γ′−1

.

Using equation in (3.1.2),

1

ρ
∂Rp = −∂RΦeff + Ω2R,

in analogy with the calculus showed in the first part of this proof we get∫ R

R0

dR ∂Rρ
γ′−1 =

γ′ − 1

γ′k

[ ∫ R

R0

dR (−∂RΦeff ) +

∫ R

R0

dRΩ2R

]
,

ργ
′−1(R)− ργ′−1(R0) =

γ′ − 1

γ′k

(
Φeff − Φeff (R)

)
+
γ′ − 1

γ′k

∫ R

R0

dRΩ2R,

ργ
′−1(R)− ργ′−1(R0) =

γ′ − 1

γ′k

[
Φeff (R0)− Φeff (R) + Φeff (R)− Φeff (R)

]
,

ργ
′−1(R) = ργ

′−1(R0) +
γ′ − 1

γ′k

(
Φeff (R0)− Φeff (R)

)
,

ρ(R) = ρ(R0)

[
1 +

γ′ − 1

γ′
1

kργ′−1(R0)

(
Φeff (R0)− Φeff (R)

)] 1
γ′−1

.
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3.3 Baroclinic models

3.3.1 Baroclinic solution

We focus on the case of a baroclinic distribution of gas rotating with angular
velocity Ω = Ω(R, z).

The total potential Φ(R, z) and the gas density ρ(R, z) are assigned functions with
ρ(R, z) vanishing at infinity. The equation (3.1.1) is integrated in full generality for
the pressure as

p(R, z)− p(R, z0) =

∫ z0

z

ρ
∂Φ

∂z′
dz′, (3.3.1)

where p(R) ≡ p(R, z0) is an arbitrary function and the height z0 is fixed, for instance
common choices are z0 = 0 or z0 =∞.

For instance if we assume p(R,∞) = 0 we obtain

p(R, z) =

∫ ∞
z

ρ
∂Φ

∂z′
dz′. (3.3.2)

In general the obtained pressure p cannot be expressed as a function of ρ only, so the
system is baroclinic.

Accordingly, the rotational velocity field

u2
ϕ(R, z) =

R

ρ

∂p

∂R
+R

∂Φ

∂R
(3.3.3)

depends both on R and z.

Proof. Here we show how to get equation (3.3.3).
Multiplying by R eq. (3.1.2) we get

R

ρ

∂p

∂R
=−R∂Φ

∂R
+ Ω2R2 = (3.3.4)

= −R∂Φ

∂R
+ u2

ϕ. (3.3.5)

The major drawbacks posed by construction of baroclinic stratifications following
this approach is the fact that the existence of physically acceptable solutions (u2

ϕ ≥ 0
everywhere) is not guaranteed. Due to the arbitrariness of the chosen density field, a
negative radial pressure gradient in equation (3.3.3) can be dominant for some values
of R and z. By combining equations (3.3.1) and (3.3.3), and integrating by parts, we
obtain

ρu2
ϕ

R
=
ρ(R, z0)u2

ϕ(R, z0)

R
+ C[ρ,Φ], (3.3.6)

where

C[ρ,Φ] ≡
∫ z0

z

(
∂ρ

∂R

∂Φ

∂z′
− ∂ρ

∂z′
∂Φ

∂R

)
dz′. (3.3.7)
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Proof. For a generic z0 we have

u2
ϕ =

R

ρ

∂p

∂R
+R

∂Φ

∂R
=
R

ρ

∂

∂R

[ ∫ z0

z

ρ(R, z′)
∂Φ(R, z′)

∂z′
dz′
]

+R
∂Φ(R, z)

∂R
=

=
R

ρ

[
∂

∂R

[
ρ(R, z0)Φ(R, z0)

]
− ∂

∂R

[
ρ(R, z)Φ(R, z)−

−
∫ z0

z

dz′
∂Φ(R, z′)

∂R

∂ρ(R, z′)

∂z′
+ Φ(R, z′)

∂2ρ(R, z′)

∂R∂z′

]
+R

∂Φ(R, z)

∂R
=

=
R

ρ

[
∂

∂R

[
ρ(R, z0)Φ(R, z0)

]
− ∂

∂R

[
ρ(R, z)Φ(R, z)−

−
∫ z0

z

dz′
∂Φ(R, z′)

∂R

∂ρ(R, z′)

∂z′
−
∫ z0

z

dz′Φ(R, z′)
∂2ρ(R, z′)

∂R∂z′

]
+R

∂Φ(R, z)

∂R
=

=
R

ρ

[
∂

∂R

[
ρ(R, z0)Φ(R, z0)

]
− ∂

∂R

[
ρ(R, z)Φ(R, z)

]
−
∫ z0

z

dz′
∂Φ(R, z′)

∂R

∂ρ(R, z′)

∂z′
−

−
[
Φ(R, z′)

∂ρ(R, z′)

∂R

]z0
z

+

∫ z0

z

dz′
∂Φ(R, z′)

∂z′
∂ρ(R, z′)

∂R

]
+R

∂Φ(R, z)

∂R
=

=
R

ρ

{
∂

∂R

[
ρ(R, z′)Φ(R, z′)

]z0
z

−
[
Φ(R, z′)

∂ρ(R, z′)

∂R

]z0
z

+

+

∫ z0

z

dz′
(
∂ρ(R, z′)

∂R

∂Φ(R, z′)

∂z′
− ∂ρ(R, z′)

∂z′
∂Φ(R, z′)

∂R

)}
+R

∂Φ(R, z)

∂R
.

Hence

ρu2
ϕ

R
=
∂

∂R

[
ρ(R, z′)Φ(R, z′)

]z0
z

−
[
Φ(R, z′)

∂ρ(R, z′)

∂R

]z0
z

+ ρ(R, z)
∂Φ(R, z)

∂R
+ C[ρ,Φ] =

=
∂ρ(R, z0)

∂R
Φ(R, z0) + ρ(R, z0)

∂Φ(R, z0)

∂R
− ∂ρ(R, z)

∂R
Φ(R, z)− ρ(R, z)

∂Φ(R, z)

∂R
−

−∂ρ(R, z0)

∂R
Φ(R, z0) + Φ(R, z)

∂ρ(R, z)

∂R
+ ρ(R, z)

∂Φ(R, z)

∂R
+ C[ρ,Φ] =

=ρ(R, z0)
∂Φ(R, z0)

∂R
+ C[ρ,Φ] =

=
ρ(R, z0)u2

ϕ(R, z0)

R
+ C[ρ,Φ].

Here we note that, assuming z0 = ∞, the positivity of the integrand in equation
(3.3.7) is a sufficient condition to obtain u2

ϕ ≥ 0 everywhere. Therefore, physically
acceptable solutions are obtained if one assumes a potential Φ for which ∂Φ/∂R ≥ 0
and ∂Φ/∂z ≥ 0 and a density distribution so that ∂ρ/∂z ≤ 0 and ∂ρ/∂R ≥ 0.

An important property of the commutator-like relation C[ρ,Φ] is its bilinearity
that can be used to construct more complicated solutions starting from simple, phys-
ically acceptable ”building block” configurations. For instance the rotational velocity

40



associated with ρ = ρ1 + ρ2 is

u2
ϕ =

ρ1u
2
ϕ,1 + ρ2u

2
ϕ,2

ρ1 + ρ2

, (3.3.8)

where ρ1u
2
ϕ,1/R ≡ C[ρ1,Φ] and ρ2u

2
ϕ,2/R ≡ C[ρ2,Φ].

Proof.

(ρ1 + ρ2)
u2
ϕ

R
=

∫ z0

z

(
∂(ρ1 + ρ2)

∂R

∂Φ

∂z′
− ∂(ρ1 + ρ2)

∂z′
∂Φ

∂R

)
dz′ =

=

∫ z0

z

(
∂ρ1

∂R

∂Φ

∂z′
− ∂ρ1

∂z′
∂Φ

∂R

)
dz′ +

∫ z0

z

(
∂ρ2

∂R

∂Φ

∂z′
− ∂ρ2

∂z′
∂Φ

∂R

)
dz′ =

= C[ρ1,Φ] + C[ρ2,Φ].
(3.3.9)

Thus we have

u2
ϕ =

R

ρ1 + ρ2

(
C[ρ1,Φ] + C[ρ2,Φ]

)
=
ρ1u

2
ϕ,1 + ρ2u

2
ϕ,2

ρ1 + ρ2

. (3.3.10)

In addition, for a given ρ, if Φ = Φ1 + Φ2 we have

u2
ϕ = u2

ϕ,1 + u2
ϕ,2, (3.3.11)

where

u2
ϕ,1 =

R

ρ
C[ρ,Φ1], (3.3.12)

and

u2
ϕ,2 =

R

ρ
C[ρ,Φ2]. (3.3.13)

Proof.

ρu2
ϕ

R
=

∫ z0

z

(
∂ρ

∂R

∂(Φ1 + Φ2)

∂z′
− ∂ρ

∂z′
∂(Φ1 + Φ2)

∂R

)
dz′ =

=

∫ z0

z

(
∂ρ

∂R

∂Φ1

∂z′
− ∂ρ

∂z′
∂Φ1

∂R

)
dz′ +

∫ z0

z

(
∂ρ

∂R

∂Φ2

∂z′
− ∂ρ

∂z′
∂Φ2

∂R

)
dz′ =

= C[ρ,Φ1] + C[ρ,Φ2].

(3.3.14)

Using (3.3.12) and (3.3.13) we get

u2
ϕ = u2

ϕ,1 + u2
ϕ,2. (3.3.15)
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3.4 Families of baroclinic density distributions

We are going to show some simple families of physical baroclinic models of rotating
gas discussed in [Barnabé et al. 2006].

3.4.1 Gas density distributions with a factor stratified on the
effective potential

Let us consider the gas density distribution

ρ(R, z) = h(R, z) ρe(Φeff ), (3.4.1)

where h is a non negative function and

Φeff ≡ Φ−
∫ R

R0

Ω2(R′)R′ dR′ (3.4.2)

is the effective potential, Φ is the gravitational potential, Ω(R) is a given cylindrical
rotation law and we define R0 as an arbitrary fixed radius. Moreover, we assume that
ρe(Φeff ) is a solution of the Euler equation

∇p = −ρ∇Φeff , (3.4.3)

with assigned pression p = p(ρ). For Ω 6= 0 one has a barotropic solution (cylindrical
rotation), while for Ω = 0 one obtains a hydrostatic solution in the potential Φ that
we can indicate as ρh.

We have already showed how to construct the density field in the barotropic case
(see eq. (3.2.1)). A different approach to the construction of ρe(Φeff ) is however
possible, where the specific density field is prescribed. This can be done by using the
fact that solutions of ∇p = −ρ∇Φeff are stratified in Φeff ; thus if one fixes Φeff and
a prescribed function ρe(Φeff ), the pressure field is obtained by direct integration as

p(Φeff ) = p(Φeff,0)−
∫ Φeff

Φeff,0

ρe(t) dt. (3.4.4)

We point out that this approach can be used only for density stratifications such that
p > 0 everywhere.

We can now demonstrate that for a gas density distribution with a factor stratified
on the effective potential (eq. 3.4.1), assuming z0 =∞ we have

ρu2
ϕ

R
=

∫ ∞
z

dz′
[
∂h(R, z′)

∂R

∂Φ

∂z′
− ∂h(R, z′)

∂z′
∂Φ

∂R

]
ρe
(
Φeff

)
−

−RΩ2(R)

∫ ∞
z

dz′
[
h(R, z′)

∂ρe(Φeff )

∂z′

]
.

(3.4.5)
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Proof. Combining equation (3.4.1) and eq. (3.3.6) we obtain

ρu2
ϕ

R
=

∫ ∞
z

dz′
(
∂ρ

∂R

∂Φ

∂z′
− ∂ρ

∂z′
∂Φ

∂R

)
=

=

∫ ∞
z

dz′
{[

∂

∂R

(
h(R, z′)ρe

(
Φeff

)) ∂

∂z′

(
Φeff +

∫ R

R0

Ω2(R′)R′ dR

)]
−

−
[
∂

∂z′

(
h(R, z′)ρe

(
Φeff

)) ∂

∂R

(
Φeff +

∫ R

R0

Ω2(R′)R′ dR

)]}
=

=

∫ ∞
z

dz′
{[

∂h(R, z′)

∂R
ρe
(
Φeff

)
+ h(R, z′)

∂ρe
(
Φeff

)
∂R

]
∂

∂z′
(
Φ
)
−

−
[
∂h(R, z′)

∂z′
ρe
(
Φeff

)
+ h(R, z′)

∂ρe
(
Φeff

)
∂z′

][
∂

∂R

(
Φeff

)
+ Ω2(R)R

]}
=

=

∫ ∞
z

dz′
[
∂h(R, z′)

∂R

∂Φeff

∂z′
− ∂h(R, z′)

∂z′
∂Φeff

∂R

]
ρe
(
Φeff

)
−

−RΩ2(R)

∫ ∞
z

dz′
[
h(R, z′)

∂ρe(Φeff )

∂z′

]
+

+

∫ ∞
z

dz′
[
h(R, z′) [ρe(Φeff ),Φeff ]−

∂h(R, z′)

∂z′
ρe(Φeff )Ω

2(R)R

]
=

=

∫ ∞
z

dz′
[
∂h(R, z′)

∂R

∂Φ

∂z′
− ∂h(R, z′)

∂z′
∂Φ

∂R

]
ρe
(
Φeff

)
−

−RΩ2(R)

∫ ∞
z

dz′
[
h(R, z′)

∂ρe(Φeff )

∂z′

]
+

+

∫ ∞
z

dz′
[
h(R, z′) [ρe(Φeff ),Φeff ]

]
=

=

∫ ∞
z

dz′
[
∂h(R, z′)

∂R

∂Φ

∂z′
− ∂h(R, z′)

∂z′
∂Φ

∂R

]
ρe
(
Φeff

)
−

−RΩ2(R)

∫ ∞
z

dz′
[
h(R, z′)

∂ρe(Φeff )

∂z′

]
.

(3.4.6)

For instance, taking into account eq. (3.3.8), one can calculate the rotational
velocity for a density distribution ρ = ρh(Φ) + ρe(Φeff ):

u2
ϕ =

ρeR
2Ω2(R)

ρh + ρe
. (3.4.7)

3.4.2 Baroclinic models built using a function f(R)

We consider here a particular case of eq. (3.4.1) in which we assume

h(R, z) = f(R). (3.4.8)
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We assume to have a barotropic model in a gravitational potential Φ and cylindrical
velocity uϕ,0(R) ≡ uϕ(R, z0). We can calculate the effective potential Φeff , the density
ρe and the pressure pe.

To construct the baroclinic model, we build the density field as a variation of the
barotropic density. This means that the baroclinic model density field can be written
as

ρ = f(R)ρe where f(R) > 0. (3.4.9)

Since the choice of p is arbitrary, we request the boundary condition p(R, z0) = 0.
From eq. (3.3.1) and eq. (3.3.6) we can obtain the pressure and the velocity field

of the baroclinic model:
p = fpe, (3.4.10)

u2
ϕ(R, z) = u2

ϕ,0(R) +
pe
ρe

d ln f(R)

d lnR
, (3.4.11)

where uϕ,0 is the cylindrical velocity at z = z0.

Proof. Equation (3.4.10) can be derived as follows:

p(R, z) =

∫ z0

z

ρ
∂Φ

∂z′
dz′ = f(R)

∫ z0

z

ρe
∂Φ

∂z′
dz′ = f(R)pe.

While equation (3.4.11) can be derived as follows:

ρu2
ϕ

R
=
ρ(R, z0)u2

ϕ(R, z0)

R
+

∫ z0

z

(
∂ρ

∂R

∂Φ

∂z′
− ∂ρ

∂z′
∂Φ

∂R

)
dz′ =

=
ρ(R, z0)u2

ϕ(R, z0)

R
+

∫ z0

z

(
∂(f(R)ρe)

∂R

∂Φ

∂z′
− ∂(f(R)ρe)

∂z′
∂Φ

∂R

)
dz′ =

=
ρ(R, z0)u2

ϕ(R, z0)

R
+

∫ z0

z

∂f(R)

∂R
ρe
∂Φ

∂z′
dz′ =

=
ρ(R, z0)u2

ϕ(R, z0)

R
+
∂f(R)

∂R

∫ z0

z

ρe
∂Φ

∂z′
dz′ =

=
ρ(R, z0)u2

ϕ(R, z0)

R
+
∂f(R)

∂R
pe

=⇒ u2
ϕ = u2

ϕ,0 +
∂f(R)

∂R
pe

R

ρef(R)
= u2

ϕ,0 +
pe
ρe

∂ ln f(R)

∂ lnR
.

3.4.3 Homeoidal potential

We present here a specific example of baroclinic models built as described in (3.4.1).
Let Φ(l) be a homeoidally stratified potential with

l2 = R2 +
z2

q2
Φ

, where 0 < qΦ ≤ 1. (3.4.12)
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Assuming
h(R, z) = A(R)B(m), (3.4.13)

we can write eq. (3.4.1) assuming a hydrostatic density factor ρh(Φ) as

ρ(R, z) = A(R)B(m)ρh(Φ), (3.4.14)

where m2 ≡ R2 + z2

q2g
and 0 < qg ≤ 1; A(R) and B(m) are positive functions.

From eq. (3.4.5), with z0 =∞, we get

ρu2
ϕ

R
=

(
1

q2
Φ

− 1

q2
g

)
A(R)R

∫ ∞
z

B′(m)

m
ρh(Φ)Φ′(l)

z′

l
dz′+

+
A′(R)

q2
Φ

∫ ∞
z

B(m)ρh(Φ)Φ′
z′

l
dz′

(3.4.15)

and so u2
Φ ≥ 0 if

Φ′(l) ≥ 0, A′(R) ≥ 0, B′(m) ≤ 0, qg ≤ qΦ. (3.4.16)

The flattening condition (qg ≤ qΦ) requires that the gas density distribution must be
stratified on homeoids which are flatter than the isopotential surfaces.

3.4.4 Razor-thin uniform disk

As another example of application of the models introduced in section 3.4.2, we
consider here the case of a razor-thin uniform disk.

We consider a density distribution in the form

ρ = A(R)ρh(Φ) (3.4.17)

and
Φ = 2πΣ0z. (3.4.18)

So from eq. (3.4.5) we can calculate:

ρu2
ϕ

R
=

∫ z0

z

(
∂A(R)

∂R

∂Φ

∂z′
− ∂A(R)

∂z′
∂Φ

∂R

)
ρh(Φ) dz′ =

=

∫ z0

z

(
A′(R)2πGΣ0

)
ρh(Φ) dz′ =

= 2πGΣ0A
′(R)

∫ z0

z

ρh(Φ) dz′.

(3.4.19)

Having A′(R) ≥ 0 is the necessary and sufficient condition to have physical acceptable
solutions in this case.

The reason for this condition is that a gas distribution ρ(R, z) that not stratified
on Φ must be rotating and its pressure must be radially increasing. We can note
(from equation (3.3.2)) that in the present case the pressure is proportional to the
gas column density and this means that in a vertical gravitational field u2

ϕ ≥ 0 every
time the column density is radially increasing.
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Chapter 4
Power-law tori

In this chapter we focus on rotating toroidal gaseous systems. We take as starting
point models that were originally introduced as stellar systems in [Ciotti, Bertin 2005].
In the isotropic case the governing equations are formally identical to the hydrody-
namics equations, so the solutions can be interpreted as fluid systems.

These systems are rotating and have baroclinic distributions.
I will use the Euler equations and the results presented in the previous chapter to

discriminate what models are physically acceptable and how these tori react to linear
perturbations.

In the first part of the chapter we will investigate self-gravitating tori and then we
will examine the case in which a black hole gravitational potential is added.

These latter systems can be considered idealized models of toroidal gaseous struc-
tures in AGN.



4.1 Construction of the models

We consider the family of power-law tori presented by L. Ciotti and G. Bertin
[Ciotti, Bertin 2005], in which the dimensionless 1 density distribution is defined as

ρ̃ =
R̃2

r̃α
, (α > 0) (4.1.1)

where R̃ = R/a, r̃ = r/a, R and z are cylindrical coordinates, r =
√
R2 + z2 is the

spherical radius and a is a scale parameter. Figure 4.1 shows the isodensity contours
in the meridional plane for various values of α.

In this chapter we focus on models with

2 < α < 5. (4.1.2)

We will not consider here the interval 0 < α < 2 because we exclude cases in which
the density diverges for r →∞. Moreover we will not study case with α > 5 because
they are characterized by an infinite central mass [Ciotti, Bertin 2005].

The dimensionless gravitational potential generated by the density distribution
(4.1.1) for 2 < α < 5 is (see [Ciotti, Bertin 2005])

Φ̃ =


− r̃2−α

(α− 2)(7− α)

[
4r̃2

(α− 4)(5− α)
+ R̃2

]
(α 6= 4)

1

3

(
2 ln r̃ − 1

2

R̃2

r̃2

)
(α = 4),

(4.1.3)

such that
∇̃2Φ̃ = ρ̃ (4.1.4)

where ∇̃2 = a2∇2 is the dimensionless Laplace operator.

Physical normalization constant. Let us begin our study by calculating the phys-
ical normalization constant that permits to express the density-potential pair (eq.
(4.1.1), eq. (4.1.3)) in physical units.

One can write the density distribution as

ρ = ρ0ρ̃ = ρ0a
α−2R

2

rα
, (4.1.5)

where ρ0 is a constant with dimension of a mass density.
If we introduce a constant Φ0, with dimension of a gravitational potential (or of a

velocity squared), and we define
Φ = Φ0Φ̃, (4.1.6)

we can write, by virtue of equation (1.2.14),

∇2Φ =Φ0∇2Φ̃ = a−2Φ0∇̃2Φ̃ =

=4πGρ = 4πGρ0ρ̃.
(4.1.7)

1Throughout this chapter the symbol ” ˜ ” indicates dimensionless quantities.
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Figure 4.1: Isodensity contours in the meridional plane y = 0 of tori with density
distribution (4.1.1) for different values of α. The color bar indicates the values of
the normalized density ρ̃. We use as horizontal label x̃ = x/a and as vertical label
z̃ = z/a. Here x, y, z are Cartesian dimensionless coordinates (R2 = x2 + y2).

Hence we find from equation (4.1.7) that the physical normalization constant for the
potential is

Φ0 = 4πGρ0a
2. (4.1.8)
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4.2 Self-gravitating case

In this section we are going to discuss about self-gravitating rotating toroidal
gaseous systems, for which the gravitational potential is generated only by its density
distribution (equation (4.1.1)).

4.2.1 Solution of the stationary Euler equation

If we suppose that the gas in the torus configuration can be modeled as an ideal
fluid, it follows from the z component of the stationary Euler equation that

p(R, z) =

∫ ∞
z

ρ
∂Φ

∂z
dz. (4.2.1)

For α 6= 4 and assuming that p(R,∞) = 0 we have in cylindrical coordinates

p(R, z) =
4πGρ2

0

a2(2−α)

R2(R2 + z2)1−α

7− α

[
2(R2 + z2)

(α− 2)2(5− α)
+

R2

2(α− 1)

]
, (4.2.2)

whereas if α = 4 one obtains

p(R, z) =
2

3
πρ2

0Ga
4

[
R2

(R2 + z2)2
+

R4

3(R2 + z2)3

]
. (4.2.3)

Moreover, the R-component of the stationary Euler equation gives

Ω2R =


8πGρ0

(7− α)a2−α (R2 + z2)(1−α
2

)

[
2(R2 + z2)

R(α− 2)2(5− α)
− R

(α− 2)(α− 1)

]
, for α 6= 4

4

3
πρ0Ga

2

[
1

R
− 1

3

R

R2 + z2

]
, for α = 4,

(4.2.4)
where Ω is the angular frequency.

4.2.2 Selection of the physical models

By using the spherical coordinate r, from equation (4.2.4), with uϕ = ΩR, we have

u2
ϕ =

4

3
πGρ0a

2

[
1− R2

3r2

]
, for α = 4 (4.2.5)

and

u2
ϕ =

8πGρ0r
2−α

(7− α)a2−α

[
2r2

(α− 2)2(5− α)
− R2

(α− 1)(α− 2)

]
, for α 6= 4. (4.2.6)

We look for those values of α that give physically acceptable solutions, i.e. solutions
for which the rotational velocity field squared is positive defined or null for all (r, R) .
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Using R = r sin θ, where θ is the colatitude in spherical coordinates (0 ≤ θ ≤ π;
0 ≤ sin θ ≤ 1), and factorizing r2 in front of the square brackets, we can write

u2
ϕ =

8πGρ0r
4−α

(7− α)(α− 2)a2−α

[
2

(α− 2)(5− α)
− sin2 θ

α− 1

]
. (4.2.7)

u2
ϕ ≥ 0 for all r and θ when

2 < α < 5. (4.2.8)

Proof. We need to find those values of α such that

1

(7− α)(α− 2)

[
2

(α− 2)(5− α)
− sin2 θ

α− 1

]
≥ 0, for 0 ≤ θ ≤ π. (4.2.9)

For

2 < α < 5, (4.2.10)

the first factor of (4.2.9) is positive, while the second is positive when

2

(α− 2)(5− α)
≥ sin2 θ

α− 1
. (4.2.11)

In the case (4.2.8) we have

2(α− 1)

(α− 2)(5− α)
≥ sin2 θ, (4.2.12)

where sin2 θ ∈ [0, 1].
This must be true for every value of sin2 θ, so we have to solve the inequality

2(α− 1)

(α− 2)(5− α)
> 1. (4.2.13)

Solutions of (4.2.13) are all in the interval

2 < α < 5. (4.2.14)

The dimensionless rotational velocity. One can define the dimensionless rota-
tion velocity field squared as

ũ2
ϕ ≡

u2
ϕ

u2
0

=
u2
ϕ

8πGρ0a2
=

1

6

[
1− R̃2

3r̃2

]
, for α = 4 (4.2.15)
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and

ũ2
ϕ ≡

u2
ϕ

u2
0

=
u2
ϕ

8πGρ0a2
=

r̃2−α

(7− α)(α− 2)

[
2r̃2

(α− 2)(5− α)
− R̃2

α− 1

]
, for α 6= 4,

(4.2.16)
where

u2
0 = 8πGρ0a

2. (4.2.17)

We have from (4.2.15) and (4.2.16) that the dimensionless rotation velocity field in
the equatorial plane (at z = 0) reads

ũ2
ϕ(R, 0) =

1

9
, for α = 4 (4.2.18)

and

ũ2
ϕ(R, 0) =

R̃4−α

(7− α)(α− 2)

[
2

(α− 2)(5− α)
− 1

α− 1

]
, for α 6= 4. (4.2.19)

In figure (4.2) we show rotation velocity fields in the equatorial plane for models with
different values of α.

4.2.3 General linear stability analysis

Here we focus on α 6= 4. The case α = 4 is studied in §4.2.4. In order to study
the linear stability of the self-gravitating system the conditions of Solberg-Hoiland
criterion have been used. For an ideal gas we can write the inequalities (2.5.31) and
(2.5.32) as

1

R3

∂J2
z

∂R
− 1

γρ
∇p · ∇ ln

(
p

ργ

)
≥ 0 (4.2.20)

and

−∂p
∂z

[
∂J2

z

∂R

∂ ln
(
p/ργ

)
∂z

− ∂J2
z

∂z

∂ ln
(
p/ργ

)
∂R

]
≥ 0 (4.2.21)

where Jz is the specific angular momentum and the entropy has be written as

S =CV ln
(
p/ργ

)
=CV

{
ln

[
4πGρ2

0

a2(2−α)

R2(R2 + z2)1−α

7− α

[
2(R2 + z2)

(α− 2)2(5− α)
+

R2

2(α− 1)

]]
+

− γ ln

[
ρ0a

α−2 R2

(R2 + z2)α/2

]}
,

(4.2.22)

where we have used CP/CV = γ.
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Figure 4.2: Rotation curves of velocity in the equatorial plane for self-gravitating
power-law tori with α = 2.1, α = 2.5, α = 3, α = 3.5, α = 4, α = 4.5 and α = 4.9.
On the x-axis we have the logarithm of the cylindrical radius normalized to a; on
the vertical axis we have the logarithm of the dimensionless rotation velocity field
normalized to ũϕ(a).
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Study of inequality (4.2.20). Let us take into account formula (4.2.20) by using
cylindrical coordinates (R, z). We have for the first addend

1

R3

∂J2
z

∂R
=

1

R3

∂

∂R

{
4πGρ0

(7− α)a2−α

[
4R2(R2 + z2)2−α/2

(α− 2)2(5− α)
− 2R4(R2 + z2)1−α/2

(α− 2)(α− 1)

]}
.

(4.2.23)
Hence

1

R3

∂J2
z

∂R
=

4πGρ0

(7− α)a2−α

[
8(R2 + z2)2−α/2

R2(α− 2)2(5− α)
+

4(4− α)(R2 + z2)1−α/2

(α− 2)2(5− α)
−

− 8(R2 + z2)1−α/2

(α− 2)(α− 1)
+

2R2(R2 + z2)−α/2

α− 1

]
.

(4.2.24)

Therefore we can develop the second term of the inequality as

∇p · ∇ ln(p/ργ) =
∂p

∂R

∂ ln(p/ργ)

∂R
+
∂p

∂z

∂ ln(p/ργ)

∂z
, (4.2.25)

where

∂p

∂R
=

4πGρ2
0

a2(2−α)(7− α)
(R2 + z2)−α

[
4R(R2 + z2)2

(α− 2)2(5− α)
− 4R3(R2 + z2)

(α− 2)(5− α)
+

+
2R3(R2 + z2)

α− 1
−R5

]
,

(4.2.26)

∂p

∂z
= − 4πGρ2

0

a2(2−α)(7− α)
z

[
4R2(R2 + z2)1−α

(α− 2)(5− α)
+R4(R2 + z2)−α

]
, (4.2.27)

∂ ln(p/ργ)

∂R
=

2

R
+

2R(1− α)

R2 + z2
+

8R(α− 1) + 2R(α− 2)2(5− α)

4(α− 1)(R2 + z2) +R2(α− 2)2(5− α)

− γ
(

2

R
− αR

R2 + z2

)
,

(4.2.28)

and

∂ ln(p/ργ)

∂z
=

2z(1− α)

R2 + z2
+

8z(α− 1)

4(α− 1)(R2 + z2) +R2(α− 2)2(5− α)

+ γ
αz

R2 + z2
.

(4.2.29)
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Expanding the r.h.s. of eq. (4.2.25), we get

4πGρ2
0

(7− α)a2(2−α)

[
4R(R2 + z2)2−α

(α− 2)2(5− α)
− 4R3(R2 + z2)1−α

(α− 2)(5− α)
+

+
2R3(R2 + z2)1−α

α− 1
−R5(R2 + z2)−α

]
×

×
[

2

R
+

2R(1− α)

R2 + z2
+

8(α− 1)R + 2R(α− 2)2(5− α)

4(α− 1)(R2 + z2) + (α− 2)2(5− α)R2

− γ
(

2

R
− αR

R2 + z2

)]
+

+
4πGρ2

0

(7− α)a2(2−α)
z

[
− 4R2(R2 + z2)1−α

(α− 2)(5− α)
−R4(R2 + z2)−α

]
×

×
[

2z(1− α)

R2 + z2
+

8z(α− 1)

4(α− 1)(R2 + z2) + (α− 2)2(5− α)R2
+

+ γ

(
αz

R2 + z2

)]
.

(4.2.30)
By solving the Solberg-Hoiland inequality (4.2.20) in spherical coordinates and using
t ≡ sin θ (0 ≤ t ≤ 1) we get

8πGρ0

7− α
r̃2−α

{
8

t2(α− 2)2(5− α)
+

2(α3 − 12α2 + 17α− 2)

(α− 2)2(α− 5)(α− 1)
+

(
α

2
− 2

)
t2 + αt4+

+
1

γ

[
4

t2(α− 2)2(α− 5)
+

2(α3 − 3α2 − 4α + 10)

(α− 5)(α− 2)2(α− 1)
−

− 1

4(α− 1) + t2(α− 2)2(5− α)

(
(α3 − 9α2 + 16α− 12)t4−

− 2(α3 − 9α2 + 26α− 22)

α− 1
t2 +

4(α3 − 5α2 + 8α− 8)

(α− 2)2(α− 5)

)]}
≥ 0.

(4.2.31)
We can study some particular cases of equation (4.2.31). For example

• for t→ 0 (θ → 0 and θ → π) we have

8πGρ0

7− α
r̃2−α

{
4

t2(α− 2)2(5− α)

[
2− 1

γ

]
+

2(α3 − 12α2 + 17α− 2)

(α− 2)2(α− 5)(α− 1)
+

+
2(α3 − 3α2 − 4α + 10)

γ(α− 5)(α− 2)2(α− 1)
− α3 − 5α2 + 8α− 8

γ(α− 1)(α− 2)2(α− 5)

}
≥ 0

(4.2.32)
that can be written as

8πGρ0

7− α
r̃2−α

{
4
[
2− 1

γ

]
t2(α− 2)2(5− α)

+
P(α3)

P(α4)

}
≥ 0 (4.2.33)

where

P(α3) = α3
(
2 +

1

γ

)
− α2

(
24 +

1

γ

)
+ α

(
34− 16

γ

)
− 4 +

28

γ
(4.2.34)
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and
P(α4) = (α− 2)2(α− 5)(α− 1). (4.2.35)

The ratio
P(α3)

P(α4)
(4.2.36)

gives no contributes in this limit.

Therefore in range (4.2.8), we have that (4.2.33) is verified, thus the inequality
(4.2.31) holds for θ → 0 and θ → π.

• for t→ 1 (θ → π/2) we get

8πGρ0

7− α
r̃2−α

{
−72 + 288α− 312α2 + 143α3 − 34α4 + 3α5

2α4 − 20α3 + 66α2 − 88α + 40
+

+
1

γ

[
−1344 + 3264a− 3360a2 + 1924a3 − 681a4 + 151a5 − 19a6 + a7

a7 − 19a6 + 143a5 − 557a4 + 1236a3 − 1588a2 + 1104a− 320

]}
≥ 0.

(4.2.37)
Let us define

W (α, γ) =
−72 + 288α− 312α2 + 143α3 − 34α4 + 3α5

2α4 − 20α3 + 66α2 − 88α + 40
+

+
1

γ

[
−1344 + 3264a− 3360a2 + 1924a3 − 681a4 + 151a5 − 19a6 + a7

a7 − 19a6 + 143a5 − 557a4 + 1236a3 − 1588a2 + 1104a− 320

]
.

(4.2.38)
We fix γ = 5/3 and look for the roots of equation (4.2.38):

501α8 − 9987α7 + 81203α6−358409α5 + 949300α4 − 1484264α3+

+ 1231800α2 − 357216α− 76416 = 0.
(4.2.39)

Considering the fundamental theorem of algebra, we have 8 roots and one can
prove that 4 of these are in R.

We have real solutions

α ' −0.14; α ' 1.46; α ' 5.47; α ' 6.24. (4.2.40)

A change of sign of (4.2.38) occurs at these values. In particular we have a
negative solution for

−0.14 < α < 1.46
⋃

5.47 < α < 6.24 (4.2.41)

and positive solutions for

1.46 < α < 5.47
⋃

α > 6.24 (4.2.42)

By virtue of the the physical conditions (4.2.8) we have that for θ → π/2, the
configuration is stable.
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Following the same mathematical steps, if we assume γ = 4/3, eq. (4.2.38) is
positive if

1.49 < α < 5.44
⋃

α > 6.26 (4.2.43)

Using the range conditions (4.2.8), we get positive solutions for every physical
α.

Therefore (4.2.37) for γ = 4/3 is true in

2 < α < 5. (4.2.44)

Finally, if we consider a biatomic gas (γ = 1.4) in eq. (4.2.38) we have that
(4.2.37) is always satisfied if

2 < α < 5. (4.2.45)

We can conclude that in

2 < α < 5, (4.2.46)

the linear stability criterion (4.2.20) is always satisfied for θ → kπ (k = 0, 1) and for
θ → π/2. However, based on these calculations, we cannot exclude that the instability
occurs at intermediate θ, for a generic α.

Study of inequality (4.2.21). For the formula (4.2.21) we have:

−∂p
∂z

=
4πGρ2

0

(7− α)a2(2−α)
zR2(R2 + z2)−α

[
4(R2 + z2)

(α− 2)(5− α)
+R2

]
, (4.2.47)

∂J2
z

∂R

∂ ln
(
p/ργ

)
∂z

=

=

[
8πGρ0

(7− α)a2−αR(R2 + z2)−
α
2

(
4(R2 + z2)2

(α− 2)2(5− α)
+

2R2(4− α)(R2 + z2)

(α− 2)2(5− α)
−

− 4R2(R2 + z2)

(α− 2)(α− 1)
− R4

α− 1

)]
×

× z
[

2(1− α)

R2 + z2
− 8(1− α)

4(α− 1)(R2 + z2) +R2(α− 2)2(5− α)
+ γ

α

R2 + z2

]
(4.2.48)

and

∂J2
z

∂z

∂ ln
(
p/ργ

)
∂R

=

=

[
8πGρ0R

2

(7− α)a2−α z(R2 + z2)−
α
2

(
2(4− α)(R2 + z2)

(α− 2)2(5− α)
+

R2

α− 1

)]
×

×
[

2

R
+

2R(1− α)

R2 + z2
+ 2R

4(α− 1) + (α− 2)2(5− α)

4(α− 1)(R2 + z2) +R2(α− 2)2(5− α)
−

− γ
(

2

R
− αR

R2 + z2

)]
.

(4.2.49)
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Therefore we have

∂J2
z

∂R

∂ ln
(
p/ργ

)
∂z

− ∂J2
z

∂z

∂ ln
(
p/ργ

)
∂R

=

=
8πGρ0

(7− α)a2−αRz(R2 + z2)−
α
2

{
− 4(α + 2)(R2 + z2)

(α− 2)2(5− α)
−

− 4(R2 + z2)

(α− 2)2(5− α)[4(α− 1)(R2 + z2) +R2(α− 2)2(5− α)]

(
8(1− α)(R2 + z2)+

+R2(α4 − 13α3 + 60α2 − 116α + 80)
)

+
8R2

α− 2
−

− 2R2

4(α− 1)(R2 + z2) +R2(α− 2)2(5− α)
×

×
(

16(α− 1)(R2 + z2)−R2(α4 − 11α3 + 34α2 − 44α + 24)

(α− 2)(α− 1)

)
+

4R2

R2 + z2
− 2R2

α− 1
+

+ γ

[
− 4R2α

(α− 2)(α− 1)
− 2αR4

(α− 1)(R2 + z2)
+

16(R2 + z2)

(α− 2)2(5− α)
+

2R2

α− 1

]}
.

(4.2.50)
We can write the (4.2.21) in spherical coordinates, using t ≡ sin θ, as

32π2G2ρ3
0

(7− α)2a3(2−α)
r3(3−α)t3(1− t2)

[
4

(α− 2)(5− α)
+ t2

]
×

×
{

4(2 + α)

(α− 2)2(α− 5)
− 4

(α− 2)2(5− α)

8(1− α) + t2(α− 2)2(α− 5)(α− 4)

4(α− 1) + t2(α− 2)2(5− α)
−

− 2t2

(α− 2)(α− 1)

16(α− 1)− t2(α− 2)(α3 − 9α2 + 16α− 12)

4(α− 1) + t2(α− 2)2(5− α)
+

+
2(3α− 2)

(α− 2)(α− 1)
t2 + 4t4+

+ 2γ

[
8

(α− 2)2(5− α)
− α + 2

(α− 2)(α− 1)
t2 − α

α− 1
t4
]}
≥ 0.

(4.2.51)
Ignoring the positive quantity, if we consider the limit t→ 0 in (4.2.51) we get

16(4γ − α)

(α− 2)3(α− 5)2
≥ 0. (4.2.52)

Hence in the range (4.2.8) we have that this condition is always true. As we said
before, we cannot exclude that the instability occurs at intermediate θ for generic α
just from these calculations.

4.3 Linear stability analysis for models of given α

Here we determine whether some models of given α are stable or unstable.
In considering these models we note that, according to [Ciotti, Bertin 2005], the

circular velocity vanishes for α = αn ' 2.44. Moreover for α < αn we would have a
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negative squared circular velocity, in the sense that in this range the radial force field
in the equatorial plane is directed outward.

We are going to consider monoatomic (γ = 5/3) physical gases for given values of
α in order to determine whether they are stable or not by using inequality (4.2.20).

• For α = 2.1, the inequality (2.5.31) is verified.

From (4.2.31), we get

8.8× 1039 + 2.9× 1040t2 + 2.0× 1038t4 + 1.5× 1039t6 + 6.3× 1038t8

3.0× 1035t4 + 4.6× 1037t2
≥ 0,

(4.3.1)
that is true for every t.

• For α = 2.5, the inequality (2.5.31) is verified.

From (4.2.31), we get

129024 + 617472t2 + 60160t4 + 53055t6 + 3750t8

1500t4 + 14400t2
≥ 0, (4.3.2)

that is true for every t.

• For α = 3, the inequality (2.5.31) is verified.

From (4.2.31), we get

30t8 + 169t6 + 152t4 + 680t2 + 112

10t4 + 40
≥ 0, (4.3.3)

that is true for every t.

• For α = 3.5, the inequality (2.5.31) is verified.

From (4.2.31), we get

358400 + 2467840t2 + 746496t4 + 1040715t6 + 255150t8

72900t4 + 216000t2
≥ 0, (4.3.4)

that is true for every t.

• For α = 4.1 the inequality (2.5.31) is verified.

From (4.2.31), we get a positive function for every t.

• α = 4, the inequality (2.5.31) is verified.

For this model inequality (4.2.20) can be written as

8πρ0G

3r̃2

[
2

sin2 θ
+ 4 sin2 θ +

1

γ(3 + sin2 θ)

(
− 3

sin2 θ
− 4 +

2

3
sin3 θ + sin4 θ

)]
≥ 0.

(4.3.5)
Introducing t = sin θ, and neglecting the trivial positive terms, we get

2 (1053− 99t2 + 3006t4 + 100t5 + 1152t6)

501 (t2 + 3) t2
≥ 0, (4.3.6)

that is always verified.
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Here we investigate the stability of some models according to (4.2.21) for monoatomic
gases (γ = 5/3).

• For α = 2.1, the inequality (2.5.32) is verified.

From (4.2.51) we get

(t− 1) t3 (1 + t) (400 + 29t2) (−44334400000 + 8310588000t2 + 654774470t4 + 2486837t6)

462550 (29t2 + 4400)
,

(4.3.7)
that is a positive quantity for every t ∈ [0, 1].

• For α = 2.5, the inequality (2.5.32) is verified.

From (4.2.51) we get

(t− 1) t3 (1 + t) (16 + 5t2) (−963072 + 561120t2 + 285550t4 + 17125t6)

3750 (5t2 + 48)
,

(4.3.8)
that is a positive quantity for every t ∈ [0, 1].

• For α = 3.

From (4.2.51) we get

(t− 1) t3 (1 + t) (2 + t2) (−2944 + 2004t2 + 2639t4 + 401t6)

100 (t2 + 4)
. (4.3.9)

Here we note that for

– 0.847 < t < 1 the system is unstable,

– 0 < t < 0.847 the system is linearly stable.

• For α = 3.5.

From (4.2.51) we obtain

(t− 1) t3 (1 + t) (16 + 9t2) (−678400 + 400800t2 + 1020474t4 + 223317t6)

20250 (27t2 + 80)
.

(4.3.10)
Hence we have

– 0.782 < t < 1 the distribution is unstable,

– 0 < t < 0.782 the distribution is linearly stable.

• For α = 4.1.

In this case we have

– 0.776 < t < 1 the distribution is unstable,

– 0 < t < 0.776 the distribution is linearly stable.
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• α = 4

In this case (4.2.21) assumes the form:

32π2ρ3
0G

2a6

9r3

[
2 sin2 θ cos θ − sin4 θ cos θ

3− sin2 θ
(12 sin θ cos θ +

8

3
sin5 θ cos θ)−

− γ(2 sin2 θ cos θ − sin4 θ cos θ)(4 sin θ cos θ − 10

3
sin3 θ cos θ+

+
8

3
sin5 θ cos θ)

]
≥ 0.

(4.3.11)
By using the parametrization sin θ = t we have

(−2412 + 10632t2 − 16605t4 + 12160t6 − 4443t8 + 668t10) t3

150 (t2 − 3)
. (4.3.12)

This means that we have

– a linearly stable distribution in the area designed by 0 ≤ t ≤ 0.7,

– an instable distribution when 0.7 < t ≤ 1.

We summarize in table 4.1 the discussed linear stability analysis. We note that for
small α the gas distribution is stable for every θ, while if α grows there are some
regions in which the same model assume an instable behavior when perturbed.

α Behavior if perturbed Range of coordinates
2.1 Stable 0 < t < 1
2.5 Stable 0 < t < 1
3 Stable 0 < t < 0.847

Unstable 0.847 < t < 1
3.5 Stable 0 < t < 0.782

Unstable 0.782 < t < 1
4 Stable 0 < t < 0.7

Unstable 0.7 < t < 1
4.1 Stable 0 < t < 0.776

Unstable 0.776 < t < 1

Table 4.1: Results of the linear stability analysis for a selection of models with given
α and γ = 5/3. Here we use t ≡ sin θ.
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4.4 Black Hole potential

We consider here gaseous tori with density (4.1.1) in equilibrium in a gravitational
potential given by the sum of their own gravitational potential and that of a cen-
tral black hole. The gravitational potential of the black hole written in cylindrical
coordinates is

Φ• = − GM•
(R2 + z2)1/2

, (4.4.1)

where M• is the mass of the central black hole.

4.4.1 Solution of the stationary Euler equation

Considering that the potential is additive and the derivative operator is linear, we
can write the pressure as

p = pself + p•, (4.4.2)

where pself is given by (4.2.2) and

p• =

∫ ∞
z

ρ
∂Φ•
∂z

dz =

=
GM•ρ

(α + 1)(R2 + z2)1/2
.

(4.4.3)

Proof.

p• =

∫ ∞
z

ρ
∂Φ•
∂z

dz =

=

∫ ∞
z

ρ0a
α−2R2(R2 + z2)−α/2

(
GM•z(R2 + z2)−3/2

)
dz

= ρ0a
α−2R2GM•

∫ ∞
z

z
(
R2 + z2

)− 3+α
2 dz =

=
GM•ρ0a

α−2R2(R2 + z2)−
α+1
2

α + 1
=

=
GM•
α + 1

(R2 + z2)−1/2ρ0R̃
2

r̃α
=

=
GM•
α + 1

ρ

(R2 + z2)1/2
,

(4.4.4)

where we have used eq. (4.1.5).

The total gravitational potential is

Φtot = Φself + Φ• =

= −4πGρ0

a2−α
(R2 + z2)1−α/2

(α− 2)(7− α)

(
4(R2 + z2)

(α− 4)(5− α)
+R2

)
−

− GM•
(R2 + z2)1/2

, for α 6= 4,

(4.4.5)
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and

Φtot = Φself + Φ• =

=
4πGρ0a

2

3

[
2 ln

(√
R2 + z2

a

)
− 1

2

R2

R2 + z2

]
− GM•

(R2 + z2)1/2
, for α = 4.

(4.4.6)
The pressure is

p = pself + p• =

=
4πGρ2

0

a2(2−α)

R2(R2 + z2)1−α

7− α

[
2(R2 + z2)

(α− 2)2(5− α)
+

R2

2(α− 1)

]
+

+
GM•ρ0

(α + 1)a2−α
R2

(R2 + z2)
1
2

(α+1)
, for α 6= 4

(4.4.7)

and

p = pself + p• =
2πGρ2

0a
4

3

[
R2

(R2 + z2)2
+

R4

3(R2 + z2)3

]
+

+
GM•ρ0

5a−2

R2

(R2 + z2)
5
2

, for α = 4.

(4.4.8)

If we take into account the radial component of the Euler equation (eq. 3.1.2) we
have

1

ρ

∂p

∂R
=

4πGρ0

(7− α)a2−α (R2 + z2)−α/2
[

4(R2 + z2)2

R(α− 2)2(5− α)
− 4R(R2 + z2)

(α− 2)(5− α)

+
2R(R2 + z2)

α− 1
−R3

]
+

+
2GM•

R(R2 + z2)1/2(α + 1)
− GM•R

(R2 + z2)3/2
, for α 6= 4,

(4.4.9)

1

ρ

∂p

∂R
=

4πρ0Ga
2

3

[
1

R
− 4R

R2 + z2
− R3

(R2 + z2)2

]
+

2GM•
5R(R2 + z2)1/2

− GM•R

(R2 + z2)3/2
, for α = 4,

(4.4.10)

and

∂Φtot

∂R
=− 4πGρ0

a2−α(α− 2)(7− α)
(R2 + z2)−α/2

[
− 4R(R2 + z2)

5− α
+ 2R(R2 + z2)+

+R3(2− α)

]
+

+
GM•R

(R2 + z2)3/2
, for α 6= 4.

(4.4.11)
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∂Φtot

∂R
=

4πρ0Ga
2

3

[
R

R2 + z2
+

R3

(R2 + z2)2

]
+

+
GM•R

(R2 + z2)3/2
, for α = 4.

(4.4.12)

Therefore we can conclude that the radial component of the acceleration can be ex-
pressed as function of (R, z) as

Ω2R =
8πGρ0

(7− α)(α− 2)a2−α (R2 + z2)(1−α
2

)

[
2(R2 + z2)

R(α− 2)(5− α)
− R

(α− 1)

]
+

+
2GM•

R(R2 + z2)1/2(α + 1)
, for α 6= 4

(4.4.13)

and

Ω2R =
4πGρ0a

2

3

[
1

R
− R

3(R2 + z2)

]
+

2GM•
5R(R2 + z2)1/2

, for α = 4.

(4.4.14)

4.4.2 Selection of the physical models

Using the same considerations as in the self-gravitating case, we can write rotation
velocity field in presence of a black hole as

u2
ϕ =

4

3
πGρ0a

2

[
1− R2

3r2

]
+

2GM•
5r

, for α = 4, (4.4.15)

that is a positive quantity, and

u2
ϕ =

8πGρ0r
2−α

(7− α)a2−α

[
2r2

(α− 2)2(5− α)
− R2

(α− 1)(α− 2)

]
+

2GM•
(α + 1)r

, for α 6= 4.

(4.4.16)
In order to study the positivity of (4.4.16) we need to analyze the following inequality:

4πρ0r
5−α

(7− α)(α− 2)a2−α

[
2

(α− 2)(5− α)
− sin2 θ

α− 1

]
≥ − M•

(α + 1)
, (4.4.17)

where we have used R = r sin θ.
From the self-gravitating case, we know that the l.h.s. of (4.4.17) is a positive

quantity if conditions (4.2.8) are imposed over α. The r.h.s. of (4.4.17) is always
negative because α > 0. Hence values of α in the range (4.2.8) are acceptable also in
the presence of a black hole.

4.4.3 Dimensionless physical quantities

Here we present some dimensionless physical quantities that can be used to de-
scribe the properties of the gas distribution (4.1.1).
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We write these quantities in the presence of a black hole, but the case without BH
is obtained simply for M• = 0.

If we use R̃ = R/a and r̃ = r/a and we introduce the dimensionless acceler-

ation defined by Ω̃2R = (Ω2R)/(8πGρ0a) and the dimensionless black hole mass
µ = M•/(4πρ0a

3), we can write eq. (4.4.13) as

Ω̃2R =
Ω2R

8πGρ0a
=

(R̃2 + z̃2)(1−α
2

)

(7− α)(α− 2)

[
2(R̃2 + z̃2)

R̃(α− 2)(5− α)
− R̃

(α− 1)

]
+

+
µ

R̃(R̃2 + z̃2)1/2(α + 1)
, for α 6= 4

(4.4.18)

and eq. (4.4.14) as

Ω̃2R =
Ω2R

8πGρ0a
=

1

6

[
1

R̃
− R̃

3(R̃2 + z̃2)

]
+

µ

5R̃(R̃2 + z̃2)1/2
, for α = 4.

(4.4.19)
From equations (4.4.18) and (4.4.19) we can obtain the dimensionless angular fre-
quencies,

Ω̃ =

{
(R̃2 + z̃2)(1−α

2
)

(7− α)(α− 2)

[
2(R̃2 + z̃2)

R̃2(α− 2)(5− α)
− 1

(α− 1)

]
+

+
µ

R̃2(R̃2 + z̃2)1/2(α + 1)

}1/2

, for α 6= 4

(4.4.20)

and

Ω̃ =

{
1

6

[
1

R̃2
− 1

3(R̃2 + z̃2)

]
+

µ

5R̃2(R̃2 + z̃2)1/2

}1/2

, for α = 4. (4.4.21)

Using the equation of state for an ideal gas we can write

p =
ρkBT

µ′mp

(4.4.22)

where kB is the Boltzmann constant, µ′ is the mean gas particle mass in units of the
proton mass mp and mp is the proton mass at rest.

From (4.4.22) we get

T =
pµ′mp

ρkB
=

=
p

ρ

1

u2
0

µ′mp

kB
u2

0,

(4.4.23)

where
u2

0 ≡ 8πGρ0a
2. (4.4.24)

Hence if we define

T0 ≡
µ′mp

kB
u2

0, (4.4.25)
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and we get

T̃ =
T

T0

=
p

ρ

1

u2
ϕ

. (4.4.26)

If now we introduce
p̃ =

p

p0

, (4.4.27)

where
p0 ≡ 4πGρ2

0a
2, (4.4.28)

we can write (4.4.26), for α 6= 4 as

T̃ =
1

2

p̃

ρ̃
=

=
1

2

[
(R̃2 + z̃2)1−α/2

7− α

(
2(R̃2 + z̃2)

(α− 2)2(5− α)
+

R̃2

2(α− 1)

)
+

µ

(α + 1)(R̃2 + z̃2)1/2

]
.

(4.4.29)
and for α = 4 as

T̃ =
1

2

[
1

6

(
1 +

R̃2

3(R̃2 + z̃2)

)
+

µ

5(R̃2 + z̃2)1/2

]
. (4.4.30)

Finally we use the dimensionless spherical coordinates (r̃ = r/a), we can write eq.
(4.4.16) as

ũ2
ϕ =

r̃4−α

(7− α)(α− 2)

[
2

(α− 2)(5− α)
− sin2 θ

α− 1

]
+

µ

r̃(α + 1)
, (4.4.31)

where
ũ2
ϕ = u2

ϕ/u
2
0. (4.4.32)

We can write the dimensionless rotation velocity field squared as a function of (r̃, R̃)
as

ũ2
ϕ =

1

6

[
1− R̃2

3r̃2

]
+
µ

5r̃
, for α = 4 (4.4.33)

and

ũ2
ϕ =

r̃2−α

(7− α)(α− 2)

[
2r̃2

(α− 2)(5− α)
− R̃2

α− 1

]
+

µ

r̃(α + 1)
, for α 6= 4 (4.4.34)

From eq. (4.4.33) and eq. (4.4.34) we can get the dimensionless rotation velocity field
at z = 0 that reads

ũ2
ϕ(R, 0) =

1

9
+

µ

5R̃
, for α = 4 (4.4.35)

and

ũ2
ϕ(R, 0) =

R̃4−α

(7− α)(α− 2)

[
2

(α− 2)(5− α)
− 1

α− 1

]
+

µ

R̃(α + 1)
, for α 6= 4.

(4.4.36)

65



In figures (4.3) and (4.5) we show the distributions of the temperature T̃ in the
meridional plane for models α = 2.5 and α = 4 respectively. For the same models we
show the trend at different z and in presence of different black hole masses in figures
(4.4) and (4.6). In these figures one can observe a significant difference between the
two models in the self-gravitating case: for α = 4 the temperature distribution in
spherical coordinates reads

T̃ =
1

12

(
1 +

sin2 θ

3

)
, (4.4.37)

therefore it dependents just on the colatitude θ. Moreover we note that from the
contour plot, the introduction of a black hole potential term modifies the temperature
distribution that assume a spherical form in the meridional plane that diverges in the
origin.

In figures (4.7) and (4.9) we show the distributions of the angular frequency Ω̃ in
the meridional plane for models α = 2.5 and α = 4 respectively. For the same models
we show the trend at different z and in presence of different black hole masses in figures
(4.8) and (4.10). In both models we note that as R̃→∞ the angular frequency tends
to zero, whereas if R̃→ 0, no matter the value assumed by z or if we are in presence
of a black hole potential term, the angular frequency profiles diverge to infinity. For
both models (α = 2.5 and α = 4), comparing the self-gravitating toroidal distribution
to the case in which the gas is influenced also by an external black hole potential, the
figures show a different trend in the angular frequency profiles. In particular here we
note that for µ = 0, Ω increase with z and for µ = 10, Ω decrease with z.

In figures (4.11) and (4.13) we show the distributions of the rotation velocity field
ũϕ in the meridional plane for models α = 2.5 and α = 4 respectively. For the same
models we show the trend at different z and in presence of different black hole masses
in figures (4.12) and (4.14). Fig. (4.13) shows the dependence only on θ of the rotation
velocity field in the self-gravitating model α = 4 with no black hole. Both models
show that the black hole potential term assumes an important role when it is present:
the maps in the right panels of (4.11) and (4.13) tends to circular symmetry with a
rotation velocity that diverges in the center.

Finally in figure (4.15) we report the rotation velocity curves in the equatorial
plane for different tori and different black hole potentials.
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Figure 4.3: Temperature T̃ = T/T0 contours in the meridional plane ỹ = 0 for tori
with density distribution (4.1.1) for α = 2.5 (x̃ = x/a and z̃ = z/a). In the left
we show the self-gravitating model, while in the right panel we present a toroidal
distribution in presence of a black hole of mass M• = 4πρ0a

3µ.

Figure 4.4: Radial temperature profiles at different heights z for power-law tori with
α = 2.5 for three values of the black hole mass (µ = 0 is the case without black hole).
Here we use R̃ = R/a and T̃ = T/T0

.
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Figure 4.5: Same as fig. (4.3), but for α = 4.

Figure 4.6: Same as Fig. (4.4), but for α = 4.
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Figure 4.7: Angular frequency (Ω̃ = Ω/Ω0) contours in the meridional plane y = 0
for tori with density distribution (4.1.1) for α = 2.5 (x̃ = x/a and z̃ = z/a). In the
left we show the self-gravitating model, while in the right panel we present a toroidal
distribution in presence of a black hole of mass M• = 4πρ0a

3µ.

Figure 4.8: Angular frequency profiles at different heights z for power-law tori with
α = 2.5 for three values of the black hole mass (µ = 0 is the case without black hole).
Here we use Ω̃ = Ω/Ω0 and R̃ = R/a.
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Figure 4.9: Same as figure 4.7, but for α = 4.

Figure 4.10: Same as figure (4.8), but for α = 4.
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Figure 4.11: Rotation velocity (ũϕ = uϕ/u0) contours in the meridional plane y = 0
for tori with density distribution (4.1.1) for α = 2.5 (x̃ = x/a and z̃ = z/a). On the
left we show the self-gravitating model, while in the right panel we present a toroidal
distribution in presence of a black hole of mass M• = 4πρ0a

3µ.

Figure 4.12: Radial rotational velocity profiles for the model α = 2.5. On the top
panel we show the self-gravitating case for different values of z, while lower panel we
show the radial rotation velocity profiles of the gaseous distribution in presence of a
black hole with µ = 1 and µ = 10.
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Figure 4.13: Same as figure (4.11), but for α = 4.

Figure 4.14: Same as figure (4.12), but for α = 4.
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4.4.4 The linear stability

Here we make some comment about the Solberg-Hoiland conditions for tori in
equilibrium in the gravitational potential given by their self gravity plus a black hole.

Let us consider the physical quantities that compose inequality (4.2.20). We have

J2
z = Ω2R4 = R3

(
1

ρ

∂p

∂R
+
∂Φtot

∂R

)
=

(
R3

ρ

∂(pself + p•)

∂R
+R3∂(Φself + Φ•)

∂R

)
=

= R3

(
1

ρ

∂pself
∂R

+
∂Φself

∂R

)
+R3

(
1

ρ

∂p•
∂R

+
∂Φ•
∂R

)
= (J2

z )self + (J2
z )•,

(4.4.38)
where we have defined

(J2
z )self = R3

(
1

ρ

∂pself
∂R

+
∂Φself

∂R

)
(4.4.39)

and

(J2
z )• = R3

(
1

ρ

∂p•
∂R

+
∂Φ•
∂R

)
. (4.4.40)

We also have

∇p · ∇ ln

(
p

ργ

)
=

(
∂pself
∂R

+
∂p•
∂R

)(
∂ ln(pself + p•)

∂R
− γ ∂ ln ρ

∂R

)
+

+

(
∂pself
∂z

+
∂p•
∂z

)(
∂ ln(pself + p•)

∂z
− γ ∂ ln ρ

∂z

)
=

=
∂pself
∂R

∂ ln(pself + p•)

∂R
− γ ∂pself

∂R

∂ ln ρ

∂R
+

+
∂p•
∂R

∂ ln(pself + p•)

∂R
− γ ∂p•

∂R

∂ ln ρ

∂R
+

+
∂pself
∂z

∂ ln(pself + p•)

∂z
− γ ∂pself

∂z

∂ ln ρ

∂z
+

+
∂p•
∂z

∂ ln(pself + p•)

∂z
− γ ∂p•

∂z

∂ ln ρ

∂z
.

(4.4.41)

Therefore the extended form of (4.2.20) is

1

R3

∂(J2
z )self
∂R

+
1

R3

∂(J2
z )•

∂R
− 1

γρ

(
∂pself
∂R

∂ ln(pself + p•)

∂R
− γ ∂pself

∂R

∂ ln ρ

∂R
+

+
∂p•
∂R

∂ ln(pself + p•)

∂R
− γ ∂p•

∂R

∂ ln ρ

∂R
+

+
∂pself
∂z

∂ ln(pself + p•)

∂z
− γ ∂pself

∂z

∂ ln ρ

∂z
+

+
∂p•
∂z

∂ ln(pself + p•)

∂z
− γ ∂p•

∂z

∂ ln ρ

∂z

)
≥ 0.

(4.4.42)
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Instead if we consider (4.2.21), we get

−
[
∂pself
∂z

+
∂p•
∂z

]
×
[
∂(J2

z )self
∂R

∂ ln(pself + p•)

∂z
+
∂(J2

z )•
∂R

∂ ln(pself + p•)

∂z
−

− ∂(J2
z )self
∂z

∂ ln(pself + p•)

∂R
− ∂(J2

z )•
∂z

∂ ln(pself + p•)

∂R
−

− γ
(
∂(J2

z )self
∂R

∂ ln ρ

∂z
+
∂(J2

z )•
∂R

∂ ln ρ

∂z
−

− ∂(J2
z )self
∂z

∂ ln ρ

∂R
− ∂(J2

z )•
∂z

∂ ln ρ

∂R

)]
≥ 0.

(4.4.43)
Here we note that from (4.4.42) and (4.4.43), in general, we do not expect the same
solutions that we obtained in the self-gravitating case.

In the case2 α 6= 4, for the assigned potential (see 4.4.5) and pressure (see 4.4.7),
we have

J2
z =

8πGρ0

a2−α(7− α)
(R2 + z2)−α/2

[
2R2(R2 + z2)2

(α− 2)2(5− α)
− R4(R2 + z2)

(α− 2)(α− 1)

]
+

+
2GM•R

2

(α + 1)(R2 + z2)1/2
.

(4.4.44)

Therefore (4.4.38) can be written as

1

R3

∂J2
z

∂R
=

8πGρ0

a2−α(7− α)
(R2 + z2)−α/2

[
4(R2 + z2)2

R2(α− 2)(5− α)
+

2(4− α)(R2 + z2)

(α− 2)(5− α)
−

− 4(R2 + z2)

(α− 1)(α− 2)
+

2R2

α− 1

]
+

+
2GM•

R2(R2 + z2)(α− 1)

(
2− R2

R2 + z2

)
.

(4.4.45)
Then we have

− 1

γρ
= − (R2 + z2)α/2

γ(ρ0aα−2R2)
(4.4.46)

2Similar equations can be built for the model α = 4.
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and equation (4.4.41) can be written as

∇p · ∇ ln(p/ργ) =
∂p

∂R

∂ ln(p/ργ)

∂R
+
∂p

∂z

∂ ln(p/ργ)

∂z

=

{
4πGρ2

0

a2(2−α)
(R2 + z2)−α

[
4R(R2 + z2) + 4R3(2− α)(R2 + z2)

(α− 2)2(5− α)
+

+
2R3(R2 + z2) +R5(1− α)

α− 1

]
+

+
GM•ρ0R(R2 + z2)−α/2

(α + 1)a2−α

[
2

(R2 + z2)1/2
+

R2(1− α)

(R2 + z2)3/2

]}
×

×
{ 4πGρ20

a2(2−α)
(R2 + z2)−α

[
4R(R2+z2)+4R3(2−α)(R2+z2)

(α−2)2(5−α)
+ 2R3(R2+z2)+R5(1−α)

α−1

]
4πGρ20
a2(2−α)

R2(R2+z2)1−α

7−α

[
2(R2+z2)

(α−2)2(5−α)
+ R2

2(α−1)

]
+ GM•ρ0

(α+1)a2−α
R2

(R2+z2)
α+1
2

+

+

GM•ρ0R(R2+z2)−α/2

(α+1)a2−α

[
2

(R2+z2)1/2
+ R2(1−α)

(R2+z2)3/2

]
4πGρ20
a2(2−α)

R2(R2+z2)1−α

7−α

[
2(R2+z2)

(α−2)2(5−α)
+ R2

2(α−1)

]
+ GM•ρ0

(α+1)a2−α
R2

(R2+z2)
α+1
2

− γ
[

2

R
− αR

R2 + z2

]}
+

+

{
z

[
4πGρ2

0R
2

a2(2−α)
(R2 + z2)−α

[
− 4(R2 + z2)

(α− 2)(5− α)
−R2

]
− GM•ρ0R

2

a2−α(R2 + z2)
α+3
2

]}
×

×
{
z

[ 4πGρ20R
2

a2(2−α)
(R2 + z2)−α

[
− 4(R2+z2)

(α−2)(5−α)
−R2

]
− GM•ρ0R2

a2−α(R2+z2)
α+3
2

4πGρ20
a2(2−α)

R2(R2+z2)1−α

7−α

[
2(R2+z2)

(α−2)2(5−α)
+ R2

2(α−1)

]
+ GM•ρ0

(α+1)a2−α
R2

(R2+z2)
α+1
2

− γ α

R2 + z2

]}
.

(4.4.47)
In order to simplify the notation we can address with A(R, z) the r.h.s. of equation
(4.4.45), with B(R, z) the r.h.s. of equation (4.4.46) and finally with C(R, z) the r.h.s.
of equation (4.4.47).

Hence we can formulate Solberg-Hoiland condition as

A(R, z) +B(R, z)C(R, z) ≥ 0. (4.4.48)

Taking into account (4.2.21) we have

−∂p
∂z

= z

[
4πGρ2

0R
2

a2(2−α)
(R2 + z2)−α

[
4(R2 + z2)

(α− 2)(5− α)
+R2

]
+

GM•ρ0R
2

a2−α(R2 + z2)
α+3
2

]
,

(4.4.49)
and the partial derivatives of eq. (4.4.44) reads

∂J2
z

∂R
=

8πGρ0

a2−α(7− α)
R(R2 + z2)−α/2

[
2(R2 + z2)

2(R2 + z2) +R3(4− α)

(α− 2)2(5− α)
−

−R2 4(R2 + z2)−R3(2− α)

(α− 2)(α− 1)

]
+

+
2GM•R

(α + 1)(R2 + z2)1/2

(
2− R2

R2 + z2

) (4.4.50)
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and

∂J2
z

∂z
=

8πGρ0

a2−α(7− α)
R2z(R2 + z2)−α/2

[
2(4− α)(R2 + z2)

(α− 2)2(5− α)
− R4(2− α)

(α− 2)(α− 1)

]
−

− 2GM•R
2z

(α + 1)(R2 + z2)3/2
.

(4.4.51)
Moreover we have

∂ ln(p/ργ)

∂R
=

4πGρ20
a2(2−α)

(R2 + z2)−α
[

4R(R2+z2)+4R3(2−α)(R2+z2)
(α−2)2(5−α)

+ 2R3(R2+z2)+R5(1−α)
α−1

]
4πGρ20
a2(2−α)

R2(R2+z2)1−α

7−α

[
2(R2+z2)

(α−2)2(5−α)
+ R2

2(α−1)

]
+ GM•ρ0

(α+1)a2−α
R2

(R2+z2)
α+1
2

+

+

GM•ρ0R(R2+z2)−α/2

(α+1)a2−α

[
2

(R2+z2)1/2
+ R2(1−α)

(R2+z2)3/2

]
4πGρ20
a2(2−α)

R2(R2+z2)1−α

7−α

[
2(R2+z2)

(α−2)2(5−α)
+ R2

2(α−1)

]
+ GM•ρ0

(α+1)a2−α
R2

(R2+z2)
α+1
2

−

− γ
[

2

R
− αR

R2 + z2

]
,

(4.4.52)
and

∂ ln(p/ργ)

∂z
=z

[ 4πGρ20R
2

a2(2−α)
(R2 + z2)−α

[
− 4(R2+z2)

(α−2)(5−α)
−R2

]
− GM•ρ0R2

a2−α(R2+z2)
α+3
2

4πGρ20
a2(2−α)

R2(R2+z2)1−α

7−α

[
2(R2+z2)

(α−2)2(5−α)
+ R2

2(α−1)

]
+ GM•ρ0

(α+1)a2−α
R2

(R2+z2)
α+1
2

−

− γ α

R2 + z2

]
.

(4.4.53)
The inequalities obtained in this section are cumbersome even when we substitute
given values of α, so the stability analysis with black hole is beyond the purpose of
the thesis.

4.5 Baroclinic models in an external keplerian po-

tential

We show here how the method described in §3.4.2 can be used to build baroclinic
models like those presented in this chapter. For simplicity we assume that the po-
tential is external (we neglect self-gravity of the gas). We start from a barotropic
configuration with cylindrical velocity uϕ,0(R) ≡ uϕ(R, z0) = 0 and a black hole po-
tential

Φ(R, z) = − GM•
(R2 + z2)1/2

. (4.5.1)
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In practice we build baroclinic models with

ρ(R, z) = f(R)ρh(Φ), (4.5.2)

where ρh(Φ) is a hydrostatic solution.
Under these assumptions the effective pressure is given by

ph =

∫ z0

z

GM•ρh
z′

(R2 + z′2)
3
2

dz′, (4.5.3)

and we have

p(R, z) = f(R)

∫ z0

z

GM•ρh
z′

(R2 + z′2)
3
2

dz′. (4.5.4)

We assume
f(R) = R2 (4.5.5)

and

ρh =
GM•

(R2 + z2)κ
, (4.5.6)

in order to get

ρ(R, z) = f(R)ρh =
GM•R

2

(R2 + z2)κ
, κ 6= −1. (4.5.7)

Assuming z0 =∞,

p(R, z) =
(GM•)

2R2

(2κ+ 1)(R2 + z2)
1
2

+κ
. (4.5.8)

Hence if we suppose that u2
ϕ,0(R) = 0 from (3.4.11) we get

u2
ϕ(R, z) =

2GM•

(2κ+ 1)(R2 + z2)
1
2

(4.5.9)

As an example we demonstrate that if we choose

κ = α/2, (4.5.10)

we get
p(R, z) = p•. (4.5.11)

Proof. We start from

p• =
GM•ρ0

(α + 1)a2−α
R2

(R2 + z2)
1
2

(α+1)
, (4.5.12)

where by definition

ρ0 = ρa2−α (R2 + z2)α/2

R2
=

=
GM•R

2

(R2 + z2)α/2
a2−α (R2 + z2)α/2

R2
=

= GM•a
2−α.

(4.5.13)
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Then we have

p• =
GM•ρ0

(α + 1)a2−α
R2

(R2 + z2)
1
2

(α+1)
=

=
GM•GM•a

2−α

(α + 1)a2−α
R2

(R2 + z2)
1
2

(α+1)
=

= p(R, z).

(4.5.14)

If we consider the rotation velocity field, equation (4.5.9) (when κ = α/2) is
formally identical to (4.4.16) in the case of a negligible self-gravitating tori term.

4.6 An example in physical units

In this section we present an example of the considered power-law tori in phys-
ical units. With the idea of representing toroidal structures of AGN, we choose
values of the physical parameter inspired by the observational data presented in
[Combes et al. 2019], who observed molecular tori AGN (Seyfert/LINER galaxies)
with the Atacama Large Millimeter/submillimeter Array (ALMA).

In detail we assume:

M• = 107.6M� ∼ 7.9× 1040 g, (4.6.1)

a = 19.7 pc ∼ 6.09× 1019 cm (4.6.2)

The Schwarzschild radius of such black hole is

RS = 3.79× 10−6 pc, (4.6.3)

so we do not have to use relativistic corrections.
From the definition of µ, we can get the value of ρ0:

ρ0 ≡
M•

4πµa3
. (4.6.4)

For

• µ = 1 we get

ρ0 = 2.78× 10−20 g

cm3
, (4.6.5)

• µ = 10 we get

ρ0 = 2.78× 10−21 g

cm3
(4.6.6)

Therefore from equation (4.1.5) we have that
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• for µ = 1

ρ = ρ0ρ̃ = 2.78× 10−20 R̃
2

r̃α
g

cm3

= 412.16
R̃2

r̃α
M�
pc3

(4.6.7)

• for µ = 10

ρ = ρ0ρ̃ = 2.78× 10−21 R̃
2

r̃α
g

cm3
=

= 41.22
R̃2

r̃α
M�
pc3

(4.6.8)

In figures (4.16) and (4.17) we show the density distribution for power-law index
α = 3.5 in cases µ = 1 and for µ = 10.

Figure 4.16: Density distribution contours in the meridional plane y = 0 for the torus
model described in §4.6 with µ = 1. The density distribution is in M�/pc

3.
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Figure 4.17: Same as fig. (4.16), but for µ = 10

We can write the rotation velocity field of this model as

uϕ = u0ũϕ =
√

8πGρ0a2ũϕ (4.6.9)

and we have

• for µ = 1

uϕ = 131

√
4(R̃2 + z̃2)−3/4

21

[
8(R̃2 + z̃2)

9
− 2R̃2

5

]
+

2

9(R̃2 + z̃2)1/2

km

s
(4.6.10)

• for µ = 10

uϕ = 41.6

√
4(R̃2 + z̃2)−3/4

21

[
8(R̃2 + z̃2)

9
− 2R̃2

5

]
+

20

9(R̃2 + z̃2)1/2

km

s
(4.6.11)
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In figure (4.18) we show the distribution of the rotation velocity field (expressed in
km/s) for µ = 1 and µ = 10 for the toroidal density distribution described in this
section.

Figure 4.18: Rotation velocity contours in the meridional plane y = 0 for the torus
model described in §4.6 with µ = 1 and µ = 10. The rotation velocity distribution is
in km/s.

The pressure of the model α = 3.5 can be written as

p(R, z) =
8πGρ0a

3

7
R2(R2 + z2)−5/2

[
16

27
(R2 + z2) +

R2

5

]
+

+
2GM•ρ0a

3/2

9

R2

(R2 + z2)9/4
.

(4.6.12)

We note that
lim

R, z→∞
p(R, z) = 0. (4.6.13)

Following [Nenkova et al. 2004] we assume that tori are clumpy structures, made of
a distribution of clouds characterized by their velocity dispersion σ. For this reason
we can define the velocity dispersion from the relation

p = ρσ2. (4.6.14)

And we have

σ = 2a
√
πGρ0

√
p̃

ρ̃
. (4.6.15)

Using physical units we get

• for µ = 1

σ = 93

√
p̃

ρ̃

km

s
(4.6.16)
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• for µ = 10

σ = 29

√
p̃

ρ̃

km

s
(4.6.17)

In figures (4.19) and (4.20), we show the distribution of the dispersion velocities
(expressed in km/s) for µ = 1 and for µ = 10, for a toroidal distribution of density
(4.6.7) and (4.6.8) with α = 3.5 respectively.

In both case we observe that the dispersion velocity diverges as one takes the limit
for r → 0 and r → ∞. This suggest that in the nearby of the black hole the system
is fully governed by the black hole contribution.

Figure 4.19: Velocity dispersion contours in the meridional plane y = 0 for the torus
model described in §4.6 with µ = 1. The velocity dispersion is in km/s.
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Figure 4.20: Same as fig. 4.19, but for µ = 10.
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Conclusions

In this thesis I have considered models of rotating astrophysical gaseous systems
in equilibrium in a gravitational potential. In particular I focused on those baroclinic
models that can be described by a perfect gas equation of state in axisymmetric
conditions. I have derived the linear instability criterion that is named after Solberg
and Hoiland, and I have verified a commutator-like relation that can be used in
baroclinic distributions to state if the rotational velocity field is physically acceptable.

I have taken into account rotating toroidal gaseous systems. I focused on a family
of tori that can be described by means of a power-law density distribution for which
the corresponding gravitational potential is analytic. This approach leads to a density-
potential pair that can be studied by means of the fluid dynamics equations.

Two cases have been analyzed in this thesis: self-gravitating power-law tori and
power-law tori in equilibrium in the presence of their self-gravity and a central black
hole. In particular for both the families of tori studied, the rotation velocity field has
been discussed in order to discover the physically acceptable models.

I found out that both for self-gravitating tori and the case with the additional
potential of a central black hole, models with power-law index α in the range 2 < α < 5
are physically acceptable.

Once the physical models have been found, the conditions for their linear stability
have been studied by applying the Solberg-Hoiland criterion. Analytic results have
been found for the case when no black hole is present and they allow to select power-
law tori that can be in a stable equilibrium configuration. The distributions that are
everywhere linearly stable are those one for which the power-law index α is small.
I have carried out the full linear-stability analysis for a few specific values of α. In
details, I have proved that for α = 2.1 and α = 2.5 the toroidal distribution is
everywhere linearly stable, while for models α = 3, α = 3.5, α = 4 and α = 4.1 the
region closest to the vertical axis is unstable.

Then I have found the analytical expression for the Solberg-Hoiland criterion for
power-law tori in equilibrium in the presence of their self-gravity and a central black
hole. The inequalities describing the stability criterion in this case are cumbersome
even for fixed power-law index α. I defer a numerical study of these inequalities to
future work.

The models presented in this work can be seen as idealized models of toroidal



structures in AGNs. I have presented an example of these models in the specific case
of a black hole with mass ∼ 107M�.
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Appendix A
Axisymmetric instability in rotating
galactic coronae

In this appendix we are going to show a different approach that can be used
to obtain the instability criteria for an axisymmetric rotating galactic corona. We
consider the general case of rotating fluids in the presence of cooling and thermal
conduction.

We follow the treatment of [Nipoti 2010].

A.1 Remark: governing equations

Let us take into account a stratified, rotating, unmagnetized atmosphere in the
presence of cooling and thermal conduction. This system is governed by the following
equations for mass, momentum and energy conservations:

∂ρ

∂t
+∇ · (ρu) = 0, (A.1.1)

∂u

∂t
+∇u = −∇p

ρ
−∇Φ, (A.1.2)

p

γ − 1

[
∂

∂t
+ u · ∇

]
ln(pρ−γ) = ∇ · (κT 5/2∇T )−

(
ρ

µ′mp

)2

Λ(T ). (A.1.3)

where ρ, p, T,u are the gas density, pressure, temperature and velocity respectively.
Φ is the gravitational potential, γ is the ratio of the principal specific heats, Λ is the
cooling function, µ′ is the mean gas particle mass in units of the proton mass mp and
κ is the thermal conductivity. As we neglect magnetic fields, we treat the thermal
conductivity as a scalar.

In cylindrical coordinates, if we assume an axisymmetric gravitational potential,
the hydrodynamic equations can be written as:

∂ρ

∂t
+

1

R

∂RρuR
∂R

+
∂ρuz
∂z

+
1

R

∂ρuΦ

∂Φ
= 0

}
Mass conservation, (A.1.4)
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∂uR
∂t

+ uR
∂uR
∂R

+ uz
∂uR
∂z

+
uϕ
R

∂uR
∂ϕ

= −1

ρ

∂p

∂R
− ∂Φ

∂R
+
u2

Φ

R
∂uz
∂t

+ uR
∂uz
∂R

+ uz
∂uz
∂z

+
uϕ
R

∂uz
∂ϕ

= −1

ρ

∂p

∂z
− ∂Φ

∂z
∂uϕ
∂t

+ uR
∂uϕ
∂R

+ uz
∂uϕ
∂z

+
uϕ
R

∂uϕ
∂ϕ

= − 1

ρR

∂p

∂ϕ
− uRuΦ

R


Momentum conservation,

(A.1.5)
p

γ − 1

[
∂

∂t
+ uR

∂

∂R
+ uR

∂

∂z
+
uϕ
R

∂

∂ϕ

]
ln(pρ−γ)

=
1

R

∂

∂R

(
RκT 5/2 ∂T

∂R

)
+

∂

∂z

(
κT 5/2∂T

∂z

)
+

+
1

R

∂

∂ϕ

(
κT 5/2

R

∂T

∂ϕ

)
−
(

ρ

µmp

)2

Λ(T )


Energy conservation. (A.1.6)

The unperturbed atmosphere is assumed to be axisymmetric and close to thermal and
hydrostatic equilibrium, so that the system is approximately in a steady state over the
time-scales of interest even in the presence of radiative cooling and thermal conduc-
tion. For this reason we can describe the unperturbed fluid by the time-independent
axisymmetric parameters of density ρ0, temperature T0, pressure p0 and velocity field
u0 which satisfy equations (A.1.4),(A.1.5) and (A.1.6).

In general, the atmosphere is assumed to be differentially rotating with angular
velocity Ω ≡ u0ϕ/R. But, in this case it is convenient to distinguish two cases:

• ∂Ω/∂z = 0,

• ∂Ω/∂z 6= 0.

In fact the Poincaré-Wavre theorem (Section 3.1) states that the surfaces of constant
pressure and constant density coincide if and only if ∂Ω/∂z = 0: as a consequence,
distributions with ∂Ω/∂z = 0 are said barotropic, and distributions with ∂Ω/∂z 6= 0
are said barocline. In the first case pressure is a function of only density while in the
second case pressure is not a function of only density.

A.2 Axisimmetric perturbations

A.2.1 Fourier analysis and the dispersion relation

In this section we assume that the fluid rotates differentially with Ω = Ω(R, z) and
that the perturbations are axisymmetric. Linearizing the hydrodynamic equations
(A.1.4),(A.1.5),(A.1.6) with perturbations of the form:

F0 + F exp(−iωt+ ikRR + ikzz), |F | � |F0|

in the limit of short-wavelength, low-frequency perturbations we get

−iω̂ρ+ ikRuRρ0 + ikzuzρ0 = 0 (A.2.1)
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for the mass,
− iω̂uRρ0 = −ikRp+ ApRc

2
0ρ+ 2Ωuϕρ0,

− iω̂uzρ0 = −ikzp+ Apzc
2
0ρ,

− iω̂uϕρ0 + uRρ0ΩR + uzρ0Ωz = −ρ0uRΩ

(A.2.2)

for the momentum and

T0

Tγ

[
− iω̂ p

p0

+ iγω̂
ρ

ρ0

+ uR(ApR − γAρR) + uz(Apz − γAρz)
]

= −(ωc + ωth) (A.2.3)

for energy. In these formulas we have introduced the Doppler-shifted frequency ω̂ =
ω − k · u0 = ω − (kRu0R + kzu0z), the isothermal sound speed squared c2

0 ≡ p0/ρ0,
the inverse of the pressure scalelenght ApR ≡ (∂p0/∂R)/p0 and the inverse of the
pressure scalehight Apz ≡ (∂p0/∂z)/p0. The following frequencies have been defined:
ΩR ≡ ∂(ΩR)/∂R,Ωz ≡ ∂(ΩR)/∂z, the thermal-conduction frequency

ωc ≡
(
γ − 1

γ

)
k2κT

7/2
0

p0

(A.2.4)

and the thermal-instability frequency

ωth ≡ −
(
γ − 1

γ

)
ρ2

0Λ(T0)

p0(µmp)2

[
2− d ln Λ(T0)

d lnT0

]
. (A.2.5)

In terms of the defined quantities, the assumption of short-wavelength perturbations
gives |kR|, |kz| � |AρR|, |Aρz|, |ApR|, |Apz| and Ω2,Ω2

R,Ω
2
z � c2

0k
2, while the assump-

tion of low-frequency perturbations gives ω2 � c2
0k

2.
The system of equations (A.2.1),(A.2.2) and (A.2.3) can be reduced to the following
dispersion relation for n ≡ −iω̂:

n3 + n2ωd +
(
ω2
BV + ω2

rot

)
n+ ω2

rotωd = 0 (A.2.6)

where ωd ≡ ωth + ωc is the characteristic frequency of dissipative process,

ω2
rot ≡ −

k2
z

k2

1

R3
D(R4Ω2) (A.2.7)

is the differential rotation term,

ω2
BV ≡ −

k2
z

k2

Dp0

ρ0γ
DS0 (A.2.8)

is the buoyancy term; and we introduced the unperturbed specific entropy S0 ≡
ln(p0ρ

−γ
0 ) and the differential operator

D ≡ kR
kz

∂

∂z
− ∂

∂R

which can be seen as taking derivatives along surfaces of constant wave phase.
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A.2.2 The stability criteria

Let us start from the simplest case, in which only one of the three characteristic
frequencies ωBV , ωrot, ωd is non-null.

Case with ωd = ωrot = 0. In this case, there is no dissipation and the fluid is
either non-rotating (Ω = 0) or rotating differentially with vanishing gradient of the
specific angular momentum [d(ΩR2)/dR = 0, when Ω = Ω(R)].

We have the dispersion relation

n2 = −ω2
BV (A.2.9)

so we have stability if the square of the Brunt-Vaisala frequency ω2
BV > 0. When

Ω = Ω(R), the Brunt-Vaisala frequency squared can be written as

ω2
BV =

k2
z

k2

c2
0A

2
pz

γ

(
γ

γ′
− 1

)(
kR
kz
− ApR
Apz

)2

(A.2.10)

where, using the fact that p0 is a function of only ρ0 (barotropic distribution), we
defined

γ′ ≡ d ln p0

d ln ρ0

which can be considered a local polytropic index. The condition for convective sta-
bility is γ′ < γ (i.e. the Schwarzschild’s criterion; see Section 2.2.1).

Case with ωBV = ωrot = 0. We assume that the characteristic frequencies associ-
ated with rotation and buoyancy are null. In the barotropic case, these conditions are
met when γ′ = γ and d(ΩR2)/dR = 0 (i.e. the radial gradient of the specific entropy
and the radial gradient of the specific angular momentum are zero). The dispersion
relation is

n = −ωd (A.2.11)

so we have thermal instability if ωd < 0, which is the Field’s instability criterion. From
the definition of ωd = ωth + ωc, it is clear that the condition for thermal instability
is that the growth rate of the thermal perturbation must be faster than conductive
damping. For fixed unperturbed gas temperature T0 and pressure p0, ωc increases for
increasing perturbation wavenumber k, while ωth is independent of k, so there is a
critical perturbation wavelength such that ωd < 0 for longer wavelength and ωd > 0
for shorter wavelengths.

Case with ωBV = ωd = 0. Without buoyancy and dissipation we get the disper-
sion relation

n2 = −ω2
rot (A.2.12)

so the stability criterion is ω2
rot > 0. The value of ω2

rot depends on the ratio kR/kz, so
it is positive if and only if ∂Ω/∂z = 0 and d(ΩR2)/dR > 0, i.e. the specific angular
momentum must increase outwards. This is the Rayleigh’s criterion (see §2.3.1).

In the following analysis of the dispersion relation, only one among ωBV , ωrot, ωd
is null.
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Case with ωBV = 0. In the absence of buoyancy, but for ωrot 6= 0 and ωd 6= 0, the
dispersion relation is

(n2 + ω2
rot)(ωd + n) = 0 (A.2.13)

which is a combination of the Field’s instability criterion and the Schwarzschild’s
criterion, so the presence of a gradient of the specific angular momentum does not
modify the thermal-instability criterion in an interesting way. Specifically, when ωd <
0 the medium is thermally unstable, independent of the presence and properties of
rotation, while rotation can destabilize an otherwise thermally stable medium(ωd > 0)
if ω2

rot < 0. Thus, the condition for stability is ωd > 0 and ω2
rot > 0, which holds for

all values of kR/kz if ∂Ω/∂z = 0 and d(ΩR2)/dR > 0.

Case with ωd = 0. In the absence of dissipation, one obtains the relation

n2 = −(ω2
BV + ω2

rot) (A.2.14)

which leads to the convective stability criterion for a rotating, stratified fluid ω2
BV +

ω2
rot > 0, showing the stabilizing effect of rotation against convection. The inequality

is verified for all values of kR/kz if and only if

− 1

γρ0

∇p0 · ∇S0 +
1

R3

∂R4Ω2

∂R
> 0

− ∂p0

∂z

(
∂R4Ω2

∂R

∂S0

∂z
− ∂R4Ω2

∂z

∂S0

∂R

)
> 0

(A.2.15)

which is the Solberg-Hoiland criterion (see Section 2.4.1).

Case with ωrot = 0. In this case the the dispersion relation is

n2 + ωdn+ ω2
BV = 0 (A.2.16)

When ωd > 0 we have stability (damping by thermal conduction) if ω2
BV > 0, while

we have convective instability if ω2
BV < 0. When ωd < 0, we have over-stability if

ω̃2
BV > 1/4, thermal instability if 0 < ω̃2

BV < 1/4 and convective instability if ω̃2
BV < 0.
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Appendix B
Calculation of the differential form n · ∇F
in general coordinates

Here we calculate the differential form n · ∇F, where n and F are vectors. In our
specific case we will consider n = u and F = u.

We follow the treatment in [Batchelor 1967].

Consider an orthogonal coordinate system ξ1, ξ2, ξ3 and the triad a,b, c of unit
vectors parallel to the coordinate lines oriented in the directions of increase of ξ1, ξ2, ξ3

respectively. We define a position vector x in this space.

Under this premises, the change of x can be written as

δx = h1δξ1a + h2δξ2b + h3δξ3c, (B.0.1)

where the positive scale factors h1, h2, h3 have been introduced and, as for the unit
vector, can be function of the coordinates.

We can obtain useful information about the derivatives of a,b and c, using the
fact that the three family of coordinates lines introduces are orthogonal.

From
∂x

∂ξi
· ∂x

∂ξj
= 0 i, j = 1, 2, 3 (B.0.2)

one has

∂

∂ξk

(
∂x

∂ξi
· ∂x

∂ξj

)
=

∂2x

∂ξk∂ξi
· ∂x

∂ξj
+
∂x

∂ξi
· ∂2x

∂ξk∂ξj
=

=
∂

∂ξi

(
∂x

∂ξk

)
· ∂x

∂ξj
+
∂x

∂ξi
· ∂
∂ξj

(
∂x

∂ξk

)
=

=
∂

∂ξi

(
∂x

∂ξk
· ∂x

∂ξj

)
− ∂x

∂ξk
· ∂2x

∂ξi∂ξj
+

∂

∂ξj

(
∂x

∂ξi
· ∂x

∂ξk

)
− ∂x

∂ξk
· ∂2x

∂ξi∂ξj
=

= −2
∂x

∂ξk

∂2x

∂ξi∂ξj
.

(B.0.3)
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Therefore we can affirm, for example, that

∂2x

∂ξ1∂ξ2

=
∂

∂ξ1

∂x

∂ξ2

=
∂

∂ξ2

∂x

∂ξ1

=
∂(h2b)

∂ξ1

=
∂(h1a)

∂ξ2

(B.0.4)

is a vector perpendicular to c.
From relation (B.0.4) we note that

∂a

∂ξ2

=
1

h1

∂h2

∂ξ1

b,

∂b

∂ξ1

=
1

h2

∂h1

∂ξ2

a.

(B.0.5)

One may compute the remaining four relations between the vectors.
Moreover we can write

∂a

∂ξ1

=
∂(b× c)

∂ξ1

=

= − 1

h2

∂h1

∂ξ2

b− 1

h3

∂h1

∂ξ3

c

(B.0.6)

with analogous relations for the two other vectors.
Let be V a scalar function, we can express the gradient of V as

∇V =
( a

h1

∂

∂ξ1

+
b

h2

∂

∂ξ2

+
c

h3

∂

∂ξ3

)
V. (B.0.7)

We can now calculate the components of n ·∇F, where n represents a fixed direction,
while F = F1a + F2b + F3c. From the relations we have follow that

n · ∇F = a

[
n · ∇F1 +

F2

h1h2

(
n1
∂h1

∂ξ2

− n2
∂h2

∂ξ1

)
+

F3

h3h1

(
n1
∂h1

∂ξ3

− n3
∂h3

∂ξ1

)]
+

+ b

[
n · ∇F2 +

F3

h2h3

(
n2
∂h2

∂ξ3

− n3
∂h3

∂ξ2

)
+

F1

h1h2

(
n2
∂h2

∂ξ1

− n1
∂h1

∂ξ2

)]
+

+ c

[
n · ∇F3 +

F1

h3h1

(
n3
∂h3

∂ξ1

− n1
∂h1

∂ξ3

)
+

F2

h2h3

(
n3
∂h3

∂ξ2

− n2
∂h2

∂ξ3

)]
.

(B.0.8)

B.1 Cylindrical coordinates.

We can apply the equation (B.0.8) to the cylindrical coordinates (z, R, ϕ). The
corresponding scale factors are

h1 = h2 = 1, h3 = R (B.1.1)

hence

n · ∇F = a

[
n · ∇F1

]
+b

[
n · ∇F2 +

F3

R

(
− n3

∂R

∂R

)]
+

+ c

[
n · ∇F3 +

F2

R

(
n3
∂R

∂R

)]
.

(B.1.2)
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Using the common notation we can then write

n · ∇F = a

[
n · ∇Fz

]
+ b

[
n · ∇FR −

nRFR
R

]
+ c

[
n · ∇Fϕ +

nϕFϕ
R

]
. (B.1.3)
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