
ALMA MATER STUDIORIUM – UNIVERSITÀ DI BOLOGNA 

SCUOLA DI INGEGNERIA E ARCHITETTURA 

 

DICAM 

Dipartimento di ingegneria civile, chimica, ambientale e dei materiali 

 

CORSO DI LAUREA MAGISTRALE IN INGEGNERIA CIVILE 

Curriculum strutture 

 

TESI DI LAUREA  

in 

Progetto di strutture in legno 

 

Strength prediction of the glulam beams based on the 

information of knots in single lamellas  

 

CANDIDATO: 

    Lorenzo Bianchi 

RELATORE: 

    Prof. Ing. Marco Savoia 

 

 CORRELATORI: 

    Prof. Dr. Ir. Jan-Willem van de Kuilen  

    M.Sc. Ani Khaloian Sarnaghi  

    Dott. Ing. Milena Massari 

  

 

TUM Technische Universität München 

 

 

Anno accademico 2017/2018 

Sessione III 



AKNOWLEDGMENTS  

First, I would like to thank Professor Marco Savoia, who provided me the opportunity to 

make this research experience. 

I would like to thank Dott. Ing. Milena Massari for her assistance and interest in making this 

experience feasible. 

I am obliged to Prof. Dr. Ir. van de Kuilen, which through his extensive knowledge and his 

positive criticism gave a significant contribution to my thesis work. 

I express my sincere gratitude and a deep admiration to M.Sc. Ani Khaloian, from the 

academic as well as the personal point of view. Her interest and passion for her work were a 

source of constant motivation. Her help was monumental, not only under the academic point 

of view, but also personally. I will always remember your kindness and encouraging words, 

and sorry if sometimes I was a super disturbing office mate! 

I owe a thank to all the colleagues from Holzfoschung. The working environment was the best 

a person could hope for, serious and professional but with no lack of fun and friendship. 

A thank to my friends, the ones I know my whole life, and the ones I got to know in Bologna 

and Munich. You always reminded me that life is colorful and also the biggest disappointment 

is not lasting forever. I will always keep in my heart the memories of these years, so far the 

best of my life. 

I express my deep and affectionate thank to Chiara. Thanks to you, I have matured a lot and 

despite life took us in different directions, your sweet words of encouragement are still 

essential to me. 

Finally, last but by no means least, I owe the biggest thank to my family, that gave me 

unconditioned love and support during my whole life, encouraging me in every choice I did, 

even if they meant costs and sacrifice. 

This accomplishment would not have been possible without you all. Thank you. 

 

 

P.S. I did it! 



1 

 

INDEX 
ABSTRACT ..................................................................................................................... 7 

SOMMARIO .................................................................................................................... 9 

1 INTRODUCTION .................................................................................................. 11 

1.1 OBJECTIVES .................................................................................................. 12 

2 MATERIALS AND METHODS ........................................................................... 13 

2.1 FE MODEL ...................................................................................................... 14 

 BOARDS GENERATED WITH RANDOM KNOTS ............................ 15 

 REAL TESTED BOARDS ....................................................................... 15 

 TENSILE STRESS ANALYSIS ACCORDING TO EN 408 ................. 16 

 FOUR POINT BENDING STRESS ANALYSIS ACCORDING TO EN 

408 17 

 THREE POINT BENDING STRESS ANALYSIS ACCORDING TO EN 

408 19 

3 NUMERICAL ANALYSIS ON BOARDS GENERATED WITH RANDOM 

KNOTS ........................................................................................................................... 21 

3.1 TENSILE STRESS .......................................................................................... 21 

 CONVERGENCE .................................................................................... 21 

 TENSILE STRESS SINGLE BOARD..................................................... 24 

 TENSILE STRESS GLULAM ................................................................. 26 

 COMPARISON BETWEEN TENSILE ANALYSIS ON SINGLE 

BOARD AND GLULAM ...................................................................................... 28 

3.2 EDGEWISE MOMENT .................................................................................. 29 

 EDGEWISE MOMENT SINGLE BOARD ............................................. 29 

 EDGEWISE MOMENT ON GLULAM .................................................. 31 

 COMPARISON BETWEEN EDGEWISE ANALYSIS ON SINGLE 

BOARD AND GLULAM ...................................................................................... 33 

3.3 FLATWISE MOMENT ................................................................................... 34 



2 

 

 FLATWISE MOMENT SINGLE BOARD ............................................. 34 

 FLATWISE MOMENT GLULAM ......................................................... 36 

3.4 EFFECT OF ADHESIVE ................................................................................ 37 

3.5 QUESTIONS OF MODELLING KNOTS ...................................................... 42 

 TIE CONSTRAINT .................................................................................. 43 

 INTERACTION CONTACT ................................................................... 43 

4 REAL SAMPLES SIMULATIONS ....................................................................... 47 

4.1 TENSILE ANALYSIS .................................................................................... 47 

4.2 BENDING ANALYSIS ................................................................................... 49 

4.3 MOE WITH 2 PERFECT LAMELLAS .......................................................... 51 

4.4 STRESS CONCENTRATION FACTOR ....................................................... 52 

 CORRELATION WITH ECCENTRICITY ............................................. 54 

 CORRELATION WITH INCLINATION ANGLE ................................. 55 

5 PREDICTION OF STRENGTH OF GLULAM .................................................... 57 

5.1 STUDY OF BAD BOARDS ........................................................................... 60 

5.2 STUDY OF GOOD BOARDS ........................................................................ 63 

6 CONCLUSIONS .................................................................................................... 69 

REFERENCES ............................................................................................................... 71 

 

  



3 

 

INDEX OF FIGURES 

Figure 2-1 Glulam beam scheme .................................................................................... 13 

Figure 2-2 C3D8 hexahedral element (a) C3D10 tetrahedral element (b), Abaqus 6,14 

documentation ................................................................................................................ 14 

Figure 2-3 Board generated with random knots ............................................................. 15 

Figure 2-4 generic real board (a), corresponding numerical model (b).......................... 15 

Figure 2-5 Tensile stress analysis (a) scheme from EN 408 (b) model setup in Abaqus 16 

Figure 2-6 Edgewise moment stress analysis; scheme from EN 408 (a) real test performed 

in Holzforschung München (b) model setup in Abaqus (c) ........................................... 18 

Figure 2-7 Flatwise moment stress analysis scheme from EN 408 (a) model setup in 

Abaqus (b) ...................................................................................................................... 20 

Figure 3-1 Displacement convergence, axially loaded beam with one knot .................. 22 

Figure 3-2 Stress convergence, axially loaded beam with one knot .............................. 22 

Figure 3-3 Axial stress on tensile loaded single board, one knot, deformation scale factor 

50 .................................................................................................................................... 24 

Figure 3-4 Axial stress on tensile loaded single board, several knots, deformation scale 

fac. 50 ............................................................................................................................. 24 

Figure 3-5 Axial stress on tensile loaded glulam, one knot, deformation scale factor 50

 ........................................................................................................................................ 26 

Figure 3-6 Axial stress on tensile loaded glulam, several knots, deformation scale factor 

50 .................................................................................................................................... 26 

Figure 3-7 Axial stress on edgewise moment loaded single board, one knot, deformation 

scale factor 50 ................................................................................................................. 29 

Figure 3-8 Axial stress on edgewise moment loaded single board, several knots, 

deformation scale factor 50 ............................................................................................ 30 

Figure 3-9 Axial stress on edgewise negative moment loaded single board, several knots, 

deformation scale factor 50 ............................................................................................ 30 

Figure 3-10 Axial stress on edgewise moment loaded glulam, one knot, scale factor 50

 ........................................................................................................................................ 32 

Figure 3-11 Axial stress on edgewise moment loaded glulam, several knot, scale factor 

50 .................................................................................................................................... 32 

Figure 3-12 Axial stress on flatwise moment loaded single board, one knot ................. 35 

Figure 3-13 Axial stress on flatwise moment loaded single board, several knots ......... 35 



4 

 

Figure 3-14 (a) Stress distribution far from knots, with adhesive (b) representation of path 

position ........................................................................................................................... 38 

Figure 3-15 (a) Stress distribution next to a knot without adhesive (b) Stress distribution 

next to a knot with adhesive (c) representation of path position .................................... 40 

Figure 3-16 (a) Superposed knots in adjacent layers (b) stress distribution in the zone with 

superposed knot .............................................................................................................. 41 

Figure 3-17 Modelling of hole in the adhesive, zone of knot superposition (a) adhesive 

exactly following the shape of knots (b) adhesive approximating the shape of knots with 

an ellipse ......................................................................................................................... 42 

Figure 3-18 stress distribution in the zone with superposed knots, tie contact .............. 43 

Figure 3-19 stress distribution in the zone with superposed knots, interaction contact . 44 

Figure 4-1 Real tested board, subjected to tensile force ................................................. 47 

Figure 4-2 Stress path far from a knot on a real board (a) with PUR adhesive (b) with 

MUF adhesive ................................................................................................................ 49 

Figure 4-3 Stress lines around knots (from Wikipedia) ................................................. 52 

Figure 4-4 Correlation between SCF and eccentricity of knots ..................................... 54 

Figure 4-5 Correlation between SCF and inclination of knots ....................................... 55 

Figure 5-1 Correlation between the tested MoE and the tested strength of single boards

 ........................................................................................................................................ 58 

Figure 5-2 Correlation between maximum stress ad strength for all single boards samples

 ........................................................................................................................................ 59 

Figure 5-3 Correlation between maximum stress and strength for bad boards .............. 60 

Figure 5-4 Correlation between tested MoE and strength on 200 samples specimen .... 61 

Figure 5-5 Correlation between maximum stress and strength for good boards ............ 64 

Figure 5-6 Correlation between maximum stress and strength for good boards, neglecting 

samples with few knots .................................................................................................. 64 

 

  



5 

 

INDEX OF TABLES 

Table 2-1 Timber mechanical  properties ....................................................................... 13 

Table 2-2 Properties of adhesives ................................................................................... 14 

Table 3-1 Convergence study, tensile loaded single board ............................................ 22 

Table 3-2 Stress, disp. and MoE on tensile loaded single board .................................... 25 

Table 3-3 Tensile loaded glulam, one knot and Several knots case ............................... 27 

Table 3-4 Stress, disp. and MoE for single boards and glulam ...................................... 28 

Table 3-5 Stress values on every board of glulam.......................................................... 28 

Table 3-6 Stress, disp. and MoE on edgewise moment loaded single board ................. 31 

Table 3-7 Stress, disp. and MoE on edgewise moment loaded single board ................. 33 

Table 3-8 Stress, disp. and MoE on edgewise moment loaded single board ................. 33 

Table 3-9 Stress, disp. and MoE on flatwise moment loaded single board .................... 36 

Table 3-10 Stress, disp. and MoE on flatwise moment loaded single board .................. 36 

Table 3-11 Stress, disp. and MoE on flatwise moment loaded single board .................. 37 

Table 4-1 Stresses, disp. and MoE for tensile loaded glulam, different adhesives ........ 47 

Table 4-2 Disp. and MoE from simulations in different faces of the board ................... 48 

Table 4-3 Stress, disp. and MoE on edgewise moment loaded glulam, different adhesives

 ........................................................................................................................................ 49 

Table 4-4 Disp. and MoE on front and back board, edgewise moment ......................... 50 

Table 4-5 Stress, disp. and MoE on flatwise moment loaded glulam, different adhesives

 ........................................................................................................................................ 50 

Table 4-6 Disp. and MoE on upper and lower board, flatwise moment......................... 50 

Table 4-7 Disp. and MoE modifying two boards at a time of a glulam specimen ......... 51 

Table 5-1 prediction procedure for bad boards, values on samples and average ........... 62 

Table 5-2 prediction procedure for good boards, values on samples and average ......... 66 

  



6 

 

  



7 

 

ABSTRACT 

Wood is a natural material with irregularities, in particular knots, that affect the global 

stiffness and strength. The peculiarity of this material is the impossibility of eliminating 

all defects. The approach to this material is to take into account the effect of these defects 

and to study how these defects are affecting the global behaviour of the structure. 

Furthermore, the anisotropic structure of wood requires the study to take into account the 

changes of the material properties in the three directions. 

In this thesis the effect of knots on the structural behaviour in terms of stiffness and 

strength was studied, in a linear elastic analysis, using Abaqus. Test setups from European 

standard EN 408 and tests performed in the research centre “Holzforschung München” 

were modelled, in order to compute mechanical properties and have a qualitative and 

quantitative estimation of the effect of knots. 

The attention was then led to the effect of the adhesive layer on the numerical model, for 

which there is little available literature. Different types of adhesive were used in the 

modelling procedure to study their effects on the mechanical behaviour of wood. It is 

shown that the adhesive effect is generally negligible and failure is occurring in wood. 

All tests results and simulations are referred to thin layers of adhesive. 

The last part of the study focused on the effect of stress concentrations next to knots. The 

maximum longitudinal stress was used to predict the glulam strength through the 

correlation between stress from analysis and strength from tests on single boards. The 

accuracy of results is not high for slightly defected boards, because other different 

phenomena outer than knots should be taken into account (fiber deviation, microcracks 

ecc.). However, predictions are relatively good for the boards with knots and not clusters. 

The objective of this study was finding an estimation of strength starting from a 

computationally efficient model, in which few input data are required. 

Other researches in literature developed tools and models for an accurate analysis of 

strength, however the required computational resources and input parameters are 

sensitively increasing. 
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SOMMARIO 

Il legno è un materiale naturale, con irregolarità, in particolare nodi, che modificano la 

resistenza e la rigidezza del materiale. La peculiarità del materiale legno è l’eterogeneità 

del materiale, e l’impossibilità di eliminare i difetti oltre certi limiti. L’approccio a questo 

materiale deve tenere in conto i difetti, e studiare come questi inficino le caratteristiche 

globali della struttura. La struttura anisotropa del legno inoltre richiede che lo studio sia 

condotto considerando le diverse proprietà del legno nelle tre dimensioni. 

In questo studio si è cercato di individuare, attraverso un modello elastico lineare costruito 

con il software FE “Abaqus”, l’effetto dei nodi, sul comportamento della struttura in 

termini di rigidezza e resistenza. Con il modello numerico sono stati simulati i test da 

normativa e i test eseguiti presso il centro di ricerca “Holzforschung München” per il 

calcolo delle proprietà meccaniche, ottenendo una stima qualitativa e quantitativa 

dell’effetto dei nodi.  

L’attenzione è stata poi spostata sull’effetto dell’adesivo nel modello numerico, per il 

quale la letteratura è limitata. Diversi tipi di adesivi sono stati usati nella modellazione, 

per studiare il loro effetto sul comportamento meccanico del legno. È mostrato che in 

generale l’effetto dell’adesivo è trascurabile e che la rottura della trave, salvo errori in 

fase di incollaggio, è prevista lato legno. Tutti i test e le simulazioni sull’effetto 

dell’adesivo si riferiscono a strati di adesivo sottili. 

L’ultima parte dello studio si è concentrata sull’effetto delle concentrazioni di sforzo in 

prossimità dei nodi.Il massimo sforzo in direzione longitudinale è stato usato per predire 

la resistenza del legno lamellare, attraverso le relazioni tra sforzi dalle simulazioni e 

resistenza ottenuta con prove sperimentali. L’accuratezza dei risultati non è elevata nel 

caso di travi poco difettate, perché servirebbe un modello che consideri altri fenomeni 

oltre ai nodi (deviazione delle fibre, micro-crepe ecc.). Tuttavia, le stime sono 

relativamente accurate per travi con nodi o gruppi di nodi. L’obiettivo era trovare una 

stima della resistenza a partire da un modello computazionalmente efficiente e che 

richieda pochi dati di input.  

Altre ricerche presenti in letteratura hanno sviluppato tool e modelli per un’analisi 

accurata, tuttavia le risorse computazionali e i parametri di input necessari crescono 

sensibilmente.  
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1 INTRODUCTION 

The demand for wood structures is everyday increasing, due to the big demand of 

sustainability in constructions and execution speed of building. The ratio between 

materials performances and light weight of materials is also a good solution to keep inertia 

forces low in the case of a seismic event. The peculiarity of wood is that is not a 

manufactured material, defect are present and the attention is led to the grading of the 

material. This research is part of the “Beech connect” project, aiming at characterising 

and optimising timber element obtained from low quality boards and glues. In particular, 

the effect of knots on mechanical characteristics of wood was studied; knots are the 

portion of branches into the bole of the tree, that constitute a portion with different 

density, and therefore an interruption of continuity of material and the deviation of fibres.  

The study of the effect of defects on timber mechanical characteristics is object of study 

since long time. At the beginning of 20th century the first procedure of visual grading 

where adopted, in which timber was graded only through a visual inspection of defects, 

without performing other destructive tests. During the century machine grading methods 

were implemented, correlating results from destructive tests with results from non-

destructive tests, such as bending or tensile modulus of elasticity, density etc. (Holmqvist 

et al., 1999). In early 1980s the first numerical model were built (Cramer, 1982), aiming 

at defining a model capable of predicting strength and elastic properties basing on the 

flow grain analogy. The research focused in those years mainly on the effect of the fibre 

deviation, not fully capturing the effect of knots on timber behaviour. In 1999, Green et 

al. studied the influence of knots, finding that mechanical properties depends on location, 

shape, and type of stress to which the wood element is subjected; the effect of knots was 

proved to be more significant in the tensile zone than in the compression zone, because 

of the detachment of the contact surface of the knot. Recent studies focused more on the 

effect of knots (Baño et al., 2010) modelling knots as holes or using adherent element, 

showing that in a tensile side the real behaviour is well represented by knots as holes, 

whereas in a compression side the adherent elements give a better approximation. In 2013, 

Guindos and Guaita built a FE model predicting the behaviour of timber at the macro-

scale taking into account the effect of any type of knot. In 2014, Lukacevic et al. 

developed a numerical tool to perform virtual destructive tests, known the fibre deviation 

around knots, to investigate mechanical properties through an accurate micromechanical 

model. The models were developed for single boards, however results can be extended to 
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glulam. First models for glulam grading were developed in 1954 by Freas and Felbo. In 

this model the ratio between the inertia of the area of knots and the inertia of the total 

section is used as a strength reduction factor to account knots in the strength prediction. 

The model was implemented by Foschi and Barrett in 1980, which, through numerical 

simulation, predicted the strength values with a high accuracy. The model was quite 

complex, because flexural properties in defected zones were reestimated using the stress 

reduction factor. A more recent model was developed by Lee et al. in 2005, for 

performing virtual flexural tests on glulam. In their model the transformed section method 

was used, reducing the section made of different lamellas to a unique element with a 

different width, as a function of the geometry, MoE and knot sizes on single boards. 

The aim of this thesis is to develop a numerical model for improvement of the strength 

grading with low computational cost, taking into account only the effect of knots, 

neglecting fibre orientation and other inhomogeneities. Therefore, the fibre orientation 

due to other effect than the knots was not considered in the model and the whole analysis 

is performed in the linear elastic field. 

1.1 OBJECTIVES 

The aim of this master thesis is to study the effect of knots on stiffness and stresses of the 

boards, due to the fibre deviation in their vicinity, and to extract numerical parameters 

which can be used for the improvement of the strength predictions. The model was 

developed in different steps. First, a numerical model with random generated knots was 

built, modifying number and position of knots, aiming at understanding the modulus of 

elasticity (MoE) and the maximum longitudinal stress variation on a single board; the 

model was then extended tying more boards, to study qualitatively and quantitatively the 

effect of lamination of glulam. Subsequently, the study focused on the effect of adhesive 

between lamellas, to understand how different types of adhesives can affect the model 

behaviour. Thereafter, a model of the real boards, physically tested in Holzforschung 

München (tensile tests on single boards, according to EN 408) was built and analysed for 

the validation. On this model attempts were made to find a correlation between the 

maximum longitudinal stress and the knots characteristics. Last, known correlations 

between different experimental parameters (Oscarsson, 2014) the relations with data from 

simulations were studied to establish a relationship between the tested strength of boards 

and the numerical model, aiming at a prediction of glulam strength based only on 

numerical simulations. 
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2 MATERIALS AND METHODS 

The study was carried out using both softwood and hardwood species. These two types 

of wood do not differ for end use or appearance, but for the provenience of the wood, 

respectively from a conifer and a deciduous plant (. In general deciduous trees tend to be 

slower growing, therefore hardwood is more dense and sturdier. In the specific case of 

this study simulations and experimental data are referring to spruce (softwood) and beech 

(hardwood), orthotropic materials whose properties are shown in Table 2-1. 

Table 2-1 Timber mechanical  properties 

  
ρ 

[Kg/m3] 
E0,mean 
[Mpa] 

E90,mean 
[Mpa] 

ν 
[-] 

G0,mean 
[Mpa] 

G90,mean 
[Mpa] 

Spruce 400 11500 300 0,01 650 65 

Beech 700 13000 860 0,01 810 59 

 

The Poisson effect was neglected because of his low relevance in terms of results, to 

reduce the computational cost; this assumption is maintained also in the following. 

In a second step, the study focused on the glulam production and the effects of adhesives; 

glulam beams are obtained by bonding together single layers of timber with adhesive 

layers in between (see Figure 2-1), in order to obtain from several small pieces a single 

large piece, reducing the scale effect that affect wood.  

 

Figure 2-1 Glulam beam picture 
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Glulam numerical models were built assembling four lamellas on their flat surface, 

therefore in between three adhesive layers were added. The experimental tests in 

Holzforschung München were performed using melamine-urea-formaldehyde (MUF) 

adhesive between layers, whereas the simulations were performed also for polyurethane 

(PUR) and phenol-resorcinol-formaldehyde (PRF), to evaluate the effect of the adhesives 

stiffness on results. The adhesive layer was modelled as a solid element with a thickness 

of 0,1𝑚𝑚 (thus it is a thin layer of adhesive); the material is isotropic, hence, as the study 

was carried out in the linear elastic field, the only input data required are the modulus of 

elasticity and the Poisson ratio. In Table 2-2 adhesive properties are showed. 

Table 2-2 Properties of adhesives 

Adhesive MoE [Mpa] ν 

PUR 2000 0,3 

PRF 3500 0,3 

MUF 5500 0,3 

2.1 FE MODEL 

The FE analysis is a method used for the study of continuum problems in the discrete 

fields. In this study the main goal of this method is the study of tension transmission into 

the material. Models were studied through a linear elastic analysis using the software 

“Abaqus”.Initially, C3D8 elements (Figure 2-2a) were used: these are hexahedral 

elements with linear shape functions. The mesh was refined next to knots for geometrical 

approximation because the knots region is the most affected by variation of values. Later, 

C3D10 (Figure 2-2b) elements were used: these are tetrahedral elements with quadratic 

shape functions. The approximation obtained with C3D10 elements is more accurate, in 

particular for compression and bending case, avoiding the shear locking phenomenon.  

             

Figure 2-2 C3D8 hexahedral element (a) C3D10 tetrahedral element (b), Abaqus 6,14 

documentation 

Tests from EN 408 and tests performed in Holzforschung München were simulated, in 

order to verify the numerical results with the experimental data from literature. All the 

(a) (b) 
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analysis were carried out staying in the linear elastic field. Two different steps were 

followed in this thesis, which are described in sub-chapter 2.1.1 and 2.1.2. Three different 

loading and test configuration were analysed in this study, including tensile stress 

analysis, edgewise and flatwise bending analysis, described in sub-chapters 2.1.3, 2.1.4 

and 2.1.5. 

 BOARDS GENERATED WITH RANDOM KNOTS 

Initially, the models of boards generated with random knots were built using Abaqus, 

modelling beams of 10𝑚𝑚 ∗ 120𝑚𝑚 section, with length depending on the analysis 

(tensile stress, edgewise moment, flatwise moment). Knots are modelled as cylindrical 

holes with axis perpendicular to the beam axis and diameter between 15 and 25 

millimetres.  

 

Figure 2-3 Board generated with random knots 

 REAL TESTED BOARDS 

Timber beams with a significant amount of defects were tested in tension as single boards 

in Holzforschung München within the project “Beech connect”, and through a visual 

grading procedure position, shape and angle of knots were determined. A model based on 

these samples built using Abaqus (Khaloian, 2017) was used, modelling knots as holes 

(see Figure 2-4), whereas the fibre deviation, the cracks and other defects were neglected. 

The shape of knots is cylindrical or conical, with random orientation. The dimension of 

these beams is 24𝑚𝑚 ∗ 100𝑚𝑚 ∗ 3200𝑚𝑚 

 

Figure 2-4 generic real board (a), corresponding numerical model (b) 

(a) 

(b) 
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The two vertical lines on the side of Figure 2-4a represent the marking line to separate 

the test length from the rest of the beam, clamped to the grip during the tensile test. 

 

 TENSILE STRESS ANALYSIS ACCORDING TO EN 408 

The model was created simulating EN 408 test conditions, in which a beam element is 

subjected to a tensile stress. The scheme was adopted both for single boards and glulam; 

in Figure 2-5b the modelling scheme for a glulam beam is showed. 

 

  

Figure 2-5 Tensile stress analysis (a) scheme from EN 408 (b) model setup in Abaqus for 

glulam 

In the real test, there are several rules to be respected, such as the velocity of loading, the 

maximum load achieved, etc.; in the numerical model, a linear elastic analysis is 

performed, thus the results will be linearly dependent on the applied stress. The cross 

section dimensions are 10𝑚𝑚 ∗ 120𝑚𝑚 for sample boards generated with random knots, 

and 24𝑚𝑚 ∗ 100𝑚𝑚 for sample boards generated from real boards.  

The boundary condition were applied creating two reference points in the middle of the 

two end cross sections. Every movement was locked on the left cross section, while on 

(a) 

(b) 
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the other end only the axial displacement was free. The boundary conditions were 

distributed using a coupling constraint to link the reference point to a beam portion, in 

order to leave free only the test length portion. 

The modulus of elasticity in tension expressed in Mpa, is calculated, according to EN 

408, as: 

 𝐸𝑡,0 =
𝑙1 ∗ (𝐹2 − 𝐹1)

𝐴 ∗ (𝑤2 − 𝑤1)
 (2.1) 

Where: 

- 𝐹2 − 𝐹1  is the increment of load, in Newtons 

- 𝑤2 − 𝑤1  is the increment of deformation corresponding to 𝐹2 − 𝐹1 taken on a 

span length of 5ℎ, in millimetres 

- 𝐴 is the area of the cross section, in square millimetres 

- 𝑙1 is the gauge length for the determination of modulus of elasticity, equal to 5 

times the height of the board, in millimetres. 

 FOUR POINT BENDING STRESS ANALYSIS ACCORDING TO EN 408 

A four point bending stress analysis is modelled using Abaqus to simulate the test from 

EN 408. The test scheme is represented in Figure 2-6a. a beam with a length of eighteen 

times the depth of the section, supported at the two ends was adopted. The load applied 

at a distance of six times the depth of the section from supports, on a width of 20mm, to 

avoid a numerical singularity due to a concentrated load in a 3D model. Measures of 

displacements are taken in the middle section and on a span length of five times the depth 

of the section, as shown in Figure 2-1: 

The boundary conditions were modelled creating 2 reference point in the middle of the 

end cross sections, fixing for those points every movement except the rotation around the 

z axis. The boundary conditions were distributed using a coupling constraint to link the 

reference point to a 60mm deep volume. 
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Figure 2-6 Edgewise moment stress analysis; scheme from EN 408 (a) real test performed in 

Holzforschung München (b) model setup in Abaqus (c) 

According to EN 408, the local edgewise modulus of elasticity expressed in Mpa, is 

computed as: 

 𝐸𝑚,𝑙𝑜𝑐 =
𝑎𝑙1

2(𝐹2 − 𝐹1)

16𝐽(𝑣2 − 𝑣1)
 (2.2) 

(a) 

(b) 

(c) 
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Where: 

- 𝑎 is the distance between one of the point loads and the nearest support, in 

millimetres 

- 𝑙1 is the length (equal to 5h) of the steel yoke over which the local vertical 

displacement 𝑣 is measured, in millimetres 

- 𝐽 is the second moment of inertia, in millimetres to the fourth power 

- 𝐹2 − 𝐹1 is the increment of load (i.e. the increment of the sum of the two point 

loads) measured between two points on the straight portion of the load-

deformation graph, in Newtons 

- 𝑣2 − 𝑣1 is the increment of vertical displacement corresponding to 𝐹2 − 𝐹1, 

expressed in millimetres. 

The global edgewise MoE expressed in Mpa, is calculated as: 

 𝐸𝑚,𝑔𝑙𝑜𝑏 =
𝐿3(𝐹2 − 𝐹1)

𝑏ℎ3(𝑤2 − 𝑤1)
[(

3𝑎

4𝐿
) − (

𝑎

𝐿
)

3

] (2.3) 

Where: 

- 𝑎 and 𝐹2 − 𝐹1 are the same explained for equation (2.2) 

- ℎ is the depth of the board, in millimetres 

- 𝑏 is the board thickness, in millimetres 

- 𝐿 is the total span in bending, i.e. 𝐿 = 18ℎ, in millimetres 

- 𝑤2 − 𝑤1 is the increment of vertical displacement in the middle section 

corresponding to 𝐹2 − 𝐹1, in millimetres. 

 THREE POINT BENDING STRESS ANALYSIS ACCORDING TO EN 408 

A three point bending stress analysis is modelled using Abaqus to simulate the test from 

EN 408. The test is performed on a beam with a length of 900mm (see Figure 2-1), 

supported at the two ends; the load is applied in the central section, on a width of 20mm, 

to avoid localized effect. The boundary conditions were modelled creating 2 reference 

point in the middle of the end cross sections, fixing for those points every movement 

except the rotation around the z axis. The boundary conditions were distributed using a 

coupling constraint to link the reference point to a 60mm deep volume. Measures of 

displacements are taken in the middle section.  
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Figure 2-7 Flatwise moment stress analysis scheme from EN 408 (a) model setup in Abaqus (b) 

The local flatwise MoE is calculated as: 

 𝐸𝑓𝑙𝑎𝑡,𝑙𝑜𝑐 =
𝐹 ∗ 𝐿𝑓𝑙𝑎𝑡

3

48𝐽 ∗ 𝑤
 (2.4) 

Where: 

- 𝐹 is the applied load, in Newtons 

- 𝐽 is the second moment of inertia, in millimetres to the fourth power 

- 𝑙𝑓𝑙𝑎𝑡 is the distance between the supports (equal to 900mm) 

- 𝑤 is the vertical displacement in the central point, in millimetres. 

  

(b) 

(a) 
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3 NUMERICAL ANALYSIS OF BOARDS WITH 

RANDOM GENERATED CYLINDRICAL KNOTS 

The knots were modelled through cylindrical holes in the direction perpendicular to the 

beam axis, as explained in sub-chapter 2.1.1. Two models were studied in this case. The 

first, with a single knot on the axis, the second with several knots in random positions on 

the board. The goal is to evaluate the effect of knots on stiffness and stress distribution, 

comparing results in the “one knot case” with the “several knots case” under different 

loading condition (tensile stress, edgewise and flatwise moment). The properties and 

input parameters of this study are the ones for spruce elements, mentioned above. C3D8 

hexahedral elements were used to perform the simulation. 

3.1 TENSILE STRESS 

The load was applied as a concentrated force in the middle of one end cross section, then, 

through the coupling constraint, distributed to the constrained volume. The force value is 

𝐹 = 25𝐾𝑁; The value and the way of applying the load are chosen to simulate the 

conditions of a real tensile test for a single board. An applied load of 25𝐾𝑁 on a surface 

of 10𝑚𝑚 ∗ 120𝑚𝑚 correspond to a pressure of 20,83𝑀𝑝𝑎, thus the average value of the 

longitudinal stress over the beam is expected to be equal to that value. 

 CONVERGENCE 

The first step is the study of the best mesh, through a convergence study. The element 

dimensions, i.e. the mesh, are refined step by step and the analysis for a single board with 

one knot is run for every case; the mesh refining is stopped when the error, in terms of 

displacements and maximum stresses, between two steps is low; from plots the course of 

convergence is represented by the slope of the line. 
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Figure 3-1 Displacement convergence, axially loaded beam with one knot 

 

Figure 3-2 Stress convergence, axially loaded beam with one knot 

Results from Table 3-1 show that the convergence in terms of displacement is reached 

with coarse mesh, whereas the convergence in terms of stress is slower and a finer mesh 

is needed; therefore, the study of the mesh is based on maximum stress on boards. It is to 

be noted that the dimension of elements far from knots does not affect the convergence, 

as the values of stresses are nearly constant; the best mesh in terms of computational cost 

is obtained refining the zone adjacent to knots, with coarser elements far away. 

Table 3-1 Convergence study, tensile loaded single board 

Mesh n. N. elements σmax/σavg umax [mm] εσ [%] εu [%] 

1 784 1,905 2,665 - - 
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2 3072 2,515 2,667 32,02 0,08 

3 11624 3,685 2,667 46,52 0,00 

4 15176 4,15 2,667 12,62 0,00 

5 30325 4,22 2,667 1,69 0,00 

The difference in terms of stress between mesh n. 4 and 5 (Table 2-1) is very low, hence 

it is fair to use the mesh n.4, with circa 15000 elements, for the next steps. The third case 

gives also a good approximation; hence, to reduce the computation cost, the glulam is 

modelled using the third mesh. 
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 TENSILE STRESS SINGLE BOARD 

The results of the linear elastic analysis on single boards with one and several knots are 

shown in Figure 3-3, Figure 3-4 and Table 3-2. As the total deformations are relatively 

small, the results are scaled in these figures to be able to show the deformation of the 

knots under the applied loads better. The applied pressure consequent to the applied load 

of 25𝐾𝑁 is 20,83𝑀𝑝𝑎. 

 

Figure 3-3 Axial stress on tensile loaded single board, one knot, deformation scale factor 50 

 

 

Figure 3-4 Axial stress on tensile loaded single board, several knots, deformation scale fac. 50 
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The stress distribution graphs show that the variation of stress is concentrated around the 

knots, with an increasing in the upper and lower part and a decreasing in the two lateral 

sides of knots. Far from knots the value of stress tend to be the same as the pressure 

applied, however is notable that for the several knots case there is not a uniform value of 

stress far from knots, hence the whole beam is affected by knots.   

Table 3-2 Stress, disp. and MoE on tensile loaded single board 

  One Knot Sev. Knots Variation [%] 

σmax/σavg 4,07 6,89 40,89 

Δu [mm] 1,164 1,846 36,92 

Et,0 [MPa] 10737 6773 36,92 

*Sev. Knots refers to the case with several knots on the boards 

The 𝜎𝑚𝑎𝑥 and 𝜎𝑎𝑣𝑔 showed in Table 3-2 are respectively the maximum value of the 

longitudinal stress all over the board, occurring in the proximity of a knot and the value 

of the longitudinal stress occurring in a clear wood region (equal to the applied load 

pressure). The variation between one knot and several knots cases is computed as: 

 𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 =
|𝑋1𝑘𝑛𝑜𝑡 − 𝑋𝑠𝑒𝑣.𝑘𝑛𝑜𝑡𝑠|

𝑚𝑎𝑥(𝑋1𝑘𝑛𝑜𝑡, 𝑋𝑠𝑒𝑣.𝑘𝑛𝑜𝑡𝑠)
∗ 100 (3.1) 

Where 𝑋 is the value of the studied variable (stress, displacement, or MoE). In this case 

the variation of strength and stiffness is about 40%, therefore knots significantly affect 

the behaviour of a single board. The variation for MoE and displacements is exactly the 

same because the MoE is directly computed from the displacement measures. 
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 TENSILE STRESS GLULAM 

A glulam model was created by connecting four boards together, and applying the 

boundary conditions, the load and the mesh as explained for a single board. The load 

value is 𝐹 = 100𝐾𝑁, equal to four times the load applied in the above case; this is due to 

the sectional dimension four times bigger. 

Boards were connected together using a tie constraint between each of the surfaces, 

defining one surface as the master and the other as slave. The tie constraint doesn´t allow 

relative movement between surfaces, thus it can´t be used to study delamination of layers, 

whereas it gives a good solution with low computational cost for stress and displacements. 

The results of the glulam are presented in Figure 3-5, Figure 3-6 and Table 3-3. 

 

Figure 3-5 Axial stress on tensile loaded glulam, one knot, deformation scale factor 50 

 

Figure 3-6 Axial stress on tensile loaded glulam, several knots, deformation scale factor 50 
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Table 3-3 Tensile loaded glulam, one knot and Several knots case 

  One Knot Sev. Knots Variation [%] 

σmax/σavg 2,28 4,48 49,15 

Δu [mm] 1,092 1,405 22,23 

Et,0 [MPa] 11443 8899 22,23 

*Sev. Knots refers to the case with several knots on the boards 

 

Some conclusions are outlined: 

- The variation of stresses and displacements due to the presence of knots for glulam 

is smaller than for a single board; coupled lamellas give a lamination effect, that 

make irregularities less effective and increase the strength 

- Variation of maximum stress is big for both single board and glulam case, because 

of the superposition of three knots in two adjacent lamellas of glulam, that leads 

to in that point to a local increasing of stress; in average there is a decreasing of 

stress peaks around knots from glulam to single board case 

- The average variation of stress is close to the variation of displacements, as 

expected from Hook law, thus smaller for the glulam because of the effect of 

coupled lamellas. 
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 COMPARISON BETWEEN TENSILE ANALYSIS ON SINGLE BOARD 

AND GLULAM 

Results from the analysis of single board and glulam with several knots were compared 

in order to understand and analyse the lamination effect of glulam, and its effects on knots. 

Table 3-4 Stress, disp. and MoE for single boards and glulam 

  Single Board Glulam Variation [%] 

σmax/σavg 6,89 4,48 34,93 

Δu [mm] 1,846 1,405 23,89 

Et,0 [MPa] 6773 8899 23,89 

 

From Table 3-4 it is evident that the effect of knots is weaker for glulam than for single 

boards, showing an enhancement of MoE around 25% and a reduction of stresses around 

35%. The stress variation was studied per every board of glulam; the results are presented 

in Table 3-5. 

Table 3-5 Stress values on every board of glulam 

  σmax,SB/σavg,SB σmax,GL/σavg,GL Variation [%] 

Board 1 6,89 4,48 34,99 

Board 2 5,81 4,05 30,35 

Board 3 5,81 3,14 45,89 

Board 4 6,61 4,48 32,19 

 

Stress reduction is greater in internal boards because of the effect of confinement due to 

the external boards; in board 2 the reduction of max stress is less significant because of 

the superposition of knots above mentioned, although the average variation of stresses is 

greater than in external boards. 
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3.2 EDGEWISE MOMENT 

The model with several knot was built positioning more knots in the lower part of the 

board, and applying both a positive and a negative moment, to evaluate the effectiveness 

of knots in tensile and in compression zone. The load was applied in two points at a 

distance of 6ℎ from the two ends, to simulate the 4 point bending test as in EN 408. To 

avoid a singularity in the model the load was applied as a pressure of 1𝑀𝑝𝑎 on a 20mm 

wide area. In this case, because of the eccentric position of knots to the axis, the different 

behaviour under positive and negative bending moment has to be studied. 

 EDGEWISE MOMENT SINGLE BOARD 

A linear elastic analysis was performed on single board with one and several knots (shown 

in Figure 3-7, Figure 3-8 and Figure 3-9). In the case with several knots most of the knots 

were placed in the lower part of the board (Figure 3-8), and the analysis was performed 

both with positive and negative moment. The moment is maximum in the central portion 

of the beam, between the two loading point and considering a cross section the moment 

has a butterfly diagram shape; therefore the most critical knots are those in the central 

portion with high eccentricity. 

 

Figure 3-7 Axial stress on edgewise moment loaded single board, one knot, deformation scale 

factor 50 
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Figure 3-8 Axial stress on edgewise moment loaded single board, several knots, deformation 

scale factor 50 

 

Figure 3-9 Axial stress on edgewise negative moment loaded single board, several knots, 

deformation scale factor 50 

The two cases with positive and negative moment (Figure 3-8 and Figure 3-9) show that 

the greater stresses are almost equal in modulus. The most stressed area is next to a central 

knot in the lower part of the board (in the central part, where stresses are greater knots are 

all positioned in the lower part of the beam). 
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Table 3-6 Stress, disp. and MoE on edgewise moment loaded single board 

  One knot 
Sev. knots 

M+ 
Sev. knots 

M- 

Variation 
1knot - M+ 

[%] 

Variation 
1knot - M- 

[%] 

σmax [Mpa] 5,81 20,39 19,48 71,51 70,17 

σmin [Mpa] -8,26 -29,85 -9,92 72,33 16,70 

ucentral [mm] 4,531 5,557 5,541 18,47 18,23 

ulateral [mm] 4,133 5,071 5,050 18,50 18,15 

Em,local [MPa] 11321 9263 9171 18,18 18,99 

Em,global 
[MPa] 

10965 8940 8967 18,47 18,23 

*Sev. Knots refers to the case with several knots on the boards 

Some conclusions are outlined: 

- The eccentricity of knots has significant importance in this case, because for 

bending stressed elements the cross sectional stress diagram has a butterfly shape, 

therefore knots with high eccentricity are subjected to higher stresses. In real cases 

attention need to be paid to those knot, in particular when they are in the tensile 

zone, where they can lead to a brittle failure 

- with one knot in symmetrical position the positive and negative stresses 

respectively on the upper and on the lower part of the beam are the same; in the 

case with several knots the maximum stress develop next to the knot with the 

highest eccentricity between the two loading point (zone of highest stresses) 

- knots are positioned mainly out of the 5h length in which the local measure is 

taken; that leads the local MoE to be less affected than the global MoE to the 

presence of knots 

- the difference in MoE in case of positive or negative moment is still due to the 

eccentrical position of knots, that leads to different values of displacements but 

similar stresses. 

 EDGEWISE MOMENT ON GLULAM 

The analysis was extended to glulam. Boundary conditions, load and mesh were created 

as for single boards. Boards were connected together using a tie constraint between each 

of the surfaces, defining one surface as the master and the other as slave, as for the tensile 

case. In this case, because of the different position and amount of knots in different 
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boards, the different behaviour of the front and the back side of the glulam boards has to 

be studied.  

 

Figure 3-10 Axial stress on edgewise moment loaded glulam, one knot, scale factor 50 

 

Figure 3-11 Axial stress on edgewise moment loaded glulam, several knot, scale factor 50 

Figure 3-10 shows a very regular behaviour of stresses, with maximum stresses on the 

upper and lower layer. This condition is obtained because the knots are positioned on the 

axis of the beam, where stresses are minimum, thus the maximum stress is on the upper 

and lower layer, independently from knots. On the other hand, in Figure 3-11 is showed 

that with eccentric knots the maximum stress is no more on the upper and lower layer, 

but in the proximity of the more eccentric knots. Results in terms of stress, displacement 

and MoE are shown in Table 3-7. 
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Table 3-7 Stress, disp. and MoE on edgewise moment loaded single board 

  
Glulam one 

knot 

Front board 
glulam sev. 

knots 

Back board 
glulam sev. 

knots 

Variation 
front board 

[%] 

Variation 
back board 

[%] 

σmax [Mpa] 5,79 15,12 15,12 61,71 61,71 

σmin [Mpa] -7,62 -18,01 -18,01 -136,35 -136,35 

ucentral [mm] 4,557 5,295 5,315 13,95 14,28 

ulateral [mm] 4,170 4,861 4,850 14,22 14,02 

Em,local [MPa] 11636 10358 9669 10,98 16,91 

Em,global [MPa] 10903 9382 9346 13,95 14,28 

*Sev. Knots refers to the case with several knots on the boards 

Some conclusions are outlined for this case: 

- Variations are bigger on the back board because of a greater amount of knots on 

that board 

- The most affected value is the local modulus of elasticity because of the particular 

configuration of knots 

 COMPARISON BETWEEN EDGEWISE ANALYSIS ON SINGLE 

BOARD AND GLULAM 

Results of the analysis of single board and glulam with several knots were compared in 

order to study the lamination effect of glulam in the edgewise bending case. From Table 

3-8 it is clear that the maximum effect of lamination is obtained for stresses, with a 

reduction up to 40%. The lamination effect is less effective compared the tensile stress 

case, because, as showed from literature (Green, 1999) knots are more effective in the 

tensile zone than in the compression zone, therefore also the reduction obtained coupling 

lamellas is smaller. 

Table 3-8 Stress, disp. and MoE on edgewise moment loaded single board 

  Single Board Glulam Variation [%] 

σmax [Mpa] 20,39 15,12 25,85 

σmin [Mpa] -29,85 -18,01 39,66 

ucentral [mm] 5,549 5,305 4,39 

ulateral [mm] 5,061 4,855 4,05 

Em,local [MPa] 9217 10002 7,84 

Em,global [MPa] 8953 9364 4,39 
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3.3 FLATWISE MOMENT 

For flatwise moment case, because of the eccentric position of knots to the axis, front and 

back side behave in a different way, which leads to different values of stresses and 

displacements.  

The model with several knot was built positioning more knots next to the front side of the 

board, to evaluate the different behaviour of the front and back layer of the board. The 

load was applied in a central portion to simulate the 3 point bending test as in EN 408. 

To avoid a singularity in the model the load was applied as a pressure of 1𝑀𝑝𝑎 on a 

20mm wide area. In this case, because of the different amount of knots in the different 

boards making the glulam, the different behaviour under positive and negative bending 

moment has to be studied. 

 FLATWISE MOMENT SINGLE BOARD 

A linear elastic analysis was performed on single board with one and several knots. In the 

case with several knots most of the knots were placed next to one side of the board, to see 

if this configuration may lead to a torque effect, and therefore different results on the front 

and back layer of the board. With this configuration the maximum stress is always 

obtained in the proximity of knots (see Figure 3-12 and Figure 3-13). The results in 

terms of stress, dipalecement and MoE are compared in   
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Table 3-9. 

 

Figure 3-12 Axial stress on flatwise moment loaded single board, one knot 

 

Figure 3-13 Axial stress on flatwise moment loaded single board, several knots 
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Table 3-9 Stress, disp. and MoE on flatwise moment loaded single board 

  One knot 
Sev. knot 
Front side 

Sev. knot 
Back side 

Variation 
Front side 

[%] 

Variation 
Back side 

[%] 

σmax [Mpa] 433 828 91,22 

σmin [Mpa] 433 828 91,22 

ucentral [mm] 337 546 556 38,28 39,39 

Em [MPa] 10816 6556 6676 39,39 38,28 

 

From some conclusions are outlined: 

- Stress and displacements have very high values because the board is modelled 

with a very small thickness, therefore its stiffness is very low 

- displacements are bigger (hence elasticity modulus is lower) on the back side 

because knots are positioned mainly next to the back side, however the variation 

is quantitatively negligible 

 FLATWISE MOMENT GLULAM 

The analysis was extended to glulam. Boundary conditions, load and mesh were created 

as for single boards.  

Table 3-10 Stress, disp. and MoE on flatwise moment loaded single board 

  

Glulam 
one knot 

Front side 
glulam sev. 

knots 

Back side 
glulam  

sev. knots 

Variation 
front side 

[%] 

Variation 
back side 

[%] 

σmax [MPa] 34,32 41,51 17,32 

σmin [MPa] -20,79 -52,10 -150,60 

ucentral [mm] 5,316 7,964 8,047 33,25 33,94 

Em [MPa] 10714 7151 7077 33,25 33,94 

*Sev. Knots refers to the case with several knots on the boards 

 

In the flatwise moment case results are varying a lot depending on the position of knots; 

in this case knots in the central part cause higher variations in terms of stresses and 

displacements. Comparison between the results for a single board and a glulam board are 

omitted because, considering that results are function of the thickness of the board, that 

is varying from a model to another, the order of magnitude is different. 
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3.4 EFFECT OF ADHESIVE 

To this point, the glulam boards were modelled neglecting the adhesive layer in between. 

As in reality the glulam boards are connected together by using adhesives, an adhesive 

layer with the thickness of 0.1mm is added between lamellas to study the effect of 

adhesive on glulam (in terms of MoE and stresses) and to evaluate where the failure is 

expected to occur. The adhesive layer has the following properties: 

- 𝐸 = 2500𝑀𝑝𝑎, 𝑣 = 0,3, isotropic material (PUR adhesive) 

- size of the mesh: 2x2x0,1mm 

- Tie constrained to the adjacent boards 

A tensile stress analysis is performed on the glulam with and without the adhesive layer, 

and results from the two cases were compared. This condition is shown in Table 3-11. 

Table 3-11 Stress, disp. and MoE on flatwise moment loaded single board 

  No adhesive Adhesive Variation [%] 

σmax [Mpa] 110,0 118,5 7,17 

σmax ad [Mpa] - 222,4 - 

Δu [mm] 1,394 1,384 0,71 

Et,0 [MPa] 8967 9031 0,71 

 

Two paths are selected on the glulam at the locations of the clear wood part and passing 

through the knots respectively to study the effects of the stress distributions and adhesives 

on the results. The paths are shown in Figure 3-14b and Figure 3-15c. The stress 

distributions on the cross section, near and far from a knot are shown in Figure 3-14, 

Figure 3-14 and Figure 3-15: 
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Figure 3-14 (a) Stress distribution far from knots, with adhesive (b) representation of path 

position 

As shown in Figure 3-14a, the stress distribution in the four timber boards is more or less 

constant and equal to one. As expected the longitudinal stress in a clear wood portion 

correspond to the applied load pressure. The stress in the adhesive has a lower value than 

the stress on wood, because displacements are the same and the adhesive has a lower 

stiffness, hence it takes a smaller amount of stress. In particular, the stiffness of MUF 

adhesive is around half the stiffness of a spruce beam; this explains why the ratio between 

stresses in wood and adhesive is also around 0,5. 
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Figure 3-15 (a) Stress distribution next to a knot without adhesive (b) Stress distribution next to 

a knot with adhesive (c) representation of path position 

As shown in Figure 3-15a, the stress distribution in the proximity of a knot has no more 

a constant trend. In particular in the second board, in which there is a knot close by, there 

is an increasing of stress, that tend to turn gradually to the value of one in the two adjacent 

boards. The gradual passage of the stress in the boards shows that the model gives a good 

representation of stress transmission between lamellas. In the last board there is another 

variation of stress, due to the proximity of a knot on that board. 

Some conclusions are outlined: 

- The effect of adhesive on the modulus of elasticity is negligible, in the model is 

possible to consider or not the adhesive, independently on the stiffness of the 

adhesive; therefore, results from PRF adhesive can be extended to other types of 

adhesives. This conclusion will be treated in detail in the following. 

- Stresses on boards are slightly affected by the adhesive layer; the difference 

between model without and with the adhesive layer is negligible 

- The average stress on the adhesive is lower than the stress on wood, as the stiffness 

of adhesive is lower 

- On adhesive layers there’s a peak of stress where there’s superposition of knots 

in different lamellas (Figure 3-16), that lead to think to failure in the adhesive 

layer or in the bonding. From Figure 3-16 it is evident the numerical singularity, 

therefore a deeper investigation is carried out, to understand if different types of 

models lead to the same conclusions. 

(c) 
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Figure 3-16 (a) Superposed knots in adjacent layers (b) stress distribution in the zone with 

superposed knot 

A first attempt to analyse the numerical singularity was made modelling the adhesive with 

a hole, following precisely the shape of knots (Figure 3-17a) or cutting the adhesive layer 

with an elliptical shape.   
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Figure 3-17 Modelling of hole in the adhesive, zone of knot superposition (a) adhesive exactly 

following the shape of knots (b) adhesive approximating the shape of knots with an ellipse 

With the first model (Figure 3-17a) there is still a peak of stress in the adhesive layer, 

while the second model (Figure 3-17b) provide lower values of stresses, with the peak 

stress of the whole model on the timber element; therefore, the hypothesis of maximum 

stress due to the knot superposition is validated. 

This is a non-common situation in reality, because the stress is due to a big distortion in 

the adhesive layer, coming from modelling knots as holes. The problem can be avoided 

modelling knots with a different material; the procedure is threated in detail in the next 

paragraph. 

Concluding, in wood applications the effect of the adhesive is negligible, and the failure 

occurs in wood; the peak stress in adhesive layers affect more elements with real holes, 

like orifice plates used for mechanical engineering problems. 

3.5 QUESTIONS OF MODELLING KNOTS 

In a real board knots are made by wood with higher density than the rest of the board. A 

new model is built filling the knots with higher density elements, assuming for those 

element a higher MoE. The main problem is modelling the contact between beam and 

knot; in the reality there is contact until a limit value of stress is reached, after that the 

two elements separate and behave independently. This is well approximated using a 

“Interaction contact” in Abaqus, however considering the high computational cost, also 

a model with “Tie contact” was built, in which there is a simplification, but the 

computational cost is lower. In the following, the two contact algorithm are explained in 

detail. 

(a) (b) 
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 TIE CONSTRAINT 

A tie constraint is set between the lateral surface of the knot element and the internal 

surface of holes in the board; this way, adjacent knots of cylinder and board are connected 

together and relative movements are not allowed. Performing a tensile stress analysis, the 

stress path for a cross section next to a knot is presented in Figure 3-18. 

 

Figure 3-18 stress distribution in the zone with superposed knots, tie contact 

The results show that the stress on wood is almost constant and equal to the applied 

tension, as it is expected for a perfect board. This way of modelling doesn’t provide a 

realistic approximation of the stress distribution around a knot, therefore it doesn’t 

provide any additional information. 

 INTERACTION CONTACT 

The contact is modelled in the critical zone (where there is superposition of knots in 

different boards with the consequent peak of stresses on adhesive) with an interaction 

model, in which: 

- Normal behaviour with hard contact, that assume that a positive pressure can be 

transferred between the two surfaces and the surfaces separate when the contact 

pressure is zero or negative, this method is enforced with linear penalty behaviour, 

that assume that the contact force is proportional to the penetration distance, thus 

some degree of penetration will occur. 
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- Tangential behaviour with penalty contact, assuming a Coulomb friction model in 

which the frictional behaviour between the surfaces is characterized with a 

coefficient 𝜇 = 0,5. The tangential motion is zero until the surface traction 

reaches a critical shear stress value given by 𝜏𝑐𝑟𝑖𝑡 = 𝜇 ∗ 𝑝, where 𝑝 is the contact 

pressure between the two surfaces. The two surfaces are not sliding until the shear 

stress on the surface reaches 𝜏𝑐𝑟𝑖𝑡. 

The surfaces are linked fixing the lateral surface of the cylinder as master and the hole on 

board as slave, assuming finite sliding between surfaces. 

Performing a tensile stress analysis the stress path for a cross section next to a knot is 

presented in Figure 3-19. 

 

Figure 3-19 stress distribution in the zone with superposed knots, interaction contact 

The approximation seems to be reasonable in this case; hence, a comparison with the 

stress path obtained with knots modelled as holes (Figure 3-16b) is made. In the following 

some conclusions are outlined: 

- The stress distribution on timber slightly differs between the model with knots as 

holes and the model with interaction contact. The only difference in the stress on 

wood is at the location of the 10-20mm on z-axis of Figure 3-16b and Figure 3-19, 

where the path is passing respectively through a hole (i.e. stress equal to zero) and 

through a filled knot. However, the stress in that part is not relevant because the 
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stress through the filled knot has a low value compared to the remaining part of 

wood 

- The stress path is very regular in the right part, because in that part there aren’t 

knots, the stress tend to go to the average stress (corresponding to the applied 

stress) 

- The maximum stress is not on the adhesive layer, because filling the holes there 

is no more the big distortion on the adhesive layer.  

- The model with filled-in has a very high computational cost 

In the case of superposed knots, the model with filled knots and interaction contact gives 

a more precise approximation. In these cases, due to the numerical singularities around 

the knots, the estimation of stresses in the adhesive layers are more difficult. Considering 

that in all other points the models give very similar results, and the computational cost 

are extremely high in case of using the interaction contact, the hypothesis of knots 

modelled as holes seems to be the best compromise. Hereafter, the model with knots 

modelled as holes and boards connected together with tie constraint will be used. 
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4 REAL SAMPLES SIMULATIONS 

Several samples tested in Holzforschung München as single boards were visually graded 

and their geometry got reconstructed using Abaqus. Forty single boards were assembled 

randomly in Abaqus forming twenty glulam specimens, each one made by four boards. 

The numerical analysis is now performed using the following test setups 

4.1 TENSILE ANALYSIS 

The test was performed with different adhesives, to investigate whether the real case is 

subjected to differences due to the applied adhesive. The results of the linear elastic 

analysis on glulam samples based on real boards are showed in Figure 4-1, Table 4-1 and 

Table 4-2. 

 

Figure 4-1 Real tested board, subjected to tensile force 

Table 4-1 Stresses, disp. and MoE for tensile loaded glulam, different adhesives 

  No ad MUF PRF PUR 

σmax [Mpa] 98,04 96,56 96,74 96,89 

Δu [mm] 0,427 0,427 0,427 0,427 

Et,0 [MPa] 12205 12236 12240 12245 

*All results are the average of ten values, obtained with ten 
glulam samples 

Table 4-1 shows the results in terms of MoE and stresses, averaged for all glulam 

specimen. In all cases maximum stresses are developing in timber. The difference in terms 

of stress and modulus of elasticity between the different cases is negligible. Due to the 
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big irregularity of knots shapes and position in the real boards, the MoE was studied on 

all the four lateral faces of the glulam. Results on different faces are shown in Table 4-2. 

Table 4-2 Disp. and MoE from simulations in different faces of the board 

  Back Front Down Up 

Avg(Δu) [mm] 0,402 0,4194 0,4030 0,4392 

Avg(Et,0) [MPa] 12936 12418 12923 11859 

St. dev.( Et,0) [MPa] 378 319 592 487 

 

The greater variation in terms of modulus of elasticity is between upper and lower face; 

this is due to the presence of knots on these faces that, as shown in the previous chapter 

significantly affect the stiffness of a board. Between these two faces, the standard 

deviation measured between different glulam specimens is higher, based on the knot 

variability on those surfaces. The MoE, depending on the position of the path on which 

displacement are measured, can vary up to 10%, such as for example between upper and 

lower boards. Additionally, the stress distribution over a cross section for different types 

of adhesive was studied. The aim is in this case the investigation of the effect of different 

adhesives, therefore the path is chosen far from knots using in the model respectively 

MUF and PUR adhesive. Real boards were tested using MUF adhesive. Results from 

numerical simulations are showed in Figure 4-2. 
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Figure 4-2 Stress path far from a knot on a real board (a) with PUR adhesive (b) with MUF 

adhesive 

Similar to the boards generated with random knots (sub-chapter 2.1.1), the adhesive 

doesn’t give a significant contribution to stiffness and stresses on boards. It is clear from 

Figure 4-2a and Figure 4-2b that the stress on adhesive is directly proportional to its 

stiffness; the MUF adhesive stiffness is about half of timber stiffness, whereas the PUR 

stiffness is about 0,2 times the stiffness of timber, therefore the stress on adhesive is 

respectively around 0,5𝑀𝑝𝑎 and 0,2𝑀𝑝𝑎.  

4.2 BENDING ANALYSIS 

Bending analysis in edgewise and flatwise direction were performed on the real samples 

for all types of adhesives with positive and negative bending moments. The test setup is 

the same explained in Chapter 3. Results in terms of stress, displacements and MoE are 

showed in Table 4-3. 

Table 4-3 Stress, disp. and MoE on edgewise moment loaded glulam, different adhesives 

  No adhesive 
No adhesive 

M- 
MUF PRF PUR 

σmax [Mpa] 36,79 31,07 37,09 37,15 37,22 

σmin [Mpa] -20,35 -30,30 -21,06 -21,07 -21,07 

ucentral [mm] 18,296 18,346 18,268 18,277 18,285 

ulateral [mm] 17,782 17,829 17,755 17,764 17,772 

Em,local [MPa] 13869 13777 13896 13890 13885 

Em,global [MPa] 13766 13729 13788 13781 13775 

*All results are the average of ten values, obtained with ten glulam samples 
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Comparing the behaviour of front and back layer for the case with no adhesive, results 

are slightly varying, as showed in Table 4-4. 

Table 4-4 Disp. and MoE on front and back board, edgewise moment 

  Front board Back board 

ucentral [mm] 18,296 18,281 

ulateral [mm] 17,782 17,765 

Em,local [MPa] 8754 8715 

Em,global [MPa] 9403 9410 

*All results are the average of ten values, obtained 
with ten glulam samples 

In Table 4-4 “Front board” and “Back board” refer to the external boards making the 

glulam sample. They are studied both because the different configuration of knots in these 

boards may lead to a torque effect, thus the study is conducted on both boards. Table 4-5 

and Table 4-6 show the results from the flatwise bending analysis; again, the effect of the 

adhesive is not significantly affecting the stress nor the MoE and also the difference 

between the two external boards is low. 

Table 4-5 Stress, disp. and MoE on flatwise moment loaded glulam, different adhesives 

  No ad No ad M- MUF PRF PUR 

σmax [Mpa] 42,38 54,81 46,37 46,38 46,40 

σmin [Mpa] -46,85 -35,61 -50,54 -50,57 38,31 

ucentral [mm] 14,315 14,441 14,206 14,211 14,216 

Em [MPa] 12936 12822 13035 13030 13025 

*All results are the average of ten values, obtained with ten glulam samples 

 

Table 4-6 Disp. and MoE on upper and lower board, flatwise moment 

  Lower layer Upper layer 

ucentral [mm] 14,309 14,331 

Em [MPa] 12941 12921 

*All results are the average of ten values, obtained 
with ten glulam samples 

 

Based on the results from the analysis, some conclusions are outlined: 

- The difference in terms of modulus of elasticity is less than 1%, both between 

positive and negative moment and between boards with or without adhesive 
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- Varying the moment sign there is no significant variation over displacements, 

while on stresses the variation reaches 32%. The variation on stress concentration 

is depending on the eccentricity of knots; big eccentricity of knot correspond to 

big stress concentration around it, therefore there is a direct correlation between 

the two. This relation will be studied in the following. 

- The values of modulus of elasticity are higher than in the tensile case, as expected 

from theory; the difference is about 8% 

4.3 MOE WITH 2 PERFECT LAMELLAS 

Results of the analysis showed that, for some samples, the variation of the results in terms 

of MoE between the two external lamellas is not negligible (up to 20%); this difference 

is due to the position of knots in these lamellas, that affect the displacement on the 

measurement path. In order to have a quantitative measurement of the MoE variation due 

to knots, samples are modified in Abaqus, substituting two boards with two perfect 

boards, in which no knots are present in the test length; the procedure is repeated for each 

couple of boards making the sample. Results are showed in Table 4-7. 

Table 4-7 Disp. and MoE modifying two boards at a time of a glulam specimen 

  

Original 
sample 

Perfect board 
1-4 

Perfect board 
1-3 

Perfect board 
2-3 

Δu [mm] 0,473 0,407 0,442 0,439 

Et,0 [MPa] 11020 12798 11786 11854 

Results show that the greater advantages in terms of MoE and displacements, are obtained 

when the two perfect boards are in external position; this shows once again the effect of 

lamination of glulam, for which the defects in internal lamellas are reduced by the effect 

of the coupled lamellas.   
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4.4 STRESS CONCENTRATION FACTOR 

The stress concentration is a location in an object where the stress is concentrated, as a 

consequence of stress line deviation next to cracks, holes and corners. 

 

Figure 4-3 Stress lines around knots (from Wikipedia) 

From the theoretical analysis of a beam, a certain value of strength (theoretical value) is 

expected. Considering that, in a real beam there are imperfections, which lead to stress 

concentrations in certain zones of the beam, the real value of the strength of the beam is 

reduced. In general, the failure occurs in a zone subjected to an increasing of stress, where 

the strength of the material is exceeded and propagate, leading to the global failure.  

The stress concentration factor (SCF) is a numerical measure of the stress concentration 

phenomenon, calculated as the ratio between the maximum stress and the average stress 

(corresponding to the applied pressure), as showed in equation 4.1. 

 𝑆𝐶𝐹 =
𝜎𝑚𝑎𝑥

𝜎𝑎𝑣𝑔
 (4.1) 

In the case of a timber beam, the SCF is related to direction of fibres, in turn related to 

knots. The stress concentration is assumed as a function of area of knots (the real area and 

the modified one that takes into account the inclination of knots), eccentricity of knots 

and inclination angle of the knot. The stress concentration was studied (Tang, 1981) using 

the theory of complex variables in plane elasticity, as a function of the above-mentioned 

variables. In this part of the study, the aim is finding a correlation between the maximum 

stress and respectively area, eccentricity and inclination angle of knots, using a retrofit 

procedure with polynomial approximation.  
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A first try was made with a formula for SCF for plates with a cylindrical hole in eccentric 

position (Pilkey, 2005); this way the inclination of knots is neglected and knots are 

assumed with cylindrical shape. In equations 4.2, 4.3 and 4.4 the formulas to compute 

the maximum stress on a board are showed. 

 𝐾𝑡 = 3 − 3,14
𝑑

2𝑐
+ 3,667 (

𝑑

2𝑐
)

2

− 1,527 (
𝑑

2𝑐
)

3

 (4.2) 
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∗
1 −

𝑐
𝐷

1 − (
𝑐
𝐷) [2 − √1 − (

𝑑
2𝑐)

2

]

 

 

(4.3) 

 𝜎𝑚𝑎𝑥 = 𝐾𝑡𝜎𝑛𝑜𝑚 (4.4) 

Where: 

- 𝑑 is the diameter of the knot, in millimetres 

- 𝑐 is the eccentricity of the knot measured from the side of the beam, in millimetres 

- 𝐷 is the width of the plate, in millimetres 

- 𝑡 is the thickness of the plate, in millimetres  

- 𝑃 is the distributed tensile force, in Newtons 

- 𝐾𝑡 is the theoretical stress concentration factor in elastic range 

- 𝜎𝑛𝑜𝑚 is the tensile stress in a not disturbed portion of wood, in MegaPascal 

With equation 4.3 is possible to compute the longitudinal stress in a zone unaffected by 

knots, as a function of the geometry of the beam and of the hole. Through equation 4.2 is 

possible to compute the stress concentration factor as a function of the knot diameter and 

eccentricity to the power of three; the SCF is increasing with the eccentricity and with the 

diameter of the knot. Finally, with equation 4.4 is possible to compute the maximum 

stress due to the knot, using results from equations 4.2 and 4.3. The results obtained with 

this set of equations don’t fit results from analysis. The method applies many 

approximations to the model (cylindrical knots, no inclination of knots, isotropic material, 

etc.). These cases are explained in detail in sub-chapters 4.4.1 and 4.4.2. 
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 CORRELATION WITH ECCENTRICITY 

The eccentricity is evaluated computing the average value between upper and lower 

position of the knot on the face, after 𝑆𝐶𝐹 was plotted as a function of eccentricity, aiming 

at finding a polynomial function of the eccentricity to approximate our curve.  The plot 

is showed in Figure 4-4. 

 

Figure 4-4 Correlation between SCF and eccentricity of knots 

 

The plotted SCF as a function of the eccentricity is very irregular. It is possible to find a 

high-grade polynomial that approximates the function, however the result doesn’t fit other 

cases, as the function is very irregular.  
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 CORRELATION WITH INCLINATION ANGLE 

Known the inclination angle of knots, it is plotted as a function of the SCF, obtaining the 

results showed in Figure 4-5. 

 

Figure 4-5 Correlation between SCF and inclination of knots 

Similar to the previous case, the function is not regular; it is not possible to find a formula 

fitting this problem, that could be extended to other cases. The correct way to study the 

problem would be considering a function of both Area of knots and eccentricity, 

performing a multiple regression analysis, however the sample is not big enough, 

therefore the study of the stress concentration is stopped. Future research, disposing of a 

greater number of samples could go deep on this topic. 
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5 PREDICTION OF STRENGTH OF GLULAM 

The strength grading procedure aim at ensuring that a beam is strong enough to carry the 

design load, but to have the exact value of the strength a destructive test is necessary. The 

strength grading of timber is based on relationships between the strength and various non-

destructively measured or simulated wood properties (Holmqvist et al., 1999). Statistic 

models are built based on the application of regression analysis, through which the 

response variable 𝑌 (in our case the strength) is evaluated through the predictor variables 

𝑋𝑖; several correlations are available from literature (Oscarsson, 2014).  In this research 

linear regression analysis was studied, therefore only one predictor variable at a time is 

considered, and the regression equation is a line. The goal is to keep the analysis simple, 

in order to not require many input data and consequentially having a computationally 

demanding model. To evaluate the reliability of a regression equation the coefficient of 

determination 𝑅2 is introduced, calculated as: 

 𝑅2 =
∑  (𝑦′

𝑖
− �̅�𝑁

𝑖=1 )2

∑  (𝑦𝑖 − �̅�𝑁
𝑖=1 )2

 (5.1) 

Where: 

- 𝑦𝑖 is the observed value of Y variable 

- 𝑦′𝑖 is the predicted Y value calculated from the regression equation 

- �̅� is the average value from all observations of Y sample 

The values of 𝑅2 are in the interval 0 ≤  𝑅2 ≤ 1, where for 𝑅2 = 1 there is a perfect 

correlation, while for 𝑅2 = 0 there is no influence of the predictor variable on the 

variation of the strength. The bigger is the value of 𝑅2, the more accurate is the 

correlation. The dependence of strength on dimension, location and shape of the knots 

and the type of stress they are subjected was already studied (Green, 1999), and a 

numerical model taking into account the fibre deviation around the knot were built 

(Lukacevic, 2014). The aim in this part of the study is building a numerical model, in 

which only the effect of the knots itself is considered in the elastic field to correlate the 

strength to the higher stress concentration around knots. The model was created for 36 

beams that were tested as single boards in Holzforschung München, modelled as single 

boards and assembled in group of four boards to obtain 17 glulam samples. First, a 

correlation between strength of single boards from tests and parameters related to knots 
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known from simulation (one at a time) was investigated. The goal is to link the strength 

to the presence of knots, therefore parameters used as predictor variables were Area of 

knots, stress concentration factors, and modulus of elasticity. Then, studying the stress 

and strength ratios between single board and glulam the goal is to predict the strength of 

glulam from the knot configuration on single boards. On all 36 single boards, a tensile 

stress analysis was performed applying 1𝑀𝑝𝑎 tensile pressure. The available data on 

these boards are: 

- 𝜎𝑆𝐵,𝑚𝑎𝑥 stress from simulations performed on a single board model 

- 𝑓𝑆𝐵 strength from experimental tensile tests performed in Holzforschung 

München, on single boards 

- 𝐸𝑆𝐵 Static MoE in tension from simulations and experimental tests performed in 

Holzforschung München, on single boards 

- 𝐴𝑘 area of knots extracted from numerical model 

From the available data above mentioned, two correlation are obtained, showed in Figure 

5-1 and Figure 5-2. 

 

Figure 5-1 Correlation between the tested MoE and the tested strength of single boards 

This relation is known from other studies (Oscarsson, 2014), but it will be used in sub-

chapters 5.1 and 5.2 to relate the tested MoE and the strength, both from experimental 

tests, with data from the numerical simulations. 
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Figure 5-2 Correlation between maximum stress ad strength for all single boards samples 

Considering all the samples together there is no correlations between strength and stress, 

however the plot shows that for high value of stress the point are well positioned around 

a straight line. According to this observation, the single boards were graded to divide 

them in good and bad boards. The procedure is performed visually from the model, 

depending on the number of knots, the area and their accumulation in small portions 

(interaction of close knots reduce the strength of the board, hence the amount of knots in 

a 150mm length was studied, according to DIN 4074); the single boards were subdivided 

respectively in 23 good and 13 bad boards. Furthermore, another division of boards in 

good and bad boards was performed, basing on MoE from tests; from that subdivision no 

correlation was found, thus the results for this last case are omitted. 
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5.1 STUDY OF BAD BOARDS 

Bad boards’ failure is generally due to knots, therefore, as the problem is studied in the 

linear elastic field, a direct correlation between 𝜎𝑚𝑎𝑥 and 𝑓 is expected. The correlation 

we obtain from the 13 bad samples is shown in Figure 5-3. 

 

Figure 5-3 Correlation between maximum stress and strength for bad boards 

Figure 5-3 shows that there is a quite strong relation between maximum stress on boards 

and strength (𝑅2 = 0,64), and that there is direct proportionality between the strength of 

the board and the maximum stress occurring in the model, as assumed above. From these 

results, valid for single boards, it is possible to extend the results to glulam; a set of seven 

glulam samples made of two or more bad boards is modelled using Abaqus.  

Considering the strong relation between maximum stress (dependant on knots) and the 

strength, it is fair to assume that the failure is ruled by the presence of knots (i.e. the 

maximum stress) on the most stressed board of the glulam sample. The validity of this 

assumption will be checked below, comparing the average value of the strength computed 

through the prediction with the average value of the strength from tests on glulam with 

similar characteristics.  

Since the results of the visual grading of single boards used in glulam production was not 

available, the attempt was to find the relation between measured dynamic MoE and 

strength of single boards tested in Holzforschung München. From tests, the dynamic MoE 

and the strength of 200 single boards were known, therefore they were studied together 

to find a relation; the result is plotted in Figure 5-4. 

y = 0,9394x + 19,873
R² = 0,6428

0

10

20

30

40

50

60

0 5 10 15 20 25 30 35

fs
b

 [M
p

a]

σsb,Max [Mpa]

σsb,Max-fsb



61 

 

 

Figure 5-4 Correlation between tested MoE and strength on 200 samples specimen 

For the classification of good and bad boards used for the glulam specimens, a limit 

strength value of 𝑓 = 40𝑀𝑝𝑎 was fixed, and through the regression equation obtained 

from Figure 5-4, the value 𝐸𝑆𝐵,𝑡𝑒𝑠𝑡 = 14130𝑀𝑝𝑎 was computed. Known the modulus of 

elasticity of each board of every glulam sample, the grading was performed dividing 

glulam in: 

- Glulam made of two or more bad boards, obtaining an average strength 

𝑓𝐺𝐿,𝑏𝑎𝑑;𝐴𝑣𝑔 = 61𝑀𝑝𝑎 

- Glulam made of more than three good boards, obtaining an average strength 

𝑓𝐺𝐿,𝑔𝑜𝑜𝑑;𝐴𝑣𝑔 = 84𝑀𝑝𝑎 

First, the ratio between maximum stress in a glulam sample and the maximum stress in 

the corresponding lamella (analysed as a single board) is computed for every glulam 

sample. The ratio is then averaged on all ten samples, obtaining: 

 𝑅1 = 𝐴𝑣𝑔(𝑅𝑖) = 𝐴𝑣𝑔 ((
𝑀𝑎𝑥(𝜎𝑆𝐵,𝑀𝑎𝑥,𝑗)

𝜎𝐺𝐿,𝑀𝑎𝑥
)

𝑖

) = 1,46       (5.2) 

Where the 𝑖 subscript indicates the glulam sample number and the 𝑗 subscript indicates 

the board of glulam subjected to the maximum stress. This convention is used also in the 

following equations. The ratio higher than one shows once again the lamination effect of 

the glulam, that redistribute the stress over different lamellas reducing the maximum 

stress. This ratio is used to compute the maximum stress on the most stressed board 

(modelled as a single boards) through a prediction, i.e. simulations on single boards can 

be avoided using the formula: 
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 𝜎𝑆𝐵,𝑀𝑎𝑥,𝑖 = 𝜎𝐺𝐿,𝑀𝑎𝑥,𝑖 ∗ 𝑅1 (5.3) 

By correlating the strength of single boards to their stresses, the strength of single boards 

can be computed through the regression equation, in order to be able to predict strength, 

through the formula: 

 𝑓𝑆𝐵,𝑖 = 0,94 ∗ 𝜎𝑆𝐵,𝑀𝑎𝑥,𝑖 + 19,87 (5.4) 

Then, considering the average value of the tested strength of glulam made of bad boards, 

mentioned above, the ratio with the average strength of the most stressed single boards of 

each glulam sample is computed as: 

 𝑅2 =
𝑓𝐺𝐿,𝑏𝑎𝑑,𝐴𝑣𝑔

𝐴𝑣𝑔(𝑓𝑆𝐵(𝑚𝑎𝑥(𝜎𝑆𝐵,𝑀𝑎𝑥,𝑗))𝑖)
=

61𝑀𝑝𝑎

34,99𝑀𝑝𝑎
= 1,74 (5.5) 

This ratio is used to compute the predicted strength of glulam starting from the predicted 

strength of a single board as: 

 𝑓𝐺𝐿,𝑖 = 𝑓𝑆𝐵,𝑖 ∗ 𝑅2 (5.6) 

Assuming that the ratios 𝑅1, 𝑅2 and the regression equation are valid also for other cases 

under the condition of glulam made out of two or more bad boards of beech, this 

procedure allows to compute the strength of a glulam sample knowing only the maximum 

stress from simulation on a glulam sample. In Table 5-1, numerical results are showed; 

in particular, every column represent a glulam sample, except the last one in which the 

results from all samples are averaged. In the first column, values highlighted in green are 

values known from simulation (i.e. input data), while data highlighted in yellow are the 

data obtained using the above mentioned equations. 

Table 5-1 prediction procedure for bad boards, values on samples and average 

  

Glulam made with all bad 
boards 

Glulam made with 
at least two bad 

boards 
Avg 

  Sp.1 Sp.2 Sp.3 Sp.4 Sp.5 Sp.6 Sp.7 

σGL,Max [Mpa] 13,19 8,31 12,27 19,04 4,27 14,31 16,11 12,50 

σSB,Max [Mpa] 14,94 14,94 14,94 18,32 13,94 18,32 32,26 18,24 
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R1 1,28 2,18 1,46 

fGL,Bad,Avg [Mpa] 60,84 60,84 60,84 

fSB [Mpa] 29,75 29,75 29,75 37,15 32,85 37,15 48,54 34,99 

R2 1,94 1,58 1,74 

σSB,Max,Pred [Mpa] 19,25 12,12 17,90 27,78 6,23 20,88 23,50 18,24 

fSB,Pred [Mpa] 37,95 31,26 36,69 45,97 25,72 39,48 41,95 37,00 

fGL,Pred [Mpa] 65,99 54,35 63,79 79,93 44,73 68,65 72,94 64,34 

 

The study was carried out using seven glulam samples, four made of only bad boards and 

three made of at least two bad boards. From Table 5-1, it is possible to have an overview 

of the whole procedure. Having a big specimen to study, it is possible to compute 𝑅1 and 

𝑅2 and extent the results to all type of beam, after having them divided through a visual 

study of the knots. Known 𝑅1 and 𝑅2 and the regression equation from the correlation 

(Figure 5-3), the only required input data for the strength prediction is the maximum stress 

on glulam, obtained from the numerical simulation. Results averaged on all samples show 

the accuracy of this prediction procedure; in particular, the average strength of glulam 

samples from prediction is 𝑓 = 64,34𝑀𝑝𝑎, close to the input value 𝑓 = 60,84𝑀𝑝𝑎. 

Under these conditions, the model is a valid alternative to other models (Baño, 2010), that 

studied the problem considering more complex hypothesis (fiber deviation, plasticity, 

etc.). 

5.2 STUDY OF GOOD BOARDS 

Failure in good boards may be due to several reasons besides the knots (strong fibre 

deviation, micro cracks, etc…), therefore the correlation between strength and stress is 

low, as showed in Figure 5-5. 
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Figure 5-5 Correlation between maximum stress and strength for good boards 

The lack of correlation is particularly evident for the lowest values of the 𝜎𝑆𝐵,𝑚𝑎𝑥, 

corresponding to boards in which there are very few small knots or no knots in the test 

length; in this case the failure, i.e. the strength, is completely independent from the 

maximum stress. The main goal of this research is to predict the influence of knots on 

strength, hence beams with small values of maximum tensile stress (𝜎𝑆𝐵,𝑚𝑎𝑥 < 1,2) are 

neglected, obtaining the new correlation, showed in Figure 5-6. 

 

 

Figure 5-6 Correlation between maximum stress and strength for good boards, neglecting 

samples with few knots 

As expected, the correlations is higher. The goal is predicting the strength of glulam, thus 

a set of ten glulam samples made of three or more good boards is modelled in Abaqus. 
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The assumption made for the previous case of bad boards, that the failure is determined 

by bad boards, hence by the maximum stress on single boards, is now modified.  

As using the maximum stress values the influence of three boards with good 

characteristics would be neglected, therefore a better approximation is obtained 

considering the average of the maximum stresses on the four lamellas. The validity of the 

hypothesis will be checked studying the convergence between strength of glulam from 

prediction and strength from tests. 

The procedure for dividing the glulam in two categories, one made by three or more good 

boards and one made by at least two bad boards is the same explained in the above 

paragraph. In this case the average strength is that for the glulam made by three or more 

good boards, corresponding to 𝑓 = 83𝑀𝑝𝑎. 

First, it is computed the ratio between the maximum stress in a glulam sample and the 

average value of maximum stresses in the four lamellas (analysed as a single board), then 

the average considering all glulam samples is computed, using equation 5.7. 

 𝑅1 = 𝐴𝑣𝑔(𝑅𝑖) = 𝐴𝑣𝑔 ((
𝐴𝑣𝑔(𝜎𝑆𝐵,𝑀𝑎𝑥,𝑗)

𝜎𝐺𝐿,𝑀𝑎𝑥
)

𝑖

) = 0,8 (5.7) 

Although the ratio lower than one may lead to think that stresses in glulam are higher, the 

ratio between the maximum stress in glulam and the maximum stress in single boards is 

still greater than one, therefore we still have the lamination effect of glued boards. This 

ratio is used to compute the maximum stress on the most stressed board (modelled as a 

single boards) through a prediction, i.e. simulations on single boards can be avoided using 

the formula: 

 𝜎𝑆𝐵,𝑀𝑎𝑥,𝑖 = 𝜎𝐺𝐿,𝑖 ∗ 𝑅1 (5.8) 

The strength of single boards can be computed through the regression equation, in order 

to be able to predict strength avoiding experimental test, through the formula: 

 𝑓𝑆𝐵,𝑖 = 4,18 ∗ 𝜎𝑆𝐵,𝑀𝑎𝑥,𝑖 + 16,98 (5.9) 

Then, considering the average value of the tested strength of glulam made of good boards, 

mentioned in the above paragraph, the ratio with the average strength of the most stressed 

single boards composing each specimen is computed: 
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 𝑅2 =
𝑓𝐺𝐿,𝐺𝑜𝑜𝑑,𝐴𝑣𝑔

𝐴𝑣𝑔(𝑓𝑆𝐵,𝑖)
=

84𝑀𝑝𝑎

33,97𝑀𝑝𝑎
= 2,44 (5.10) 

The ratio is now higher compared to the case of glulam made of bad boards because the 

average strength of single boards is not affected very much, while the strength of glulam 

is increasing significantly. This is once again a consequence of the lamination effect of 

glulam, that leads to a higher strength in equivalent boards of glulam compared to single 

boards. This ratio is used to compute the predicted strength of glulam starting from the 

predicted strength of a single board as: 

 𝑓𝐺𝐿,𝑖 = 𝑓𝑆𝐵,𝑖 ∗ 𝑅2 (5.11) 

Assuming that the ratios 𝑅1, 𝑅2 and the regression equation are valid also for other cases 

under the condition of glulam made out of two or more bad boards, this procedure allows 

to compute the strength of a glulam sample knowing only the maximum stress on glulam 

from the analysis. 

In Table 5-2, numerical results are showed; in particular, every column represent a glulam 

sample, except the last one in which the results from all samples are averaged. In the first 

column, values highlighted in green are values known from simulation (i.e. input data), 

whereas data highlighted in yellow are the data obtained using the above mentioned 

equations. 

Table 5-2 prediction procedure for good boards, values on samples and average 

  

Glulam made with three good 
and one bad boards 

Glulam made with all 
good boards Avg 

  
Sp.
1 

Sp.
2 

Sp.
3 

Sp.
4 

Sp.
5 

Sp.
6 

Sp.
7 

Sp.
8 

Sp.
9 

Sp. 
10 

σGL,Max 
[Mpa] 

5,53 4,96 11,0 6,33 7,89 4,52 5,09 4,56 5,34 5,45 6,07 

σSB,Avg 
[Mpa] 

4,51 3,77 7,39 4,91 7,23 4,16 3,53 4,48 3,75 4,00 4,77 

R1 0,81 0,78 0,79 

fGL,Good,Avg 
[Mpa] 

83 83 83 

fSB,Avg 
[Mpa] 

29,2 29,3 30,4 38,1 47,8 47,5 28,2 29,7 29,8 29,6 36,1 

R2 2,34 2,83 2,44 

σSB,Max,Pre

d [Mpa] 
4,35 3,90 8,66 4,98 6,20 3,55 4,00 3,58 4,20 4,29 4,77 
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fSB,Pred 
[Mpa] 

35,1 33,2 53,1 37,7 42,8 31,8 33,6 31,9 34,5 34,8 36,9 

fGL,Pred 
[Mpa] 

85,8 81,2 129 92,2 104 77,7 82,3 78,0 84,3 85,2 90,1 

 

Comparing results from Table 5-1 and Table 5-2 it is notable the reduction of the stress 

from the bad boards to the good boards case; both for single board and glulam the stress 

reduces to half the initial stress, whereas the strength on the other hand is increasing. The 

difference between the tested and the predicted strength is higher than in the case with 

bad boards, because the correlation for good boards is weaker. 

In conclusion, the model gives reasonably good results in the case of glulam made of bad 

boards, in which failure is significantly ruled by knots. In the case of glulam made by 

good boards, in which the effect of knots is not so high the model gives a reasonable 

approximation, however to have more accurate results more complex models in which 

fiber deviation and post-elastic behaviour are taken into account, need to be used.  
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6 CONCLUSIONS 

The main goal of this master thesis was to study the effect of knots on timber through a 

numerical model with a low computational cost and low input data required; therefore, 

the analysis are run in linear elastic range. The thesis was carried out in three different 

steps.  

In the first step the effect of modelling knots as holes or solid elements were analysed; 

both cases give a good approximation of the stresses in timber, but, the model with filled 

knots lead to a significantly higher computational cost. Therefore, the solution with knots 

modelled as holes in considered the best. Fixed the model setup, MoE and stress 

concentration were studied starting from a model of a single board generated with random 

knots, on which tensile, edgewise moment and flatwise moment stress analysis were 

simulated. The analysis showed that the effect of knots was bigger in the tensile stress 

analysis, with also a bigger increasing of stress in tensile zone, in accordance with 

previous research (Green, 1999). Then, the model was extended to glulam, coupling four 

lamellas assuming a tie contact on the bonding surface, thus no relative movement 

between the contact surfaces. The glulam model shows the effect of lamination of coupled 

lamellas, that leads to an improvement both in terms of MoE and stress concentration; 

thus, for glulam knots are less effective; the lamination effect found maximum on the 

internal lamellas, that are more confined.  

In the second step, the effect of different types of adhesive between each board forming 

the glulam was studied. In the model, an adhesive layer with a thickness of 0,1mm was 

added between each board; the adhesive was modelled as a solid element and tied to the 

boards surface. The results on timber, both in terms of MoE and stress concentration were 

almost unaffected, whereas the stresses on adhesive layer were always lower to the 

stresses on timber. Thus, under the hypothesis of thin layer of adhesive with stiffness 

lower than timber, the adhesive layer can be neglected in the model. 

In the last step, relations to predict glulam strength starting from the numerical model 

were found. In previous researches (Baño, 2010, Lukacevic, 2014), attempt were made to 

find correlations between tested and predicted strength of boards. The aim of this study 

is to extent the results to glulam limiting the input data and the computational cost, 

performing the study in the linear elastic field. The relation between stress from numerical 

simulation and strength from tensile test on single boards tested in Holzforschung 
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München was studied; As wooden boards are strongly heterogeneous and the number of 

knots are affecting the failure, the boards were divided into two groups based on the 

number, the area and the position of knots. The relation for highly defected beams was 

very strong, because the failure is mainly ruled by the knots, therefore by the stress, whilst 

for slightly defected boards the correlation was weaker, because several other parameters 

neglected in this model (fibre deviation, micro-cracks etc.) influence the failure. Known 

the correlations between strength and stress for single board the result was extended to 

glulam, using numerical relations between glulam and single board case strength. The 

predicted strength of glulam was checked comparing the values to values obtained from 

tests performed on samples with same characteristics, obtaining more accurate results for 

the bad boards, once again as a consequence of the greater influence of knots. 
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