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Sommario

Le regioni idrotermali sono interessate da una grande varietà di fenomeni naturali,
tra cui episodi di rigonfiamento e subsidenza del suolo. Tra di esse, le caldere offrono
l’occasione di studiare le complesse interazioni tra i processi magmatici in profondità
e le dinamiche dei fluidi di cui sono imbevute le rocce porose nella crosta superficia-
le. Oltre a questo, le caldere rappresentano uno dei maggiori pericoli derivanti da
eventi naturali sul pianeta, e ciò rende lo studio del loro comportamento e delle loro
caratteristiche di grande importanza.

Una di queste aree idrotermali soggette a instabilità periodiche è la caldera dei
Campi Flegrei, nell’Italia meridionale. Una delle crisi più recenti ha avuto luogo tra
il 1982 e il 1984, e sia la sua evoluzione che le sue potenziali cause sono state oggetto
di numerosi studi e ricerche, che hanno visto l’applicazione di diversi modelli di
sorgenti deformative nel tentativo di riprodurre i dati della deformazione osservata
in superficie e dell’attività sismica del periodo.

Questa tesi si propone lo scopo di introdurre un modello di sorgente deforma-
tiva che prevede una regione termo-poro-elastica inclusa in un solido poro-elastico
semi-illimitato, e svilupparlo nel caso in cui questa regione abbia forma cilindrica
e subisca cambiamenti di temperatura e pressione di poro al suo interno. Viene
fornita una soluzione semi-analitica per i campi di spostamento e sforzi così generati
sia all’interno che all’esterno della sorgente deformativa, e i risultati sono paragonati
a quelli ottenuti tramite un approccio completamente numerico, insieme a quelli di
altri tre modelli.

Lo spostamento verticale risultante alla superficie libera è in buon accordo con
quello prodotto dal modello di Mogi, e riproduce il pattern di deformazione verticale
osservato presso i Campi Flegrei durante la crisi del 1982-84. Tuttavia, vi sono delle
differenze nelle ampiezze delle componenti dello spostamento tra il nostro modello
e gli altri due considerati. I risultati per il campo di sforzi sul piano mediano
della sorgente indicano un regime di sforzo compressivo al suo interno, mentre si
evidenzia un regime distensivo nella regione al di sopra fino alla superficie libera,
e un regime trascorrente nella regione esterna del semispazio. Questo è in accordo
con la distribuzione eterogenea dei meccanismi focali ottenuti dai dati sismologici
relativi allo stesso episodio presso i Campi Flegrei.

Alla fine dell’opera, sono discussi i limiti di applicabilità del modello e ne sono
indicati alcuni possibili sviluppi ulteriori.



Abstract

Hydrothemal regions are affected by a wide variety of phenomena, including ground
inflation and deflation episodes. Among them, calderas offer the opportunity to
study the complex interaction between magmatic processes at depth and permeable
rocks filled with fluids in the upper crust. In addition to this, they also represent
one of the most relevant natural hazards on the planet, making the understanding
of their features and dynamics even more important.

One of such hydrothermal areas is the Campi Flegrei caldera in southern Italy.
One of the most recent episodes of unrest took place between 1982 and 1984, and
a lot of research has been conducted into its unfolding and its causes, seeing the
application of different deformation source models to reproduce the observed data
of ground displacement and seismicity.

The present work aims at introducing a source model consisting of a thermo-
poro-elastic region embedded in a homogeneous semi-infinite poro-elastic medium,
and developing it for the case where the region has the shape of a cylinder and
undergoes changes in temperature and pore pressure. A semi-analytical solution for
the displacement and stress fields both within and outside the source is provided,
and comparisons are made between these results and those obtained through a fully
numerical approach, as well as those of three other source models.

The resulting uplift at the free surface is in good agreement with that of the Mogi
source model, and it approximates the pattern of the vertical ground deformation
recorded during the 1982-84 Campi Flegrei unrest episode. However, there are
differences in the amplitudes of the displacement field components between our
model and the other two considered. Results for the stress field on the median
plane of the source suggest a compressive stress environment in its interior, while a
distensive regime is highlighted in the region above the source up to the free surface
and a strike-slip environment extends over the outer regions of the half-space, in
agreement with the heterogeneous distribution of focal mechanisms retrieved from
the seismic data accompanying the above-mentioned unrest episode.

In the end, the limits of applicability of the model are discussed, and further
developments are proposed.



Introduction

Volcanic areas are home to some of the most fascinating and hazardous natural
phenomena that can be experienced on our planet. Among them, caldera regions
are affected by a variety of complex and, in most cases, still poorly understood
magmatic and hydrothermal activities.

The interplay between deep magmatic intrusions and the surrounding media,
which are often permeable and filled with fluids of different nature, can lead to a
wide range of surface manifestations, such as degassing, hot springs, fumaroles and
considerable ground deformation on relatively short timescales. In addition, the
presence of magmatic activity at shallow depths poses a major hazard to the whole
region hosting the caldera, as these areas are known to have caused some of the
biggest eruptions in geological history all over the world.

It is thereby of great scientific and social relevance to advance the research on
the processes in which these regions are involved, and in order to do that, there is a
need for more complex and accurate theoretical models to describe and reproduce
the data sets collected on the ground.

The purpose of this work is to discuss a deformation source model to be applied
to the description of ground displacement in hydrothermal regions, consisting of
a cylinder-shaped thermo-poro-elastic inclusion embedded in a semi-infinite poro-
elastic solid.

The analytical solutions for the displacement and stress fields within such an
inclusion have already been provided by Lamberti (2017) for the case of an infinite
space. What we want to attempt is to develop the same model assuming a space
bounded by a free surface, thus analyzing the displacement and stress fields produced
both on it and at different depths.

Furthermore, we want to compare the results we will obtain to those of other
simple source models typically employed to fit surface deformation data in volcanic
areas. In order to validate our results, we will discuss them in the light of a particular
case study: the Campi Flegrei caldera in southern Italy. The area is known to have
experienced several cycles of inflation and deflation over the centuries and even in
very recent times, and it was affected by a well-studied phase of unrest, characterized
by increased seismicity and ground uplift, between 1982 and 1984.

We will focus our attention on the pattern of the ground displacement recorded
at that time, together with the models that have been proposed to explain the
phenomenon in terms of magmatic and hydrothermal processes, and we will try to
understand how our model could fit into such a complex case.

The work will be divided into five chapters with an additional appendix, and
their plan will be the following:

• The first chapter will be devoted to the introduction and description of the
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Campi Flegrei caldera, with particular attention on its geological features and
the characteristics of the 1982-84 and more recent unrest episodes. We will
discuss some of the deformation source models proposed over the years and
also the models used to describe its hydrothermal system. Finally, we will
introduce the source model that will be developed throughout the rest of the
work.

• The second chapter will lay out the theoretical premises and techniques we
will use to provide a solution to our problem: namely, Eshelby’s method will
be explained, the representation of displacement fields by means of elastic
Green’s functions and the rheology of poro-elastic media will be discussed,
and the Green’s function for a half-space will be derived.

• The third chapter will describe in detail the characteristics of our deformation
source and the parameters we will use in our model; then, it will provide a
semi-analytical solution for the displacement and stress fields both within the
inclusion and the surrounding medium. Results at the free surface will be
presented and discussed as well, together with comparisons between them and
the results obtained for the same case through a fully numerical model.

• The fourth chapter will compare our results to those of three other models as-
suming pressurized cavities at depth. Moreover, we will attempt to justify the
assumptions we make with respect to more sofisticated models of hydrother-
mal regions, and we will discuss the possible applications of our model to the
Campi Flegrei area.

• The fifth chapter will contain a summary of the work and its results, ending
with some conclusive remarks.
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Chapter 1

Modelling the unrest in
hydrothermal regions

The purpose of this chapter is to give some insight into the geological phenomena
that can occur in hydrothermal regions, such as calderas. These include ground
deformation, changes in temperature, flux and chemical composition of the fluids
exsolved from the ground and seismicity associated with changes in the stress field.

One of the most remarkable of such events is represented by bradyseisms: these
are episodes of uplift or subsidence which can involve the surface of entire regions and
produce significant, or even conspicuous, ground deformation (up to tens of meters
of vertical displacement) in a relatively short time (from months to decades). This
can occur for several geophysical reasons, none of which is easy to be identified and
discriminated from others.

In the following sections, we will go through the phenomenology and the dy-
namics of these processes, and discuss how they can be understood and modeled in
terms of deformation sources, taking the example of one of the most studied and
monitored volcanic region in the world: the Campi Flegrei caldera.

1.1 Ground motion in hydrothermal areas
Hydrothermal regions are affected by a complex set of interactions in which wa-
ter and other fluids circulate within the Earth’s crust and transfer heat and mass
towards the surface, usually involving the convection of hot waters through under-
ground permeable media.

These phenomena are set in motion by the presence of some kind of igneous
activity at a certain depth, be it a magma chamber linked to a volcanic vent or
a crystallizing magmatic intrusion. For this reason, hydrothermal manifestations
are often included among the examples of secondary volcanism. The water and
the fluids involved in these processes can be derived directly from the cooling and
crystallization of the magmatic body, or they can originate from external sources
(for instance, groundwater of meteoric origin seeping down to the surroundings of
the intrusion, and thus being heated).

The presence of a system of hot and pressurized fluids driven towards the surface
through a complex network of cracks, faults and interconnected cavities makes the
rocks more permeable, although the presence of impermeable layers is also possible.
Hydrothermal regions are characterized by a wide variety of phenomena that can
occur on relatively short timescales.
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Moreover, as geothermal regions are a manifestation of volcanism, even if in
most cases pertaining to volcanic systems which have shown no signs of activity
for millennia or are regarded as extinct, they might pose a serious hazard to any
population center present in their proximity.

Therefore, the study and the modelling of these regions and their dynamics
are not only an interesting scientific topic, but also a very important issue to be
addressed in order to improve our comprehension of volcanic hazard and the way it
can be assessed.

Hydrothermal regions are found in many areas of the Earth’s surface, both on
the continents and on the ocean floor. In some cases, they are associated with large
depressions, known as calderas, which often show a very complex geologic structure,
and whose origin is to be attributed to the collapse of an ancient magma chamber
after one or more major eruptive events. Calderas represent the most explosive
volcanic areas on the Earth, and depending on the volume of magma involved in
their eruptions, they are able to cause catastrophes affecting entire continents and
alter the climate on a global scale.

The surface manifestations of hydrothermal activity, namely geysers, fumaroles
and hot springs, are often found inside calderas, and the changes observed in their be-
haviour provide valuable evidence on the processes going on at depth. Furthermore,
changes in the temperature and pressure of hydrothermal fluids flowing through
porous rocks can lead to the deformation of the whole underground region affected
by the phenomenon, and the consequences of this can result in gradual but signifi-
cant ground displacement all over the area.

Such massive ground motion is referred to as bradyseism, a term derived from
Greek meaning "slow movement", and it can be due not only to hydrothermal pro-
cesses, but also to the filling or the emptying of a magma chamber, or to the em-
placement of a new magmatic body. As as consequence, when dealing with episodes
of uplift in areas known for having been affected by volcanic acitivity, it is of the
utmost importance to discriminate between the two cases.

Bradyseisms have been observed in many volcanic regions all around the globe,
and sometimes they have preceded or accompanied volcanic eruptions, although
there are several historic records of episodes that seem to be part of cycles of inflation
and deflation, which did not lead to eruptive events. Calderas, in particularly, are
where the most remarkable bradyseisms can occur.

Notable examples of regions like these are the Yellowstone National Park and
the Long Valley caldera in the U.S.A., but one of the most studied of such regions is
the Campi Flegrei (Phlegraeans Fields) caldera in southern Italy: a veritable open
air laboratory where it is possible to analyze and try to model a very complex inter-
play of geophysical processes involving seismic, volcanic, tectonic and hydrothermal
activity.

1.2 The Campi Flegrei caldera
Campi Flegrei caldera is a volcanic district located in the Campania region in south-
ern Italy: it covers a wide area on the coast north-west of Naples, containing even
parts of the city itself. There is a wide scientific literature addressing the several
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Figure 1.1: Location of Campi Flegrei caldera and its main morphological features, including the
marine terrace named "La Starza", the nearby city of Pozzuoli, the Solfatara crater, Monte Nuovo
and the volcanic vents which have been active in the past (after Moretti et al., 2013).
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aspects of this area from different points of view, and a long series of historic records
of the events it has been involved in.

The caldera is characterized by a complex morphological structure and is par-
tially submerged. As reported in fig. (1.1), it shows a broadly circular symmetry,
bounded to the east by the hills of Posillipo and Camaldoli, and to the west by the
reliefs of Monte Procida. Its center can be identified with a raised marine terrace,
named "La Starza", while its southern half is currently below sea level and defines
the Gulf of Pozzuoli.

Exhaustive descriptions of the structure of Campi Flegrei have been provided by
many authors (e.g. D’Auria et al., 2014 and De Vivo, 2006).

A brief history

Volcanic activity has occurred in Campi Flegrei since 47.000 years ago (De Vivo,
2006), but the origin of its current shape is most likely due to two major eruptive
episodes. The oldest one, known as the Campanian Ignimbrite eruption, occurred
approximately 39.000 years BP , while the earliest one, known as the Neapolitan
Yellow Tuff eruption, happened 14.900 years BP (Troise et al., 2018).

Both the eruptions had massive consequences on the whole region, reshaping its
geological features and creating pyroclastic deposits and stratifications which are
well recognizable nowadays (for example, the second episode owes its name to the
typical tuff which constitutes the main bedrock of the city of Naples and has been
the most used building material in its historical architecture, as reported by Colella
et al., 2017).

After the latter event, the area experienced three other periods of activity be-
tween 12.000 and 3800 years BP (Dvorak and Mastrolorenzo, 1991), followed by a
period of quiescence which terminated in 1538 AD with the last magmatic eruption.
This final episode gave rise to the scoria cone of Monte Nuovo, and it was likely
triggered by the progressive transfer of magma from a deep source to a shallower
one beneath the caldera center (Di Vito et al., 2016).

Both before and after this last episode, throughout ancient, classical, medieval
and modern times, the whole caldera has experienced a long series of bradyseisms,
undergoing several cycles of subsidence and uplift. Several locations along the coast
of the Bay of Pozzuoli which were inhabited during the Roman period were gradu-
ally submerged during the Early Middle Ages, and a decade-long phase of inflation
preceeded the Monte Nuovo eruption, totaling more than 17m of uplift (Di Vito
et al., 2016).

These periods of unrest were accompanied by seismicity and increase in hy-
drothermal activities, and most of them are well documented in the historical chron-
icles. Good reconstructions of each phase of unrest can be found in papers such as
Di Vito et al. (1999) or Di Vito et al. (2016).

One of the most remarkable evidence of these processes are the ruins of an ancient
roman market, known as the "Serapeum", in the city of Pozzuoli (whose location
can be seen in fig. 1.1). Its excavation, at the half of the 18th century, brought to
the light the presence, on its three high standing columns, of holes of lithodomes 1,

1Lithodome is a genus of bivalve molluscs which are able to bore holes for shelter in limestone
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a proof of an earlier marine submersion and evidence of sea level fluctuations in the
area (among the first works on the subject, we can cite Babbage (1847)).

Following the last eruption, the caldera underwent a long period of subsidence
until the first half of the 20th century. Then, a new phase of uplift began, reaching
its peaks in two major bradyseisms in 1969-1972 and, above all, 1982-1984. A huge
increase in seismic activity marked both the episodes, especially the latter one. At
the end of 1984 the uplift trend stopped, and a subsidence phase with a much slower
rate ensued, lasting until 2005, when a new period of inflation took over.

In the following we will give attention especially to the more recent episodes,
from the 1982-84 bradyseism to the present day, and the next paragraph is devoted
to a more detailed description of this last period.

Two recent episodes: the 1982-84 bradyseism and the 2005-still ongoing
uplift

The overall trend of ground motion over the whole Campi Flegrei caldera during
the last 1000 years has been dominated by subsidence, with an average rate of 1.7
cm/year (Troise et al., 2018). There have been, however, several phases of inflation.
The last one started in the early 1950s, interrupting the long lasting subsidence
which followed Monte Nuovo eruption. A first event between 1950 and 1952 totaled
about 0.75 m of uplift, then culminating in the peak between 1969 and 1972, at
the end of which a further 1.77 m uplift was recorded at the point of maximum
deformation, located in Pozzuoli (Gaudio et al., 2010). This led to a first evacuation
at Rione Terra, due to the consequences of ground deformation on buildings and
infrastructures.

The new and most considerable phase of unrest started in 1982, with a marked
increase of the ground deformation rate during the first half of 1983 (up to about
10 cm/month, D’Auria et al. (2014)). The deformation rate reached peaks of about
1 m/year, then it started decreasing during the second half of 1984, and it reverted
to subsidence in January 1985. The total uplift measured in Pozzuoli from January
1982 to November 1984 was 1.80 m.

The vertical deformation revealed by leveling data showed a bell-shaped pattern
centered around the area of Pozzuoli harbour, coinciding with the point of maximum
deformation (as reported in fig. 1.2). The overall spatial pattern of uplift was nearly
axi-symmetric, and it remained remarkably unchanged during the whole period
(Bonafede and Ferrari, 2009).

One of the most relevant aspects of the 1982-84 unrest was the important increase
in seismic activity, while the two previous episodes of uplift were accompanied by
weak to moderate seismicity. Starting from the second half of 1982, there was a
gradual increase in both the number and the magnitude of earthquakes (D’Auria
et al., 2014), which became particularly marked at the beginning of 1983. The
rate of seismicity remained almost stationary during 1984, although intense seismic
swarms were recorded and widely felt by the population.

The total amount of seismic events for the 1982-84 unrest consists of about 16,000
recorded earthquakes, with magnitudes ranging from 0.5 to 4.2. The epicenters were
mostly located between Pozzuoli and the ancient volcanic vent of Agnano (fig. 1.1),

or other kinds of rocks.
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Figure 1.2: Spatial pattern of uplift measured on a baseline between Napoli and Pozzuoli (see
the map in fig. 1.1) in June 1983 (black) and in June 1984 (red) with respect to January 1982; the
approximate axial symmetry is shown by the dotted lines (Pozzuoli–Quarto): the maximum uplift
was always found close to the center of Pozzuoli (after Trasatti et al., 2011).

with another cluster located in the Pozzuoli harbour; the hypocenters were generally
above 5 km depth (D’Auria et al., 2014). The series of seismic swarms, together with
fears for an imminent eruption in the area, prompted the partial evacuation of the
town of Pozzuoli during the last two years of the crisis (Troise et al., 2018).

As we already mentioned, the uplift ceased by the beginning of 1985, and a
twenty-year long phase of subsidence followed, lasting up to 2003 and leading to the
partial recovery of the preceding ground displacement, although there has been a
permanent ground uplift after the 1984 peak. The rate of subsidence was of about
4 cm/year on average, but it decreased progressively and it stopped around 2004.
Complessively, about 80 cm of ground uplift were recovered.

The ensuing period, starting from 2005, has seen a new trend of ongoing uplift.
Its rate, though far smaller than that of 1982-84, has gradually increased during the
last years, showing an approximately exponential trend. In fact, a really striking
aspect of this last phase is that there is a remarkable symmetry between its main
uplift trend and the main subsidence trend of the previous period (Moretti et al.,
2018).

Moreover, the shape of ground deformation has remained practically unaltered
during both up and down movements, regardless of the differences in their amounts,
and it has maintained the same features it showed during the 1982-84 episode
(namely, the bell-shaped pattern around the area of Pozzuoli, Troise et al., 2018).
These are key observations to take into account, as they could tell us something
about the mechanisms these processes are driven by.
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Figure 1.3: Chronogram of the maximum vertical ground displacement in the Campi Flegrei
area. Sharp uplifts characterized unrest episodes occurred in 1950–52, 1969–72 and 1982–84. A
20 year-long subsidence took place at the end of the 1982–84 crisis. A new unrest phase started
around year 2005, characterized by a lower uplift rate than during the previous uplift episodes
(after Moretti et al., 2018).

Both the subsidence and the recent uplift phases were characterized by minor
peaks of uplift superimposed on the global trend, which have always been followed
by a fast recovery of their whole deformation. They are referred to as "mini-uplifts",
among other authors, by Gaeta et al. (2003), and they seem to recur once every four
years.

The most recent and noticeable of such episodes occurred between 2011 and
2013, and it was characterized by a temporary, sharp increase in the uplift rate, up
to 16 cm/year: this likely affected the decision of the italian Civil Protection to raise
the alert level for the area, even if the rate later decreased to the previous values.
A further, minor uplift episode could also be recognized in 2016.

Interestingly, the seismicity seems to confirm an increasing trend in the last
decade, though still far from the peak of the 1982-84 unrest.

A summary chronogram of the maximum vertical displacement measured in Poz-
zuoli during the last seven decades is reported in fig. 1.3.

A first valuable piece of information we can deduce from the analysis of the
geological history of Campi Flegrei, even regarding very recent times, is that brady-
seisms and, more generally, ground deformation and unrest episodes are not nec-
essarily followed by magmatic eruptions within the caldera system: as a matter of
fact, they hardly ever are.

A consideration like this compels us to reconsider the role played by ascending
magmatic intrusions and hydrothermal processes in originating these unique phe-
nomena.

12



Observing and measuring the ground motion at Campi Flegrei

The studies of ground motion at Campi Flegrei took the first step with the obser-
vations of the height of bands of molluscs bores on the columns of the Serapeum
in Pozzuoli. These observations remained the only means of measuring the ground
movement in the area until the very beginning of the 20th century, and even today
they are especially valuable in reconstructing the changes in the coastline and the
sea level, and thus the history of past cycles of inflation and deflation.

Precision levellings started to be carried out at Pozzuoli harbour in 1905, and
continued throughout the century (Troise et al., 2018). They accounted for the
monitoring of all the major uplift episodes from 1950 to 1984. The first vertical
levellings in the 1970s, together with Electro-optical Distance Measuring and tide
gauge records in the 1980s (Trasatti et al., 2011; Trasatti et al., 2015), allowed to
reconstruct the deformation pattern all over the area during the 1982-84 bradyseism
and the following phases.

In 2000, a permanent GPS station was installed at Rione Terra, a neighborhood
of the town of Pozzuoli, and this has led to more precise and, most importantly,
continuous set of geodetic data.

Finally, the last 20 years have seen the employ of space geodetic techniques, such
as InSAR (Interferometric Synthetic Aperture Radar) surveys, which have provided
a reliable set of data on the ongoing deformation trend and the "mini-uplift" episodes.
For example, the last significant uplift event was monitored by the COSMO-SkyMed
mission, whose space segment consists of four satellites equipped with SAR sensors,
from February 2011 to December 2013 (Trasatti et al., 2015).

We briefly mention other crucial data sets. Seismic data have been provided
by the network of seismic stations managed by the Osservatorio Vesuviano, with
occasional contribution from foreign institutes and universities (D’Auria et al., 2014),
while geochemical data have been collected with good continuity since 1982 (Troise
et al., 2018), consisting of the analysis of chemical species in the fluids emitted from
fumaroles, mainly located in the Solfatara crater.

Gravimetry surveys have also provided valuable insights on the geology of the
caldera, and seismic tomography studies (Chiarabba and Moretti, 2006) have shed
light on the elastic structure of the shallow crust (in particular, they have evidenced
a high vp

vs

2 anomaly in the caldera center at shallow depths, interpreted as the
presence of a liquid aquifer, and another lower anomaly located between 2 and 4
km).

Finally, the stratigraphy of some parts of the caldera has been investigated
through drillings, like the Campi Flegrei Deep Drilling Project (Natale et al., 2016),
enabling researchers to gather information on the characteristics, temperature and
parameters of rocks in the shallow crust, up to 3 km depth.

We conclude the section pointing out that, according to Zollo et al. (2008), the
whole Neapolitan volcanic area is fed by a permanent, large molten body in the
form of a wide (> 200 km2) and thin (about 1 km) sill, located between 7 and 10
km depth. Besides, there are other authors advocating the presence of a shallow
and smaller magmatic reservoir at a depth between 3 and 4 km beneath the caldera
(e.g. Arienzo et al., 2010, Trasatti et al., 2011).

2vp and vs are, respectively, the velocities of compressional and shear waves in an elastic medium.

13



Any model employed for the area should also consider the interaction between
these two reservoirs, especially when suggesting direct magma emplacement to ex-
plain ground deformation.

In addition to this, it is useful to include the dynamics of the caldera into the
tectonic environment of the Campania margin, which is characterized by extensional
structures and normal fault activity (Lima et al., 2009).

1.3 Modelling the unrest and its causes
The scientific literature of the last 60 years has provided a series of reliable source
models to reproduce surface deformation in volcanic areas: these include pressurized
cavities of various shapes, tensile cracks filled by pressurized fluids and inflating
inclusions, all embedded in a medium which, be it layered or homogeneous, should
take into account the known properties of the crust of the region they are to be
applied to. In the case of Campi Flegrei, and more generally of calderas, a porous
medium and the presence of fluids should be considered.

When considering the phenomena associated with caldera unrest, one of the
most critical points is to discriminate between the effects directly attributable to
shallow magma intrusions and those due to hydrothermal processes, which may
involve interaction with magmatic bodies at depth anyway.

With respect to the 1982-84 unrest at Campi Flegrei, this has led to two main
schools of thought in the course of the last decades: the first one sees the episode
as a direct consequence of magma ascension and emplacement at a shallow depth,
while the second one advocates the role of the geothermal system in accounting
for the bradyseism. These two points of view have led to many interpretations in
disagree with each other, eventually merging in some works stressing their interplay,
and this has continued as well into the scientific literature on the more recent phase
of inflation.

In the next subsection, we are going to review some of the source models that
have been applied to Campi Flegrei to understand the causes of the 1982-84 and
subsequent unrest episodes.

1.3.1 Deformation sources
The simplest source one can consider for the deformation of a volcanic region is
a pressurized sphere embedded in a homogeneous and elastic half-space, assuming
that the radius of the sphere is smaller than its depth. This is known as the Mogi
source (Mogi, 1958), and it can represent an idealization of a magma chamber. A
schematic representation of the model is available in fig. 1.4.

The model developed by K. Mogi provides an analytical solution to this problem,
and it is characterized by only four parameters (namely, the coordinates of the center
of the source (xs, ys, zs) and the change of the hydrostatic pressure in the sphere ∆P ).
As it constitutes the simplest model available, it is still employed nowadays as a test
model, when data are scarce, or when the ground displacement shows some axial
symmetry.

When regarding the 1982-84 bell-shaped deformation pattern at Campi Flegrei
(fig. 1.2), many authors have found that it can be nicely fitted by a Mogi source
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Figure 1.4: Schematic picture of a Mogi source (S) as a pressurized spherical cavity (shaded in
orange) of radius a and at depth c with overpressure ∆p, embedded in a homogeneous half-space
(shaded in pale yellow). P is the point where the strain and stress fields are to be computed, while
R is the distance between the point and the center of the source.

located at about 3 km depth beneth the center of the caldera (e.g. Berrino et al.,
1984).

Other authors have generalized the Mogi model to a viscoelastic rheology (Bonafede
et al., 1986), and even a viscoelastic shell model has been considered, in which vis-
coelastic properties are assigned only to a spherical shell surrounding a magma
chamber. Moreover, the Mogi source is equivalent to an isotropic distribution of
force dipoles (the so-called "center of dilation") or of tensile dislocations (Bonafede
and Ferrari, 2009).

Another class of source models is represented by pressurized ellipsoidal cavities:
these can assume a wide variety of shapes and orientations, depending on the length
and disposition of the three axes. Davis (1986) provided solutions for the surface
displacement field due to an arbitrarily oriented ellipsoidal cavity in an elastic half-
space using Eshelby’s elastic inclusion theory (Eshelby, 1957) and Mindlin’s half-
space point force solution (Mindlin, 1936) (these are the same theoretical premises
we will adopt in the rest of this work).

With respect to Campi Flegrei, it has been shown by Battaglia et al. (2006) that
a pressurized penny-shaped crack (which can be seen as a degenerate ellipsoid, with
a vanishing minor axis) at 2.6 km depth, probably filled with magmatic fluids (su-
percritical water), is the most probable source of the 1982-84 unrest. Other authors
(Amoruso et al., 2008) have proposed the same source model, supporting however
the presence of magma at its interior, and also considering a layered embedding
medium.

Among the other examples of source models we can refer to, there is the rectan-
gular dislocation, whose analytical expression for the displacement and stress fields
in an elastic half-space was developed by Okada (1992).

According to D’Auria et al. (2014), after inverting the 1982-84 ground deforma-
tion data set, the Okada rectangular crack is the best suited from a statistical point
of view, allowing for the assumption of the presence of a sub-horizontal tensile dis-
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location beneath the Pozzuoli area, possibly filled with fluids of magmatic nature.

Figure 1.5: Ratios of eigenvalues M3/M1 and M2/M1 admissible for pressurized ellipsoids (dark
gray subset) in the Poisson approximation (ν = 0.25). By assumption, M1 ≥ M2 ≥ M3 (light
gray area). The four solid diamonds stand for the source models for the 1982-84 unrest considered
in the work which the figure is taken from, none of which falls into the ellipsoid area (after Trasatti
et al., 2011).

One last consideration (Trasatti et al., 2011) arises from the fact that all these
models assume a particular source mechanism and typically neglect the medium
heterogeneities, thus biasing the estimation of source parameters.

Deformation sources can be described, more generally, in terms of a suitable mo-
ment tensor density distribution over a certain spatial extent (e.g. Aki and Richards,
2002). If the source dimension is small enough with respect to its depth, the surface
displacement can be reproduced by adopting the point-source approximation, and
so by retrieving a suitable moment tensor Mij from the inversion of data. With
regard to ellipsoidical source models (Davis, 1986) a pressurized ellipsoid can be
described by a moment tensor, with the principal axes orientation being directly
related to that of the principal stress axes. The three moment tensor eigenvalues
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(Mi) are inversely proportional to the length of the ellipsoid axes (a > b > c).
It can be shown (Trasatti et al., 2011) that by plotting the ratios M2

M1
vs M3

M1
of the

eigenvalues of the moment tensor, it is possible to identify which values correspond
to ellipsoidal sources, and which not. If the retrieved values for (Mi) do not fit into
the ellipsoid region of the plot, as it was the case of the 1982-84 ground deformation,
then assuming an ellipsoidal source is no longer the best choice, and other kinds of
models have to be taken into account. Following this approach, Trasatti et al. (2011)
concluded that a mixed mode dislocation, both shear and tensile, through which a
magma volume might have intruded, is the most suitable interpretation of their best
fit moment tensor.

1.3.2 The debate on magmatic and hydrothermal origins for
the 1982-1984 episode

As explained by Lima et al. (2009), models of bradyseisms can be explained assuming
three scenarios, all of which ultimately depend on the presence of a magma body at
depth, even if the role of magma in driving the phenomenon is different.

One scenario involves shallow magmatic intrusions of different shapes. This in-
terpretation of both the 1982-84 and the 2011-13 unrest episodes has been suggested
and shared by many authors, such as Dvorak and Berrino (1991) and Macedonio
et al. (2014).

The recent sequence of up and down movements is interpreted as the effect of
injections of magma at shallow depths, as part of a model in which sill-like magma
intrusion at the discontinuity between two layers can generate uplift at surface,
followed by subsidence when magma stops intruding and spreads laterally.

A two-reservoir model is also suggested, according to which the Campi Flegrei
volcanic system could be fed by shallow magma accumulations between 3 and 4 km
depth due to magma transfer from the deeper underlying source which feeds the
whole volcanic region (Troise et al., 2018).

Purely magmatic models, however, find it difficult to explain the observed long
lasting subsidence after the 1982-84 peak (Troise et al., 2018). Moreover, several
seismic tomography surveys, like the reflection tomography Project Serapis (Juden-
herc and Zollo, 2004), have found no evidence of shallow magma batches in the 3-4
km depth range (while they have highlighted the large sill at about 8 km depth we
mentioned in section 1.2). Even the temperature profiles inferred from deep drilling
projects are generally incompatible with the presence of magma at shallow depths
(Trasatti et al., 2011).

A second class of models also involve fresh magma input, but it views the brady-
seism as due to the injection of magmatic fluids into the overlying crust, inducing
fluid overpressure in the shallow hydrothermal system and the inflation of the host
rocks. In this frame, subsidence could result from a decrease in the flux of magmatic
fluids entering the system, or a rapid permeability increase (and pore pressure de-
crease) that occurs when the fluid pressure exceeds the local strength of the crust,
leading to failures in the elastic matrix of the porous media.

The third scenario considers bradyseisms as the result of the complex interplay
between processes operating on two very different timescales.
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The longest one is associated with the cooling and crystallization of a magma
volume at shallow depth, accompanied by generation of magmatic fluids, and it
may be seen as the direct cause of a long-term trend of inflation. The minor and
shorter uplift episodes are interpreted as the consequence of the episodic expulsion of
fluids pressurized at the lithostatic pressure of their source region into an overlying
hydrostatically pressured hydrothermal system.

A two-reservoir model like this has been proposed for Campi Flegrei by Lima
et al. (2009): it contemplates the crystallization of a volatile-rich magma body at 6
km depth, and the subsequent release of magmatic fluids into a deep lithostatically-
pressured aquifer. This one is separated from a more shallow hydrostatic aquifer by
a low-permeability region at about 3 km depth.

Bradyseism episodes are seen as driven by the episodic and transient connec-
tion between these two systems, which is provided when the overpressure of the
underlying fluids is enough to induce major breaches in the separating brittle and
impermeable layer. This would also account for seismic swarms during unrest phases.
If connectivity is established and fluids start migrating towards the shallow aquifer,
then their volume tends to increase considerably as they move from a lithostatic-
pressured region to a hydrostatic-pressured one. As a result, the temperature in-
crease associated with volume increase will lead to a decrease in the solubility of
silica in the fluids. Subsequent precipitation of silica in the porous matrix will lead
to the self-sealing of the cracks and the pores, thus aiding in the reestablishment of
isolated reservoirs.

The information provided by geochemical data is particularly crucial in discrim-
inating magmatic from hydrothermal unrest mechanisms. In fact, the analysis of
the ratios between concentrations of chemical species found in fumarolic gases, in
particular H2O

CO2
, can give insights of the presence of a magma intrusion at shallow

depths. If that is the case, then the ratio increases because the water content in the
gases exsolved from the ground would increase too, as magmatic steam is released in
huge quantities into the hydrothermal system while the intrusion is cooling (Troise
et al., 2018). Data collected in the 1982-84 period show indeed a sharp peak in wa-
ter content, suggesting possible injections of magmatic fluids from a shallow source
(Moretti et al., 2018), and even if there has been no evidence of similar trends dur-
ing the more recent "mini-uplift" episodes, increases in the content of other species
typically associated with magmatic fluids have been observed (Chiodini et al., 2015).

D’Auria et al. (2014), through a joint inversion of the focal mechanisms obtained
from the 1982-84 seismic data series, were able to identify the principal stress axes
orientation in the area: a subvertical σ1 (that is, the minimum principal stress axis,
whose direction corresponds to that of maximum compression) and a sub-horizontal
σ3 (which is the maximum principal stress axis, corresponding to the direction of
maximum tension).

This would imply the presence of a prevailing extensional stress regime. Accord-
ing to the authors, this is mainly the reflection of the stationary background regional
field, although the stress field within the region of unrest showed both spatial and
temporal changes during the 1982-84 crisis, this being interpreted as linked to the
intrusion of fluids, possibly of magmatic origin, within a shallow planar structure.

It is to say that focal mechanisms retrieved from the data show a very heteroge-
neous distribution among the different typologies (fig. 1.6).
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Figure 1.6: Focal mechanism data set relative to the 1982-84 unrest episode, represented both
on a map of Campi Flegrei (top figure) and along the B-B’ cross-section (bottom figure). The
triangular diagram within the inset on the top right shows the distribution of observed focal
mechanism types among normal, inverse and strike-slip, highlighting their heterogeneity (after
D’Auria et al., 2014).

Recently a retrospective study (Troise et al., 2018) proposed that enough evi-
dence had been provided to the hypothesis of a sill-like magma intrusion beneath the
Pozzuoli area as the source of the 1982-1984 unrest. Its emplacement and the sub-
sequent cooling and crystallization may have accounted for both the uplift and the
following subsidence phase. The shallow magma sill may have solidified by 2000, and
the prevailing gases injected afterwards, likely being the cause of the minor unrest
episodes in recent years, may have originated from the deep magma reservoir into
the hydrothermal system, possibly through the two-reservoir mechanism proposed
by Lima et al. (2009).

The next and last section of this chapter will be devoted to the introduction of the
source model that will be discussed and developed throughout the rest of our work,
and which could also be applied to ground deformation observed in hydrothermal
regions.
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1.4 A first approach: the thermo-poro-elastic in-
clusion

If we aim to reproduce the ground deformation pattern accompanying an unrest
episode in a hydrothermal region such as a caldera, then every kind of model, no
matter how sofisticated it may be, should take into account at least the properties
of the underlying medium.

In the case of Campi Flegrei, even if the stratigraphy shows a very complex
structure, we can assume, to a first approximation, a homogeneous poro-elastic half-
space. The latter assumption is necessary because, similarly to previous studies, we
are interested in estimating the displacement field where it can be measured, that is
at the Earth surface. Being free of traction, provided that the atmospheric pressure
and winds are neglected, the Earth surface can be in fact approximated as the
surface delimitating a half-space. Besides, as the majority of papers we have gone
through agrees on the fact that the deformation source (be it a magmatic intrusion
or a volume of overpressured magmatic fluids) responsible for the 1982-84 unrest
is located between 2 and 5 km beneath the caldera center (Trasatti et al., 2011;
Trasatti et al., 2015; Troise et al., 2018), our model should consider the presence of
a free surface also because the source horizontal dimension, if estimated from the
caldera dimension, is bigger than its depth, and therefore it is not possible to assume
an infinite space.

Figure 1.7: Schematic picture of a cylinder-shaped thermo-poro-elastic inclusion (highlighted in
orange) with radius a and thickness d, located at depth c and embedded in a poro-elastic half-
space (highlighted in pale yellow). The median plane of the cylinder is drawn for completeness,
and ideally the thickness of the cylinder should be far smaller than its depth.

The source model we intend to discuss in our work consists of a cylinder-shaped
thermo-poro-elastic inclusion embedded in a poro-elastic medium with a free surface
(as it is shown in fig. 1.7). The inclusion undergoes a change in temperature and
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pore pressure so that displacement and stress fields are induced both in its interior
and within the surrounding half-space.

If we manage to provide solutions (by analytical or numerical methods) to this
kind of problem, then we could evaluate the displacement at the free surface, en-
abling ourselves to confront these results with the field collected data.

The case of a cylinder-shaped thermo-poro-elastic inclusion in an infinite space
has already been discussed by Lamberti (2017), and it can give valuable insights on
the stress regime within the source region, provided that its depth is big enough to
ignore the effects of the free surface.

Here we aim at providing solutions to the case in which the proximity of the free
surface can no longer be neglected, as in the case of Campi Flegrei.

The approach we will be following is similar to that employed by Davis (1986):
we will avail of the Eshelby method to retrieve the strain and stress fields within
and outside the inclusion, and then we will provide the elastostatic Green’s function
for an half-space while accounting for the rheology of the media. In the end, both
through analytical expressions and numerical techniques, we will evaluate these fields
and focus on the displacement at the surface, comparing it to the results from other
source models.

All of these steps will be carried out and developed in the course of the following
chapters, the next one being devoted to the presentation of the theoretical procedure
we will follow.
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Chapter 2

Eshelby’s method and its
application to a
thermo-poro-elastic inclusion in a
half-space

In the first section of this chapter we give a brief introduction of the "Eshelby’s
method", which refers to the formal solution of a class of problems involving in-
clusions of arbitrary shape undergoing inelastic transformations in an elastic space.
This method was first laid out by John D. Eshelby between the late Fifties and the
early Sixties.

Then, in the following sections, we illustrate how to express the displacement
field in an elastic medium by means of the Green’s functions and how to generalize
the procedure in the case of a thermo-poro-elastic source of deformation.

Eventually, a generalisation of the Green’s tensor for the case of an elastic space
bounded by a free surface is discussed and provided.

2.1 Eshelby’s method for the elastic inclusion
In his first article on the subject (Eshelby, 1957), Eshelby focused on giving a solution
to a certain cathegory of continuum-mechanics problems in which the uniformity of
an elastic medium is perturbed by the presence of a region that either has changed
its volume and shape, or has different elastic parameters with respect to the rest of
the space.

Here we are interested in both these cases.

The first problem to be introduced is the following: a region, which will be
referred to as the inclusion, bounded by a closed surface S in a homogeneous, elastic
material, which will be named thematrix, undergoes a spontaneous change in volume
and shape such that, were there no constraints imposed by the surrounding medium,
it would result in an arbitrary homogeneous deformation e∗ij, called the stress-free
strain.

An approach like this can be used to describe several processes (Eshelby pro-
vided the example of a twin forming inside a crystal, among others). These include
phase transformation, some plastic deformations and thermal expansion. We will
be especially interested in the latter one.
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Eshelby set the aim of evaluating the final strain and stress fields both within the
region and the surrounding medium, with the help of a set of "imaginary cutting,
straining and welding operations", to quote his own words. Before we are able to go
through all of them, we must discuss the further assumptions he made:

• The inclusion and the matrix are joint together, and will remain so throughout
all the course of the transformation. Thus, if we consider any pair of adjacent
points immediately inside and outside the region-enclosing surface S, there is
no relative displacement between them at the end of the process.

• Both the inclusion and the matrix are unstressed before the transformation,
and they share the same elastic constants.

• In the original article, no assumptions were made on the spatial extension of
the matrix in the first place, and the solutions hold in a generic case. However,
in the following sections a further assumption will be made, which is that
the matrix is bounded by a free surface. In any case, either if the space
surrounding the inclusion is assumed to be infinite or bounded, we can solve
for the displacement and stress fields in an analytical way.

The beginning of the problem thus sees the inclusion still joined to the outer
medium, while the initial stress field is zero within both of them. The set of opera-
tions devised by Eshelby are the following, and they are also illustrated in fig. 2.1:

1. Make a cut along S and remove the inclusion from the matrix, leaving behind
a cavity with the same volume and shape. At the end of the process, the
inclusion will still be unstressed, as well as the matrix, and their original
shape is preserved thanks to Kirchhof’s uniqueness theorem.

2. Allow the inclusion to undergo its transformation of volume and shape under
vanishing tractions on S, which results in the uniform stress-free strain e∗ij (in
that it occurs without changing the stress field, which remains zero).

3. In order to fit the inclusion back inside the cavity, bring it back to its original
volume and shape through the application of surface tractions Tj on S. These
can be expressed as Tj = τ ∗ijni, where ni is the i− th component of the normal
to the inclusion surface S, and τ ∗ij = −(λe∗kkδij + 2µe∗ij) is the stress tensor
derived from e∗ij, resulting in a strain −e∗ij. The − sign in the expression for
τ ∗ij is due to the fact that we need to remove the former strain e∗ij in order to
restore the original shape and volume of the inclusion.

4. Put the inclusion back into the cavity and weld the material together across
S, being careful to maintain the applied surface tractions, which now become
an infinitesimal layer of body forces spread all over S. At this stage, every
point in the matrix and the inclusion is in the same position it was in the
beginning (so the displacement field is still zero everywhere), and the matrix
is still unchanged (namely, unstressed), whereas the stress inside the inclusion
amounts to τ ∗ij.

23



5. The layer of body forces introduced before on each element dS of S is given by
dFi = τ ∗ijnjdS. To get rid of it, apply a further distribution dFi = −τ ∗ijnjdS
over S. This is equivalent to letting the body forces which kept the inclusion in
its former shape relax, and allowing the matrix to constrain the inclusion. This
new, opposite layer of body forces leads to a non-zero displacement field within
both the matrix and the inclusion uci , the superscript c meaning "constrained".

Figure 2.1: Graphical illustration of the conceptual steps devised by Eshelby (1957). The TPE
region is yellow. The last two steps in the text are summarized in the fourth step in the picture
(by courtesy of M. Bonafede).

In order to evaluate the displacement field uci , Eshelby availed himself of the
representation theorem, which provides general ways of calculating the displacement
at a generic point in space in terms of the quantities that caused the motion (in
particular, he resorted to the formulae reported by Love, 1927).

From uci it is then possible to derive the related strain field for the whole space:

ecij = 1
2

(
∂uci
∂xj

+
∂ucj
∂xi

)
(2.1.1)

If the matrix is an homogeneous, isotropic elastic medium, then, according to the
elastic constitutive relation τij = λekkδij + 2µeij, the stress field within it is given as
well by

τ cij = λ
∂uck
∂xk

δij + 2µecij (2.1.2)

where λ and µ are the Lamé’s constants, and ν is the Poisson’s ratio.

The stress field inside the inclusion, however, differs from the latter, in that there
already is the stress τ ∗ij. The "internal" stress field is thus given by

τ inij = τ cij + τ ∗ij (2.1.3)
At this stage, it is both necessary and instructive to understand how the displace-
ment field uci is derived, and to go through a brief presentation of the elastic Green’s
function.
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2.2 The elastic Green’s function and the displace-
ment field

As discussed in many textbooks (such as Aki and Richards, 2002), one of the major
aims of the theory of elasticity is the representation of the displacement field due
to realistic sources in terms of the one produced by the simplest of sources, which
is an unidirectional unit impulse, precisely localized in both space and time (i.e., a
delta-function body force). When considering a static source, as it is the case, the
displacement field is given by the elastic Green’s function.

Generally speaking, for a body in static equilibrium, the stress τij and the body
force Fj acting on it must satisfy the following set of partial differential equations:

∂τij
∂xi

+ Fj = 0 ∀j (2.2.1)

If the body in question obeys the elastic constitutive relation τij = Cijklekl, where
Cijkl are the general elastic coefficients and ekl is the strain field, eq. 2.2.1 can be
expressed in terms of the displacement field uk:

Cijkl
∂2uk
∂xlxi

+ Fj = 0 ∀j (2.2.2)

When the body force Fj is a unit point force in the m − th direction (namely,
Fj(x) = δ(|x−x′|)δjm) centered at the point x′, as stated before, the solution of eq.
2.2.2 at a point x is precisely the elastic Green’s function Gkm(x,x′):

uk = Gkm(x,x′)Fm(x′) (2.2.3)

In other words, Gkm(x,x′) yields the displacement in the k − th direction at point
x due to a point force in the m− th direction at x′.

When dealing with a distribution of body forces, the overall displacement field
can be expressed as the integral of the right term in eq. 2.2.3 over the space where
these forces are present.

Going back to the Eshelby’s problem, the displacement field originated by the
layer of body forces dFi = −τ ∗ijnjdS can be obtained through an integral over the
infinitesimal volume V (S) where these forces are present:

ui =
∫

V (S)

Gij(x,x′)dFj(x′) = −
∫
S

Gik(x,x′)τ ∗kjnj(x′)dS(x′) (2.2.4)

If the Gauss’ theorem is applied to the last term of 2.2.4, we obtain the following
expression:

−
∫
S

Gik(x,x′)τ ∗kjnj(x′)dS(x′) = −
∫
VS

∂Gik

∂x′j
(x,x′)τ ∗kjdv(x′)−

∫
VS

Gik(x,x′)
∂τ ∗kj
∂x′j

dv(x′)

(2.2.5)
where the last term on the right side of the equation is zero, as τ ∗kj is constant.

The surface integral can thus be converted into a volume integral over VS, which
is the volume of the inclusion (and it is not to be confused with the volume V (S),
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which coincides with the layer around the surface of the inclusion where the body
forces dFi are applied), through the infinitesimal volume element dv(x′):

ui = −
∫
VS

∂Gik

∂x′j
(x,x′)τ ∗kjdv(x′) (2.2.6)

After having laid out the general solution to Eshelby’s problems, it is time to explain
and deal with the specific case of a thermo-poro-elastic region within an homoge-
neous, isotropic and elastic half-space. The way the solution given in eq. 2.2.6 can
be adjusted to this new case of study is the aim of section 2.4. However, before
we can go through that, it is necessary to give some insight into what poro-elastic
media are, and which constitutive relations they obey. This is what the next section
is devoted to.

2.3 Poro-elastic media
In this section we introduce the poro-elasticity theory, in the form that was first set
by Biot (1941). In this work, he addressed the issue of describing the response of
soil to an applied load. It constitutes a useful framework by which the rheology of
media such as those found in a region affected by hydrothermal phenomena (as a
caldera may be) can be effectively addressed.

A poro-elastic material can be seen as a medium made of a solid skeletal portion,
which is supposed to behave as an elastic material, called matrix or frame, and is
interspersed with cavities, called pores or voids, filled with a fluid, be it gas or liquid.

The configuration of a poro-elastic material is defined by the following quantities:

• The porosity is defined as the volume of empty space per unit volume of the
medium. A further distinction can be made between this kind of porosity,
which is the total porosity, and the effective porosity, which is the volume of
interconnected void space per unit volume of the medium. While the former
takes into account every kind of pores, even those isolated and surrounded by
impervious material, the latter is referred only to the pores which are able to
transfer fluids from one to another.

• The fluid content vi is defined as the volume of the i− th species of fluid inside
the pores per unit volume of the medium, and it is a dimensionless quantity.
If the material is saturated with a single type of fluid (typically water), then
v coincides with the porosity.

• The pore pressure p is the pressure of the fluid filling the voids, acting normally
to the surface of the cavities. It can be assumed as uniform throughout the
pore space of a volume element, provided that the fluid migration through the
pore network is slow enough to make the pressure differences negligible.

• The confining pressure or mean pressure Pc comes into account when a stress
field is applied to the porous medium; it corresponds to the isotropic part of
the stress tensor, namely Pc=̇ − 1

3τkk, and it is not to be confused with the
pore pressure p.
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• The strain and stress tensors eij and τij are defined in the same way as in
the discussion of elastic materials. The former provides the change of distance
between two infinitesimal volume elements centered around the points x and
x + dx according to the definition ds2 − ds2

0 = 2eijdxidxj, where ds and ds0
are, respectively, the infinitesimal distance at the end and at the beginning
of the deformation process, and eij is defined as in eq. 2.1.1. The latter is
defined as the j − th component of the surface force applied on the i − th
infinitesimal coordinate surface (i.e., a surface whose normal coincides with
the i − th axis of the reference system). The only difference to be taken into
account is that the distances and the surface, though still infinitesimal with
respect to the macroscopic scale of the problem, should be large enough to
characterize volumes of material including a significant amount of cavities and
solid matrix, so that eij and τij are sensitive to the contribution of both the
elastic skeletal portion and the fluid inside the pores.

A material can be addressed as poro-elastic if the deformations from a state
of equilibrium to another are reversible. It should also satisfy the assumption of
isotropy. Additional assumptions concern the flow of the fluids through the con-
nected cavities, which should be described by Darcy’s law (see the Appendix, sec-
tion 6.1). Furthermore, the elastic matrix is supposed to obey the linear elastic
constitutive relations for small strain.

To obtain the constitutive relations for a poro-elastic material, we may first
consider a cubic-shaped element big enough so that its volume is large compared
to the volume of any of its pores, and its dimensions are large with respect to the
distances between one cavity and another; at the same time, it should be small
enough compared to the length scales of the phenomena we are analyzing. The first
assumption makes it possible to consider the element as homogeneous; the second
one allows it to be taken as infinitesimal in our mathematical discussion.

If we allow the element to undergo a reversible deformation, then the macroscopic
variables eij, τij, v, p must be state functions, and this, in turns, means that we can
express a set of them with respect to the others (for instance, in an isothermal
transformation, we could write eij and v in terms of τij and p). Moreover, if the strain
and the variation of fluid content are small, then these relations can be expected to
be linear.

Following these assumptions, let us consider our volume element at its initial
state of equilibrium, before the transformation occurs, being described by p0, v0, τ

0
ij, e

0
ij.

Since no deformation has yet occurred, we can set e0
ij = 0. At the end of the process,

we expect these quantities to have changed of amounts ∆p,∆v,∆τij and ∆eij = eij,
respectively. For the sake of a simpler notation, in the following of this section the
first three amounts will be referred to as p =̇ ∆p, v =̇ ∆v and τij =̇ ∆τij.

Now we are going to analyze two different experimental setups: a deformation
occurring with constant pore pressure, and another with constant stress.

Constant pore pressure deformation (p = 0)

In the first case, which is illustrated in fig. 2.2, the poro-elastic specimen has its
surface open to the atmosphere: this means that the fluid filling the voids is free to
flow out during the transformation up to the point where the pore pressure equals
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Figure 2.2: Compression of a volume element of poro-elastic material under constant pore pres-
sure (drained conditions): the unit volume expels a quantity v of fluid which is proportional to the
confining pressure Pc through the constant 1

H1
. (By courtesy of M. Bonafede)

the atmospheric pressure, so that the final pore pressure is equal to the initial one,
and p = 0. Such a transformation is what goes by the name of drained test, and in
a case like this, the constitutive relation is the same as for a purely elastic material,
as expressed in eq. 2.1.2. The strain tensor is given by

eij = 1
2µ

(
τij −

ν

1 + ν
τkkδij

)
(2.3.1)

where µ and ν are respectively the drained modulus of rigidity and the drained
Poisson’s modulus, which can considerably differ from the moduli of a homogeneous
elastic medium (or from those of the elastic matrix alone).

In this kind of transformation, the fluid content of the material must change in
order to keep the pore pressure constant, so we can assume a linear relation between
v and τij:

v = aijτij (2.3.2)

where aij must be an isotropic tensor of rank 2 in order for v to be a scalar, and so
aij = aδij. If we define the quantity H1 = 1

3a , which has the same dimensions of a
stress, we can write

v = 1
3H1

τkk = − 1
H1

Pc (2.3.3)

1
H1

stands for the volume of fluid flowing out from a unit volume of material per
unit confining pressure Pc applied to the surface of the medium while keeping the
pore pressure constant.
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Figure 2.3: Strain of a volume element of poro-elastic material under constant stress deformation
(free-expansion condition): the increase in volume of the material is proportional to the pore
pressure change ∆p through the constant 1

H2
, and the volume of injected fluid ∆v is proportional

to ∆p through the constant 1
R . (By courtesy of M. Bonafede)

Constant stress deformation (τij = 0)

In the second case, as illustrated in fig. 2.3, there are no tractions applied to
the surface of the poro-elastic volume element, so that it can undergo a stress-free
expansion. Moreover, in order to control the fluid volume injected, the specimen
itself is wrapped in an impermeable, albeit flexible, membrane, which is completely
closed except for a tube through which fluid can be injected inside its pore network
withouth applying any traction to its surface.

Since the material is free to expand, the injection of new fluid causes a change
in the content of volume v and pore pressure p, without any additional stress, so
τij = 0. Also in this case, we can expect the strain eij due to p to be described by
a linear relation:

eij = bijp = 1
3H2

pδij (2.3.4)

where bij must be an isotropic tensor of rank 2, too, and it can be written as
bij = 1

3H2
δij. The quantity H2 we have introduced has the same dimensions of

a stress, and 1
H2

represents the increase in the volume of the specimen per unit
volume of the material for a unit increase in pore pressure.

The linear relation between v and p can be written as v = 1
R
p, where also R has

the dimensions of a stress, and 1
R
stands for the increase in the volume of fluid inside

the pores per unit volume of the material, led by a unit increase in pore pressure.

General deformation of a poro-elastic material

If the specimen undergoes a deformation in which both the stress and the pore
pressure change, then, thanks to the fact that eij is a state function, the process can
be split into two distinct transformations: at first, the new stress is applied in drained
conditions (p = 0), and subsequently the pore pressure is changed while keeping the
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stress constant (τij = 0). This procedure leads to the following constitutive relations:

eij = 1
2µ

(
τij −

ν

1 + ν
τkkδij

)
+ 1

3H2
pδij (2.3.5a)

v = 1
3H1

τkk + 1
R
p (2.3.5b)

It can be noticed, according to eq. 2.3.5a, that the deviatoric strain tensor
e′ij = eij − 1

3ekkδij is independent of changes in pore pressure, and it depends only
on the deviatoric stress tensor, as it can be seen if we evaluate ekk from 2.3.5a and
substitute it in the definition of e′ij:

e′ij = 1
2µ

(
τij −

1
3τkkδij

)
= 1

2µτ
′
ij (2.3.6)

As a consequence, the modulus of rigidity µ does not depend on p. Even the bulk
modulus K and the Poisson’s modulus ν are defined in the same way as for an elastic
medium, the difference being that the drained condition p = 0 must be verified. In
particular, the drained bulk modulus is defined as the ratio of the infinitesimal mean
pressure increase to the resulting relative decrease of the volume:

K = −V
(
∂Pc
∂V

)
p

= 2µ(1 + ν)
3(1− 2ν) (2.3.7)

Finally, it can be proved, considering the expression of the strain energy per unit
volume of the poro-elastic material, that H1 = H2 =̇ H. In view of this, eq. 2.3.5a
and 2.3.5b can be rewritten as

eij = 1
2µ

(
τij −

ν

1 + ν
τkkδij

)
+ 1

3Hpδij (2.3.8a)

v = 1
3Hτkk + 1

R
p (2.3.8b)

2.4 Thermo-poro-elastic inclusion in a poro-elastic
half-space

The approach and results of Eshelby’s method can still be employed if the elastic
inclusion of arbitrary shape is replaced by one which is made of a thermo-poro-elastic
medium. This means that it will obey a different constitutive relation between stress
and strain. The surrounding matrix is homogeneous, isotropic and poro-elastic too,
even if drained conditions are assumed.

The first step is to evaluate the stress-free strain e∗ij inside the inclusion once it
has been removed from the matrix and allowed to undergo a change in temperature
∆T and pore pressure ∆p.

It can be shown that the constitutive relation for eij we derived at the end of the
previous section (eq. 2.3.8a) can be further generalized to the case of a thermo-poro-
elastic medium undergoing changes in stress τij, pore pressure ∆p and temperature
∆T :

eij = 1
2µ

(
τij −

ν

1 + ν
τkkδij

)
+ 1

3H∆pδij + 1
3α∆T (2.4.1)
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where α is the coefficient of thermal expansion of the material.

Since the transformation undergone by the inclusion is stress-free, eq. 2.4.1 can
be rewritten as follows:

e∗ij = 1
3H∆pδij + 1

3α∆Tδij = e0δij (2.4.2)

where

e0 = 1
3H∆p+ 1

3α∆T (2.4.3)

for a shorter notation.

If all the forces involved in Eshelby’s method are applied in drained and isother-
mal conditions (that is, by keeping the pore pressure and the temperature unvaried
both inside and outside the inclusion), then the thermo-poro-elastic medium behaves
as if it were purely elastic, and so the assumption in section 2.1 which stated that
the inclusion and the matrix were both elastic can still be made.

As stated in section 2.1, the stress field due to the restoration of the inclusion to
its original shape, after the stress-free strain e∗ij has taken place, is

τ ∗ij = −(λe∗kkδij + 2µe∗ij) (2.4.4)
If the stress-free strain is such as in eq. 2.4.2, then τ ∗ij can be written as

τ ∗ij = −(3λ+ 2µ)e0δij = −3Ke0δij (2.4.5)
where K = λ+ 2

3µ is the drained isothermal bulk modulus in an isotropic medium,
and λ and µ are still the Lamé’s parameters, but in drained isothermal conditions.

When applying the body-force layer dFi = −τ ∗ijnjdS over the surface S of the
inclusion, as in step 5 of the Eshelby’s method (section 2.1), the displacement field
for the whole space is given by eq. 2.2.6, which can be written as

uci(x) = 3Ke0

∫
S

Gik(x,x′)nk(x′)dS(x′) = 3Ke0

∫
VS

∂Gik

∂x′k
(x,x′)dv(x′) (2.4.6)

Now, the next step would be to carry out the partial derivatives of the Green’s
tensor as they are in the right term of eq. 2.4.6. Here, however, a further problem
arises.

If the matrix were an unbounded, homogeneous and isotropic elastic medium,
then it could be proven that the Green’s function Gik would be the Somigliana’s
tensor, which depends only on the distance between the points x and x′ and is given
by

Gij(|x− x′|) = 1
16πµ(1− ν)

[
(3− 4ν) δij

|x− x′|
+

(xi − x′i)(xj − x′j)
|x− x′|3

]
(2.4.7)

where |x− x′|= [(x1 − x′1)2 + (x2 − x′2)2 + (x3 − x′3)2] 1
2 .

Once the assumption of an infinite space is dropped, and the matrix is taken as
a half-space (even though the other assumptions are left unchanged), the previous
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formula for Gik is no longer valid, and another expression for the Green’s tensor is
needed.

This is the purpose of the next and last section of this chapter, where the
Mindlin’s tensor, that is, the elastic Green’s function for a half-space, is derived.

2.5 The Mindlin’s tensor
In 1936, Raymond D. Mindlin devised a solution of the three-dimensional elasticity
equations for a homogeneous, isotropic and elastic half-space when a concentrated
force is acting in its interior (Mindlin, 1936). He took his premises from the Kelvin
solution for the displacement and stress fields due to a point-force in an infinite solid,
and the fact that it is possible to obtain the solution for any deformation source by
superposing the solutions for a suitable distribution of point-forces.

Mindlin’s strategy to address the issue was to consider separately two different
cases, which are illustrated in fig. 2.4. In the first one, the point-force acts normally
to the free surface, and is directed along the z-axis, whereas in the second one,
the force acts parallel to the free surface itself (and its direction is taken along the
x-axis). The reference system chosen for both these cases is a cartesian one, where
the semi-infinite solid is bounded by the plane z = 0 and the z-axis is taken positive
in the downward direction (i.e., it is penetrating into the body).

Figure 2.4: The two cases considered in Mindlin’s article: a point-force applied in (0,0,+c) inside
an elastic half-space normal (a) and parallel (b) to the bounding surface at z=0.

In both cases, the boundary conditions were set as follows:

• All components of the displacement and stress fields within the half-space must
vanish at an infinite distance from the origin point of the reference system.
This condition would be equally requested in the case of an infinite space.

• The traction acting on planes whose normal is in the k̂ direction must vanish
on the free surface defined by the plane z = 0 (free-surface condition). This in
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turns leads to the conditions τ31 = τ32 = τ33 = 0 at z = 0, and it is the main
change to be dealt with when considering an half-space.

Mindlin expressed the displacement and stress components in terms of a Galerkin
vector F = îX + ĵY + k̂Z and its components X, Y, Z. As far as our purpose is
concerned, here we report only the expressions for the displacements:

u = 1
2µ

[
2(1− ν)∇2X − ∂∇ · F

∂x

]
(2.5.1a)

v = 1
2µ

[
2(1− ν)∇2Y − ∂∇ · F

∂y

]
(2.5.1b)

w = 1
2µ

[
2(1− ν)∇2Z − ∂∇ · F

∂z

]
(2.5.1c)

where∇2 is Laplace’s operator, µ is the modulus of rigidity and ν is the Poisson’s
ratio, as we will see in the next subsection. Therefore, the whole method comes down
to the search of the required vector F.

Here it is worth dwelling for a moment on what the Galerkin vector is and how
it can be applied in such contexts.

2.5.1 The Galerkin vector
The Galerkin vector provides a widely used technique to remove non-vanishing trac-
tions on the bounding surfaces of elastic half-spaces, in order for them to satisfy the
free-surface condition. More generally, this technique makes it possible to get the
stress and displacement fields in an elastostatic problem.

The starting point is to consider the representation of a generic displacement
field in terms of a scalar and a vector potential, according to Helmholtz’s theorem
(which holds true for every vector field):

u =∇φ′ +∇×Ψ (2.5.2)
where the scalar potential φ′ has a superscript to distinguish it from the coordinate
φ in spherical and cylindrical bases that we will employ in the following of the work.

If this expression is substituted into the Cauchy-Navier equation, which is re-
ported below

ρ0
∂2u
∂t2

= f + (λ+ µ)∇(∇ · u) + µ∇2u (2.5.3)

where ρ0 is the density of the elastic medium, we obtain

ρ0

(
∇∂

2φ′

∂t2
+∇× ∂2Ψ

∂t2

)
= f + (λ+ 2µ)∇(∇2φ′) + µ∇× (∇2Ψ) (2.5.4)

If there are no body forces (f = 0), then, in a static case (such that the term on
the left side is identically zero), the last equation is satisfied for ∇2φ′ = cost and
∇2Ψ = cost, but this is not the most general solution, as the potentials φ′ and
Ψ are generally dependent from each other. Galerkin tried exactly to look for a

33



general solution of eq. 2.5.4, and he started from Helmholtz’s representation of the
displacement field, rewritten as:

2µui = φ′,i + eijkΨk,j (2.5.5)

where he assumed that the vector potential Ψ is in turn generated by a vector field
F̃i:

Ψk = −eklmc ˜Fm,l (2.5.6)

where c is a constant to be determined. Substituting eq. 2.5.6 in eq. 2.5.5 and
employing the identity eijkeklm = (δilδjm − δimδjl), we obtain:

2µui = φ′,i + c ˜Fi,jj − c ˜Fj,ji = cFi,jj − Fj,ji (2.5.7)

where the last step is justified to the fact that cF̃j,j can be chosen as we please
without changing the definition 2.5.6, and Fi = F̃i+Hi, Hi being a suitable harmonic
function (Hi,jj = 0). This representation of the displacement field can be used to
simplify the static Cauchy-Navier equation (λ + µ)uj,jk + µuk,jj + fk = 0 through
an appropriate choice of the constant c. If we substitute eq. 2.5.7 into the last
equation, we obtain: [

c− 1
2(1− 2ν) −

1
2

]
Fj,jiik + c

2Fk,jjii + fk = 0 (2.5.8)

where (1− 2ν) = µ
λ+µ , and the first coefficient can be set to zero if c = 2(1− ν). Eq.

2.5.8 is satisfied if

2µui = 2(1− ν)Fi,jj − Fj,ji (2.5.9)

where

Fk,jjii = − fk
1− ν (2.5.10)

The vector Fi we defined is precisely the Galerkin vector. If there are no body forces,
it can be seen that Fi satisfies a biharmonic equation, that is 2.5.10. From eq. 2.5.9
it is possible to derive the expressions for the components of the displacement and
stress field in terms of F1 = X,F2 = Y, F3 = Z, as stated in eqs. 2.5.1.

The procedure followed by Mindlin to obtain the displacement and stress fields
was to superpose the solution due to the single point-force in an infinite space (which
he referred to as the "Kelvin’s solution") and those due to a combination of five more
sources, the so-called nuclei of strain. Notably, these could be reduced to an "image
point-force" applied at (0, 0,−c) and a suitable Galerkin vector: the effect of these
two elements, neither of which introduce new singularities in the region occupied by
the solid (namely, for z ≥ 0), is to remove the non-vanishing boundary stresses τ3i
which would be given by the single-force solution on the free surface.

Let us now consider both the two cases analyzed by Mindlin, as they are illus-
trated in fig. 2.4.
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Force normal to the boundary of a semi-infinite solid

In the first case (fig. 2.4 a), a force of intensity P is applied at point (0, 0,+c)
and acts in the positive z direction. Here Mindlin chose to switch to cylindrical
coordinates (r, φ, z), as the problem will be symmetrical about the z-axis.

The Galerkin vector found by Mindlin, after converting the expressions reported
in eqs. 2.5.1 to cylindrical coordinates, is given by:

F =
 P k̂

8π(1− ν)

{R1 + (3− 4ν)R2 − 2c(z + c)
R2

− 4(1− 2ν)c ln (R2 + z + c)

+4(1− ν)(1− 2ν) [(z + c) ln (R2 + z + c)−R2] + 2c2

R2

}
(2.5.11)

where

R1 =
√
r2 + (z − c)2 (2.5.12)

is the distance between the observation point (r, φ, z) and the point where the force
is applied, and

R2 =
√
r2 + (z + c)2 (2.5.13)

is the distance between the observation point and the point where the image force
is applied.

The only non-vanishing component of F is the k− th, as we would have expected
from the symmetry of the problem.

The components of the displacement field, derived from eqs. 2.5.1 in cylindrical
coordinates, are thus the following:

U = Pr

16πµ(1− ν)

[
(z − c)
R3

1
+ (3− 4ν)(z − c)

R3
2

− 4(1− ν)(1− 2ν)
R2(R2 + z + c) + 6cz(z + c)

R5
2

]

(2.5.14a)

w = P

16πµ(1− ν)

[
(3− 4ν)
R1

+ 8(1− ν)2 − (3− 4ν)
R2

+ (z − c)2

R3
1

+(3− 4ν)(z + c)2 − 2cz
R3

2
+ 6cz(z + c)2

R5
2

] (2.5.14b)

We now recall the aim we set at the beginning of this section: to find each and every
component of the Green’s tensor for an half-space Gij, which we will refer to as the
Mindlin’s tensor. This would enable us to write the components of the displacement
field in the same way as in eq. 2.2.3. In this case we are provided with the vertical
component w, which we should be able to write as

w = u3 = G3kPk (2.5.15)
where P is the point-force that causes the displacement itself. However, the point-
force we have considered so far has only one non-vanishing component, P3 = P , so
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we can obtain a first component of the tensor, namely G33, straight from eq. 2.5.14b,
after transforming its dependency from (r, φ, z) into dependency from (x1, x2, x3).
In the following, we will be employing the notation xi, i = 1, 2, 3 to refer to cartesian
coordinates, instead of (x, y, z), according to the index notation chosen to represent
the displacement and stress fields.

Let us now focus on eq. 2.5.14a, or the radial component of the displacement
field. This is given by U = ur = GrkPk = GrzPz, so we could derive the Grz com-
ponent as well, although we are interested in the cartesian components. Recalling
the transformation of a 2-nd rank tensor from cylindrical to cartesian coordinates,
we may derive G23 through the following expression:

G23(x1, x2, x3) = Grz(x1, x2, x3)cos(φ)−Gφz(x1, x2, x3)sin(φ) = Grz(x1, x2, x3)
(2.5.16)

where the last step arises from φ = 0, if we choose the r-axis to coincide with
the x-axis (and we are allowed to do so, thanks to the cylindrical symmetry of the
problem).

Force parallel to the boundary of a semi-infinite solid

Now we turn our attention to the second case analyzed by Mindlin: that of a
point-force parallel to the free surface and acting along the x-axis, always applied
at a point (0, 0,+c) (fig. 2.4 b).

Following the same approach we laid out earlier, the difference being there is no
axial symmetry this time, and cartesian coordinates were employed as a consequence,
he derived the Galerkin vector F:

F =
[

P

8π(1− ν)

](
î

{
R1 +R2 −

2c2

R2
+ 4(1− ν)(1− 2ν) [(x3 + c) ln (R2 + x3 + c)−R2]

}

+k̂
[2cx1

R2
+ 2(1− 2ν)x1 ln (R2 + x3 + c)

])
(2.5.17)

Here it is worth noticing that F has two non-vanishing components, namely F1 and
F3.

The three components of the displacement field are derived accordingly, following
eqs. 2.5.1:

u = P

16πµ(1− ν)

[
(3− 4ν)
R1

+ 1
R2

+ x2
1

R3
1

+ (3− 4ν)x2
1

R3
2

+ 2cx3

R3
2

(
1− 3x2

1
R2

2

)

+4(1− ν)(1− 2ν)
(R2 + x3 + c)

(
1− x2

1
R2(R2 + x3 + c)

)]
(2.5.18a)

v = Px1x2

16πµ(1− ν)

[
1
R3

1
+ (3− 4ν)

R3
2
− 6cx3

R5
2
− 4(1− ν)(1− 2ν)
R2(R2 + x3 + c)2

]
(2.5.18b)

w = Px1

16πµ(1− ν)

[
x3 − c
R3

1
+ (3− 4ν)(x3 − c)

R3
2

− 6cx3(x3 + c)
R5

2
− 4(1− ν)(1− 2ν)
R2(R2 + x3 + c)

]
(2.5.18c)
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From these components we may derive straightly the following components of Mindlin’s
tensor: G11 = u

P
, G21 = v

P
, G31 = w

P
.

At this point we are left with four more components that still need to be derived.
In order to achieve this, we can resort to one useful class of theorems, known as the
"reciprocity theorems", as it is stated in Aki and Richards (2002). These theorems
provide a series of general relationships between a pair of solutions for the displace-
ment through an elastic body. If these solutions are written in terms of Green’s
functions, as it is the case in eq. 2.2.3, and the problem satisfies homogeneous
boundary conditions on the surface S of the body (i.e., either the displacement or
the traction vanishes at every point of the surface), then an interesting property of
Gij arises:

Gij(x,x′) = Gji(x,x′) (2.5.19)

which gives a spatial reciprocity between two components of the tensor, once the
dependencies from the coordinates of the source point x′i and those of the observation
point xi are swapped.

In our case, the problem we are considering does indeed satisfy homogeneous
boundary conditions on the free surface, in that the vertical component of the trac-
tion must vanish everywhere on it. Therefore, we may employ eq. 2.5.19 to derive
the components G12, G13, G32 directly from those already found, by simply swapping
the dependencies from the source and receiver points.

Finally, the component G22 can be found in a slightly more complicated way.
First, we consider again the second case of Mindlin’s article (see fig. 2.4 b) ), the
one where the point-force is acting parallel to the free surface, only this time it acts
in the positive y direction: P = ĵP . Then, the components of the displacement
field are the same as in eqs. 2.5.18, provided that the dependencies from x1 and x2
are exchanged, and u and v switch places. This way, we are able to identify the last
needed component from v = u2 = G22P2 = G22P .

The last step we need is to write the components of the tensor for the general
case of a force applied at an arbitrary point (x′1, x′2, x′3) inside the half-space. The
formulae for R1 and R2 are changed from the way they are defined in 2.5.12 and
2.5.13 into:

R1 =
√

(x1 − x′1)2 + (x2 − x′2)2 + (x3 − x′3)2 (2.5.20a)

R2 =
√

(x1 − x′1)2 + (x2 − x′2)2 + (x3 + x′3)2 (2.5.20b)

The nine components of the Mindlin’s tensor are reported in the Appendix (section
6.2).
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Chapter 3

Cylinder-shaped source in a
half-space: resolution and results

This chapter is devoted to the explanation of the method employed to derive the
displacement and stress fields due to the deformation source previously introduced,
that is, the cylinder-shaped thermo-poro-elastic region embedded in a homogeneous
poro-elastic half-space, following the technique laid out in chapter 2.

Particular emphasis will be given to the evaluation of the sum of partial deriva-
tives of the Mindlin’s tensor as reported in eq. 2.4.6, the separation of the problem
into a singular and a non-singular part, and the way the relative integrals can be
carried out.

Eventually, the results for displacements and stresses will be shown and inter-
preted both for the median plane of the source region and the free surface, and
they will be compared to those obtained for the same case through a completely
numerical approach.

3.1 The cylinder-shaped thermo-poro-elastic re-
gion

In the previous chapter we showed how it is possible, according to the Eshelby’s
method, to solve for the displacement and stress fields inside an elastic medium
when a deformation source of arbitrary volume and shape is present inside of it.

Furthermore, we also went through the procedure Mindlin employed to evaluate
the same fields when a single point-force is applied inside an elastic body bounded
by a free surface, and this, in principle, would allow us to solve the same problem
for whatever deformation source we choose, as it can always be expressed through
an adequate distribution of point-forces.

These two powerful techniques enable us to tackle the original case we set the
aim to analyze: that of a cylinder-shaped thermo-poro-elastic region (which from
now on will be referred to as the "TPE source region") embedded in a homogeneous
poro-elastic half-space, as illustrated in fig. 3.1, which undergoes a sudden increase
of temperature ∆T and pore pressure ∆p.

Before we start discussing the resolution of the problem, here we set once and
for all the values of the parameters we will employ throughout the rest of the work.
The shape of the TPE inclusion will be that of a cylinder of radius a = 500 meters
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Figure 3.1: Cylinder-shaped thermo-poro-elastic inclusion (highlighted in orange) embedded in
an elastic half-space (highlighted in pale yellow). The values of the elastic parameters of the matrix
are shown, together with the geometric parameters of the cylinder and the changes in temperature
and pore pressure within the deformation source. It is to say that the axis x, y, z will be referred
to as, respectively, x1, x2, x3 throughout the rest of the work.

and height d = 40 meters, with an aspect ratio of d
a

= 0.08 (the importance of this
parameter will be clear in the following of the work). The inclusion will be located
at depth c = 3000 m beneath the free surface. The depth and the dimensions of the
source region have been chosen in order to emphasize the effects of the free surface,
which is the main focus of this work.

The elastic parameters in isothermal and drained conditions of the poro-elastic
matrix will be λ = 4 GPa, µ = 6 GPa and ν = λ

2(λ+µ) = 0.2. The changes in
temperature and pore pressure within the inclusion will have the following respective
values: ∆T = 100K, ∆p = 10 MPa. Finally, the thermal expansion coefficient of
the TPE inclusion will be α = 3 · 10−5K−1, while H = 10 GPa (see section 2.3).
These values are pertinent to highly porous sedimentary rocks (such as, for example,
those constituting much of the stratigraphy of the Campi Flegrei caldera).

The first step is to recall that the effects of the changes in the TPE region on the
surrounding medium can be interpreted as those caused by a traction discontinuity
−3Ke0nk acting on the surface elements dS(x′) of the bounding surface of the
inclusion. This brings us, following the same reasoning of section 2.4, to eq. 2.4.6,
which is here reported for ease of reference:

uci(x) = 3Ke0

∫
S

Gik(x, x′)nk(x′)dS(x′) = 3Ke0

∫
VS

∂Gik

∂x′k
(x,x′)dv(x′)

39



where, as previously stated, x′ gives the position of the source point, and x is the
receiver point where we actually measure the fields.

The last term on the right is what we will be focusing on in the next section.

3.2 Sum of the Green’s tensor partial derivatives
In eq. 2.4.6 we managed to express the components of the displacement field uci on
the basis of a triple integral on the volume of the TPE region of the sum of partial
derivatives of the Green’s tensor with respect to the coordinates of the source point
x′k. In particular, ∂Gik

∂x′
k
may be understood as the i-th component of the displacement

field at the receiver point x produced by three orthogonal force dipoles with unit
moment centered at the source point x′.

If we were dealing with an unbounded elastic space, then we could employ the
Kelvin-Somigliana tensor for Gik, whose expression is given in eq. 2.4.7.

In that case, the sum of its partial derivatives could be carried out relatively
easily, and rewritten as the gradient, with respect to the coordinates of the receiver
point, of a scalar potential Φ. This, in turns, would allow for an analytical solution
of the volume integral itself, and thus the displacement.

This point is worth stressing, as we will resort to this technique at least for a
part of our calculations. However, as we will find out, that alone won’t be enough
to provide a solution to the problem as a whole.

3.2.1 The unlimited space case: the scalar potential
The case of a cylinder-shaped TPE region was considered by Lamberti (2017) for
an unbounded homogeneous poro-elastic space, following the same hypothesis men-
tioned in the previous paragraph.

Starting as always from eq. 2.4.6 and eq. 2.4.7, the sum of partial derivatives of
Somigliana tensor can be written as follows:

∂Gik

∂x′k
(x,x′) = (1− 2ν)

8πµ(1− ν)
(xi − x′i)
R3 = 1− 2ν)

8πµ(1− ν)
∂

∂x′i

( 1
R

)

= − 1− 2ν)
8πµ(1− ν)

∂

∂xi

( 1
R

) (3.2.1)

where

R =
√

(x1 − x′1)2 + (x2 − x′2)2 + (x3 − x′3)2 (3.2.2)
and the last step is due to the fact that the derivative with respect to x′i can be
taken with respect to xi with a simple change of sign.

Substituting the result of eq. 3.2.1 into eq. 2.4.6, and rewriting the bulk modulus
as K = 2µ(1+ν)

3(1−2ν) , the displacement vector uc can be expressed as

uc(x) = −e0
1 + ν

4π(1− ν)∇
∫
VS

1
|x− x′|

dv(x′) = −e0
1 + ν

4π(1− ν)∇Φ(x) (3.2.3)
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where Φ is the Lamé’s scalar potential, defined as

Φ(x) =
∫
VS

1
|x− x′|

dv(x′) (3.2.4)

A first piece of information on uc is that it is an irrotational field, having been
expressed as the gradient of a scalar potential.

Furthermore, we can notice that the potential in eq. 3.2.4 is formally equivalent
to the Coulomb electrostatic potential due to a volume VS of charge density 4πε0
(see Jackson, 1999), and therefore it satisfies the Poisson’s equation inside VS and
the Laplace equation outside:

∇2Φin = −4π (3.2.5a)
∇2Φout = 0 (3.2.5b)

where the notation Φin and Φout refers to the potential being evaluated at a point,
respectively, inside or outside the volume VS of the TPE inclusion.

Another property of the potential Φ is that it is everywhere continuous together
with its first derivatives, albeit its second derivatives suffer the following disconti-
nuity across the surface S of the inclusion:[

∂2Φout

∂xi∂xj
− ∂2Φin

∂xi∂xj

]
S

= 4πninj (3.2.6)

where ni is the outward normal vector to the surface S.
Going back to the expression for the displacement uc (eq. 3.2.3), we can carry

out its divergence:

∇ · uc = eckk = −e0
1 + ν

4π(1− ν)∇
2Φ(x) (3.2.7)

which, after substituting the expressions for ∇2Φ reported in eqs. 3.2.5a and 3.2.5b,
enables us to find the relative volume change inside and outside the inclusion:

eckk =
{
e0

1+ν
(1−ν) = e1 inside the inclusion

0 outside (3.2.8)

For the sake of notation, we will refer to the constant e0
1+ν

4π(1−ν) as e1 in the following.
Then, if we make use of eqs. 3.2.8 and 3.2.3 in eq. 2.1.2, we can retrieve the

expression for the stress tensor in the medium outside the inclusion:

τ outij = τ cij = −e1
µ

2π
∂2Φout

∂xi∂xj
(3.2.9)

In the same way, we can find the expression for the stress tensor inside the inclusion
by also taking into account eq. 2.1.3:

τ inij = λe1δij − 2µ e1

4π
∂2Φin

∂xi∂xj
− 3Ke0δij (3.2.10)

where the last term on the right −3Ke0δij is the stress field τ ∗ij induced inside
the inclusion by its restoration to its original shape and volume, according to the
Eshelby’s method (section 2).
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It can be shown that both the displacement field and the tractions derived for
this case are continuous across the inclusion surface S.

This procedure holds true for inclusions of arbitrary volume and shape, provided
that a suitable expression for the scalar potential Φ is found. If we consider the case
of a cylindrical source, all we have to do is find the corresponding potential.

Here we report the expressions for the components of the displacement field
and the strain tensor obtained by Lamberti (2017), as they will be necessary for
the purposes of the next sections. The details on how these expressions were found,
starting with the retrieval of the scalar potential Φ in terms of Legendre polynomials
(Pl(x)) series, are reported in the Appendix (section 6.3).

The displacement components are given by

ur(r, θ) = Aa

[
|cos θ|+

∞∑
m=1

c2mP2m(cos θ) 2m
2m− 1

(
r

a

)2m−1
]

(3.2.11a)

uθ(r, θ) = −Aa
[
sgn(cos θ) sin θ −

∞∑
m=1

c2m
dP2m

dθ
(cos θ) 1

2m− 1

(
r

a

)2m−1
]

(3.2.11b)

in the internal domain, and

ur(r, θ) = Aa
∞∑
m=0

c2mP2m(cos θ)2m+ 1
2m+ 2

(
a

r

)2m+2
(3.2.12a)

uθ(r, θ) = −Aa
∞∑
m=1

c2m
dP2m

dθ
(cos θ) 1

2m+ 2

(
a

r

)2m+2
(3.2.12b)

in the external domain, where

A = e1
db

2a (3.2.13)

The internal domain does not correspond tho the region inside the inclusion, but
instead it represents a sphere of radius a with the same center of the cylinder. The
external domain is defined as the outer region. Their definition is further discussed
in the Appendix (section 6.3), and they are represented in fig. 6.2.
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Finally, the strain tensor components are the following:

err = A
∞∑
m=1

2mc2mP2m(cos θ)
(
r

a

)2m−2
if r ≤ a, internal domain (3.2.14a)

= −A
∞∑
m=0

(2m+ 1)c2mP2m(cos θ)
(
a

r

)2m+3
if r ≥ a, external domain (3.2.14b)

eθθ = A

[
2δ(cosθ)a

r
+
∞∑
m=1

c2m

2m− 1

(
d2P2m(cos θ)

dθ2 + 2mP2m(cos θ)
)(

r

a

)2m−2
]

if r ≤ a, internal domain (3.2.14c)

= A

2

(
a

r

)3
[
1−

∞∑
m=1

c2m

m+ 1

(
d2P2m(cos θ)

dθ2 − (2m+ 1)P2m(cos θ)
)(

a

r

)2m
]

if r ≥ a, external domain (3.2.14d)

eφφ = A
∞∑
m=1

c2m

2m− 1

(
cos θ
sinθ

dP2m(cos θ)
dθ

+ 2mP2m(cos θ)
)(

r

a

)2m−2

if r ≤ a, internal domain (3.2.14e)

= −A
∞∑
m=0

c2m
c2m

2m+ 2(cos θ)
(

cos θ
sinθ

dP2m(cos θ)
dθ

− (2m+ 1)P2m(cos θ)
)(

a

r

)2m+3

if r ≥ a, external domain (3.2.14f)

erθ = A
∞∑
m=1

c2m
dP2m(cos θ)

dθ

(
r

a

)2m−2
if r ≤ a, internal domain (3.2.14g)

= A
∞∑
m=1

c2m
dP2m(cos θ)

dθ

(
a

r

)2m+3
if r ≥ a, external domain (3.2.14h)

3.2.2 The half-space case: singular and non-singular terms
In our case, as it has already been discussed, we are dealing with a semi-infinite
space, so it is necessary to resort to the Mindlin’s tensor, whose components have
been evaluated and are reported in the Appendix (section 6.2). In the following we
will employ cartesian coordinates, referring to the source point as (x′1, x′2, x′3) and to
the receiving point as (x1, x2, x3).

Before we are actually able to carry out the volume integrals in eq. 2.4.6, it
is necessary to evaluate the sums of partial derivatives. If we managed somehow
to write ∂Gik

∂x′
k

as the gradient of a scalar potential ∂Φ
∂xi

, then it would be possible
to apply the same procedure explained in the previous subsection to solve for the
displacement and stress fields both within the inclusion and the matrix.

Let us start with the first component of the displacement field u1(x), which is
given by the volume integral:

uc1(x) = 3Ke0

∫
VS

∂G1k

∂x′k
(x,x′)dv(x′) (3.2.15)
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The sum of partial derivatives we have to compute is the following:

∂G11

∂x′1
+ ∂G12

∂x′2
+ ∂G13

∂x′3
(3.2.16)

and the partial derivatives, calculated from the expressions of the respective Mindlin’s
tensor components, are

∂G11

∂x′1
= C(x1 − x′1)

{
(3− 4ν)
R3

1
+ 1
R3

2
− 2
R3

1
+ 3(x1 − x′1)2

R5
1

− 2(3− 4ν)
R3

2

+3(3− 4ν)(x1 − x′1)2

R5
2

+ 6x3x
′
3

R5
2

[
1− 3(x1 − x′1)2

R2
2

]
+ 12x3x

′
3

R5
2

[
1− (x1 − x′1)2

R2
2

]

+ 4(1− ν)(1− 2ν)
R2(R2 + x3 + x′3)2

[
3− 2(x1 − x′1)2

R2(R2 + x3 + x′3) −
(x1 − x′1)2

R2
2

]}
(3.2.17)

∂G12

∂x′2
= C(x1 − x′1)

{
− 1
R3

1
− (3− 4ν)

R3
2

+ 6x3x
′
3

R5
2

+ 4(1− ν)(1− 2ν)
R2(R2 + x3 + x′3)2

+(x2 − x′2)2
[

3
R5

1
+ 3(3− 4ν)

R5
2

− 30x3x
′
3

R7
2
− 4(1− ν)(1− 2ν)
R2

2(R2 + x3 + x′3)3

(
R2 + x3 + x′3

R2
+ 2

)]}
(3.2.18)

∂G13

∂x′3
= C(x1 − x′1)

{
− 1
R3

1
+ 3(x3 − x′3)2

R5
1

− 3− 4ν
R3

2
− 3(3− 4ν)(x3 − x′3)(x3 + x′3)

R5
2

+6x3(x3 + x′3)
R5

2
+ 6x3x

′
3

R5
2
− 30x3x

′
3(x3 + x′3)2

R7
2

+ 4(1− ν)(1− 2ν)
R3

2

}
(3.2.19)

where

R1 =
√

(x1 − x′1)2 + (x2 − x′2)2 + (x3 − x′3)2 (3.2.20a)

R2 =
√

(x1 − x′1)2 + (x2 − x′2)2 + (x3 + x′3)2 (3.2.20b)

C = 1
16πµ(1− ν) (3.2.20c)

If we substitute the expressions in eqs. 3.2.17, 3.2.18 and 3.2.19 into eq. 3.2.16,
after some lenghty calculations which will not be reported here, we get the following
expression for the first sum of partial derivatives:

∂G1k

∂x′k
= C(x1 − x′1)

{
2(1− 2ν)

R3
1

+ 2(1− 2ν)(3− 4ν)
R3

2
− 12(1− 2ν)x3(x3 + x′3)

R5
2

}
(3.2.21)

The second component of the displacement field is given by:

uc2(x) = 3Ke0

∫
VS

∂G2k

∂x′k
(x,x′)dv(x′) (3.2.22)
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The sum to evaluate this time is

∂G21

∂x′1
+ ∂G22

∂x′2
+ ∂G23

∂x′3
(3.2.23)

and the partial derivatives are given by

∂G21

∂x′1
= C(x2 − x′2)

{
− 1
R3

1
− 3− 4ν

R3
2

+ 6x3x
′
3

R5
2

+ 4(1− ν)(1− 2ν)
R2(R2 + x3 + x′3)2

+(x1 − x′1)2
[

3
R5

1
+ 3(3− 4ν)

R5
2

− 30x3x
′
3

R7
2
− 4(1− ν)(1− 2ν)
R2

2(R2 + x3 + x′3)3

(
R2 + x3 + x′3

R2
+ 2

)]}
(3.2.24)

∂G22

∂x′2
= C(x2 − x′2)

{
3− 4ν
R3

1
+ 1
R3

2
− 2
R3

1
+ 3(x2 − x′2)2

R5
1

− 2(3− 4ν)
R3

2
+ 3(3− 4ν)(x2 − x′2)2

R5
2

+6x3x
′
3

R5
2

[
1− 3(x2 − x′2)2

R2
2

]
+ 12x3x

′
3

R5
2

[
1− (x2 − x′2)2

R2
2

]

+ 4(1− ν)(1− 2ν)
R2(R2 + x3 + x′3)2

[
3− 2(x2 − x′2)2

R2(R2 + x3 + x′3) −
(x2 − x′2)2

R2
2

]}
(3.2.25)

∂G23

∂x′3
= C(x2 − x′2)

{
− 1
R3

1
+ 3(x3 − x′3)2

R5
1

− 3− 4ν
R3

2
− 3(3− 4ν)(x3 − x′3)(x3 + x′3)

R5
2

−2(3− 4ν)
R3

2
+ 6x3(x3 + x′3)

R5
2

+ 6x3x
′
3

R5
2
− 30x3x

′
3(x3 + x′3)2

R7
2

+ 4(1− ν)(1− 2ν)
R3

2

}
(3.2.26)

Again, if we substitute eqs. 3.2.24, 3.2.25 and 3.2.26 into eq. 3.2.23, we obtain the
following expression:

∂G2k

∂x′k
= C(x2 − x′2)

{
2(1− 2ν)

R3
1

+ 2(1− 2ν)(3− 4ν)
R3

2
− 12(1− 2ν)x3(x3 + x′3)

R5
2

}
(3.2.27)

Finally, the third component of the displacement field is given by

uc3(x) = 3Ke0

∫
VS

∂G3k

∂x′k
(x,x′)dv(x′) (3.2.28)

and the sum to evaluate is

∂G31

∂x′1
+ ∂G32

∂x′2
+ ∂G33

∂x′3
(3.2.29)

while the partial derivatives are
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∂G31

∂x′1
= C

{
−x3 − x′3

R3
1
− (3− 4ν)(x3 − x′3)

R3
2

+ 6x3x
′
3(x3 + x′3)
R5

2
− 4(1− ν)(1− 2ν)
R2(R2 + x3 + x′3)

+(x1 − x′1)2
[

3(x3 − x′3)
R5

1
+ 3(3− 4ν)(x3 − x′3)

R5
2

− 30x3x
′
3(x3 + x′3)
R7

2

+ 4(1− ν)(1− 2ν)
R2

2(R2 + x3 + x′3)2

(
R2 + x3 + x′3

R2
+ 1

)]}
(3.2.30)

∂G32

∂x′2
= C

{
−x3 − x′3

R3
1
− (3− 4ν)(x3 − x′3)

R3
2

+ 6x3x
′
3(x3 + x′3)
R5

2
− 4(1− ν)(1− 2ν)
R2(R2 + x3 + x′3)

+(x2 − x′2)2
[

3(x3 − x′3)
R5

1
+ 3(3− 4ν)(x3 − x′3)

R5
2

− 30x3x
′
3(x3 + x′3)
R7

2

+ 4(1− ν)(1− 2ν)
R2

2(R2 + x3 + x′3)2

(
R2 + x3 + x′3

R2
+ 1

)]}
(3.2.31)

∂G33

∂x′3
= C

{
(3− 4ν)(x3 − x′3)

R3
1

− 8(1− ν)2 − (3− 4ν)
R3

2
(x3 + x′3)− 2(x3 − x′3)

R3
1

+ 3(x3 − x′3)3

R5
1

−3(x3 + x′3)
R5

2

[
(3− 4ν)(x3 + x′3)2 − 2x3x

′
3

]
+ 1
R3

2
[2(3− 4ν)(x3 + x′3)− 2x3]

+6x3(x3 + x′3)2

R5
2

+ 12x3x
′
3(x3 + x′3)
R5

2
− 30x3x

′
3(x3 + x′3)3

R7
2

}
(3.2.32)

Here too, after substituting eqs. 3.2.30, 3.2.31 and 3.2.32 into eq. 3.2.29, we get the
following expression for the last sum of partial derivatives:

∂G3k

∂x′k
= C

{
2(1− 2ν)(x3 − x′3)

R3
1

−2(1− 2ν)(3− 4ν)(x3 + x′3)
R3

2
− 12(1− 2ν)x3(x3 + x′3)2

R5
2

+ 4(1− 2ν)x3

R3
2

}
(3.2.33)

Further details on these calculations can be found in the Appendix (section 6.4).

Here we report the expressions for the three components of the displacement
field written in terms of triple integrals of the previous sums on the volume of the
inclusion (namely, we integrate along the x′3 coordinate from c− d

2 to c+ d
2 , that is the

height of the cylinder; along the x′2 coordinate from −
√
a2 − (x′1)2 to

√
a2 − (x′1)2,

and along the x′1 coordinate from −a to a, thus accounting for the integration on
the horizontal section of the cylinder):

uc1 = 3KCe0

a∫
−a

dx′1

√
a2−(x′

1)2∫
−
√
a2−(x′

1)2

dx′2

c+ d
2∫

c− d
2

dx′3 (x1 − x′1)
{

2(1− 2ν)
R3

1

+2(1− 2ν)(3− 4ν)
R3

2
− 12(1− 2ν)x3(x3 + x′3)

R5
2

} (3.2.34)
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uc2 = 3KCe0

a∫
−a

dx′1

√
a2−(x′

1)2∫
−
√
a2−(x′

1)2

dx′2

c+ d
2∫

c− d
2

dx′3 (x2 − x′2)
{

2(1− 2ν)
R3

1

+2(1− 2ν)(3− 4ν)
R3

2
− 12(1− 2ν)x3(x3 + x′3)

R5
2

} (3.2.35)

uc3 = 3KCe0

a∫
−a

dx′1

√
a2−(x′

2)2∫
−
√
a2−(x′

2)2

dx′2

c+ d
2∫

c− d
2

dx′3

{
2(1− 2ν)(x3 − x′3)

R3
1

−2(1− 2ν)(3− 4ν)(x3 + x′3)
R3

2
− 12(1− 2ν)x3(x3 + x′3)2

R5
2

+ 4(1− 2ν)x3

R3
2

}
(3.2.36)

In order to solve for the three components of the displacement field, it would be
useful if we manage to rewrite the integrands in eqs. 3.2.34, 3.2.35 and 3.2.36 as
the gradient of a scalar potential, similarly to what has been done in the case of an
unlimited space (subsection 3.2.1):

∂Gik

∂x′k
= ∂ψ

∂xi
(3.2.37)

so that the displacement field could be expressed as

uc(x) = A0∇Φ(x)
where A0 is a constant, and

∇Φ(x) =
∫
VS

∇ψ(x)dv(x′)

However, we can demonstrate that this is not possible in our case by calculating the
curl of the sums of partial derivatives (eqs. 3.2.21, 3.2.27, 3.2.33).

It is known that if a vector field can be written as the gradient of a scalar
potential, then it is irrotational: in three dimensions, this means that its curl must
vanish. If we take the curl of the displacement vector uc as it is written in eq. 2.4.6,
then it is possible to bring the curl (which is taken with respect to the coordinates
of the observation point xi, while the integration is carried out over those of the
source point x′i) inside the integral, thus obtaining in indicial notation:

(∇× uc)i = eijk
∂

∂xj
uck = 3Ke0

∫
VS

eijk
∂

∂xj

(
∂Gkm

∂x′m

)
dv(x′) (3.2.38)

If we develop the curl inside the integral, what we get is

eijk
∂

∂xj

(
∂Gkm

∂x′m

)
= î

(
12(1− 2ν)(3− 4ν)(x3 + x′3)(x2 − x′2)

R5
2

− 12(1− 2ν)x3(x2 − x′2)
R5

2

)

− ĵ
(

12(1− 2ν)(3− 4ν)(x3 + x′3)(x1 − x′1)
R5

2
− 12(1− 2ν)x3(x1 − x′1)

R5
2

)
6= 0

(3.2.39)
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which in general does not vanish, leading us to the conclusion that the displacement
field is not irrotational, and so we cannot find a scalar potential with which we could
rewrite the displacement field. The details of this calculation are reported as well
in the Appendix (section 6.5).

At this stage, it would seem that the only way we can retrieve the displacement
field is through the direct calculation of the triple integrals in eqs. 3.2.34, 3.2.35
and 3.2.36.

However, one thing we can notice in those expressions is that there is a common
term depending on 1

R3
1
. If we were to evaluate the integrals, such a term would

diverge within the volume of the inclusion, leading to a singularity wherever the
observation point coincides with the source one: x = x′ → R1 = 0. For this reason,
we will refer to these terms, and to whichever term shows a dependency from a
power of 1

R1
, as the singular terms.

The presence of a singular part in the volume integrals would increase consider-
ably the difficulty in finding their analytical solution, but there is one characteristic
that comes to our aid. Looking at the singular terms in eqs. 3.2.34, 3.2.35 and
3.2.36, we can see that they are formally identical to the result of the sum of the
partial derivatives of the Somigliana tensor in eq. 3.2.1:

2(1− 2ν)(xi − x′i)
R3

1
∼ (1− 2ν)

8πµ(1− ν)
(xi − x′i)
R3 (3.2.40)

where R1 = R, as they are defined in eqs. 3.2.2 and 3.2.20a.
This enables us to employ the same techniques explained in subsection 3.2.1, and

to effectively write the singular terms as the gradient of a scalar potential. In fact,
we can demonstrate that it is possible to employ exactly the same potential derived
for a thin cylinder-shaped inclusion by Lamberti, 2017.

Let us consider the volume integral for the generic displacement component uci
in eqs. 3.2.34, 3.2.35, 3.2.36 and isolate the singular term, which is the same among
all the three expressions:

3KCe0

∫
VS

(xi − x′i)
2(1− 2ν)

R3
1

dv(x′) (3.2.41)

Then, let us focus on the constants of the expression in eq. 3.2.41: 6KCe0(1− 2ν),
where C is defined in eq. 3.2.20c, e0 is defined in eq. 2.4.3 and K is the drained
isothermal bulk modulus in a homogeneous medium, which can be expressed as
K = λ + 2

3µ = 2
3
µ(1+ν)
(1−2ν) . If we substitute their respective expressions (leaving aside

e0) into their product, we get

6KCe0(1− 2ν) = 6(1− 2ν)e0

16πµ(1− ν)
2µ(1 + ν)
3(1− 2ν) = e0

(1 + ν)
(1− ν) (3.2.42)

This, aside for the minus sign which is due to the rewriting of ∂Gik

∂x′
k
as the gradient of

the potential, is the same constant as in eq. 3.2.3. Moreover, the whole expression
of the singular term is equivalent to that of the sum of the partial derivatives of
the Somiglana tensor. Hence, we can deal with the singular terms in the volume
integrals for the displacement field in the same approach as in subsection 3.2.1:
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e0
(1 + ν)
(1− ν)

∫
VS

(xi − x′i)
1
R3

1
dv(x′) = −e1

∫
VS

∂

∂xi

( 1
R1

)
dv(x′) = −e1∇Φ(x) (3.2.43)

where e1 = e0
(1+ν)
(1−ν) and the scalar potential Φ is defined in the same way as in eq.

3.2.4.

To conclude, we can use the same potential derived for a cylinder-shaped inclu-
sion by Lamberti (2017), and the same solutions for the displacement and stress
fields as well (which are reported in the Appendix, section 6.3), to treat the singular
part of the volume integrals in eqs. 3.2.34, 3.2.35 and 3.2.36. This ensures the
possibility to find an analytical solution at least for a part of our problem.

We can now proceed to the evaluation of the terms depending from powers of
1
R2

in our integrals, which we will refer to as the non-singular part. It is to say that
these terms do not show singularities within the source region, as R2, defined in eq.
3.2.20b, never vanishes in any point of the half-space x3 > 0.

However, before we can go through this, we have to point out that one of the
assumptions made in Lamberti (2017) to find the expression of the scalar potential
for a cylindrical inclusion is that its height must be far smaller than its radius (i.e.,
the cylinder we considered in subsection 3.2.1 was in fact a disk with radius a and
infinitesimal thickness db, see section 6.3).

Therefore, when parametrizing our deformation source, we must be careful not
to exceed in the choice of its height compared to its horizontal dimensions. In the
following, we will refer to the height of the cylinder as d, in accordance with fig. 3.1,
and consider a case where the aspect ratio between height and radius d

a
is smaller

than 1
10 (in fact, d

a
= 0.08, as we stated in section 3.1).

Here it is necessary to point out that, in the following of this work, whenever we
are referring to a quantity depending on R1, be it a displacement, strain or stress
component, it will have the superscript "s" meaning "singular", while a quantity
depending on R2 will have the superscript "ns" meaning "non-singular". Another
important remark is that from now on we will drop the superscript "c" when referring
to the displacement, strain and stress fields evaluated in the half-space and within
the inclusion through the Eshelby’s method (section 2.1), so uc=̇u.

The next section will be devoted to the actual computation of the non-singular
terms of the volume integrals for the displacement field in eqs. 3.2.34 to 3.2.36, and
the retrieval of the displacement field both inside and outside the TPE region.

3.3 The displacement field
We have previously discussed how to handle the terms depending on the distance
R1 between the source (x′1, x′2, x′3) and the receving (x1, x2, x3) points in eqs. 3.2.34,
3.2.35 and 3.2.36. These terms can be interpreted as the contribution of the original
deformation source to the displacement field in the half-space, while the non-singular
terms, depending on R2 (which is the distance between the receving and the mirror
source point (x′1, x′2,−x′3)), correspond to the mixed contribution of a mirror de-
formation source outside the half-space and to that of the Galerkin vector, both of
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which are necessary to remove the tractions on the free surface. This same technique
is employed to retrieve the displacement and stress fields for the Mogi source (Mogi,
1958).

Having put the singular terms aside, we can now focus on the non-singular ones.
Here we report the expressions of the volume integrals in eqs. 3.2.34, 3.2.35 and
3.2.36, leaving only the terms depending on R2:

uns1 = 3KCe0

a∫
−a

dx′1

√
a2−(x′

1)2∫
−
√
a2−(x′

1)2

dx′2

c+ d
2∫

c− d
2

dx′3 (x1 − x′1)
{

2(1− 2ν)(3− 4ν)
R3

2

−12(1− 2ν)x3(x3 + x′3)
R5

2

} (3.3.1)

uns2 = 3KCe0

a∫
−a

dx′1

√
a2−(x′

1)2∫
−
√
a2−(x′

1)2

dx′2

c+ d
2∫

c− d
2

dx′3 (x2 − x′2)
{

2(1− 2ν)(3− 4ν)
R3

2

−12(1− 2ν)x3(x3 + x′3)
R5

2

} (3.3.2)

uns3 = −3KCe0

a∫
−a

dx′1

√
a2−(x′

1)2∫
−
√
a2−(x′

1)2

dx′2

c+ d
2∫

c− d
2

dx′3

{
2(1− 2ν)(3− 4ν)(x3 + x′3)

R3
2

+12(1− 2ν)x3(x3 + x′3)2

R5
2

− 4(1− 2ν)x3

R3
2

}
(3.3.3)

In the following, we will deal with one volume integral at a time, splitting it into
its main terms and trying to achieve a fully analytical solution for each of them.

Let us begin with the first integral in eq. 3.3.1, which we rewrite as

uns1 = 3KCe0(I1
a + I1

b ) (3.3.4)
where

I1
a =

a∫
−a

dx′2

√
a2−(x′

2)2∫
−
√
a2−(x′

2)2

dx′1

c+ d
2∫

c− d
2

dx′3 (x1 − x′1)2(1− 2ν)(3− 4ν)
R3

2
(3.3.5a)

I1
b = −

a∫
−a

dx′2

√
a2−(x′

2)2∫
−
√
a2−(x′

2)2

dx′1

c+ d
2∫

c− d
2

dx′3 (x1 − x′1)12(1− 2ν)x3(x3 + x′3)
R5

2
(3.3.5b)

the superscript 1 meaning "relative to the first component of the displacement".
Availing ourselves of the tables of integrals reported in Gradshteyn and Ryzhik

(2014), we can handle the first integral I1
a by integrating with respect to dx′1, and
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then with respect to dx′3 (note the change in the extremes of the interval of integra-
tion along x′1 in eqs. 3.3.5a, 3.3.5b: from −

√
a2 − (x′2)2 to

√
a2 − (x′2)2):

I1
a = 2(1− 2ν)(3− 4ν)

a∫
−a

dx′2

√
a2−(x′

2)2∫
−
√
a2−(x′

2)2

dx′1

c+ d
2∫

c− d
2

dx′3
(x1 − x′1)

R3
2

=

= 2(1− 2ν)(3− 4ν)
a∫
−a

dx′2

c+ d
2∫

c− d
2

dx′3

(
1
R+

2
− 1
R−2

)
=

= 2(1− 2ν)(3− 4ν)
a∫
−a

dx′2

ln
R2|+(c+ d

2 ) + x3 + c+ d
2

R2|+(c− d
2 ) + x3 + c− d

2

− ln
R2|−(c+ d

2 ) + x3 + c+ d
2

R2|−(c− d
2 ) + x3 + c− d

2


(3.3.6)

where

R+
2 =

√
(x2 − x′2)2 + (x3 + x′3)2 + (x1 −

√
a2 − (x′2)2)2 (3.3.7a)

R−2 =
√

(x2 − x′2)2 + (x3 + x′3)2 + (x1 +
√
a2 − (x′2)2)2 (3.3.7b)

and R2|±(c± d
2 ) means R±2 evaluated at point (c± d

2).
At this stage, however, we realize that there is no possibility to proceed further

with the calculation, as there are no known analytical solutions to an integral whose
form is like that of the last integrand in eq. 3.3.6. Therefore, we will resort to
numerical computation to complete the resolution of I1

a .

Now let us evaluate the second integral I1
b (eq. 3.3.7a), this time integrating first

with respect to dx′3, and then to dx′1:

I1
b = −12(1− 2ν)

a∫
−a

dx′2

√
a2−(x′

2)2∫
−
√
a2−(x′

2)2

dx′1

c+ d
2∫

c− d
2

dx′3 (x1 − x′1)x3(x3 + x′3)
R5

2
=

= 4(1− 2ν)
a∫
−a

dx′2

√
a2−(x′

2)2∫
−
√
a2−(x′

2)2

dx′1 x3(x1 − x′1)
 1
R2|3(c+ d

2 )
− 1
R2|3(c+ d

2 )

 =

= 4(1− 2ν)
a∫
−a

dx′2 x3

 1
R2|+(c+ d

2 )
− 1
R2|−(c+ d

2 )
− 1
R2|+(c− d

2 )
+ 1
R2|−(c− d

2 )



(3.3.8)

Also in this case, we found that it is impossible to achieve a full analytical solution
for the integral, which will be handled by means of numerical computation.

We now continue with the second non-singular integral (eq. 3.3.2), first rewriting
it as

uns2 = 3KCe0(I2
a + I2

b ) (3.3.9)
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where

I2
a =

a∫
−a

dx′1

√
a2−(x′

1)2∫
−
√
a2−(x′

1)2

dx′2

c+ d
2∫

c− d
2

dx′3 (x2 − x′2)2(1− 2ν)(3− 4ν)
R3

2
(3.3.10a)

I2
b = −

a∫
−a

dx′1

√
a2−(x′

1)2∫
−
√
a2−(x′

1)2

dx′2

c+ d
2∫

c− d
2

dx′3 (x2 − x′2)12(1− 2ν)x3(x3 + x′3)
R5

2
(3.3.10b)

The procedure is equivalent to that of the previous case, except that this time we
integrate with respect to dx′2 from −

√
a2 − (x′1)2 to

√
a2 − (x′1)2:

I2
a = 2(1− 2ν)(3− 4ν)

a∫
−a

dx′1

√
a2−(x′

1)2∫
−
√
a2−(x′

1)2

dx′2

c+ d
2∫

c− d
2

dx′3
(x2 − x′2)

R3
2

=

= 2(1− 2ν)(3− 4ν)
a∫
−a

dx′1

c+ d
2∫

c− d
2

dx′3

(
1
R+

2
− 1
R−2

)
=

= 2(1− 2ν)(3− 4ν)
a∫
−a

dx′1

ln
R+

2 |(c+ d
2 ) + x3 + c+ d

2

R+
2 |(c− d

2 ) + x3 + c− d
2

− ln
R−2 |(c+ d

2 ) + x3 + c+ d
2

R−2 |(c− d
2 ) + x3 + c− d

2


(3.3.11)

I2
b = −12(1− 2ν)

a∫
−a

dx′1

√
a2−(x′

1)2∫
−
√
a2−(x′

1)2

dx′2

c+ d
2∫

c− d
2

dx′3 (x2 − x′2)x3(x3 + x′3)
R5

2
=

= 4(1− 2ν)
a∫
−a

dx′1

√
a2−(x′

1)2∫
−
√
a2−(x′

1)2

dx′2 x3(x2 − x′2)
(

1
R3

2(c+ d
2)
− 1
R3

2(c− d
2)

)
=

= 4(1− 2ν)
a∫
−a

dx′1 x3

 1
R+

2 |(c+ d
2 )
− 1
R−2 |(c+ d

2 )
− 1
R+

2 |(c− d
2 )

+ 1
R−2 |(c− d

2 )


(3.3.12)

where the functions R+
2 and R−2 are defined in the same way as, respectively, in

eqs. 3.3.7a and 3.3.7b, provided that the dependencies from (x1, x
′
1) and (x2, x

′
2) are

swapped.
Both the final integrands in eqs. 3.3.11 and 3.3.12 are of the same forms as those

in eqs. 3.3.6 and 3.3.8, so it is not possible to find complete analytical solutions in
this case as well.

Finally, we evaluate the third non-singular integral (eq. 3.3.3), rewriting it as

uns3 = −3KCe0(I3
a + I3

b ) (3.3.13)
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where

I3
a =

a∫
−a

dx′1

√
a2−(x′

1)2∫
−
√
a2−(x′

1)2

dx′2

c+ d
2∫

c− d
2

dx′3 (x3 + x′3)2(1− 2ν)(3− 4ν)
R3

2
(3.3.14a)

I3
b =

a∫
−a

dx′1

√
a2−(x′

1)2∫
−
√
a2−(x′

1)2

dx′2

c+ d
2∫

c− d
2

dx′3

[
12(1− 2ν)x3(x3 + x′3)2

R5
2

− 4(1− 2ν)x3

R3
2

]

(3.3.14b)

As usual, let us evaluate the integrals one by one:

I3
a = 2(1− 2ν)(3− 4ν)

a∫
−a

dx′2

√
a2−(x′

2)2∫
−
√
a2−(x′

2)2

dx′1

c+ d
2∫

c− d
2

dx′3
(x3 + x′3)

R3
2

=

= −2(1− 2ν)(3− 4ν)
a∫
−a

dx′2

√
a2−(x′

2)2∫
−
√
a2−(x′

2)2

dx′1

 1
R2|(c+ d

2 )
− 1
R2|(c− d

2 )

 =

= −2(1− 2ν)(3− 4ν)
a∫
−a

ln

R+
2 |(c+ d

2 ) − x1 +
√
a2 − (x′2)2

R−2 |(c+ d
2 ) − x1 −

√
a2 − (x′2)2


− ln

R+
2 |(c− d

2 ) − x1 +
√
a2 − (x′2)2

R−2 |(c− d
2 ) − x1 −

√
a2 − (x′2)2




(3.3.15)

I3
b = 4(1− 2ν)

a∫
−a

dx′2

√
a2−(x′

2)2∫
−
√
a2−(x′

2)2

dx′1

c+ d
2∫

c− d
2

dx′3

[
3x3(x3 + x′3)2

R5
2

− x3

R3
2

]
=

= −4(1− 2ν)
a∫
−a

dx′2dx
′
2

√
a2−(x′

2)2∫
−
√
a2−(x′

2)2

x3dx
′
1

(x3 + c+ d
2)

R3
2|(c+ d

2 )
−

(x3 + c− d
2)

R3
2|(c− d

2 )

 =

= 4(1− 2ν)
a∫
−a

dx′2 x3


(
x3 + c+ d

2

) (x1 −
√
a2 − (x′2)2)

R+
2 |(c+ d

2 )

[
(x2 − x′2)2 + (x3 + c+ d

2)2
]

−
(x1 +

√
a2 − (x′2)2)

R−2 |(c+ d
2 )

[
(x2 − x′2)2 + (x3 + c+ d

2)2
]
− (x3 + c− d

2

)
 (x1 −

√
a2 − (x′2)2)

R+
2 |(c− d

2 )

[
(x2 − x′2)2 + (x3 + c− d

2)2
] − (x1 +

√
a2 − (x′2)2)

R−2 |(c− d
2 )

[
(x2 − x′2)2 + (x3 + c− d

2)2
]


(3.3.16)

The functions R±2 are defined in the same way as in eqs. 3.3.7a and 3.3.7b.
Even in this last case, there is no possibility to provide a full analytical solution

to the two integrals developed above, and we have to resort to numerical solutions
too.
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Now that we have at least semi-analytical expressions for the non-singular part of
the volume integrals in the original equations (3.2.34, 3.2.35, 3.2.36), we can retrieve
the complete solutions for the displacement field due to our TPE inclusion both in
the external matrix and within the source region itself:

u = us + uns (3.3.17)
where us and uns are respectively the contribution due to the singular part and to
the non-singular one. The three components of the latter vector (uns1 , u

ns
2 , u

ns
3 ) are

given by the expressions in eqs. 3.3.4, 3.3.9 and 3.3.13, together with the integrals
we have just evaluated. The three components of the former vector (us1, us2, us3)
are taken directly from the expressions 3.2.11a, 3.2.11b for the internal domain, and
3.2.12a, 3.2.12b for the external domain, provided that they are previously converted
to cartesian coordinates 1.

Figure 3.2: a): reference system adopted in the work of Lamberti (2017), where the median plane
of the thin cylinder (highlighted in blue) embedded in an infinite space lies on the plane x3 = 0, its
origin coinciding with that of the system O. The internal domain r ≤ a coincides with the sphere
of radius a surrounding the cylinder, while the rest of the space represents the external domain
r ≥ a. In this case, the radial distance r of a point P from the origin coincides with the distance
from the center of the median plane of the cylinder. This is also reported in fig. 6.2. b): reference
system adopted in our case, where the center O′ of the median plane of the cylinder is located at
(0, 0, c), and it is chosen as the origin of the spherical reference system. The distance of a point
P from O′ is represented by the radial coordinate r, according to which we differentiate between
the internal (r ≤ a) and the external (r ≥ a) domain. The other two spherical coordinates (θ, φ)
employed in eqs. 3.3.18a, 3.3.18b, 3.3.18c are also shown.

Before we go any further, it is necessary to dwell on the definition of internal
and external domains necessary to express the singular terms (see the Appendix,
section 6.3), as it has to be updated to a new reference system we are employing
in our case of study. With reference to fig. 3.2, we can see how, in the case of an
infinitesimally thin cylinder of radius a in a complete space (Lamberti, 2017), the

1Before employing the scalar potential and the subsequent solutions derived in section 6.3, it is
necessary to substitute d (the height of our cylinder) to db (the infinitesimal thickness of the disk
considered by Lamberti, 2017) in the definition of the constant A (eq. 6.3.8).
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origin of the reference system coincides with the center of the median plane of the
cylinder, so the radial distance r from it is what discriminates between the internal
r ≤ a and the external r ≥ a domain.

On the contrary, in the case of a cylinder embedded in a half-space, the origin
no longer coincides with the center of its median plane. What we will do is to first
evaluate the singular solutions for the displacement (i.e. those provided by Lamberti,
2017) in spherical coordinates, taking as the origin of the reference system the center
of the cylinder itself, then converting them into cartesian coordinates, and eventually
computing the non-singular solutions in the new cartesian frame, where the center
of the median plane is at depth c below the origin.

Now we are ready to display the complete solution for the displacement field u
by developing the terms of eq. 3.3.17:

us1(x1, x2, x3) = sin θ cosφusr + cos θ cosφust (3.3.18a)
us2(x1, x2, x3) = sin θ sinφusr + cos θ sinφust (3.3.18b)
us3(x1, x2, x3) = − cos θusr + sin θust (3.3.18c)

are the cartesian components of the singular part of the displacement us, where
usr(r, θ, φ), ust(r, θ, φ) are given respectively by eqs. 3.2.11a, 3.2.11b in the internal
domain, and eqs. 3.2.12a, 3.2.12b in the external domain. It is important to bear
in mind that the positive vertical axis of our reference system points downward, so
the formulae for the conversion from spherical to cartesian coordinates employed
in eqs. 3.3.18a, 3.3.18b and 3.3.18c must be changed accordingly (a more detailed
discussion on this topic can be found in the Appendix (section 6.6); see also fig.
3.2).

The total displacement field is thus given by

u1(x1, x2, x3) = us1(x1, x2, x3) + 3KCe0(I1
a + I1

b ) (3.3.19a)
u2(x1, x2, x3) = us2(x1, x2, x3) + 3KCe0(I2

a + I2
b ) (3.3.19b)

u3(x1, x2, x3) = us3(x1, x2, x3) + 3KCe0(I3
a + I3

b ) (3.3.19c)

The numerical computation of the integrals I ia,b has been done using MatLab soft-
ware. We choose to display the components of the displacement field on the median
plane (x3 = c) of the cylindrical inclusion along the x1-axis on a 2D plot (x2 = 0),
symmetrically with respect to the origin, as it can be seen in fig. 3.3 and fig. 3.4,
where the boundaries of the cylinder and the region within it are also shown.

The horizontal components u1 and u2 are represented in fig. 3.3. It is to say
that, as we are plotting along the x1-axis at x2 = 0, the first component u1 would
correspond to the radial one (uρ) in cylindrical coordinates (and thus it shows a sym-
metric pattern around the origin), while the second component u2 would correspond
to the azimuthal one (uφ), and in fact it is zero, as the problem is axi-symmetric.

The vertical uplift (corresponding to −u3, as the positive vertical axis points
downward in our reference system) is represented in fig. 3.4, together with the uplift
due exclusively to the singular vertical component of the displacement field us3. Since
the latter corresponds to the case of an infinite space, the vertical displacement on
the median plane is expected to be zero, given the symmetry of the problem. The
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non-singular contribution adds a non-vanishing vertical displacement that accounts
for the symmetric pattern of the total uplift.

Later on in the following of this work (section 3.5) we will discuss the displace-
ment and the stresses at the free surface as well.
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Figure 3.3: Horizontal components of displacement u1 (blue line) and u2 (red line) on the median
plane of the cylinder (x3 = c) plotted along the x1-axis. The x-axis, spanning from −5000m to
+5000m, is normalized to the radius a = 500m of the cylinder, while the y-axis is normalized to
the product Aa, where A is the constant defined in eq. 6.3.8. The two black lines mark the edges
of the cylinder, and the orange-highlighted area corresponds to the source region.
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Figure 3.4: Vertical uplift on the median plane of the cylinder −u3 (blue line) on the median
plane of the cylinder (x3 = c), together with the vertical uplift due only to the singular component
−us3 (red line), which is what we would observe in an infinite space, both plotted along the x1-
axis. The x-axis, spanning from −5000m to +5000m, is normalized to the radius a = 500m of
the cylinder, while the y-axis is normalized to the product Aa, where A is the constant defined
in eq. 6.3.8. The two black lines mark the edges of the cylinder, and the orange-highlighted area
corresponds to the source region.

Now that we have completed the discussion about the displacement field, we can
move on to the retrieval of the stress field both within and outside the TPE source
region.
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3.4 Stress tensor inside and outside the source
region

The approach we will follow to evaluate the components of the stress tensor inside
the inclusion and within the rest of the half-space is the same as that employed
in the last section for the components of the displacement field: namely, starting
from the expressions in eqs. 3.2.34, 3.2.35 and 3.2.36, we will use the results of
Lamberti (2017) to solve for the singular terms, then deriving the rest to get the
strain components eij, and from those, applying the elastic2 constitutive relation,
the stress components.

Before that, it is useful to take a step back to section 2.1 and recall how the stress
tensor was defined both inside (eq. 2.1.3) and outside (eq. 2.1.2) the inclusion. Here
we rewrite for completeness those expressions for the stress inside ("in") and outside
("out") the inclusion as

τ cij = λeckkδij + 2µecij
τ outij = τ cij

τ inij = τ cij + τ ∗ij

where τ ∗ij = −3Ke0δij (eq. 2.4.5). From now on, the superscript "c" will be dropped
for the strain and stress components as well (so τ cij=̇τij). We have to keep in mind
that τij is due to both the singular and non-singular terms, as it depends on u:
τ cij = τ sij + τnsij .

The expressions for the singular strain tensor components esij have already been
shown in eqs. 3.2.20a to 3.2.14h, and they will be used to account for the contribution
of the singular terms to the whole stress field.

Therefore, by analogy with the evaluation of the displacement, we will focus on
the retrieval of the non-singular contribution τnsij :

τnsij = λ
∂unsk
∂xk

δij + 2µensij (3.4.2a)

ensij = 1
2

(
∂unsi
∂xj

+
∂unsj
∂xi

)
(3.4.2b)

In order to compute the strain and stress components, we need to write the partial
derivatives of the components of the displacement, according to eq. 3.4.2a. In the
following, we will limit ourselves to report the diagonal components of the stress
tensor, namely τns11 , τns22 and τns33 . This is due to the fact that the shear stress
components τns12 , τns13 , τns23 all vanish both within and outside the TPE inclusion, as
it is explained in the Appendix (section 6.7). Given that also the shear components
of the singular stress tensor vanish within the source region (as it is shown in the
Appendix as well, section 6.3), the stress tensor diagonal elements represent the
principal stress eigenvalues, thus giving direct information on the stress regime inside
the inclusion.

2The elastic constitutive relation τij = λekkδij +2µeij can be applied to the poro-elastic matrix
provided that isothermal and drained parameters λ, µ are employed, see section 2.4.
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The partial derivatives we need are thus:

∂uns1
∂x1

, ∂u
ns
2

∂x2
, ∂u

ns
3

∂x3

It is to say that all of the following results represent the most complete analytical
solutions we have managed to find. In most cases, as for the displacement com-
ponents, we reduce the volume integrals to single ones, which are to be computed
numerically.

Let us begin with the first partial derivative, ∂uns
1

∂x1
. With reference to eq. 3.3.1,

we can write

∂uns1
∂x1

= 3KCe0

a∫
−a

dx2

√
a2−(x′

2)2∫
−
√
a2−(x′

2)2

dx′1

c+ d
2∫

c− d
2

dx′3
∂

∂x1

{
(x1 − x′1)

[
2(1− 2ν)(3− 4ν)

R3
2

−12(1− 2ν)x3(x3 + x′3)
R5

2

]}
(3.4.3)

Here it is worth pointing out that, as the partial derivative is taken with respect
to x1 whereas the second integration is over dx′1, we have put the former inside the
integral. Furthermore, it is easy to demonstrate that

∂uns1
∂x1

= −∂u
ns
1

∂x′1
(3.4.4)

so we can rewrite the integral employing this relation, thus simplifying its resolution,
in that it enables us to avoid calculating the whole derivative:

∂uns1
∂x1

= −3KCe0

a∫
−a

dx2

√
a2−(x′

2)2∫
−
√
a2−(x′

2)2

dx′1

c+ d
2∫

c− d
2

dx′3
∂

∂x′1

{
(x1 − x′1)

[
2(1− 2ν)(3− 4ν)

R3
2

−12(1− 2ν)x3(x3 + x′3)
R5

2

]}
= −3KCe0

∂

∂x′1
(I1
a + I1

b )

(3.4.5)

where the integrals I1
a and I1

b are defined in eqs. 3.3.5a and 3.3.5b. Let us handle
the two separately:

∂

∂x′1
I1
a = 2(1− 2ν)(3− 4ν)

a∫
−a

dx′2

(x1 − f(x′2))
 x3 + c+ d

2
[(x2 − x′2)2 + (x1 − f(x′2))R+

2 |(c+ d
2 )

−
x3 + c− d

2
[(x2 − x′2)2 + (x1 − f(x′2))]R+

2 |(c− d
2 )

− (x1 + f(x′2))
 x3 + c+ d

2
[(x2 − x′2)2 + (x1 + f(x′2))]R−2 |(c+ d

2 )
−

x3 + c− d
2

[(x2 − x′2)2 + (x1 + f(x′2))]R−2 |(c− d
2 )


(3.4.6)
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where f(x′2) .=
√
a2 − (x′2)2 to lighten the formulae (this notation will be used

throughout the rest of the section).

∂

∂x′1
I1
b = 4(1− 2ν)x3

a∫
−a

dx′2

(x1 − f(x′2))
R+

2 |3(c+ d
2 )
− (x1 − f(x′2))

R+
2 |3(c− d

2 )
− (x1 + f(x′2))

R−2 |3(c+ d
2 )

+ (x1 + f(x′2))
R−2 |3(c− d

2 )


(3.4.7)

where R+
2 , R

−
2 are defined in eqs. 3.3.7a, 3.3.7b, and the details of the calculations

have been omitted.

Proceeding with the second partial derivative, from eq. 3.3.2 we get

∂uns2
∂x2

= −3KCe0

a∫
−a

dx′1

√
a2−x′12∫

−
√
a2−x′12

dx′2

c+ d
2∫

c− d
2

dx′3
∂

∂x′2

{
(x2 − x′2)

[
2(1− 2ν)(3− 4ν)

R3
2

−12(1− 2ν)x3(x3 + x′3)
R5

2

]}
= −3KCe0

∂

∂x′2
(I2
a + I2

b )

(3.4.8)

where the integrals I2
a and I2

b are defined in eqs. 3.3.10a and 3.3.10b, and we have
already used the property stated in eq. 3.4.4, which holds true also for ∂uns

2
∂x2

. The
integration of the two terms gives us:

∂

∂x′2
I2
a = 2(1− 2ν)(3− 4ν)

a∫
−a

dx′1

(x2 − f(x′1))
 x3 + c+ d

2
[(x1 − x′1)2 + (x2 − f(x′1))]R+

2 |(c+ d
2 )

−
x3 + c− d

2
[(x1 − x′1)2 + (x2 − f(x′1))]R+

2 |(c− d
2 )

− (x2 + f(x′1))
 x3 + c+ d

2
[(x1 − x′1)2 + (x2 + f(x′1))]R−2 |(c+ d

2 )

−
x3 + c− d

2
[(x1 − x′1)2 + (x2 + f(x′1))]R−2 |(c− d

2 )


(3.4.9)

∂

∂x′2
I2
b = 4(1− 2ν)x3

a∫
−a

dx′1

(x2 − f(x′1))
R+

2 |3(c+ d
2 )
− (x2 − f(x′1))

R+
2 |3(c− d

2 )
− (x2 + f(x′1))

R−2 |3(c+ d
2 )

+ (x2 + f(x′1))
R−2 |3(c− d

2 )


(3.4.10)

Notice that this time the integration is carried out first with respect to dx′3 and then
to dx′2, and the definition of R+

2 , R
−
2 changes accordingly (cfr. eq. 3.3.12), while

f(x′1) .=
√
a2 − (x′1)2.

Finally, we calculate the third partial derivative. From eq. 3.3.3 we can write

60



∂uns3
∂x3

= −3KCe0

a∫
−a

dx′2

√
a2−(x′

2)2∫
−
√
a2−(x′

2)2

dx′1

c+ d
2∫

c− d
2

dx′3
∂

∂x3

[
2(1− 2ν)(3− 4ν)(x3 + x′3)

R3
2

+12(1− 2ν)x3(x3 + x′3)2

R5
2

− 4(1− 2ν)x3

R3
2

]
= −3KCe0

∂

∂x3
(I3
a + I3

b )

(3.4.11)

where the integrals I3
a and I3

b are defined in eqs. 3.3.14a and 3.3.14b. This time,
however, it is not possible to employ a relation similar to that in eq. 3.4.4, so we
have to explicitly carry out the partial derivative of I3

a and I3
b :

∂

∂x3
I3
a = −2(1− 2ν)(3− 4ν)

a∫
−a

dx′2

√
a2−(x′

2)2∫
−
√
a2−(x′

2)2

dx′1
∂

∂x3

 1
R2|(c+ d

2 )
− 1
R2|(c− d

2 )



= −2(1− 2ν)(3− 4ν)
a∫
−a

dx′2

−(x3 + c+ d

2)
− x1 − f(x′2)

[(x2 − x′2)2 + (x3 + c+ d
2)2]R+

2 |(c+ d
2 )

+ x1 + f(x′2)
[(x2 − x′2)2 + (x3 + c+ d

2)2]R−2 |(c+ d
2 )

− (x3 + c− d

2)
 x1 − f(x′2)

[(x2 − x′2)2 + (x3 + c− d
2)2]R+

2 |(c− d
2 )
− x1 + f(x′2)

[(x2 − x′2)2 + (x3 + c− d
2)2]R−2 |(c− d

2 )


(3.4.12)

∂

∂x3
I3
b = −4(1− 2ν) ∂

∂x3

a∫
−a

dx′2

√
a2−(x′

2)2∫
−
√
a2−(x′

2)2

dx′1 x3

(x3 + c+ d
2)

R3
2|(c+ d

2 )
−

(x3 + c− d
2)

R3
2|(c− d

2 )



= −4(1− 2ν)
a∫
−a

dx′2

√
a2−(x′

2)2∫
−
√
a2−(x′

2)2

dx′1


(x3 + c+ d

2)
R3

2|(c+ d
2 )
−

(x3 + c− d
2)

R3
2|(c− d

2 )

+ x3

R3
2|(c+ d

2 )

− x3

R3
2|(c− d

2 )
−

3x3(x3 + c+ d
2)2

R5
2|(c+ d

2 )
+

3x3(x3 + c− d
2)2

R5
2|(c− d

2 )


(3.4.13)

where f(x′2) and R±2 are defined as usual.

Here it is important noticing that in the expression for ∂
∂x3
I3
b we stopped the

calculations once we got a double integral. As a matter of fact, we have found that
it is theoretically possible to proceed with the analytical computation and reduce
the double integral to a single one, but we have found it difficult to apply numerical
computation to that solution: therefore, we choose to omit that last step and display
the result which we effectively used to compute ∂uns

3
∂x3

.
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The non-singular strain components are given by

ens11 = ∂u1

∂x1
(3.4.14a)

ens22 = ∂u2

∂x2
(3.4.14b)

ens33 = ∂u3

∂x3
(3.4.14c)

At this point we are able to obtain the total stress field τij by developing the ex-
pression τij = τ sij + τnsij . The diagonal components of τnsij are found by converting
the singular strain components in eqs. from 3.2.20a to 3.2.14h from spherical to
cartesian coordinates:

es11 = err sin2 θ cos2 φ+ 2erθ sin θ cos θ cos2 φ+ eθθ cos2 θ cos2 φ+ eφφ sin2 φ
(3.4.15a)

es22 = err sin2 φ sin2 θ + 2erθ cos θ sin θ sin2 φ+ eθθ cos2 θ sin2 φ+ eφφ cos2 φ
(3.4.15b)

es33 = err cos2 θ − 2erθ sin θ cos θ + eθθ sin2 θ (3.4.15c)

The formulae to convert a second rank tensor from a spherical to a cartesian set of
coordinates are illustrated in the Appendix (section 6.6).

The singular stress components are thus retrieved by applying the elastic con-
stitutive relation, bearing in mind that the stress tensor reported in the Appendix,
eqs. 6.3.9a to 6.3.9d, is purely deviatoric outside the TPE inclusion:

τ s,outij = 2µesij (3.4.16a)

τ s,inij = 1
3τ

s
kk + 2µes,dij (3.4.16b)

where es,dij = esij − 1
3e1δij is the deviatoric strain tensor, and 1

3τ
s
kk = −4

3µe1 is the
isotropic component of the stress tensor, which is non-vanishing only within the
source region (as it is demonstrated in Lamberti, 2017).

The total stress components are thus given by

τ outij = 2µesij + τnsij (3.4.17a)

τ inij = 1
3τ

s
kk + 2µes,dij + τnsij (3.4.17b)

while the deviatoric stress components are as follows:

τ d,outij = 2µ
(
esij + ensij −

1
3e

ns
kkδij

)
(3.4.18a)

τ d,inij = 2µ
(

2µesij −
1
3e1δij + ensij −

1
3e

ns
kkδij

)
(3.4.18b)
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In the following we report a series of plots representing the stress tensor components
along the x1-axis on the median plane of the cylindrical inclusion, both inside and
outside of it.
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Figure 3.5: Fig. a): diagonal components of the stress tensor τij on the median plane of the
cylindrical inclusion, plotted along the x1-axis. Fig. b): diagonal components of the singular stress
tensor τsij on the median plane of the cylindrical inclusion. In both figures, the x-axis spans from
0m to 1000m, and it is normalized to the radius a = 500m of the cylinder. The stresses on the
y-axis are normalized to 2µe1, where e1 is defined in eq. 3.2.8. The interior of the TPE region is
highlighted in pale yellow.

The stress tensor components represented in fig. 3.5 a) are compared to the
components due only to the singular part of the problem in fig. 3.5 b), which
correspond to the case where the source depth is big enough to neglect the free
surface and approximate the half-space as an infinite one (these were also the results
of the work of Lamberti, 2017). In our case we set the source depth c = 3000m and
its radius a = 500m, so the horizontal dimensions of the cylinder are considerably
smaller than the depth of its median plane, and in fact, comparing the two plots,
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the stress components are hardly distinguishable, if not at all.
The same can be told about the plots of the deviatoric stress components, total

(fig. 3.6 a) ) and singular (fig. 3.6 b) ).
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Figure 3.6: Fig. a): diagonal components of the deviatoric stress tensor τdij on the median plane
of the cylindrical inclusion, plotted along the x1-axis. Fig. b): diagonal components of the singular
deviatoric stress tensor τs,dij on the median plane of the cylindrical inclusion. In both figures, the
x-axis spans from 0m to 1000m, and it is normalized to the radius a = 500m of the cylinder. The
stresses on the y-axis are normalized to 2µe1, where e1 is defined in eq. 3.2.8. The black line at
x = 1 marks the edge of the cylinder, and the interior of the TPE region is highlighted in pale
yellow.

The deviatoric stress components in fig. 3.6 a) can give us information on the
stress regime inside and outside the TPE region on its median plane. As we have
already explained, the stress tensor is diagonal within the source region, so the
diagonal components of its deviatoric counterpart τ d11, τ d22, τ d33 coincide with the
principal deviatoric stresses σ′1, σ′2, σ′3, where σ′1 ≤ σ′2 ≤ σ′3, meaning that σ′1 is the
most compressive (negative) deviatoric stress, and σ′3 is the most tensile (positive).
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From the plot it is straightforward to see that

τ d33 = σ′3, τ d11 = σ′2, τ d22 = σ′1 (3.4.19)

Hence, looking at fig. 3.6 a), we have a tensile deviatoric stress τ d33 along the
vertical axis, a compressive one τ d22 along the x2-axis, which in this case (being
x2 = 0) corresponds to the transverse axis, while the intermediate deviatoric stress
τ d11 is along the x1-axis, which corresponds to the radial axis.

This configuration holds from x1 = 0 to approximately x1 = 0.974, where τ d11
becomes greater than τ d33 and the order of principal stresses changes, and it suggests
the presence of a compressive environment within most of the source region (let us
point out that the situation would be the same if we plotted on the negative x1-axis,
given the symmetry of the inclusion), thus favouring thrust faulting mechanisms.
Moreover, the kinds of faults which are more likely to develop are radial ones, as
the intermediate deviatoric stress axis coincides with the x1 (radial) axis.

The change in the order of principal deviatoric stresses near the boundary of the
cylinder would indicate a different stress regime, where the intermediate stress axis
would coincide with the vertical one, and the most tensile stress would act along
the x1-axis, favouring the development of ring faults. However, it is to say that the
series employed to express the singular displacement, strain and stress components
(starting from the potential defined in the Appendix, eqs. 6.3.5a and 6.3.5b) may
attain large values in the proximity of r = x1 = a, as indeed it can be seen around
the border of the cylinder in the plots.

Looking at the outside region (x1 ≥ a), we notice that the tectonic enviroment
is compressive again, given that the most tensile stress is again along the vertical
axis, even if this time the most compressive stress is along the x1-axis. The values
of the stresses, however, are so small with respect to those within the source region
that the seismicity they could account for in the medium surrounding the inclusion
would be negligible (at least at depth c, on the median plane of the source).
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3.5 Stress and displacement fields on the free sur-
face

This section is devoted to the study and discussion of the displacement and stress
components as they are on the free surface of the half-space (x3 = 0). The dis-
placement components are especially interesting, as they represent the only physical
quantity we can actually observe and compare to geodetic data.

Let us start with the displacement. The horizontal components u1 and u2 are
represented in fig. 3.7, while the vertical uplift (which is given by −u3) is shown in
fig. 3.8.
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Figure 3.7: Horizontal components of displacement u1 (blue line) and u2 (red line) on the free
surface x3 = 0 plotted along the x1-axis. The x-axis, spanning from −5000m to +5000m, is
normalized to the radius a = 500m of the cylinder, while the y-axis is normalized to the product
Aa, where A is the constant defined in eq. 6.3.8. The two black lines mark the projections of the
edges of the cylinder on the surface.

Looking at the plot of the uplift in fig. 3.8, we can notice that it follows a
symmetric, bell-shaped pattern centered around the origin (which corresponds to the
center of the TPE region at depth c). This gives us a first consistency with what we
would expect from a deformation source model describing the surface deformation
pattern in a hydrothermal region such as Campi Flegrei, where a similar pattern was
observed for the vertical ground displacement during the 1982-84 unrest episode, as
we have seen in section 1.2 (see also fig. 1.2).
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Figure 3.8: Vertical uplift on the median plane of the cylinder −u3 (blue line) on the free surface
x3 = 0 plotted along the x1-axis. The x-axis, spanning from −5000m to +5000m, is normalized
to the radius a = 500m of the cylinder, while the y-axis is normalized to the product Aa, where A
is the constant defined in eq. 6.3.8. The two black lines mark the projections of the edges of the
cylinder on the surface.

Proceeding with the stresses, the total and deviatoric components are represented
in the following figures.
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Figure 3.9: Diagonal components of the stress tensor τij on the free surface x3 = 0, plotted along
the x1-axis. The x-axis spans from 0m to 5000m, and it is normalized to the radius a = 500m of
the cylinder. The stresses on the y-axis are normalized to 2µe1, where e1 is defined in eq. 3.2.8.
The black line marks the projection of the edge of the cylinder on the surface.
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The diagonal components of the stress tensor are shown in fig. 3.9. Here it is
worth noticing that the stress component τ33 is zero everywhere on the free surface,
as we would expect by definition.

The diagonal deviatoric components are illustrated in fig. 3.10. It can be seen
that the compressive (negative) deviatoric stress is τ d33 from the origin to around
x = 5, while the other two deviatoric stresses are both tensile (positive), τ d22 (acting
along the transverse axis) being the biggest. This suggests a distensive tectonic envi-
ronment in the region of the half-space immediately above the deformation source,
extending also at its sides. This region would likely see the formation of normal
faults. After x = 5, τ d33 becomes the intermediate deviatoric stress, suggesting a
strike-slip stress regime.
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Figure 3.10: Diagonal components of the deviatoric stress tensor τdij on the free surface x3 = 0,
plotted along the x1-axis. The x-axis spans from 0m to 5000m, and it is normalized to the radius
a = 500m of the cylinder. The stresses on the y-axis are normalized to 2µe1, where e1 is defined
in eq. 3.2.8. The black line marks the projection of the edge of the cylinder on the surface.

3.6 Comparison with results from a fully numer-
ical approach

The last section of this chapter is devoted to the comparison of the results we have
presented so far with those of the same model we considered, although handled
through a completely numerical method not developed in this thesis, which employs
a surface distribution of orthogonal forces on the surface of the cylindrical inclusion
to account for the traction discontinuity on it (see section 2.4 and eq. 2.4.6).

It should be noted that the geometric and poro-elastic parameters of the TPE
source and the surrounding medium are the same as those we employed (section
3.1), and that the components of the Green’s function used in the resolution are the
same we retrieved for the Mindlin’s tensor in section 2.5 (reported in the Appendix,
section 6.2).
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The comparison between the total and deviatoric stress results on the median
plane of the cylinder are shown in fig. 3.11. As it can be noticed, the results are
in very good agreement, except for the immediate surroundings of the edge of the
cylinder (x = 1 in both plots), where both the two methods have issues in dealing
with the singularities at R1 = a (see the Appendix, section 6.3). The comparison
between the components of displacement on the median plane is reported instead
in fig. 3.12, and the agreement between the results is good, except for a slight
difference between the vertical components.
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Figure 3.11: Top figure: comparison between the diagonal components of the stress tensor τij
"num", meaning fully numerical (solid lines), and those obtained through our method τij "semi-
an", meaning "semi-analytical" (dashed lines), on the median plane of the cylindrical inclusion,
plotted along the x1-axis. Bottom figure: comparison between the diagonal components of the
deviatoric stress tensor τdij "num", meaning fully numerical (solid lines), and those obtained through
our method τdij "semi-an" (dashed lines), meaning "semi-analytical", on the median plane of the
cylindrical inclusion, plotted along the x1-axis. In both figures, the x-axis is normalized to the
radius a = 500m of the cylinder. The stresses on the y-axis are normalized to 2µe1, where e1 is
defined in eq. 3.2.8.
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Figure 3.12: Comparison between the displacement components u1, u2, u3 "num", meaning fully
numerical (solid lines), and those obtained through our method u1, u2, u3 "semi-an", meaning
"semi-analytical" (dashed lines), on the median plane of the cylindrical inclusion, plotted along
the x1-axis. The x-axis is normalized to the radius a = 500m of the cylinder, while the y-axis is
normalized to the product Aa, where A is the constant defined in eq. 6.3.8.

Similarly, the comparison between the total and deviatoric stress results on the
free surface are shown in fig. 3.13. As it can be noticed, the results are in very good
agreement everywhere. This holds true for the comparison between the components
of displacement on the free surface as well, as it can be noticed in fig. 3.14.
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Figure 3.13: Top figure: comparison between the diagonal components of the stress tensor τij
"num", meaning fully numerical (solid lines), and those obtained through our method τij "semi-an",
meaning "semi-analytical" (dashed lines), on the free surface, plotted along the x1-axis. Bottom
figure: comparison between the diagonal components of the deviatoric stress tensor τdij "num",
meaning fully numerical (solid lines), and those obtained through our method τdij "semi-an" (dashed
lines), meaning "semi-analytical", on the median plane of the cylindrical inclusion, plotted along
the x1-axis. In both figures, the x-axis is normalized to the radius a = 500m of the cylinder. The
stresses on the y-axis are normalized to 2µe1, where e1 is defined in eq. 3.2.8.
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Figure 3.14: Comparison between the displacement components u1, u2, u3 "num", meaning fully
numerical (solid lines), and those obtained through our method u1, u2, u3 "semi-an", meaning
"semi-analytical" (dashed lines), on the free surface, plotted along the x1-axis. The x-axis is
normalized to the radius a = 500m of the cylinder, while the y-axis is normalized to the product
Aa, where A is the constant defined in eq. 6.3.8.

The generally good agreement between the two sets constitutes an important
validation of our results, as the fully numerical approach works in a completely
independent way from the methods we have employed to handle the Mindlin’s tensor
partial derivatives, from section 3.2 on.

In the next chapter we will compare the displacements and stresses displayed so
far to other deformation source models which have been applied to model the ground
surface deformation in hydrothermal regions, and especially at Campi Flegrei.
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Chapter 4

Discussion

This chapter is devoted to the discussion of the results of our work.
We will draw a comparison between the displacement and stress fields we re-

trieved at the free surface of the half-space and those produced by some of the most
common types of deformation sources employed to model surface ground deforma-
tion episodes (see section 1.3.1).

Eventually, we will provide a theoretical validation to the plausibility of our
model, on the basis of other works on hydrothermal processes and the considerations
made by many authors on the 1982-84 unrest at Campi Flegrei caldera.

4.1 Comparison with other deformation source
models

In this section we will consider three different deformation source models, all of
which belong to the cathegory of pressurized cavities. They are representative of
most of the trials that have been made over time to model the ground displacement
pattern in the Campi Flegrei area during the 1982-84 unrest and to propose an
originating mechanism for it (e.g. Trasatti et al., 2011, Troise et al., 2018). We will
start with the already mentioned Mogi source (subsection 1.3.1), then proceeding
with a penny-shaped crack, and ending with an ellipsoid.

The results for the displacement components at the free surface presented here
have been obtained through the LibHalfSpace C++ library, created by Ferrari et al.
(2016).

Mogi source

The Mogi source (Mogi, 1958) approximates a pressurized spherical cavity embedded
in a homogeneous elastic half-space (see fig. 1.4). As reported in section 1.4, this
simple source model has been applied to fit the ground uplift at Campi Flegrei
by some authors (Berrino et al., 1984, Bonafede et al., 1986), and it manages to
reproduce the shape of its pattern (see fig. 1.2).
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Figure 4.1: Radial displacement (ur) and vertical uplift (−uz) at free surface for a Mogi source
(solid lines) and a cylinder-shaped TPE inclusion (dashed lines), both of which share the same
radius a = 500m and depth c = 3000m. It is to point out that the radial component is equivalent
to the u1 component we plotted for our source in fig. 3.7, and the uplift −uz is the same as −u3
in fig. 3.8. The x-axis is normalized to the radius of the sources, while the y-axis is normalized
separately to the two maximum values of the vertical uplift for the respective models.

To compare the two models, we choose the same geometric parameters for both
the sources: namely, the same radius a = 500m for the cylinder and the sphere, the
same depth c = 3000m of the source center.

As we can notice in fig. 4.1, both the radial and the vertical displacement
components are practically indistinguishable at the free surface, and both the models
succeed in reproducing the bell-shaped, symmetric pattern of the recorded ground
uplift between 1982 and 1984. As the Mogi source already managed to fit in good
approximation the geodetic data at Campi Flegrei (Bonafede and Ferrari, 2009),
the similarity between these results means that the model we considered cannot be
ruled out in the first place in the interpretation of the causes of the uplift.

In the case of the Mogi source alone, we also provide comparisons between the
diagonal deviatoric stress components of one source and the other. The devia-
toric stress field τ dij for the Mogi source was not obtained through the LibHalfSpace
software, but instead it was derived from the expressions of the displacement com-
ponents in cylindrical coordinates (r,φ,z) provided by Bonafede and Ferrari (2009):

ur = ∆Pa3

4µ

[
r

R3
1

+ f(r, z)
]

(4.1.1a)

uz = ∆Pa3

4µ

[
z − c
R3

1
+ g(r, z)

]
(4.1.1b)

where ∆P is the overpressure of the sphere, a is the radius, c the depth of its
center, z = x3 is the vertical coordinate, r =

√
x2

1 + x2
2 is the radial one and R1 =
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√
r2 + (z − c)2 is the distance of the observation point from the source center itself.

Moreover, the functions f(r, z) and g(r, z) are defined as

ur =
[(

3K + 7µ
3K + µ

)
r

R3
2
− 6zr(z + c)

R5
2

]
(4.1.2a)

uz =
[
−
(

3K + 7µ
3K + µ

)
z + c

R3
2

+ 2z
R3

2
− 6z(z + c)2

R5
2

]
(4.1.2b)

where K is the bulk modulus and R2 =
√
r2 + (z + c)2 is the distance between

the observing point and the center of the mirror source (details can be found in
the original paper, Mogi, 1958). These expressions hold true in the point-source
approximation (a << c).

The stress field is purely deviatoric around the spherical cavity, and it can be
obtained through the elastic constitutive relation τ dij = 2µedij, where edij = eij is
defined in eq. 2.1.1.

0 2 4 6 8 10 12 14 16 18 20

x/a

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

D
e

v
ia

to
ri

c 
st

re
ss

/ 
3

3

d
, m

a
x

Deviatoric stress at free surface, Mogi vs Cylinder

11

d
 Mogi

22

d
 Mogi

33

d
 Mogi

11

d
 Cyl

22

d
 Cyl

33

d
 Cyl

Figure 4.2: Diagonal components of deviatoric stress tensor at free surface (x3 = 0m) for the
Mogi source (solid lines) and the TPE source (dashed lines). The x-axis is normalized to the radius
of the sources, while the y-axis is normalized separately to the two maximum values of τd33 for the
respective models. The coloured domains in the upper half of the plot mark the different stress
environments of the TPE source, while those in the lower half mark those of the Mogi source.
The orange domain corresponds to a distensive environment, the blue domain corresponds to a
strike-slip environment, and the violet domain represents a compressive environment. Each colour
is associated to a symbol, marking the same stress regime.

The diagonal components of the deviatoric stress tensor for both sources on the
free surface are reported in fig. 4.2. It can be noticed that their trends are similar,
and τ d33 is practically identical for both the sources, even if the amplitudes of τ d11 and
τ d22 for the Mogi source are smaller than those of the TPE source.

Interesting information is provided by the analysis of the stress environments.
From the origin to around five times the radius of the sources, there is a distensive
environment for both the sphere and the cylinder (orange domain in the plot), in that
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the most compressive stress is τ d33, the most tensile one is τ d22 and the intermediate
one is τ d11. However, the point where the most compressive and the intermediate
stress invert their order is closer to the origin for the TPE source than for the Mogi
source. This means that the extensive regime prolongs further away from the origin
in the second case, and after that, both the sources are associated with a strike-slip
environment (blue domain), where τ d11 is the most compressive stress and τ d33 is the
intermediate one.

Another difference comes from the fact that for the Mogi source there is a further
inversion in the order of stresses, where τ d33 becomes the most tensile one, leading
to a compressive environment, even if the transition is barely noticeable in the plot
(violet domain).
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Figure 4.3: Diagonal components of deviatoric stress tensor at x3 = 1500m for the Mogi source
(solid lines) and the TPE source (dashed lines). The x-axis is normalized to the radius of the
sources, while the y-axis is normalized separately to the two maximum values of τd33 for the re-
spective models. The coloured domains in the upper half of the plot mark the different stress
environments of the TPE source, while those in the lower half mark those of the Mogi source.
The orange domain corresponds to a distensive environment, the blue domain corresponds to a
strike-slip environment, and the violet domain represents a compressive environment. Each colour
is associated to to a symbol, marking the same stress regime.

The plot in fig. 4.3 compares the deviatoric stress components for both sources at
1500 m depth, which is halfway the depth of their centers. This time the trends are
even closer, and the differences in the amplitudes of τ d11 and τ d22 are less pronounced.
More importantly, the distensive environment (orange domain) associated to the
Mogi source extends less beyond that of the TPE source, and both domains end
within four times the radius of the sources from the origin. After that, both models
are associated with a common strike-slip environment (blue domain).
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Figure 4.4: Diagonal components of deviatoric stress tensor at x3 = 3000m for the Mogi source
(solid lines) and the TPE source (dashed lines). This depth coincides with that of the median
plane of our source. The x-axis is normalized to the radius of the sources, while the y-axis is
normalized separately to the two maximum values of τd33 for the respective models. The coloured
domains in the upper half of the plot mark the different stress environments of the TPE source,
while those in the lower half mark those of the Mogi source. The violet domain represents a
compressive environment, while the blue domain corresponds to a strike-slip environment. Each
colour corresponds to a symbol, marking the same stress regime. As the deviatoric stresses vanish
within the Mogi source, there is no colour associated to that portion of the plot.

Finally, the plot in fig. 4.4 compares the deviatoric stress components for both
sources at 3000 m depth, right on their median planes. Here we can observe some
major differences. The deviatoric stresses vanish within the Mogi source region, as it
represents a chamber filled with magma. The stress regime within the TPE source,
instead, is compressive (violet domain), as we already pointed out in section 3.4 (cfr.
fig. 3.6 a). Outside the sources, the stress environment is still compressive in our
case, even if τ d22 and τ d11 switch places as, respectively, the most compressive stress
and the intermediate one. The Mogi source, on the contrary, is associated with a
strike-slip environment (blue domain), τ d33 being the intermediate stress, although it
is barely distinguishable from the most tensile one, τ d22.

In conclusion, both the Mogi and the TPE source show very similar trends of
the displacement components at the free surface, and generally comparable trends of
the deviatoric stress components at different depths. Moreover, they both give rise
to a distensive stress environment centered around their symmetry axis (namely,
the vertical axis x3). The lateral extension of this domain reduces progressively
with depth, suggesting that it may extend over a truncated cone in the 3D half-
space. The main difference, however, is the presence of a compressive environment,
which could account for reverse fault mechanisms even beneath the center of the
area of maximum uplift, in the case of the TPE source, while the Mogi source is
incompatible with such a regime, at least in its surroundings. For this reason, our
model is more suitable than the other to describe a heterogeneous distibution of focal
mechanisms like that retrieved from the seismic data sets of the 1982-84 unrest at
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Campi Flegrei (subsection 1.3.2, fig. 1.6).
Another advantage of our model with respect to the Mogi source is that in the

latter we would need an overpressure ∆P of about 1 GPa to account for vertical
surface displacements of the same order of magnitude of those recorded at Campi
Flegrei (≈ 1m), while in our model a pore pressure increase ∆p of only 10 MPa
is sufficient. The overpressure needed in the Mogi model (a value of 690 MPa
was estimated by Bonafede and Ferrari (2009) for the 1982-84 uplift case) would
be unacceptable if the medium surrounding the source is to remain in the elastic
regime, as the tensile strength of crustal rocks is less than a few tens of MPa (Brace
and Kohlstedt, 1980), while the pore pressure increase we chose in our case is of a
more reasonable magnitude.

Fialko source

The source model proposed by Fialko et al. (2001) consists of a horizontal circular
crack in a semi-infinite elastic solid, and it is used to describe the displacement field
at the free surface due to sill-like magma intrusions. This kind of deformation source
includes the penny-shaped crack advocated by some authors (Battaglia et al., 2006,
Amoruso et al., 2008, Trasatti et al., 2011) to account for the 1982-84 uplift.

0 2 4 6 8 10 12 14 16 18 20

x/a

0

0.2

0.4

0.6

0.8

1

1.2

D
is

pl
ac

em
en

t/ 
u

zm
ax

Surface displacement, Fialko vs Cylinder

u
r
 Fialko

u
z
 Fialko

u
r
 Cylinder

u
z
 Cylinder

Figure 4.5: Radial displacement(ur) and vertical uplift (−uz) at free surface for a Fialko source
(solid lines) and a cylinder-shaped TPE inclusion (dashed lines), both of which share the same
radius a = 500m and depth c = 3000m. It is to point out that the radial component is equivalent
to the u1 component we plotted for our source in fig. 3.7, and the uplift −uz is the same as −u3
in fig. 3.8. The x-axis is normalized to the radius of the sources, while the y-axis is normalized
separately to the two maximum values of the vertical uplift for the respective models.

The radial component of displacement and the vertical uplift obtained through
our model are compared to the respective components obtained by assuming a Fialko
source at the same depth (c = 3000m) in fig. 4.5. The radius of the Fialko crack
is the same as that of the TPE source: a = 500m. As we can see in the plot,
the displacement components show similar trends, but the maximum horizontal
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displacement in the case of the TPE source occurs farther from the origin than in
the case of the Fialko source. Furthermore, the amplitudes of both the components
for our source decrease more slowly away from the origin with respect to those for
the Fialko source, this meaning that the TPE model may be better suited to describe
situations where the horizontal deformation is not negligible even at considerable
distances from the center of the area of maximum uplift.

Yang source

Finally we consider one last model, which is the Yang source (Yang et al., 1988).
It consists of a dipping prolate spheroid, with axes a, b, c′ (the last is not to be
confused with the depth c = 3000m, common to both models). LibHalfSpace allows
the user to set the length of the first two (a > b) together with the angles of their
orientation φ and θ, while the length of the third axis is evaluated as c′ =

√
a2 − b2.

In our simulation we choose a = 600m and b = 300m to make them comparable to
the radius a = 500m of the TPE source, while the angles were set to zero to make
the spheroid lie on a horizontal plane at depth c.
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Figure 4.6: Radial displacement(ur) and vertical uplift (−uz) at free surface for a Yang source
(solid lines) and a cylinder-shaped TPE inclusion (dashed lines), both of which share the same
depth c = 3000m, while the length of the axis of the Yang source (a = 600m, b = 300m, c =√
a2 − b2) are chosen to be comparable to the radius of the TPE source (a = 500m). It is to point

out that the radial component is equivalent to the u1 component we plotted for our source in fig.
3.7, and the uplift −uz is the same as −u3 in fig. 3.8. The x-axis is normalized to the radius of
the sources, while the y-axis is normalized separately to the two maximum values of the vertical
uplift for the respective models.

The comparison between the radial and vertical components of displacement at
the free surface for the two models is displayed in fig. 4.6. Also in this case they
show similar trends, the differences in amplitude being less pronounced than in the
Fialko source case. It is possible to notice that even here, the maximum horizontal
displacement in the case of the TPE source occurs slightly farther from the origin
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than in the case of the Yang source.

The conclusion we can draw from the comparisons we made so far is that the
results of our model at the free surface do not differ radically from those provided
by other models involving pressurized cavities with the same dimensions and in the
same context, although the stress field at the depth of the source shows consider-
able difference with respect to the Mogi sphere. Thereby, we cannot rule out its
applicability in practical situations where even simple models like the Mogi source
are able to reproduce some of the features of the phenomenon we are studying, as
in the case of the Campi Flegrei 1982-84 bradyseism.
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4.2 Possible applications of our model
The aim of this section will be to discuss how the model we first introduced in section
1.4 may fit into the description of the features and dynamics involving hydrothermal
regions such as Campi Flegrei.

First, let us recall the characteristics of our deformation source model (fig. 3.1):
a cylindrical thermo-poro-elastic region affected by a sudden increase in temperature
∆T and pore pressure ∆p, embedded in a poro-elastic material which extends over a
space bounded by a free surface. The horizontal dimensions of the source are wider
than its height but smaller than the depth of its median plane.

Figure 4.7: Interpretation of the TPE inclusion as a thin cylindrical layer of thermo-poro-
elastic material in direct contact with an underlying reservoir of magmatic fluids at temperature
T2, highlighted in dark orange, and embedded in an overlying layer of poro-elastic material at
temperature T1 < T2 (which represents the medium outside the TPE inclusion in our model),
highlighted in pale yellow. The two domains are separated by a boundary of low-permeability
rocks; fluids in the reservoir are pressurized at lithostatic values (p2), while the pore pressure in
the upper layer is hydrostatic (p1). A breach in the impervious layer beneath the inclusion makes
it possible for the magmatic fluids to be injected into it, causing a sudden increase in temperature
∆T and pore pressure ∆p within it, and inducing deformation and stresses both inside and in the
surrounding medium.

We remind that as we imposed drained conditions on the poro-elastic half-space
(section 2.4), the pore pressure change outside the inclusion is expected to be zero
immediately after the TPE source has undergone the changes in p and T . The
pore pressure changes in a poro-elastic medium are independent of the deviatoric
strain tensor (section 2.3), and we have seen that eij is purely deviatoric outside
the inclusion (sections 3.2.1 and 3.4), therefore the stress field induced there does
not lead to any change in p, and ∆p remains non-vanishing only within the TPE
source. However, given the fact that both the material inside the inclusion and the
surrounding medium are permeable, and that we did not introduce any impervious
layer around the surface of the inclusion which could isolate it from the outside, there
is no obvious reason why the thermal and pressure increases should not diffuse over
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the rest of the half-space. As a consequence, we need to verify on which timescales
this assumption holds true.

Here we propose a new interpretation of the TPE source as a thin layer of thermo-
poro-elastic material in contact with an underlying reservoir of hot and pressurized
magmatic fluids, as it is shown in fig. 4.7.

At first, the TPE region is part of the shallow poro-elastic layer, sharing its
same values of T and p. If failures in the impervious boundary allow the underlying
fluids to migrate into the inclusion, then the consequence is a sudden increase in
temperature and pore pressure: ∆T ≈ T2 − T1 and ∆p ≈ p2 − p1, which at first
can be assumed to be confined to the immediate surroundings of the breach points
(which are represented by the inclusion itself). These changes are sufficient to trigger
deformation and stress fields both within the volume of the inclusion and the rest of
the shallow poro-elastic layer (pale yellow domain in fig. 4.7), as we have explained
in the previous chapters.

In time, it is reasonable to expect the changes in temperature and pore pressure
to gradually diffuse upward and affect the whole poro-elastic matrix. The question to
answer, therefore, is under which conditions we can effectively neglect their diffusion,
and consider them homogeneous and confined in a small region of the half-space.
In order to understand this, we need to confront ourselves with a model that has
been developed by Zencher et al. (2006) to describe the migration of lithostatically-
pressured magmatic fluids into shallow hydrostatic reservoirs, as illustrated in fig.
4.8.
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lithostatic reservoir 

0 z 

0 

z 2 p
2 

p =
 ρ

  gz 
 

r

p
 =

 ρ
 g

z
f

transition layer 

b 

p1 

T 2 

T 1 

Figure 4.8: Schematic diagram of the model employed by Zencher et al. (2006): the layer
z0 < z < z2 is a fluid-saturated porous medium. In z = z0 a meteoric aquifer is present at T = T1
and at the hydrostatic pressure p1 = ρfgz0; in z = z2 the layer is in contact with a hot fluid
reservoir at lithostatic pressure p2 = ρrgz2 and at temperature T2. ρf and ρr are respectively the
densities of fluids and rocks (after Zencher et al., 2006).
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In this model, a transition layer is assumed to separate the shallow hydrostatic
reservoir from the deep lithostatic one. An impervious boundary further separates
the bottom of the transition layer from the underlying lithostatic reservoir, and
it breaks down at a certain instant. As a consequence, hot and overpressurized
fluids start to migrate into the shallow aquifer, and the rate at which the induced
changes in T and p diffuse over it depends on the permeability k of its rocks (see the
Appendix, section 6.1). In this frame, our TPE source region would be located at
the bottom of the transition layer. However, it is to say that the model by Zencher
et al. (2006) assumes stationary volume flow rates of fluids at the bottom of the
transition layer.

Figure 4.9: A more detailed diagram of the two-reservoir model with a transition layer (d2 < z <

d1). On the x-axis, the nondimensional quantity p∗ = p′

∆p′ is the ratio between the pore pressure
p′ in excess with respect to the hydrostatic gradient and the difference ∆p′ between lithostatic and
hydrostatic pressure at a given depth. In the right side of the picture, different pressure gradients
with respect to depth z are reported together with the hydrostatic gradient (along the z-axis)
and the near-lithostatic one (the area shaded in gray). They depend on the volume flow rate of
fluids through the material Q∗0 normalized to the equilibrium flow rate in the steady-state regime,
and they refer to the final stationary configuration. The boundary conditions require p∗ to vanish
at the top of the transition layer. ∆σ∗ is the deviatoric stress in the region normalized to ∆p′
(Stefansson et al., 2011).

The permeability of the rocks can change according to pressure increase, which
can lead to failures in the elastic matrix, thus creating more fractures and allowing
for an increase in the flux of fluids through the pore network. This is actually
what happens at the beginning, when the injection of lithostatically-pressured fluids
through a breach in the impervious boundary causes a sudden increase in the local
permeability, thus allowing the pore pressure change to diffuse so rapidly within
the surroundings of the breach point that the situation can be approximated to a
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sudden jump in p over a small region immediately above z = z2 (see fig. 4.8). An
equally sudden jump in T can be assumed as well, as the layer in which fluids are
first injected is so thin that the heat transfer through advection happens on very
short timescales.

Moreover, the viscosity η of the hot fluids from the lithostatic reservoir is ex-
pected to be smaller than that of the fluids in the hydrostatic one. According to the
Darcy’s law (see the Appendix, section 6.1, for a brief explanation), small viscosi-
ties allow for high volume flow rates of fluid even if the pressure gradients involved
are not too big, and the permeability of the material is low. This would make the
transition to the configuration where ∆p and ∆T are non-vanishing and homoge-
neous within a small region at the bottom of the transition layer even more rapid,
providing a further motivation to the sudden temperature and pore pressure jump.

A detailed plot of the pressure as a function of depth within the transition layer
is shown in fig. 4.9, which is drawn from a work by Stefansson et al. (2011) where
an equivalent model was considered. The pressure profiles reported there depend
on the normalized volume flow rate Q∗0 of the fluids injected from the lithostatic
reservoir. It can be noticed that, for high values of Q∗0, the pressure through the
lower part of the layer tends to the lithostatic profile. We assume our source region
to coincide with a thin layer at the bottom of the transition one, where, if Q∗0 is
big enough, the depth dependence of the pore pressure excess with respect to the
hydrostatic value could be approximated by a step function, corresponding to the
∆p localization within the TPE source.
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Figure 4.10: Solutions for temperature and pressure migration from the lithostatic reservoir
through a 1-km thick transition layer with a constant initial temperature and hydrostatic pressure,
assuming a stationary flux of fluids injected from the lithostatic reservoir. The x-axis represents
the normalized vertical axis z∗ = z−z2

b , where b is the thickness of the transition layer, and z∗ = 0
marks its bottom. p∗ is defined as in fig. 4.9, while T ∗ = T−T1

T2−T1
(see fig. 4.8). Different profiles

correspond to different times from the first injection. The value of the intrinsic permeability (Kr

in the plots) of the rocks is k = 10−20m2 in fig. a) and b); k = 10−17m2 in fig. c) and d) and
k = 10−15m2 in fig. e) and f). Dashed lines show the solutions if the permeability is not pressure-
dependent, and the near-lithostatic domain in the plots relative to the pore pressure is shaded in
gray (after Zencher et al., 2006).

The assumption that ∆T remains confined within the source region is supported
by the timescales of temperature migration, which can be seen in fig. 4.10. If the
permeability is low (fig. 4.10 a), most of the heat transfer through the transition
layer is ascribed to conductive processes, and it takes decades for the temperature
change to diffuse over its lower part. If the permeability is higher (fig. 4.10 c, e),
then the advection starts contributing as well, and temperature changes migrate on
shorter timescales. In these cases, the temperature profile near the bottom of the
transition layer (where our source region is supposed to be) approximates a step
function for very short timescales (1 month if k = 10−17m2), and so we can assume
a sudden jump in T within the TPE source immediately after the injection of fluids.
We can also expect this change in T to take several months to diffuse over the rest
of the layer even if high permeability values (k = 10−15m2) are considered (fig. 4.10
e).

While it is safe to assume ∆p to be non-vanishing only within the TPE source
immediately after the fluids injection, we cannot make the same assumption later in
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time. Nevertheless, we can assume that the pore pressure change outside the TPE
region are negligible only for short timescales (less than a month if k = 10−17m2,
fig. 4.10 d).

Going back to the Campi Flegrei caldera, the estimated values of permeability
as a function of depth are reported in the work of Troise et al. (2018). In fig. 4.11
we can see that at 3 km depth, where we placed the TPE inclusion, k ≈ 10−15m2,
and this would suggest a pore pressure migration timescale similar to that in fig.
4.10 f). If that is the case, the assumption of ∆p being confined within the inclusion
for more than few days would be unrealistic. If we set the source depth to 8 km,
then we could assume k ≈ 10−17m2, and the situation would be similar to that in
fig. 4.10 d), with longer timescales needed for the migration of p.

Figure 4.11: Plot of the theoretical permeability as a function of depth in the Campi Flegrei
area. The best curve has been obtained by interpolating permeability data (shown by crosses) at
different depths. Permeability values that can be inferred at 3 km depth, where we have located
the median plane of the TPE inclusion, are k ≈ 10−15m2 (after Troise et al., 2018).

4.2.1 Applicability to the Campi Flegrei region
The case study we chose to compare our results to is that of the Campi Flegrei
caldera. The main points we have highlighted in chapter 1 about the characteristics
and dynamics of the region are here summarized:

• The caldera has undergone several cycles of inflation and deflation which have
hardly ever preceeded a magmatic eruption, at least since the last major erup-
tive phase which ended around 3800 years BP. This can be interpreted as
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the fact that hydrothermal processes may play an important role as well as
magmatism, as suggested by D’Auria et al. (2015) and Chiodini et al. (2017).

• The spatial pattern of deformation, which shows an approximate bell-shaped
symmetry in the vertical component (fig. 1.2), has remained remarkably un-
changed during the last five decades (Troise et al., 2018), and the hypocenters
of the earthquakes recorded during the 1982-84 episode are localized in two
main clusters around the town of Pozzuoli, and at a depth generally above 5
km (D’Auria et al., 2014).

• Two-reservoir hydrothermal models have been proposed to account for the
cycles of inflation and deflation, on the bases of the periodic injection of
lithostatically-pressurized fluids of magmatic origin into a shallow hydrostatic
aquifer (Lima et al., 2009).

• Focal mechanisms retrieved from seismic data sets are very heterogeneously
distributed among normal, compressive and strike-slip types, even if the lo-
cal tectonic environment is dominated by a regional distensive component
(D’Auria et al., 2014).

According to these points, a further consideration can be made about our model.
With reference to fig. 4.7, the deep reservoir can be seen as a degassing magma cham-
ber, with the TPE inclusion lying above it: if that is the case, then the boundary
conditions would require vanishing shear stresses on the bottom base of the cylin-
drical source, and they are in fact verified by our model, as τij, i 6= j vanish on both
the bases of the cylinder (see sections 3.4 and 6.3). However, as we reported at the
end of section 1.2, large magma bodies are supposed to exist beneath the Campi
Flegrei region only at depths of about 8 km, so we would need to change the depth
of our source.

Alternatively, the deep lithostatic reservoir can be interpreted as a deep perme-
able region where fluids of magmatic origin (e. g. supercritical water and CO2) are
stored and separated from the upper region by a low-permeability boundary. This is
similar to the two-reservoir model proposed in the work of Lima et al. (2009), men-
tioned in subsection 1.3.2, where the estimated depth for the impervious boundary
dividing the two reservoirs was 3 km.

We conclude with a final remark on the TPE inclusion itself. According to the
work of Trasatti et al. (2011) (see also section 1.3.1), the most likely deformation
source model for the Campi Flegrei 1982-84 unrest is a mixed mode (shear and ten-
sile) dislocation at 5.5 km depth, through which a magma dike could have ascended.
The results of the stress field of our model reported in section 3.4 suggest a compres-
sive stress regime within the source region (see fig. 3.6), which would be compatible
with the propagation of a magma dike accompanied by reverse-shear slip. The
overall displacement field is caused by both a magmatic source and a hydrothermal
source; however, our model would account only for the ground displacement due to
the latter one.
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Chapter 5

Conclusive remarks

In this work, we considered a cylinder-shaped thermo-poro-elastic inclusion of radius
a = 500m embedded in a poro-elastic semi-infinite solid bounded by a free surface,
the depth of the inclusion being c = 3000m, and we evaluated the displacement
and stress fields both within the half-space and the inclusion itself. The values of
the elastic parameters we chose for the medium of the solid and the inclusion are
summarized in section 3.1.

In order to achieve this aim, we availed ourselves of the Eshelby’s method, a
technique which applies to cases where a limited region of a homogeneous space
undergoes a transformation that would result in changes of volume and shape, but
instead, as this region is constrained by the surrounding medium, gives rise to dis-
placement and stress fields both inside and outside of it (section 2.1). We also made
use of the elastic Green’s function for a half-space, here referred to as the Mindlin’s
tensor, which was derived by the work of Mindlin (1936) (subsection 2.5, see also
the Appendix 6.2).

The components ui of the displacement field in cartesian coordinates x1, x2, x3
were computed in a semi-analytical way in chapter 3 and compared with results
obtained for the same source located within an homogeneous and unlimited elastic
medium by Lamberti (2017). The reference frame used throughout the work is
explained in fig. 3.2 b).

The expressions for the displacement components are reported in eqs. 3.3.19a -
3.3.19c. The results for the displacement field on the median plane of the cylindrical
inclusion (x3 = c) are illustrated in fig. 3.3 and fig. 3.4, whereas those at the free
surface (x3 = 0) are displayed in fig. 3.7 and fig. 3.8.

The expressions for the total and deviatoric stress tensor components, both
within and outside the source region, were also obtained. They are reported in
eqs. 3.4.17a - 3.4.18b. The results for the stress field on the median plane of the
source region are shown in fig. 3.5 and fig. 3.6, while those at the free surface are
reported in fig. 3.9 and fig. 3.10.

The model we developed was intended to be applied to the description of surface
ground deformation in hydrothermal regions, and the case study we focused our
attention on is the 1982-84 unrest episode at Campi Flegrei caldera. The first
chapter (1) of this work contains the introduction of this well-known and studied
volcanic area, eventually reviewing the deformation source models that have been
employed to reproduce the geodetic data over the years (subsection 1.3.1).
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The fact that we consider a sudden and homogeneous change in temperature and
pore pressure within the whole TPE inclusion is justified by the results of Zencher
et al. (2006) (section 4.2). However, the same work shows that the pore pressure
change diffuses over the rest of the half-space in a matter of months if the values of
permeability are bigger than k = 10−17m2 (see fig. 4.10), making the assumption of
∆p being confined to the inclusion within one month realistic for permeability values
of the same order as those estimated for the 3-8 km depth range at Campi Flegrei
(see fig. 4.11). The same assumption holds true for ∆T as well, as the timescales
necessary to its migration are in the order of years even for high values of k (fig.
4.10 e).

The results we obtained at the free surface (section 3.5) are generally in agree-
ment with those of other models that have been employed in similar situations
(section 4.1). The displacements at free surface are in good agreement with those of
a Mogi source (fig. 4.1), while there are some differences with respect to the other
two source models we considered (fig. 4.5 and fig. 4.6), in that, in our case, the
amplitudes of the displacement components decrease more slowly with the distance
from the point of maximum uplift.

The stress field retrieved for a Mogi source near the surface (fig. 4.2 and fig. 4.4)
shows some differences with respect to that obtained through our model, even if they
both suggest a distensive environment in the region above the deformation source,
and a strike-slip environment outside. The two stress fields differ considerably at the
depth of the sources, in that our model predicts a compressive environment, while
the Mogi model does not. Besides, the main advantage over the Mogi model is that
the pore pressure change ∆p needed to reproduce ground displacements of ≈ 1 m is
smaller by at least one order of magnitude than the overpressure ∆P needed in the
case of a pressurized sphere.

With regards to the 1982-84 bradyseism at Campi Flegrei, the fact that the
stress field we retrieved within the TPE inclusion (fig. 3.5 and fig. 3.6) suggests a
compressive environment could account for the inverse focal mechanisms that have
been observed, among others, in the area affected by the unrest. The stress regime
inside the inclusion is also compatible with the source model proposed by Trasatti
et al. (2011), consisting of a tensile dislocation with a reverse-slip component hosting
a magmatic intrusion. This suggests that the 1982-84 unrest could be ascribed to
the combined effects of both the emplacement of a magma body (the dike) at shallow
depths and hydrothermal processes (the TPE inclusion), even if our model describes
only the effects of the latters.

Further developments of this model could also take into account the heterogeneity
of the poro-elastic half-space, attempting at simulating the observed stratigraphy
at Campi Flegrei or in other volcanic areas. To this aim, the representation of
the displacement field through eq. 2.2.4 can be made through a numerical approach
assuming a distribution of single forces normal to the surface of the inclusion and the
Green functions in a layered elastic half-space. The present thesis has allowed this
implementation to be tested in the case of an homogenous half space (section 3.6),
showing generally good agreement with our results. Moreover, in order to reproduce
the temporal dependence of an unrest process, it might be necessary to model the
progressive migration of the initial changes in temperature and pore pressure that
could affect a wider region, starting from the small inclusion considered here.
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We then conclude remarking that such analytical or semi-analytical models as
those we considered, even if their nature and the assumptions from which they start
are simple, are still of fundamental importance when it comes to calibrate and assess
the validity of other, more complex, numerical models.
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Chapter 6

Appendix

6.1 Darcy’s law
In this section we briefly explain the Darcy’s law we mentioned in section 2.3. This
law, which applies to poro-elastic media filled with fluids, describes the volume
flow rate Q of a fluid with viscosity η through a unit surface of a medium with
permeability k as

Q = −k
η
∇p′ (6.1.1)

where ∇p′ is the gradient of p′, that is the pressure in excess with respect to the
hydrostatic gradient. It is to say that this form of Darcy’s law holds true for an
incompressible fluid.

The dimensions of the permeability k are m2, and its values extend over a wide
range of orders of magnitude, spanning from k = 10−7m2 for permeable rocks such
as sand and coarse sediments, to k = 10−20m2 for magmatic rocks such as basalt.
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6.2 Mindlin’s tensor components
Here we report the nine components of the Mindlin’s tensor in cartesian coordinates,
as derived in section 2.5:

G11 = C

{
(3− 4ν)
R1

+ 1
R2

+ (x1 − x′1)2

R3
1

+ (3− 4ν)(x1 − x′1)2

R3
2
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′
3

R3
2

[
1− 3(x1 − x′1)2

R2
2

]

+4(1− ν)(1− 2ν)
R2 + x3 + x′3
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1− (x1 − x′1)2

R2(R2 + x3 + x′3)

]}

G21 = C(x1 − x′1)(x2 − x′2)
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1
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1
+ (3− 4ν)

R3
2
− 6x3x

′
3

R5
2
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R2(R2 + x3 + x′3)2

]

G31 = C(x1 − x′1)
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x3 − x′3
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1
+ (3− 4ν)(x3 − x′3)

R3
2

− 6x3x
′
3(x3 + x′3)
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2
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R2(R2 + x3 + x′3)

]

G12 = C(x1 − x′1)(x2 − x′2)
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1
R3

1
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R3
2
− 6x3x

′
3

R5
2
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R2(R2 + x3 + x′3)2

]

G22 = C
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where x = (x1, x2, x3) is the observation or receiving point; x′ = (x′1, x′2, x′3) is the
source point, and

R1 =
√

(x1 − x′1)2 + (x2 − x′2)2 + (x3 − x′3)2

R2 =
√

(x1 − x′1)2 + (x2 − x′2)2 + (x3 + x′3)2

C = 1
16πµ(1− ν)

6.3 Displacement, strain and stress fields in the
infinite space case

Here we explain how the expressions for the displacement ur(r, θ), uθ(r, θ) and strain
components eij(r, θ), reported in subsection 3.2.1, were obtained in the work of
Lamberti (2017).
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Figure 6.1: Cylinder-shaped source with infinitesimal height db and radius a decomposed into
infinite anular rings with width da and radius a′. The point at x lying on the symmetry axis is
where we evaluate the potential Φ, while the point x′ marks an infinitesimal volume element on
one infinitesimal ring. The generalisation of point x to a point off the azimuthal axis is also shown,
together with the polar angle θ between the new x and the z-axis.

Let us start with the assumption of a cylindrical inclusion with radius a and
infinitesimal thickness db. If we exploit its azimuthal symmetry, we can first de-
compose the source into an infinite number of infinitesimal anular rings with radius
a′, width da and thickness db (as illustrated in fig. 6.1), and then we are able to
compute the "infinitesimal" potential field at a point x on the symmetry axis due to
source points x′ on a single ring, employing spherical coordinates (r, θ, φ):

dΦ(r) = dv

(r2 + c2 − 2crcosα)1/2 (6.3.1)

where r = |x|, c = |x′|, dv = 2πa′dadb is the infinitesimal ring volume, c =
√
a′2 + b2

and cosα = b
c
, as shown in fig. 6.1.

The potential in eq. 6.3.1 can be rewritten in terms of a Legendre polynomial
series by employing the expansion of the inverse of the distance between two generic
points y and y′ (see Jackson, 1999):

1
|y− y′|

= 1
r>

∞∑
l=0

(
r<
r>

)l
Pl(cosγ) (6.3.2)

where Pl(cosγ) is the Legendre polynomial of order l evaluated at cosγ = y
|y| ·

y′

|y′| , r<
and r> being respectively the smaller and the larger between |y| and |y′|. Moreover,
it is possible (Jackson, 1999) to generalize the expansion of the potential to a point
off the symmetry axis, with generic coordinates (r, θ, φ), by simply multiplying the
expression in eq. 6.3.1 by Pl(cosθ).
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The potential can thus be expressed as

dΦ(r, θ) = dv

c

∞∑
l=0

(
r

c

)l
Pl(cosα)Pl(cosθ) if r < c (6.3.3a)

dΦ(r, θ) = dv

r

∞∑
l=0

(
c

r

)l
Pl(cosα)Pl(cosθ) if r > c (6.3.3b)

The next step is to exploit the recurrence formula

(l + 1)Pl+1 − (2l − 1)xPl + lPl−1 = 0, l ≥ 1 (6.3.4)

where x is the argument of the Legendre polynomials, to express the coefficients
Pl(cosα) in eqs. 6.3.3a, 6.3.3b.

With reference to fig. 6.1, if we put b = 0, then c = a′ and cosα = 0. After
substituting x = 0 in eq. 6.3.4 and obtaining a recurrence relation for the coefficients
cl = Pl(0) (according to which the polynomials of odd order vanish, so we will use
the notation 2m instead of l for the indices of summation), we get a final expression
for the potential due to the whole cylinder, by integrating the potential dΦ with
respect to the radius a′ from 0 to the source radius a:

Φ(r, θ) = 2πadb
∞∑
m=0

c2mP2m(cosθ)
[( 1

2m+ 2 + 1
2m− 1

)
r

a
− 1

2m− 1

(
r

a

)2m
]

(6.3.5a)
if r ≤ a, internal domain

Φ(r, θ) = 2πadb
∞∑
m=0

c2mP2m(cosθ) 1
2m+ 2

(
a

r

)2m+1
(6.3.5b)

if r ≥ a, external domain

where "internal" and "external" domains are not to be confused with the inclusion
and the surrounding matrix (see fig. 6.2). It can be demonstrated that both the
series in eqs. 6.3.5a and 6.3.5b are absolutely convergent at any (r, θ) in [0, a]× [0, π]
and [a,+∞)× [0, π] respectively.

Having computed the scalar potential for an infinitesimally thin cylindrical source
in an unlimited space, we are now able to derive the expressions for the displacement
field both in the internal and in the external domain by employing eq. 3.2.3. Here,
leaving aside the necessary calculations, we confine ourselves to the already reported
(eqs. 3.2.11a to 3.2.12b) equations for the displacement components in spherical
coordinates (details can be found in the original work, Lamberti, 2017):

ur(r, θ) = Aa

[
|cos θ|+

∞∑
m=1

c2mP2m(cos θ) 2m
2m− 1

(
r

a

)2m−1
]

(6.3.6a)

uθ(r, θ) = −Aa
[
sgn(cos θ) sin θ −

∞∑
m=1

c2m
dP2m

dθ
(cos θ) 1

2m− 1

(
r

a

)2m−1
]

(6.3.6b)
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Figure 6.2: Reference system adopted in the work of Lamberti (2017), where the median plane
of the thin cylinder (highlighted in blue) embedded in an infinite space lies on the plane x3 = 0, its
origin coinciding with that of the system O. The internal domain r ≤ a coincides with the sphere
of radius a surrounding the cylinder, while the rest of the space represents the external domain
r ≥ a. In this case, the radial distance r of a point P from the origin coincides with the distance
from the center of the median plane of the cylinder.

in the internal domain, and

ur(r, θ) = Aa
∞∑
m=0

c2mP2m(cos θ)2m+ 1
2m+ 2

(
a

r

)2m+2
(6.3.7a)

uθ(r, θ) = −Aa
∞∑
m=1

c2m
dP2m

dθ
(cos θ) 1

2m+ 2

(
a

r

)2m+2
(6.3.7b)

in the external domain, where

A = e1
db

2a (6.3.8)

Also in this case, it is possible to show that the series in the expressions 3.2.11a to
3.2.12b are convergent both for r > a and r < a, even if they diverge logarithmically
when r ' a (Lamberti, 2017).

The components of the strain tensor are derived in spherical coordinates for the
space outside the inclusion, according to eq. 2.1.1, and they have been reported
in eqs. 3.2.20a to 3.2.14h. It is worth noticing that erθ is the only non-vanishing
shear component, although it vanishes too within the source region (if θ = π

2 , then
dP2m(cos θ)

dθ
= 0).

After turning them to cylindrical coordinates (ρ, φ, z), the strain components are
also computed for the region inside the inclusion, taking into account the continu-
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ity of displacement and traction across the inclusion surface, as requested by the
Eshelby’s method.

Finally, the stress tensor components are derived in cylindrical coordinates, both
for the isotropic and the deviatoric part, inside and outside the inclusion, by using
eqs. 2.1.2 and 2.1.3. Here we report the expressions of the total (isotropic and
deviatoric) components according to Lamberti (2017):

τ inρρ = τ outρρ = 2µ
[
A
∞∑
m=1

c2
2m2m

(
r

a

)2m−2
− e1

]
(6.3.9a)

τ inφφ = τ outφφ = 2µ
[
A
∞∑
m=1

c2
2m

2m
2m− 1

(
r

a

)2m−2
− e1

]
(6.3.9b)

τ inzz = −2µA
∞∑
m=1

c2
2m

4m2

2m− 1

(
r

a

)2m−2
(6.3.9c)

τ outzz = −2µ
[
A
∞∑
m=1

c2
2m

4m2

2m− 1

(
r

a

)2m−2
+ e1

]
(6.3.9d)

together with the expressions of the deviatoric components:

τ d,inρρ = τ d,outρρ = 2µ
[
A
∞∑
m=1

c2
2m2m

(
r

a

)2m−2
− 1

3e1

]
(6.3.10a)

τ d,inφφ = τ d,outφφ = 2µ
[
A
∞∑
m=1

c2
2m

2m
2m− 1

(
r

a

)2m−2
− 1

3e1

]
(6.3.10b)

τ d,inzz = −2µ
[
A
∞∑
m=1

c2
2m

4m2

2m− 1

(
r

a

)2m−2
+ 1

3e1

]
(6.3.10c)

τ d,outzz = 2µ
[

2
3e1 − A

∞∑
m=1

c2
2m

4m2

2m− 1

(
r

a

)2m−2
]

(6.3.10d)

where "in" and "out" stand for, respectively, inside and outside the source region. It
is to say that, as the shear strain component erθ vanishes on the cylinder median
plane, also eρz = −erθ and consequently the stress shear component τρz vanish
on the median plane and, by continuity, within the whole source region |z|< db

2
(as the continuity of τρz and τzz is required by the Eshelby’s method). Thus the
stress tensor is diagonal within the source region, and its diagonal elements are the
principal stresses.

6.4 Sum of Mindlin’s tensor partial derivatives
Here we report the calculation steps necessary to evaluate the sums of the Mindlin’s
tensor partial derivatives as they are presented in eqs. eqs. 3.2.21, 3.2.27, 3.2.33.

The first sum to be evaluated, relative to the first component of the displacement
field, is

∂G11

∂x′1
+ ∂G12

∂x′2
+ ∂G13

∂x′3

Starting from the summation of the expressions in eqs. 3.2.17, 3.2.18 and 3.2.19 and
simplifying the various terms, we get
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∂G1k

∂x′k
= C(x1 − x′1)

{
−1 + 4ν

R3
1

+ 3
R3

1
− 30x3x

′
3

R5
2

+ 30x3x
′
3

R5
2

+3(3− 4ν)(R2
2 − (x3 + x′3)2 − (x3 + x′3)(x3 − x′3)

R5
2

+ 6x3(x3 + x′3)
R5

2

+8(1− ν)(1− 2ν)
R3

2
+ 1− 4(3− 4ν)

R3
2

}

which can be further simplified into

∂G1k

∂x′k
= C(x1 − x′1)

{
2(1− 2ν)

R3
1

+ 2(1− 2ν)(3− 4ν)
R3

2
− 12(1− 2ν)x3(x3 + x′3)

R5
2

}

Continuing with the second displacement component, the sum to be evaluated is

∂G21

∂x′1
+ ∂G22

∂x′2
+ ∂G23

∂x′3

If we sum the expressions in eqs. 3.2.24, 3.2.25 and 3.2.26, we obtain

∂G2k

∂x′k
= C(x2 − x′2)

{
−1 + 4ν

R3
1

+ 3
R3

1
− 30x3x

′
3

R5
2

+ 30x3x
′
3

R5
2

+3(3− 4ν)(R2
2 − (x3 + x′3)2 − (x3 + x′3)(x3 − x′3)

R5
2

+ 6x3(x3 + x′3)
R5

2

+8(1− ν)(1− 2ν)
R3

2
+ 1− 4(3− 4ν)

R3
2

}

which, in turns, can be simplified into

∂G2k

∂x′k
= C(x2 − x′2)

{
2(1− 2ν)

R3
1

+ 2(1− 2ν)(3− 4ν)
R3

2
− 12(1− 2ν)x3(x3 + x′3)

R5
2

}

Finally, for the third component, we have to evaluate te sum

∂G31

∂x′1
+ ∂G32

∂x′2
+ ∂G33

∂x′3

Summing the expressions in eqs. 3.2.30, 3.2.31 and 3.2.32, we get

∂G3k

∂x′k
= C

{
−(1 + 4ν)(x3 − x′3)

R3
1

+ 3(x3 − x′3)
R3

1
− 30x3x

′
3(x3 + x′3)
R5

2

+30x3x
′
3(x3 + x′3)
R5

2
+ 3(3− 4ν)(R2

2 − (x3 + x′3)2)(x3 − x′3)
R5

2
− 3(3− 4ν)(x3 + x′3)3

R5
2

+6x3(x3 + x′3)2

R5
2

− 4(1− ν)(1− 2ν)(x3 + x′3)
R3

2
+ 2(3− 4ν)(2x3 + x′3)− 2x3

R3
2

}

which can be simplified into

98



∂G3k

∂x′k
= C

{
2(1− 2ν)(x3 − x′3)

R3
1

− 2(1− 2ν)(3− 4ν)(x3 + x′3)
R3

2
− 12(1− 2ν)x3(x3 + x′3)2

R5
2

+4(1− 2ν)x3

R3
2

}

To conclude, we resume the final expressions for the three sums of partial derivatives
of the Mindlin’s tensor:

∂G1k

∂x′k
= C(x1 − x′1)

{
2(1− 2ν)

R3
1

+ 2(1− 2ν)(3− 4ν)
R3

2
− 12(1− 2ν)x3(x3 + x′3)

R5
2

}

(6.4.1)
∂G2k

∂x′k
= C(x2 − x′2)

{
2(1− 2ν)

R3
1

+ 2(1− 2ν)(3− 4ν)
R3

2
− 12(1− 2ν)x3(x3 + x′3)

R5
2

}
(6.4.2)

∂G3k

∂x′k
= C

{
2(1− 2ν)(x3 − x′3)

R3
1

− 2(1− 2ν)(3− 4ν)(x3 + x′3)
R3

2
− 12(1− 2ν)x3(x3 + x′3)2

R5
2
(6.4.3)

+4(1− 2ν)x3

R3
2

}

6.5 Curl of the displacement field
Here we explain the calculation we carried out to evaluate the curl of the displace-
ment field.

By definition, the curl inside the volume integral in eq. 3.2.38 is given by

eijk
∂

∂xj

(
∂Gkm

∂x′m

)
= î

(
∂

∂x2

∂G3m

∂x′m
− ∂

∂x3

∂G2m

∂x′m

)

− ĵ
(
∂

∂x1

∂G3m

∂x′m
− ∂

∂x3

∂G1m

∂x′m

)
+ k̂

(
∂

∂x1

∂G2m

∂x′m
− ∂

∂x2

∂G1m

∂x′m

)

Substituting the expressions in eqs. 6.4.1, 6.4.2 and 6.4.3 into the previous equation,
we can write
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eijk
∂

∂xj

(
∂Gkm

∂x′m

)
= î

(
−6(1− 2ν)(x3 − x′3)(x2 − x′2)

R5
1

+ 6(1− 2ν)(3− 4ν)(x3 + x′3)(x2 − x′2)
R5

2

+60(1− 2ν)x3(x3 + x′3)2(x2 − x′2)
R7

2
− 12(1− 2ν)x3(x2 − x′2)

R5
2

+ 6(1− 2ν)(x3 − x′3)(x2 − x′2)
R5

1

+6(1− 2ν)(3− 4ν)(x3 + x′3)(x2 − x′2)
R5

2
− 60(1− 2ν)x3(x3 + x′3)2(x2 − x′2)

R7
2

)

− ĵ
(
−6(1− 2ν)(x3 − x′3)(x1 − x′1)

R5
1

+ 6(1− 2ν)(3− 4ν)(x3 + x′3)(x1 − x′1)
R5

2

+60(1− 2ν)x3(x3 + x′3)2(x1 − x′1)
R7

2
− 12(1− 2ν)x3(x1 − x′1)

R5
2

+ 6(1− 2ν)(x3 − x′3)(x1 − x′1)
R5

1

+6(1− 2ν)(3− 4ν)(x3 + x′3)(x1 − x′1)
R5

2
− 60(1− 2ν)x3(x3 + x′3)2(x1 − x′1)

R7
2

)

+ k̂

(
−6(1− 2ν)(x1 − x′1)(x2 − x′2)

R5
1

− 6(1− 2ν)(3− 4ν)(x1 + x′1)(x2 − x′2)
R5

2

+60(1− 2ν)x3(x3 + x′3)(x1 − x′1)(x2 − x′2)
R7

2
− 60(1− 2ν)x3(x3 + x′3)(x1 − x′1)(x2 − x′2)

R7
2

)

Taking out the vanishing terms and simplifying, we obtain the same expression as
in eq. 3.2.39, showing that the displacement field has a non-vanishing curl.

6.6 Converting vectors and tensors between spher-
ical and cartesian coordinates

Here we report the formula necessary to convert a vector u = urêr + uθêθ + uφêφ
from a spherical basis (r, θ, φ) to a cartesian basis (x, y, z):uxuy

uz

 =

sin θ cosφ cos θ cosφ − sinφ
sin θ sinφ cos θ sinφ cosφ

cos θ − sin θ 0


uruθ
uφ


This transformation would provide the correct expression for u if the cartesian

reference frame is right-handed and the z-axis points upward, as in fig. 6.3 a).
In our case, as we have seen in section 3.3, we have chosen a right-handed refer-

ence frame (x1, x2, x3) in which the x3-axis (vertical) points downward. To obtain
such a reference frame starting from the one in fig. 6.3 a), we need to make a ro-
tation of π

2 about the z-axis, and then a rotation of π about the new y-axis. These
are described respectively through the rotation matrices R1(π2 ) and R2(π):

[
R1
]

=

cosα − sinα 0
sinα cosα 0

0 0 1

 =

0 −1 0
1 0 0
0 0 1

 =

where α = π
2 , and

[
R2
]

=

 cos β 0 sin β
0 1 0

− sin β 0 cos β

 =

0 −1 0
1 0 0
0 0 1

 =

where β = π.
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Figure 6.3: a): right-handed cartesian reference frame with the vertical (x3) axis pointing upward.
r, θ, φ are a set of spherical coordinates defined according to the following convention: r is the
radial distance between the point P and the origin O, θ is the polar angle between the zenith
(vertical) direction and the segment OP , and φ is the azimuthal angle, measured from the x1-axis
to the projection of OP on the plane x1 − x2 anticlockwise about the zenith axis. b): the same
reference frame after a rotation of π

2 about the x3-axis and another rotation of π about the new
x2-axis. The definition of r remains unchanged, while the old angles θ and φ are shown together
the new ones θ′ and φ′, defined according to the same convention as before.

If we go back to the singular displacement field in subsection 3.2.1, in order to
obtain its expression in our cartesian frame, we need first to apply the transformation
to get u(x, y, z), and then apply R1(π2 ) and R2(π) in this sequence, thus deriving
the expressions in eqs. 3.3.18a to 3.3.18c.

Here we report instead the formula necessary to convert a second rank tensor
(such as the strain tensor eij) from a spherical basis (r, θ, φ) to a cartesian basis (x,
y, z): exx exy exz

eyx eyy eyz
ezx ezy ezz

 =

sin θ cosφ cos θ cosφ − sinφ
sin θ sinφ cos θ sinφ cosφ

cos θ − sin θ 0


err erθ erφ
eθr eθθ eθφ
eφr eφθ eφφ


sin θ cosφ sin θ sinφ cos θ

cos θ cosφ cos θ sinφ − sin θ
− sinφ cosφ 0


Even in this case we are referring to a cartesian frame in which the vertical z-axis
points upward. With reference to section 3.4, if we want to convert the singular
strain tensor esij from a spherical set of coordinates to the cartesian one we chose
for our problem (fig. 6.3), we need to apply the same rotation matrices R1(π2 ) and
R2(π) we wrote previously:
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esij(x1, x2, x3) = R2R1esij(x, y, z)R1,TR2,T

where the superscript "T" means the transpose of the matrix. If we develop the
necessary calculations, we achieve the expressions in eqs. 3.4.15a to 3.4.15c.

6.7 Evaluation of the non-singular shear stress
components

Here we report the expressions of the shear components of the non-singular strain
tensor that we omitted in section 3.4:

ens12 = 1
2

(
∂u1

∂x2
+ ∂u2

∂x1

)

ens13 = 1
2

(
∂u1

∂x3
+ ∂u3

∂x1

)

ens23 = 1
2

(
∂u2

∂x3
+ ∂u3

∂x2

)

If we substitute eqs. 3.3.1 to 3.3.3 into the previous expressions and we develop
them, we obtain

ens12 = B

a∫
−a

dx′1

√
a2−(x′

1)2∫
−
√
a2−(x′

1)2

dx′2

c+ d
2∫

c− d
2

dx′3 (x1 − x′1)(x2 − x′2)
[
−(3− 4ν)

R5
2

+ 10x3(x3 + x′3)
R7

2

]

(6.7.2a)

ens13 = B

a∫
−a

dx′1

√
a2−(x′

1)2∫
−
√
a2−(x′

1)2

dx′2

c+ d
2∫

c− d
2

dx′3 (x1 − x′1)
[
−x3 + x′3

R5
2
− 2x3

R5
2

+ 10x3(x3 + x′3)2

R7
2

]

(6.7.2b)

ens23 = B

a∫
−a

dx′1

√
a2−(x′

1)2∫
−
√
a2−(x′

1)2

dx′2

c+ d
2∫

c− d
2

dx′3 (x2 − x′2)
[
−x3 + x′3

R5
2
− 2x3

R5
2

+ 10x3(x3 + x′3)2

R7
2

]

(6.7.2c)

where B = 18KCe0(1− 2ν).

It is possible to demonstrate that ens12 = 0 from eq. 6.7.2a, employing the property
3.4.4 to simplify the resolution of the triple integral, which this time does have an
analytical solution.

The other strain components have been computed through numerical integration,
and we have found that they vanish (or at least show negligible values with respect to
those of the diagonal components) both on the median plane domain (x3 = c, x2 = 0,
0 ≤ x1 ≤ 10000) and on the free surface domain (x3 = 0, x2 = 0, 0 ≤ x1 ≤ 10000).
The non-singular shear stress components can be obtained through the constitutive
relation τnsij = 2µensij , i 6= j, and they vanish as well in the considered domains.
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