
Alma Mater Studiorum · Università di Bologna

Scuola di Scienze
Dipartimento di Fisica e Astronomia

Corso di Laurea Magistrale in Fisica

Capsule Networks:
a new approach for brain imaging

Relatore:

Prof. Nico Lanconelli
Correlatore:

Prof. Renato Campanini
Dott. Matteo Roffilli

Presentata da:

Caterina Camborata

Anno Accademico 2017/2018

“The pooling operation used in convolutional neural networks
is a big mistake and the fact that it works so well is a disaster.”

G. Hinton

Sommario

Nel campo delle reti neurali per il riconoscimento immagini, una delle
più recenti e promettenti innovazioni è l’utilizzo delle Capsule Networks
(CapsNet).
Lo scopo di questo lavoro di tesi è studiare l’approccio CapsNet per l’a-
nalisi di immagini, in particolare per quelle neuroanatomiche. Le odierne
tecniche di microscopia ottica, infatti, hanno posto sfide significative in
termini di analisi dati, per l’elevata quantità di immagini disponibili e per
la loro risoluzione sempre più fine. Con l’obiettivo di ottenere informazio-
ni strutturali sulla corteccia cerebrale, nuove proposte di segmentazione
possono rivelarsi molto utili.

Fino a questo momento, gli approcci più utilizzati in questo campo
sono basati sulla Convolutional Neural Network (CNN), architettura che
raggiunge le performance migliori rappresentando lo stato dell’arte dei ri-
sultati di Deep Learning.
Ci proponiamo, con questo studio, di aprire la strada ad un nuovo approc-
cio che possa superare i limiti delle CNNs come, ad esempio, il numero di
parametri utilizzati e l’accuratezza del risultato.
L’applicazione in neuroscienze delle CapsNets, basate sull’idea di emula-
re il funzionamento della visione e dell’elaborazione immagini nel cervello
umano, concretizza un paradigma di ricerca stimolante volto a superare i
limiti della conoscenza della natura e i limiti della natura stessa.

Abstract

In the field of Deep Neural Networks for image recognition, the develop-
ment of Capsule Networks is one of the most recent and promising inno-
vations.
The purpose of this work is to study the feasibility of a CapsNet approach
to images analysis, especially for neuroanatomical ones. The state-of-the-
art microscopy techniques pose significant challenges in terms of data
analysis, because of the huge amount of available data and for the more
and more subtle resolution. For the purpose of acquiring information
about the structure of brain cortex, new proposals for image segmentation
may be very helpful.

Up until last year, common approaches in this framework were based
on Convolutional Neural Networks (CNNs), an architecture that achieves
the best performances in Deep Learning.
The aim of this work is to pave the way for a new approach to let it over-
come the limits of the CNNs, for example in number of parameters and in
accuracy.
The application to neurosciences of CapsNets, based on the idea of em-
ulating the human brain’s functioning, in matters of vision and images
elaboration, realises a stimulating research paradigm, aimed at overcom-
ing the limits of our knowledge of nature and the limits of nature itself.

CONTENTS

Introduction 1

1 Deep Learning for image recognition:
state of the art 5
1.1 The architecture . 10
1.2 Loss functions and regularization 14
1.3 The learning algorithms . 17
1.4 Optimization . 19
1.5 Convolutional Neural Networks 25
1.6 What is wrong with CNNs? 32
1.7 Capsules: simulating human vision 38
1.8 The implementations . 39

2 Machine Learning for brain imaging 57
2.1 CNN for object segmentation 58

2.1.1 Fully Convolutional Networks 61
2.1.2 U-Net . 62
2.1.3 SegNet . 64
2.1.4 DeconvNet . 65
2.1.5 Previous approaches to segmentation topic 68

i

CONTENTS

2.2 CapsNet for object segmentation 73
2.2.1 SegCaps . 74
2.2.2 Tr-CapsNet . 77

2.3 Motivations and data acquisition of brain images 80
2.4 Mouse brain data analysis . 83
2.5 Human brain data analysis 87

3 MNIST analysis 91
3.1 A CNN approach . 93
3.2 A CapsNet approach . 97

Conclusion 107

Appendix - Data analysis with TensorFlow 109

References 118

ii

INTRODUCTION

Artificial intelligence (AI) is nowadays one of the most up to date and dis-
cussed fields. AI is, by definition, the capability of computers to perform
tasks that normally would require human intelligence. There is currently a
huge number of active research topics regarding AI, all with the common
aim of automating some type of function. Deep learning and artificial in-
telligence are terms that can be heard almost every day regarding most
various tasks. Some examples of automatic functions are understanding
and recognizing speech and images, competing in strategic game systems,
self-driving cars, interpreting complex data in order to make predictions
and making diagnoses in medicine. These techniques are constantly ap-
plied to new problems and their full potential has not been totally investi-
gated yet.

It looks like, through deep learning algorithms, automatic systems will
be able to revolutionize the world in few years; however, until now the
expansion of this discipline is mostly due to the success of Convolutional
Neural Networks. CNNs are a type of deep neural networks, which have
achieved outstanding results in speech and object recognition and natural
language processing tasks. Deep Learning techniques, thanks to the in-
crease in computational power and to the availability of massive new data
sets, can impact medicine and healthcare [1]. Furthermore, several studies
have successfully applied CNNs for analyzing medical images and per-

1

CONTENTS

forming tasks such as image classification, object detection and segmen-
tation. Recent technical progress in neuroscience opened the possibility
to apply deep learning methods also to brain imaging. The final goal of
nowadays research is to provide a map of the whole human brain at a
cellular resolution in order to open new exciting possibilities for both re-
search and diagnostic purposes. There have been attempts to apply net-
works designed for object categorization to segmentation, particularly by
replicating the deepest layer features in blocks to match image dimen-
sions. Some of these recent approaches that tried to directly adopt deep
architectures designed for category prediction to pixel-wise labeling, al-
though very encouraging, appear coarse.

Geoffrey Hinton, considered by some as the “Godfather of Deep Learn-
ing”, is without any doubt a leading figure in the deep learning commu-
nity. In a famous talk that he gave at MIT ([2]) he explained its Capsule
Theory starting from his idea of computer vision and from the state-of-the-
art deep learning performance. So he analyzed the problems of CNNs
and proposed an alternative, exotic, deep learning architecture that, in his
opinion, could take the place of CNNs for most of imaging tasks. Re-
cently, thanks to the innovation in technology, he was able to test his idea
and now the challenge is to lead this new architecture to be really better
than the standard CNNs.

In the present work we want to go through the revolutionary idea of
Capsule Networks, pointing out its pros and cons.

CapsNet is based on an idea of vision that would like to emulate hu-
man brain vision with both theoretical and practical advantages. This
work’s aim is also to study this new architecture as a novel approach in
particular for brain imaging.

In the first chapter we make a review of the Deep Learning techniques,
starting from the definition of a deep neural network to the description of
the CNN architecture. Then we introduce the Capsule Networks architec-
ture in its innovative aspects.

In the second chapter we study the state-of-the-art techniques used for
brain imaging in mice and human data. This study was very useful to get
into the problem of brain imaging from data acquisition to computational

2

CONTENTS

problems. For this kind of data set, in fact, a common approach is based
on object segmentation. So it was necessary to introduce the state-of-the
art methods for this task, based on CNNs, and the current attempt to use
CapsNets for segmentation tasks.

In the third chapter we applied the CapsNets approach to classify a
known data set in order to verify the potentiality of this architecture and
to compare the results with the ones of a standard CNN. Both of the exper-
iments are made using Keras, a TensorFlow API widely used in machine
learning. More details on this tool are explained in Appendix A.

3

CHAPTER 1

DEEP LEARNING FOR IMAGE RECOGNITION:
STATE OF THE ART

“The machine does not isolate man from the great problems
of nature but plunges him more deeply into them.”

A. de Saint-Exupéry

Humans, since the ancient Greeks, have always dreamed about think-
ing machines. This dream became a real achievement to work at when,
in 1950, Turing conceived and invented the very first programmable com-
puter.

When he talked about his most famous paper where he introduced the
so called “Turing test” he said [3]:

There would be plenty to do in trying to keep one’s intelligence up
to the standard set by the machines, for it seems probable that once
the machine thinking method had started, it would not take long to
outstrip our feeble powers.

Nowadays computers capabilities are comparable to those of biological
organisms insomuch we can talk about “artificial intelligence” to distin-
guish from natural intelligence derived from human brain.

5

Deep Learning for image recognition: state of the art

From the outset, one of the goals of artificial intelligence has been to
equip machines with the capability of dealing with sensory input [4]. First
of all AI was used to solve problems that are difficult to human beings but
relatively straightforward for computers, but then the true challenge be-
gan to solve tasks that are easy for people to perform but hard to describe
formally.

These tasks are intuitive because people can use intrinsic information
learned automatically in their whole life. One of these intuitive problems
concerns computer vision: understand and recognize images, for exam-
ple to make diagnoses in medicine or to support basic scientific research.
Computer vision is the construction of explicit, meaningful descriptions of
physical objects from images [4] and this explicitness is the challenge. The
question is: what computation must be performed to extract information
about a scene from an image, using only very basic assumptions?

The answer at this question results to be Deep Learning. This solution
provides that computers have to learn from experience and understand
the world in terms of hierarchy of concepts, each of one is related with
simpler concepts [5].

The approach used in machine learning is a data-driven approach that
consists in provides the computer with many examples of each class of
objects and then develop learning algorithms that look at these examples
and learn about the representation of each class.

Computer vision tasks usually are solved starting with the assignment
of a label to an input image from a set of categories. Image classification
presents a lot of challenges, for example viewpoint variation, scale vari-
ation, deformation and occlusion, illumination conditions, background
clutter and intra-class variation [6]. The ability to acquire knowledge is
known as machine learning and it works by extracting patterns from raw
data.

A machine learning task could be described as how the system should
process an example, that is a set of features. If the example is an image
we can represent it as a vector ~x ∈ Rn where each component xi is a pixel
value. Mathematically the classification task that a learning algorithm is
asked to achieve is to produce a score function f : Rn → {1, . . . , k} where

6

Deep Learning for image recognition: state of the art

k is the number of possible categories in which we want the computer to
classify the data, and n is the dimension of the input. So when computer
applies this function to an input example it can assign that example to a
category y if the numeric code y = f(~x).

The performance of this kind of algorithms depends on the represen-
tation of the data they are given, in other words on the features chosen
to identify and classify the data. Many artificial intelligence tasks can be
solved by designing the right set of features to extract for that task, then
providing these features to a simple machine learning algorithm. Some-
times we don’t know what feature should be extracted or, as often hap-
pens in computer vision, we don’t know how to described the features in
terms of pixel values. In these cases we use an approach called represen-
tation learning that uses machine learning to discover the right representa-
tion, the features, and then it maps them to output. Manually designing
features requires a huge human effort that is really not necessary even
when it’s easily possible. An example of a representation algorithm is the
autoencoder, a combination of an encoder that extracts information from
data and a decoder that reproduces the input from the representation.

The goal in extracting feature is to separate factors of variation, that is
to separate the properties useful to distinguish features, and assign them
to an object in order to classify it through them. In many real-world AI
applications these factors of variation influence every single piece of data
and it could be very difficult to extract useful information. Deep learning
solves this problem in representation learning by introducing a hierarchi-
cal organization of representations. This approach consists of expressing
complex features in terms of other simpler features, using an architecture
made up of many layers. For example, to map a set of pixels to an object
identity, the very first layer has to recognize edges, then another layer has
to recognize corners and contours, and so on layers that identify object
parts increasing the complexity of the features with the depth of the net.

There aren’t a single unique definition for depth, in general we can say
that deep learning is the study of models that involves a greater amount
of composition of either learned functions or learned concepts than tradi-
tional machine learning does.

7

Deep Learning for image recognition: state of the art

Traditional machine learning techniques are based on neural networks
model starting from the simple perceptron to the multi layer perceptron
(MLP). So deep learning born from two basic ideas: learning the right
representation for the data and let the computers do it with multi-step
program made up of a certain number of layers.

The number of layers usually defines the depth of the net and so its
capability to achieve complex tasks with great performance. Goodfellow
gives a perfect definition for deep learning in his book [5]:

Deep learning is a particular kind of machine learning that achieves
great power and flexibility by representing the world as a nested hi-
erarchy of concepts, with each concept defined in relation to simpler
concepts, and more abstract representations computed in terms of less
abstract ones.

The basic idea is that we first decide an architecture, a structure for our
deep neural network with parameters initialized opportunely, and we de-
fine a loss function to measure the performance of the model. Then we
choose a learning algorithm that is what we use to minimize this function
and optimize all the parameters to achieve the best performance in solv-
ing the task. It must decide how to use the layers to produce the desired
output.

In this chapter we go through the main characteristics of deep learning
in details and then we focus on the most used model called Convolutional
Neural Network (CNN). Finally we emphasise CNNs flaws introducing
the Capsule Network architecture with its generalities and its details.

8

Deep Learning for image recognition: state of the art

Output

OutputOutput Mapping from
Features

Mapping from
Features

Mapping from
Features

Additional
Layer

Hand-designed
Features Features Simple

Features

Input Input Input

DEEP LEARNING

REPRESENTATION LEARNING

CLASSIC

MACHINE

LEARNING

Figure 1.1: This is the framework in which Deep Learning is introduced.

9

Deep Learning for image recognition: state of the art

1.1 The architecture

The word architecture refers to the overall structure of the network: how
many units it should have and how these units should be connected to
each other [5]. The architecture of a typical neural network is based on
the idea of the perceptron. A perceptron is a single neuron model used
to implement binary classifier that, as a biological neuron, has dendrites
as input, nucleus as activation function and synapses as output. A neu-
ral network can been seen as a series of neurons connected in an acyclic
graph 1, this is the reason why deep neural networks are called feedforward,
because the flow of information is unidirectional from input to output.

As a consequence of the similarity to biological neurons, the architec-
ture of a typical deep neural network is made up of three main structures:
an input layer that’s the set of data, some hidden layers consisting in dif-
ferent units (neurons), an output layer that’s taken to represent the class
scores. Because the training data does not show the desired output for
each of those layers, they are called hidden. Hidden layers’ units act in par-
allel, each representing a vector-to-scalar function called activation func-
tion.

The depth of the net is connected with the number of layers: a neu-
ral network could be considered deep if it has about 10 hidden layers [6].
As we increase the size and number of layers in a Neural Network, the
capacity of the network increases. That is, the space of representable func-
tions grows since the neurons can collaborate to express many different
functions. This is positive since it can classify more complicated data, but
could be also negative because it’s easy to do overfitting. So larger net-
works will always work better than smaller ones, but their higher model
capacity must be appropriately addressed with stronger regularization or
they might overfit. The ideal network architecture for a task must be found
via experimentation guided by monitoring the errors.

Several architectures of deep networks can be studied and the discrim-

1It’s a graph with no cycles that consists of finitely many vertices and edges, with each
edge directed from one vertex to another, such that there is no way to start at any vertex
and follow a consistently sequence of edges that eventually loops back to it again.

10

Deep Learning for image recognition: state of the art

ination within all the possible variants is in the organization of neurons’
layers. The kind of layers differ one each other for the activation function
that their units compute and for the connections between the layers.

Units functions

Hidden Units. The design of hidden units is an extremely active area of
research and does not yet have many definitive guiding theoretical princi-
ples [5].

The hidden layers are the part of the net where magic happens, here the
program computes the learning algorithm that realizes the machine learn-
ing of the parameters to give the right prediction. Most hidden units can
be described as accepting a vector of inputs ~x, computing an affine trans-
formation ~z = ~wT~x+~b and then applying an element-wise nonlinear func-
tion g(~z). In the transformation ~w represents the weights that have to be
inferred during training and ~b represents a bias. A commonly used trick
is to combine these two sets of parameters into a single matrix that holds
both of them and consecutively extend the vector ~xwith one additional di-
mension that always holds the constant 1. Hidden units are distinguished
from each other only by the choice of the form of this activation function.
Below we can list three examples for activation function usually used in
hidden units (Figure 1.2).

Figure 1.2: Three examples for activation function used in hidden layers.

• Rectified Linear Unit (ReLU)
This activation function accelerate the convergence of the optimiza-

11

Deep Learning for image recognition: state of the art

tion, simplify the thresholding providing activation at 0 but can also
lead neurons to never activate:

g(~z) = max{0, ~z} with g(~z) ∈ [0;∞) (1.1)

• Logistic Sigmoid
This activation function can lead to a zig-zagging dynamics in the
optimization process because of the non-linearity:

g(~z) =
1

1 + e−~z
with g(~z) ∈ [0; 1] (1.2)

• Hyperbolic Tangent
This activation function is a sigmoid neuron scaled with output cen-
tered in zero:

g(~z) = tanh(~z) = 2σ(2~z)− 1 with g(~z) ∈ [−1; 1] (1.3)

It can be difficult to determine when to use which kind, predicting in ad-
vance which of the above functions will work best is usually impossible.
The design process consists of trial and error, intuiting that a kind of hid-
den unit may work well, and then training a network with that kind of
hidden unit and evaluating its performance.

Output Units. Any kind of neural network unit that may be used as
an output can also be used as a hidden unit. Here, we focus on the use of
these units as outputs of the model, but in principle they can be used in-
ternally as well. The role of the output layer is to provide some additional
transformation from the features to complete the task that the network
must perform.

• Linear Unit
Given features ~x, a layer of linear output units produces a vector:

ŷ = ~wT~x+~b (1.4)

12

Deep Learning for image recognition: state of the art

Because linear units do not saturate, they pose little difficulty for
gradient-based optimization algorithms and may be used with a wide
variety of optimization algorithms [5].

• Sigmoid Unit
Whenever we have binary label variable, for example a classifica-
tion problems between only two classes, it’s preferred to calculate
the output as follow:

ŷ = σ(~z) (1.5)

We can think of the sigmoid output unit as having two components.
First, it uses a linear layer to compute ~z = ~wT~x + ~b. Next, it uses
the sigmoid activation function to convert ~z into a probability. The
sigmoid activation function saturates to 0 when ~z becomes very neg-
ative and saturates to 1 when ~z becomes very positive. The gradi-
ent can be too small to be useful for learning when this happens,
whether the model has the correct answer or the incorrect answer.
For this reason, maximum likelihood is almost always the preferred
approach to training sigmoid output units. So the right approach
is based on using sigmoid output units combined with maximum
likelihood to ensure there is always a strong gradient whenever the
model has the wrong answer.

• SoftMax Unit
Any time we wish to represent a probability distribution over a dis-
crete variable with n possible values, we may use the softmax func-
tion:

ŷ =
e~zi∑
j e

~zj
(1.6)

where as explain before first of all we compute ~z and then the softmax(~z).
This can be seen as a generalization of the sigmoid function but are
more often used as the output of a classifier, to represent the proba-
bility distribution over n different classes.

13

Deep Learning for image recognition: state of the art

Layers connections

The most common organization of connections is the Fully Connected
Layer in which neurons between two adjacent layer are fully pairwise con-
nected and neurons within the layer share no connections (Figure 1.3).

Input
Layer

Input 1

Input 2

Input 3

Input 4

Hidden
Layer

Output
Layer

Figure 1.3: An example of a 2-layer neural network with Fully Connected Layers.
There are the first input layer with 4 input data, one hidden layer with 5 units
and an output; connections are between the layers but not within a layer.

Fully connected are the most popular kind of layer in machine learning
architecture but it’is not the most useful, and nether the must used, in
image classification, because of the huge number of parameters that it has
to learn.

1.2 Loss functions and regularization

In a learning problem the loss function measures the compatibility be-
tween a prediction and the ground truth label. It is a non-negative value,
where the robustness of model increases along with the decrease of the
value of loss function. The data loss takes the form of an average over the
data losses for every individual example:

L =
1

N

N∑
i=1

Li (1.7)

14

Deep Learning for image recognition: state of the art

where N is the total number of examples. We can choose between a lot of
different definition for loss function, here follow some popular examples
[7].

• L1

It’s a quantity used to measure how close predictions are to the real
class:

Li = ~yi − f(~xi) (1.8)

It represents the very first definition for a loss function but it’s pre-
ferred to use other functions that resulted better for the optimization
step.

• L2

It’s the squared version of the previous definition and it’s widely
used in linear regression:

Li = (~yi − f(~xi))
2 (1.9)

• Logarithmic Error
It is usually used when you do not want to penalize huge differences
in predicted and actual values when both predicted and true val-
ues are huge numbers, it penalizes under-estimates more than over-
estimates:

Li = (log(~yi + 1)− log(f(~xi) + 1))2 (1.10)

• Cross Entropy
It’s commonly-used in binary classification, measures the divergence
between two probability distribution: if the cross entropy is large, it
means that the difference between two distribution is large, while if
the cross entropy is small, it means that two distribution is similar to
each other:

Li = − [~yilog(f(~xi)) + (1− ~yi)log(1− f(~xi))] (1.11)

15

Deep Learning for image recognition: state of the art

• Hinge Loss
It’s used for “maximum-margin” classification, most notably for
Support Vector Machines. For a binary classification it is defined as:

Li = max{0, 1− ~yi · f(~xi)} (1.12)

but a more general expression exists with a margin m customize
value:

Li = max{0,m− ~yi · f(~xi)} (1.13)

• Squared Hinge Loss
It’s a variant of Hinge Loss, it solves the problem in hinge loss that
the derivative of hinge loss has a discontinuity:

Li = (max{0, 1− ~yi · f(~xi)})2 (1.14)

In all these definitions a problem may arise: supposing that it results L =

0, the weight matrix W is not necessary unique. We have 2W possible
values of the this W . In fact if for a certain W we have L = 0 then any
multiple of these parameters λW with λ > 1 will also give L = 0 because
this transformation uniformally stretches all score magnitudes and hence
also their absolute differences.

We can remove this ambiguity by extending the loss function with a
regularization penality:

R(W) =
∑
k

∑
l

W 2
k,l (1.15)

So the full loss becomes:

L =
1

N

N∑
i=1

Li + λR(W) (1.16)

where λ it’s an hyperparameter usually determined by cross-validation.
There are many desirable properties to include the regularization penality.
The most appealing property is that penalizing large weights tends to im-
prove generalization because it means that no input dimension can have

16

Deep Learning for image recognition: state of the art

a very large influence on the score by itself. This penality prefers smaller
and more diffuse weight vectors: the final classifier is encouraged to take
into account all input dimensions to small amount rather than a few input
dimension and very strongly. This effect can improve the generalization
performance and lead to less overfitting.

1.3 The learning algorithms

Learning is the means of attaining the ability to perform a task [5]. A
machine learning algorithm is an algorithm that leads computer program
learn from experience, so the performance of the program measured to
achieve a task improves with experience.

The performance can be measured calculating the accuracy of the model,
that is defined as a portion of the examples for which the model produces
the correct output. Another equivalent method to measure the perfor-
mance is to calculate the error rate usually called 0 − 1 loss: it’s 0 when
the classification is correct and 1 when it’s incorrect.

To measure the accuracy we have to calculate the loss function defined
above.

The kind of experience that is strictly connected with the calculation of
the performance can be different depending on the kind of data set. If we
have a data set containing many features and we have to extract informa-
tion about the set itself from them, then we need unsupervised learning
algorithm. Otherwise if we have a data set containing both features and
label associated at each example then we need supervised learning algo-
rithms.

Unsupervised learning involves observing several examples of an in-
put vector ~x and learn the probability distribution p(~x) or some other inter-
esting properties of that distribution. In this case the model should show
the hidden structure of the data set.

Supervised learning should predict ~y from ~x estimating p(~y|~x), observ-
ing several examples of vector ~x and associated value of a vector ~y.

Unsupervised and supervised learning are not formally defined terms,
moreover other variants of learning paradigm are possible with a fixed

17

Deep Learning for image recognition: state of the art

data set and also with a not fixed data set (reinforcement learning).
The aim of a machine learning algorithm is to lead the machine learn

in order to perform well on new, previously unseen inputs.
This ability is called generalization.
The main steps of such an algorithm are:

1. train a data set to learn parameters;

2. learn parameters as to minimize training error (optimization problem);

3. use the model to classify new data;

4. modify the model to achieve minimum test error (generalization prob-
lem).

Training Data

Machine Learning
Algorithm

ClassifierTest Data Prediction

Figure 1.4: This is a scheme about pattern recognition cycle. We can see two kind
of data: training and test. The first are used to train the model with a chosen
machine learning algorithm. After that the test data are given in input to the
classifier created after learning and we get prediction as output.

The factors determining how well a machine learning algorithm will
perform are its ability to make training error small and make the gap be-
tween training and test error small. These two factors correspond to the
two central challenges in machine learning: underfitting and overfitting.

18

Deep Learning for image recognition: state of the art

Figure 1.5: Typical relationship between capacity and error. and test error behave
differently. At the left end of th graph, training error and generalization error
are both high. This is the underfitting regime. As we increase capacity training
error decreases, but the gap between training and generalization error increases.
Eventually, the size of this gap outweighs, the decrease in training error, and
we enter the overfitting regime, where capacity is too large, above the optimal
capacity. [5]

The variables that influence the performance of the models are the ar-
chitecture and the method used to compute the optimization. In other
words the parameters like the number of layers, the number of units per
layer, the connections between layers, and the algorithm chosen to find
out weight parameters computes by the layers.

1.4 Optimization

The optimization it’s the process of finding the set of parameters that min-
imize the loss function L(f(~x)) by altering ~x. Compute the minimum
means calculate the derivative, then optimization is the updating of the
parameters moving on the opposite sign of the derivative. When this
derivative is zero we don’t have any information about where to move
to minimize the loss, we are not sure that that point is a global minimum
because it could be a local minimum or a saddle point. Those kind of
points are called critical and they make the optimization difficult. This is

19

Deep Learning for image recognition: state of the art

the reason why we try to find the best way to achieve the smallest value
for L, that is very low but not necessary minimal. We often use functions
that have multiple inputs so we refer at this technique with gradient descent
because the gradient is the operation that generalize the derivative.

With gradient-based methods we would like to find the direction in
which the function decrease faster, moving in the direction of the negative
gradient:

~x′ = ~x− ε∇f(~x) (1.17)

where ε is the learning rate, a positive scalar determining the size of the
step. All of these concepts are completely general for machine learning,
but for neural networks in particular there are some problems. The non
linearity of a neural network causes most interesting loss functions to be-
come non convex: convex optimization converges starting from any ini-
tial parameters while non convex loss functions have no such convergence
guarantee and sensitive to the values of initial parameters. To compute the
gradient it’s always used the back-propagation algorithm that allows the in-
formation from the loss to then flow backward through the network (Fig-
ure 1.6). This term refers only to the method for computing the gradient,

Input
Layer

FORWARD

Hidden
Layer

Output
Layer

z

Input
Layer

BACKWARD

Hidden
Layer

Output
Layer

dL

dz

Figure 1.6: The forwardpass on the left in calculates z as a function f(~x) using
the input variables x and y. The right side of the figures shows the backwardpass.
Receiving dL/dz, the gradient of the loss function with respect to z from above,
the gradients of x and y on the loss function can be calculate by applying the chain
rule, as shown in the figure.

20

Deep Learning for image recognition: state of the art

while other algorithm are used to perform learning using gradient. The
gradient we require is the gradient of the loss function with respect to the
parameters. The chain rule of calculus is used to computed the derivatives
of functions formed by composing other functions whose derivatives are
known. Back-propagation is an algorithm that computes the chain rule
with a specific order of operations that is highly efficient. It is straight-
forward to calculate analytically the gradient but evaluating it in a com-
puter introduces some difficulties. In fact in a net we have that many ex-
pressions may be repeated several times, and we don’t want to repeat the
same calculation more than one time, both for memory and time reason.
Any procedure that computes the gradient will need to choose whether to
store these expressions or to recompute them several times. The amount
of computation required for performing the back-propagation scales lin-
early with the number partial derivatives as well as performing one mul-
tiplication and one addition. The back-propagation algorithm is designed
to reduce the number of common expressions without regard to memory,
avoiding the exponential explosion in repeated expressions.

To compute the gradient of some scalar z with respect to one of its an-
cestors x in a graph, we begin by observing that the gradient with respect

to z is given by
dz

dz
= 1. We can then compute the gradient with respect

to each parent of z in the graph by multiplying the current gradient by the
Jacobian of the operation that produced z. We continue multiplying by Ja-
cobians, traveling backward through the graph in this way until we reach
x . For any node that may be reached by going backward from z through
two or more paths, we simply sum the gradients arriving from different
paths at that node.

Hence, it seems wasteful to compute the full loss function over the en-
tire training set in order to perform only a single parameter update. A very
common approach to addressing this challenge is to compute the gradient
over batches of the training data. The reason this works well is that the ex-
amples in the training data are correlated. The data set would not contain
duplicate images, the gradient from a mini-batch is a good approximation
of the gradient of the full objective. Therefore, much faster convergence
can be achieved in practice by evaluating the mini-batch gradients to per-

21

Deep Learning for image recognition: state of the art

form more frequent parameter updates. The extreme case of this is a set-
ting where the mini-batch contains only a single example.

Allm samples in the training set could be identical copies of each other.
A sampling-based estimate of the gradient could compute the correct gra-
dient with a single sample, using m times less computation than the naive
approach. In practice, we are unlikely to encounter this worst-case sit-
uation, but we may find large numbers of examples that all make very
similar contributions to the gradient.

Optimization algorithms that use the entire training set are called batch
or deterministic gradient methods, because they process all the training
examples simultaneously in a large batch. This terminology can be some-
what confusing because the word “batch” is also often used to describe
the minibatch used by minibatch stochastic gradient descent. Typically
the term “batch gradient descent” implies the use of the full training set,
while the use of the term “batch” to describe a group of examples does
not. For example, it is common to use the term “batch size” to describe
the size of a minibatch.

Optimization algorithms that use only a single example at a time are
sometimes called stochastic and sometimes online methods. This is usu-
ally reserved for when the examples are drawn from a stream of continu-
ally created examples rather than from a fixed-size training set over which
several passes are made.

Most algorithms used for deep learning fall somewhere in between,
using more than one but fewer than all the training examples. These were
traditionally called minibatch or minibatch stochastic methods, and it is
now common to call them simply stochastic methods.

The training algorithm is almost always based on using the gradient to
descend the loss function in one way or another, they usually are improve-
ments and refinements on the ideas of gradient descent, all implemented
with back-propagation.

To follow the gradient we can use the following basic algorithms.

• Stochastic Gradient Descent (SGD)
It applied to non convex loss functions has no such convergence
guarantee and is sensitive to the values of the initial parameters. it is

22

Deep Learning for image recognition: state of the art

possible to obtain an unbiased estimate of the gradient by taking the
average gradient on a minibatch of m examples drawn i.i.d from the
data-generating distribution. A crucial parameter for the SGD algo-
rithm is the learning rate. It used a learning rate that has to gradu-
ally decrease over time, so we denote it at iteration k as εk. This is
because the SGD gradient estimator introduces a source of noise (the
random sampling of m training examples) that does not vanish even
when we arrive at a minimum. A sufficient condition to guarantee
convergence of SGD is that

∞∑
k=1

εk =∞ and
∞∑
k=1

ε2k <∞ (1.18)

• Momentum
The method of momentum is designed to accelerate learning, espe-
cially in the face of high curvature, small but consistent gradients,
or noisy gradients. The momentum algorithm accumulates an expo-
nentially decaying moving average of past gradients and continues
to move. The name momentum derives from a physical analogy, in
which the negative gradient is a force moving a particle through pa-
rameter space, according to Newton’s laws of motion. Momentum in
physics is mass times velocity. In the momentum learning algorithm,
we assume unit mass, so the velocity vector v may also be regarded
as the momentum of the particle. A hyperparameter α ∈ [0, 1] deter-
mines how quickly the contributions of previous gradients exponen-
tially decay. The update rule is given by:

~v = α~v.ε∇θ

(
1

m

m∑
i=1

L(f(~xi, θ), yi)

)
(1.19)

θ = θ + ~v (1.20)

• Nesterov momentum
It is a variant of the momentum algorithm that was inspired by Nes-

23

Deep Learning for image recognition: state of the art

terov’s accelerated gradient method:

~v = α~v.ε∇θ

(
1

m

m∑
i=1

L(f(~xi, θ + α~v), yi)

)
(1.21)

θ = θ + ~v (1.22)

The difference between Nesterov momentum and standard momen-
tum is where the gradient is evaluated. With Nesterov momentum,
the gradient is evaluated after the current velocity is applied. Thus
one can interpret Nesterov momentum as attempting to add a cor-
rection factor to the standard method of momentum. In the stochas-
tic gradient case, Nesterov momentum does not improve the rate of
convergence.

Neural network researchers have long realized that the learning rate is
reliably one of the most difficult to set hyperparameters because it signif-
icantly affects model performance. Other algorithm involves parameters
initialization strategies are new techniques of adaptive learning like Ada-
Grad, RMSProp, Adam. Moreover to achieve optimization we can work
at another level with batch normalization and the study of model’s de-
sign. In large-scale applications the training data can have on order of
millions of examples. Batch normalization is one of the most exciting re-
cent innovations in optimizing deep neural networks, and it is actually
not an optimization algorithm at all. Instead, it is a method of adaptive re-
parametrization, motivated by the difficulty of training very deep models.
Previous approaches had involved adding penalties to the cost function to
encourage units to have normalized activation statistics or involved inter-
vening to re-normalize unit statistics after each gradient descent step. In a
deep neural network with nonlinear activation functions, the lower layers
can perform nonlinear transformations of the data, so they remain use-
ful. Batch normalization acts to standardize only the mean and variance
of each unit in order to stabilize learning, but it allows the relationships
between units and the nonlinear statistics of a single unit to change.

24

Deep Learning for image recognition: state of the art

1.5 Convolutional Neural Networks

Convolutional Neural Networks are inspired from biology and have played
an important role in the history of deep learning. Neuroscientific stud-
ies say that there is a part of the brain called V1, located at the back of
the head also known as the primary visual cortex, that is the first area
of the brain that begins to perform significantly advanced processing of
visual input. We focus on this area to list the analogies between CNNs
and human brain. A convolutional network layer is designed to capture
three properties of V1: spatial map as features defined in terms of two-
dimensional maps; simple cells as detection units of receptive field; com-
plex cells as pooling units.

They are a key example of a successful application of insights obtained
by studying the brain to machine learning applications. They were also
some of the first deep models to perform well, they were some of the first
neural networks to solve important commercial applications and remain
at the forefront of commercial applications of deep learning today. They
were also used to win many contests.

Convolutional networks were more computationally efficient than fully
connected networks, so it was easier to run multiple experiments with
them and tune their implementation and hyperparameters. Larger net-
works also seem to be easier to train. With modern hardware, large fully
connected networks appear to perform reasonably on many tasks. It may
be that at the early stage neural networks weren’t expected to work, nether
by the people who developed them. Convolutional networks provide a
way to specialize neural networks to work with data that has a clear struc-
tured topology and to scale such models to very large size. This approach
has been the most successful on two-dimensional image.

Convolution Networks have provided the rise of important ideas that
help to improve machine learning systems: sparse interactions and pa-
rameter sharing. Traditional neural network layers has output unit inter-
acting with every input unit while CNNs have sparse interactions: the
input image can detect small, meaningful features such as edges with ker-
nels smaller than input. This means that thanks to CNNs we need to store

25

Deep Learning for image recognition: state of the art

fewer parameters and we need fewer operations to compute the output.
Parameter sharing refers to using the same parameter for more than one
function in a model, so rather than learning a separate set of parameters
for every location, we learn only one set.

It turns out that we can dramatically reduce the number of parame-
ters by making one reasonable assumption that if one feature is useful to
compute at some spatial position (x, y), then it should also be useful to
compute at a different position (x2, y : 2). In other words, denoting a sin-
gle 2-dimensional slice of depth as a depth slice, we are going to constrain
the neurons in each depth slice to use the same weights and bias. In prac-
tice during backpropagation, every neuron in the volume will compute
the gradient for its weights, but these gradients will be added up across
each depth slice and only update a single set of weights per slice.

Notice that if all neurons in a single depth slice are using the same
weight vector, then the forward pass of the Conv layer can in each depth
slice be computed as a convolution of the neuron’s weights with the input
volume. This is why it is common to refer to the sets of weights as a filter,
or a kernel, that is convolved with the input.

However sometimes the parameter sharing assumption may not make
sense. This is especially the case when the input images to a ConvNet have
some specific centered structure, where we should expect that completely
different features should be learned on one side of the image than another.
One practical example is when the input are faces that have been centered
in the image. You might expect that different eye-specific or hair-specific
features could be learned in different spatial locations. In that case it is
common to relax the parameter sharing scheme, and instead simply call
the layer a Locally-Connected Layer.

CNNs are trained with the well known back-propagation algorithm
but differs from other deep neural networks in the architecture. They
are designed to recognize visual patterns directly from pixel images with
minimal pre-processing, they are made with the assumption that the in-
puts are images. They can recognize patterns with extreme variability and
with robustness to distortions and simple geometric transformations. The
main differences between a standard neural network and a CNN are in

26

Deep Learning for image recognition: state of the art

the layers’ dimensions, connections, functions. In Figure 1.7 we can see a
comparison of the architectures in which it is emphasized the dimensions
and the connections.

Figure 1.7: A standard 3-layer Neural Network compared with a Convolutional
Neural Network that arranges its neurons in three dimensions (width, height,
depth), as visualized in one of the layers. Every layer of a CNN transforms the
3D input volume to a 3D output volume of neuron activation. In this example, the
green input layer holds the image, so its width and height would be the dimensions
of the image, and the depth would be 3 (Red, Green, Blue channels).

The architecture of a CNN is made up of 4 types of layer:

1. Input;

2. Convolutional;

3. Pooling;

4. Fully Connected.

A typical layer of a convolutional network consists of three stages. In the
first stage, the layer performs several convolutions in parallel to produce
a set of linear activations. In the second stage, each linear activation is run
through a nonlinear activation function, such as the ReLU function. This
stage is sometimes called the detector stage. In the third stage, we use
a pooling function to modify the output of the layer further. A pooling
function replaces the output of the net at a certain location with a summary
statistic of the nearby outputs. Below follows a complete description of the
2 characteristic layers: convolutional and pooling.

27

Deep Learning for image recognition: state of the art

Convolutional Layer

The Conv layer is the core building block of a Convolutional Network that
does most of the computational heavy lifting. Conv layer’s parameters
consist of a set of learnable filters. Every filter is small spatially but extends
through the full depth of the input volume. During the forward pass, we
slide, more precisely convolve, each filter across the width and height of the
input volume and compute dot products between the entries of the filter
and the input at any position.

As we slide the filter over the width and height of the input volume
we will produce a 2-dimensional activation map that gives the responses
of that filter at every spatial position.

The network will learn filters that activate when they see some type
of visual feature such as an edge of some orientation or a blotch of some
color on the first layer. Then we will stack all the activation maps along
the depth dimension and produce the output volume.

Using the brain/neuron analogies, every entry in the 3D output vol-
ume can also be interpreted as an output of a neuron that looks at only
a small region in the input and shares parameters with all neurons to the
left and right spatially.

One of the main characteristics of CNNs is how layers are connected
each other. Differently from fully connected layers, Conv layers allow to
connect each neuron with only a local region of the input volume. The
spatial extent of this connectivity is a hyperparameter called receptive field
of the neuron, or filter size. The extent of the connectivity along the depth
axis is always equal to the depth of the input volume. It is important to
emphasize this asymmetry in how we treat the spatial dimensions, width
and height and the depth dimension: the connections are local in space,
along width and height, but always full along the entire depth of the input
volume.

These connections produce a 2D activation map, one for each filter, that
gives the responses of that filter at every spatial position.

Another important parameter is the number of units arranged in the
output volume. Three hyperparameters control the size of the output vol-

28

Deep Learning for image recognition: state of the art

ume: the depth, stride and zero-padding.

• Depth
The depth of the output volume corresponds to the number of filters
we would like to use, each learning to look for something different
in the input, for example the presence of various oriented edges or
blobs of color. We will refer to a set of neurons that are all looking at
the same region of the input as a depth column.

• Stride
The stride defines how much we slide the filter. When the stride is
1 then we move the filters one pixel at a time. When the stride is 2

then the filters jump 2 pixels at a time as we slide them around. This
will produce smaller output volumes spatially. Sometimes it will be
convenient to pad the input volume with zeros around the border.
The size of this zero-padding is a hyperparameter. The nice feature
of zero padding is that it will allow us to control the spatial size of
the output volumes, commonly we will use it to exactly preserve the
spatial size of the input volume so the input and output width and
height are the same). We can compute the spatial size of the output
volume as a function of the input volume size (W), the receptive field
size of the Conv Layer neurons (F), the stride with which they are
applied (S), and the amount of zero padding used (P) on the border.
The correct formula for calculating how many neurons fit is given by

N =
(W − F + 2P)

S + 1
(1.23)

• Zero-Padding
Setting zero padding to be P = (F −1)/2 when the stride is S = 1 en-
sures that the input volume and output volume will have the same
size spatially. It is very common to use zero-padding in this way.
Zero padding the input allows us to control the kernel width and
the size of the output independently. Without zero padding, we are
forced to choose between shrinking the spatial extent of the network
rapidly and using small kernels, both scenarios that significantly

29

Deep Learning for image recognition: state of the art

limit the expressive power of the network.

There are two special cases of the zero-padding setting: one is the
extreme case in which no zero padding is used whatsoever, and the
convolution kernel is allowed to visit only positions where the entire
kernel is contained entirely within the image. In code terminology,
this is called valid convolution. In this case, all pixels in the output are
a function of the same number of pixels in the input, so the behavior
of an output pixel is somewhat more regular.

Another special case of the zero-padding setting is when just enough
zero padding is added to keep the size of the output equal to the
size of the input. In code one calls this same convolution. The input
pixels near the border influence fewer output pixels than the input
pixels near the center: this can make the border pixels somewhat
underrepresented in the model.

Usually the optimal amount of zero padding, in terms of test set clas-
sification accuracy, lies somewhere between valid and same convolu-
tion.

Note again that the spatial arrangement hyperparameters have mutual
constraints. In some cases it would be impossible to use even stride, since
the output dimension becomes not an integer. Therefore, this setting of the
hyperparameters is considered to be invalid. The use of zero-padding and
some design guidelines will significantly alleviate these kind of problems.

Pooling Layer

It is common to periodically insert a Pooling layer in-between successive
Conv layers in a ConvNet architecture. Its function is to progressively re-
duce the spatial size of the representation to reduce the amount of parame-
ters and computation in the network, and hence to also control overfitting.
The Pooling Layer operates independently on every depth slice of the in-
put and resizes it spatially, using the MAX operation. The most common
form is a pooling layer with filters of size 2 × 2 applied with a stride of
2 downsamples every depth slice in the input by 2 along both width and

30

Deep Learning for image recognition: state of the art

height, discarding 75% of the activations. Pooling sizes with large recep-
tive fields are too destructive. Every MAX operation would in this case be
taking a max over 4 numbers, little 2 × 2 region in some depth slice. The
depth dimension remains unchanged.

Pooling units can also perform other functions, such as average pool-
ing or even L2-norm pooling. Average pooling was often used historically
but has recently fallen out of favor compared to the max pooling opera-
tion, which has been shown to work better in practice. In all cases, pooling
helps to make the representation approximately invariant to small transla-
tions of the input. Invariance to translation means that if we translate the
input by a small amount, the values of most of the pooled outputs do not
change. Invariance to local translation can be a useful property if we care
more about whether some feature is present than exactly where it is. For
example, when determining whether an image contains a face, we need
not know the location of the eyes with pixel-perfect accuracy, we just need
to know that there is an eye on the left side of the face and an eye on the
right side of the face.

During the forward pass of a pooling layer, it is common to keep track
of the index of the max activation, sometimes also called the switches, so
that gradient routing is efficient during backpropagation. Many people
dislike the pooling operation and think that we can get away without it.
Discarding pooling layers has also been found to be important in train-
ing good generative models, such as variational autoencoders (VAEs) or
generative adversarial networks (GANs). It seems likely that future archi-
tectures will feature very few to no pooling layers.

For many tasks, pooling is essential for handling inputs of varying size.
For example, if we want to classify images of variable size, the input to the
classification layer must have a fixed size. This is usually accomplished by
varying the size of an offset between pooling regions so that the classifica-
tion layer always receives the same number of summary statistics regard-
less of the input size. Some theoretical work gives guidance as to which
kinds of pooling one should use in various situations. It is also possible to
dynamically pool features together, for example, by running a clustering
algorithm on the locations of interesting features. This approach yields a

31

Deep Learning for image recognition: state of the art

different set of pooling regions for each image. Another approach is to
learn a single pooling structure that is then applied to all images.

Figure 1.8: Illustration of convolution and pooling operations. [8]

1.6 What is wrong with CNNs?

CNNs are good at speech recognition and object classification, but they
are unlike brain. If the aim of deep learning is to emulate and reproduce
brain learning we are far from this. From this point of view we can say
that today neural networks don’t work as well as they could. The main
difference is that they have very few level of structure, like neurons, layers
and the whole net. There in no entity into this kind of architecture.

G. Hinton believes that we need to group neurons in each layer into
“capsules” which are able to do a lot of internal computation and to out-
put a compact result. This capsules represents the entities which we are
looking for to make deep learning more similar to brain learning, they are
like brain cortical minicolumn2.

A capsule take predictions from low-level capsules about what their
generalize pose should be, so about multi-dimensional vector, and they
look for predictions that agree tightly. They don’t care if there’s a lot of
predictions that outliers or they concerned with or if there is a small subset
of predictions that agree well.

2A cortical minicolumn is a vertical column through the cortical layers of the brain.
Minicolumns comprise perhaps 80 − 120 neurons, except in the primate primary visual
cortex where there are typically more than twice the number. All of them have the same
receptive field; adjacent minicolumns may have different fields. There are about 2 × 108
minicolumns in humans.

32

Deep Learning for image recognition: state of the art

This entity has two kind of association parameters: a value for its own
presence and some properties, like orientations, size, velocity, color, in a
hierarchical order, from low-level to high-level. Capsule output is then the
probability that the entity is present and the generalize pose of this entity,
which in vision in going to be an object or part of an object. The brain
need to do this compute, it really has to take predictions from low-level to
high-level in a similar way.

CNNs on the other hand work with multiple layers of learned feature
detectors, interconnected with max-pooling layers or average pooling lay-
ers that take only the most active neuron. These feature detectors are local
and their spatial domains get bigger in higher layers, but they are inter-
leaved with subsampling layers that pool the outputs of nearby feature
detectors of same type.

Pooling process gives a small amount of translational invariance at
each level and reduces the number of input to the next layer of feature
extraction.

The activations in the last hidden layer of a deep ConvNet are a pre-
cept that contains information about many of the objects in the image but
without any spatial relationship between those objects. This spatial in-
formation is loosed after pooling. Internal data representation of a con-
volutional neural network does not take into account important spatial
hierarchies between simple and complex objects.

This is the reason why Hinton talked about four arguments against
pooling and here we try to understand each of one in order to point out
the necessity to introduce Capsule Networks.

Intrinsic coordinate

The first argument against pooling is that it is a bad fit to the psychology
of shape perception: it does not explain why we assign intrinsic coordinate
frames to objects and why they have such huge effects. When people do
shape perception they do it by imposing rectangular coordinate frames on
things and if they take the same object and impose a different rectangular
coordinate frame they don’t even realize it’s the same object.

33

Deep Learning for image recognition: state of the art

It’s a huge effect: we can’t say how the same pixels can be processed
completely differently depending on the coordinate frame because they
have no notion of imposing coordinate frame. Human vision system im-
poses rectangular coordinate frames on objects in order to represent them
and it would perform mental rotation on the object to a point of reference
which it’s familiar to before making the comparison. Computer graphics
has to say what the relation is between a part in the whole, so it put a
frame on the part and tells you the matrix that will map point in the whole
relative frame. The relationship between an object and the viewer is rep-
resented by a whole bunch of active neurons that capture different aspects
of the relationship not by a single neuron or a coarse-coded set of neurons.

Figure 1.9: An example of intrinsic coordinates. Everyone can experience mental
rotation to proof that the first image is not representing a letter R but it’s a mirror
of it. [2]

So the conclusion is that human vision uses coordinate frames embed-
ded in object and embedding parts of objects and represents those coor-
dinate frames but, if it represents the pose of the object, the relationship
between its embedded coordinate frame and the viewer spreads over a
bunch of numbers, not just in one.

Invariance

The second argument against pooling is that the neural network it’s solv-
ing the wrong problem because we don’t want the neural activities to be
invariant to viewpoint, we want the knowledge to be invariant to view-
point. So Hinton talk about the equivariance: changes in viewpoint lead
to corresponding changes in neural activities. From one hand we want

34

Deep Learning for image recognition: state of the art

that label doesn’t change with viewpoint, so the final label needs to be
viewpoint-invariant, but we want a representation where as you change
viewpoint then it change just like the viewpoint does (Figure 1.10).

Figure 1.10: CNNs can give ‘place-coded’ equivariance for discrete translations
like this one in which change in pixel positions leads to change in representation.
[2]

There are two types of equivariance: place-coded and rate-coded. The
first is about translating by a whole number of pixels that leads represen-
tation change as well. The second it’s verified when an object is moved
around and the same neurons are encoding it but with a change in activ-
ities. The interpretation is that at low level we have very small domains
where tiny changes could change the rates; if these changes are more and
more big the change is in neurons and then in another bunch of neurons,
running from a domain to another. If we moved at high levels we can’t
go a long way without changing neurons are coding it but the activities of
neurons changes to tell you where it is. So the idea is that higher-level cap-
sules have bigger domains so low-level ‘place-coded’ equivariance gets
converted into high-level ‘rate-coded’ equivariance.

So when detected feature moves around the image or its state some-
how changes, the probability still stays the same (length of vector does
not change), but its orientation changes.

Absence of linear structure

The worse property of CNNs is they fail to use and underlying linear
structure, they don’t make use of the natural linear manifold that per-
fectly handles the largest source of variance in images. Spatial structure
is modeled by matrices, viewpoint invariant, that represent the transfor-

35

Deep Learning for image recognition: state of the art

mation from a coordinate frame embedded in the whole to a coordinate
frame embedded in each part. In fact a CNN, to learn the invariance, has
to train all along different viewpoints so it requires a lot of training data
and consequently a lot of training time. What is missing is a built-in bias
that could generalize in the right way across viewpoint.

A better approach would be to use the pose information to get every-
thing to be linear to better extrapolate.

For many years people would be saying you could think of vision as in-
verse graphics, but didn’t mean it literally. Anyway in a computer system
one can do graphics backwards literally. Graphics programs use hierarchi-
cal models in which spatial structure is modeled by matrices that represent
the transformation from a coordinate frame embedded in the whole to a
coordinate frame embedded in each part. These matrices are totally view-
point invariant and this representation makes it easy to compute the re-
lationship between a whole and the viewer starting from the relationship
between a part and the viewer. We can represent the relationship between
a whole and a part as a matrix of weights, which is completely viewpoint
invariant. The pose is the same of this matrix, to take suppose of the whole
and gives you the pose of the part. We have a capsule, a bunch of neurons,
and the activities of neurons represent different properties. With this ar-
chitecture we have that a higher level visual entity is present if several
lower visual entities agree on their predictions for its pose.

As an example we can see the prediction of a face in the known Pi-
casso’s Problem (Figure 1.11).

Figure 1.11: A representation of the so-called Picasso’s Problem. A CapsNet
would be able to distinguish between the two images while a CNN would say
that both of them are facec. [9]

36

Deep Learning for image recognition: state of the art

From one hand it is an old process in which we have fairly low di-
mensional features trying to predict the high dimensional poses and if the
dimensionality of the features is lower than dimension of the object you
have to predict a subspace and it need an array to accumulate results. In
this new way proposed the features have as many dimensions as the high
dimensional things and to get features you can reliably extract from pixels:
you can finally make point prediction.

Routing

The last thing is that pooling is a very primitive way to do dynamic rout-
ing. Hinton proposed a routing principle where you route the information
to the capsule that knows how to deal with it. So the idea is that we as-
sume that each part that we discover has one parent, that’s a single parent
constraint, or possibly no parents; so we want to model the process as a
parse tree and we want to find what is a part of the tree and what is not.

When you discover a pilot (like a circle . . .) and you don’t know from
this of what is a part, then you take the poses it sends to all the possible
places. To send is a kind of weighting and with it then you can choose
your bet. Each higher-level capsule receives different predictions for what
the pose of the input vector should be. Each of these predictions has a
voting-strength, a weight, between 0 and 1 which is called a bet. So the
capsule looks at all these incoming weak bets and find a bunch that agree
and, when it finds it, then the low level capsule sends its pose to several
high level capsules weighting by the prior. So there’s going to be a prior
that the pilot is might be a part of an object and this prior influenced the
first sending process.

A bet is treated as a fraction of an observation. The higher-level capsule
tries to find a subset of the predictions that agree well and it throws out
the remaining predictions. It gets a score which is big if many predictions
agree well. In this case we should be able to model the predictions much
better using mixture model. We are going to get a score for how good a
cluster is. In the capsules you find the clusters: you send your prediction
and verify if it belongs to the cluster or not.

37

Deep Learning for image recognition: state of the art

With this routing you send top-down feedback and that’s very differ-
ent from backpropagation. It’s based on the agreement between all the
possible prediction so it is called routing-by-agreement.

1.7 Capsules: simulating human vision

The substantial novelty of the proposed Capsule Networks is in the con-
ceptual changing introduced with the definition of capsule as entity in the
net. Basically the novelty is in the structure is the building block of the
net: it is no more a neuron, as in all the others neural networks, but it’s a
capsule. The most important difference between a neuron and a capsule
is that the first works with scalar input-output while the other with vec-
tor input-output. Another important novelty is not pretty structural but
about computational complexity, with the introduction of the routing-by-
agreement algorithm in stead of the pooling and the scalar product. These
novelties lead to the solution of the Picasso’s problem and give importance
to the spatial relationship between the objects.

The main characteristic of the CapsNet, which distinguish it from all
the other nets, is the use of equivariance in stead of invariance. So the
vector that represent the presence’s probability of the entity and all the
properties of this entity will change with spatial transformation (like trans-
lation and rotation). This change will be not in magnitude but in direction,
in a linear way with the transformation. For example if at a first low-level
basic shapes (like nose, eye, mouth . . .) are recognized, in a second high-
level the agreement between all the prediction for the whole object (like
human face) are computed, at which all the parts previously analyzed be-
longs to. It’s considering the spatial relationship between all the parts that
the CapsNet will be able to label the whole object (to say if it’s a face or
not).

38

Deep Learning for image recognition: state of the art

We can summarize the main differences between CNNs and CapsNets
in the following table:

CNN CapsNet

neuron building block capsule building block
scalar-to-scalar vector-to-vector

ReLU squashing
pooling routing-by-agreement

invariance equivariance
Picasso’s problem spatial relationship

far from human vision closer to human vision
needs a lot of training data needs less training data

few training time longer training time

So in stead of the invariance in neurons activities that used scalar input-
output Hinton proposed equivariance in capsules’ instantation parameters
which used vector input-output with a dynamic routing that requires less
data and more time to do the prediction.

1.8 The implementations

The idea behind Capsule Networks is really simple and Hinton has been
thinking about this for decades. He provided a formal definition for cap-
sule and a basic idea of how to implement this new architecture in [10] in
2011.

The reason why there were no publications before last year is simply
because there was no technical way to make it work before [9]. One of
the reasons is that computers were just not powerful enough in the pre-
GPU-based 3 era before around 2012. Another reason is that there was no
algorithm that allowed to implement and successfully learn a capsule net-
work. In the same fashion the idea of artificial neurons was around since

3A graphics processing unit (GPU) is a specialized electronic circuit designed to
rapidly manipulate and alter memory to accelerate the creation of images in a frame
buffer intended for output to a display device. Their highly parallel structure makes
them more efficient than general-purpose CPUs for algorithms that process large blocks
of data in parallel.

39

Deep Learning for image recognition: state of the art

1940-s, but it was not until mid 1980-s when backpropagation algorithm
showed up and allowed to successfully train deep networks.

So the idea of capsules itself is not that new but there was no algorithm
up for 6 years to make it work. This algorithm is called “dynamic routing
between capsules” and was published from Hinton in 2017 in [11]. This
algorithm allows capsules to communicate with each other and create rep-
resentations similar to scene graphs in computer graphics.

Then other progresses were made until now, in fact another implemen-
tation was proposed in 2018 based on matrices and then people starts to
use CapsNets approach also to segmentation task.

Here we go through the first three implementation proposed from Hin-
ton: transforming auto-encoders ([10]), vector capsules ([11]), matrix cap-
sules ([12]).

Transforming auto-encoders implementation

The first architecture that used capsules as its fundamental building block
was the transforming auto-encoder in [10]. In this early implementation
based on Capsule Theory, Hinton proposed to train the primary capsules
not by backpropagating the errors made in digit classification but by do-
ing unsupervised learning. The idea is to extract pose information using
a domain specific decoder producing an image by adding together contri-
butions from each capsule. Each capsule learns a fixed template that gets
intensity-scaled and translated differently for reconstructing each image.
The encoder must learn to extract the appropriate intensity and translation
for each capsule from the input.

In this early design a capsule use one of the values in its output vector
to represent the probability that the entity exists, while the other values in
the vector represent the instantiation parameters. The transforming auto-
encoder is the part of the network that generates the instantiation param-
eters to be used by the capsules. It was not a network built to recognize
objects in images, but rather to take an input image of an object and a pose
for the object, and output an image of the same object in the given pose.
So it’s more properly a reconstruction of the image from the capsules.

40

Deep Learning for image recognition: state of the art

Using capsules instead of neurons enabled an artificial network to eas-
ier understand the pose of the objects it tries to identify. One drawback of
this architecture however is that the transforming auto-encoder needs the
pose of the objects to be supplied externally.

A first representation of the capsule is given in Figure 1.12.

Figure 1.12: Graphical representation of three capsules of a transforming auto-
encoder that models translations. Each capsule in the figure has 3 recognition
units (red) and 4 generation units (green). The weights on the connections are
learned by backpropagating the discrepancy between the actual and target out-
puts. [10]. This specific capsule design’s only instantiation parameters are its x
and y position

.

Here one can see that each capsule has its own logistic “recognition
units” and its own “generation units”. The first act as a hidden layer for
computing three numbers: x, y, and p. These numbers are the outputs
that the capsule will send to higher levels of the vision system. Here p
is the probability that the capsule’s visual entity is present in the input
image. The second kind of units are used for computing the capsule’s
contribution to the transformed image.

41

Deep Learning for image recognition: state of the art

The graphic system, after extracting the probability for an entity and
its pose, translates the template according to the features and then adds
it to the image. Each template learned by the auto-encoder is multiplied
by a case-specific intensity and translate by a case-specific ∆x, ∆y, then it
is added to the output image. After having done that unsupervised with
learning the pose, the code can do supervised on top of this, modeling the
outputs of the primary capsules with a factor analyzer. It concatenate all
the parameters that have just been extracted in order to get a big vector.
Doing factor analysis on this factor leads to find underlying factors, for the
affine tranformation and for the deformation. The model is nicely because
as you change your viewpoint all of the factors are changing, providing
the equivariance.

Vector implementation and routing-by-agreement algorithm

The main characteristic of a Capsule Network is that both the inputs and
the outputs are vectors. After the convolutional layer, data are re-scaled
and taken as input vectors into capsules.

Each capsule has a vector output and each vector represents the en-
tity’s presence probability in module and its instantation parameters in
direction. We want the length of the output vector of a capsule to rep-
resent the probability that the entity is present in the current input. This
probability of presence is locally invariant. The unit vector that gives the
direction is a generalize pose; these instantation parameters that defined
the direction of the vector are equivariants.

Figure 1.13: A capsule’s output vector. [13]

42

Deep Learning for image recognition: state of the art

All of these information stored by the output vector go as input in the
digit caps, a layer made up of capsules in which the number of capsules
represent the number of class, so its aim is to do the final classification.

It’s a classification that goes from a low-level to an high-level, from the
recognition of simple objects to the recognition of objects more and more
complexes.

Taking into account the example of a layer with two capsules (Fig-
ure 1.14) we can understand how it works in details.

Figure 1.14: Example of a layer with two capsules. [13]

In this example the primary capsule layer is made up of two coupled
capsules 5 × 5 : one represents the entity “triangle” the other the entity
“rectangle”. The second layer is made up of two capsules 3× 3 represent-
ing one the entity “boat” and the other the entity “house”.

The behavior that characterizes the capsules is the algorithm called
routing- by- agreement. Its aim is to predict the presence’s probability for
the object’s pose, taking into account the parts that composed the object.
So it tries to found an agreement between all the predictions for the pres-
ence’s probability of the parts. Following the previous example, we can
see in Figure 1.15 how this routing works.

43

Deep Learning for image recognition: state of the art

Figure 1.15: In this step all the predictions are compared to see if there is agree-
ment between them. [13]

Once the rectangle and the triangle have been recognized with their re-
spective pose, the algorithm goes on recognizing as parts of another bigger
object, like a boat or a house. So it considers the two possibilities inde-
pendently and then the option that gives a better agreement between the
possibilities is chosen.

Weights associates at each prediction are updated based on the result
obtained, so they increase if there is agreement and decrease if there is dis-
agreement (Figure 1.16).

Figure 1.16: This is the step of the algorithm in which the weights are update.
They increase or decrease according to the agreement. [13]

This model is described mathematically with vectors and the routing-
by-agreement algorithm is represented in Figure 1.17.

So we can defined the output vector from the capsule i, that becomes
input vector for the capsule j, as:

44

Deep Learning for image recognition: state of the art

Figure 1.17: A scheme of the dynamic routing. [14]

~sj =
N∑
i=1

cijûji =
N∑
i=1

cijWij~ui (1.24)

where sum is over all the prediction vectors û produced by multiplying
the output ~ui of a capsule in the layer below by a weight matrix Wij .

The coupling coefficient determined by the iterative dynamic routing
process measures the agreement between the correct output and the pre-
diction, indeed it’s determined by a “routing softmax” whose initial bij are
the log probabilities that capsules are coupled:

cij =
ebij∑
k e

bik
with

∑
i

cij = 1 (1.25)

where the initialization is bij = 0 so that at the beginning each vector
is compared with all the capsules with the same probability, cij = 0.5. Re-
call that the length a capsule’s output vector is interpreted as probability
of existence of the feature that this capsule has been trained to detect and
orientation of the output vector is the parameterized state of the feature,
we can say that for each lower level capsule i, its weights cij define a prob-
ability distribution of its output belonging to each higher level capsule
j. Then each vector obtains a unit form and doesn’t change in direction,
scaling as follows:

~vj � 1→ 0 e ~vj ≈ 1→ 1 (1.26)

45

Deep Learning for image recognition: state of the art

To ensure it a non-linear “squashing” function is applied to the input
vector:

~vj =
‖~sj‖2

1 + ‖~sj‖2
~sj
‖~sj‖

(1.27)

So the aim is to compute the squash operation for all the vectors and
then update the coefficients cij increasing it when the agreement is high.

The agreement is simply the scalar product aij = ~vj · ûji. After the
routing-by-agreement the coefficients are updated as follows:

bij = bij + aij (1.28)

Here there is one of the most critical point, that characterize this ap-
proach from CNN. In fact in the classical approach we have the max-
pooling technique that ignore all but the most active neuron. Here we
want to preserve all the information, all the vectors, but with a change in
the corresponding weight.

The update mechanism reminds the Hebbian learning rule, that spec-
ifies how much the weight of the connection between two units should
be increased or decreased in proportion to the product of their activation.
This rule was built starting from Hebbs’s 1949 learning rule, which states
that the connections between two neurons might be strengthened if the
neurons fire simultaneously.

The Capsule Layer computes this routing procedure shown in Fig-
ure 1.17 that’s written in details in Table 1.1.

The first line says that this procedure takes all capsules in a lower level
l and their outputs ûji, as well as the number of routing iterations r. The
very last line tells you that the algorithm will produce the output of a
higher level capsule ~vj .

In the second line there is the coefficient bij that is simply a temporary
value that will be iteratively updated: at start of training the value of bij is
initialized at zero and, after the procedure is over, its value will be stored
in cij .

Line 3 says that the steps in 4–7 will be repeated r times, where r is the

46

Deep Learning for image recognition: state of the art

Routing

1. procedure Routing (ûji, r, l)

2. for all capsule i in layer l and capsule j in layer (l + 1): bij = 0

3. for r iterations do

4. for all capsule i in layer l: ci = softmax(bi)

5. for all capsule j in layer (l + 1): ~sj =
∑N

i=1 cijûji

6. for all capsule j in layer (l + 1): ~vj = squash(~sj)

7. for all capsule i in layer l and capsule j in layer (l + 1): bij =
bij + ûji · ~vj

return ~vj

Table 1.1: Routing algorithm procedure as described in [11] .

chosen number of routing iterations.
Step in line 4 calculates the value of vector ci which is all routing weights

for a lower level capsule i. This is done for all lower level capsules. Then
softmax will make sure that each weight cij is a non-negative number and
their sum equals to one, providing probabilistic nature of the coupling co-
efficients.

At the first iteration, the value of all coefficients cij will be equal, be-
cause on line two all bij are set to zero, this represents the state of maxi-
mum confusion and uncertainty: lower level capsules have no idea which
higher level capsules will best fit their output. Of course, as the process is
repeated these uniform distributions will change.

After all weights cij were calculated for all lower level capsules, we
look, in line 5, at higher level capsules. This step calculates a linear combi-
nation of input vectors, weighted by routing coefficients cij , determined in
the previous step. Intuitively, this means scaling down input vectors and
adding them together, which produces output vector ~sj . This is done for
all higher level capsules.

Next, in line 6, vectors from last step are passed through the squash

47

Deep Learning for image recognition: state of the art

non-linearity, that makes sure the direction of the vector is preserved, but
its length is enforced to be no more than 1. This step produces the output
vector ~vj for all higher level capsules.

So the first steps simply calculate the output of higher level capsules
while step on line 7 is where the weight update happens. This step cap-
tures the essence of the routing algorithm looking at each higher level
capsule j and then examines each input and updates the corresponding
weight bij according to the formula. The formula says that the new weight
value equals to the old value plus the dot product of current output of
capsule j and the input to this capsule from a lower level capsule i. The
dot product looks at similarity between input to the capsule and output
from the capsule. After this step, the algorithm starts over from step 3
and repeats the process r times. After r times, all outputs for higher level
capsules were calculated and routing weights have been established. The
forward pass can continue to the next level of network. Then, after the
classification of an object k, we can calculate the margin loss as a variation
of the Squared Hinge Loss:

Lk =

max{0,m+ − ‖~vk‖}2 if there is k

λmax{0, ‖~vk‖ −m−}2 if there isn’t any k
(1.29)

where m+ = 0.9, m− = 0.1 and λ = 0.5.
A Capsule Network has the following architecture:

Figure 1.18: Representation of a CapsNet architecture. From DigitCaps, even-
tually, there is the possibility to have a decoder of fully connected layers with the
aim of reconstruct the image [15].

48

Deep Learning for image recognition: state of the art

where the output of the standard convolutional layer it’s the input of
the primary capsule layer. The convolutional layer converts pixel intensi-
ties to the activities of local feature detectors that are then used as inputs to
the primary capsules The aim of this layer is to transform the 1D data rep-
resentation in a multidimensional representation, from scalar to vector. So
the entire volume of the output after convolution it’s divided in a certain
number of capsules, one for each entity to be recognize and represent.

The Primary Capsules are the lowest level of multi- dimensional en-
tities and, from an inverse graphics perspective, activating the primary
capsules corresponds to inverting the rendering process. This is a very
different type of computation than piecing instantiated parts together to
make familiar wholes, which is what capsules are designed to be good at.

Then there is a Convolutional Capsule layer: each primary capsule
contains convolutional units and its outputs sees the outputs of all of them.
Conv1 units whose receptive fields overlap with the location of the center
of the capsule. Each output is a vector with the same dimension of the
capsule and each capsule in the grid is sharing their weights with each
other. One can see PrimaryCaps as a Convolution layer with its block
non-linearity given by the squash operation.

The final layer called DigitCaps has one capsule per digit class and
each of these capsules receives input from all capsules in layer below.

Matrix implementation and EM algorithm

In 2018 Hinton and the other researches presented in [12] a refinement of
the architecture. This version of capsules consists in capsules with logistic
units to represent the presence of an entity and a 4×4 matrices which could
learn to represent the relationship between that entity and the viewer, the
pose.

Figure 1.19: A representation of capsule in [12].

49

Deep Learning for image recognition: state of the art

The new architecture uses capsules whose inputs and outputs are both
a matrix M and an activation probability a, rather than vectors, and the
previous dynamic routing-by-agreement algorithm is exchanged with a form
of expectation–maximization algorithm called EM routing. The objective
of this routing is to group capsules to form a part-whole relationship us-
ing the EM clustering technique usually used to cluster data points into
Gaussian distributions.

A capsule in one layer votes for the pose matrix of many different cap-
sules in the layer above by multiplying its own pose matrix by trainable
viewpoint-invariant transformation matrices that could learn to represent
part-whole relationships. The reasoning for exchanging the vectors to ma-
trices is in order to make the transformation matrices in between capsules
smaller.

Each of the votes is weighted by an assignment coefficient. These co-
efficients are iteratively updated for each image using the EM algorithm
between each pair of adjacent capsule layers, such that the output of each
capsule is routed to a capsule in the layer above that receives a cluster of
similar votes.

By using matrices for an output of size n, the transformation matrices
can be made with n elements instead of n2. The probability of the entity
represented by a capsule being present is no longer the length of its vector
but a separate parameter a. This in order to avoid the squashing function
which was not considered objective and sensible. In the dynamic routing
of [11] the agreement was measured as the cosine of the angle between
two pose vectors. Although this is an implementation that works, it is not
good at distinguishing between a quite good agreement and a very good
one.

In order to correct this the EM routing algorithm was introduced, de-
scribed below. When the capsules i in a lower layer l has calculated their
output matrices Mi and activation probabilities ai these are used to cast
a vote on the pose of each capsule j in the layer l + 1 above. Each cap-
sule i in layer l has a weight matrix Wij to each capsule j in layer l + 1

that is iteratively learned during the training of the network. The output
matrices Mi are multiplied with the corresponding weight matrix Wij in

50

Deep Learning for image recognition: state of the art

order to retrieve vote. A vote vij for the parent capsule j from capsule i
is computed by multiplying the pose matrix of capsule i with a viewpoint
invariant transformation matrix:

vij = MiWij (1.30)

The probability that a capsule i is grouped into capsule j as a part-whole
relationship is based on the proximity of the vote vij to all the other votes
(v1j, . . . , vkj) from other capsules. The weight matrixWij is learned through
a cost function and the backpropagation. It learns not only what an object
is composed of, it also makes sure the pose information of the parent cap-
sule matched with its sub-components after some transformation.

Even the viewpoint may change, the pose matrices and the votes change
in a co-ordinate way: EM routing is based on proximity and therefore it
can still cluster the same children capsules together even if they are trans-
formed. Hence, the transformation matrices are the same for any view-
points of the objects, so they are viewpoint invariant. We just need one set
of the transformation matrices and one parent capsule for different object
orientations to classify all the capsules.

EM routing clusters capsules to form a higher level capsule in runtime.
It also calculates the assignment probabilities rij to quantify the runtime
connection between a capsule and its parents, that is related with the acti-
vation of the capsule.

In EM routing, we model the pose matrix of the parent capsule with a
Gaussian so each component of the 4× 4 matrix represent both a the mean
(µ) and the standard deviation (σ) of the distribution.

The probability that the h−th component of the vote vij belongs to the
capsule j’s Gaussian model can be calculated as follow:

P h
i|j =

1

2π(σhj)2
exp

(
−(vhij − µhj)2

2(σhj)2

)
(1.31)

We now want to decide which capsules to activate in the layer above and
how to assign each active lower-level capsule to one active higher-level
capsule. Each capsule in the higher-layer corresponds to a Gaussian and

51

Deep Learning for image recognition: state of the art

the pose of each active capsule in the lower-layer corresponds to a data-
point. Using the minimum description length principle we have a choice
when deciding whether or not to activate a higher-level capsule. If we
do activate the higher-level capsule we must pay a fixed cost for coding
its mean and variance and the fact that it is active and then pay addi-
tional costs, pro-rated by the assignment probabilities, for describing the
discrepancies between the lower-level means and the values predicted for
them when the mean of the higher-level capsule is used to predict them
via the inverse of the transformation matrix. We can compute the cost of
describing a datapoint is to use the negative log probability density of that
datapoint’s vote under the Gaussian distribution (1.31), as an approxima-
tion. The incremental cost of explaining a whole data-point i by using an
active capsule j that has an axis-aligned covariance matrix is simply the
sum over all dimensions of the cost of explaining each dimension, h, of
the vote vij :

costhij = −ln(P h
i|j) (1.32)

= −ln
(

1

2π(σhj)2
exp

(
−(vhij − µhj)2

2(σhj)2

))
(1.33)

=
ln(2π)

2
+ ln(σhj) +

(vhij − µhj)2
2(σhj)2

(1.34)

Defining
∑

i rij the amount of data assigned to j and summing over all
lower-level capsules for a single dimension, h, of j we get:

costhj =
∑
i

rij

(
ln(2π)

2
+ ln(σhj) +

(vhij − µhj)2
2(σhj)2

)
(1.35)

=

(
ln(2π)

2
+ ln(σhj)

)∑
i

rij +
∑
i

rij
(vhij − µhj)2

2(σhj)2
(1.36)

The cost has to consider both the situation in which we do not activate a
capsule that should be active and, vice versa situation for false positive
activation. So two fixed costs have to be defined:

• βu for describing the poses of all the lower-level capsules that are as-

52

Deep Learning for image recognition: state of the art

signed to the higher-level capsule, that is the negative log probability
density of the data-point under an improper uniform prior;

• βa for describing the discrepancies between the lower-level means
and the values predicted for them when the mean of the higher-level
capsule is used to predict them via the inverse of the transformation
matrix.

The difference in cost between these two, is then put through the logistic
function on each iteration to determine the higher-level capsule’s activa-
tion probability. So the activation function of capsule j in then defined as
the logistic function of the total cost:

aj = logistic

(
λ

(
βa − βu

∑
i

rij −
∑
h

costhj

))
(1.37)

where βa is the same for all capsules and λ is an inverse temperature pa-
rameter. We learn βa and βu in training using backpropagation and set
fixed λ as a hyper-parameter, as inverse temperature parameter.

Routing algorithm returns activation and pose of the capsules in layer
l + 1 given the activation and votes of capsules in layer l. The EM method
fits datapoints into a a mixture of Gaussian models with alternative calls
between an E-STEP and a M-STEP.

The M-STEP re-calculate the Gaussian models’ values and parent acti-
vation aj from a, v and rij . The E-STEP determines the assignment proba-
bility rij of each datapoint to a parent capsule, based on the new Gaussian
model and the new aj . At the end of the last iteration the last aj will be the
parent capsule’s output. The EM procedure is described in the Table 1.2.

53

Deep Learning for image recognition: state of the art

EM Routing

1. procedure EM Routing (a, v)

2. for all capsule i in layer l and capsule j in layer (l+1): rij = 1/|Nl+1|
3. for r iterations do

4. for all capsule j in layer l+1: M-STEP (a, r, v, j)

5. for all capsule i in layer l: E-STEP (µ, σ, a, v, i)

return a,M

1. procedure M-STEP (a, r, v, j)

2. for all capsule i in layer l: rij = rij ∗ ai

3. for all h: µhj =
∑

i rijv
h
ij

rij

4. for all h: (σhj)2 =
∑

i rij(v
h
ij−µhj)2

rij

5. costh =
(
βu + log(σhj)

)∑
i rij

6. aj = logistic
(
λ
(
βa
∑

h cost
h
))

1. procedure E-STEP (µ, σ, a, v, i)

2. for all capsule j in layer (l + 1): Pj =

1√∏H
h 2π(σh

j)
2
exp

(
−∑H

h

(vhij − µhj)2
2(σhj)2

)
3. for all capsule j in layer l + 1: rij =

ajPj∑
k∈Nl+1

akPk

Table 1.2: EM algorithm procedure as described in [12] .

The loss proposed to learn the parameters during backpropagation is
the margin loss as in (1.29). In the article [12] it is called “spread loss ” and

54

Deep Learning for image recognition: state of the art

is defined as follow:

Li = max{0,m− (at − ai)}2 (1.38)

where m is the margin, while at is the activation of the target class and ai

is the activation of the wrong class. This loss maximize the gap between
the activation of the target class and the activation of other classes.

It’s supposed to start with a small margin,m = 0.2 and linearly increas-
ing it during training to m = 0.9. This approach avoids dead capsules in
the earlier layers.

Finally the total loss is calculated as the summation of all the contribu-
tions of wrong activation:

∑
i 6=t Li.

The architecture for this model is represented in Figure 1.20:

Figure 1.20: Architecture for matrix implementation of CapsNet as proposed in
[12].

The model starts with a convolutional layer with with a ReLU non-
linearity. All the other layers are capsule layers starting with the primary
capsule layer.

The 4 × 4 pose of each of the primary capsule types is a learned linear
transformation of the output of all the lower-layer ReLUs centered at that
location.

The activation of the primary capsules are produced by applying the
sigmoid function to the weighted sums of the same set of lower-layer Re-
LUs.

Primary capsules are followed by two convolutional capsule layers of
which the last one is connected to the final capsule layer that has one cap-
sule per output class. The transformation matrices are then shared be-

55

Deep Learning for image recognition: state of the art

tween different positions of the same capsule type and the scaled coordi-
nate (row, column) of the center of the receptive field of each capsule are
added to the first two elements of the right-hand column of its vote matrix,
in a technique called Coordinate Addition.

The routing procedure is used between each adjacent pair of capsule
layers. For convolutional capsules, each capsule in layer l + 1 sends feed-
back only to capsules within its receptive field in layer l. The instances
closer to the border of the image receive fewer feedback with corner ones
receiving only one feedback per capsule type in layer l + 1.

This new type of capsule system proposed in [12] introduces a logistic
unit for each capsule, to represent the presence of an entity, and a pose ma-
trix, to represent the pose of that entity. It introduced also a new iterative
routing procedure between capsule layers, based on the EM algorithm,
which allows the output of each lower-level capsule to be routed to a cap-
sule in the layer above in such a way that active capsules receive a cluster
of similar pose votes.

Matrix implementation with the EM algorithm achieves better accu-
racy than the state-of-the-art CNN, reducing significantly the number of
errors.

56

CHAPTER 2

MACHINE LEARNING FOR BRAIN IMAGING

“What I cannot create, I do not understand.”

R. Feynman

Computer scientists use biological models as inspiration to improve deep-
learning methods, so these two fields of research are very close to each
other. In fact, on the other side, computer performances in analysis and
recognition are applied on brain images to unlock deeper biological in-
sights into the functionality of our brains.

So one of the most studied and fascinating applications of deep learn-
ing techniques is in brain imaging. Theoretical neuroscientists are working
to develop a multi-scale theory of the brain that synthesizes top-down and
data-driven bottom-up approaches. In particular cognitive neuroscientists
are looking at the nature of visual perception.

The crucial question is: how does the brain create a representation of
an object from multi-sensory information? Much work in the last decades
focused on object recognition as a framing problem for the study of high-
level visual cortex [16]. A deeper problem is that object recognition and
categorization are only a small slice of our visual systems can and must

57

2. Machine Learning for brain imaging

do. Computer vision field is increasingly moving onto study ‘scene under-
standing’: computer science and visual neuroscience holds the promise to
advance the state of understanding in both fields.

In this framework of research the best approach to brain imaging con-
cerns segmentation methods. So here we make a review of the state-of-
the-art neural networks used for segmentation and then we try to explain
how a CapsNets approach could be possible and useful for brain imag-
ing, studying both the construction of the architecture and the problem of
brain images in all the steps from the data set acquisition to the analysis of
it.

2.1 CNN for object segmentation

Object segmentation in computer vision communities has remained an in-
teresting and challenging problem over the past several decades. The com-
munities came to favor supervised techniques, instead of unsupervised
(MRF and CRF [17]), where algorithms were developed using training
data to teach systems the optimal decision boundaries in a constructed
high-dimensional feature space. In computer vision fields, various sets of
feature extractors were used to construct these spaces.

Deep learning techniques are used to achieve object recognition and
achieve a lot of success in classification problems. Usually CNNs were
applied to address computer vision and researchers tries to apply them to
structured prediction problems like semantic segmentation.

There are different levels of “scene understanding” that we can repro-
duce with machine learning algorithm [18]: image classification, object
localization, semantic segmentation and intance segmentation.

So the very first step is to classify the object then to provide additional
information about its spatial location. Semantic segmentation is the next
natural step in the progression from coarse to fine inference, making dense
prediction for every pixel. Further improvements is instance segmentation
which separates labels for different instances of the same class.

The typical use of convolutional networks is on classification tasks,
where the output to an image is a single class label. However, in many

58

2. Machine Learning for brain imaging

visual tasks, especially in biomedical image processing, the desired out-
put should include localization and usually a class label is supposed to be
assigned to each pixel.

The problem of label each pixel can be modeled as the problem to as-
sign a state from the label space L = {l1, l2, . . . , lk} to each one of the ele-
ments of a set of random variables X = {x1, x2, . . . , xN}.

Deep learning techniques, CNNs in particular, can be used for pixel-
level labeling problems like semantic segmentation thanks to their ability
to learn feature representations in an end-to-end fashion in stead of using
features that require domain expertise. The artificial neural networks that
are used to recognize shapes typically use one or more layers of learned
feature detectors that produce scalar outputs. The computer vision com-
munity uses complicated, hand-engineered features that produce a whole
vector of outputs including an explicit representation of the pose1 of the
feature.

Autoencoder neural network is an unsupervised learning algorithm
useful for shape recognition and object segmentation. Suppose we have
only unlabeled training example, we set {x(1), . . . , x(N)} where x(i) ∈ Rn,
the target values have to be equal to the inputs: y(i) = x(i).

The autoencoder is made up of an encoder network and a decoder net-
work. The first takes the input and outputs a feature map (vector or tensor)
that hold the information that represent the input. The other takes feature
vector from the encoder and gives the best closest match to the actual in-
put.

This architecture tries to learn a function that approximates the identity
function [19]. Each hidden unit i computes a function of the input that rep-
resents the activation of the neuron. So one can computes the maximum
of this function finding the input that maximize the activation. The visual-
ization of the output image helps to understand what feature hidden unit
i is looking for.

By examine all the images, one for each hidden unit, we can under-
stand what the ensemble of hidden units is learning. So the autoencoder

1In computer vision it refers to the combination of position and orientation of an object
with the term pose.

59

2. Machine Learning for brain imaging

learning algorithm is an approach to automatically learn features from un-
labeled data.

For semantic segmentation tasks Deep Convolutional Neural Networks
methods mainly utilize the architecture of Fully Convolutional Networks
(FCN). The trend is to convert CNN architecture constructed for classifi-
cation to a Fully Convolutional Network. This classification network with
downsampling operations sacrifices the spatial resolution of feature maps
to obtain the invariance to image transformations, so the results are coarse.

Many approaches have been proposed to solve the above problems.
For example some researchers applied dilated receptive fields and capture
larger contextual information without losing resolution. Others explore
multi-scale or global features for performance improvement. Another ap-
proach is to recover the spatial resolution by an upsampling or deconvolu-
tional path. For example SegNet and U-net generate high-resolution fea-
ture maps for dense prediction. In these upsampling solutions, the decon-
volutional and unpooling layers are appended with symmetric structure
of the corresponding convolutional and pooling layers.

A most recent alternative technique is the DeconvNet, which imple-
ments the deconvolutional idea also in learning process.

Newer deep architectures particularly designed for segmentation have
advanced the state-of-the-art by learning to decode or map low resolution
image representations to pixel-wise predictions. These segmentation ar-
chitectures usually share the same encoder network and they only vary in
the form of their decoder network.

This encoder network weights are typically pre-trained on a large ob-
ject classification data set.

The decoder network varies between these architectures and is the part
which is responsible for producing multi-dimensional features for each
pixel for classification. Each decoder in the Fully Convolutional Network
architecture learns to upsample its input feature map(s) and combines them
with the corresponding encoder feature map to produce the input to the
next decoder.

In the following sections we go through all the relevant methods used
for segmentation, both CNN based and not.

60

2. Machine Learning for brain imaging

2.1.1 Fully Convolutional Networks

Fully Convolutional Network (FCN), can transform a classification-purpose
CNN to produce spatial heatmaps by replacing fully connected layers
with convolutional ones (Figure 2.1).

Figure 2.1: Transforming fully connected layers into convolution layers enables a
classification net to output a heatmap. Adding layers and a spatial loss produces
an efficient machine for end-to-end dense learning [20].

Every classification networks could be adapted into FCN to transfer
their learned representations by fine-tuning to the segmentation task [20],
achieving state-of-the-art performances. While a general deep network
computes a general nonlinear function, a net with only convolutional lay-
ers computes a nonlinear filter operating on an input of any size and pro-
ducing an output of corresponding re-sampled spatial dimension.

FCN models hinder their application to certain problems and situa-
tions, for example their spatial invariance does not take into account useful
global context information and they are not completely suited for unstruc-
tured data such as 3D point clouds.

To achieve the task of semantic segmentation the classifier is usually
followed by a blob detection [21]. The blob detection is a procedure used

61

2. Machine Learning for brain imaging

to answer at the following questions: how should regions be selected au-
tomatically? And how to detect appropriate scales and regions at interest
when there is no a priori information available? How to determine the
scale of an object and where to search for it before knowing what kind of
object we are studying and before knowing where it is located?

This problem is intractable as a pure mathematical problem. The basic
tools to address this problem will be scale-space theory and a heuristic
principle stating that stable in space blob-like regions could correspond
to significant structure in the image. Blobs are regions that are brighter
or darker than the background and stand out from their surrounding. In
other words it’s a region associated with one local extreme.

The goal is to extract significant image features considering the appear-
ance and stability of these objects over scales. So it’s important to the de-
fine the spatial extent of the region around the blob, in [21] they proposed
to extent it until it would merge with another blob.

FCN approach gives a coarse label map, performing a simple decon-
volution implemented as bilinear interpolation. If on one hand this archi-
tecture accepts a whole image as an input and performs fast and accurate
inference, on the other hand works with fixed-size receptive field. So label
prediction is done with only local information for large objects while small
ones are often ignored.

For these reasons a lot of variants are done to try to optimize FCN and
solve its problems.

2.1.2 U-Net

U-Net is a variation of the FCN described above. It consists on a contract-
ing path and an expansive path, showed in Figure 2.2.

The first follows the typical architecture of a convolutional network
while the last consists in halving the number of feature map with upsam-
pling and upconvolution.

The network has 23 convolutional layers and the architecture looks u-
shaped thanks thanks to the symmetry between the two paths. U-net was

62

2. Machine Learning for brain imaging

Figure 2.2: U-net architecture (example for 32 × 32 pixels in the lowest resolu-
tion). Each blue box corresponds to a multi-channel feature map. The number of
channels is on top of the box. The x-y-size is provided at the lower left edge of the
box. White boxes represent copied feature maps. The arrows denote the different
operations.[22]

applied to three different segmentation tasks in [22] for neuronal struc-
tured and other cells segmentation. They found that this approach achieves
very good performance especially training in small data set with data aug-
mentation.

The most important characteristic of this architecture is that it doesn’t
have any fully convolutional layers and and only uses the valid part of
each convolutional, so with no padding. The overlap-tile strategy is used
to predict pixels in the border region, mirroring the input image in missing
context (Figure 2.3).

63

2. Machine Learning for brain imaging

Figure 2.3: Overlap-tile strategy in segmentation of neuronal structures. Predic-
tion of the segmentation in the yellow area, requires image data within the blue
area as input and missing input data is extrapolated by mirroring.[22]

2.1.3 SegNet

SegNet is a deep FCN for semantic pixel-wise segmentation [23]. It has
the structure of an autoencoder but it’s used for supervised learning tasks
and the decoders are integral part of the network (Figure 2.4).

Figure 2.4: SegNet architecture [23].

The encoder network consists of 13 convolutional layers, each of which
has a corresponding decoder layer. Each encoder performs convolution
with element-wise ReLU and 2×2 max-pooling indices with strides 2. The
resulting output it’s sub-sampled after the capture and store of boundary
information.

A more efficient way to store these it to consider only maximum in-
dices, for example the location of the maximum feature value in each pool-

64

2. Machine Learning for brain imaging

ing spatial window is memorized for each encoder feature map. These
indices are used from each decoder to upsample the input feature map.

So the role of the decoder network is to map the low resolution encoder
feature maps to full input resolution feature maps for pixel-wise classifi-
cation, using pooling indices computed in the max-poooling step of the
corresponding encoder to perform non-linear upsampling.

The final decoder output is fed to a multi-class soft-max classifier to
produce class probabilities for each pixel independently.

The output of the soft-max classifier is a K channel image of probabil-
ities where K is the number of classes. The predicted segmentation corre-
sponds to the class with maximum probability at each pixel.

The SegNet architecture was introduced to design an efficient method
for road and indoor scene understanding. It only stores max-pooling in-
dices of the feature maps and uses them in its decoder network to achieve
good performance so it results efficient both in terms of memory and com-
putational time.

SegNet is smaller and faster than other competing architectures and
achieves the segmentation task with great results.

2.1.4 DeconvNet

A critical limitation of FCN approach is that smooths detailed structures
of an object, because the label map is too coarse and deconvolution is over
simple. Semantic segmentation involves deconvolution conceptually but
learning deconvolution network is not very common.

A different strategy was proposed in [8] where they learn a multi-layers
deconvolution network composed of deconvolution, unpooling and ReLU
layers.

The architecture is composed of two parts: convolution and deconvo-
lution (Figure 2.5).

65

2. Machine Learning for brain imaging

Figure 2.5: Overall architecture of the DeconvNet. Given a feature representation
obtained from the convolution network, dense pixel-wise class prediction map is
constructed through multiple series of unpooling, deconvolution and rectification
operations. [8]

The first corresponds to feature extractor, it transforms the input image
to multidimensional feature representation. The other is a shape genera-
tor, it produces object segmentation from the feature extracted to convo-
lutional part. The output is a probability map in the same size of input
image. It indicates probability of each pixel that belongs to one of the
predefined classes and could be visualize thanks to an heat-map. The de-
convolutional part is a mirror of the convolutional part and they have an
opposite scope: the first part has to reduces the size of activation while the
second has to enlarges the activation. With common pooling the network
retains only robust activation so spatial information within receptive field
is lost. Otherwise unpooling reconstruct the original size of activations.
It records the locations of maximum activations selected during pooling
operation in switch variables.

Figure 2.6: Illustration of deconvolution and unpooling operations. [8]

66

2. Machine Learning for brain imaging

A hierarchical structure of deconvolutional layer are used to capture
different level of shape details: filters in lower layers tend to capture over-
all shape while filters in higher layers encodes class-specific fine-details.
So coarse-to-fine object structures are reconstructed through the propaga-
tion in the deconvolutional layers. By the combination of unpooling and
deconvolution, the network generates accurate segmentation maps. Re-
searchers in [8] proposed to combine FCN with DeconvNet using both the
outputs and computing the mean of them and finally applied CRF (Con-
ditional Random Fields [17]) to obtain the final semantic segmentation.
The performance of all the deconvolutional solutions described till now
are limited by their difficulties on model optimization or simple network
design.

Stacked Deconvolutional Network (SDN) is a deeper deconvolutional
network easier to optimize compared with most of the previous solutions.
In [24] they proposed a shallow deconvolutional network called SDN unit
and then they stacked multiple SDN units one by one with dense connec-
tions. Each SDN unit is an encoder-decoder network, the first operated as
a downsampling process and the second as an upsampling process. The
first encoder’s part employs full convolutional DenseNet-161 to obtain
high-semantic features, while the others are implemented as downsam-
pling block. In particular they consists of a max-pooling layer, 2 convolu-
tional layers and a compression layer. They used 2 downsampling block
to enlarge the receptive fields of the network. In the decoder module they
apply upsampling blocks to upsample feature maps to larger resolution.
They consist of a deconvolutional layer, several convolutional layers and a
compression layer. So for each SDN unit we have a classification network
to encode images and deconvolutional layers to generate more refined re-
covery of the spatial resolution. These SDN units are piled up from end to
end. Intra-unit connections are performed between convolutional layers
directly linking the inputs of previous convolutional layers to the ones of
back convolutional layers. Inter-unit connections are performed between
certain two SDN units in two different ways: linking encoder to decoder
of the adjacent SDN unit, connecting the multi-scale feature map from the
encoder of the first SDN unit to the decoder modules of each SDN unit.

67

2. Machine Learning for brain imaging

This techniques of stack multiple shallow deconvolutional networks
with random initialization leads to additional optimization difficulty but
hierarchical supervision is applied during the upsampling process, it en-
sures that early layers of the network can obtain more gradient feedback.

2.1.5 Previous approaches to segmentation topic

In 1992 a method for the creation of Machine Learning came into the lime-
light: Support Vector Machine. It was born as a direct implementation
of a learning theory based on Statistical Learning Theory (SLT) from re-
searchers that have been looking for a new principle capable of overcom-
ing a few drawbacks that the moment theory involved. With this the-
ory they proposed a new learning principle which could lead machines
throughout their learning process: the Structural Risk Minimization (SRM),
by which the machine is forced not only to try to learn an experience at
disposal, the Empirical Risk Minimization (ERM), but it must be able to
generalize.

From that moment on SVM gained an enormous popularity perform-
ing supervised learning task in both classification and segmentation. The
roots of this approach is the Support Vectors method of constructing the
optimal separating hyperplane introducing decision rules used to binary
classification.

In [25] Campanini et al. have proposed a variant for a SVM approach.
This new method is based on the detection of the region of interest without
the extraction of any feature by exploiting all the information available on
the image with a single pixel approach.

They used this method for digital mammograms, where it’s difficult to
identify morphological, directional or structural quantities that can char-
acterize the lesions at any scales and any modalities of occurrence because
the visual manifestation in the mammogram of the shape and edge of a
lesion depends upon the physical properties of the lesion, the image ac-
quisition technique and the projection considered. Clinical trials and ret-
rospective studies indicate that the detection rate can be increased with
Computer Aided Detection (CAD) systems, without any significant de-

68

2. Machine Learning for brain imaging

crease of specificity. The automatic detection of masses can be made diffi-
cult by the wide diversity of their shape, size and subtlety.

Detection methods often rely on a feature extraction step: here, the
masses are isolated by means of a set of characteristics which describe the
opacities. Due to the great variety of the masses, it is extremely difficult
to get a common set of features effective for every kind of masses. This is
why they proposed a mass detection system which does not rely on any
feature extraction step.

The algorithm automatically learns to detect the masses by the exam-
ples presented to it, with the same idea developed with Representative
Learning. In this way, there is no a priori knowledge provided by the
trainer: the only thing the system needs is a set of positive examples
(masses) and a set of negative examples (non-masses). Then they con-
sidered mass detection as a two-class pattern recognition problem and
the great amount of information handled by the algorithm is classified by
means of a Support Vector Machine classifier.

The advantages of SVM over other classifiers are that its setting is eas-
ier, it usually performed better on novel data and it was able to compress
the useful information of high-dimensional spaces into a small number of
elements named support vectors. SVMs are therefore capable of learning
in sparse, high-dimensional spaces, by using very few training examples.

The algorithm encodes all the regions of the image in the form of vec-
tors, these vectors being then classified as suspect or not by means of an
SVM classifier. The system is virtually able to detect lesions whatever posi-
tion these may occupy and at different scales in the input mammographic
image; this is realized by scanning and classifying all the possible loca-
tions of the image with the passage of a window called crop. By combin-
ing the scanning pass with an iterated resizing of the window, multi-scale
detection is so achieved. Each crop classified as positive identifies an area
judged as suspect by the CAD system.

The solution implemented is that of using scanning masks of different
dimensions and subsampling the crops of the image extracted from that
mask to a prefixed size of pixels, this is why we can call it a single pixel
approach.

69

2. Machine Learning for brain imaging

For each crop, the vector of coefficients is used as input for the first
SVM classifier. Once trained, the SVM classifies each crop. For each crop,
SVM gives the distance from the separating hyperplane for positive (sus-
pect) regions. This distance is an index of confidence on the correctness
of the classification: a vector classified as positive with a large distance
form the hyperplane will have a higher likelihood of being a true positive
as compared to a vector very close to the hyperplane, and hence close to
the boundary area between the edges of the two classes.So there is a list
of suspect candidates, where each candidate consisting of a crop with a
distance from the hyperplane greater than a prefixed threshold.

All the candidates are then passed to a second SVM classifier to elim-
inate the false candidates selected by the first classifier, usually survived
because of theirs high distance from the hyperplane. The task of the two
classifiers are quite different. The first SVM must have a very small error,
the second SVM could have a worse error, compared to the first one.

The last step of the detection scheme consists of the merging of the
multi-scale information. The output of the second SVM classifier is a set
of candidates detected at either one of the scales.

The scanning step at one particular scale is diverse from the others.
They fuse all the candidates within a specified neighborhood into a single
candidate. Therefore, the output of the detection method (called expert) is
a list of suspect regions, each one detected at least at one scale.

An ensemble of experts improves the overall performance of individ-
ual experts, if the individual experts are independent, or negatively de-
pendent. Each expert differs from the others for the training sets and/or
for the kernel used in the SVM classifiers.

A region is considered suspect only if at least two (of three) experts
detect that region.

The idea is to provide the classifier with a complete representation of
the image, without guiding the generalization of the class with assump-
tions deriving from our modeling of the pattern. To this aim, in [25] they
used an over-complete dictionary of Haar wavelets 2. A redundant encod-

2The Haar wavelet is a sequence of rescaled "square-shaped" functions which together
form a wavelet family or basis. Wavelet analysis is similar to Fourier analysis in that it

70

2. Machine Learning for brain imaging

Figure 2.7: Three experts: the prompted image consists of any overlapped suspect
regions “voted” by at least two of three experts. Each expert corresponds to a
detection system with the merging of multi-scale information.[25]

ing of the data with spatially superposed scale has a greater number of
coefficients. The wavelet tranform is calculated for each of the crops pro-
duced by scanning at the various scales.For each level of decomposition,
three types of coefficients are obtained, namely horizontal, vertical, and
diagonal.

If no restriction is placed on the class of functions when choosing the
estimate the rule function with SVMs, it could happen that even a function
that performs well with training data may not generalize well to unseen
examples. The minimization of the training error it is necessary to restrict
the class of functions. Restricting the complexity of the chosen function
class means avoid the overfitting problem.

The Maximal Margin Hyperplane (MMH) is finally computed as a de-
cision surface.

allows a target function over an interval to be represented in terms of an orthonormal
basis.

71

2. Machine Learning for brain imaging

Note that the shifting procedure of the detection step is very similar
to the process of subsampling an image with a convolution mask. As a
result of the convolution, we obtain a new image of reduced dimension
where the pixel value is set as the output of SVM for the given mask. In
this view, SVM behaves like a filter which transforms the original image
in a likelihood image according to a prefixed model. In this new represen-
tation pixels with high value correspond to an area of the mammogram
with high probability to contain a mass. In Figure 2.7 they shows these
likelihood images for different scale of search.

(a) The likelihood images at multiple scan levels.

(b) Peak identification at one level scan. Likelihood image (left), identified
blobs (center) andpeak (strong) elements (right).

Figure 2.7: Results from [26].

72

2. Machine Learning for brain imaging

2.2 CapsNet for object segmentation

In the last few years, deep learning methods, in particular convolutional
neural networks, have become the state-of-the-art for various image anal-
ysis tasks. Specifically related to the object segmentation problem, U-Net,
Fully Convolutional Networks and other encoder-decoder style CNNs have
become the desired models for various medical image segmentation tasks
and constitute a popular class of solutions for segmentation, producing
state-of-the-art results in a variety of applications. They are commonly
constructed with an encoder-decoder architecture and their success de-
pends on finding an architecture to fit the task. So researchers work on
designing new and more complex deep networks to improve the expected
outcome. This naturally brings high number of hyperparameters to be
configured, making the overall network too complex to be optimized.

Moreover convolutional neural networks have shown remarkable re-
sults over the last several years but do come with their own set of flaws.
Originated from and constructed upon convolutional neural networks,
FCNs’ encoders inherit some common drawbacks of CNNs, one of which
is the lack of an internal mechanism in achieving viewpoint-
invariant recognition. As a result, more data samples or additional net-
work setups would be required for objects from different viewpoints to
be correctly recognized. The absence of explicit part-whole relationships
among objects imposes another limitation for FCNs – without such a mech-
anism, the rich semantic information residing in the higher layers and the
precise boundary information in the lower layers can only be integrated
in an implicit manner.

Otherwise the new architecture of Capsule Networks, shown great ini-
tial results and formed meaningful part-to-whole relationships not found
in standard CNNs that could be very useful for segmentation tasks. Such
part-whole hierarchy equips capsule nets with a solid foundation for view-
point-invariant recognition, which can be implemented through dynamic
routing or EM routing. The same hierarchy, if properly embedded into a
segmentation network, would provide a well-grounded platform to spec-
ify contextual constraints and enforce label consistency.

73

2. Machine Learning for brain imaging

The task of segmenting objects from images can be formulated as a
joint object recognition and delineation problem. The goal in object recog-
nition is to locate an object’s presence in an image, whereas delineation
attempts to draw the object’s spatial extent and composition so apart from
recognizing the object, we also have to label that object at the pixel level,
which is an ill-posed problem.

Recent studies have hypothesized that capsules can be used effectively
for object segmentation with high accuracy and heightened efficiency com-
pared to the state-of-the-art segmentation methods.

The simple three-layer capsule network showed remarkable initial re-
sults producing state-of-the-art classification results on the MNIST dataset
and since then, researchers have begun extending the idea of capsule net-
works to other applications. No work existed in literature for a method of
capsule-based object segmentation since last year, because performing ob-
ject segmentation with a capsule-based network is difficult for a number
of reasons: is extremely computationally expensive, both in terms of mem-
ory and run-time and the number of parameters required quickly swells
beyond control.

2.2.1 SegCaps

In [27] LaLonde et al. studied the possibility to use Capsule Networks for
object segmentation. This work is the first in literature where a convolutio-
nal-deconvolutional capsule network is proposed. They used their so called
SegCaps to segment pathological lungs from low dose CT scans and they
compared the results with other U-net based architecture.

They solved memory burden and parameter explosion given by the
original CapsNet architecture extending the idea of convolutional cap-
sules and rewriting the dynamic routing algorithm. Changes from the
original article are made in order to adapt CapsNet to segmentation tasks.
The original dynamic routing tales place between every parent and every
possible child, the modification proposed is to route children capsule only
to parents within a defined spatially-local kernel. The other modification
is to not shared the transformation matrices with all the capsules but only

74

2. Machine Learning for brain imaging

within capsules of the same type. Considering these changes the algo-
rithm proposed take the name of “locally-constraint dynamic routing”.

Besides these novelties the SegCaps architecture has also “deconvolu-
tional” capsule, to achieve segmentation tasks Figure 2.8.

Figure 2.8: The architecture of SegCaps proposed in [27] for object segmentation.

They operate using transposed convolutions routing by the routing
proposed above. This convolutiona-deconvolutional capsule architecture
is far deeper than the original three-layers capsule network and extend the
masked reconstruction of the target class as a method for regularization to
the problem of segmentation.

These modifications allowed the authors to operate on large images, a
slice of a CT scan of 512× 512 pixel.

Each image is passed through a 2D convolutional layer which produces
16 feature maps of the same spatial dimension. This is the first set of cap-
sules with a single capsule type: a grid of 512 × 512 each of which is a 16
dimensional vector. It’s then followed by the first convolutional capsule
layer. Generalizing mathematically, at a layer l we have a set of capsule
types T l = {tl1, . . . , tln | n ∈ N} and for every tli ∈ T∃ an hl × wl grid
composed by chidl capsules zl−dimensional. Here hl × wl is the spatial
dimension of the output of previous layer l − 1 and the capsules could be

75

2. Machine Learning for brain imaging

written as:
C = {c11, . . . , c1wl , chl1, . . . , chlwl} (2.1)

where each cjk is a vector zl−dimensional. At the next layer l + 1 we have
T l+1 capsule types and a grid hl+1 × wl+1 of parent capsule each of which
is zl+1−dimensional. We could write these parents capsules as:

P = {p11, . . . , p1wl+1 , phl+11, . . . , phl+1wl+1} (2.2)

This is the so called primary capsule layer, then we have the convolutional
capsule layer in which every parent capsule pxy ∈ P receives a set of pre-
diction vectors {ûxy|tl1 .ûxy|tl2 , . . . , ûxy|tln} one for each capsule type tli ∈ T l.
Each of the prediction vectors is calculated as follow:

ûxy|tli = Mtli
× Uxy|tli ∀t

l
i ∈ T l (2.3)

where Mtli
is a transformation matrix learned via backpropagation and

Uxy|tli is a sub-grid of child capsules with a defined kernel center at (x, y).
The sub-grid has shape kh × kw × zl where kh × kw are the dimensions of
the user-defined kernel. The transformation matrix has shape kh × kw ×
zl × |T l+1 × zl+1 and this doesn’t depend on the spatial location (x, y): the
same Mtli

is shared across all spatial locations within a given capsule type
tli. The final input to each parent capsule pxy ∈ P is computed as follow:

pxy =
∑
n

rtli|xu · |t
l
iûxy|tli (2.4)

where rtli|xu are the routing coefficient computed by a “routing softmax ”:

rtli|xu =
exp(btli|xy)∑
k exp(btlik)

(2.5)

determined by dynamic routing with the update of the log prior probabil-
ities btli|xy that ûxy|tli should be routed to pxy.

Using the kernel the creation of prediction vector in (2.3) is locally con-
straint and route only of child and parents belonged to the same space is
allowed. After this, following the original procedure, the output capsule

76

2. Machine Learning for brain imaging

is compute using non-linear squashing function:

vxy =
‖pxy‖2
l +
∥∥p2xy∥∥ pxy

‖pxy‖
(2.6)

where vxy is the output of the capsule at (x, y) and pxy is its final input
calculated in (2.4).

2.2.2 Tr-CapsNet

Following the idea to expand the CapsNet applications, has recently been
introduced a capsule-based neural network model to solve semantic seg-
mentation problem [28]. The goal of image segmentation is to compute
the probability of each pixel belonging to certain class type and the new
solution proposed is specifically designed for this purpose. The new ar-
chitecture is called Tr-CapsNet and is made up of three modules: feature
extraction, capsule and traceback, upsampling (Figure 2.9).

Figure 2.9: Overall architecture of our Tr-CapsNet. The traceback pipeline, shown
as red arrows, is the major innovation of this paper. GT stands for ground-truth.
[28]

77

2. Machine Learning for brain imaging

The first has the scope to capture discriminative features of the input
data and it consists in a sequence of convolutional layers. The second con-
sists in primary capsule layer and class capsule layer then, in the same
module, there is the traceback pipeline. This is the innovation proposed in
the article and its aim is to produce class maps of the same size as the
primary capsule which are taken as input in convolution layer. The third
module is based on the deconvolution scheme, so it has to restore the orig-
inal resolution by upsampling the label map computed in the previous
layers. The traceback procedure is characterized by the possibility to infer
the probability P (Ck) of a class label through repeated applications of the
product rule and the sum rule, tracing the class label in the class capsule
layer with backpropagation layer-by-layer.

The probability of a position belonging to certain class P (Ck) in layer l
could be calculated as:

P (Ck) =
∑
i∈T l

P (Ck, i) =
∑
i∈T l

P (i)P (Ck|i) (2.7)

and its the same also for the original capsule network with i capsule type.
The novelty is in let the likelihood of certain position taking Ck as its class
label be available after inference reaches the next layer. So P (Ck|i) can be
estimate as follow:

P (Ck|i) =
∑
j∈T l+1

P (Ck, j|i) (2.8)

=
∑
j∈T l+1

P (j|i)P (Ck|j, i) (2.9)

=
∑
j∈T l+1

cjiP (Ck|j) (2.10)

where in (2.8) we assign i to the parent j and in (2.10) we found i to belong
to the same class of j. Here the coefficients cij are inferred with backprop-
agation. This mathematical derivations means that P (Ck|i) can be esti-
mated with a layer-by-layer backward propagation procedure, starting at
the layer l − 1, and repeatedly applying (2.10) to compute the conditional

78

2. Machine Learning for brain imaging

probabilities for the lower layers. It could be written into a recursive equa-
tion with respect to the upper layer, if we assume that each lower-layer
capsule only takes capsules in one particular position of the higher-layer
as its possible parents.

This represents the simple case where each lower-layer capsule only
take same-position capsules of the higher-layer as its possible parents.
This is strictly connected with the assumption at the base of the CapsNet
approach that “at each location in the image there is be at most one in-
stance of the type of entity that a capsule represents”([11]). So it works
when there is at most one instance of a category in the image but for the
image data that have multiple instances of same classes, capsule approach
has no guarantee to outperform CNNs in recognition accuracy. The trace-
back pipeline in Tr-CapsNet does not rely on the this one-instance assump-
tion, in fact it provides that capsules in two or more positions might be the
parents of a lower-layer capsule and a number of capsules take capsules at
different positions in next layer as their parents. For these cases traceback
procedure remains effective and the (2.10) should be modified as follow:

P (Ck|i) =

∑
n Pn(Ck|i)
N

(2.11)

where n is the n−th location for possible parents of the capsule i and N

is the total location number. In the article [28] they obtained successful
results for Tr-CapsNet, it outperform U-Net model both in MNIST data
set both in its original and occluded version.

79

2. Machine Learning for brain imaging

2.3 Motivations and data acquisition of brain im-
ages

Characterizing the cytoarchitecture of mammalian central nervous system
on a brain-wide scale is becoming a compelling need in neuroscience.

For example, realistic modeling of brain activity requires the defini-
tion of quantitative features of large neuronal populations in the whole
brain. Quantitative anatomical maps will also be crucial to classify the cy-
toarchtitectonic abnormalities associated with neuronal pathologies in a
high reproducible manner[29].

Cellular localization and projections throughout the whole brain is an-
other important step to understand brain functions.

These tasks are challenging both from a technological and computa-
tional point of view, in data acquisition and analysis. Techniques like
Computer Tomography (CT) or Magnetic Resonance Imaging (MRI) do
not yield cellular resolution, and mechanical slicing procedures are in-
sufficient to achieve high-resolution reconstructions in three dimensions.
The common used techniques in this research area are: Two-Photons To-
mography, Two-Photons Fluorescence Microscopy (TPFM), Light Sheet
Microscopy (LSM), Confocal Light Sheet Microscopy (CLSM). The LSM
technique permits reconstruction of the whole brain with micron-scale res-
olution in a timescale ranging from hours to few days [30]. Contrast, res-
olution and timescale are the most important parameters to be optimized
in order to achieve the best data acquisition. All of these techniques need
also a preventive special procedure to clear tissue.

The possibility to use these advanced procedures for whole brain map-
ping opens a new challenge: handle big data and extract quantitative in-
formation from them.

For these reasons the Human Brain Project (HBP) has the aim to put in
place a cutting-edge, ICT-based scientific research infrastructure, that will
permit scientific and industrial researchers to advance our knowledge in
the fields of neuroscience, computing and brain-related medicine. They
make several specific grants to create initial versions of six separate ICT

80

2. Machine Learning for brain imaging

Platforms and to make them available to external users. They will extend
the initial capabilities of these Platforms and transform them into an in-
tegrated scientific research infrastructure. The Neuroscience Subprojects
will extend their research in brain organization and theory to support the
building of increasingly sophisticated models and simulations, as well as
related work in brain-like computing and robotics, working up to repli-
cation of the whole mouse brain, while also laying the foundations for
simulation of the much larger and more complex human brain.

In Firenze there is a group involved in one of the HBP Subprojects, the
Biophotonics Group of LENS led by Francesco Saverio Pavone. The devel-
opment and the application of new optical methodologies and the conse-
quent acquisitions provide fundamental insights in the knowledge of the
brain and his diseases and represent a completely new approach for the
investigation of the physiology of neuronal network. LENS applies this
approach in both mouse and human Subprojects in which it’s involved.

Here we describe the workflow of LENS experimental lab [34]. It is
mostly focused in high resolution imaging in mouse brain and also in hu-
man brain cortex, using advance techniques such as light spectroscopy
and two photons florescence microscopy. These instruments acquired high-
resolution images which produced huge data sets as big as 1012 voxels per
single tomography, or several 70TB in terms of storage, so they need to be
processed to limit memory occupancy.

The first thing they have to do in a processing pipeline is image stitch-
ing: these instruments produced images in the form of a grid of over-
lapping tiles then they need to fused together in order to reconstruct the
global volume. To do this they used a stitching software developed in their
laboratory called ZetaStitcher. After image stitching they are able to ex-
tract information out of their raw images using a deep learning approach.
First there is a notation phase in which human experts create ground truth
used to train the network and after prediction they are able to extract the
spatial distribution of cells in the whole mouse brain or to do automatic
cells segmentation classification.

The data set is pretty big so recently they have started to experiment
with video compression algorithms to reduce data set size. A tomography

81

2. Machine Learning for brain imaging

really like moving in a sense, consecutive tiles in a tomography look like
consecutive frames in a video in a sense. This approach is very efficient to
reduce the data set size. They are able to reduce from an uncompressed
data set of 2.5TB to a 1.5GiB size for the same data set, maintaining really
good images quality. Retaining very good quality suitable for visualiza-
tion.

The whole mouse brain tomography was obtained with light sheet mi-
croscope, with sub-micron resolution. For this reason they are able to see
individual neurons pretty well. This particular data set showed here is
made up of 15 × 12 stacks, 23 GiB each, for a total of 4.2TiB. In order to
obtain the global volume seen here they use the stitching software as said
before.

An important phase of the processing pipeline is the manual annota-
tion phase in which they generate markers to pin points the centroids of
individual neurons in the whole mouse brain tomography, these markers
are used to train a neural network to generate synthetic images using these
markers.

Basically what the neural network does is enhanced neuronal bodies
while discarded everything else in the image that is not neuronal bodies.
It acts adding a non-linear filter so it’s easier to determine the coordinate
of every neuron.

Totally different data set a portion of the human brain cortex imaged
at the two photons microscope. Again here they did manual segmenta-
tion drawing the contours in individual neurons to classify them in their
shape and size. After training a neural network they were able to do auto-
matic segmentation of the cells shape. This works using a software frame
named ALIQUIS developed from Bioretics researchers [35], specializing in
machine learning for computer vision. With this technique it is possible to
see the 3D rendering, a reconstruction of cellular bodies in shape in order
to study how they are distributed in the space.

The reconstruction of the imaged volume is allowed thanks to a stitch-
ing tool that overlap all the tiles acquired in a proper way. After this step
the final image results made up of 109 pixels, with a file size on the order
of GiB [31].

82

2. Machine Learning for brain imaging

The progress on the analysis of these kind of data-set achieves the re-
sult of automatic identification of neurons first in mice and then in humans
brain. The algorithm used goes from clustering to segmentation and we
can enumerate and classify brain cells in real time allowing a deep under-
standing of brain functionality.

In the sections below hints of the analysis from mice and human brain
are presented.

2.4 Mouse brain data analysis

There are a lot of studies about the analysis of mouse brain images that try
to identify Purkinje cells in order to classify their soma 3. Purkinje cells are a
central part of the cerebellum, the part of the brain that plays an important
role in motor learning, fine motor control of the muscle, equilibrium and
posture but also influences emotions, perception, memory and language.

These cells are some of the largest neurons with an intricately elaborate
dendritic arbor, characterized by a large number of dendritic spines which
form nearly two dimensional layers through which parallel fibers from the
deeper-layers pass. A mouse brain has a volume of the order of 1cm3, TB
scale at the micron-resolution.

There are studies that propose automatic localization or segmentation
of cell bodies in 2D and 3D microscopy. Frasconi et al. introduced [30]
an algorithm for fully automated cell identification, addressing the prob-
lems of handle large data-set and a contrast variability. The algorithm is
based on mean shift clustering to detect soma centers, supervised seman-
tic deconvolution and manifold learning to filter false positive and false
negative. They produced the first complete map of a selected neuronal
population, Purkinjie cells, in a large area of the mouse brain, cerbellum
cortex. The most important step of their method is the mean shift cluster-
ing, which is made up of three major part: substacking, cell identification
and thresholding.

So the very first step is to partition the 3D images into a set of substacks

3Soma, or cell body, is the bulbous, non-process portion of a neuron or other brain cell
type, containing the cell nucleus.

83

2. Machine Learning for brain imaging

of size W × H × D and then overlap each other of a length M to ensure
that every cell with a center detected inside the substack of size (W −M)×
(H−M)×(D−M) falls entirely within the very first substack (Figure 2.10).
This procedure allows to avoid border effects.

Figure 2.10: Overlapping of substacks (depicted in 2D for simplicity). Sample
accepted and rejected after processing the central substack are shown as light and
dark circles, respectively [30].

After that the goal is to group together voxels belonging to the same
soma, in other words it’s to group together pixels sharing similar features
or colors. The number of cells is unknown and so is the number of clusters.

The approach used to clustering is non-parametric and it’s a variant
of the mean shift. In stead of place a kernel on each available data point
they proposed to use a chosen set of so called ‘seed’ S, determined by
the extraction of the local maxima after a convolution with a normalized
spherical filter applied on all local maxima.

Then the algorithm goes on with mean shift using a spherical kernel:

K(~a) =

1 if ‖~a‖ < R

0 otherwise
(2.12)

84

2. Machine Learning for brain imaging

All of the points analyzed get assigned to the “center of mass”of points
falling within the sphere defined by the kernel function. Finally thresh-
olding is applied to the results in order to limit the number of false pos-
itive detection. They set 3 ranges of voxels intensities and compute by
maximum entropy the two delimiting thresholds Θ1 and Θ2, identifying
background in the range [0,Θ1] and foreground in the range [Θ1,Θ2] and
[Θ2,∞). Regions with a non uniform intensity need to be filtered. This is
the whole point of semantic deconvolution. This step is carried out in a
supervised fashion: biologists annotated 10 substacks making the location
of the true centers in order to have 10 labeled training data.

Then a neural network is used as non-linear convolutional filters, trained
on cubic patchs of 2197 voxels. The neural network is made up of 2 fully
connected hidden layers, one with 500 and the other with 200 units, and a
sigmoidal output layer.

For backpropagation they trained the network for ≈ 100 epochs of
stochastic gradient descent with momentum and with a minibatch size
of 10.

The goal is to predict, for each voxel, the conditional probability that it
falls in a white area of the original image.

They observed that the performance of the mean shift algorithm in-
creases when applied to the image cleaned by the semantic deconvolution
technique (Figure 2.11).

Figure 2.11: A small volume from the mouse cerebellum before (left) and after
(right) semantic deconvolution. On the final image is much easier to run a reliable
automatic localization algorithm [29].

85

2. Machine Learning for brain imaging

The last procedure described in the article take into account the archi-
tecture of the cerebellum cortex. It folds into folia so it’s naturally modeled
as manifolds.

So apply this model means consider the cell’s organization not as a
random distribution in 3D space but as a pattern with fixed distances. This
step contributed to remove false positive.

So with this technique the provide an estimate of the number of cells
and a map of their spatial distribution (Figure 2.12).

Figure 2.12: With the application of the manifold filter, the algorithm detected
224222 Purkinje cells in the whole cerebellum image. This is the final set of pre-
dicted cell centers as a point cloud [30].

Human supervision is needed only for the initial training of a neural
network, but it’s able to generalize so this semantic deconvolution can
perform well for the same cell type of other brain.

Another important work in this research area was done by Silvestri et
al. [29].

They used the previous techniques and, starting from the cloud of
points representing all the Purkinjie neurons, performed a further anal-
ysis (Figure 2.13).

86

2. Machine Learning for brain imaging

Figure 2.13: Experimental pipeline used in [29] for large-volumes quantitative
neuroanatomy. After acquisition and processing, the final raw image stacks are
stitched together and a software for automatic cell localization is applied. The re-
sulting cloud of points representing the position of labeled cells can be the starting
point for many different quantitative neuroanatomical analysis.

They highlight both the clusterization properties of the point cloud and
their distribution in the layer localizing the gap between them.

These measurements can provide robust insights into the distribution
of Purkinjie cells under different physiological or pathological conditions.

2.5 Human brain data analysis

To study human brain samples a new technique was recently developed
by Italian researchers in Firenze at LENS. The used Two-Photons fluores-
cence microscopy on tissues previously cleared, cutted and incubated.

This method, as like as LSM, produces a mosaic of overlapping 3D
stacks so to recreate the imaged volume stitching procedure was used. To
analyze these data in [31] they proposed to use image segmentation. Seg-
mentation methods try to label each pixel of the image and then extract a
semantic picture of the scene, splitting background from foreground. In
this work they proposed a segmentation of neurons in 3D images of hu-
man brain cortex working at the level of local visual pattern, as texture,
rather than of single pixels. To address this problem they search for the so-
lution in deep convolutional neural network architectures. The procedure
starts considering each slice of the z-stack as independent image and a
standard CNN with 3 layers is adopted to classify each single pixel of each
slice. The CNN used was made up of (32, 64, 64) kernels of (5×5, 3×3, 3×3)

size with ReLu activation function followed by 2 × 2 max pooling and by
2 fully connected layers of 128 neurons with ReLu and a softmax output
layer. This classification returns the probability of that label predicted for

87

2. Machine Learning for brain imaging

that pixel is the correct one and these resulting probabilistic values are
plotted into the heatmap 4.

Figure 2.14: Heatmap from [31].

This step is followed by a probabilistic blob detection in which a con-
tour finding algorithm localized objects in the heatmap. Here it’s possible
to set the desired confidence value for accepting or rejecting objects in the
contour finder.

Subsequent reconstruction of the 2.5D volume is performed via com-
puter graphics algorithms.

The segmentation procedure described above is a supervised classifica-
tion: as like as for the mouse’s brain, biologists annotated manually 29 im-
ages finding 104 kinds of neuron. With the analysis they found 88 neurons
correctly segmented with 12 false positive blobs, afforded a sensitivity of
about 85%.

So the classification of human brain cells was done in a binary way
identifying only if the object is a neuron or not, but the same method
could be applied in multiple classification to discriminate different neu-
ronal classes (Figure 2.15).

4A heatmap is a graphical representation of data where the individual values con-
tained in a matrix are represented as colors.

88

2. Machine Learning for brain imaging

Figure 2.15: There are as many as 10,000 specific types of neurons in the human
brain, this image identifies how neurons come in various shapes and sizes, called
neurons morphological types [32]

In fact, considering the shape of the neurons, the algorithm could dis-
tinguish, for example, pyramidal to non-pyramidal cells. This result is
very useful to researchers that work on quantitative histological analysis
of biological tissue.

Other studies was done on the analysis of human brain cells, to count
them and classify [33], but the most important and exciting feature of re-
cent studies is that they can use acquisition techniques in vivo. That allows
more possibilities both in research and diagnostic.

89

CHAPTER 3

MNIST ANALYSIS

“Se tu sapessi quel che stai facendo probabilmente ti annoieresti.

Solo perchè ti annoi non vuol dire che sai cosa stai facendo.”

In this chapter we propose the very first attempt to implement networks
for image classification task. The experimental application was made us-
ing a public online data set and the aim is to compare the structure and
the results of CNN and CapsNet. The use of a very known data set is al-
ways the first experimental step to study and understand an innovative
approach, like CapsNet, so the focus is not on the data result itself but
more on how the net works.

MNIST is the most famous database used for machine learning and its
name means Modified National Institute of Standards and Technology: NIST is
a physical science laboratory, an agency of the United States Department
of Commerce; “modified” because it’s a combination of two of NIST’s
databases, Special Database 1 and Special Database 3, consisting respec-
tively of digits written by high school students and employees of the United
States Census Bureau. So MNIST is created by "re-mixing" the samples
from NIST’s original data sets. The whole data set contains handwritten
digit images [36]. It’s divided in 60K examples for the training set and

91

3. MNIST analysis

10K examples for testing. In many papers the official training set is di-
vided into an actual training set of 50K examples and 10K validation ex-
amples, when it is necessary for selecting hyper-parameters like learning
rate and size of the model.

All of the images have been size-normalized and centered, by subtract-
ing the mean from every feature, in a fixed image of 28 × 28 pixels. Each
pixel is represented by a value in [0; 255], from black to white with different
shades of gray. The data set also contains a label for each image.

An image is represented as a 1-dimensional array of 784 (28× 28) float
values between 0 and 1, from black to white. The labels are numbers be-
tween 0 and 9 indicating which digit the image represents.

This is an example of the output to visualize the data:

Figure 3.1: An example of 9 data expressed as image in black and white, with the
respective true label assigned.

As we can see in the following sections, the results on this data set lead
us to consider the CapsNet approach equal to CNN one. In fact for the
classification task for which we tested both the architectures we obtained
good comparable performance in terms of accuracy.

92

3. MNIST analysis

3.1 A CNN approach

For this analysis the data set is organized with shape [samples][width]
[height][pixels] and the one hot encoder is eventually used:

x_train=

x_train.reshape(x_train.shape[0],28,28,1).astype(’float32’)

x_test=

x_test.reshape(x_test.shape[0],28,28,1).astype(’float32’)

y_train=tf.keras.utils.to_categorical(y_train)

y_test=tf.keras.utils.to_categorical(y_test)

The model

We implemented a Convolutional Neural Network in TensorFlow to anal-
ize MNIST Data. In particular we used Keras, a high-level API to build
and train models that includes first-class support for TensorFlow-specific
functionality [37]. The model is made up of:

• Convolutional Layer with 6 filters (5,5) and no padding;

• Max Pooling Layer with pool size (2,2);

• Convolutional Layer with 16 filters (5,5) and no padding;

• Max Pooling Layer with pool size (2,2);

• Fully Connected Layer with 100 neurons and ReLU activation func-
tion;

• Output Layer with SoftMax activation function.

93

3. MNIST analysis

28x28x1 24x24x6
12x12x6 8x8x16 4x4x16

256
100

10

conv5x5, 6
stride (1, 1)

maxpool2x2
stride (2, 2)

conv5x5, 16
stride (1, 1)

maxpool2x2
stride (2, 2) flatten dense

dense

Figure 3.2: Representation of the CNN architecture used in this project.

The code for this model is:

model = tf.keras.models.Sequential([

tf.keras.layers.Conv2D(filters = 6,

kernel_size = (5, 5),

padding = ’valid’, data_format=’channels_last’,

input_shape= (28, 28, 1)),

tf.keras.layers.MaxPool2D(2, 2),

tf.keras.layers.Conv2D(filters = 16,

kernel_size = (5, 5), padding = ’valid’),

tf.keras.layers.MaxPool2D(2, 2),

tf.keras.layers.Flatten(),

tf.keras.layers.Dense(100, activation=tf.nn.relu),

tf.keras.layers.Dense(num_classes ,

activation=tf.nn.softmax)])

We can summarize the model in the following table:

Layer Type Output Shape Parameters

conv1 (None, 24, 24, 6) 156
maxpool1 (None, 12, 12, 6) 0

conv2 (None, 8, 8, 16) 2416
maxpool2 (None, 4, 4, 16) 0

flatten (None, 256) 0
fc (None, 100) 25700

output (None, 10) 1010

94

3. MNIST analysis

Training and testing

The code for the model configuration is:

model.compile(optimizer=’adam’,

loss=’categorical_crossentropy’, metrics=[’accuracy’])

where we choose the Adam algorithm as training procedure and cross-
entropy loss. Adam is an adaptive moment estimator that computes in-
dividual adaptive learning rates for different parameters from estimates
of first and second moments of the gradients. Empirical results demon-
strate that Adam works well in practice and compares favorably to other
stochastic optimization methods [38].

Using the default setting for parameters we have:

• learning rate = 0.001

• beta_1=0.9

• beta_2=0.999

• decay = 0.0 .

The cross-entropy loss is useful when the classes are mutually exclu-
sive. It’s defined as:

Li = −fyi + log

(∑
j

efj

)
(3.1)

where fj is the j-th element of the vector of class scores f while fyi is the
true label [6].
To train the model we use the code:

train = model.fit(x_train, y_train, epochs=100,

validation_data=(x_test, y_test))

where we used test set as validation test. We tried two different configu-
ration, changing the batch_size and the epochs.

95

3. MNIST analysis

So I’ve done two simulation with the following parameters:

• Batch_size=128, Epochs=20;

• Batch_size=32, Epochs=100.

Results

The results are:

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
epoch

0.90

0.92

0.94

0.96

0.98

1.00

ac
cu

ra
cy

model accuracy
train
test

(a) Batch_size=128, Epochs=20, Test accuracy: 0.9873

0 20 40 60 80 100
epoch

0.90

0.92

0.94

0.96

0.98

1.00

ac
cu

ra
cy

model accuracy

train
test

(b) Batch_size=32, Epochs=100 Test accuracy: 0.9876

Figure 3.3: These are the accuracies of the CNN model in function of the number
of epoch.

96

3. MNIST analysis

3.2 A CapsNet approach

For this analysis the data set is organized with shape [samples][width][height]
[pixels] and the one hot encoder is eventually used, as well as in previous
CNN implementation.

The model

An implementation [39] of the Capsule Network was used to analize MNIST
Data, based on the paper “Dynamic Routing Between Capsules” [11] in
which how to use capsule with an algorithm named routing-by-agreement is
pointed out. The model is made up of (Figure 3.4):

• Convolutional Layer with 256 filters (9, 9), no padding and ReLU
activation function;

• Primary Capsule Layer with 32 channels of convolutional 8D cap-
sules (9, 9);

• Digit Capsule Layer with 10 capsules 16D;

• Decoder Network made up of:

– Fully Connected Layer with 512 neurons, ReLU activation func-
tion;

– Fully Connected Layer with 1024 neurons, ReLU activation func-
tion;

– Output Layer with sigmoid activation function.

The dimensions of a digit capsule represent the variations: one always
represents the width of the digit, others are digit-specific variations, com-
binations of global variations or variations in a localized part of the digit.
We can manipulate the images to see the properties of the capsules.

97

3. MNIST analysis

(a) The model.

(b) The Decoder Network.

Figure 3.4: A rapresentation of the Capsule Network [11].

98

3. MNIST analysis

The code for this model follows.

Layer 1 : J u s t a c o n v e n t i o n a l Conv2D l a y e r
conv1 = layers.Conv2D(filters=256, kernel_size=9,

strides=1, padding=’valid’, activation=’relu’,

name=’conv1’)(x)

This layer converts pixel intensities to the activities of local feature detec-
tors that are then used as inputs to the primary capsules.

Layer 2 : Conv2D l a y e r with ‘ squash ‘ a c t i v a t i o n
then r e s h a p e t o [None , num_capsule , d i m _ c a p s u l e]
primarycaps = PrimaryCap(conv1, dim_capsule=8,

n_channels=32, kernel_size=9, strides=2, padding=’valid’)

Each primary capsule output sees the outputs of all 256 × 81 Conv1 units
whose receptive fields overlap with the location of the center of the cap-
sule.

Layer 3 : Capsu l e l a y e r . Rout ing a l g o r i t h m works h e r e .
digitcaps = CapsuleLayer(num_capsule=n_class,

dim_capsule=16, routings=routings ,

name=’digitcaps’)(primarycaps)

each of these capsules receives input from all the capsules in the layer
below.

Decoder network .
y = layers.Input(shape=(n_class ,))

masked_by_y = Mask()([digitcaps , y])

masked = Mask()(digitcaps)

Shared Decoder model in t r a i n i n g and p r e d i c t i o n
decoder = models.Sequential(name=’decoder’)

decoder.add(layers.Dense(512, activation=’relu’,

99

3. MNIST analysis

input_dim=16∗n_class))
decoder.add(layers.Dense(1024, activation=’relu’))

decoder.add(layers.Dense(np.prod(input_shape),

activation=’sigmoid’))

decoder.add(layers.Reshape(target_shape=input_shape ,

name=’out_recon’))

Decoder structure is used to reconstruct a digit from the DigitCaps layer
representation. The output of the digit capsule is fed into a decoder con-
sisting of 3 fully connected layers that model the pixel intensities.

Each layer is implemented following the procedure in the article [11].
We can summarize the model as in Figure 3.5 and in the following

table:

Layer Type Output Shape Parameters

input (None, 28, 28, 1) 0
conv1 (None, 20, 20, 256) 20992

primarycaps conv2 (None, 6, 6, 256) 5308672
primarycaps reshape (None, 1152, 8) 0
primarycaps squash (None, 1152, 8) 0

capsule layer (None, 10, 16) 1474560
input2 (None, 10) 0
mask (None, 160) 0

capsnet (None, 10) 0
decoder (None, 28, 28, 1) 1411344

100

3. MNIST analysis

Figure 3.5: A scheme for the model used.

101

3. MNIST analysis

Training and testing

The code for the model configuration is:

model.compile(optimizer=optimizers.Adam(lr=args.lr),

loss =[margin_loss , ’mse’],

loss_weights=[1.,args.lam_recon],

metrics={’capsnet’: ’accuracy’})

The margin loss is defined as (1.29) it’s written in the code as follows:

def margin_loss(y_true, y_pred):

L = y_true ∗ K.square(K.maximum(0., 0.9 − y_pred)) +
0.5 ∗ (1 − y_true) ∗ K.square(K.maximum(0.,

y_pred − 0.1))
return K.mean(K.sum(L, 1))

To train the model we used the code:

model.fit_generator(generator=train_generator(x_train,

y_train, args.batch_size , args.shift_fraction),

steps_per_epoch=int(y_train.shape[0] / args.batch_size),

epochs=args.epochs,

validation_data=[[x_test, y_test], [y_test, x_test]],

callbacks=[log, tb, checkpoint , lr_decay])

Reconstruction

During training, all but the activity vector of the correct digit capsule are
masked out. Then this activity vector is used to reconstruct.

Mean squared error is used as the reconstruction loss and the coeffi-
cient for the loss is lam_recon = 0.0005 × 784 = 0.392. This should be
equivalent with using sum squared error and lam_recon = 0.0005 as in
the paper. This different digits are reconstructed from different feature
vectors (digit capsules). These vectors are mutually independent during
reconstruction.

102

3. MNIST analysis

The code used to reconstruct the images is:

img=combine_images(np.concatenate([x_test[:50],

x_recon[:50]]))

image = img ∗ 255

Manipulation

The trained CapsNet is moderately robust to small affine transformations
of the training data. After computing the activity vector for the correct
digit capsule, this activity vector can be perturbated using the decoder
network. The aim is to see how the perturbation affects the reconstruction,
learning what the individual capsule dimensions represent.

The code used to perturbate with affine transformations is:

index = np.argmax(y_test, 1) == args.digit

number = np.random.randint(low=0, high=sum(index) − 1)
x, y = x_test[index][number], y_test[index][number]

x, y = np.expand_dims(x, 0), np.expand_dims(y, 0)

noise = np.zeros([1, 10, 16])

x_recons = []

for dim in range(16):

for r in [−0.25, −0.2, −0.15, −0.1, −0.05, 0, 0.05, 0.1,
0.15, 0.2, 0.25]:

tmp = np.copy(noise)

tmp[:,:,dim] = r

x_recon = model.predict([x, y, tmp])

x_recons.append(x_recon)

x_recons = np.concatenate(x_recons)

img = combine_images(x_recons, height=16)

image = img∗255

where each capsule dimension is tweaked by intervals of 0.05 in the range
[−0.25, 0.25].

103

3. MNIST analysis

Results

With the setting parameters:

• decay factor = 0.9;

• routing = 3;

the results are:

0 10 20 30 40 50
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14
Training loss

capsnet_loss
decoder_loss
loss

0 10 20 30 40 50
0.88

0.90

0.92

0.94

0.96

0.98

1.00
Training and validation accuracy

capsnet_acc
val_capsnet_acc

The test accuracy doesn’t improved from 0.9966 so the test error is 0.34%.

104

3. MNIST analysis

The reconstruction gives these results:

Figure 3.6: Digits at top 5 rows are real images from MNIST and digits at bottom
are corresponding reconstructed images.

(a) (b)

105

3. MNIST analysis

(c) (d) (e)

(f) (g) (h)

(i) (j)

Figure 3.6: For each digit, the i-th row corresponds to the i-th dimen-
sion of the capsule, and columns from left to right correspond to adding
[−0.25,−0.2,−0.15,−0.1,−0.05, 0, 0.05, 0.1, 0.15, 0.2, 0.25] to the value of one
dimension of the capsule.

106

CONCLUSION

The qualities of the CapsNet’s approach come surely from the idea of re-
producing more faithfully the human brain mechanism of vision. The
introduction of spatial relationship between parts in the object leads to
better performance in recognition tasks because in this way the object rep-
resentation doesn’t depend on the point of view of the observer. This is
important because this net doesn’t require a lot of training data, one for
each viewpoint, to learn how to classify that object. Using CapsNet we
can train better models with less training data which is quite beneficial for
medical image analysis where the annotations are limited and expensive
to get. CNN is also vulnerable to adversaries by simply moving, rotating
or resizing individual features while CapsNet is more robust under these
transformations, it also has better performance in noisy or occulted im-
ages. Moreover CapsNet doesn’t lose as much information as CNN with
pooling procedure. Another important quality of this new approach con-
cerns the number of parameters that has to be inferred in training: it was
been verified that compared with U-net for a Capsule Network it decreases
by 95%.

CapsNet flaws are more practical than theoretical: the way in which
this innovative idea is put into code and achieves practical results is the
real problem from the very beginning. Although if GPU helps a lot in
the realization of CapsNet experiment, the are many issues that haven’t

107

3. MNIST analysis

been solved yet. First of all the main algorithm in capsule layer has a very
huge training time, also to train on not very big images. CapsNet is slower
than its CNN counterpart because of the routing update iterations and has
not proven yet its effectiveness in large-scale visual recognition problems.
Moreover each element in the activity vector does not always represent
meaningful properties of the input image.

Capsule Networks are nowadays used in image classification projects
and also in image segmentation for both research and diagnostic tasks.

Moreover they are used as auto-encoders to generate images, as it was
proposed in the very first article where Capsule Theory was introduced.
The original aim of capsules was not to recognize images but to extract
pose information from input images and to create an image of the same
object with a different chosen pose.

Working with this new architecture introduces many challenges. Cur-
rent implementations are much slower than other modern deep learning
models. Time will show if capsule networks can be trained quickly and ef-
ficiently. In addition, it remains to be verified if they work well on difficult
data sets and in different domains [9].

In any case, Capsule Network is a very interesting and already work-
ing model which will definitely get developed further over time and con-
tribute to further expansion of deep learning application domain.

Future perspectives in these studies have to test many different typolo-
gies of data sets and also to test the architecture for other imaging tasks.
One of the next possible achievements for deep learning researchers is to
optimize the CapsNets implementation in order to reduce training time.
Once these improvements are realized, CapsNets will swiftly replace CNN
in all imaging tasks.

108

APPENDIX

Data analysis with TensorFlow

TensorFlow (TF) is a framework to define and run computations involv-
ing tensors [37]. A tensor is a generalization of vectors and matrices to
potentially higher dimensions. Internally, TensorFlow represents tensors
as n-dimensional arrays of base datatypes.

TF is based on multiple API (Application Program Interface) layers,
classified in different levels:

• High-Level: like Estimators, Keras; they are methods to train the
model;

• Mid-Level: the whole structures like layers, data set, metrics; all the
objects that can be used to train a model;

• Low-Level: is basically Python language.

One can use TF choosing the level in order to take advantage of the
potentiality of this framework.

Starting from the high-level API we can describe how Keras works.
Keras is a high-level API to build and train deep learning models. It’s
used for fast prototyping, advanced research, and production, with three
key advantages: user friendly, modular and easy to extend.

109

3. MNIST analysis

Keras has a simple, consistent interface optimized for common use
cases. It provides clear and actionable feedback for user errors. Keras
models are made by connecting configurable building blocks together,
with few restrictions.

From a low-level point of view TensorFlow programs work by first
building a graph of tf.Tensor objects, a partially defined computation that
will eventually produce a value.

Then there is the session that has to evaluate the graph. A session en-
capsulates the state of the TensorFlow runtime, and runs TensorFlow op-
erations.

The characteristic of the computational graph is that it is static, it means
that first the whole graph is created and then it is all executed by the ses-
sion. The tensors used are called place holder because, when they are de-
fined into graph, they have the only aim of keeping memory that will be
used only in run section. So they keep only the information about the
operations that they will do and about the shape of the output.

Let’s see how graph and session work in details.

Graph

A tf.Graph contains two relevant kinds of information: graph structure
and graph collections.

Graph structure are the ensamble of nodes and edges of the graph,
indicating how individual operations are composed together, but not pre-
scribing how they should be used. The graph structure is like assembly
code: inspecting it can convey some useful information, but it does not
contain all of the useful context that source code conveys.

So a computational graph is composed of two types of objects: tf.Operation,
the nodes of the graph, operations describe calculations that consume and
produce tensors; tf.Tensor, the edges in the graph. These represent the val-
ues that will flow through the graph. Most TensorFlow functions return
tf.Tensors.

In a dataflow graph, the nodes represent units of computation, the
operations, while the edges represent the data consumed or produced

110

3. MNIST analysis

by a computation, the tensors. Most TensorFlow programs start with a
dataflow graph construction phase. In this phase, you invoke TensorFlow
API functions that construct new tf.Operation (node) and tf.Tensor (edge)
objects and add them to a tf.Graph instance. TensorFlow provides a de-
fault graph that is an implicit argument to all API functions in the same
context.

High-level APIs such as the tf.estimator.Estimator API manage the de-
fault graph on your behalf, and for example may create different graphs
for training and evaluation.

A tf.Graph object defines a namespace for the tf.Operation objects it con-
tains. TensorFlow automatically chooses a unique name for each operation
in your graph, but giving operations descriptive names can make your
program easier to read and debug.

Each API function that creates a new tf.Operation or returns a new
tf.Tensor accepts an optional name argument.

The graph visualizer uses name scopes to group operations and reduce
the visual complexity of a graph. See Visualizing your graph for more
information.

Note that tf.Tensor objects are implicitly named after the tf.Operation
that produces the tensor as output.

Many TensorFlow operations take one or more tf.Tensor objects as ar-
guments.

Tensor objects will accept a tensor-like object in place of a tf.Tensor, and
implicitly convert it to a tf.Tensor. Tensor-like objects include elements
of the following types: tf.Tensor, tf.Variable, numpy.ndarray, list, Scalar
Python types: bool, float, int, str.

TensorFlow, as the name indicates, is a framework to define and run
computations involving tensors. A tensor is a generalization of vectors
and matrices to potentially higher dimensions. Internally, TensorFlow rep-
resents tensors as n-dimensional arrays of base datatypes.

When writing a TensorFlow program, the main object you manipulate
and pass around is the tf.Tensor. A tf.Tensor object represents a partially
defined computation that will eventually produce a value. TensorFlow
programs work by first building a graph of tf.Tensor objects, detailing how

111

3. MNIST analysis

each tensor is computed based on the other available tensors and then by
running parts of this graph to achieve the desired results.

A tf.Tensor has the following properties:

• Type
Each element in the Tensor has the same data type, and the data type
is always known. The shape (that is, the number of dimensions it has
and the size of each dimension) might be only partially known. Most
operations produce tensors of fully-known shapes if the shapes of
their inputs are also fully known, but in some cases it’s only possible
to find the shape of a tensor at graph execution time.

Some types of tensors are special, and these will be covered in other
units of the TensorFlow guide. The main ones are: tf.Variable, tf.constant,
tf.placeholder, tf.SparseTensor.

With the exception of tf.Variable, the value of a tensor is immutable,
which means that in the context of a single execution tensors only
have a single value. However, evaluating the same tensor twice can
return different values; for example that tensor can be the result of
reading data from disk, or generating a random number.

It is not possible to have a tf.Tensor with more than one data type. It
is possible, however, to serialize arbitrary data structures as strings
and store those in tf.Tensors.

A tf.Tensor has the following properties:

• Shape
The shape of a tensor is the number of elements in each dimension.
TensorFlow automatically infers shapes during graph construction.
These inferred shapes might have known or unknown rank. If the
rank is known, the sizes of each dimension might be known or un-
known.

• Rank
The rank of a tf.Tensor object is its number of dimensions. Synonyms
for rank include order or degree or n-dimension. Note that rank in

112

3. MNIST analysis

TensorFlow is not the same as matrix rank in mathematics.Each rank
in TensorFlow corresponds to a different mathematical entity:

Rank Math Entity

0 Scalar
1 Vector
2 Matrix
3 3-Tensor
n n-Tensor

Session

TensorFlow uses a dataflow graph to represent your computation in terms
of the dependencies between individual operations. This leads to a low-
level programming model in which you first define the dataflow graph,
then create a TensorFlow session to run parts of the graph across a set
of local and remote devices. TensorFlow uses the tf.Session class to rep-
resent a connection between the program, although a similar interface is
available in other languages, and the C++ runtime. A tf.Session object
provides access to devices in the local machine, and remote devices us-
ing the distributed TensorFlow runtime. It also caches information about
your tf.Graph so that you can efficiently run the same computation multi-
ple times.

The command tf.Session.init accepts three optional arguments: target;
the address of a TensorFlow server, which gives the session access to all
devices on machines that this server controls; graph, you can specify an
explicit tf.Graph to run different from default corrent one; config, to control
the behavior of the session.

The tf.Session.run method is the main mechanism for running a tf.Operation
or evaluating a tf.Tensor. You can pass one or more tf.Operation or tf.Tensor
objects to tf.Session.run, and TensorFlow will execute the operations that
are needed to compute the result.

113

REFERENCES

[1] A. Esteva and alt. “A guide to deep learning in healthcare”. In: Na-
ture Medicine (2019).

[2] What is wrong with CNN? 2014. URL: https://www.youtube.
com/watch?v=rTawFwUvnLE.

[3] Can digital computers think? URL: http://www.turingarchive.
org/browse.php/B/5.

[4] D. H. Ballard and C. M. Brown. Computer Vision. 1982.

[5] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. http:
//www.deep-learningbook.org. MIT Press, 2016.

[6] CS231n: Convolutional Neural Networks for Visual Recognition. URL:
http://cs231n.stanford.edu/.

[7] Loss Functions in Neural Networks. URL: https://isaacchanghau.
github.io/post/loss_functions/.

[8] H. Noh, S. Hong, and B. Han. “Learning Deconvolution Network
for Semantic Segmentation”. In: arXiv e-prints (May 2015).

[9] Understanding Hinton’s Capsule Networks. Part I: Intuition. 2017. URL:
https : / / medium . com / ai % C2 % B3 - theory - practice -

business/understanding-hintons-capsule-networks-

part-i-intuition-b4b559d1159b.

115

https://www.youtube.com/watch?v=rTawFwUvnLE
https://www.youtube.com/watch?v=rTawFwUvnLE
http://www.turingarchive.org/browse.php/B/5
http://www.turingarchive.org/browse.php/B/5
http://www.deep-learningbook.org
http://www.deep-learningbook.org
http://cs231n.stanford.edu/
https://isaacchanghau.github.io/post/loss_functions/
https://isaacchanghau.github.io/post/loss_functions/
https://medium.com/ai%C2%B3-theory-practice-business/understanding-hintons-capsule-networks-part-i-intuition-b4b559d1159b
https://medium.com/ai%C2%B3-theory-practice-business/understanding-hintons-capsule-networks-part-i-intuition-b4b559d1159b
https://medium.com/ai%C2%B3-theory-practice-business/understanding-hintons-capsule-networks-part-i-intuition-b4b559d1159b

REFERENCES

[10] G. E. Hinton, A. Krizhevsky, and S. D. Wang. “Transforming Auto-
Encoders”. In: Artificial Neural Networks and Machine Learning – ICANN
2011. Ed. by T. Honkela et al. Berlin, Heidelberg: Springer Berlin Hei-
delberg, 2011, pp. 44–51.

[11] G. E. Hinton, S. Sabour, and N. Frosst. “Dynamic Routing Between
Capsules”. In: 2017.

[12] G. E. Hinton, S. Sabour, and N. Frosst. “Matrix capsules with EM
routing”. In: 2018.

[13] A. Géron, ed. Introduction to Capsule Networks (CapsNets).

[14] N. F. S. Sabour and G. E. Hinton, eds. Dynamic Routing Between Cap-
sules.

[15] K. Qiao et al. “Accurate Reconstruction of Image Stimuli From Hu-
man Functional Magnetic Resonance Imaging Based on the Decod-
ing Model With Capsule Network Architecture”. In: Frontiers in Neu-
roinformatics 12 (2018), p. 62.

[16] D. D. Cox. “Do we understand high-level vision?” In: Current Opin-
ion in Neurobiology 25 (2014). Theoretical and computational neuro-
science, pp. 187–193.

[17] J. Lafferty, A. Mccallum, and F. Pereira. “Conditional Random Fields:
Probabilistic Models for Segmenting and Labeling Sequence Data”.
In: Proc ICML (Jan. 2002).

[18] A. Garcia-Garcia et al. “A Review on Deep Learning Techniques Ap-
plied to Semantic Segmentation”. In: TPAMI (2017).

[19] A. Ng. Deep Learning and Unsupervised feature learning. Lecture Notes.
Stanford University, 2011.

[20] J. Long, E. Shelhamer, and T. Darrell. “Fully Convolutional Networks
for Semantic Segmentation”. In: CoRR abs/1411.4038 ().

[21] T. Lindeberg. “Detecting salient blob-like image structures and their
scales with a scale-space primal sketch: A method for focus-of-attention”.
In: International Journal of Computer Vision 11.3 (Dec. 1993), pp. 283–
318.

116

REFERENCES

[22] O. Ronneberger, P. Fischer, and T. Brox. “U-Net: Convolutional Net-
works for Biomedical Image Segmentation”. In: arXiv e-prints, arXiv:1505.04597
(May 2015), arXiv:1505.04597. arXiv: 1505.04597 [cs.CV].

[23] V. Badrinarayanan, A. Kendall, and R. Cipolla. “SegNet: A Deep
Convolutional Encoder-Decoder Architecture for Image Segmenta-
tion”. In: arXiv e-prints (Nov. 2015).

[24] J. Fu et al. “Stacked Deconvolutional Network for Semantic Segmen-
tation”. In: arXiv e-prints (Aug. 2017).

[25] R. Campanini et al. “A novel featureless approach to mass detec-
tion in digital mammograms based on support vector machines”.
In: Physics in medicine and biology 49 (Apr. 2004), pp. 961–75. DOI:
10.1088/0031-9155/49/6/007.

[26] M. Roffilli. “Advanced Machine Learning Techniques for Digital Mam-
mography”. PhD thesis. Tech. Rep. UBLCS-2006-12, University of
Bologna, Mar. 2006. URL: http://www.cs.unibo.it/people/
phd-students/roffilli/.

[27] R. LaLonde and U. Bagci. “Capsules for Object Segmentation”. In:
arXiv e-prints, arXiv:1804.04241 (Apr. 2018), arXiv:1804.04241. arXiv:
1804.04241 [stat.ML].

[28] T. Sun et al. “Trace-back Along Capsules and Its Application on Se-
mantic Segmentation”. In: arXiv e-prints (Jan. 2019). arXiv: 1901.
02920 [cs.CV].

[29] L. Silvestri et al. “Quantitative neuroanatomy of all Purkinje cells
with light sheet microscopy and high-throughput image analysis”.
In: Frontiers in Neuroanatomy (2015).

[30] P. Frasconi et al. “Large-scale automated identification of mouse brain
cells in confocal light sheet microscopy images”. In: Bioinformatics
30.17 (2014), pp. i587–i593.

[31] G. Mazzamuto et al. “Automatic Segmentation of Neurons in 3D
Samples of Human Brain Cortex”. In: Mar. 2018, pp. 78–85.

117

http://arxiv.org/abs/1505.04597
https://doi.org/10.1088/0031-9155/49/6/007
http://www.cs.unibo.it/people/phd-students/roffilli/
http://www.cs.unibo.it/people/phd-students/roffilli/
http://arxiv.org/abs/1804.04241
http://arxiv.org/abs/1901.02920
http://arxiv.org/abs/1901.02920

REFERENCES

[32] Neurons, Synapses, Action Potentials, and Neurotransmission. 2008. URL:
http : / / www . mind . ilstu . edu / curriculum / neurons _

intro/neurons_intro.php.

[33] M. Alegro et al. “Automating cell detection and classification in hu-
man brain fluorescent microscopy images using dictionary learning
and sparse coding”. In: Journal of Neuroscience Methods 282 (2017),
pp. 20–33.

[34] Human Brain Project - Specific Grant Agreement 2. URL: http : / /
lens.unifi.it/bio/research-projects/.

[35] Aliquis. 2016. URL: http://www.bioretics.com/aliquis.

[36] The MNIST database of handwritten digits. URL: http://yann.lecun.
com/exdb/mnist/.

[37] TensorFlow Guide. URL: https://www.tensorflow.org/guide/.

[38] P. Kingma and J. L. Ba. “Adam: a method for stochastic optimiza-
tion”. In: ed. by ICLR. 2015.

[39] CapsNet-Keras. URL: https://github.com/XifengGuo/CapsNet-
Keras.

118

http://www.mind.ilstu.edu/curriculum/neurons_intro/neurons_intro.php
http://www.mind.ilstu.edu/curriculum/neurons_intro/neurons_intro.php
http://lens.unifi.it/bio/research-projects/
http://lens.unifi.it/bio/research-projects/
http://www.bioretics.com/aliquis
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://www.tensorflow.org/guide/
https://github.com/XifengGuo/CapsNet-Keras
https://github.com/XifengGuo/CapsNet-Keras

	Introduction
	Deep Learning for image recognition: state of the art
	The architecture
	Loss functions and regularization
	The learning algorithms
	Optimization
	Convolutional Neural Networks
	What is wrong with CNNs?
	Capsules: simulating human vision
	The implementations

	Machine Learning for brain imaging
	CNN for object segmentation
	Fully Convolutional Networks
	U-Net
	SegNet
	DeconvNet
	Previous approaches to segmentation topic

	CapsNet for object segmentation
	SegCaps
	Tr-CapsNet

	Motivations and data acquisition of brain images
	Mouse brain data analysis
	Human brain data analysis

	MNIST analysis
	A CNN approach
	A CapsNet approach

	Conclusion
	Appendix - Data analysis with TensorFlow
	References

