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Abstract

The 4D low-energy limit of string compactifications is characterised by the ubiquitous presence
of string moduli which are new gravitationally coupled scalar fields which develop mass via
supersymmetry breaking effects. During inflation it is generically expected that these fields re-
ceive large contributions to their mass of order the Hubble constant. They are therefore shifted
from their minimum and after the end of inflation start oscillating around it behaving as non-
relativistic matter. Given that matter redshifts slower than radiation, the moduli quickly come
to dominate the energy density of the universe. Hence, when they decay, they would dilute any-
thing that has been produced before. It is thus crucial to require that the moduli decay before
Big-bang nucleosynthesis in order to preserve the successful prediction for the abundances of the
light elements. This condition sets a lower bound on their masses of order 50 TeV. This potential
problem goes under the name of “cosmological moduli problem”. In this thesis, we shall study
this problem in promising multi-field inflationary models which naturally emerge in type IIB
compactifications. In particular, we will explore if the presence of a large number of spectator
fields during inflation can reduce the initial misalignment of the moduli. We shall also explore
if the dynamics of the system can forbid a period of moduli domination after the end of inflation.





Sommario

Il limite di bassa energia della compattificazione delle stringhe è caratterizzato dalla presenza
di moduli, ovvero campi scalari accoppiati con il campo gravitazionale che sviluppano massa
tramite effetti di rottura di supersimmetria. Durante l’inflazione si prevede che questi campi
ricevano grandi contributi alla loro massa dell’ordine della costante di Hubble. Di conseguenza,
vengono spostati rispetto al loro minimo e durante l’inflazione iniziano ad oscillare intorno a
questo, comportandosi come materia non relativistica. Considerando poi che in un universo in
espansione la materia si diluisce più lentamente della radiazione, i moduli possono dominare
rapidamente la densità di energia dell’universo. In questo caso, quando decadono diluiscono
tutto ciò che era stato prodotto precedentemente. Risulta quindi cruciale imporre che i moduli
decadano prima della nucleosintesi degli elementi, cos̀ı da preservare le ottime previsioni per
l’abbondanza degli elementi leggeri nell’universo. Questa richiesta fissa un limite inferiore per
le loro masse dell’ordine dei 50 TeV; questo potenziale problema va sotto il nome di “cosmo-
logical moduli problem”. In questa tesi ci proponiamo di studiare questo problema in modelli
inflazionari a più campi, che emergono naturalmente dalla compattificazione delle stringhe di
tipo IIB. In particolare, indagheremo se la presenza di un grande numero di campi spettatori
durante l’inflazione è in grado di ridurre lo spostamento iniziale dei moduli. Inoltre, ci proponi-
amo di studiare se la dinamica del sistema può proibire un periodo in cui l’energia dell’universo
è dominata dai moduli dopo la fine dell’inflazione.
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INTRODUCTION

Cosmic inflation is a theory of accelerated cosmological expansion following the conjectured Big
Bang singularity. It was first elaborated in 1979 by Alan Guth and further developed over the
following years. Since then, this theory has been the object of great interest among physicists,
as it has proven to be extremely successful: it is able to explain, among other aspects, the origin
of the large scale structure of the universe.
Despite this, the mechanism to describe this cosmic expansion is still unknown; it is commonly
believed that the dynamics of a scalar particle called inflaton is responsible for inflation. In
particular, a great deal of attention has been attracted to the so called slow-roll models.

Recently, string theory has been an important source of inspiration for the development of
effective theories for inflation. Indeed, string theory is a candidate for the fundamental theory of
Nature and thus it should be able to describe every single aspect of our universe. In particular,
the four-dimensional low energy limit of string compactifications gives origin to supergravity
models with many moduli, i.e. gravitationally coupled scalar fields. Recent developments in
moduli stabilization techniques have opened the way to string phenomenology, as moduli VEVs
determine such basic quantities as the string scale and the gauge coupling constants. Given the
moduli potential, one possible application is precisely to inflation theory.

In this thesis we focus on the study of promising inflationary models with Kähler moduli
derived from the low energy limit of type IIB string theory compactifications.
The first chapter is dedicated to a brief discussion of supersymmetry and supergravity. The
focus is on the mathematical structure of generic theories in order to present the procedure for
building supersymmetric models. Particular attention is given to models with N = 1 supersym-
metric charges and to the derivation of the scalar potential of the theory.
The second chapter is meant to bring to light some of the features of string theory which allow
one to obtain low energies effective supesymmetric theories. We provide the main concepts of
string compactifications for type IIB string theory with emphasis on the scalar fields that arise
from this procedure, i.e. the moduli. The large volume scenario of moduli stabilization is then
reviewed in a simple case.
In the third chapter we introduce the very basis of cosmology and inflation, underlying the prob-
lems of the hot Big Bang model and the necessity of introducing the inflationary scenario. We
then give a first insight on string inflation using a toy model effective potential for the moduli in
order to discuss the standard assumptions of the inflationary epoch. Finally, we introduce the
cosmological moduli problem of the post-inflationary epoch, as this problem is present in lots of
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inflationary models.
The fourth chapter contains the original part of this work. After a general review of Kähler
moduli inflation, we first derive general strong constraints necessary to obtain phenomenological
acceptable models, which could correctly reproduce the properties of the present universe. The
calculations aim to account for the most general case, and we do not assume any specific values
for the various parameters until the end. We then analyze the multi-field case, on the assump-
tion that almost all the particles behave in the same way, and gather the expected output of
the system. In particular, we derive an expression for the shift between the volume modulus
during inflation and the volume after inflation, together with an expression for the ratio between
its mass and the inflationary Hubble constant. These are fundamental parameters for under-
standing the physics of these models. After that, we discuss the post inflationary scenario and
we derive an expression based on fundamental parameters useful to estimate whether a post-
inflationary period of matter domination is present. Finally, we numerically solve the complete
system of differential equations freely choosing some parameters and exploiting the previously
derived relations in order to assign the remaining ones.
The appendix is also an important integrating part of this thesis, as we perform detailed calcula-
tions of the masses of the moduli in the multi-field case, showing the dependence on the number
of fields n, and we clarify how the specific uplift term of the potential affects the connection
between n and the parameters of the model.



CHAPTER 1

A BRIEF REVIEW OF SUPERSYMMETRY AND
SUPERGRAVITY

1.1 Why supersymmetry?

During the last decades, the Standard Model of particle physics has proven to provide a wonderful
description of some properties of the subatomic world, explaining a wide spectrum of phenomena.
It represents a concrete example of application of QFT, as it is a gauge theory based on the
internal symmetry

GSM = SU(3)c ⊗ SU(2)L ⊗ U(1)Y ,

which accounts for strong and electroweak forces. In particular, it describes all know particles
and interactions in four-dimensional spacetime:

• matter particles, i.e. quarks and leptons, which are organized in three families differing
only by their mass;

• interaction particles, arising from the gauge group GSM , namely the photon γ, the gluons
g and the electroweak bosons Z0 and W±;

• Higgs boson, the scalar particle responsible for the breaking of SM gauge symmetry and
for the mass of all the particles.

Despite its success, SM is not the end of the story as it cannot answer many questions.
Hence, it cannot be a fundamental theory of the universe, but only an effective theory valid at
low energies. Indeed, SM is not able to address some of the modern physics puzzles:

• quantum gravity: SM describes three of the four fundamental interactions at quantum
level, but it does not include gravity, which has to be treated at classical level;

• hierarchy problem: it is not clear why there are totally different energy scales, namely
MEW v 102 GeV (the electroweak scale) and MP v 1018 GeV (the reduced Planck scale,

MP =
√

1
8πG in natural units);
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• cosmological constant: the vacuum energy predicted by SM is much smaller than the
observed cosmological constant of the universe.

These are only few of the serious problems we face; other issues concern for example the strong
CP problem, the treatment of strong coupling field theories (as for instance QCD, due to the
asymptotic freedom property), the origin of the parameters of the SM, the mass of the Higgs
boson,...etc.

There are several different ways to try to extend the Standard Model, from ad hoc addition
of new physics guided by experiments to theoretical extensions suggested by first principles. In
this last procedure, the idea is to look for more general symmetries of Nature, which could be
both internal symmetries (as for example the GUTs) or spacetime symmetries. The former case
relies on the assumption that these new symmetries are broken at some scale MGUT > MEW

and give origin to SM at lower energies, the latter exploits higher dimensional spaces or more
general symmetries (such as supersymmetry) for the standard four-dimensional spacetime.

Supersymmetry is one of the candidate theory for an extension of the Standard Model, even
though it does not solve all the problems we cited before. Indeed, it addresses somehow the
hierarchy problem, in the sense that it affects the sensitivity of the Higgs potential to the new
physics. In addition, supersymmetry really seems to be a fundamental symmetry of Nature: in
1975, Haag, Lopuszanski and Sonhius generalized the Coleman-Mandula theorem, discovering
that the most general superalgebras admitted in quantum field theory are the supersymmetry
algebras, which extend the Poincaré algebra.

The problem linked to the Higgs boson consists in the fact that its mass receives enormous
quantum corrections from the virtual effects of every particle which couples (directly or indi-
rectly) with the Higgs field H. For instance, if we write the Higgs potential as

VH = m2
H |H|2 + λ|H|4 ,

for a Dirac fermion f which couples with H with the term −λfHf̄f , a loop diagram gives the
correction

∆fm
2
H = −

|λf |2

8π2
Λ2
UV , (1.1)

whereas for a scalar particle S with a Lagrangian term −λS |H|2|S|2 it gives

∆Sm
2
H = − λS

16π2

[
Λ2
UV − 2m2

S ln

(
ΛUV
mS

)]
. (1.2)

These corrections depend on the ultraviolet momentum cutoff ΛUV , i.e. the energy scale at
which new physics is expected. We do not know the value of ΛUV , but for a large value, for
example ΛUV v MP , the Higgs mass receives enormous quantum corrections, which are not
compatible with the experimental measurements. Furthermore, even if the other SM particles
do not have direct quadratic sensitivity to ΛUV , they are indirectly affected due to their coupling
with the Higgs boson.
A possible solution to avoid such effect is to look for cancellations between the various con-
tributions to ∆m2

H : looking at (1.1) and (1.2), from the relative minus sign between the two
corrections we can imagine that we need a symmetry that relates fermions and bosons. This
is precisely the idea behind supersymmetry: each particle of the Standard Model has to be
accompanied by a supersymmetric partner (or sparticle) with a spin differing by 1/2 unit and
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with λs = |λf |2. For example, and electron is expected to come with two scalar fields called
selectrons, one for each chirality state of the fermion. Then, their combined contribution to the
Higgs mass looks like

∆m2
H v λ ln

(
ΛUV
m

)
. (1.3)

Hence, the quadratic dependence on ΛUV is “substituted” by a logarithmic behavior, which is
much less dangerous.
The above discussion is of course exactly valid if supersymmetry is unbroken. However, since
no supersymmetric particle has ever been observed, it is clear that supersymmetry (if it really
exists) must be a broken symmetry. Thus in a realistic theory we must account for a term
Lbreak in the Lagrangian which does not spoil the cancellation between scalar and fermionic
contributions to the Higgs mass.
Supersymmetric particles are also of interest in theoretical physics as they may be related to
dark matter. In particular, one of the neutral scalar particles that arise in the Minimal Su-
persymmetric Standard Model (MSSM) is the so called WIMP (Weakly Interacting Massive
Particle), which constitutes a promising candidate for dark matter.
Despite the benefits that supersymmetry would bring to fundamental physics, it does not ad-
dress the cosmological constant problem, which still remains one of the greatest mysteries of
present physics.

In this chapter we shall provide a brief description of the main tools necessary to construct a
supersymmetric theory. The goal is to show how to build a generic supersymmetric Lagrangian
and how to derive from it an expression for a scalar potential. In particular, this discussion is
meant to give an idea on how to derive a scalar potential from a supergravity theory, as such
potential is a fundamental ingredient for the inflationary models we are studying in this thesis.

1.2 Supersymmetry algebra

We introduce here the supersymmetry algebra. Before giving the properties of this algebra, we
briefly recall a few definitions.

Def. (Graded algebra). Let ∆ be a commutative group. An algebra g over a field K is said
to be graded if it can be written as a direct sum

g =
⊕
i∈∆

gi

of vector spaces gi over K with a bilinear map

? : g× g→ g .

such that
?(gi, gj) ⊆ gi+j .

If ∆ = Z2 the algebra is called a superalgebra.

Def. (Graded Lie algebra). A graded Lie algebra K over a field is a graded algebra where
the map

? : g× g→ g , ?(gi, gj)→ [gi, gj ] , ∀ gi ∈ gi , gj ∈ gj

generalizes the Lie product and satisfies



6
CHAPTER 1. A BRIEF REVIEW OF SUPERSYMMETRY AND

SUPERGRAVITY

• [gi, gj ] ⊂ gi+j , ∀i, j ∈ ∆ ;

• [gi, gj ] = −(−1)ij [gj , gi] , ∀ gi ∈ gi , gj ∈ gj ;

• (−1)ik[gi, [gj , gk]] + (−1)ij [gj , [gk, gi] + (−)jk[gk, [gi, gj ]] = 0 ,
∀ gi ∈ gi , gj ∈ gj , gk ∈ gk .

Def. (Lie superalgebra). A Lie superalgebra is a graded Lie algebra where ∆ = Z2. It
contains a set of generators {Ga} which satisfy

GaGb − (−1)ηaηbGbGa = iCeabGe

where the gradings ηa take the values

ηa =

{
0 for bosonic generators

1 for fermionic generators
.

If we call Ba the bosonic generators and Fα the fermionic generators, the generalized Lie product
satisfies

[Ba, Bb] = if c
ab Bc ,

[Ba, Fα] = ig β
aα Fβ ,

{Fα, Fβ} = h a
αβ Ba ,

and the Jacobi identity can be written as

[Ga, [Gb, Gc}}+ cyclic graded perm. = 0 ,

where we used the notation

[., .} =

{
{., .} if they are both fermionic ,

[., .] otherwise .

We point out that these definitions are not “standard”, as some authors refer to a graded Lie
algebra as an ordinary Lie algebra endowed with a gradation compatible with the Lie product
and use the above properties to define a graded Lie superalgebra. We will refer to [1] for our
convention.

Finally, after these definitions we come to the supersymmetry algebra, which is a Lie superal-
gebra that extends the Poincaré algebra. For this reason it is also called super Poincaré algebra.
First of all we recall the Poincaré algebra

[Pµ, P ν ] = 0,

[Mµν , P ρ] = i(Pµηνρ − P νηµρ) (1.4)

[Mµν ,Mρσ] = i(Mµσηνρ +Mνρηµσ −Mµρηνσ −Mνσηµρ) ,

where Pµ are the generators linked to translations and Mµν are the ones related to rotations.
We can now add the fermionic generators QAα , where A = 1, 2, ...,N for generic extended SUSY,
to enlarge our algebra. We will focus on the case of simple SUSY with N = 1, since it is the
interesting case for us.
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We already know the commutation relations of the Poincaré algebra, so we just need to find the
relations with Qα and Q†

β̇
. We will not derive them here, but we indicate two different strategies

to do it.
The first idea, followed in [2], is to use the index structure to make an ansatz and use some
known results to find the correct relations. It also use the fact that fermionic generators are
both spinors and operators, and they should transform following both ways.
The second idea, more physical, is to start building a minimal Lagrangian with a single left-
handed Weyl fermion and its supersymmetric partner (i.e. a complex scalar field). After having
defined the transformation rules of the fields and added a scalar auxiliary field (in order to
make the algebra closed off-shell), the Noether supercurrent and the conserved charges can be
found. The latter are the generators of supersymmetry transformations and their commutation
relations can be worked out using their quantum mechanical properties and the transformation
rules of the fields. For more details see [3].
The relations are then

[Qα,M
µν ] = (σµν) β

α Qβ (1.5)

[Qα, P
µ] =

[
Q†α̇, Pµ

]
= 0 (1.6)

{Qα, Qβ} =
{
Q†α̇, Q

†
β̇

}
= 0 (1.7){

Qα, Q
†
β̇

}
= 2(σµ)αβ̇Pµ . (1.8)

It is really important to note that the relation (1.8) implies that supersymmetry is a spacetime
symmetry and not an internal one, as the combination of two supersymmetry charges is linked
to a spacetime translation.

1.3 Superspace and superfields

In this section we define some very important mathematical tools useful to understand the
structure of supersymmetric theories.
We first recall that in non supersymmetric theories particles are described by fields defined on
Minkowski space

φ :M4 → R ,

which transform under the Lorentz group.
The idea for supersymmetric theories is to extend these fields into some objects Φ acting on a
superspace, whose coordinates are identified by X, and which transform under the super Poincaré
group.

Let us start by defining the superspace coordinates

X = (xµ, θα, θ†α̇) , (1.9)

where θα and θ†α̇ are spinors of Grassman variables (also known as anticommuting numbers or
fermionic variables). Grassman variables are objects gi which generate a Grassman algebra Gn
and satisfy the relations

{gi, gj} = 0 ∀i, j = 1, 2, ..., n .
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If we consider a single variable g it is easy to see that a generic function f : G1 → R can be
written as

f(g) =
∞∑
k=0

fkg
k = f0 + f1g ,

which tells us that the most general function is linear. Its derivative is simply

df

dg
= f0 ,

and requiring that the integral of a Grassman valued function is invariant under translation, i.e.∫
dg f(g) =

∫
dg f(g + h), we found that∫

dg g = 1 ,

∫
dg 1 = 0 . (1.10)

These properties define the Berezin integral∫
dg f(g) =

∫
dg (f0 + f1g) = f1 =

df

dg
. (1.11)

It is important to specify that the derivatives act on the left: for example, with two Grassman
variables g, h we have

∂

∂g
(gh) = h ,

∂

∂g
(hg) =

∂

∂g
(−gh) = −h .

Let us come back to our spinors and give some definitions

θθ := θαθα , θ†θ† := θ†α̇θ
†α̇ , (1.12)

which imply

θαθβ = −1

2
εαβθθ , θ†α̇θ†β̇ =

1

2
εα̇β̇θ†θ† . (1.13)

For the derivatives we have

∂

∂θα

(
θβ
)

= δβα ,
∂

∂θα

(
θ†
β̇

)
= 0 ,

∂

∂θ†α̇

(
θ†
β̇

)
= δα̇

β̇
,

∂

∂θ†α̇

(
θβ
)

= 0 , (1.14)

whereas for multi integrals∫
dθ1

∫
dθ2 θ2θ1 =

1

2

∫
dθ1

∫
dθ2 θθ = 1 . (1.15)

This last leads to the definition

1

2

∫
dθ1

∫
dθ2 =

∫
d2θ , (1.16)

and to integrate over a superspace we use

d2θ = −1

4
dθαdθβεαβ , d2θ† = −1

4
dθ†α̇dθ†β̇εα̇β̇ . (1.17)
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1.4 General scalar superfield

To write the general scalar superfield in a superspace with coordinates xµ, θα, θ†α we expand the
field in power series in the anti-commuting variables

S(x, θ, θ†) =ϕ(x) + θψ(x) + θ†χ†(x) + θθM(x) + θ†θ†N(x) + (θσµθ†)Vµ(x) (1.18)

+ (θθ)θ†λ†(x) + (θ†θ†)θρ(x) + (θθ)(θ†θ†)D(x) .

Geometrically, a SUSY transformation is a translation in the superspace along the θ and θ†

directions, but, as we pointed out before, (1.8) states that supersymmetry transformations also
generate spacetime translations. Hence a SUSY transformation can be written as

S(x, θ, θ†) 7→ exp
(
i(εQ+ ε†Q†)

)
S(x, θ, θ†) = S(xµ − i(εσµθ†) + i(θσµε†), θ + ε, θ† + ε†) . (1.19)

From these translation arguments we can define the differential operators acting on superfields:

Qα = −i ∂
∂θα
− (σµθ†)α∂µ , (1.20)

Q†α̇ = +i
∂

∂θ†α̇
+ (θσµ)α̇∂µ , (1.21)

Pµ = −i∂µ . (1.22)

It is easy to show that these operators satisfy the super Poincaré algebra. From an infinitesimal
SUSY transformation

δS = i(εQ+ ε†Q†)S (1.23)

we can get explicit terms for the transformations of the different fields of S(x, θ, θ†). We will
not do that here (see [2]), as we are more interested in the chiral superfields, which are the basic
fields we need in order to build a Lagrangian.
It is enough for our purposes to give the tranformation of the D-term

δD =
i

2
∂µ(εσµλ† − ρσµε†) , (1.24)

since it is the only term which transforms as a total derivative and for this reason it will play a
crucial role to build a generic Lagrangian.

1.4.1 Chiral superfield

If we want to construct generic supersymetric Lagrangians in superspace, we need derivatives
respect to the Grassman variables which are invariant under SUSY global transformations. But

δ

(
∂S

∂θα

)
6= ∂

∂θα
(δS) ,

i.e. derivatives respect to θα (and θ†α̇) are not superfields.
To fix this problem we define the covariant derivatives

Dα =
∂

∂θα
+ i(σµθ†)α∂µ , D̄α̇ = − ∂

∂θ†α̇
− i(θσµ)α̇∂µ , (1.25)
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which satisfy

{Dα, Qβ} = {Dα, Q
†
β̇
} = {D̄α̇, Qβ} = {D̄α̇, Q

†
β̇
} = 0 ,

{Dα, Dβ} = {D̄α̇, D̄β̇} = 0 , (1.26)

{Dα, D̄β̇} = −2i(σµ)αβ̇∂µ .

In this way it is straightforward to verify that DαS is a superfield and finally transforms as
Dα(δS) = (δDαS), as required for a supersymmetry transformation.

Since S(x, θ, θ†) is not an irriducible representation of supersymmetry we are free to eliminate
some components: this allows us to find an irreducible representation of the supersymmetry
algebra.
One of the very important fields is the chiral field, as it contains matter particles (quarks and
leptons) and the Higgs boson, together with their supersymmetric partners. It is defined by the
condition

D̄α̇Φ = 0 ,

and it can be explicitly written in term of its components as

Φ(x, θ, θ†) =ϕ(x) +
√

2θψ(x) + θθF (x) + iθσµθ†∂µϕ(x) (1.27)

− i√
2

(θθ)∂µψ(x)σµθ† +
1

4
(θθ)(θ†θ†)∂µ∂

µϕ(x) ,

where ϕ represents the scalar part, ψ the fermionic one and F is an auxiliary field necessary to
close the supersymmetry algebra off-shell.
Under a SUSY tranformation (1.23) we find for the change in components

δϕ =
√

2εψ , (1.28)

δψ = i
√

2σµε†∂µϕ+
√

2εF , (1.29)

δF = i
√

2ε†σ̄µ∂µψ . (1.30)

Similarly, an antichiral field is defined by the condition DαΦ† = 0. It is important to notice that
the product Φ†Φ and the sum Φ† + Φ are both real superfields but neither chiral nor antichiral.

1.4.2 Vector superfield

The most general real field V (x, θ, θ†) = V †(x, θ, θ†) is

V (x, θ, θ†) =C(x) + iθχ(x)− iθ†χ†(x) +
i

2
θθ(M(x) + iN(x))− i

2
θ†θ†(M(x)− iN(x))

+ θσµθ†Vµ(x) + i(θθ)θ†
(
−iλ†(x) +

i

2
σ̄µ∂µχ(x)

)
(1.31)

− i(θ†θ†)θ
(
iλ(x)− i

2
σµ∂µχ

†(x)

)
+

1

2
(θθ)(θ†θ†)

(
D − 1

2
∂µ∂

µC

)
.

To enlighten its physical meaning we note that if Λ is a chiral field, then the combination
i(Λ− Λ†) is a vector superfield. We can then define a gauge transformation

V 7→ V − i

2
(Λ− Λ†) ,
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and we can freely choose the components of Λ. A very important choice is the Wess-Zumino
gauge, in which the superfield takes the form

VWZ(x, θ, θ†) = (θσµθ†)Vµ(x) + (θθ)(θ†λ†(x)) + (θ†θ†)(θλ(x)) +
1

2
(θθ)(θ†θ†)D(x) . (1.32)

From (1.32) is clear that such superfield contains the gauge particles Vµ (photons, gluons, W±,
Z0) and the gauginos λ and λ†, plus an auxiliary field D(x).

1.5 Supersymmetric Lagrangians

Now that we have all the mathematical tools we need, we can try to define a general supersym-
metric Lagrangian. We will consider few simple cases as the main goal of this chapter is to find
the general structure of the supergravity potential without gauge fields.

We start considering the general chiral superfield Lagrangian. In order to build a Lagrangian
invariant under global supersymmetry we recall the supersymmetry transformations (1.24) and
(1.30): we can exploit these properties in order to ensure that δL is a total derivative under
SUSY transformations. The most general Lagrangian for chiral fields Φi is then

L = K(Φi,Φ
j†)

∣∣∣∣
D

+

(
W (Φi)

∣∣∣∣
F

+ h.c.

)
, (1.33)

where K(Φi,Φ
j†), known as Kähler potential, is a real function and W (Φi), called superpotential,

is a holomorphic function of the chiral superfields and thus it is a chiral superfield itself. With
these properties, we can give general form of such functions ([3], [4])

K(Φi,Φ
j†) = Φ†iΦi , (1.34)

W (Φi) = LiΦi +
1

2
M ijΦiΦj +

1

6
yijkΦiΦjΦk , (1.35)

where Li 6= 0 only if Φi is a gauge singlet, M ij is a symmetric mass matrix for fermion fields and
yijk is a Yukawa coupling of a scalar and two fermions that must be totally symmetric under
interchange of i, j, k.
To obtain the expression of the Lagrangian in terms of the components of the superfields we can
expand around Φi = ϕi; in particular, the superpotential is

W (Φi) = W (ϕi) +
∂W

∂Φi

∣∣∣∣
Φi=ϕi

(Φi − ϕi) +
1

2

∂2W

∂Φi∂Φj

∣∣∣∣
Φi=ϕi

(Φi − ϕi)(Φj − ϕj) , (1.36)

and defining ∂W
∂Φi

∣∣∣∣
Φi=ϕi

≡ ∂W
∂ϕi

the F-term of W are

W (Φi)

∣∣∣∣
F

=
∂W

∂ϕi
[(Φi − ϕi)]

∣∣∣∣
F

+
1

2

∂2W

∂ϕi∂ϕj
[(Φi − ϕi)(Φj − ϕj)]

∣∣∣∣
F

. (1.37)

With the same reasoning for the Kähler potential we finally come to the full Lagrangian

L = ∂µϕ∗i∂µϕi + iψ†iσ̄µ∂µψi −
1

2

(
∂2W

∂ϕi∂ϕj
ψiψj + h.c.

)
+ LF , (1.38)
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where

LF = FiF
∗i +

∂W

∂ϕi
Fi +

∂W

∂ϕ∗i
F ∗i (1.39)

is the part of the Lagrangian containing the F fields, which are not physical. Indeed, from LF
it is evident that the fields Fi do not propagate due to the absence of derivatives.
We can now eliminate these auxiliary fields using the equations of motion{

F ∗i = −∂W
∂ϕi

Fi = − ∂W
∂ϕ∗i

; (1.40)

these define the scalar potential

VF = −LF =
∂W

∂ϕi

∂W

∂ϕ∗i
. (1.41)

Let us now give the framework of a more general theory. If we want to introduce interactions,
we also need vector superfields with their kinetic terms. We can build a supergauge theory, in
analogy with what we do in non superymmetric cases. In this case, the Lagrangian takes the
form

L = K(Φi, Φ̃
†j)

∣∣∣∣
D

+

((
1

4
fab(Φi)WaµWb

µ +W (Φi)

) ∣∣∣∣
F

+ h.c.

)
, (1.42)

where fab(Φi) are the gauge kinetic functions, Wα are the field-strength superfields and

Φ̃†j = (Φ∗eV )j ,

V = 2gaT
aV a ,

where T a are the generators of the gauge symmetry, V a are vector superfields (one for each Lie
algebra generator) and ga are the gauge couplings.
In this case, if we want to find the scalar potential, we have to take into account that in the
Lagrangian are also present D-terms; therefore, eliminating all the auxiliary fields through their
equations of motion, we find a scalar potential of the form Vs = VF + VD.
In such general cases the F-term scalar potential VF takes the form

VF = Kij̄ ∂W

∂ϕi

∂W

∂ϕ∗
j̄

, (1.43)

where Kij̄ is the inverse of the Kähler metric

Kij̄ =

(
∂2K

∂ϕi∂ϕ∗j̄

)
, (1.44)

which is the metric over a complex Kähler manifold whose coordinates are the scalar fields ϕi.

In summary, a general supersymmetric Lagrangian depends on three functions of superfields:

• the Kähler potential K, a real function of both chiral and anti-chiral superfields, which
could include vector superfields in order to be supergauge invariant;

• the superpotential W , an arbitrary holomorphic function of the chiral superfields, which
must be invariant under the gauge symmetries of the theory;

• the gauge kinetic function fab, a dimensionless holomorphic function, symmetric under
interchange of its two indices a, b, which run over the gauge group.
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1.6 Supersymmetry breaking

As we outlined in the introduction of this chapter, supersymmetry must be a broken symmetry.
For what concerns the symmetry breaking, we remind that a symmetry is said to be sponta-
neously broken if the Lagrangian is invariant under such transformations but the vacuum state
is not. We then speak of broken SUSY if the vacuum state satisfies

Qα |vac〉 6= 0 . (1.45)

Let us consider (1.8) contracted with (σ̄0)β̇α

(σ̄0)β̇α
{
Qα, Q

†
β̇

}
=

2∑
α=1

(QαQ
†
α +Q†αQα) = 4P 0 = E ; (1.46)

since for a generic state |Ψ〉

〈Ψ|QαQ†α +Q†αQα |Ψ〉 = |Qα |Ψ〉 |2 + |Q†α |Ψ〉 |2 > 0 , (1.47)

it follows that E ≥ 0 always. This also implies that if the state |Ψ0〉 has E = 0 it must be a
ground state; however, not every ground state has zero energy and from (1.45) it is clear that
SUSY is broken if

〈vac|QαQ†α +Q†αQα |vac〉 > 0 , (1.48)

i.e. the vacuum has positive energy. If we now look at the chiral field transformation laws (1.28),
(1.29) and (1.30), it is evident that if one among δϕ, δψ, δF 6= 0 then supersymmetry is broken.
Actually, to preserve Lorentz invariance we need 〈ψ〉 = 〈∂µϕ〉 = 0 which implies δψ = δF = 0;
hence supersymmetry is broken if and only if δϕ 6= 0 or

〈F 〉 6= 0 .

If we look at the equations of motion (1.40) for the auxiliary fields Fi, from (1.41) it is evident
that in terms of Fi the scalar potential is

VF = FiF
∗i , (1.49)

and the SUSY breaking conditions are equivalent to

〈VF 〉 > 0 . (1.50)

If we consider a vector field V (λ,Aµ, D), given that (see [3] and [4])

δλ = εD +
i

2
(σµσ̄ν)(∂µVν − ∂νVµ) ,

with the same reasoning as before it is evident that if

〈D〉 6= 0 ,

then supersymmetry is broken.
In conclusion, in a general model with both F-fields and D-fields supersymmetry is broken if at
least one of the auxiliary fields acquires a non-vanishing vacuum expectation value.
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1.7 N = 1, D = 4 supergravity Lagrangian

Supergravity is the gauge theory that arises when we extend SUSY to a local symmetry; intu-
itively, this is similar to General Relativity invariance under general coordinate transformations.
This operation introduce a gravity supermultiplet with two more particles, the graviton (a spin
2 particle) and the gravitino (a spin 3

2 particle).
Supergravity is a quantum theory of gravity, and the case N = 1 is the most interesting one as it
includes gravity in a natural way and it is the only one phenomenogically acceptable. Anyway,
this theory is not renormalizable, and supergravity Lagrangian has to be considered an effective
phenomenological Lagrangian which comes from a more complex framework.

We present here some useful results that we will use in the following chapters. AD = 4, N = 1
supergravity Lagrangian depends only on two functions, the Kähler function

G(Φ,Φ†) = K(Φ,Φ†) + ln |W (Φ)|2 , (1.51)

and the gauge kinetic function
fab(Φ) . (1.52)

We see that for supergravity the Kähler potential and superpotential are not independent;
however, it is still useful to work with them instead of G. In this case, the action exhibits an
extra symmetry, the so called Kähler invariance

K → K + h(Φ) + h∗(Φ†) , (1.53)

W → e−h(Φ)W

where h(Φ) is an arbitrary function.
Let us concentrate on the chiral supergravity Lagrangian: we are not interested in the gauge
fields coupled to supergravity, as these fields do not arise from compactifications of the extra
dimensions of string theory we will consider in the next chapters. In particular, from this pro-
cedure lots of scalar fields are originated. Hence, we do not write the full Lagrangian explicitly,
which can be found in [5], but we give the general form of the Lagrangian for a scalar field,
which is

Lϕ = Kij̄∂µϕ
i∂µϕ∗j̄ − VF . (1.54)

The scalar potential, which can be derived as in section 1.5, is now

VF = e
K

M2
P

(
Kij̄DiWDjW − 3

|W |2

M2
P

)
, (1.55)

where

DiW := ∂iW +
1

M2
P

(∂iK)W . (1.56)

In this case, the F-terms are given by

F i = e
K

2M2
P Kij̄DjW , F j̄ = e

K

2M2
P Kij̄DiW . (1.57)

Note that in the limit MP →∞ the potential (1.55) becomes equal to the standard supersym-
metric case of (1.43), as we expect.



CHAPTER 2

4D LVS STRING MODELS

2.1 Why string theory?

Nowadays string theory is one of the most promising fundamental theories which may be able to
describe all the known interactions in an elegant unified framework. It is build on a rich mathe-
matical structure where the point-like objects of particle physics are replaced by one-dimensional
objects, namely the strings. Such theory requires the existence of six extra dimensions for in-
ternal consistency, introduced with the help of a six-dimensional manifold.
It seems there exist only five different string theories: type I string theory (closed and open
strings), type IIA and IIB string theory (closed strings), heterotic E8 × E8 and SO(32) string
theory. These theories are related by a number of dualities and are believed to correspond to
different limits of an underlying theory known as M-theory.
In order to make contact with our four-dimensional world, it is the necessary to find a way to
“hide” the extra dimensions making them invisible at our present instrumentation. This tech-
nique is called compactification and it corresponds to the low energy limit of string theory. This
limit (some orders of magnitude below the Planck scale) leads in general to a supersymmetric
low energy effective theory. Hence, it is particularly interesting as it can provide an extension
of the Standard Model, naturally accounting for supersymmetric particles, and cosmological
models useful to describe some features of the universe evolution.

Despite being a candidate to describe Nature in all its aspects, string theory lacks any kind
of experimental evidence. However, even if a direct confirmation seems at present impossible, it
is worth to look for phenomenological implications of the theory, which could produce realistic
models of some natural phenomena.
In particular, in this thesis we are interested in cosmological models for inflation, i.e. the period
of accelerated cosmological expansion soon after the Big Bang. In this chapter we will focus
on some results of type IIB string theory necessary to build suitable model for this purpose;
the goal of this discussion is to give an idea of the underlying theory and its low energy limit
without any claim of completeness. More exhaustive treatments can be found for example in
[6], [7] and [8].
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2.2 Compactification and dimensional reduction

In this section we present the most important features of the low energy limit of string compact-
ifications for type IIB string theory. This procedure allows us to get rid of the extra dimensions,
providing a connection with our four-dimensional world and obtaining an effective theory we
can work with. In particular, we are interested in supersymmetric compactifications in order to
find a N = 1 supergravity potential, which is the most interesting one from a phenomenological
point of view. Indeed, in general the low energy limit gives origin to supersymmetric theories in
which supersymmetry is broken, for instance supergravity with N = 8, N = 2 or N = 1.

In relevant models for cosmology, the ten-dimensional space is assumed to be factorized as

M10 =M4 × Y6 , (2.1)

where M4 is the Minkowski space-time and Y6 is a compact Calabi-Yau three-fold, which is
tipically compactified at low energies. This specific choice is justified by the fact that with this
manifold we can recover a 4D N = 2 supergravity, which can be further reduced to N = 1. In
this case the line element (ignoring possible warping) can be written as

ds2 = GMNdXMdXN = gµνdxµdxν + ĝmndymdyn , (2.2)

where ym ,m = 1, 2, ..., 6 are coordinates on Y6 and ĝmn is a metric on it. In general, the theory
does not provide a specific choice for the internal space Y6. Its form has to be determined in
order to match observations and we can be guided by cosmology and particle physics to gather
an ansatz for the structure of the manifold.

We sketch here the idea of dimensional reduction, following [6]. To compute the four-
dimensional effective action we begin with the ten-dimensional Einstein-Hilbert action

S10
EH =

M8
s

2

∫
d10X

√
GR10 , (2.3)

where Ms is the string scale, G is the modulus of the determinant of the metric GMN and R10 is
the ten-dimensional Ricci scalar constructed from GMN . The next step consists into performing
a Kaluza-Klein reduction (i.e. considering the low energy limit below the Kaluza-Klein scale
MKK), noting that in this case the integral can be factorized as

S10
EH =

M8
s

2

∫
d6y
√
ĝ

∫
d4x
√
gR4 , (2.4)

where g = |det gµν |, ĝ = | det ĝmn| and R4 is the usual Ricci scalar in four dimensions. The
volume of the internal space is given by

Vol(Y6) =

∫
Y6

d6y
√
ĝ ≡ Vl6s , (2.5)

where ls = 2π
√
α′ is the string length and 1

2πα′ is the string tension. The string length is linked
to the string mass scale Ms by ls = 1

Ms
.

To recover the Einstein-Hilbert action in four dimension

S4
EH =

M2
P

2

∫
d4x
√
gR4 , (2.6)
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is immediate to make the identification

Ms v
MP√
V
. (2.7)

where the volume is intended in string length units (ls = 1). The value of Ms is smaller than MP

and we need V � 1. Beside this, we can also put an upper bound given the fact that up to now
LHC did not find any hint of new physics above 1 TeV; thus, the volume should be V � 1030

[9].
We can now also estimate the Kaluza-Klein scale considering that it has to be the scale for which
lengths are bigger than the Calabi-Yau characteristic dimension

MKK v
1(

Vol(Y6)1/6
) v

1

V1/6ls
v

Ms

V1/6
v

MP

V2/3
. (2.8)

Referring to Ms, the low energy limit gives rise to a ten-dimensional type IIB supergravity with
N = 2 whose field content is given by the massless degrees of freedom of string theory. To
compactify the extra dimensions is necessary to go below MKK , as we did in the above example.
For the sake of simplicity, from now on we will work in Planck units MP = 1, unless otherwise
specified.

2.2.1 Moduli

After Calabi-Yau compactifications, we are left with lots of different type of moduli, which are
neutral scalar fields gravitationally coupled to matter fields through Planck-suppressed inter-
actions. In this section we will show the connection of these fields with the geometry of the
considered manifold.

We have already mentioned that the simplest compactification with Calabi-Yau manifold
leads to a N = 2 supergravity theory. We then exploit this feature in order to outline where the
moduli come from; we will focus exclusively on them, as the other forms and additional scalar
fields of the theory do not directly appear in this thesis.
Once we get a 4D effective theory, we can basically distinguish three kind of moduli fields:

• axio-dilaton S = e−Φ + iC0, where C0 is an axion-like field and Φ is a field called dilaton,
whose VEV fixes the string coupling e−〈Φ〉 = 1/gs;

• complex structure moduli ζA, which parametrize the shape of internal space and arise from
deformations of the complex structure on Y6, which may be written as

δgij =
i

||Ω||2
ζA(x)(χA)ij̄k̄Ω

j̄k̄
j (2.9)

where χA represents a set of harmonic (1,2)-forms, A = 1, 2, ..., h1,2 (h1,2 is a Hodge
number, thus in this case the dimension of the Dolbeault cohomology group H1,2) and

Ω = Ωijkdz
i ∧ dzj ∧ dzk is the holomorphic (3,0)-form of Y6, ||Ω||2 = 1

3!ΩijkΩ
ijk

;

• Kähler moduli tI , which are deformations of the Kähler form

J = igij̄ dzi ∧ zj̄ , (2.10)
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which can be parametrized by a set of harmonic (1,1)-forms D̂I , I = 1, 2, ..., h1,1 (h1,1 is a
Hodge number, thus in this case the dimension of the Dolbeault cohomology group H1,1),
as

J = tI(x)D̂I . (2.11)

Let us now turn to the most interesting case. In order to finally obtain an acceptable
phenomenological model, it is possible to introduce an orientifold projection O which breaks the
N = 2 supersymmetry into a N = 1 supersymmetry. These type of compactifications typically
include non-trivial background fluxes and local sources such as D-branes.
Under the orientifold action the cohomology groups split into

Hp,q = Hp,q
+ ⊕Hp,q

− , (2.12)

where the subscripts denote the parity of the forms under orientifold action. Consequently, also
the basis for H1,1 and H1,2 decompose into basis for an even and an odd space.
The Kähler form can be written as

J = ti(x)D̂i , i = 1, 2, ..., h1,1
+ , (2.13)

where as before ti are the Kähler moduli, which measure the volume of two-cycles that are even
under the involution O. In the same way, the complex structure moduli are ζα, α = 1, 2, ..., h1,2

− ,
whereas Φ and C0 are automatically invariant under the orientifold action.

Now we can further discuss this last framework. We begin noticing that the compactification
volume can now be written with the help of the Kähler form as

V =
1

3!

∫
Y6

J ∧ J ∧ J =
1

3!
titjtk

∫
Y6

D̂i ∧ D̂j ∧ D̂k ≡
1

3!
cijkt

itjtk , (2.14)

where cijk are the triple intersection numbers of Y6.
The fields entering the N = 1 chiral multiplets are the complexified Kähler moduli

Ti = τi + iθi , (2.15)

where τi is a four-cycle and θi is its axion-like partner, i.e. a pseudoscalar field with Peccei-Quinn
shift symmetries of the form θi 7→ θi + const.
The four-cycle volumes are related to the two-cycle volumes by

τi =
∂V
∂ti

=
1

2

∫
Y6

D̂i ∧ J ∧ J =
1

2
cijkt

jtk . (2.16)

2.3 Moduli stabilization

As we have seen, moduli are zero-energy deformations arising from the geometrical properties of
the Calabi-Yau manifold. All of them are characterized by a vanishing potential at some level of
approximation; some of them have exactly vanishing potential before supersymmetry breaking,
while others have vanishing classical potential but acquire mass thanks to quantum effects. In
order to describe cosmological evolution it is fundamental to understand the dynamics of these
scalar fields.
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A first task is then to find vacua in which all moduli have positive mass-squared. This operation
is extremely important, as moduli VEVs determine fundamental quantities such as coupling
constants, and allows us to build realistic models. Furthermore, we know that moduli cannot
be massless, otherwise they would originate a fifth force and we would have already observed
them. This technique goes under the name of moduli stabilization.

Let us now list the fundamental functions of the supersymmetric effective theory. After
having compactified the Calabi-Yau manifold in order to obtain a 4D N = 1 supergravity, we
can write the corresponding Kähler potential and superpotential. At leading order in the α′ and
string loop expansions, the Kähler potential is

K0 = −2 log(V)− log
(
S + S̄

)
− log

(
−i
∫

Ω ∧ Ω̄

)
, (2.17)

where the holomorphic three-form Ω of the Calabi-Yau manifold depends on the complex struc-
ture moduli ζα and the volume depends on the Kähler moduli Ti.
The tree level (flux-induced) superpotential is

W0 =
c

α′

∫
G3 ∧ Ω , (2.18)

where c is a constant and G3 is a three-form flux. The superpotential is independent from the
Kähler moduli since G3 ≡ G3(S) depends only on the axio-dilaton and Ω ≡ Ω(ζ); thus we can
write W0 = W0(S, ζ).
The scalar potential associated with K0 and W0 is then

V 0
F = eK0

[
KIJ̄

0 DIW0DJW0 − 3|W0|2
]
, (2.19)

where the indexes I, J run over all the moduli (Ti, ζα, τ). The Kähler potential in (2.17) satisfies
the no-scale condition ∑

I,J=Ti

KI,J̄
0 DIW0DJW0 = 3 (2.20)

and the scalar potential (2.19) reduces to

V 0
F = eK0

∑
I,J 6=Ti

KIJ̄
0 DIW0DJW0 ; (2.21)

this property is the so called no-scale structure. Since the superpotential (2.18) is independent
of the Kähler moduli, the scalar potential is now independent from the F-terms of the Kähler
moduli.

At tree level the potential is positive semi-definite and the minimum is then V 0
F,min = 0,

which implies
DSW0 = 0 , DζαW0 = 0 . (2.22)

Hence, the axio-dilaton and the complex structure moduli can be stabilized at tree level solving
these equations. In particular, as mentioned before, we obtain Re (〈S〉) = e−〈Φ〉 = 1/gs; it is
fundamental to stabilize the dilaton in order to have gs � 1. In this case, from (1.57) it is
immediate to recognize that the global minimum is supersymmetric as long as DTiW0 = 0.

In order to stabilize Kähler moduli we then need to consider perturbative and non-perturbative
corrections to the tree level potential, which break the no-scale symmetry, lifting or destabilizing
the flat directions and altering the vacuum energy.
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2.3.1 Perturbative corrections

The Kähler potential receives corrections order by order in α′ and string loop expansions

K = δKα′ + δKgs ; (2.23)

there are also non-perturbative effects that we can safely ignore as they are subdominant com-
pared to above corrections.
If we neglect string loop contributions (see [10] and [11] for discussions on these terms), we are
left with δKα′ , where α′ corrections descend from an (α′)3 curvature correction in ten dimen-
sions. If we stabilized at tree level the dilaton and the complex structure moduli with the help
of (2.22) we get

K = Kcs − 2 ln

[
V +

ξ

2

]
, Kcs =

〈
log

(
−i
∫

Ω ∧ Ω̄

)〉
(2.24)

where

ξ = − χ(Y6)ζ(3)

2(2π)3g
3/2
s

, (2.25)

χ(Y6) is the Euler characteristic of the manifold Y6 and ζ(3) ≈ 1.202 is Apéry’s constant. The
α′-corrected Kähler potential no more satisfy the no-scale condition (2.20) unless χ(Y6) = 0.
It is important to notice that α′-correction is an expansion in inverse volume which can be
controlled only at large volume.

The leading contribution to the potential is

δVα′ = 3ξeK
(ξ2 + 7ξV + V2)

(V − ξ)(2V + ξ)2
W 2

0 '
3

4
eK

ξW 2
0

V
' 3

4

ξW 2
0

V3
, (2.26)

where we assumed Kcs ' 0.

2.3.2 Non-perturbative corrections

Unlike the Kähler potential, the superpotential receives no corrections in α′ or gs. Due to the
non-renormalization theorem its first corrections arise non-perturbatively and the general form
of the corrected superpotential is

W = W0 +Wnp = W0 +

h1,1+∑
i=1

Aie
−aiTi , (2.27)

where the coefficients Ai are independent from all the Kähler moduli, but generally depends
on the complex structure moduli and on D-brane positions. In particular, such terms can be
generated from gaugino condensation in supersymmetric gauge theories located on D7-branes
wrapping 4-cycles or from Euclidean D3-branes (also wrapping 4-cycles). In particular, in the
first case ai = 2π

N (for a SU(N) gauge theory), whereas in the second ai = 2π.

Let us now compute the non-perturbative contribution to the scalar potential. For an arbi-
trary Kähler potential, from (1.55) and (2.27) we get

Vnp = eKKij̄
[
aiAiaj̄Aj̄e

−(aiTi+ajT j) −
(
aiAie

−aiTiW∂j̄K + aj̄Aj̄e
−ajT jW∂iK

)]
. (2.28)
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2.4 The Large Volume Scenario

We now turn to investigate whether the new potential corrected with (2.24) and (2.27) presents
metastable vacua even though the classical theory has unstabilized Kähler moduli.
In general, leading-order corrections create an instability in the potential, which drives the
theory either towards extremely large or extremely small values of the volume, depending on the
situation. A metastable vacuum can arise only considering higher-order corrections which can
counterbalance the instability generated by leading corrections. Unfortunately, such corrections
are in general not known and stabilization may not be an easy task.
However, there exist (at least) two mechanisms which can achieve moduli stabilization exploiting
competition among known correction terms; these are known as Large Volume Scenario (LVS)
and KKLT scenario. In this section we briefly discuss the LVS as it provides the framework in
which the model we will study in chapter 4 is embedded. For a more general discussion see [12].

The LVS allows to obtain Kähler moduli stabilization by balancing the leading α′ correction
of the corrected Kähler potential (2.24) against the non-perturbative superpotential (2.27). This
approach is particularly useful as it allows to stabilize the volume modulus V at large values;
this assures us that we can neglect the unknown α′ and gs corrections, which are subleading
compared to (2.24). In particular, this procedure originate a non-supersymmetric AdS minimum
at exponentially large volume.

The first thing to do, in analogy with the KKLT scenario, is to integrate out the complex
structure moduli: we stabilize the dilaton and complex structure moduli by solving (2.22), as
was already suggested. We now can put together the α′-corrected Kähler potential (2.24) and
the superpotential (2.27) in order to find the full scalar potential, which depends only on the
Kähler moduli

VF = Vnp + δVα′ ' eK
{
Kij̄

[
(∂iW )(∂jW ) (2.29)

+
(
W (∂iW )(∂j̄K) +W (∂jW )(∂iK)

)]
+

3

4

ξW 2
0

V

}
,

where we used the large volume limit V � 1. Actually, these perturbations generate also a
small shift in the minimum of the other fields, namely DSW v DζαW v O(V−1), whose role
is analyzed for example in [13]. However, this shift is small and we can regard their values as
fixed.
In the following discussion we consider cases with ξ > 0 (χ(Y6) < 0), which is equivalent to have
more complex structure moduli than Kähler moduli, as χ(Y6) = 2(h1,1 − h2,1).

In order to distinguish different terms whose combination can generate a metastable vacuum,
we first note that the non-perturbative contribution to the potential (2.28) can be splitted into
Vnp = Vnp1 + Vnp2, where

Vnp1 = eKKij̄
(
(∂iW )(∂jW )

)
, (2.30)

Vnp2 = eKKij̄
(
W (∂iW )(∂j̄K) +W (∂jW )(∂iK)

)
. (2.31)

In order to achieve stabilization, the authors of [12] assume the presence of several real moduli
τi = Re(Ti) which satisfy

τi →∞ for V → ∞ , (2.32)
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which is the decompactification limit (in which the corrections to the tree level potential must
vanish), and of small modulus τs for which this condition does not hold. They also argue that
the first limit must be well-defined and that τs must appear non-perturbatively in W , whereas
this is not necessary for “big” moduli. In order to achieve competition between δKα′ , Vnp1 and
Vnp2 the small modulus has to behave like

asτs = lnV for V → ∞ . (2.33)

Indeed, with this requirement all the three terms are of the same order in 1/V. At large volume
the dominant one is the negative contribution of Vnp2, as we will see in a moment, and thus
the potential approaches zero from below. Hence, if such assumptions are suitable to achieve
stabilization, the minimum they generate must be AdS.

A more general analysis [14] shows that we can choose a Calabi-Yau with several “big” and
“small” moduli such that at the large volume limit{

τi remains small ∀i = 1, 2, ..., Nsmall

τj →∞ ,∀j = Nsmall + 1, ..., h1,1 ,
(2.34)

with a superpotential whose non-perturbative corrections depend only on the small moduli

W = W0 +

Nsmall∑
i=1

Aie
−aiTi . (2.35)

In this case the scalar potential admits a set of a AdS non-supersymmetric minima at exponen-
tially large volume located at V v eaiτi , ∀i = 1, 2, ..., Nsmall if and only if ξ > 0 and τi is a local
blow-up mode resolving a given point-like singularity ∀i = 1, 2, ..., Nsmall.
It can also be shown that τi is the only blow-up mode resolving a point-like singularity if and
only if Kii v V√τi. If the singularity is resolved by more than one blow-ups the structure of
Kii is more general, see again [14].

Let us now study a very simple case which enlightens the above idea in a straightforward
way and clarifies some of the statements we made. We can assume the simplest possible form
for the Calabi-Yau which satisfies the requirements (2.34)

V = τ
3/2
b − τ3/2

s . (2.36)

Using the results of appendix A.2, we can compute the non-perturbative contributions in the

large volume limit V v τ
3/2
b � 1 using the superpotential W = W0 +Ase

−asTs as in (2.35). For
simplicity we assume that both W0 and As are real. For Vnp1 we find

Vnp1 = eKKss
(
(∂iW )(∂jW )

)
' 8

3

eKcs

V
√
τsa

2
sA

2
se
−2asτ2 . (2.37)
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To compute Vnp2 we need to be more careful. Recalling ∂
∂Ts

= 1
2
∂
∂τs

we have

Vnp2 = + eKKss
(
W (∂sW )(∂sK) +W (∂sW )(∂sK)

)
+ eKKsb

(
W (∂sW )(∂bK) +W (∂bW )(∂sK)

)
+ eKKbs

(
W (∂bW )(∂sK) +W (∂sW )(∂bK)

)
'− eKcs

V2
Kss 3

2V
√
τs

(
asAsW0(e−asTs + e−asT s)

)
+ eKKsb(∂bK)

(
W (∂sW ) +W (∂sW )

)
'− 8

eKcs

V2
τsasAsW0e

−asτs cos(asθs)

+ 12
eKcs

V2
τsasAsW0e

−asτs cos(asθs)

'+ 4
eKcs

V2
τsasAsW0e

−asτs cos(asθs) ,

where we discarded the terms e−2asτs . Finally, the total potential looks like

VF ' eKcs
[

8

3

1

V
a2
sA

2
s

√
τse
−2asτ2 + 4

1

V2
AsW0asτse

−asτs cos(asθs) +
3

4

ξW 2
0

V3

]
. (2.38)

In order to approach zero from below and generate a minimum we can act on axion fields,
minimizing them setting θs = n2π

as
; we obtain

VF ' eKcs
[

8

3

1

V
a2
sA

2
s

√
τse
−2asτ2 − 4

1

V2
AsW0asτse

−asτs +
3

4

ξW 2
0

V3

]
. (2.39)

From this final expression it is evident that V > 0 for small values of V; on the contrary, using
(2.33) we then see that at large volume the potential is negative

V v eKcs
[

8

3

1

V3
a3/2
s A2

s

√
lnV − 4

1

V3
AsW0 lnV +

3

4

ξW 2
0

V3

]
(2.40)

v− 4
1

V3
AsW0 lnV ,

and thus V < 0 for V → ∞. It is then immediate to gather that it must exist at large volume
an AdS minimum, as we stated previously. The form of the potential is sketched in figure 2.1.

We point out that this example explains correctly the idea of the article [12], where the
authors assume more in general the presence of several big moduli and just one small modulus,
deriving the most general potential

VF v

[
1

V
a2
s|As|2(−cssktk)e−2asτs − 1

V2
asτse

−asτs |AsW |+
ξ

V3
|W |2

]
. (2.41)

2.4.1 Uplift

Now that we have found a global AdS stable minimum, it is necessary to uplift it to account for
a dS vacuum, in order to give a realistic description of our universe. Indeed, to describe inflation
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V

Figure 2.1: Typical behavior of the potential after LVS stabilization.

in the early universe and dark energy in the late universe we need vacua with positive energy.
In particular, in order to reproduce the vacuum of our present epoch the global minimum of
the potential has to be approximately Minkowskian. This is not always an easy task in string
theory, as dS vacua are more subsceptible to instabilities.
Common mechanisms to generate such term rely on addition of anti-D3 branes or on the presence
of magnetic fluxes on D7-branes. In general, the uplift can parametrized by

Vup =
D

Vγ
, (2.42)

where D > 0 and γ depends on the specific mechanism generating this term and typically takes
values in the range 1 ≤ γ ≤ 3. The new behavior of the total potential

V tot = V + Vup

is represented in figure 2.2.

V

Figure 2.2: Plot of the potential with inclusion of the uplift term Vup and with a nearly
Minkowskian minimum.



CHAPTER 3

THE COSMOLOGICAL MODULI PROBLEM

3.1 Inflation

After the development of Einstein’s General Relativity, lots of scientists tried to apply this theory
to the study of the dynamical structure of the entire universe. In order to study the large scale
structure, it is convenient to think about the universe as a fluid where galaxies constitute its
particles.
Apart from this assumption, cosmology is based on three principles:

• General Relativity alone is sufficient to describe the large scale features of the universe;

• the motion of the galaxies is governed only by gravitational forces generated by the galaxies
themselves; this is the Weyl’s principle, which in other words states that the world lines
of galaxies form a spacetime-filling family of non-intersecting geodesics (which we can
consider as “fluid lines”) converging towards the past;

• the universe is the same in any point of the space (homogeneous) and symmetric in any
point of the space (isotropic); this is the so called cosmological principle.

In particular, the last hypothesis implies that there is no privileged observation point and that
the universe appears the same in every place. In addition, it also tells us that the universe must
be described by a constant curvature space. From these assumptions we can work out the line
element ds2 for an expanding universe, finding the famous Friedmann-Robertson-Walker (FRW)
metric

ds2 = dt2 − a2(t)

[
dr2

1− kr2
+ r2(dθ2 + sin2 θdφ2)

]
, (3.1)

where (r, θ, φ) are radial coordinates, k takes into account the geometry for a constant curvature
space (k = 0 flat, k = 1 spherical and k = −1 hyperbolic) and a(t) is the scale factor.
Solving Einstein equations we can find the dynamics of the scale factor, which contains all the
information on the universe expansion thanks to the homogeneity and isotropy assumptions. In
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particular, we obtain the system of equations{
3ä = −4πG(ρ+ 3p)a

aä+ 2ȧ2 + 2k = 4πG(ρ− p)a2
, (3.2)

and combining them we are lead to the Friedmann equation

ȧ2 + k =
8πG

3
ρa2 , (3.3)

where p is a pressure term and ρ is the energy density as usual.
Fundamental observational facts strongly suggest that our universe is spatially flat on large
scale and that it is then well described by FRW metric with k = 0. To better discuss the causal
structure of the FRW spacetime it is convenient to write the metric in term of the conformal
time τ

ds2 = a2(τ)
[
dτ2 − dx2

]
, (3.4)

such that the distance that a particle can travel in ∆τ is simply |∆x| = ∆τ (comoving distance).

Let us now discuss some features of standard Big Bang cosmology. We begin introducing the
concept of cosmological horizon. Imagine a signal emitted at the moment of Big Bang (t = 0)
which travels at the speed of light since then: we can ask what is the distance lH(t) that such
signal covers from the point of its emission after a time t > 0. lH(t) represents the size of the
region causally connected by the time t. This means that an observer living at time t cannot
know in principle what has happened outside the sphere of radius lH(t) and therefore this sphere
represents the observable part of the universe at time t. This sphere is the so called cosmological
horizon; lH(t) increases in time and the horizon opens up.
If we choose the coordinates in order to have the initial singularity at t = 0, then the maximum
comoving distance that a particle can travel at t > 0 since that moment is given by

∆τ =

∫ t

0

dt′

a(t′)
=

∫ t

0

1

ȧ

ȧ

a
dt′ =

∫ a

0

1

aH
d ln a , H ≡ ȧ

a
. (3.5)

and the physical size is

lH(t) = a(t)∆τ = a(t)

∫ t

0

dt′

a(t′)
. (3.6)

For example, if the universe was matter dominated, we would have a(t) ∝ t2/3, H(t) = 2/(3t) and
then lH(t) = 3t = 2/H(t) and the size of the horizon today would be lH0 = 2/H0 ' 2.6×1028 cm.
Hence, in model with cosmological horizon the observable region has a finite size even if the
universe is infinite. For further details and discussion see for example [15].

In standard Big Bang cosmology the expansion of the universe is driven by the energy density
of radiation; from (3.2) it is evident that ä < 0 and that at sufficient early times a→ 0 and the
metric becomes singular. Therefore, during standard Big Bang evolution the comoving radius
(aH)−1 = (ȧ)−1 grows with time and the integral (3.5) is dominated by the contributions from
late times. This fact implies that the amount of conformal time between singularity and the
formation of the cosmic microwave background (CMB) is much smaller than the time between
CMB formation and today. This generates a serious problem: CMB is experimentally found
to be the same in every direction (to one part in 104), but according to standard Big Bang
evolution photons coming from different regions of the universe were never in causal contact.
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More precisely, it can be calculated that CMB separated by more than one degree were never
in causal contact. This is the so called horizon problem.
This situation is illustrated in figure (3.1), from which it is clear that in standard Big Bang
theory the light cones of CMB do not overlap.

Figure 3.1: Illustration of the horizon problem in comoving coordinates. All the events that
we observe (we are the central dotted wordline) are in our past light cone. At time of CMB
formation it can be seen that photons coming from opposite regions were never in causal
contact, as their light cones (shaded in gray) never cross.

In other words, we can say that the horizon problem is due to the fact that universe expands
slowly, so an observer see more and more regions that have never been in causal contact. We can
perform some simple calculations exploiting this consideration. At time t1 the size of a causally
connected region is given by

lH1 = a(t1)∆τ = a(t1)

∫ t1

0

dt′

a(t′)
, (3.7)

and due to cosmological expansion this very same region at time t0 is stretched to

lH1(t0) =
a(t0)

a(t1)
lH1 = a(t0)∆τ = a(t0)

∫ t1

0

dt′

a(t′)
. (3.8)

We can now compare this last expression with the present horizon size lH0

lH0

lH1(t0)
=

∫ t0
0

dt′

a(t′)∫ t1
0

dt′

a(t′)

=

∫ a0
0

da
a2H∫ a1

0
da
a2H

' a(t1)H(t1)

a(t0)H(t0)
; (3.9)

since with matter domination we have a ∝ t2/3 and H ∝ t−1, then aH ∝ a−1/2 and we can
rewrite

lH0

lH1(t0)
=

√
a(t0)

a(t1)
=
√

1 + z(t1) , (3.10)

where z(t1) is the redshift parameter. If we take t1 = tr, which is the time of recombination,
z(tr) = 1100 and

lH0

lH1(t0)
' 35 , (3.11)
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which implies that the size of the region linked to recombination is around 35 times smaller than
the present horizon size. In other words, in Hot Big Bang theory the universe visible at present
contain about 353 regions that were causally disconnected by recombination.

In order to address the horizon problem, we may imagine that the comoving Hubble radius
(aH)−1 was decreasing in early universe, so that (3.5) is dominated by the contributions from
times very close to the moment of the Big Bang. This add an extra time between the singularity
and the CMB formation (and conformal time extends to negative values) and if this period of
decreasing comoving Hubble radius is sufficiently long all the points in the CMB originate from
a causally connected region of space.
Therefore, to solve this problem we can postulate a period of expansion called inflation. Ac-
cording to the inflationary theory, the Hot Big Bang epoch is preceded by an inflationary epoch
of accelerated cosmological expansion. At the end of that, the energy density varies slowly in
time and the universe expands and becomes homogeneous, isotropic and spatially flat.

We can mathematically translate the requirement of decreasing comoving Hubble radius as

d

dt
(aH)−1 = −1

a

[
Ḣ

H2
+ 1

]
< 0 (3.12)

and introducing the Hubble slow-roll parameters

ε ≡ − Ḣ

H2
, η̃ =

ε̇

Hε
(3.13)

we can equivalently require ε < 1; this last will be our definition of inflation. In the limit ε→ 0
we found a de Sitter solution

a(t) ∝ eHt , (3.14)

with H ' const, which tell us that the space grows exponentially.
Using H and MP , we can rewrite the Friedmann equations from (3.2) and (3.3) as{

3M2
PH

2 = ρ

6M2
P (Ḣ +H2) = −(ρ+ 3P )

. (3.15)

Working out the above system of equations, we obtain

ε =
3

2

(
1 +

P

ρ

)
; (3.16)

hence, during inflation P < −1
3ρ and a possible energy source is a positive potential energy

density of a scalar field with negligible kinetic energy.

3.1.1 Cosmological perturbations

Inflationary theory is very promising as it not only explains the homogeneity of the universe,
but also take into account the primordial inhomogeneities necessary to explain the structure
formation.
In this section we will briefly recall some expressions of observables (derived from the treatment
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of primordial fluctuactions) that will be present in the model we will study in the next chapter;
we refer to [6] for further details.

The power spectrum of primordial curvature perturbations is given by

PR(k) ≡ |Rk|2 =
1

4

H4

M2
P |Ḣ|csk3

, (3.17)

together with the dimensionless power spectrum

∆2
R ≡

k3

2π2
PR(k) =

1

8π2

H4

M2
P |Ḣ|cs

. (3.18)

The right-hand side is supposed to be evaluated at horizon crossing, where csk = aH.
In standard model of cosmology, the power spectrum is assumed to behave as

∆2
R(k) = As

(
k

k∗

)ns−1

, (3.19)

where ns is the spectral index that can be found from

ns = 1 +
d ln ∆2

R
d ln k

= −2ε− η̃ − κ , (3.20)

where

κ ≡ ċs
Hcs

. (3.21)

One of the cleanest predictions of inflation is a (dimensionless) spectrum of primordial gravita-
tional waves, which is given by

∆2
h(k) ≡ k3

2π2
Ph(k) =

2

π2

H2

M2
P

, (3.22)

where the right-hand side is evaluated at horizon crossing k = aH.
For observational purposes it is useful to define tensor modes with the help of the tensor-to-scalar
ratio

r =
∆2
h

∆2
R
, (3.23)

as the amplitude of scalar fluctuations can be easily measured.

3.1.2 Slow-roll model

We give here a brief overview of a general slow-roll model, which can be used to describe inflation.
We are presenting a very simple toy model in order to enlighten the physical idea behind this;
in chapter 4 we will study in detail a realistic model arising from the low-energy limit of string
compactifications.
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In order to describe inflation, we can imagine that there exists a scalar field, the inflaton,
minimally coupled to gravity whose dynamics leads to inflation. For a single scalar field φ, the
action is

S =

∫
dx4√−g

[
M2
P

2
R− 1

2
(∂φ)2 − V (φ)

]
, (3.24)

where V (φ) is an arbitrary inflaton potential.
In particular, we can imagine to use an exponentially flat potential of the form

V (φ) = V0 − cφe−kφ ,

as the one in figure (3.2). Inflation occurs in the “plateau” region, for large value of φ; here,
the field expectation value is large (and slightly constant for all the duration of inflation) and
can account for a large vacuum energy which drives the accelerated expansion of the universe.
Inflation ends when the field rolls down towards the minimum and start oscillating around it;
here the value of the potential must be zero, in order to account for the vacuum energy of the
post-inflationary epoch.

ϕ

V(ϕ)

Figure 3.2: Example of an exponentially flat potential. Inflation occurs in the “plateau”
region, and ends at the vertical red line, which represents the point where the slow-roll
regime ends. After that the field rolls down towards the minimum, oscillating around it.

In presence of a homogeneous scalar field φ(t) the Friedmann equation and the Klein-Gordon
equation respectively have the form

3M2
PH

2 =
1

2
φ̇2 + V , (3.25)

φ̈+ 3Hφ̇+
∂V

∂φ
= 0 . (3.26)

If we apply the time derivative d
dt to the Friedmann equation and substitute this expression in

the Klein-Gordon equation we obtain

∂V

∂φ
=

6

φ̇
M2
PHḢ − φ̈ ⇒ Ḣ = − φ̇2

2M2
P

.

Then the ε parameter is now

ε = − Ḣ

H2
=

1
2 φ̇

2

M2
PH

2
; (3.27)

inflation therefore occurs when the potential energy of the field dominates over the kinetic energy,
V � 1

2 φ̇
2. The kinetic energy remains small and slow-roll persists if the acceleration of the field
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is small, |φ̈| � 3H|φ̇|. From these two conditions and from (3.25) and (3.26) we get{
3M2

PH
2 ' V

3Hφ̇ = −∂V
∂φ

, (3.28)

and the conditions for prolonged slow-roll inflation can be expressed as conditions on the shape
of the potential

εs =
M2
P

2

(
1

V

∂V

∂φ

)2

� 1 , |η| = M2
P

1

V

∣∣∣∣∂2V

∂φ2

∣∣∣∣ , (3.29)

where εs � 1 and η � 1 are slow-roll parameters. In this model, inflation ends when εs = 1
(and η v O(1)).

During a slow-roll period, the “potential slow-roll parameters” εs and η are related to the
“Hubble slow-roll parameters” ε and η̃ via{

εs ≈ ε

η ≈ η̃ + ε
. (3.30)

For the spectra of scalar and tensor fluctuations we get

Ps =
1

24π2M2
P

V

εs
, Ph =

2

3π2M2
P

V , (3.31)

and the scalar spectral index and the tensor-to-scalar ratio are

ns − 1 = 2η − 6εs , r = 16εs . (3.32)

The observables have to be evaluated at the time of the horizon exit. This time can be
calculated using the number of efoldings dNe = Hdt

N tot
e =

∫
Hdt =

∫
H

φ̇
dφ ; (3.33)

if φexit > φend are respectively the value of the field at the horizon exit and at the end of
inflation, using (3.28) we find

N tot
e =

∫ φend

φexit

H

φ̇
dφ =

∫ φexit

φend

1

M2
P

√
2εs

dφ . (3.34)

The value of N tot
e depends on the inflationary model and on the details of reheating and typically

takes values in the range 40 . N tot
e . 60.

3.2 Cosmological moduli problem

In this thesis we are interested in inflationary models derived from the low energy limit of string
compactifications in type IIB string theory. This procedure is characterized by the presence of
gravitationally coupled scalar fields called moduli with Planck-suppresed couplings to Standard
Model fields, as we already discussed in chapter 2. For this reason, from now on we will speak
about “moduli” and “scalar fields” without distinction.
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3.2.1 Moduli cosmological evolution

In general, slow-roll models come with lots of scalar fields. In this section we will consider a
simple case with only one field in order to discuss the standard assumptions of inflation and to
describe the post-inflationary scenario and its problems. We refer in particular to [16] and [17]
for this discussion.

The simplest effective potential we can consider is

V =
1

2
m2
φ(φ− φ∗)2 +

C2

2
H2(φ− φin)2 , (3.35)

where C is some constant factor which could arise from radiative corrections. From (3.26) we
then find

φ̈+ 3Hφ̇+m2
φ(φ− φ∗) + C2H2(φ− φin) = 0 , (3.36)

where we have neglected the decay rate Γφ of the particle.
Standard assumptions of the cosmological evolution state that at the beginning of inflation
H � mφ and that the field is kept fixed in its inflationary minimum φin, as the friction term
3Hφ̇ in the equation (3.36) dominates.
When H . mφ the field is no more pinned in φin and it can start to oscillate around its post-
inflationary minimum φ∗ with amplitude roughly δφ = φin − φ∗. Hence, at the end of inflation
the energy density associated with this field is of order ρφ v m2

φ(δφ)2.

If we take H(t) = 2
3t (for matter domination), we can give an approximate analytic expression

of the solution for time t� 1
mφ

(which means for H � mφ), which for C v 1 is

φ v
4

3
(δφ)

(
2

3mφt

)
sin (mφt) . (3.37)

The numerical solution can be found in figure (3.3).
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t
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0.4

0.6
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ϕ

Figure 3.3: Numerical solution with C = 1, mφ = 1, φ∗ = 0 and φin = 1. The yellow line
represents the line of the mean value of the field at each time.

The factor H(t)
mφ

= 2
3mφt

accounts for the decrease of the amplitude of the oscillations due to the

expansion of the universe.
In the above expression the solution has a weak dependence on C; however, if one takes C � 1
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the behavior of the solution changes dramatically. In fact, the field follows the position of the
time-dependent minimum of the effective potential, and its oscillations around it are rather
small. In this case the solution looks like

φ v

√
4π

3
C3/2(δφ)e−

Cπ
3

(
2

3mφt

)
sin (mφt) ; (3.38)

the plot for the numerical solution can be found in figure (3.4).
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Figure 3.4: Numerical solution with C = 3, mφ = 1, φ∗ = 0 and φin = 1. The yellow line
represents the line of the mean value of the field each time.

If we compare (3.38) with (3.37) we can see that the amplitude when C � 1 reduced by a factor

3

4

√
4π

3
C3/2e−

Cπ
3 . (3.39)

This has also the effect to reduce the energy density stored in the oscillations of this field; as we
will see in the following section and in the next chapter, this could have a significant impact on
the post-inflationary scenario.

3.2.2 Reheating from moduli decay

It is now important to consider the post inflationary scenario and the moduli decay. In particular,
since they are unstable, we need to consider their decay rate Γφ and modify the Klein-Gordon
equation (3.26) for a single field into

φ̈+ (3H + Γφ)φ̇+
∂V

∂φ
= 0 , (3.40)

where Γφ v
m3
φ

M2
P

. As previously discussed, the energy density associated with this modulus is

ρφ v m2
φ(δφ)2. Since moduli behave as non relativistic matter, their energy density redshifts as

ρm ∝ a−3 and they could come to dominate the energy density of the universe, as it increases
with respect standard radiation density ρrad ∝ a−4.
If we consider that ρrad v T 4, from the Friedmann equation (3.15) we get H v T 2/MP and
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since the field starts to oscillate when H v mφ the initial temperature of this period can be
estimated as Tin v

√
mφMP . Therefore we can write

ρφ(T ) = ρφ(Tin)

(
T

Tin

)3

v m2
φ(δφ)2

(
T√
mφMP

)3

. (3.41)

If the field φ is stable, these oscillations will surely dominate the energy density of the
universe. Imposing that the energy density at the temperature T0 today is

ρφ(T0) < ρcritical = 3H2
0M

2
P v (10−3 eV)4 ,

where T0 and H0 are respectively the temperature and the Hubble constant today, we find a
constraint on δφ

δφ < 10−10
( mφ

100 GeV

)−1/4
MP .

Hence, if δφ v MP a stable scalar field with mφ > 10−26 eV would have a large energy density
that would be incompatible with our observations.

If the field is unstable, its decay could happen very late in the history of the universe and could
spoil the nucleosynthesis process. In particular, the field is expected to decay at a temperature
TD for which H(TD) v Γφ. Then, using the expressions we found before and (3.15),

Γφ v

(
m3
φ

M2
P

)
ρφ(TD) = ρφ(Tin)

(
TD
Tin

)3
⇒ TD v

m
11/6
φ

M
1/6
P (δφ)2/3

. (3.42)

If we assume that at temperature TD the energy density ρφ(TD) is promptly converted into
radiation we can estimate the reheat temperature as

TRH ' (ρφ(TD))1/4 v (MPΓφ)1/2 v

(
m3
φ

MP

)1/2

. (3.43)

In order not to spoil the successful predictions of the Big Bang nucleosynthesis (BBN) process
we need to require that TRH > 10 MeV, which assures that moduli decay before the BBN,
as TBBN v O(1) MeV. This puts a bound on the mass mφ & 100 TeV; this is the so called
cosmological moduli problem. It is therefore important for a successful inflationary model to
generate moduli with large masses.



CHAPTER 4

KÄHLER MODULI INFLATION AND MODULI
DOMINATION

4.1 Kähler moduli inflation: effective action

The theory of inflation has proven to be very successful in explaining lots of phenomena in early
universe cosmology. However, it is still not clear what could actually produce a mechanism of
accelerating expansion.
One idea is to look for possible ways to explain this period of cosmic evolution within the
framework provided by a fundamental theory. Today, one of the most promising fundamental
theory is string theory, and the moduli stabilization mechanism discussed in section 2.3 has
opened the way to application to inflation. Stabilization techniques represent the first step
towards string phenomenology, as moduli VEVs are connected to important basic quantities
such as the string scale and the gauge coupling constants.

The idea developed in [18] is to construct a model, called “Kähler moduli inflation”, within
the LVS framework for moduli stabilization in IIB flux compactifications with a blow-up Kähler
modulus playing the role of the inflaton.

4.1.1 The scalar potential

The structure of the potential of Kahler moduli inflation is such that inflation is obtained natu-
rally and almost inevitably. In particular, the authors of [18] noted that with non-perturbative
correction to the superpotential (2.27), in the non-perturbative contribution to the scalar po-
tential of supergravity (2.28)

Vnp = eKKij̄
[
aiAiaj̄Aj̄e

−(aiTi+ajT j) − (W (∂iK)aj̄Aj̄e
−ajT j + c.c.)

]
Ti only appear non-perturbatively along exponentially flat directions. Such features naturally
suggest possible applications to inflation. Indeed, slow-roll inflation precisely requires the pres-
ence of almost flat directions in the scalar potential.

In order to build a suitable model, the authors of [18] chose the simplest LVS realisations,
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which are provided by Calabi-Yau manifolds whose volume takes the Swiss-cheese form

V =
α

2
√

2

[
(T1 + T̄1)3/2 −

n∑
i=2

λi(Ti + T̄i)
3/2

]
= α

(
τ

3/2
1 −

n∑
i=2

λiτ
3/2
i

)
, (4.1)

where as before Ti = τi + iθi are the Kähler moduli, τi are four-cycles volumes (called blow-ups)
and θi are the associated axions.
Using the α′-corrected Kähler potential (2.24) and keeping in mind that ∂

∂Ti
= 1

2
∂
∂τi

we can now
build the Kähler metric for an arbitrary number of moduli

K11̄ =
3α4/3(4V − ξ + 6α

∑n
k=2 λkτ

3/2
k )

4(2V + ξ)2(V + α
∑n

k=2 λkτ
3/2
k )1/3

, Kīi =
3αλi(2V + ξ + 6αλiτ

3/2
i )

4(2V + ξ)2√τi
(4.2)

K1j̄ = −
9α2λj

√
τ1
√
τj

2(2V + ξ)2
, Kij̄ =

9α2λiλj
√
τi
√
τj

2(2V + ξ)2
,

together with its inverse

K11̄ =
4(2V + ξ)

√
τ1(2V + ξ + 6α

∑n
k=2 λkτ

3/2
k )

3α(4V − ξ)
, K īi =

4(2V + ξ)
√
τi(4V − ξ + 6αλiτ

3/2
i )

3α(4V − ξ)λi
,

(4.3)

K1j̄ =
8(2V + ξ)τ1τj

(4V − ξ)
, Kij̄ =

8(2V + ξ)τiτj
(4V − ξ)

.

Finally, using the superpotential (2.35)

W = W0 +

n∑
i=2

Aie
−aiτi (4.4)

from the expression (1.55) we can work out the explicit form of the potential

V =

n∑
i=2

n∑
j=i+1

AiAj cos(aiθi − ajθj)
(4V − ξ)(2V + ξ)2

e−(aiτi+ajτj)[32(2V + ξ)(aiτi + ajτj + 2aiajτiτj) + 24ξ]+

(4.5)
n∑
i=2

(
16(aiAi)

2√τie−2aiτi

3αλi(2V + ξ)
+

32aiA
2
i τi(1 + aiτi)e

−2aiτi

(4V − ξ)(2V + ξ)
+

12ξA2
i e
−2aiτi

(4V − ξ)(2V + ξ)2

)
+

n∑
i=2

8W0Ai cos(aiθi)

(4V − ξ)(2V + ξ)
e−aiτi

(
4aiτi +

3ξ

2V + ξ

)
+

+
12ξW 2

0

(4V − ξ)(2V + ξ)2
+ Vup ,

where Vup is the uplift term. The chosen form of this term could lead to different dependencies
on the internal volume, as shown in appendix B. In this case, following [19], we take

Vup =
Cup|W0|2

V8/3

(
1− Csub
V2/3

)
,

{
Cup = 9

16πα
2/3

Csub = gs
|W0|2
18α4/3

. (4.6)
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Actually, in principle Cup and Csub depend on some parameters of the theory [20]; however, this
dependence is weak (in the sense that those parameters could take values in small ranges) and
we can safely consider them fixed as in (4.6).

We now briefly describe inflation with Kähler moduli, which will be enlighten in the next
sections. The idea is to displace the inflaton (one of the blow-ups, τ2 in our convention) from its
minimum while keeping the other moduli in their global minimum; the potential is exponentially
flat in this direction (at constant volume) and the inflaton rolls back towards the global minimum
driving inflation, as we discussed in 3.1.2. Actually, the displacement of the inflaton affects the
other moduli, in the sense that they will be positioned in a new local minimum (the inflationary
minimum, which depends on the position of the inflaton); in order to obtain stability, this minima
must be very close to the global ones. We stress that for the model to work it is necessary that
all the moduli are stable during inflation, in particular the volume modulus.
The blow-ups have a marginal role in inflationary dynamics (except the inflaton of course), but
their presence is fundamental to stabilize the volume modulus during inflation. Furthermore, the
volume modulus plays a crucial role in the post-inflationary scenario. Depending on the values
of the parameters, after the inflaton decays into radiation the universe could enter a period of
matter domination due to the small decay rate of the volume. We will analyze in detail this
possibility in section 4.3.

4.1.2 Large Volume Limit and constraints

We can now consider a simplified version of the potential taking the large volume limit, including
only the leading terms up to O( 1

V3 )

VLARGE =
n∑
i=2

8(aiAi)
2√τi

3αλiV
e−2aiτi +

n∑
i=2

4W0
aiAi
V2

cos(aiθi)τie
−aiτi +

3ξW 2
0

4V3
+ Vup ,

where Vup ' Cup|W0|2
V8/3 . In particular, the volume should take value in the range 105 ≤ V ≤ 107

(in string length units). Recalling the discussion of section 2.4, we can put the axions in their
minima (which satisfy cos

(
aiθ

min
i

)
= −1) as they do not play any active role during inflation,

obtaining

VLARGE =
n∑
i=2

8(aiAi)
2√τi

3αλiV
e−2aiτi −

n∑
i=2

4W0
aiAi
V2

τie
−aiτi +

3ξW 2
0

4V3
+
Cup|W0|2

V3
. (4.7)

Now we can find the minima ∂V
∂τi

= 0 of the blow-ups τi for i = 2, 3, ..., n keeping the volume
V fixed. For the sake of simplicity, we are using the same notation for the field and its numerical
value in the minimum, as the meaning is always clear from the context. In general, τi will always
indicate the minimum, except when it appears in a potential which explicitly depends on that
field, as for instance in VLARGE .
The minimization leads to

(aiAi)e
−aiτi =

3αλiW0

2V
(1− aiτi)

(1
2 − 2aiτi)

√
τi . (4.8)

It is useful for further calculations to set

εi =
1

4aiτi
(4.9)
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CHAPTER 4. KÄHLER MODULI INFLATION AND MODULI

DOMINATION

and to write (4.8) as

(aiAi)e
−aiτi =

3αλiW0

4V
(1− 4εi)

(1− εi)
√
τi . (4.10)

Now we can do the same with the volume requiring ∂V
∂V
∣∣
V∗ = 0, where V∗ is the post-inflationary

minimum for the volume modulus. We can easily find

n∑
i=2

8(aiAi)
2√τi

3αλiV∗
e−2aiτi −

n∑
i=2

8W0
aiAi

V∗2
τie
−aiτi +

9ξW 2
0

4V∗3
+

8

3

CupW
2
0

V∗8/3
= 0 .

Substituting the minima of the moduli (4.10) into the above relation, with a little algebra (see
appendix B for more details) we come to

ξ = 2α
n∑
i=2

[
λi

(1− 4εi)

(1− εi)2
τ

3
2
i

]
− 32

27
CupV∗1/3 . (4.11)

The next step is to fix the condition to obtain a Minkowski vacuum. Indeed, after inflation
the inflaton relaxes to the global minimum of the potential, whose VEV must correspond to the
vacuum energy we measure today. If we substitute the minima (4.10) in the potential (4.7) we
are left with

V min
LARGE =

n∑
i=2

αλiW
2
0

V∗3
τ

3/2
i

[
3

2

(1− 4εi)
2

(1− εi)2
− 3

(1− 4εi)

(1− εi)

]
+

3ξW 2
0

4V∗3
+
CupW

2
0

V∗8/3
; (4.12)

using (4.11) and requiring V min
LARGE = 0 we get

V∗1/3 =
27

Cup
α

n∑
i=2

λi
(1− εi)2

τ
3/2
i εi(1− 4εi) . (4.13)

Finally, we can rewrite (4.11) using the equation (4.13) in order to find an expression for ξ
which depends only on the parameters of the model and the minima; this will be helpful for
the numerical analysis. Furthermore, it is quite instructive to understand its dependence on the
important parameters we will focus on. We obtain

ξ = 2α

n∑
i=2

λi
(1− εi)2

τ
3/2
i (1− 16εi)(1− 4εi) . (4.14)

4.1.3 Preliminary considerations on stability

It is now important to make some preliminary considerations about the stability of the moduli
minima based on the constraints we found. The stability problem will be discussed further in
4.2.1.

When the inflaton τ2 is displaced from its minimum, the potential (4.7) no more depends on
it; the field minima will be in a slightly different position τ̃i and Vin, where

(aiAi)e
−aiτ̃i =

3αλiW0

2Vin
(1− aiτ̃i)

(1
2 − 2aiτ̃i)

√
τ̃i . (4.15)
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Therefore, the minimization condition (4.11) is modified into

ξ = 2α
n∑
i=3

[
λi

(1− 4ε̃i)

(1− ε̃i)2
τ̃i

3/2

]
− 32

27
CupV1/3

in . (4.16)

Let us now assume that the potential is well stabilized and τ̃i ' τi. Since ξ is constant, (4.11)
and the above relation (4.16) give

V1/3
in − V

1/3
∗ = −27

32

2α

Cup

[
λ2

(1− 4ε2)

(1− ε2)2
τ

3/2
2

]
. (4.17)

Since we are assuming τ̃i ' τi, equation (4.15) implies also that Vin ' V∗. We underline that
(4.17) is not at all correct, as Vin > V∗, but it is significant because it gives us a clue on the
parameters we should keep under control in order to obtain a small shift between inflationary
and post-inflationary volume minima. Recalling that Cup v α2/3, we gather from the right hand
side of (4.17) that we have to require

α1/3

[
λ2

(1− 4ε2)

(1− ε2)2
τ

3/2
2

]
� 1 . (4.18)

Let us now start from a different consideration and assume that the volume is well stabilized,
Vin ' V∗. Putting together again (4.11) and (4.16) we obtain

n∑
i=3

[
λi

(1− 4ε̃i)

(1− ε̃i)2
τ̃i

3
2

]
=

n∑
i=2

[
λi

(1− 4εi)

(1− εi)2
τ

3
2
i

]
=

n∑
i=3

[
λi

(1− 4εi)

(1− εi)2
τ

3
2
i

]1 +
λ2

(1−4ε2)
(1−ε2)2

τ
3
2

2∑n
i=3

[
λi

(1−4εi)
(1−εi)2 τ

3
2
i

]
 .

Since, as before, Vin ' V∗ implies τ̃i ' τi, we must require that

λ2
(1−4ε2)
(1−ε2)2

τ
3/2
2∑n

i=3

[
λi

(1−4εi)
(1−εi)2 τ

3/2
i

] � 1 . (4.19)

Relations (4.18) and (4.19) must both be true at the same time. Hence, we can imagine at
least two ways to achieve stability:

• choosing λi v O(1) and taking{
(1−4ε2)
(1−ε2)2

� 1

τ2 � τi , i = 3, 4, ..., n
, (4.20)

and thus τ2 & 1
a2

;

• choosing τi & 1 (which gives εi � 1) and using{
λ2 � 1

λ2 � λi , i = 3, 4, ...n
. (4.21)

The first strategy was adopted for instance in [20]; we will give an example of this method in
the example 1 of section 4.4.1. However, in the following discussion we will exploit the second
case for reasons that will be clear in a moment.
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4.2 Kähler moduli inflation: inflationary analysis

In this kind of model with Swiss-cheese Calabi-Yau manifold we can basically distinguish three
kind of fields:

• the inflaton, which in our convention is the modulus τ2;

• the volume modulus τ1 (or V);

• the spectator fields τi, i = 3, 4, ..., n.

In order to study the multi-field dynamics, it is necessary to make some assumptions. Since
the spectator fields do not play any active role, it is reasonable to assume that they all behave
in the same way. To achieve this, we need to assume that all the parameters are equal, hence

λi → λ3

ai → a3

Ai → A3

, ∀ i = 4, 5, ..., n . (4.22)

In order to wisely choose the parameters not directly constrained by relations in section 4.1.2
(as for example the Calaby-Yau manifold parameters n, α, λ2 and λ3) it is important to notice
from (4.13) that

V∗1/3
εi�1
=

27

Cup
α
(
λ2τ

3/2
2 ε2 + (n− 2)λ3τ

3/2
3 ε3

)
. (4.23)

From this relation we clearly see that a large number of moduli n� 1 would lead to an extremely
large volume, which is not compatible with the value V ≤ 107 proposed in [18] and discussed in
section 4.2.2. Indeed, with τ2 v τ3, n� 1 and λ2 � λ3 (as in (4.21)) we have

V∗1/3 '
27

Cup
α
(

(n− 2)λ3τ
3/2
3 ε3

)
, (4.24)

which entails the dependence
V∗ v α((n− 2)λ3)3 . (4.25)

Hence we are forced to choose

λ3 =
λ′3

(n− 2)
(4.26)

in order to keep the volume under control; for τ3 & 1 and α v O(1), λ′3 must take values in the
range 1 . λ′3 . 50. These conditions could be partially relaxed if the uplift has the form

Vup =
D

Vγ

and γ . 2, as shown in appendix B.
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4.2.1 Single-field potential

We now turn to study the single-field potential for the volume modulus. The goal of this analysis
is to understand the physical behavior of the system and to see in particular if there are any
connections with the model proposed in [16] and discussed in section 3.2.1.

For the sake of brevity we will indicate VLARGE simply as V . If we consider cases in which
εi � 1 (i.e. τi � 1

4ai
, tipically τi & 1), (4.10) can be rewritten as

τi '
1

ai
ln

(
V
µi

)
, µi =

3αλiW0

4aiAi
. (4.27)

To obtain the single-field potential we need to put the moduli in their minima (4.27)

V (V) =
W 2

0

V3

[
n∑
i=2

(
− 3αλi

2a
3/2
i

)
ln

(
V
µi

)3/2

+
3

4
ξ + CupV1/3

]
. (4.28)

During inflation τ2 is displaced on the “plateau” of the slow-roll potential, which could be written
as

V (τ2) =
W 2

0

V3

[
n∑
i=3

(
− 3αλi

2a
3/2
i

)
ln

(
V
µi

)3/2

+
3

4
ξ + CupV1/3

]
− 4

W0a2A2

V2
τ2e
−a2τ2 (4.29)

≡ V0 − 4
W0a2A2

V2
τ2e
−a2τ2 .

To obtain the expression for V0 we should consider the volume in its inflationary minimum Vin
(which means its local minimum calculated when the inflaton has a large value). Since the shift
between local and global minima is expected to be small, in first approximation we can consider
Vin ' V∗: from (4.28), using relations (4.13) and (4.14), we find

V0 '
W 2

0

V3
in

3αλ2

2
τ

3/2
2 ' W 2

0

V3
∗

3αλ2

2
τ

3/2
2 . (4.30)

It is useful to set φ = lnV, as the canonical field for the volume is

φc =

√
2

3
lnV , φ =

√
3

2
φc ; (4.31)

the potential is then

V (φ) = W 2
0 e
−3φ

[
n∑
i=2

(
− 3αλi

2a
3/2
i

)
(φ− lnµi)

3/2 +
3

4
ξ + Cupe

1/3φ

]
. (4.32)

During inflation τ2 � 1 and the inflationary potential looks like

Vin(φ) = W 2
0 e
−3φ

[
n∑
i=3

(
− 3αλi

2a
3/2
i

)
(φ− lnµi)

3/2 +
3

4
ξ + Cupe

1/3φ

]
. (4.33)
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As stressed in [18], the volume modulus will be stable during inflation if the ratio

R =
λ2a

3/2
2∑n

i=2 λia
3/2
i

, (4.34)

is small, as it accounts for the difference between (4.32) and (4.33). The expression of R also
shows that we need at least three moduli to achieve stabilization.
If we want to investigate small values of R, the very first idea could be to use lots of moduli
with all the parameters of the same order. Actually, this cannot be done: from section 4.1.3 and
equation (4.23) it is clear that the only possibility is to choose a small value for the intersection

number λ2, with λ3 =
λ′3

(n−2) and λ′3 v O(10). Setting a2 = a3 we have

R =
λ2

λ2 + (n− 2)λ3
=

λ2

λ2 + λ′3

λ2�λ′3' λ2

λ′3
. (4.35)

We can now write the inflationary potential as a contribution of two terms

Vin(φ) = V (φ) + δV (φ) , (4.36)

where

δV (φ) = W 2
0 e
−3φ 3αλ2

2a
3/2
2

(φ− lnµ2)3/2 ; (4.37)

this last could be an important term only at the beginning of inflation but as we approach to
the end of this epoch it has to become less relevant: in fact, we need to recover the full potential
V (φ) with all the moduli in their minima.

In order to estimate the shift of the volume modulus from inflationary and post-inflationary
epoch δφ = φin − φ∗, we can take the derivatives of (4.36) and expand around φ∗

V ′in(φ) = V ′(φ) + δV ′(φ) ' V ′′(φ∗)(φ− φ∗) + δV ′(φ∗) + δV ′′(φ∗)(φ− φ∗) , (4.38)

where we used V (φ∗) = V ′(φ∗) = 0. The derivatives are

V ′′(φ) = 3W 2
0 e
−3φ

n∑
i=2

αλiτ
3/2
i εi ,

δV ′(φ) = −9αλ2

2
e−3φW 2

0 τ
3/2
2 (1− 2ε2) ,

δV ′′(φ) =
27αλ2

2
e−3φW 2

0 τ
3/2
2 (1− 4ε2) ,

where after deriving we wrote (4.27) as lnµi = φ − aiτi. Evaluating them in φ∗, in the limit
R� 1 we obtain

V ′′(φ∗) ' 2W 2
0 e
−3φ∗ 3αλ2

2
τ

3/2
2 ε2

(
1 +

∑n
i=3 λiτ

3/2
i εi

λ2τ
3/2
2 ε2

)
(4.39)

' 2V0ε2

(
1 +

(n− 2)λ3

λ2

τ
3/2
3 ε3

τ
3/2
2 ε2

)

' 2
V0

R

τ
3/2
3

τ
3/2
2

ε3 ,
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and

δV ′(φ∗) ' −3V0, (4.40)

δV ′′(φ∗) ' 9V0 .

Setting φ = φin in (4.38), which gives V ′in(φin) = 0, and rearranging the terms we get

δφ = − δV ′(φ∗)

V ′′(φ∗) + δV ′′(φ∗)
' 3λ2τ

3/2
2

9λ2τ
3/2
2 + 2

∑n
i=3 λiτ

3/2
i εi

, (4.41)

and with the assumptions (4.22) we finally obtain

δφ =
3

2
R
τ

3/2
2

τ
3/2
3 ε3

. (4.42)

We can now try to analyze the single-field potential in order to reduce it to the simple form
of the toy model discussed in 3.2.1 and to gather the expected physical behavior of the model
under study. The first task is to understand what are the dominant term during inflation, when
τ2 � 1. We start expanding (4.36) around its inflationary minimum φin up to the first relevant
order

Vin(φ) 'Vin(φin) + V ′in(φin)(φ− φin) +
1

2
V ′′in(φ∗)(φ− φin)2 (4.43)

'V0 +
1

2
V ′′(φin)(φ− φin)2 +

1

2
δV ′′(φin)(φ− φin)2 .

Assuming R� 1 we have δφ� 1 and in first approximation we can consider V ′′(φin) ' V ′′(φ∗)
and δV ′′(φin) ' δV ′′(φ∗); hence we obtain

Vin(φ) =
1

R
V0
τ

3/2
3

τ
3/2
2

ε3(φ− φin)2 +
9

2
V0(φ− φin)2 + V0 . (4.44)

If we use the canonical field in (4.31), we finally find

Vin(φc) =
3

2

V0

R

τ
3/2
3

τ
3/2
2

ε3(φc − φcin)2 +
27

4
V0(φc − φcin)2 + V0 . (4.45)

If we now study in the same way the total potential after the end of inflation, when the inflaton
reaches its minimum, we get

V (φc) =
3

2

V0

R

τ
3/2
3

τ
3/2
2

ε3(φ− φc∗)2. (4.46)

From these expansions we can read the expression of the mass of the volume modulus, which is

m2
φ ≡ 3

V0

R

τ
3/2
3

τ
3/2
2

ε3 =
9

2

V0

δφ
, (4.47)
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where we used (4.42). If we recall (4.30) it is immediate to show that this expression is compatible
with (A.48) calculated in appendix, as it should be.

From this analysis we clearly see that the mass of the volume modulus (and hence of all
the other moduli) is always bigger than the Hubble scale during inflation, which is given by
3H2

inf = ρ ' V0, and

m2
φ

H2
inf

=
27

2

1

δφ
∼ 1

R
. (4.48)

This result is actually independent from the specific model, as shown in [21]; however, in our
case it is really important to realize that the ratio

mφ
Hinf

depends on the R parameter.

In conclusion, in contrast to the standard case discussed in 3.2.1, for R � 1 the dominant
term in the potential is the mass term, and not the Hubble one. We then expect that at the
end of inflation the fields never stay pinned in their inflationary minima, as the friction term
is sub-dominant, but they continue following their new local minima (as the inflaton evolves),
exhibiting at most some small oscillations around them.

4.2.2 Slow-roll parameters

As we have seen from (4.29), the supergravity potential can be really reduced to an exponentially
flat function of the form proposed in section 3.1.2. We can now exploit this potential in order
to find approximate expressions for some useful parameters of the slow-roll model.

Let us start by introducing the canonically normalized field τ c2 for the inflaton, which satisfies
(since we are dealing with a single field potential)

K22∂µτ2∂
µτ2 =

1

2
∂µτ

c
2∂

µτ c2 , K22 '
3λ2α

8
√
τ2V

(4.49)

and whose expression is

τ c2 =

√
4αλ2

3V
τ

3/4
2 . (4.50)

Then, in term of the canonical field the inflationary potential is

V = V0 −
4W0a2A2

V2

(
3V

4αλ2

)2/3

(τ c2)4/3 exp

[
−a2

(
3V

4αλ2

)2/3

(τ c2)4/3

]
. (4.51)

Taking the derivatives respect τ c2 , the slow-roll parameters (3.29) (rewritten in term of τ2 for
simplicity) are

εs =
32W 2

0

3αλ2V 2
0 V3

a2
2A

2
2

√
τ∗2 (1− a2τ

∗
2 )2e−2a2τ∗2 , (4.52)

η = − 4a2A2W0

3αλ2

√
τ∗2V0V

[(1− 9a2τ
∗
2 + 4(a2τ

∗
2 )2)e−a2τ

∗
2 ) , (4.53)

where τ∗2 is the value of the inflaton at the horizon exit. The number of efoldings (3.34) is (see
[22] for computational details)

N tot
e =

3V0Vαλ2

16W0a2A2

∫ τ?2

τend2

ea2τ2
√
τ2(1− a2τ2)

dτ2 '
3V0Vαλ2

16W0a
3/2
2 A2

ea2τ
∗
2

(a2τ∗2 )3/2
, (4.54)
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where τ end2 is the point where the slow-roll conditions break down (εs v O(1) and η v O(1))
and τ?2 > τ end2 .
We can also calculate the amplitude of scalar perturbations

Ps =
eKcsgs
150π2

V

εs
' eKcsgs

150π2

(
3αV 3

0 V3λ2e
2a2τ∗2

32W 2
0 a

2
2A

2
2

√
τ∗2 (1− a2τ∗2 )2

)
, (4.55)

where have already taken into account the normalization factor necessary to match the COBE
normalization. The tensor-to scalar-ratio is as usual

r = 16εs . (4.56)

In particular, in such models εs is very small and tensor perturbations are unobservable.

Finally, authors of [18] pointed out that for the model to work the internal volume should
live within the range

105 ≤ V ≤ 107 (4.57)

in term of string length unit ls = (2π)
√
α′.

4.3 Post-inflationary scenario

In this section we are going to discuss the scenario after the end of inflation, as was done in
[22]. For completeness, in this case we will often use explicitly MP , as it is important to give
the expression of some quantities such as the decay rates.

As we discussed in 3.1, inflation ends when the slow-roll parameter εs = 1. After this moment
the inflaton quickly reaches the global minimum of the potential and starts to oscillate around it.
For the other moduli, and in particular for the volume modulus, we can imagine two possibilities:

• the volume stays fixed in its inflationary value as the inflaton reaches the global minimum,
and then it starts to oscillate around its minimum with amplitude roughly δφ = φin − φ∗;

• the volume follows is local minimum until the global minimum, with some small amplitude
oscillations.

As the mass of the volume is smaller than the one of the inflaton, we expect that after the
inflaton decays the volume could play an important role, as, depending on the parameters, it
could dominate the energy density of the universe.

4.3.1 Inflaton domination

During inflation the Hubble parameter remains constant and its value is given by

3H2
infM

2
P = ρ ' V0 . (4.58)

Soon after the end of inflation at tend, the energy density is dominated by inflaton quanta,
ρ(tend) ' ρinf (tend) ' V0. Indeed, we can estimate{

ρinf (tend) ' V0

ρφ(tend) ' 1
2m

2
φ(MP δφ)2

, θ2 ≡
ρφ(tend)

ρinf (tend)
=
m2
φδφ

2

6H2
inf

, (4.59)
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CHAPTER 4. KÄHLER MODULI INFLATION AND MODULI

DOMINATION

where θ2 � 1 and δφ is always intended in MP units for simplicity. Using (4.48) θ2 can be
rewritten as

θ2 =
9

4
δφ v R , (4.60)

and then it can be easily controlled. This period lasts until the inflaton decays; we can assume
Hinf > Γinf and that when H(t1) ' Γinf all the inflaton quanta are enterily converted into
radiation. From this assumption we can calculate the duration of this period, which is

Nmod1 = ln

(
a(t1)

a(tend)

)
=

2

3
ln

(
H(tend)

H(t1)

)
' 2

3
ln

(
Hinf

Γinf

)
, (4.61)

where Γinf ' 0.1
m3
inf

M2
s

, minf being the mass of the inflaton. We then have

ργ(t1) = ρinf (t1) = ρinf (tend)

(
a(tend)

a(t1)

)3

= ρinf (tend)e
−3Nmod1 = 3H2

infM
2
P e
−3Nmod1 . (4.62)

Since both the inflaton and the volume redshift as matter (ρ ∝ 1/a3), the ratio (4.59) remains
constant until this very last moment and

ρφ(t1)

ργ(t1)
= θ2 . (4.63)

4.3.2 Modulus domination

At this time t > t1 the energy density of the universe is dominated by radiation. However the
energy density associated with radiation dilutes much faster than the energy density associated
with the oscillations of the volume modulus, and so the universe may enter a second epoch of
matter domination, which lasts until the decay of the volume modulus.

To study this possibility we need to investigate if it does exist teq such that ργ(teq) = ρφ(teq).
In particular, if we consider the volume modulus lifetime τφ = 1/Γφ, we can imagine two cases

• τφ � teq, for which we expect a period of matter domination;

• τφ � teq, for which we do not expect a period of matter domination, as the volume decays
too quickly and the curves associated with ργ and ρφ never met.

From the equilibrium condition we findργ(teq) = ργ(t1)
(
a(t1)
a(teq)

)4

ρφ(teq) = ρφ(t1)
(
a(t1)
a(teq)

)3 ⇒ θ2 =
ρφ(t1)

ργ(t1)
=

a(t1)

a(teq)
, (4.64)

and
ρ(teq) = ργ(teq) + ρφ(teq) = 2ργ(teq) = 2ργ(t1)θ8 . (4.65)

We can now calculate Heq = H(teq)

3H2
eqM

2
P = ρ(teq) ⇒ H2

eq =
2

3M2
P

ργ(t1)θ8 = 2e−3Nmod1θ8H2
inf , (4.66)
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where we used (4.62). Since the volume decays when H ' Γφ, our prediction for the presence
or not of a period of volume modulus domination reduces to{

Heq
Γφ

> 1 , (or τφ > teq) ⇒ volume domination
Heq
Γφ

< 1 , (or τφ < teq) ⇒ NO volume domination
. (4.67)

If we work with (4.66), with the help of (4.59) and (4.48) we can rewrite

Heq =

√
2e−

3
2
Nmod1

36

m4
φ(δφ)4

H3
inf

=
9

8

√
3e−

3
2
Nmod1mφ(δφ)5/2 . (4.68)

With Γφ ' 1
16π

m3
φ

M2
P

and Hinf in (4.58) we can finally obtain (using again MP units)

Heq

Γφ
= 4
√

3πe−
3
2
Nmod1

(δφ)7/2

V0
= 18

√
3πe−

3
2
Nmod1

(δφ)5/2

m2
φ

. (4.69)

Using (4.24), (4.30), (4.42) and (4.61) we can further reduce this expression to obtain

Heq

Γφ
' 5.77× 1015 α(λ′3)6a

3
2

a4
3

(τ6
2 τ

2
3 )R2 . (4.70)

It is important to underline that this last expression is valid only if Γinf < Hinf . In this case, we
can give a real rough estimate of the upper value of R below which the model may not present
volume modulus domination. With λ′3 v O(1), a2 = a3 = 2π, τ2 v O(1) and τ3 ' 6 (in order to
obtain at least V v 103), we expect to be able to avoid matter domination only if R . 10−8.
On the other side, if Γinf > Hinf we could still give a prediction setting Nmod1 = 0 (see section
4.4.4 for a brief discussion) in equation (4.69)

Heq

Γφ
= 18

√
3π

(δφ)5/2

m2
φ

⇔ Γinf > Hinf . (4.71)

However, it is more difficult to give an upper bound on R. Indeed, Heq/Γφ depends on the
mass of the volume, which depends on W0: the superpotential cannot be freely assigned if we
want to obtain the correct power spectrum, and it is difficult to estimate it in advance keeping
also in mind the constraints entailed by Γinf > Hinf . However, once assigned the Calabi-Yau
parameters and the minima of the blow-ups, the mass mφ is the same for any value of λ2

(see section 4.4.4), and it is then clear that there always exists a value of R below which the
Heq/Γφ < 1.

To study this epoch more accurately, we can also use the equations for the energy densities
[15]. Energy density of matter particles decreases due to the cosmological expansion, since their
number density gets diluted and energy of each particle gets redshifted. However, energy is
injected into radiation due to decays of heavy particles. Hence, equations for ρφ and ργ and
have the form 

ρ̇φ(t) + 3H(t)ρφ(t) = −Γφρφ(t)

ρ̇γ(t) + 4H(t)ργ(t) = +Γφρφ(t)

3H2(t)M2
P = ρφ(t) + ργ(t)

. (4.72)
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In case of a period of volume modulus domination, we can estimate its total duration in the
same way we did for the inflaton domination epoch, namely

Nmod2 =
2

3
ln

(
Heq

Γφ

)
. (4.73)

4.3.3 Number of efoldings

The total number of efoldings between the horizon exit and the end of inflation is really important
to make useful predictions in inflationary cosmology. From generic assumptions about the
reheating epoch the preferred range in standard cosmological timeline is

N tot
e = 55± 5 . (4.74)

However, post-inflationary cosmology strongly affects the value of N tot
e , which can be predicted

(see [22] and [23] ) as

Ne +
1

4
Nmod1 +

1

4
Nmod2 ≈ 57 +

1

4
ln r +

1

4
ln

(
ρ∗
ρend

)
, (4.75)

where ρ∗ is the energy density at horizon exit and ρend is the energy density at the end of
inflation. With generic assumptions, the new preferred range was found to be ([22])

N tot
e =

(
55− 1

4
Nmod

)
± 5 , (4.76)

where Nmod = Nmod1 +Nmod2.

4.4 Numerical analysis

In this section we present the numerical results, which confirm our predictions. In order to
assign the parameters, we used the following strategy:

• we assigned the Calabi-Yau parameters n, α, λ2 and λ3, and hence R;

• we fixed a2 = a3 = 2π;

• we chose the values of the minima for τ2 and τ3;

• we assigned the values of A2, A3 and a temporary value W̃0 for the superpotential in order
to obtain the desired minima and the correct normalized power spectrum Ps = 3.7× 1010,
using (4.10), (4.13) and (4.55);

• we found ξ with the help of (4.14) and a range of values for gs considering ξ ≡ κ

g
3/2
s

, with

1
2 6 κ 6 3

2 (see [24]), and we took gs = 1
ξ2/3

.
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After having assigned these parameters, we cleared the temporary value of W0 and we look for
the minima of the potential using (4.5), keeping W0 as a running parameter in order match the
requirement Vmin = 0. Then we assigned the new value of the tree-level superpotential, which
were always found to be W0 ' W̃0.

Subsequently, in order to fully address the problem we used the full potential (4.5) and we
solved the system of differential equations (Einstein-Friedmann equations)

d2τa

dN2
+ Γabc

dτ b

dN

dτ c

dN
+

(
3 +

1

H

dH

dN

)
dτa

dN
+

1

H2
Kab∂bV = 0 , (4.77)

3H2 = V +
1

2
H2Kab

dτa

dN

dτ b

dN
, (4.78)

where Γabc = Kad 1
2
∂Kbd
∂τc are the associated Christoffel symbols and N is the number of efoldings

which we are using as “time coordinate” during the evolution via dN = Hdt. Since the spectator
fields all behave in the same way (thanks to the conditions (4.22)), it is sufficient to consider
the equations for just three fields a = 1, 2, 3. The initial conditions are

τa = {τ in1 , τ in2 , τ in3 } ,
dτa
dN

∣∣∣∣
τ ina

= {0, 0, 0} , (4.79)

where τ in2 is taken to be larger than its value in the minimum, in order to generate enough
efoldings, and τ in1 and τ in3 are fixed in their inflationary minimum, i.e. their local minimum
calculated fixing τ2 = τ in2 in the potential (4.5).

Using (4.77) and (4.78), the variation of the Hubble rate in terms of the number of efoldings
can be expressed as

1

H

dH

dN
=

V

H2
− 3 . (4.80)

Thus the generic expression of the slow-roll parameter ε takes the form

ε ≡ − 1

H2

dH

dt
=

1

H

dH

dN
=

1

2
Kab

dτa

dN

dτ b

dN
, (4.81)

and in the slow-roll regime it simplifies to

εs =
Kab∂aV ∂bV

2V 2
. (4.82)

The normalized power spectrum and the spectral index for scalar perturbations are given by

Ps =
gse

Kcs

150π2

V

ε
, ns = 1 +

d ln(Ps(N))

dN
. (4.83)

The physical observables are evaluated at the horizon exit, which is given by

N∗e = N end
e −N tot

e , (4.84)

where N tot
e is the number of efoldings in (4.75) and N end

e is the end of inflation, determined with

εs(N
end
e ) = 1 . (4.85)
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4.4.1 Example 1

This first example is meant to discuss the general procedure we used in order to carry on the
numerical analysis and to show the general behavior of the solutions of the system of differential
equations. Furthermore, it shows that we can achieve stabilization also for large values of R,
as long as we keep in mind the constraints we discussed in section 4.1.3; this is very similar to
what was done in [20]. In particular, here we use n = 3 and we choose τ2 & 1/a2, generating a
hierarchy between the moduli, τ3 � τ2, taking

τ2 = 0.165 , τ3 = 10 . (4.86)

The value of τ3 has been chosen in order to obtain a volume of order v 105. For the Calabi-Yau
manifold we choose

Calabi-Yau parameters

n = 3

α λ2 λ3 R

1 3 3 0.5

To obtain the desired minima and the correct COBE normalization we find

A2 = 3.89216× 10−8 , A3 = 4.4091× 1021 , W0 = 0.373231; (4.87)

the true values of the minima are given in table 4.1. It can be noticed that in this case the
approximation (4.42) is not good, since R is not small enough.
For the other values of the manifold we find

ξ = 176.159 , 0.0159111 < gs < 0.0477333 , gs = 0.0318222 . (4.88)

τ2 τ3 τ1 vol φ δφ

predicted 0.165 10 3240.24 184349 12.1246 0.235209

calculated 0.165076 10.0019 3257.19 185798 12.1324 0.059741

Table 4.1: Values of minima of example 1. The “predicted” values are the ones given by the
approximations in (4.13) and (4.42), whereas the “calculated” ones are those found with the
potential (4.5).

Figure 4.1 shows the evolution of all the moduli. In particular, we can see that all of them
follow their inflationary minimum until inflation ends at N end

e (represented by the red points).
Soon after that, they begin to oscillate around their post-inflationary minimum.
In particular, in this case from figure 4.2 we recognized that our plots seem to be in agreement
with the qualitative picture described in 3.2.1 for the standard scenario. In particular, it can
be seen that the friction still plays a role, as soon after the end of inflation the volume remains
fixed for a few more fractions of efoldings before starting to oscillate around its post-inflationary
minimum.
The situation is better represented in the inflationary trajectory in figure 4.3. The green line
represents the curve of local minima of φ and τ3 (which change according to the position of the
inflaton τ2), whereas the red line is the trajectory. It is evident that soon after the end of inflation
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Figure 4.1: Plot for of all the moduli evolution for example 1. The yellow lines represent
their value at the global post-inflationary minimum and the red points represent the end of
inflation.

67.8 68.0 68.2 68.4 68.6 68.8 69.0
Ne

0.5

1.0

1.5

2.0

2.5

τ2

67.8 68.0 68.2 68.4 68.6 68.8 69.0
Ne

184000

186000

188000

190000

192000

194000

196000

198000
vol

Figure 4.2: Evolution of the inflaton and the volume modulus during the last efoldings for
example 1.
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Figure 4.3: Inflationary trajectory in the (τ2, φ) plane for example 1. The green dashed line
represents the curve of local minima of φ and τ3 for each value of τ2 and the green dots
represent the end of inflation (the one on the right) and the global minimum (the one on
the left).

(green point on the right) the volume remains fixed in its inflationary value before oscillating
around the global minimum (green point on the left). If it followed its new minimum, we should
expect that the green and the red lines overlap and in particular that the first oscillations of τ2

should be centered on the green line.

We can now give details of the observables of the model, namely Ps, ns and r, and discuss
the predictions for the post-inflationary scenario and the total duration of inflation. First of
all, we give the physical quantities in table 4.2, which are calculated numerically using the full
potential and the full metric of section 4.1. The masses are calculated considering mφ ' m1 and
minf ' m2 referring to the appendix A.

Hinf mφ minf Γφ Γinf

1.06177× 109 1.44896× 1010 2.17283× 1012 1.02042× 10−8 32136.7

Table 4.2: Values of the physical quantities of the model in GeV for example 1.

Given that, we can analyze the post-inflationary scenario. In particular, we expect a period of
volume modulus domination as we can estimate

Heq
Γφ
' 5.46551 × 1010 � 1. Indeed, after the

inflaton domination period which lasts

Nmod1 ' 6.94 ,

we have a period of modulus domination which extends (if we put t1 = 0) roughly between
teq ' 1

Heq
' 1.79304 × 10−3 GeV−1 and tφ,dec ' 1

Γφ
' 9.79989 × 107 GeV−1. More precisely,



4.4. NUMERICAL ANALYSIS 53

0.0002 0.0004 0.0006 0.0008
t

5.0×1043

1.0×1044

1.5×1044

ρ First Radiation Domination

ρϕ

ργ

2×107 4×107 6×107 8×107 1×108
t

5.0×1021

1.0×1022

1.5×1022

ρ Modulus Domination

ρϕ

ργ

2×108 4×108 6×108 8×108 1×109
t

2×1019

4×1019

6×1019

8×1019

1×1020

ρ Second Radiation Domination

ρϕ

ργ

Figure 4.4: Post inflationary scenario for example 1. After a short period of radiation
domination, the volume modulus comes to dominate the energy density until it decays and
converts mainly into radiation.

numerically solving the equations (4.72), plotted in figure 4.4, we find

tdom,beg = 9.75251× 10−4 GeV−1 , tdom,end = 1.03271× 108 GeV−1 ,

respectively for the beginning and end of this period, and the total duration of the epoch in
number of efolding is

Nmod2 ' 16.49 .

We can then predict the number of efoldings between horizon exit and end of inflation from
(4.75)

N tot
e ' 45.70 ,

which allows us to predict other observables at horizon exit N∗e = N end
e −N tot

e .
We show the behavior of the power spectrum and the spectral index in figure 4.5 whose values
are

Ps(Kcs = 0) = 5.5745× 10−13 , ns = 0.95449 .

We stress that the parameters (in particular A2, A3 and W0) could in principle be chosen in
order to exactly match the normalization Ps = 3.7×10−10, but it is not always easy to precisely
assign these values. As already stated, here we used the approximate relation (4.55): in this
particular case it did not give a good result (probably because of the small value of τ2), but
in example 2 and example 3 we will see that this strategy always gives the correct order of
magnitude.
However, afterwards we could use Kcs in order to match the correct normalization; in this case,
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Figure 4.5: Power spectrum and spectral index for example 1 in the first efoldings. Close to
Ne = 0 the plot is not reliable, as the system is not yet in a slow-roll regime. Fluctuations
in ns are due to computational inaccuracies.

we should take Kcs = 6.49788.
Finally, the slow-roll parameters ε and εs are plotted in figure 4.6 and the tensor-to-scalar ratio
is

ε = 2.19883× 10−11 , r = 16ε = 3.51813× 10−10 .
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Figure 4.6: Comparison between ε (blue line) and εs (yellow line) in the first efoldings.

4.4.2 Example 2

This second example is meant to verify the expectations we discussed in section 4.2. Actually,
here we are not using optimal values (especially for the value of the volume) due to computational
reasons: in fact, we find out that the software we used gave better results for small values of
the volume, in particular in resolving the final oscillations of the fields. However, it is then very
instructive to reason on the output of this example, as the mathematical behavior is the same;
we will give a more realistic scenario in example 3.
In particular, here we show how the situation changes when we decrease the value of R, with
particular attention to the post-inflationary scenario. Since there is no point in using lots of
moduli to stabilize the potential, as we have shown in sections 4.1 and 4.2, for this case we will
use n = 3 fields. For the minima we choose

τ2 = 1 , τ3 = 6 ,

and for the Calabi-Yau manifold we fix
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Calabi-Yau parameters

n α λ3

3 1 1

.

We then change the value of λ2 � 1 in order to decrease R ' λ2
λ3

.

R v 10−2

We begin studying the case in which R is still not too small, in order to better enlighten the
differences with the next cases. The first stable case we found correponds to λ2 v 10−2; we point
out that qualitatively this is in agreement with the stability condition we discussed in section
4.1.3 and 4.2. In particular we take

λ2 =
1

100
⇒ R ' 0.0099 .

To obtain the desired minima and the correct COBE normalization we find

A2 = 1.33188× 10−6 , A3 = 1.60757× 1010 , W0 = 0.00708011 ;

the true values of the minima are given in table 4.3. It can be noticed that also in this case the
approximation (4.42) is not too good, since R is not small enough (even if it is already better
than in the example 1).

τ2 τ3 τ1 vol φ δφ

predicted 1 6 212.477 3082.47 8.03349 0.105291

calculated 1.01547 6.01681 222.144 3296.17 8.10052 0.207558

Table 4.3: Values of the minima for the case R ∼ 10−2 of example 2. The “predicted” values
are the ones given by the approximations in (4.13) and (4.42), whereas the “calculated” ones
are those found with the potential (4.5).

The other values of the manifold are fixed at

ξ = 25.9274 , 0.0570774 < gs < 0.171232 , gs = 0.114155 .

Figure 4.7 shows the evolution of the volume and the inflaton in the last efoldings. In
particular, also in this case we recognized that our plots seem to be in agreement with the
qualitative picture described in 3.2.1 for the standard scenario. Indeed, soon after the end of
inflation the volume remains pinned for a few more “time” before oscillating around its post-
inflationary minimum.

Hinf mφ minf Γφ Γinf

5.7237× 109 6.04794× 1010 5.99751× 1013 7.42048× 10−7 1.19895× 107

Table 4.4: Values of the physical quantities in GeV for the case R v 10−2 of example 2.
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Figure 4.7: Evolution of the inflaton and the volume modulus during the last efoldings in
the case R v 10−2 of example 2.

The situation is better represented in the inflationary trajectory in figure 4.8. As before, it is
evident that soon after the end of inflation the volume remains fixed in its inflationary value
before oscillating around the global minimum, since the red and the green curves do not overlap.
This fact should come as no surprise: from the physical quantities in table 4.4 we see that the
ratio

mφ
Hinf

v O(10), which implies that the friction term plays an important role.

In this case we are not able to make any predictions for the post-inflationary scenario, as
the assumptions made in (4.59) do not hold. However, the case we presented here is extremely
useful to appreciate the cases with smaller R.
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Figure 4.8: Inflationary trajectory in the (τ2, φ) plane in the case R v 10−2 of example 2.
The green dashed line represents the curve of local minima of φ and τ3 for each value of
τ2 and the green dots represent the end of inflation (the one on the right) and the global
minimum (the one on the left).
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R v 10−3

We continue our analysis decreasing R about one order of magnitude taking

λ2 =
1

1000
⇒ R ' 0.00099 .

To obtain the chosen minima we find

A2 = 1.30267× 10−7 , A3 = 1.57231× 1010 , W0 = 0.00685244 ,

which more precisely give the values in table 4.5. With the help of the predicted values of table
4.5 we assign

ξ = 25.9214 , 0.0570861 < gs < 0.171258 , gs = 0.114172 .

τ2 τ3 τ1 vol φ δφ

predicted 1 6 211.047 3051.29 8.02332 0.0147113

calculated 1.01561 6.01696 220.731 3264.65 8.09091 0.0145412

Table 4.5: Values of the minima for the case R ∼ 10−3 of example 2. The “predicted” values
are the ones given by the approximations in (4.13) and (4.42), whereas the “calculated” ones
are those found with the potential (4.5).
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Figure 4.9: Evolution of the inflaton and the volume modulus during the last efoldings for
the case R v 10−3 of example 2.

From figure 4.9 we see that the behavior of the volume is slightly different from the previous
case; in fact, the first oscillation is not centered on the post-inflationary minimum, which indi-
cates that the friction is less important and the field is quite free to follow its local minimum.
This behavior can also be recognized in figure 4.10, as in this case the green and red curves start
to overlap.

We can now turn to analyze the post inflationary scenario. We first give the values of the
Hubble parameter, the masses and the decay rates in table 4.6.
After the inflaton decays, we can numerically solve equations (4.72) to verify whether a period

of volume modulus domination is present or not. We can estimate
Heq
Γφ
' 2.26161 × 1010 � 1,

which tells us that we should expect a period of matter domination.
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Figure 4.10: Inflationary trajectory in the (τ2, φ) plane for the case R v 10−3 of example
2. The green dashed line represents the curve of local minima of φ and τ3 for each value of
τ2 and the green dots represent the end of inflation (the one on the right) and the global
minimum (the one on the left).

Hinf mφ minf Γφ Γinf

1.97532× 109 5.93167× 1010 5.86169× 1013 7.0007× 10−7 1.10863× 107

Table 4.6: Values of the physical quantities of the model in GeV for the case R v 10−3 of
example 2.

After calculating the duration of the epoch of inflaton domination

Nmod1 ' 3.45 ,

we can find the initial conditions for our system of differential equations from (4.62) and (4.63).
In this case we find a period of modulus domination which extends (if we consider t1 = 0)
roughly between teq ' 1

Heq
' 6.31597× 10−5 GeV−1 and tφ,dec = 1

Γφ
' 1.42843× 106 GeV−1.

More precisely, numerically solving the equations, we find

tdom,beg = 3.48375× 10−5 GeV−1 , tdom,end = 1.50528× 106 GeV−1 ,

respectively for the beginning and end of this period, and the total duration of the epoch in
number of efolding is

Nmod2 ' 15.90 .

We can finally give a prediction for the total duration of inflationN tot
e and some of the observables

at the horizon exit N∗e = N end
e −N tot

e . From (4.75) we find

N tot
e ' 45.69 ,
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and for the observables

ε = 3.57306× 10−13 , r = 16ε = 5.7169× 10−12 ,

and
Ps(Kcs = 0) = 4.25996× 10−10 , ns = 0.954692 .

To exactly match the power spectrum value we could take Kcs = −0.140927.

R v 10−4

Now can now continue our study taking

λ2 =
1

10000
⇒ R ' 0.000099

together with

A2 = 1.27× 10−8 , A3 = 1.53288× 1010 , W0 = 0.00667356 ,

and
ξ = 25.9208 , 0.057087 < gs < 0.171261 , gs = 0.114174 ,

which precisely give the minima in table 4.7.

τ2 τ3 τ1 vol φ δφ

predicted 1 6 210.905 3048.18 8.0223 0.00153199

calculated 1.01562 6.01697 220.59 3261.51 8.08995 0.00142451

Table 4.7: Values of the minima for the case R ∼ 10−4 of example 2. The “predicted” values
are the ones given by the approximations in (4.13) and (4.42), whereas the “calculated” ones
are those found with the potential (4.5).

Figure 4.11 shows the evolution of the inflaton and the volume modulus in the last efoldings,
after the end of inflation. In particular, we can see that with a small R the oscillations of
the volume modulus seem “damped”. Actually, as we discussed in section 4.2.1, the volume is
constantly following its new local minimum (which changes depending on the position of the
inflaton) and it oscillates around it. The situation is illustrated also in figure 4.12. We expect
that for smaller values of R the oscillations are more and more reduced, and that in the limit
R→ 0 they are reduced to zero since the volume is expected to follow adiabatically its minimum.

We can now turn to analyze the post inflationary scenario. We first give the values of the
Hubble parameter, the masses and the decay rates in table 4.8.
After the inflaton decays, we can numerically solve equations (4.72). We can estimate the ratio
Heq
Γφ
' 2.00451 × 108 � 1; we should expect a period of matter domination as in the case

R v 10−3.
After calculating the duration of the epoch of inflaton domination

Nmod1 ' 2.73 ,
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Figure 4.11: Evolution of the inflaton and the volume modulus during the last efoldings for
the case R v 10−4 of example 2.

Hinf mφ minf Γφ Γinf

6.14718× 108 5.78452× 1010 5.71427× 1013 6.49249× 10−7 1.02608× 107

Table 4.8: Values of the physical quantities of the model in GeV for the case R v 10−4 of
example 2.

we can find the initial conditions for our system of differential equations (4.72) from (4.62) and
(4.63). We actually find a period of modulus domination which extends (if we consider t1 = 0)
roughly between teq ' 1

Heq
' 7.68389× 10−3 GeV−1 and tφdec = 1

Γφ
' 1.54024× 106 GeV−1.

More precisely, numerically solving the equations, we find

tdom,beg = 4.24364× 10−3 GeV−1 , tdom,end = 1.6231× 106 GeV−1 ,

and the total duration of this epoch in number of efolding is

Nmod2 ' 12.75 .

We can finally give a prediction for the total duration of inflationN tot
e and some of the observables

at the horizon exit N∗e = N end
e −N tot

e . From (4.75) we find

N tot
e ' 46.05 ,

and for the observables

ε = 3.4119× 10−14 , r = 16ε = 5.45904× 10−13 ,

and

Ps(Kcs = 0) = 4.32049× 10−10 , ns = 0.955075 .

In order to exactly match the normalization we need Kcs = −0.155035.
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Figure 4.12: Inflationary trajectory in the (τ2, φ) plane for the case R v 10−4 of example
2. The green dashed line represents the curve of local minima of φ and τ3 for each value of
τ2 and the greens dot represents the end of inflation (the one on the right) and the global
minimum (the one on the left).

R v 10−8

After having shown the different behavior the solutions have for smaller and smaller values of
R, we now come to study what is the first value we could find in order to avoid a period of
modulus domination. For such small value of R the software we used was not able to solve
the oscillations following the end of inflation, and we will not attach the plots in this section;
however, we already discuss enough the consequences of small R and there is no reason to worry
about that anymore.

For the Calabi-Yau we choose the parameters

λ2 = 10−8 ⇒ R ' 10−8 ,

and we find

ξ = 25.9208 , 0.0570871 < gs < 0.171261 , gs = 0.114174 .

To obtain the minima in table 4.9, the contraints impose

A2 = 1.14136× 10−12 , A3 = 1.37761× 1010 W0 = 0.00599684 .

The physical parameters are given in table 4.10 and from them it can be calculated the ratio

Heq

Γφ
' 1.46972 .
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τ2 τ3 τ1 vol φ δφ

predicted 1 6 210.889 3047.84 8.02219 1.53906× 10−7

calculated 1.01562 6.01697 220.575 3261.17 8.08984 1.42153× 10−7

Table 4.9: Values of the minima for the case R ∼ 10−8 of example 2. The “predicted” values
are the ones given by the approximations in (4.13) and (4.42), whereas the “calculated” ones
are those found with the potential (4.5).

Hinf mφ minf Γφ Γinf

5.53046× 106 5.19872× 1010 5.13538× 1013 4.71301× 10−7 7.44682× 106

Table 4.10: Values of the physical quantities of the model in GeV for the case R v 10−8 of
example 2.

This is the biggest value of R for which
Heq
Γφ

v O(1), and it is hence crucial to study the

system (4.72). In particular, as we anticipated this is the first case in which there is no volume
domination, as shown in figure 4.13; the hypotetical time of equilibrium was expected to be
teq ' 1.44367× 106 GeV−1, but the curves never meet, as shown in figure 4.13.

200000 400000 600000 800000 1×106
t

2×1025

4×1025

6×1025

8×1025

ρ

ρϕ

ργ

2×106 3×106 4×106 5×106 6×106
t

5.0×1023

1.0×1024

1.5×1024

2.0×1024
ρ

ρϕ

ργ

Figure 4.13: Post inflationary scenario for the case R v 10−8 of example 2. The time of
equilibrium was expected to be at teq ' 1.44367×106 GeV−1, but actually radiation always
dominates.

Considering that in this case Nmod1 ' 0 and Nmod2 ' 0 the number of efoldings is

N tot
e ' 47.58 .

For what concerns the observables we find

ε = 2.76292× 10−18 , r = 16ε = 4.42068× 10−17 ,

Ps(Kcs = 0) = 4.31849× 10−10 ;

in order to exactly match the normalization we need Kcs = −0.154573. In this case ns could
not be evaluated due to computational imprecisions.

In conclusion, it is now clear that in this model we can avoid a period of volume modulus
domination in the post-inflationary epoch for values R . 10−8.
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4.4.3 Example 3

Finally, this last example shows a more realistic scenario for Kähler moduli inflation, as now the
volume is of order V v 105 and we use hundreds of moduli. From a qualitatively point of view,
the output is exactly the same of the previous example and this further confirms the predictions
we made. For the minima we choose

τ2 = 1 , τ3 = 4.5 ,

and for the Calabi-Yau manifold we fix

Calabi-Yau parameters

n α λ3

100 1 5/98

.

We recall that λ3 = λ′3/(n− 2), and in this case λ′3 = 5. This value has been chosen in order to
give a larger value of the volume, according to (4.25).
We underline once again that the output of this model is the same as the case of a Calabi-Yau
with n = 3 and λ3 = 5.

R v 10−3

We start with the case

λ2 =
1

200
⇒ R ' 0.00099 .

To obtain the chosen minima we find

A2 = 1.10139× 10−6 , A3 = 94151 , W0 = 0.960163 ,

which more precisely give the values in table 4.11. We assign

ξ = 80.4762 , 0.0268241 < gs < 0.0804723 , gs = 0.0536482 .

τ2 τ3 τ1 vol φ δφ

predicted 1 4.5 3908.8 244332 12.4063 0.016872

calculated 1.00064 4.5007 3916.12 245019 12.4091 0.0179098

Table 4.11: Values of the minima for the case R ∼ 10−3 of example 3. The “predicted” values
are the ones given by the approximations in (4.13) and (4.42), whereas the “calculated” ones
are those found with the potential (4.5).

This case is similar to the case of R v 10−3 of example 2, as it can be seen in figure 4.14 and
4.15.

For what concerns the post-inflationary scenario, the masses and the other important quan-
tities are given in table 4.12.



64
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Figure 4.14: Evolution of the inflaton and the volume modulus during the last efoldings for
the case R v 10−3 of example 3.
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Figure 4.15: Inflationary trajectory in the (τ2, φ) plane for the case R v 10−3 of example
3. The green dashed line represents the curve of local minima of φ and τ3 for each value of
τ2 and the greens dot represents the end of inflation (the one on the right) and the global
minimum (the one on the left).
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Hinf mφ minf Γφ Γinf

9.45042× 108 2.71433× 1010 1.07393× 1014 6.70807× 10−8 5.1169× 109

Table 4.12: Values of the physical quantities in GeV for the case R v 10−3 of example 3.

We expect a period of matter domination as we can calculate
Heq
Γφ
' 3.875× 1013 � 1. Indeed,

we find
Nmod1 ' 0 , Nmod2 ' 20.87

which give a total number of efoldings of

N tot
e ' 44.64 . (4.89)

For the observables we have

ε = 2.37771× 10−14 , r = 16ε = 3.80434× 10−13 ,

and

Ps(Kcs = 0) = 6.88506× 10−10 , ns = 0.95368 .

To exactly match the COBE normalization we find Kcs = −0.621021.

R v 10−5

We now decrease the value of R about two orders of magnitude; we should expect plots of moduli
evolution similar to the ones in figure 4.11. We take

λ2 =
1

10000
⇒ R ' 0.0000199 .

To obtain the chosen minima we find

A2 = 2.11389× 10−8 , A3 = 90352 , W0 = 0.920233 ,

which more precisely give the values in table 4.13. We assign

ξ = 80.473 , 0.0268248 < gs < 0.0804744 , gs = 0.0536496 .

τ2 τ3 τ1 vol φ δφ

predicted 1 4.5 3905.45 244018. 12.405 0.000355052

calculated 1.00064 4.5007 3912.77 244705. 12.4078 0.000348543

Table 4.13: Values of the minima for the case R ∼ 10−5 of example 3. The “predicted” values
are the ones given by the approximations in (4.13) and (4.42), whereas the “calculated” ones
are those found with the potential (4.5).
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Figure 4.16: Evolution of the inflaton and the volume modulus during the last efoldings for
the case R v 10−5 of example 3.

1.0 1.5 2.0 2.5 3.0
12.4077

12.4078

12.4079

12.4080

12.4081

12.4082

τ2

ϕ

Figure 4.17: Inflationary trajectory in the (τ2, φ) plane for the case R v 10−5 of example
3. The green dashed line represents the curve of local minima of φ and τ3 for each value of
τ2 and the greens dot represents the end of inflation (the one on the right) and the global
minimum (the one on the left).
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Hinf mφ minf Γφ Γinf

1.29891× 108 2.60646× 1010 1.03059× 1014 5.9397× 10−8 4.51628× 109

Table 4.14: Values of the physical quantities in GeV for the case R v 10−5 for example 3.

From figures 4.16 and 4.17 it is evident that the behavior is the same we found in example 2,
which confirms again the predictions of section 4.2.

For what concerns the post-inflationary scenario, the masses and the other important quan-
tities are given in table 4.14.
We expect a period of matter domination as we can calculate

Heq
Γφ
' 2.05562× 109 � 1. Indeed,

we find
Nmod1 ' 0 , Nmod2 ' 14.30

which give a total number of efoldings of

N tot
e ' 45.28 . (4.90)

For the observables we have

ε = 4.40583× 10−16 , r = 16ε = 7.04933× 10−15 ,

and

Ps(Kcs = 0) = 7.01953× 10−10 , ns = 0.954508 .

To exactly match the COBE normalization we find Kcs = −0.640364.

R v 10−9

Also in this case we explore whether it is possible to avoid a period of volume domination below
a certain value of R. We point out that in this case we were not able to compute the complete set
of equations due to computational difficulties linked to such a small value of R; for this reason
we did not to predict the observables and the value of W0 is not optimized to match the COBE
normalization, but it as been chosen to be of the same order of the previous cases. However, we
could still calculate all the quantities we need in order to analyze the post-inflationary scenario.
In this case we have

λ2 =
1

3
× 10−7 ⇒ R ' 6.66× 10−9 (4.91)

and
A2 = 7.26399× 10−12 , A3 = 93143.1 , W0 = 0.948636 .

The values of the minima are given in table 4.15. We assign

ξ = 80.4729 , 0.0268248 < gs < 0.0804745 , gs = 0.0536497 .

Finally, with the values in table 4.16 we can analyze the post-inflationary scenario. In this
case, the inflaton quickly decays (Nmod1 ' 0) and from the estimate
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CHAPTER 4. KÄHLER MODULI INFLATION AND MODULI

DOMINATION

τ2 τ3 τ1 vol φ δφ

predicted 1 4.5 3905.38 244012 12.405 1.18477× 10−7

calculated 1.00064 4.5007 3912.71 244698 12.4078 1.16117× 10−7

Table 4.15: Values of the minima for the case R ∼ 10−9 of example 3. The “predicted” values
are the ones given by the approximations in (4.13) and (4.42), whereas the “calculated” ones
are those found with the potential (4.5).

Hinf mφ minf Γφ Γinf

2.44535× 106 2.68702× 1010 1.06243× 1014 6.50761× 10−8 4.94777× 109

Table 4.16: Values of the physical quantities in GeV for the case R v 10−9 of example 3.

Heq

Γφ
= 3.91237 v O(1)

it is clear that we should carefully study the system (4.72) to verify if there is a period of
matter domination. In this example there is not, as after the inflaton decay the universe is
always radiation dominated. In fact, the hypotetical time of equilibrium was expected to be
teq ' 3.9277× 106 GeV−1, but the curves never meet, as shown in figure 4.18.
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ρ
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Figure 4.18: Post inflationary scenario for the case R v 10−9 of example 3. The time of
equilibrium was expected to be at teq ' 3.9277× 106 GeV−1, but actually radiation always
dominates.

Hence, it is now clear that also in this case for values R . 10−9 we can avoid a period of
volume modulus domination in the post-inflationary epoch.

4.4.4 Remarks on numerical analysis

We now make some comments about the numerical analysis performed in this section, in order
to enlighten some important implications of the study we have carried on.

• The hierarchy between λ2 and λ3 and between τ2 and τ3 implies a hierarchy also in A2

and A3, typically A2 � 1 and A3 � 1.

• In every example, W0 has been assigned numerically: it can be noted that once fixed the
fundamental parameters n, α , λ3 and the minima τi, for any choice of λ2 the value of
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W0 was always found to be of the same order. This fact could be understood looking at
equations (4.54) and (4.55): once those parameters are fixed, these quantities depend only
on λ2, A2 and W0. In particular, also considering the dependence on λ2 and W0 of V0 in
(4.30), we have Ps ∝ W 4

0 λ
4
2

A2
2
e2a2τ∗2

ea2τ
∗
2 ∝ N tot

e
A2

λ22W0

⇒ Ps ∝ (N tot
e )2W 2

0 ;

since N tot
e takes values in a small range (4.76) and Ps = 3.7× 10−10 it follows that W0 has

roughly the same value for any value of R. Finally, equation (4.15) implies

λ2W0

A2
= const

which entails that with an almost fixed W0 the value of A2 changes with λ2, and in
particular

A2 ∝ λ2 .

• The value of εs scales with λ2: with the same considerations as above and (4.4.4) we realize
that

εs ∝
W 2

0

V 2
0

A2
2 ∝

A2
2

λ3
2

∝ 1

λ2
.

• Given that W0 is roughly constant, also the masses are fixed. Thus taking smaller and
smaller values of R, the effect is to decrease Hinf as it follows from equation (4.48).

• There are cases where there is a large difference between Hinf and the masses minf and

mφ. This fact could lead to a ratio
Hinf
Γinf

< 1, which, according to (4.61), should give

Nmod1 < 0. This is of course not correct, and we need to keep in mind that the inflaton
acquires mass at the end of inflation. Hence, in cases with such large masses the inflaton
decays soon after the end of inflation and we should set Nmod1 ' 0, as was done in example
3.

• Where possible, all the values have been estimated numerically. For example, the masses
have been calculated using m2

1 ' det( ˜K−1M2)/m2
2m

2
3 and m2

i = 1/2KiiVii i = 2, 3 (see
appendix A), where all the quantities have been evaluated numerically using the full po-
tential and the full metric of section 4.1. These values all agree with our approximations,
as it can be readily verified.
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CHAPTER 4. KÄHLER MODULI INFLATION AND MODULI

DOMINATION



CONCLUSIONS

The low energy limit of type IIB string theory compactifications represents a useful source of 4D
N = 1 supergravity models which can be used to provide a coherent description of cosmological
evolution. In particular, such models are suitable to describe inflation thanks to the Kähler
moduli which arise from this procedure.

In this thesis we have studied the multi-field case of a class of inflationary models with Kähler
moduli. Indeed, string compactifications usually produce to a lot of fields, easily n v O(100): it
is commonly believed that a large value of n is sufficient to build a realistic model and to achieve
stabilization between moduli inflationary and post-inflationary minima, making this shift very
small.
In this work we have shown that a large value of moduli cannot actually be used to stabilize
the minima. Indeed, a large value of n would require an extremely large volume V in order
to reproduce a Minkowskian global minimum, and this is not phenomenologically acceptable.
Therefore, we showed that one possibility to achieve stabilization is to act on the intersection
numbers λi, and in particular on the one associated with the inflaton: while λi for the spectator
fields (i = 3, 4, ..., n) should be chosen in order to compensate the effect of a large number of
particles, the intersection number λ2 of the inflaton mainly controls the R parameter and it
must be made very small. Furthermore, we have shown that this result strictly depends on the
specific choice of the uplift term

Vup =
D

Vγ

and the considerations we made could be partially relaxed for γ . 2.
Studying the case R � 1 we derived a relation between the mass of the volume modulus and
the Hubble constant during inflation, showing that the ratio mφ/Hinf is always bigger than 1
and that it depends on R. Thus, we concluded that the friction term of moduli equations never
dominates and that during inflation the fields (in particular the volume modulus) are free to
follow their local minima until the global minimum, exhibiting at most some small oscillations
around them after the end of inflation. We then analyzed the post-inflationary scenario, giving
the tools to estimate whether an epoch of volume modulus domination is present or not. In
particular, a rough estimate suggests that we could be able to avoid this epoch for R . 10−8 (at
least for some specific cases) and that in principle it could be always forbidden for sufficiently
small values of R.
Finally, we numerically solved the system of differential equations for the moduli evolution during
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inflation and for the energy density evolution after inflation, in order to test our predictions and
study whether we could avoid a period of volume domination. In particular, we found that for
small R the system really behaves as we expected: at the end of inflation, the volume follows its
local minimum until the global one instead of remaining fixed in its inflationary minimum. In
addition, we verified that for a given model there exists R� 1 such that we can avoid a period
of volume domination after inflation. In particular, this assures us that the model is free from
the cosmological moduli problem and that there is no tension at all with the success of the Big
Bang nucleosynthesis.

In this thesis a lot of attention has been given to the study of the post-inflationary dynam-
ics. Indeed, this period is crucial to predict and understand lots of aspect of the cosmological
evolution.
First of all, the presence of periods of matter domination after inflation has an important effect
on the number of efoldings between horizon exit of the modes relevant for CMB observation and
the end of inflation. This value is fundamental to make inflationary predictions for the spectral
index ns and the tensor-to-scalar ratio r. In particular, the preferred number of efoldings was
found to be around N tot

e ≈ 45, which is smaller than the usual estimate N tot
e ≈ 50; this also

causes a reduction at the percent level of the spectral index.
Secondly, the post-inflationary period is necessary to understand how the energy is transferred
after the end of inflation via a process of reheating. This is extremely important for model
building, as we need to know how the particles of the Standard Model and of the hidden sector
are produced: volume modulus domination would imply that they are mainly generated by the
volume decay, whereas on the other case they would be generated by the inflaton decay. Conse-
quently, a study of reheating requires also an analysis of all moduli and their decay modes. In
particular, it is important to calculate the energy density injected into Standard Model compared
to the energy density injected into the hidden sector. Indeed, realistic models have to take into
account the correction ∆Neff = Neff−Neff,SM to the number of neutrino species Neff,SM = 3,
since observations do not seem to show a clear preference for ∆Neff > 0; excessive branching
ratio to the hidden sector would lead to ∆Neff � 1 and would spoil the BBN predictions.
In conclusion, it is fundamental to distinguish if there is a period of modulus domination or not
in order to be able to correctly predict lots of essential observables and to build suitable models
to describe cosmological evolution.



APPENDIX A

COMPUTATIONAL DETAILS

A.1 Preliminar considerations on mass terms

We discuss here how to find the masses of the fields in Kähler moduli inflationary models.
Indeed, the moduli we used in our potential (4.5) are not canonically normalized, and we cannot
read the mass terms from the Lagrangian.

Let us now label the fields as τ̂i and indicate their minimum as τi as usual; we can expand them
around this point as

τ̂i = τi + δτi .

Then we can also expand the Lagrangian about the minimum and find

Lkin = Kij∂µ(δτi)∂
µ(δτj) ,

Lmass = −(M2)ij(δτi)(δτj) ,

where

(M2)ij =
1

2
Vij =

1

2

∂2V

∂τ̂i∂τ̂j

∣∣∣∣
τi,τj

≡ 1

2

∂2V

∂τi∂τj
.

In order to find the canonically normalized fields we must look for τ ci such that

Lkin =
1

2
∂µ(δτ ci )∂µ(δτ ci ) .

In particular, we have to look for a transformation for the vector δτ

δτ ≡


δτ1

δτ2
...
δτn

 =
1√
2
Uδτ c =

1√
2

(
u1 u2 . . . u3

)

δτ c1
δτ c2

...
δτ cn

 (A.1)

where U is the n × n matrix of the mass eigenvectors ui, and δτ c is the column vector of the
canonically normalized fields.
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Applying this transformation to the kinetic Lagrangian written in a compact form (K̃ is now
the metric, not to be confused with the Kähler potential) we find

∂µ(δτ)†K̃∂µ(δτ) =
1

2
∂µ(δτ c)†U †K̃U∂µ(δτ c)

and if we want to obtain the canonical form we need

U †K̃U =


u†1
u†2
. . .

u†3

 K̃
(
u1 u2 . . . u3

)
=


u†1K̃u1 u†1K̃u2 . . . u†1K̃un

u†2K̃u1
. . .

...
...

. . .
...

u†nK̃u1 u†nK̃u2 . . . u†nK̃un

 = In×n (A.2)

which implies u†iK̃uj = δij , which is finally the normalization relation for the eigenvectors.
For the mass terms we have

(δτ)†M2(δτ) =
1

2
(δτ c)†U †M2U(δτ c) ;

if δτ c represents the correct mass eigenstates U †M2U must be diagonal and its entries (i.e. its
eigenvalues) are the squared masses of the fields. From explicit calculations we get

U †M2U =


u†1
u†2
. . .

u†3

M2
(
u1 u2 . . . u3

)
=


u†1M

2u1 u†1M
2u2 . . . u†1M

2un

u†2M
2u1

. . .
...

...
. . .

...

u†nM2u1 u†nM2u2 . . . u†nM2un

 (A.3)

with u†iM
2uj = m2

i δij . Therefore, if we want to calculate the masses, we need to diagonalize

K̃−1M2 ,

which satisfies
K̃−1M2ui = m2

iui (A.4)

as it can be readily shown from

u†iM
2uj = u†iK̃(K̃−1M2)uj = m2

ju
†
iK̃uj = m2

jδij .

A.2 Kähler metric

We now give explicit computation for the Kähler metric Kij in the large volume limit.
Recalling that ∂

∂Ti
= 1

2
∂
∂τi

K1 =
1

2

∂K

∂τ1
= −

3
2α
√
τ1

(V + ξ
2)
' −3

2

α
√
τ1

V
,

Ki
i 6=1
=

1

2

∂K

∂τi
=

3
2αλi

√
τi

(V + ξ
2)
'

3αλi
√
τi

2V
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and

K11 =
1

2

∂

∂τ1
K1 ' −

3

4
α

(
1

2

1

V√τ1
−

3
2ατ1

V2

)
' 3

4

1

τ2
1

, (A.5)

K1j
j 6=1
=

1

2

∂

∂τj
K1 '

3

4

α
√
τ1

V2

(
−3

2
αλj
√
τj

)
' −9

8

λj
√
τj

τ
5/2
1

, (A.6)

Kij
i,j 6=1
=

1

2

∂

∂τj
Ki '

3

4
α

(
1

2

λi√
τiV

δij −
λi
√
τi

V2

(
−3

2
αλj
√
τj

))
(A.7)

where we approximated V ' ατ3/2
1 and more precisely for i, j > 1

Kii '
3

8

λi

τ
3/2
1

√
τi
, (A.8)

Kij
i 6=j
' 9

8

λiλj
√
τi
√
τj

τ3
1

. (A.9)

From now on, we will always implicitly consider i, j > 1. The full matrix has the form

K̃ =



3
4

1
τ21

−9
8
λ2
√
τ2

τ
5/2
1

−9
8
λ3
√
τ3

τ
5/2
1

. . . −9
8
λn
√
τn

τ
5/2
1

−9
8
λ2
√
τ2

τ
5/2
2

3
8

λ2

τ
3/2
1

√
τ2

9
8
λ3λ2

√
τ3
√
τ2

τ31
. . . 9

8
λnλ2

√
τn
√
τ2

τ31

−9
8
λ3
√
τ3

τ
5/2
2

9
8
λ3λ2

√
τ3
√
τ2

τ31

3
8

λ3

τ
3/2
1

√
τ3

. . .
...

...
...

. . .
. . . 9

8

λnλn−1
√
τn
√
τn−1

τ31

−9
8
λn
√
τn

τ
5/2
1

9
8
λnλ2

√
τn
√
τ2

τ31
. . . 9

8

λnλn−1
√
τn
√
τn−1

τ31

3
8

λn

τ
3/2
1

√
τn


. (A.10)

From these calculations, with τ1 � 1 we can readily find its inverse

K11 '4

3
τ2

1 , (A.11)

Kii '8

3

τ
3/2
1

√
τi

λi
, (A.12)

K1i '4τ1τi , (A.13)

Kij '4τiτj . (A.14)

In particular the first two terms can be found simply by taking Kii ' 1
Kii

, which ensure that

(K−1K)ii ' 1 (at leading order in 1
V ), whereas the last ones are chosen in order to obtain exactly

(K−1K)ij = 0 for i 6= j. Actually, in the latter we could have also taken Kij ' 0, since the
product (K−1K)ij would have been close enough to zero (order O( 1

τ1
)) and these terms would

have been much smaller than all the other entries of the inverse matrix. However, we prefer to
keep these terms in order to obtain more precise results.
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The complete inverse matrix is then

K̃−1 =



4
3τ

2
1 4τ1τ2 4τ1τ3 . . . 4τ1τn

4τ1τ2
8
3
τ
3/2
1

√
τ2

λ2
4τ2τ3 . . . 4τ2τn

4τ1τ3 4τ2τ3
8
3
τ
3/2
1

√
τ3

λ3

. . .
...

...
...

. . .
. . . 4τnτn−1

4τ1τn 4τ2τn . . . 4τnτn−1
8
3
τ
3/2
1

√
τn

λn


. (A.15)

To test these approximations, we can check the large volume limit of the expression (4.2) and
(4.3) and see that the calculations of this section agree with them.

A.3 Potential calculations

We now turn to calculate the second derivatives of the large volume limit potential (4.7), essential

to calculate the mass matrix. It is useful to rewrite the potential with V ' ατ3/2
1

V =
n∑
i=2

µi

√
τ̂i

τ̂
3/2
1

e−2aiτ̂i −
n∑
i=2

νi
τ̂i
τ̂3

1

e−aiτ̂i +
ζ

τ̂
9/2
1

+
β

τ̂4
1

(A.16)

where we assigned for brevity

µi =
8(aiAi)

2

3α2λi
, νi =

4W0aiAi
α2

,

ζ =
3ξW 2

0

4α3
, β =

CupW
2
0

α8/3
.

As before, for the derivatives we use the notation Vi = ∂V
∂τ̂i

∣∣∣∣
τi

= ∂V
∂τi

.

For the first derivatives we have

∂V

∂τ̂1
= −

n∑
i=2

3

2
µi

√
τ̂i

τ̂
5/2
1

e−2aiτ̂i +
n∑
i=2

3νi
τ̂i
τ̂4

1

e−aiτ̂i − 9

2

ζ

τ̂
11/2
1

− 4
β

τ̂5
1

,

∂V

∂τ̂i
=

µi

τ̂
3/2
1

[
1

2
√
τ̂i
− 2ai

√
τ̂i

]
e−2aiτ̂i − νi

τ̂1
3 [1− aiτ̂i] e−aiτ̂i .

Then, the second derivatives are

∂2V

∂τ̂1
2 =

n∑
i=2

15

4
µi

√
τ̂i

τ̂
7/2
1

e−2aiτ̂i −
n∑
i=2

12νi
τ̂i
τ̂5

1

e−aiτ̂i +
99

4

ζ

τ̂
13/2
1

+ 20
β

τ̂6
1

(A.17)

∂2V

∂τ̂1∂τ̂i
= −3

µi

τ̂1
5/2

ai
√
τ̂i

[
−1 +

1

4aiτ̂i

]
e−2aiτ̂i + 3

νi

τ̂1
4aiτ̂i

[
−1 +

1

aiτ̂i

]
e−aiτ̂i , (A.18)

∂2V

∂τ̂i
2 =

µi

τ̂1
3/2

4a2
i

√
τ̂i

[
1− 1

2aiτ̂i
− 1

16a2
i τ̂i

2

]
e−2aiτ̂i − νi

τ̂1
3a

2
i τ̂i

[
1− 2

aiτ̂i

]
e−aiτ̂i , (A.19)

∂2V

∂τ̂i∂τ̂j
= δij

∂2V

∂τ̂i
2 . (A.20)
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Using εi = 1
4aiτi

and the relations (4.10), that we can rewrite as

e−aiτi =
mi

τ
3/2
1

(1− 4εi)

(1− εi)
√
τi , mi =

3λiW0

4aiAi
,

and noting that νi = 2miµi, we can easily evaluate the derivatives in the minima τi

V1i =
∂2V

∂τ1∂τi
= −3

µim
2
i

τ
11/2
1

aiτ
3/2
i

(1− 4εi)
2

(1− εi)
, (A.21)

Vii =
∂2V

∂τi∂τi
= 2

µim
2
i

τ
9/2
1

a2
i τ

3/2
i

(1− 4εi)

(1− εi)
(1− 2εi) . (A.22)

For V11, using the equivalent of (4.11)

4
β

τ4
1

= −9

2

ζ

τ
9/2
1

+

n∑
i=2

9

2
µim

2
i

τ
3/2
i

τ
9/2
1

(1− 4εi)

(1− εi)2
(A.23)

we have

V11 =
∂2V

∂τ1∂τ1
=

9

4

1

τ
13/2
1

[
n∑
i=2

τ
3/2
i µim

2
i

(1− 4εi)(1 + 4εi)

(1− εi)2
+ ζ

]
;

this expression can be manipulated a little bit more using the full expression for ζ and (4.14)
for εi � 1

ξ
εi�1
' 2α

n∑
i=2

λiτ
3/2
i (1− 18εi)

together with the assumptions (4.22) and µim
2
i =

3W 2
0 λi

2α2

V11
εi�1
' 27

8

W 2
0

α2τ
13/2
1

[
n∑
i=2

τ
3/2
i (1 + 2εi) +

ξ

2α

]
(A.24)

=
27

4

W 2
0

α2τ
13/2
1

[
n∑
i=2

τ
3/2
i (1− 8εi)

]

=
27

4

W 2
0

α2τ
13/2
1

{
λ2τ

3/2
2 (1− 8ε2)

[
1 + (n− 2)

λ3

λ2

τ
3/2
3

τ
3/2
2

(1− 8ε3)

(1− 8ε2)

]}

'27

4

W 2
0

α2τ
13/2
1

{
λ2τ

3/2
2 (1− 8ε2)

[
1 +

1

R

τ
3/2
3

τ
3/2
2

(1− 8ε3)

(1− 8ε2)

]}

'27

4

W 2
0

α2τ
13/2
1

λ3(n− 2)τ
3/2
3 (1− 8ε3)

where we used R ' λ2
(n−2)λ3

� 1.
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Finally, for the second derivatives at the first order in εi we obtain

V11 =
∂2V

∂τ1∂τ1
=

27

4

W 2
0

α2τ
13/2
1

λ3(n− 2)τ
3/2
3 (1− 8ε3) , (A.25)

V1i =
∂2V

∂τ1∂τi
= −9

2

W 2
0

α2
λi
aiτ

3/2
i

τ
11/2
1

(1− 7εi) , (A.26)

Vii =
∂2V

∂τi∂τi
= 3

W 2
0

α2
λi
a2
i τ

3/2
i

τ
9/2
1

(1− 5εi) . (A.27)

A.4 Masses computation

Now that we have all the elements we need, we can proceed with the calculation of the eigenvalues
of K̃−1M2. Before addressing the general case for an arbitrary value of n, it is useful to study
the case n = 3 and n = 4; the first allows us to find the dominant terms in the matrix, whereas
the second helps us to generalize the calculation to a generic n.

To find the squared masses we simply consider that

det
(
K̃−1M2

)
= m2

1m
2
2 . . .m

2
n , (A.28)

Tr
[
K̃−1M2

]
= m2

1 +m2
2 + . . .+m2

n . (A.29)

Since m1 � mi as τ1 mainly corresponds to the volume modulus, as we will see in a moment,
and mi ' mj , ∀i 6= j, the values for the masses are

m2
i '

Tr
[
K̃−1M2

]
n− 1

, (A.30)

m2
1 '

det
(
K̃−1M2

)
(

Tr[K̃−1M2]
n−1

)n−1 . (A.31)

In particular, to be more precise, mi = mj only if the minima are all equal and if ai = aj , as it
will be clear in the following section.
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A.4.1 n=3

Let us write down the matrix

K̃−1M2 =

(K̃−1M2)11 (K̃−1M2)12 (K̃−1M2)13

(K̃−1M2)21 (K̃−1M2)22 (K̃−1M2)23

(K̃−1M2)31 (K̃−1M2)32 (K̃−1M2)33


=

1

2

K11V11 +K12V21 +K13V31 K11V12 +K12V22 K11V13 +K13V33

K21V11 +K22V21 +K23V31 K21V12 +K22V22 K21V13 +K23V33

K31V11 +K32V21 +K33V31 K31V12 +K32V22 K31V13 +K33V33


' 1

2

K11V11 +K13V31 K11V12 +K12V22 K11V13 +K13V33

K22V21 K22V22 K21V13 +K23V33

K33V31 K31V12 +K32V22 K33V33



where we used τ1 � 1 and R ' λ2
λ3
� 1. In particular, we can explicit the order in 1

τ1
of the

matrix entries as

K̃−1M2 v


O( 1

τ
9/2
1

) O( λ2

τ
7/2
1

) O( 1

τ
7/2
1

)

O( 1
τ41

) O( 1
τ31

) O( 1

τ
9/2
1

)

O( 1
τ41

) O( λ2

τ
9/2
1

) O( 1
τ31

)

 (A.32)

It is now clear that the trace is

Tr
[
K̃−1M2

]
' 1

2

(
K22V22 +K33V33

)
, (A.33)

and that the masses of the blow-ups are roughly

m2
2 '

1

2
K22V22 '

4W 2
0

α2

1

τ3
1

a2
2τ

2
2 (1− 5ε2) , (A.34)

m2
3 '

1

2
K33V33 '

4W 2
0

α2

1

τ3
1

a2
3τ

2
3 (1− 5ε3) . (A.35)

We now turn to calculate the determinant: from (A.32) we see that the relevant terms are

det
(
K̃−1M2

)
= + (K̃−1M2)11(K̃−1M2)22(K̃−1M2)33 (A.36)

− (K̃−1M2)13(K̃−1M2)22(K̃−1M2)31

− (K̃−1M2)12(K̃−1M2)21(K̃−1M2)33 ,

and det
(
K̃−1M2

)
v O( 1

τ
21/2
1

). We could be tempted to keep only the first term of this expression

in order to estimate the mass simply as m2
1 ' 1

2K
11V11; this is actually not a good estimate, as

explicit calculations show that the first two terms cancel up to the second order in εi.
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With a lot of patience we can calculate these three terms, obtaining

(K̃−1M2)11(K̃−1M2)22(K̃−1M2)33 = −144
W 6

0

α6τ
21/2
1

λ3(a3
3τ

9/2
3 )(a2

2τ
2
2 )
[
(1− 14ε3 + 61ε23)(1− 5ε2)

]
,

(K̃−1M2)13(K̃−1M2)22(K̃−1M2)31 = −144
W 6

0

α6τ
21/2
1

λ3(a3
3τ

9/2
3 )(a2

2τ
2
2 )
[
(1− 14ε3 + 63ε23)(1− 5ε2)

]
,

(K̃−1M2)12(K̃−1M2)21(K̃−1M2)33 = −144
W 6

0

α6τ
21/2
1

λ2(a2
3τ

2
3 )(a3

2τ
9/2
2 )

[
(1− 14ε2 + 63ε22)(1− 5ε3)

]
.

Hence, the determinant is

det
(
K̃−1M2

)
'144

W 6
0

α6τ
21/2
1

λ3(a3
3τ

9/2
3 )(a2

2τ
2
2 )(1− 5ε2)× (A.37)

×

[
2ε23 +

λ2

λ3

a2τ
5/2
2

a3τ
5/2
3

(1− 14ε2 + 63ε22)
(1− 5ε3)

(1− 5ε2)

]

'144
W 6

0

α6τ
21/2
1

λ3(a3
3τ

9/2
3 )(a2

2τ
2
2 )(1− 5ε2)×

×

[
2ε23 +R

a2τ
5/2
2

a3τ
5/2
3

(1− 9ε2)(1− 5ε3)

]

'288
W 6

0

α6τ
21/2
1

λ3(a3
3τ

9/2
3 )(a2

2τ
2
2 )(1− 5ε2)ε23

'18
W 6

0

α6τ
21/2
1

λ3(a3τ
5/2
3 )(a2

2τ
2
2 )(1− 5ε2) ,

where the R term can be neglected if R� a
3/2
2

a
3/2
3

ε
5/2
2

ε
1/2
3

, which can be easily achieved.

Finally, the mass term is

m2
1 '

det
(
K̃−1M2

)
m2

2m
2
3

' 9

8

W 2
0

α2τ
9/2
1

λ3
τ

1/2
3

a3
(1 + 5ε3) . (A.38)

Solving K̃−1M2ui = m2
iui we can find the eigenvectors

ui =

(ui)1

(ui)2

(ui)3


and we can then write the original fields in term of the canonically normalized ones

δτ =

δτ1

δτ2

δτ3

 =
1√
2

u1

 δτ c1 +
1√
2

u2

 δτ c2 +
1√
2

u3

 δτ c3 (A.39)

=
1√
2

(u1)1δτ
c
1 + (u2)1δτ

c
2 + (u3)1δτ

c
3

(u1)2δτ
c
1 + (u2)2δτ

c
2 + (u3)2δτ

c
3

(u1)3δτ
c
1 + (u2)3δτ

c
2 + (u3)3δτ

c
3

 .
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We sketch here the main dependence of the fields on the big modulus τ1, in order understand
the connection of fields we are using with the canonical ones. Referring to [25], considering
τ2 = τ3 = τs the results are

δτ1 v (τ1)
δτ c1√

2
+
(
τ

1/4
1 τ3/4

s

) δτ c2√
2

+
(
τ

1/4
1 τ3/4

s

) δτ c3√
2
, (A.40)

δτ2 v
(
a−1

2

) δτ c1√
2

+
(
τ

3/4
1 τ1/4

s

) δτ c2√
2

+
(
τ
−3/4
1 τ7/4

s

) δτ c3√
2
,

δτ3 v
(
a−1

3

) δτ c1√
2

+
(
τ
−3/4
1 τ7/4

s

) δτ c2√
2

+
(
τ

3/4
1 τ1/4

s

) δτ c3√
2
.

In particular, from these relations we can see that the volume modulus V v τ
3/2
1 is mostly τ c1

and the inflaton τ2 is mostly τ c2 and consequently the masses are

m2
φ ' m2

1 ,

m2
inf ' m2

2 .

A.4.2 n=4

Following the reasoning of the previous section, in this case the matrix K̃−1M2 is readily found
to be

K̃−1M2 ' 1

2


K11V11 + 2K13V31 K11V12 +K12V22 K11V13 +K13V33 K11V13 +K13V33

K22V21 K22V22 K21V13 +K23V33 K21V13 +K23V33

K33V31 K31V12 +K32V22 K33V33 K31V13 + K̃33V33

K33V31 K31V12 +K32V22 K31V13 + K̃33V33 K33V33

 ,

where we used (4.22), which also implies τ4 → τ3, and K̃33 ≡ K34, not to be confused with K33.
It is useful to rename the matrix elements in order to find a well defined structure that could
be easily extended to the general case; we define

K̃−1M2 ≡


a4 h i i
d b l l
e f c g
e f g c

 . (A.41)

The order in 1
τ1

of these terms can be gathered from (A.32) and the new term is g v O( 1

τ
9/2
1

).

The determinant is

det
(
K̃−1M2

)
=a4

∣∣∣∣∣∣
b l l
f c g
f g c

∣∣∣∣∣∣− h
∣∣∣∣∣∣
d l l
e c g
e g c

∣∣∣∣∣∣+ i

∣∣∣∣∣∣
d b l
e f g
e f c

∣∣∣∣∣∣− i
∣∣∣∣∣∣
d b l
e f c
e f g

∣∣∣∣∣∣ (A.42)

=a4

∣∣∣∣∣∣
b l l
f c g
f g c

∣∣∣∣∣∣− h
∣∣∣∣∣∣
d l l
e c g
e g c

∣∣∣∣∣∣+ 2i

∣∣∣∣∣∣
d b l
e f g
e f c

∣∣∣∣∣∣ ; (A.43)

keeping the dominant terms (O( 1

τ
27/2
1

)) we are left with

det
(
K̃−1M2

)
= a4bcc− hdcc− 2ibec ' a4bcc− 2ibec , (A.44)
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where the last step is justified by the fact that h v O( λ2

τ
7/2
1

) and that we are interested in the

case R� 1, which implies λ2 � 1, as we discussed in 4.2. This is equivalent to discard the term
(K̃−1M2)12(K̃−1M2)21(K̃−1M2)33 in (A.36), which is precisely what we did in (A.37).
With this notation

m2
2 ' b ,

m2
3 ' c ,

m2
1 '

det
(
K̃−1M2

)
bcc

' a4 − 2
ie

c
.

A.4.3 Generic n

We are now ready to generalize what we have done until now to the most generic case. The
matrix (A.41) is extended to

K̃−1M2 ≡



an h i i . . . i
d b l l . . . l
e f c g . . . g

e f g c
. . .

...
...

...
...

. . .
. . . g

e f g . . . g c


, (A.45)

where an = 1
2(K11V11 + (n− 2)K13V31).

The determinant is
det
(
K̃−1M2

)
' anbcn−2 − (n− 2)ibecn−3 (A.46)

and the masses

m2
2 ' b ,

m2
3 ' c ,

m2
1 '

det
(
K̃−1M2

)
bcn−2

' an − (n− 2)
ie

c
.

Recalling that

an =
1

2
(K11V11 + (n− 2)K13V31) ,

i =
1

2

(
K11V13 +K13V33

)
,

e =
1

2
K33V31 ,

c =
1

2
K33V33
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we find

an = −9
W 2

0

α2

1

τ
9/2
1

λ3(n− 2)a3τ
5/2
3 (1− 9ε3 + 16ε23) ,

i = 6
W 2

0

α2

1

τ
7/2
1

λ3a
2
3τ

5/2
3 (1− 7ε3 + 14ε23) ,

e = −6
W 2

0

α2

1

τ4
1

a3τ
2
3 (1− 7ε3) ,

c = 4
W 2

0

α2

1

τ3
1

a2
3τ

2
3 (1− 5ε3) ,

from which we can explicitly evaluate the mass term

m2
1 '

9

8

W 2
0

α2

1

τ
9/2
1

λ3(n− 2)
τ

1/2
3

a3
(1 + 5ε3) . (A.47)

From this expression the mass of the volume seems to depend on the number of moduli; however,
if we recall the discussion of section 4.2, we immediately realize that

λ3(n− 2) = λ′3 v O(10) .

Hence, we conclude that in principle the volume modulus mass increases with the number of
moduli, but in practice the constraints of the model force it to be independent from n,

m2
φ ' m2

1 '
9

8

W 2
0

α2

1

τ
9/2
1

λ′3
τ

1/2
3

a3
(1 + 5ε3) . (A.48)
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APPENDIX B

GENERIC UPLIFT

B.1 Constraints for a generic uplift

In this section we will explicitly calculate some constraints of the model used in section 4.1.2
using a generic uplift

Vup = W 2
0

Cup
Vγ

, 1 ≤ γ < 3 (B.1)

and referring to the potential (4.7). The goal is to understand the link between the specific
uplift choice and the number of moduli n.
We start requiring

∂VLARGE
∂V

∣∣∣∣
V∗

= 0

which gives

n∑
i=2

8(aiAi)
2√τi

3V∗λiα
e−2aiτi −

n∑
i=2

8W0
aiAi

V∗2
τie
−aiτi +

9ξW 2
0

4V∗3
+ γ

CupW
2
0

V∗γ
= 0 . (B.2)

Substituting the minima (4.10) and multiplying by V3
∗ we obtain

n∑
i=2

αλiW
2
0 τ

3/2
i

[
3

2

(1− 4εi)
2

(1− εi)2
− 6

(1− 4εi)

(1− εi)

]
+

9ξW 2
0

4
+ γCupW

2
0 V∗3−γ = 0 ,

and after a little algebra

ξ = 2α

n∑
i=2

[
λi

(1− 4εi)

(1− εi)2
τ

3
2
i

]
− 4

9
γCupV∗3−γ . (B.3)

Calculating V min
LARGE , substituting again the minima (4.10) and V = V∗ and using the relation
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(B.3)

V min
LARGE =

n∑
i=2

αλiW
2
0

V∗3
τ

3/2
i

[
3

2

(1− 4εi)
2

(1− εi)2
− 3

(1− 4εi)

(1− εi)

]
+

3ξW 2
0

4V∗3
+
CupW

2
0

V∗γ

=
W 2

0

V3
∗

{
n∑
i=2

αλi
(1− εi)2

τ
3/2
i

(
−3

2
+ 3εi + 12ε2i

)
+ CupV3−γ

∗

+
n∑
i=2

αλiτ
3/2
i

3

2

(1− 4εi)

(1− εi)2
− 1

3
γCupV3−γ

∗

}

=
W 2

0

V3
∗

{
−3

n∑
i=2

αλi
(1− εi)2

τ
3/2
i εi(1− 4εi) +

(
1− 1

3
γ

)
CupV3−γ

∗

}
,

and requiring a Minkowskian minimum V min
LARGE = 0 we finally obtain

V3−γ
∗ =

3

Cup
(
1− 1

3γ
) n∑
i=2

αλi
(1− εi)2

τ
3/2
i εi(1− 4εi) . (B.4)

B.2 Multi-field consequences

Let us now turn to the multi-field case and see how the value of γ affects the choice of the
number of moduli of the model. If we use the assumptions (4.22) and consider the case εi � 1,
from (B.4) we obtain

V3−γ
∗ =

3α

Cup
(
1− 1

3γ
) (λ2τ

3/2
2 ε2 + (n− 2)λ3τ

3/2
3 ε3

)
. (B.5)

Hence, we see that with τi v O(1), the volume depends on the number of moduli as

V∗ v (n− 2)
1

3−γ ; (B.6)

for γ → 1 it weakly depends on n , whereas for γ → 3 the number of moduli strongly affects the
value of the minimum of the volume.
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