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Sommario

Il momento magnetico anomalo del muone aµ = g−2
2

è una delle quantità conosciute con

più precisione nella fisica, sia sperimentalmente che teoricamente. L’alto livello di accu-

ratezza permette l’uso della misura di aµ come test del Modello Standard (MS). In parti-

colare, qualsiasi deviazione dal valore teorico del MS potrebbe essere dovuto a contributi

fisici Oltre il Modello Standard (BSM). Il notevole risultato ottenuto dall’esperimento

E821 nel 2001 presso Brookhaven National Laboratory, con un valore misurato di aµ =

11 659 208.0(6.3) · 10−10 e una precisione complessiva di 0.54 parti per milione, ci ha las-

ciati con una differenza di 3.4 σ rispetto alla predizione del modello standard. Il nuovo

esperimento Muon g-2 (E989) presso Fermilab (FNAL) mira a ridurre l’errore sperimen-

tale di un fattore 4, con un obiettivo finale di 0.14 ppm, utilizzando lo stesso anello di

accumulazione e migliorando le incertezze statistiche e sistematiche. In circa 2 anni di

presa dati sarà raggiunto un numero di decadimenti di muone 21 volte maggiore rispetto

a E821, ottenendo un’incertezza statistica di 0.1 ppm. Al momento di questa scrittura,

l’esperimento è operativo e ha già collezionato due volte la statistica totale di E821. Molti

miglioramenti riguardanti i rivelatori implicano una riduzione dell’errore sistematico da

180 ppb a 70 ppb per la misura di ωa, la frequenza di precessione anomala del muone.

In particolare, il nuovo Sistema di Calibrazione Laser ridurrà l’errore sistematico dovuto

alle fluttuazioni del guadagno dei fotomoltiplicatori al silicio (SiPM) da 120 ppb a 20

ppb.

Questa tesi descrive l’esperimento e poi discute due analisi effettuate da me utilizzando il

Sistema di Calibrazione Laser. La prima è una sincronizzazione dei 1296 rivelatori al liv-

ello del nanosecondo, descritta nel capitolo 5. La seconda è uno studio sulla risposta del

guadagno dei rivelatori a segnali che sono distanti meno di 100 ns, oltre alla valutazione

del suo effetto nella misura di ωa, descritto nel capitolo 6.
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Abstract

The muon anomalous magnetic moment aµ = g−2
2

is one of the most precise quan-

tity known in physics, experimentally and theoretically. The high level of accuracy

permits to use the measurement of aµ as an important test of the Standard Model

(SM). In particular, any deviation from the SM theoretical evaluation could be due to

Beyond Standard Model physics contribution. The impressive result obtained by the

E821 experiment at Brookhaven National Laboratory in 2001, with a measured value of

aµ = 11 659 208.0(6.3) ·10−10 and a total accuracy of 0.54 parts per million, left us with a

3.4 σ difference compared to the SM prediction. The new Muon g-2 (E989) experiment

at Fermilab (FNAL) aims to reduce the experimental error by a factor 4, with a final

goal of 0.14 ppm, using the same storage ring and improving both the systematic and the

statistical uncertainties. A number of muon decays 21 times higher with respect to BNL

will be reached in about 2 years of data taking, improving the statistical uncertainty

to 0.1 ppm. At the moment of this writing the experiment is fully operational and it

has already collected 2 times the BNL statistics. Many improvements on the detectors

involve a systematic error reduction from 180 ppb to 70 ppb for the measurement of

ωa, the anomalous precession frequency of the muon. In particular, the new Laser Cal-

ibration System will reduce the systematic error due to gain fluctuations of the silicon

photo-multipliers (SiPM) from 120 to 20 ppb.

This thesis will describe the experiment and then discuss two analyses performed by

me using the Laser Calibration System. The first is a time synchronization of the 1296

detectors at the nanosecond level, described in Chapter 5. The second is a study on the

gain response of the detectors to signals closer than 100 ns in time, together with the

evaluation of its effect in the ωa measurement, described in Chapter 6.
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Chapter 1

Introduction

1.1 The magnetic moment

The magnetic dipole moment ~µ of an object is a measure of how much torque it experi-

ences when placed in a magnetic field:

~τ = ~µ× ~B U = −~µ · ~B (1.1)

It represents a correlation between the motion of its electric charge and the physical

space that it occupies. A general expression of the magnetic moment is given by:

~µ =
1

2

∫
(~r × ~J(~r))dV (1.2)

Assuming that the current is composed of a series of point charges with velocity ~vi and

charge qi, we might rewrite the current distribution as

~J =
∑
i

qi~viδ(~r − ~ri) (1.3)

so that, using ~L = ~r × ~p,

~µ =
1

2

∑
i

qi(~ri × ~vi) =
1

2

∑
i

qi
mi

~Li (1.4)
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10 Chapter 1 | Introduction

If all the particles are identical, the magnetic moment is proportional to the total angular

momentum of the system ~L =
∑

i
~Li

~µ =
q

2m
~L (1.5)

The dawn of the 20th century was a period of strong innovation in the physics world.

Names like Einstein, Schrödinger, Dirac, Pauli and Feynman, introduced a revolution in

the way of understanding nature: the era of the atom and particle physics started. In

1922 the famous experiment by Stern and Gerlach showed that a beam of identical silver

atoms passing through a magnetic field [1] emerged from it physically separated into two

different bands along the axis of the magnetic field. What should be inferred by this

result is that silver atoms have two possible magnetic moments, equal in magnitude but

pointing to opposite directions. One possible source to this magnetic moments could be

the electric charge of the nucleus that implies a scaling factor of 1/mN , where mN is the

mass of the nucleus. This scaling is not observed in silver and hydrogen experiments.

This moved the interest to the orbiting electron in the atom as the possible culprit.

From spectroscopy experiment what came out was that a fourth quantum number,

in addition to n, m and l introduced by quantum mechanics, was necessary to remove

all the degeneracies in the experimental data. There was a big effort to explain data

using different models (e.g Sommerfeld and Lande’s Ersatzmodel), which were only able

to describe just some specific situations. The first solution to this problem, even if

only qualitatively, was given by two young physicists, Samuel Goudsmith and George

Uhlenbeck, where the idea of the spin with its value of ±1
2

came out. Quantitatively

the classical equation of the magnetic moment Eq. 1.5 underestimates the result of

experiments like the Stern-Gerlach by a factor 2. The common practice to solve this

problem was to incorporate this factor via the Lande g-factor or gyromagnetic ratio

~µ = g
q

2m
~S (1.6)

where g=1 for a classical system and g=2 referring to the electron.

The breakthrough in the mathematical description of spin came in 1928 from Dirac’s

attempts to create a relativistic extension of Schrödinger’s equation that, unlike the

Klein-Gordon equation, preserved linearity with respect to time. Existence of spin was

therefore predicted together with the existence of anti-particles as a result of Dirac’s

solution. Furthermore, the equation predicted the correct magnetic moment for the
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electron with g=2, even when Dirac’s equation is taken to the non-relativistic limit:(
1

2me

(~P + q ~A)2 +
q

2me

~σ · ~B − qA0

)
ΨA = (E −me)ΨA (1.7)

Comparing the term proportional to ~B to the equation 1.1

U = −~µ · ~B =
q

2me

~σ · ~B (1.8)

we have

µ = − q

2me

~σ = −2
q

2me

~S (1.9)

so that g = 2 (Eq. 1.6).

1.1.1 The anomalous magnetic moment

Given the success in Quantum Mechanics in predicting g to be 2 for the half-integer

spin electron, it was natural to assume that the half-integer spin proton would also be a

Dirac particle with g ≡ 2. Nevertheless, in 1933 Estermann and Stern [2] experimentally

found a value of 5.6 for the g-factor of the proton. Shortly thereafter, Rabi measured

the magnetic moment of the deuteron and from that a g-factor of 3.8 could be inferred

for the neutron. Of course, it is now known that the neutron and proton are composite

particles containing moving, fractionally-charged quarks: with the current loops induced

by the quarks it is no wonder that the magnetic moment for nucleons deviates strongly

from the prediction for a point-like particle.

If it were not for the quantum world of virtual particles, the g-factor of the electron

would be identically 2 and any deviation would be a strong indication of internal struc-

ture, as in the proton and neutron. However, the magnetic moment cannot be measured

without the influence from virtual exchanges made explicit in quantum field theories.

All particles are shrouded in a cloud of virtual particles pulled from the vacuum. The

screening effect of the virtual particles leads to a slight change (anomaly) in the observed

magnetic moment from what would be expected for a bare particle. The extent to which

g differs from 2 is called the anomalous magnetic moment and is conventionally written

as a fractional deviation:

ae =
g − 2

2
(1.10)

The first evidence of this anomaly is due to Kusch and Foley [3] who measured in 1948 a



12 Chapter 1 | Introduction

value of ae = 0.00119(5), giving no space to doubt in the result given such a small error.

At about the same time, quantum electrodynamics (QED) was reaching a turning point.

For almost two decades, QED had been impeded by the problem that any attempt to

calculate measurable physical properties resulted in non-convergent infinite series. The

solution of renormalization was proposed by Feynman, Schwinger, and Tomonaga, and

by the end of 1948 Schwinger had calculated [4] the first-order correction to the magnetic

moment to yield ae = α
2π

= 0.00116, which is within the quoted error of the Kusch and

Foley experiment. The complete QED calculation is a sum over terms of the fine struc-

ture constant α = 2πq2/hc. The most recent calculation comes from the computation of

the fifth order in α [5, 6]

athe (2017) =0.5
(α
π

)
− 0.328478965579

(α
π

)2

+ 1.181241456
(α
π

)3

− 1.912245764
(α
π

)4

+ 6.599(223)
(α
π

)5

+ 1.74(2) · 10−12 = 0.001 159 652 182 031 (720) (1.11)

The last term arises from the exchange of heavier particles from the hadronic and

electroweak sectors. The experimental measurement on ae has reached an incredible

precision of 4 ppb even compared to the amazing precision obtained in the theoretical

calculation of 20 ppb. The experimental setup used at Washington, by H. Dehmelt and

his group [7], consist of a Penning trap and they were able to obtain the values of

aexpe+ = 0.0011596521884(43)

aexpe− = 0.0011596521879(43) (1.12)

with a difference between the theoretical and the experimental value of the electron

anomaly at the 1.7σ level. Table 1.1 shows the measured values of the g-factor for dif-

ferent particles, as well as the theoretical calculation as of 2017.

Particle Experimental value Precision Ref. Theoretical prediction Ref.
Electron 2.0023193043738(82) 4 · 10−12 [8] 2.002319304364(2) [6]
Muon 2.0023318418(13) 6 · 10−10 [10] 2.0023318338(14) [11]
Tau 2.008(71) 4 · 10−2 [12] 2.0023546(6) [13]
Proton 5.585694674(58) 1 · 10−8 [8] 5.58 [14]
Neutron -3.8260854(10) 3 · 10−7 [8] -3.72 [14]

Table 1.1: Experimental and theoretical values of g for various particles.
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Property e µ τ
Charge -1 -1 -1
Spin 1/2 1/2 1/2
Mass 0.511 MeV/c2 105.7 MeV/c2 1776.9 MeV/c2

Lifetime > 2.0 · 1036 s 2.2 · 10−6 s 290.3 · 10−15 s
Main decay mode - µ→ eν̄eνµ τ → µν̄µντ
Branching ratio - ∼ 100% 17.39%

Table 1.2: Lepton properties

1.2 The muon

The muon is usually considered as a heavier version of the electron. Both particles

are charged leptons: the lepton universality dictates that they are identical except for

mass and the fact that muons are intrinsically unstable. Together with the tauon, they

complete the charged lepton family. Table 1.2 enumerates lepton properties compiled by

the Particle Data Group [8].

1.2.1 Decay chain

The pion decay chain is commonly used to produce muons. The pion is the lightest of

all hadronic matter and is produced in copious numbers when an energetic proton beam

impacts a high Z target. The pion is a meson, so the two constituent quarks inside the

pion are able to annihilate and still conserve color. When the quarks in a charged pion

annihilate, the net charge must be conserved, so the W is the only possible propagator.

The final state must also have a net charge, and since the mass of the parent pion is

140 MeV, the only possibilities are to have a muon or an electron contained in the final

state. While a less massive final state is preferred due to phase space considerations,

parity violation of the weak force enhances the decay into a muon and a neutrino [8]:

Rπ =
Γ(π → µ+ νµ)

Γ(π → e+ νe)
= 8.1 · 103 (1.13)

so that the probability of having a muon in the final state is > 99.9% To understand

this phenomenon pictorially Fig. 1.1 shows the π− decay in the rest frame of the pion.

In this frame, the anti-neutrino and the lepton are emitted back-to-back. In the limit

of massless neutrinos, the anti-neutrino is always emitted with a right-handed helicity.

Since the pion has zero spin, to conserve total angular momentum the lepton must also

be right-handed. In the weak decay, both the electron and the muon prefer to be left-
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handed. Since this option is essentially vetoed by the nearly massless neutrino, the more

massive muon is heavily favored by the weak decay. The decay lends itself to production

Figure 1.1: Diagram depicting the pion decay in the rest frame, with helicity constraints.

of spin polarized muons. When the isotropic decay is boosted into the lab frame for a

pion beam, both the highest energy (forward decay) or lowest energy (backward decay)

muons exhibit strong spin polarization. As such momentum selection can be used to

achieve a highly polarized muon beam.

After the pion decay, the produced muons decay similarly into an electron and two

neutrinos with nearly 100% probability. The decay chains are:

π+ →µ+ν̄µ π− →µ−νµ (1.14)

µ+ → e+ν̄eνµ µ− → e−νeν̄µ (1.15)

As in the case of pion decay, parity violation plays an important role also here. In the

rest frame of the muon, the highest energy decay electrons come from decays in which

the neutrinos are emitted collaterally, as depicted in Fig. 1.2. In this scenario, half of

the initial rest mass of the muon is carried away by the decay electron (Emax ≈ 53 MeV),

while the other 53 MeV is shared by the two neutrinos. Since the neutrino and anti-

neutrino are traveling in the same direction, and the weak decay dictates they must have

opposite helicities, their spins must be opposite. With the neutrino’s spins canceling,

conservation of angular momentum forces the decay electron to carry the spin of the

parent muon. The V − A nature of the weak decay prefers to couple to a left-handed

electron, so the high energy decay electron depicted in Fig. 1.2 tends to be emitted

with its momentum opposite to its spin. Therefore, in the rest frame of the muon, the

spin direction of the muon can be monitored by observing the instantaneous direction at

which the high energy decay electrons are emitted. A common framing for discussions

of muon decay is the differential decay rate, n(y), and asymmetry function, a(y), over

the range of possible muon energies, y = E/Emax [15]. The differential decay rate, also

called the Michel Spectrum, is a proxy for the overall probability of a decay electron with

the energy y. The asymmetry function represents the likelihood of the decay electron

momentum being in the direction of the muon spin. Both functions are normalized to
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Figure 1.2: Helicity constraints in the muon decay when the neutrinos are emitted in the
same direction.

have a maximum value of one. The decay functions for the muon rest frame in Eq. 1.16,

and the corresponding plots are shown in Fig. 1.3.

nrest(y) = y2(3− 2y) arest(y) =
2y − 1

3− 2y
(1.16)

Figure 1.3: Decay rate, n(y), and decay asymmetry, a(y), of the muon decay in the rest
frame. Here y = E/Emax, where Emax = 53 MeV.
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1.3 Why aµ?

The motivation for a muon g−2 experiments comes from various reasons. First of all, aµ is

a relatively simple observable to measure: the experimenters need a spin polarized beam

of leptons, an external magnetic field, and a technique to determine the spin direction.

Then, as mentioned before, a precise measurement of aµ probes into all the virtual

interactions between the lepton and the vacuum. The whole Standard Model contributes

to its value, since the interactions involve Quantum Electrodynamics (QED), Electro-

Weak theory (EW), and Quantum Chromodynamics (QCD). It traverses the entirety of

Standard Model interactions aside from gravity. Moreover, eventual measurements that

differ from the SM theoretical prediction points toward new physics, helping theorists

to discern between the multitude of Beyond Standard Model (BSM) theories and to set

new physics constraints.

Why muons?

To understand why such a measurement using muons is important, there are physical

and practical considerations. The physics considerations weigh in with the desire for

sensitivity to small effects predicted by the Standard Model. The electron g–2 has

already been measured with around 2,000 times more precision [16], so why not just

measure ae even more precisely? Well, simply put the physics contributions for ae and

aµ are just different. Higher order interactions with particles of larger masses contribute

with mass suppression terms, ∝ (ml
M

)2, or possibly even higher. These interactions mostly

manifest in the EW and QCD sector. The relative mass ratio between the electron and

the muon enhances the sensitivity to these terms by a factor of (105.66
0.511

)2 ≈ 43000 [17]!

Even though ae can be measured to much higher precision, aµ is still around 2000 times

more sensitive to large mass contributions. To that end, the electron g − 2 is a deeper

probe of QED and the muon g − 2 is a more rounded probe of the SM. The preceding

argument raises a further question though: ”Why not use the τ?”. The answer is really

a practical consideration; the ephemeral tauon has a lifetime of only 0.29 fs compared

to 2.2 µs for the µ [8]. The τ also has many decay modes rather than a single dominant

one like the muon. While the τ particle would be appealing if a significant enough

Lorentz boost could be achieved and a clean method to understand the decay modes was

presented, an experiment using tauons is simply not practical with current technology.
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1.4 State of the theory

As anticipated in section 1.1.1, the value of aµ arises from the exchange of virtual par-

ticles. The contributions that affect this value come from many sectors of theory, that

are Quantum ElectroDynamics (QED), ElectroWeak theory (EW), and Quantum Chro-

moDynamics (QCD), with the latter further divided into three classes. The lowest-order

contribution arises from Hadronic Vacuum Polarization (HVP). Higher-Order contribu-

tions (HOHVP) contain an HVP insertion along with an additional loop. The last class

is Hadronic Light-By-Light (HLBL) scattering.

aSMµ = aQEDµ + aEWµ + aHV Pµ + aHOHV Pµ + aHLBLµ (1.17)

As seen in Table 1.3 the dominant contribution comes by far by QED, being nearly two

million times the experimental error. Note that the error on the Standard Model comes

almost entirely from the hadronic terms.

Term Value (·10−11)

aQEDµ 116 584 718.951± 0.080
aEWµ 154± 1
aHV Pµ 6 949± 43
aHOHV Pµ −98.4± 0.7
aHLBLµ 105± 26

Total SM 116 591 827± 37

Table 1.3: Standard model contributions to aµ [18, 19, 20].

1.4.1 QED term

The QED contribution to aµ can be evaluated by the perturbative expansion in α/π:

aµ(QED) =
∞∑
n=1

(α
π

)n
a(2n)
µ (1.18)

where a
(2n)
µ is finite thanks to the renormalizability of QED. Some examples of fourth

and fifth-order QED contributions are shown in Fig. 1.4. The full QED contribution

has been fully calculated out to terms of order α5 (using more than 10’000 diagrams!)
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yelding [18]

aQEDµ = 0.5
(α
π

)
+ 0.765857425(17)

(α
π

)2

+ 24.05050996(32)
(α
π

)3

+ 130.8796(63)
(α
π

)4

+ 753.29(1.04)
(α
π

)5

= 116 584 718 951(19)(7)(77)(9) · 10−14 (1.19)

where the errors results mainly from the uncertainty in α, which is:

α−1 = 137.035 999 049(90)→ 0.66ppb (1.20)

obtained from the precise measurement of the recoil velocity of Rubidium h/mRb, the

Rydberg constant and mRb/me [21, 22].

(a)

(b)

Figure 1.4: Vertex diagrams representing 13 (a) and 32 (b) gauge-invariant subsets
contributing to the lepton g − 2 for QED at the eighth (a) and tenth (b) order. Solid
and wavy lines represent lepton and photon lines, respectively.

1.4.2 EW term

The corrections due to the weak force are mass suppressed compared to the QED con-

tribution. The lowest order and largest contribution to the weak corrections are repre-

sented by the two diagrams pictured in Fig. 1.5. The diagram on the left is similar to

the Schwinger diagram, but with a Z (or Higgs) boson propagating instead of a photon.

The single loop contributions first calculated in 1972 [23] yield

aEWµ (1− loop) = 194.8 · 10−11 (1.21)
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Figure 1.5: The largest contributing diagrams from the weak interaction.

The term containing the W boson contribution is suppressed by a term (mµ/MW )2 with

respect to the QED contribution, so that it introduces a perturbation of approximately

3.3 ppm. On the other way, the single loop with an exchange of a Z boson reduces the

overall EW contribution with a negative perturbation of -1.6 ppm, while the remaining

loop with an Higgs boson (MH ∼ 125 GeV) doesn’t contribute significantly due to the

mass suppression. The total contributions from the second order weak corrections sum

up to −40 · 10−11 [17], so that the overall EW term is [24]

aEWµ = 154(1) · 10−11 (1.22)

where the error comes mostly from hadronic loop uncertainties.

1.4.3 QCD terms

QCD terms are the ones with the higher uncertainty due to the non-perturbative regime

of this process. Since it dominates the uncertainty on aµ with a contribution of about

60 ppm (Table 1.3), improvements in this sector are crucial.

Hadronic Vacuum Polarization

The general form of Hadronic Vacuum Polarization (HVP) is quite similar to the QED

one. The muon radiates a photon or another boson, that creates a particle pair that

annihilates before recapture with the muon, as seen in Fig. 1.6. The difference with

QED is that the particle pair is composed of hadronic matter, such as π0, π±, ρ0, etc.

These loop terms can be calculated relating to the cross section of hadron production
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Figure 1.6: The Feynman diagram on the left shows the lowest-order Hadronic Vacuum
Polarization (HVP), where the black circle represents any possible combination of quark
matter.

from the annihilation of e+e−, using the dispersion relation

aHV Pµ =
1

3

(α
π

)2
∫ ∞

4m2
π

ds

s

σe+e−→hadrons(s)

σe+e−→µ+µ−(s)
K(s) (1.23)

In the last years several determination where obtained for the hadronic vacuum polariza-

tion which used the same data set with different data treatment, obtaining two leading

values:

aHV Pµ [25] = 6923(42) · 10−11 (1.24)

aHV Pµ [20] = 6949(43) · 10−11 (1.25)

The total contribution from higher-order hadronic loops is calculated to be [20]

aHOHV Pµ = −98.4± 0.7 · 10−11 (1.26)

Hadronic Light-by-Light

The general form for hadronic light-by-light (HLbL) contains more interaction vertices

than HVP and, therefore a smaller contribution to the total muon anomaly. The propa-

gating muon interacts with three photons and those photons interact with a QCD loop

which interacts with the external field. The HLbL scattering differs from other hadronic

contributions in that it cannot be related to experiments, so it must be estimated from

a model. Several evaluations have taken place, with the ”best estimate” value currently
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accepted of [20]

aHLbLµ = 105(26) · 10−11 (1.27)

Figure 1.7: Feynman diagram for the general case of hadronic light-by-light scattering.

1.4.4 The standard model prediction for aµ

Combining all of the various contributions explained in the previous sections and listed

in Table 1.3, the current total prediction for the muon’s anomalous magnetic moment is

aSMµ = 116 591 827± 37 · 10−11 (1.28)

The current very precisely known experimental value was measured by the BNL-E821

experiment, as described in the section 2.2 [10]:

aexpµ (2006) = 116 592 080(63) · 10−11 (1.29)

The total uncertainty includes a 0.46 ppm statistical uncertainty and a 0.28 ppm sys-

tematic uncertainty, combined in quadrature. This value was obtained averaging the two

results coming from the measurement of the negative and positive muon, which were in

agreement, as predicted by the CPT theorem [26]. This experimental value has to be

compared with the SM value shown in Eq. 1.28. The difference between the experimental

and the theoretical values gives

aBNLµ − aSMµ = 253± 73 · 10−11 (1.30)

This is a difference of ∼ 3.5σ, and while it does not reach the 5σ threshold usually used

to claim a discovery, it tells us that maybe something is hiding there. The next step is
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to push the precision even further on both fronts, and turn a statistical tension into a

> 5σ discovery (assuming constant central values). The new Muon g − 2 experiment

(E989) described in chapter 3 now in operation at Fermilab (FNAL) aims to push the

experimental uncertainty from 0.54 ppm of BNL to 0.14 ppm, bringing the discrepancy

to ∼ 7σ if the center value is confirmed.

1.5 Going Beyond Standard Model

Although the SM is a very well established renormalizable Quantum Field Theory (QTF)

that can describe essentially all experimental data of laboratory and collider experiments,

it is known that the SM is not able to explain a number of fundamental facts. Some of

them are:

• the existence of non-baryonic cold dark matter;

• the matter-antimatter asymmetry in the universe;

• the presence of a cosmological constant.

Moreover, a complete theory (of everything) should also include the force of gravity in a

natural way and explain the difference between the weak and the Planck scale (hierarchy

problem). If we confront an accurately predictable observable with a sufficiently precise

measurement of it, we should be able to see that our theory is incomplete. New Physics

can manifest itself through states or interactions which have not been seen by other

experiments, either by a lack of sensitivity or, because the new state was too heavy to

be produced at existing experimental facilities or, because the signal was still buried in

the background [17].

The anomalous magnetic moment of the muon provides one of the most precise tests of

Quantum Field Theory as a basic framework of elementary particle theory and of QED

and EW in particular. But not only that, it also constrains Physics beyond the SM

severely [17]. The comparison of theoretical and experimental values for aµ is interest-

ing, regardless of the outcome. If the values differ, then the comparison provides evidence

for Physics beyond the Standard Model. If they agree, then the result constrains any

proposed speculative extension, assuming that there are no fine-tuned cancellations be-

tween different varieties of New Physics.

Considering the simplest extensions of the Standard Model, we can write another
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contribution to the anomalous magnetic moment, including a generic BSM contribution:

aµ = aSMµ + aBSMµ (1.31)

The corrections are proportional to
(mµ
M

)2
, where M is the mass of the new particle, and

mµ the one of the muon. Therefore, the measure is sensitive to new particles in the mass

range from 100 MeV to 1 TeV with a precision better than the experiment at LHC due

to a much lower background.

Supersimmetry

Supersimmetry (SUSY) is a proposed theory that could account for the deviation in

aµ. It postulates the existence of a symmetry between bosons and fermions: each boson

has a fermion partner and viceversa. This new partner particles are labeled using a

s- as a prefix for fermions having squarks and sleptons, while the suffix -ino is used

for bosons: so photon becomes photino and so on. Another effects of supersymmetry

is that this theory leads to two Higgs doublets [17]: one gives mass to the upper half

of each generation (u, c, t quarks) and the other gives mass to the lower half (d, s, b

quarks). Of this four states, two are electrically neutral, one is positive and the other

is negative. The contributions from this theory arise through diagrams containing loops

with smuon-neutralino and sneutrino-chargino conversions, as shown in Fig. 1.8. The χ̃0

Figure 1.8: Feynman diagrams for the lowest-order supersymmetric interactions con-
tributing to aµ. µ̄ is a smuon, ν̃ is a sneutrino and χ̄0,± is the neutralino/chargino.

and χ̃± are called neutralino and chargino respectively: these are the mass eigenstates

whose linear combinations give photino, wino, zino and Higgsino. A general expression

for contributions from SUSY is given in Eq. 1.32 [27].

|aSUSYµ | ≈ 130 · 10−11

(
100 GeV

m̃

)2

tan(β) (1.32)
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The tan(β) enhancement can naturally be around 40 or 50. The difference aexpµ − aSMµ ≈
250 · 10−11 (Eq. 1.30) puts the mass scale at m̃ ≈ 500 GeV for a SUSY effect the size of

the entire muon anomaly discrepance.

Dark photon

A recent BSM scenario involves the so called ”dark photon”, an hypothetical relatively

light vector boson from the dark matter sector that express its interaction with ordinary

matter through mixing with the ordinary photon [28, 29]. The strength of the coupling

is expressed as εe, where ε is the kinetic mixing term between ordinary and dark photon.

This boson with mass mV give rise to a contribution to aµ:

aDARKγµ =
α

2π
ε2F (mV /mµ) (1.33)

where the form factor F equals to unity if mV � mµ, and is equal to
2m2

µ

3m2
V

if mV � mµ.

A viable solution to the muon g − 2 discrepancy could be provided by the dark photon

if ε ∼ 10−3 and mV ∼ 10− 100 MeV. Searches for a dark photon in this mass range are

currently underway at flavor factories and dedicated experiments at CERN (NA48 and

NA62), the Jefferson Lab and MAMI in Mainz, and PADME in Frascati.

More BSM

The two BSM models presented here are by no means the only possible new physics

scenarios. Many other SM extensions have been proposed throughout the years, including

Muon compositeness, Electric Dipole Moment (EDM), leptoquarks, extra dimensions,

and so on. Deeper discussions on many possible explanations to the aµ discrepancy are

presented in [15, 17, 27].



Chapter 2

The history of muon g-2

experiments

In the middle of 20th century there was a growing interest on the muon. The results

obtained for the neutron and proton g-2 can elicit that also a muon could have an in-

ternal structure because of its larger mass with respect to the electron. Muons have a

lifetime τµ = 2.2 µs which makes it difficult to store them and analyze their spin. From

the discovery of parity violation in 1957 [30, 31], it was understood that muons produced

from pion decay are naturally polarized, providing a natural source of polarization for

the experiment with muons. As another consequence of parity violation, the decaying of

high energy electrons from a polarized muon source is preferentially in the same direc-

tion of the muon spin, providing a way to determine the spin direction of the muons as

a function of time with a counting experiment. Counting the number of decay electrons

and applying an energy threshold, the fixed detector will measure a distribution in time

of the following form

N(t) = N0e
−t/τ [1 + A cos(ωat+ φ)] (2.1)

where N0 is the total population at time t = 0, τ is the muon lifetime, the value of

A represents the asymmetry in the direction of the decaying particle, ωa represents the

anomalous precession frequency and the phase φ depends on the initial polarization of

the muon beam. Moreover, sensitivity to exchange with heavy particles scales with the

square of the leptons mass, giving to the muon an amplification factor of
(
mµ
me

)2

= 4 ·104

relative to the electron, thus increasing the sensitivity to new physics.

25
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The first muon experiment was performed in 1957 by Garwin and collaborators at

the Nevis cyclotron of the Columbia University [32]. Muons formed in flight from pion

decays were stopped in a carbon target after passing one at time through an entrance

counter. An external magnetic field applied to the target region causes the spin of the

muon to precess. The precession could be increased or decreased tuning the magnitude

of the external field. This experiment was able to determine a value for g = 2.00± 0.10

for the muon, plotting the counts measured from the fixed counter as a function of the

magnetic field following Eq. 2.2:

ωs = g
eB

2mc
(2.2)

as shown in Fig. 2.1 (a).

Figure 2.1: Historical plots showing Larmor precession data from the Garwin (a) and
Hitchinson (b) experiments used to determine the muon g-factor.

The precision obtained with this experiment was not sufficient to measure anomalous

contributions to g. Similar experiments continued during the next years with the aim

to improve the precision of this measurement. The highest precision was obtained by

Hutchinson and collaborators in 1963 [33] by stopping muons in a magnetic field and

measuring the early-to-late phase difference between a standard reference and peaks in

the decay electron distribution (Eq. 2.1). In Fig. 2.1 (b) it is shown the final result of

the measurement of the Larmor precession frequency plotting the phase difference at a

fixed time interval as a function of the reference clock and fitting for the zero crossing. In
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this experiment the magnetic field was measured via nuclear magnetic resonance (NMR)

in terms of the Larmor precession frequency of protons in a polarized water sample, so

it easier to express the results as a ratio λ of the two frequencies or magnetic moments

obtaining

λ =
ωµ
ωp

=
µµ
µp

= 3.18338(4). (2.3)

Using this result is possible to obtain a direct test with the QED prediction from Eq.

2.2.

2.1 Experiments at CERN

Before Hutchinson published his results on the Larmor precession frequency a new exper-

imental procedure was studied at CERN to increase the precision of the g-2 measurement,

following the principles used in the determination of the electron’s anomalous magnetic

moment [34]. A charged particle moving in a uniform magnetic field B will execute a

circular motion with a cyclotron frequency

ωc =
eB

mc
(2.4)

It appears clear that taking the ratio ωs/ωc the spin precession of muons moving into

this magnetic field develops 1 + aµ times faster than the momentum vector. Taking the

difference between the two frequencies the result is the anomalous precession frequency

defined as

ωa = ωs − ωc =
eB

mc

(g
2
− 1
)

(2.5)

=
eB

mc

g − 2

2

= aµ
eB

mc

which is proportional to aµ. Uncertainties on aµ incorporate uncertainties on the mag-

netic field determination or in the muon mass determination but because aµ ∼ 1/800

of g, measuring directly the anomaly increases the precision of almost three orders of

magnitude. Looking at Fig. 2.2 it is possible to understand the spin precession concept.

The figure shows the spin and momentum vectors for an initially forward polarized muon

beam, moving along a circular orbit in a magnetic field. If the value of g is exactly 2, the
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situation is the one of the left panel, where the spin vector is locked to the momentum

direction. Since g is a little larger than 2, the spin vector slightly rotates more than 2π

during each cyclotron period, as shown on the right panel. This procedure developed at

CERN permits to improve the experimental precision and from this concept a series of

experiments with increasing precision came out; three were performed at CERN, which

will be referred to as CERN I, CERN II and CERN III, one at the Brookhaven National

Laboratory (BNL) and a new one is now in operation at Fermilab (FNAL).

Figure 2.2: Illustration of the muon spin and momentum vectors for a muon orbiting in
a magnetic field when g = 2 (a) and g > 2 (b).

2.1.1 CERN I

In the first experiment at CERN a forward polarized muon beam is injected into a 6 m

long magnet, with a magnetic field of 1.5 T. The magnetic field causes the muon beam

to move in a spiraling orbit. To create this kind of motion is important to shim carefully

the magnetic field in order to be parabolic in the vertical direction

B(y) = B0(1 + ay + by2) (2.6)

where the radius of the orbit is determined by the value of B0, the linear term a causes

each orbit to advance along the magnet and the term b produces a quadratic field pro-
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Figure 2.3: (a) An overview of the CERN I experimental setup and (b) the published
data [35].

viding vertical focusing. Increasing gradually the value of a increases the step size of

orbital ’walking’. At the end of the magnet this gradient is large enough to allow the

muons to escape from the field. A methylene-iodide target stops the beam and from the

asymmetry of the decay electrons the polarization is extracted. To determine the spin

precession relative to the momentum is necessary to determine the amount of time spent

by the muon beam in the magnetic field. To avoid the use of a forward and backward

detector, with different efficiencies for each, the magnetic field is pulsed to alternately

rotate the muon spin by ±90◦ before injection. Data from CERN I don’t appear to

be more precise than Garwin data, as shown in Fig. 2.3, but they represent a direct

measurement of the anomaly. Therefore, the precision of 5 · 10−3 on aµ

aexpµ (1965) = 0.001162(5)→ 4300ppm (2.7)

implies a precision of 5 ppm on the determination of g. The muon mass and the constants

in Eq. 2.2 were known at the time of the CERN I experiment with an adequate precision

to extract aµ. But using different techniques for extracting aµ like Hutchinson’s, provide

a measurement independent on the muon mass. This technique gains importance as the

precision of the anomalous precession experiments improves, since Eqs. 2.2 and 2.5 can

be written as

ωa
ωs

=
aµ

aµ + 1
(2.8)

Multiplying and dividing the left side of the equation for the Larmor precession frequency

of proton ωp in the same magnetic field, the ratio can also be written as
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ωa
ωs

=
ωa
ωp

ωp
ωs

(2.9)

The factor ωp/ωs in Eq. 2.9 is the inverse of the ratio λ (Eq. 2.3) measured by Hutchinson

independently. Frequencies in numerator and denominator of Eq. 2.9 are individually

B dependent, but the ratio is not. This permits to take the value of λ and the ratio

R = ωa/ωp from different experiments to extract the value of aµ. In fact solving Eq. 2.9

for aµ considering λ and R one obtains

aµ =
R

λ−R
(2.10)

With an accurate knowledge of λ, the value of aµ can be extracted from experiments

which measure the anomalous precession frequency ωa and the proton Larmor frequency

ωp in the same apparatus. CERN I results were surprising due to the agreement with the

prediction for the electron (see Eq. 2.7). It was expected a noticeable deviation because

of the muon mass, as in the proton and neutron case, but the result was the proof that

in terms of QED the muon behaves just as an heavier electron. This result, together

with the idea of a CERN II experiment, led theorists to improve the QED calculation to

second order in α (Fig. 2.4), with the new result [18]

athµ (1965) = 0.00116552(5)→ ±42ppm (2.11)

Figure 2.4: Some of the Feynman diagrams required in calculating the second-order QED
contributions probed by CERN I.

where the error of 5 · 10−8 is due to the uncertainty in the virtual loops containing

hadronic processes. This value can be improved to 1 · 10−8 with a first estimation of a

third order QED calculation and by the knowledge of α. Uncertainties in the result of

the CERN I experiment are mainly statistical. Examining the five parameter function
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Eq. 2.1 used to fit data, the fractional error on ωa is [19]

δωa
ωa

=

√
2

ωaAτ
√
N

(2.12)

To improve the accuracy the first option is to increase N ; a second option is related to

ωa, which being proportional to the magnetic field, contributes increasing the number

of cycles to be fit increasing the field strength; a third option is to use a more energetic

muon beam with a bigger lifetime; the fourth option is to improve the asymmetry A

of the signal with better detectors and a more accurate choice of the energy threshold

to maximize the level of the parity violating decay electrons. The advent of the PS

at CERN provided a more energetic muon source with a luminosity higher than the

Synchro-cyclotron giving the idea to the same group of physicist of CERN I to exploit

the possibility to perform a measurement of aµ.

2.1.2 CERN II

To setup the CERN II experiment a 5 m diameter storage ring with a C-shaped cross

section was built. The polarized muon source was obtained by injecting a 10.5 GeV

proton beam against a target placed inside the storage ring. The 1.7 T field in the

storage ring selects forward-going pions of momentum p = 1.27 GeV/c. As the pion

decays, a beam of longitudinally polarized muons with a relativistic factor γ = 12 were

captured in the storage ring. This injection process was inefficient creating a large

background due to protons and the large amount of pion momenta produced a less than

optimal initial muon polarization. However, the luminosity of PS and the factor 12 in

the dilated lifetime more than CERN I made up for the inadequacies associated with the

injection. The decay electrons from the stored muons bend radially inward with respect

to the muon orbit because of their lower momentum. Therefore, detectors had to be

placed around the inner radius of the ring to detect the decayed electrons. Fig. 2.5a

shows the experimental setup.

The CERN II experiment was able to measure for aµ (Fig. 2.5b)

aexpµ (1968) = 0.00116616(31)→ ±270ppm (2.13)

which is almost 2σ from the theoretical prediction. This level of discrepancy between the

two values was resolved by Aldins and collaborators [37] examining QED contributions

arising from light-by-light scattering (Fig. 2.6). This contribution was assumed to be
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Figure 2.5: (a) An overview of the CERN II experimental setup and (b) the published
data [36].

Figure 2.6: Feynman diagrams used to calculate the third-order QED correction to aµ.
The light-by-light diagram on the far right was the original source of the discrepancy
between theory and experiment.

negligible but in 1969 was confirmed a 200 ppm contribution to the theoretical value of

aµ leading to a new determination:

athµ (1969) = 0.00116587(3)→ ±25ppm (2.14)
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confirming the agreement between the experimental and theoretical values. The increas-

ing precision of the experimental procedure required to start considering the hadronic

contributions to vacuum polarization in the theoretical calculation of aµ. Quantum chro-

modynamics does not provide a method to calculate hadronic loops at low energies as-

sociated with the muon’s vacuum polarization. A way out is to take the electromagnetic

coupling of hadrons from experimental data using the dispersion relation [38]

aHV Pµ =
1

3

(α
π

)2
∫ ∞

4m2
π

R(s)

s
K(s)ds (2.15)

where R(s) is given by:

R(s) =
σ(e+e− → hadrons)

σ(e+e− → µ+µ−)
(2.16)

and the function K(s) is the QED kernel function. A more precise determination of the

cross section data obtained at Novosibirsk and Orsay experiments [39, 40], were included

as first in the paper of Gourdin and de Rafael [38], where they present a contribution of

aµ of 6.5(0.5) · 10−8 to aµ, with the error calculated solely from the uncertainty in the

cross section measurements.

With the CERN I precision at 270 ppm, the 60 ppm calculated hadronic contribution

to aµ was not far from experimental reach. Therefore the CERN physicists once again

started searching for ways to improve the experimental precision. The CERN II experi-

ment had ended with a statistical error of 2.3 · 10−7 and a systematic error of 1.9 · 10−7,

so a new experiment would have to improve on both fronts.

2.1.3 CERN III

The systematic uncertainty coming from the CERN II experiment is entirely due to the

radial variation in the magnetic field required to provide vertical confinement. A pos-

sible solution could be to use a quadrupole electric field to prevent the stored muons

from oscillating up and down into the magnet yoke. A relativistic muon will see this

quadrupole electric field in the lab frame as a magnetic field in its rest frame; so the

anomalous precession frequency will be derived as

~ωa =
e

m

[
aµ ~B −

(
aµ −

1

γ2 − 1

)
(~β × ~E)

]
(2.17)

The last term of Eq. 2.17 introduces a dependence of the spin frequency on the electric

field. This causes a problem: while NMR probes provide an extremely accurate method of
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measuring magnetic fields, there exists no equally precise method for measuring electric

fields. Even if the option of electrostatic quadrupoles seems not to be a viable one,

looking more closely at the coefficient in front of the electric field term it is apparent

that a trick exists. If the coefficient
(
aµ − 1

γ2−1

)
can be made zero, then a measurement

of the electric field is no longer required. It turns out that for the correct relativistic

gamma

γ =

√
1

aµ
+ 1 = 29.3 (2.18)

this coefficient is precisely zero. Nature was even kind enough to place this magic mo-

mentum for the muon at pµ = 3.09 GeV/c, which corresponds to a momentum that was

easily attainable at the PS.

One other obstacle to be overcome before pushing the precision of aµ was a new

measurement of λ. The Hutchinson result had an error of about 13 ppm, which would

not be sufficient for a measure of aµ to a few parts per million. Several collaborations

undertook the endeavor to better the λ measurement [41, 42], with the most precise

performed by Ken Crowe and collaborators [43]

λ =
ωµ
ωp

=
µµ
µp

= 3.1833467(82)→ 2.6ppm (2.19)

Once these major problems were solved, the design of the CERN III experiment began.

The experience obtained with CERN II was used to revisit the whole scheme and

improve the experimental setup. Rather than injecting protons into the ring, the back-

ground could be greatly reduced by locating the target outside of the storage ring. Pions

could then be transported to the interior side of the ring by using an inflector to cancel

the strong fields in the backleg of the magnet. This allowed also to place detectors all

around the circumference, increasing statistics, because the shielding blocks were not

necessary as in CERN II. By transporting pions to the ring through a beamline, a very

narrow range of pion momenta could be selected and the subsequent polarization of the

stored muons was much higher. Finally, the magic momentum meant that the relativistic

lifetime of the muons was precisely 64.4 µs, more than a factor of two more dilated than

in CERN II. Essentially, every factor in the denominator of Eq. 2.12 was improved with

the CERN III design. An overhead diagram of the storage ring and cross sectional views

of the magnet and storage region are shown in Figure 1.9, as well as the data. The final

result obtained after combining data for both the positive and negative muon was [44]

aexpµ (1979) = 0.001165924(8.5)→ ±7ppm (2.20)
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where the fact that the 7 ppm error is dominated by statistical uncertainty proved the

robustness of the new magic momentum technique. With a theoretical prediction of

athµ (1977) = 0.001165921(13)→ ±11ppm (2.21)

the CERN III results did not discover the origin of the muon mass but proved the

importance of hadronic vacuum polarization contribution to the 5σ level.

Figure 2.7: (a) An overview of the CERN III apparatus and (b) the published data [44].
(c) Feynman diagram depicting the contribution to aµ from hadronic vacuum polarization
that was first probed by CERN III.

2.2 The E821 experiment at BNL

Shortly after the CERN experiments came to a close, theoretical advances slowed to

the point that pushing the experimental precision could no longer be justified. In 1984,

Kinoshita and collaborators presented the results of a calculation complete to fourth

order in α [45]. Furthermore, they pointed out that the error in the hadronic sector had

been greatly reduced by improved measurements of the R(s) cross sections and that a new

experimental effort was in order. A group of physicist that included Vernon Hughes and

many of the original CERN collaborators started to think about a possible experiment

to be performed at the Alternate Gradient Synchrotron (AGS) at Brookhaven National

Laboratory (BNL). From the first workshop meeting in 1984 and in the future ones, a

design goal of measuring aµ to 0.35 ppm was established.

At about this time, the 4 ppb precision of the electron g-2 experiments far outweighed

any prospects for a next generation muon experiment. However, the contribution to a
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lepton’s vacuum polarization from heavy exchange particles scales as the square of the

lepton mass, which gives the muon an amplification factor of (mµ/me)
2 = 4 · 104 relative

to the electron. This is the reason why the hadronic contributions to aµ were tested at 5σ

by the CERN III result, but at only 2 ppb for the electron are below the resolution of the

ae measurements. The enhancement factor of the muon mass more than compensates for

the factor of 100 in the precision of aµ versus ae, thus measuring the magnetic moment

of the muon provides a unique probe into the world of heavy virtual particles.

(a)
(b)

Figure 2.8: (a) Plan view of the pion/muon beamline from AGS to the storage ring. The
pion decay channel is 80 m and the ring diameter is 14.1 m. (b) Schematic of the BNL
storage ring.

With the proposed precision, the BNL experiment would for the first time be sensitive

to virtual exchanges from the weak sector. As in the past experiments, it also probes

the limits of ”new physics” contributions. The 7 ppm error in the CERN III experiment

was dominated by statistics, which indicated that the method of operating a storage

ring at a field corresponding to the magic momentum had not yet been systematically

exhausted. Thus, the first step towards reaching a factor of 20 improvement over CERN

required increasing the muon flux by approximately a factor of 400. A first factor comes

from the AGS itself which is capable of delivering a beam which is almost a factor 20

more intense than the PS at CERN [46]; the second step comes from a better method

of injection. In the final CERN experiment pions were injected into the storage ring

through an inflector that cancelled the field in the yoke. Because of the uniform circular

motion of particles in the storage ring, the pions could only complete one orbit before

impacting the exterior wall of the inflector. Therefore, muons could only be obtained

from pions that decayed in the first orbit. Rather than rely on pion injection for the
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BNL experiment, it was realized that the number of muons stored per AGS cycle could

be dramatically increased by allowing the pions to decay in a channel upstream of the

storage ring and then directly injecting the resulting muon beam (Fig. 2.8a). To avoid

interference of this muon beam with the inflector magnet after the first orbit, a series

of kickers that shifted the muon orbit after injection with an electromagnetic impulse

was implemented. Together with this, some more important improvements of the BNL

experiment to keep systematic errors at a controlled level are listed below:

• The storage ring is constructed with three continuously wound superconductors,

as opposed to the series of 40 independent conventional bending magnets used in

CERN III.

• The inflector incorporates a superconducting shield to minimize the disruption of

the field in the storage region, and unlike the CERN inflector, allows it to operate

in a static DC mode.

• An NMR system capable of making an in-situ measurement of the field in the

storage ring was designed, which unlike CERN III, does not require cycling the

magnet power.

• In the BNL experiments, the decay electron signals from the calorimeters are

recorded by waveform digitizers and stored for later analysis instead of relying

on a hardware trigger.

It took almost 15 year of developments before starting to take data in 1997, and the first

years of runs were just some test of the new improvements and subsystems. Nevertheless

they were useful and gave also interesting results as shown in Fig. 2.9.

The experiment continued to take data on the positive muon until year 2000, where

an eventual precision of 0.7 ppm was obtained for aµ+ (Fig. 2.10) and then was decided

to switch to the negative muon. Technically, this required switching the polarities of all

of the beamline magnets, the inflector, and the storage ring itself. In practice, the optics

behaved exactly as expected under the reversal, with very little optimization required to

maximize the flux of stored muons. The switching procedure was a success and combin-

ing the data from both measurement the BNL experiment obtained a final result of [47]

aexpµ (2006) = 11659208.0(5.4)(3.3) · 10−10 → 0.54ppm (2.22)

resulting in a difference with the theoretical value of the time of 2.7σ.
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The improvement in the statistical power relative to CERN can be observed by comparing

Figure 2.10 to Figure 2.7. The signal in the CERN data has virtually disappeared by

500 µs, while the BNL signal is still clearly visible at 700 µs.

Figure 2.9: Progression of experimental precision from CERN through the 2000 BNL
data set.



Chapter 2 | The history of muon g-2 experiments 39

Figure 2.10: Data from 2000 µ+ data set with a five parameter fit of the form in Eq.
2.1 overlayed.





Chapter 3

The E989 experiment at Fermilab

Figure 3.1: The Muon g-2 experiment at Fermilab.

The new Muon g-2 experiment in operation at Fermi National Accelerator Labora-

tory aims to measure the muon’s anomalous magnetic moment with a precision of 0.14

ppm, a factor 4 better than the previous BNL E821 experiment.

41
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To achieve this precision, several aspects of the experiment have to be improved, both

to increase the number of muons observed, and to reduce the systematic uncertainties.

The experimental technique is the same as the one used for the CERN III and BNL

experiments, as it has proven successful and it presents room for improvements.

The BNL storage ring was moved from Brookhaven to Fermilab and installed in the

muon campus, at the end of the FNAL accelerator chain. Fermilab accelerators can pro-

vide a much more intense beam allowing the experiment to collect 21 times the statistics

of the BNL experiment in two or three years. While BNL E821 improved on the CERN

III experiment in a revolutionary manner, primarily by the invention of direct muon in-

jection into the storage ring, the FNAL E989 experiment will introduce a broad suite of

refinements focused on optimizing the beam purity and rate, the muon storage efficiency,

and modernizing the instrumentation used to measure both ωa and ωp [48].

The E989 experiment will measure aµ+ during the first run, due to the enhanced

cross section for producing µ+ using protons at the target, but aµ− may be measured in

a second run. Theoretically aµ+ ≡ aµ− , but measuring both provides a way to perform a

CPT theorem test. Since the values measured for aµ+ and aµ− in the E821 experiment

were statistically consistent, the E821 Collaboration averaged the two values to produce

their final experimental value.

The total uncertainty of 0.14 ppm expected for the E989 experiment is subdivided

into 100stat ppb and 100sist ppb. Some of the various improvements needed to reach this

goal uncertainty are [49]:

• higher proton rate with less protons per bunch. Since the detected positron number

is directly proportional to the protons on target, the Fermilab experiment will have

to deliver 4 ·1020 total protons. These high numbers are within reach thanks to the

Fermilab beam complex which is expected to annually deliver ∼ 2 · 1020 protons

with an energy of 8 GeV on an Inconel core target [50];

• a very long pion decay line. A limiting factor at BNL was the 120 m beamline

between the pion production target and the storage ring; since the decay length of

a 3.11 GeV/c pion is ≈ 173 m, the beam injected into the storage ring contained

both muons and a significant number of undecayed pions. Those pions create an

enormous burst of neutrons when they intercept materials [48]. The new decay

line will be more than 2000 m long, also thanks to the four orbits around a 500

m long Delivery Ring: virtually no pion will reach the muon storage ring without
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decaying;

• 6-12 times larger muon yield per proton and 3 times the muon beam rate: the

muon storage ring will be filled at a repetition rate of 12 Hz, which is the average

rate of muon spills that consists of sequences of successive 700 µs spills with 11 ms

spill-separations, compared to 4.4 Hz at BNL [50];

• improved detectors and new electronics: the detectors and electronics will all be

newly constructed to meet the demands of measuring the anomalous spin preces-

sion frequency to the 70 ppb level. This is a substantial improvement over the

E821 experiment where the total systematic error on ωa was 180 ppb. Better gain

stability and corrections for overlapping events in the calorimeters are crucial im-

provements addressed in the new design. A new tracking system will allow for

better monitoring of the stored muon population, and to establish corrections to

ωa that arise from electric field and vertical oscillations; [52];

• better monitoring of B-field variations: the storage ring magnetic field, and thus

ωp, will be measured with an uncertainty that is approximately 2.5 times smaller.

This is done by placing critical Nuclear Magnetic Resonance (NMR) probes at

strategic locations around the ring and shimming the magnetic field by placing

wedges and small steel foils to achieve a high uniformity [53];

• a continuous monitoring and re-calibration of the detectors, whose response may

vary on several timescales from nanoseconds to days, will be required: a high-

precision laser calibration system that will monitor the gain fluctuations of the

calorimeter photodetectors at 0.04 % accuracy will be used [49].

3.1 Production and injection of the muon beam

In this section we review the production of the muon beams that are used for this ex-

periment. The overall structure of the accelerator complex is schematized in Fig. 3.2.

The FNAL muon campus beamline is constructed to deliver pure pulses of highly

polarized muons to the E989 storage ring. The muons originate from decaying pions,

which are in turn produced by focusing a proton beam on a target. The protons begin

their journey in the linear accelerator Linac and accelerate through the Booster. From

there, the protons continue into the Recycler Ring where they are grouped into high
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Figure 3.2: The diagram depicts all relevant FNAL beamlines that are used to produce
muons for g-2 [15]. Protons (black lines) begin accelerating in the Linac, and end up
colliding with a target (AP0). Positive secondaries (including pions which later decay
into muons) with a momentum of 3.1 GeV/c are focused and transported to the Delivery
Ring. In the Delivery Ring, the bunch propagates long enough to have most of the pions
decayed, and to develop a time separation between protons and the muons that compose
the beam. With this time separation, the proton can be dumped and the muons can be
extracted to continue to the g-2 storage ring.

intensity bunches with a short temporal width of ∼120 ns. Each proton bunch con-

tains O(1012) protons with 8 GeV kinetic energy. The protons then propagate from the

Recycler to the AP0 target hall through (the antiproton production hall used by the

Tevatron) where they collide with an Inconel target. The collision produces O(109) pos-

itive secondary particles of which many are pions. The secondary particles are focused

via an electrostatic lithium lens into a secondary beam which goes through a momentum

filter shortly after focusing. Momentum selection yields a beam of 3.1 GeV/c with a

momentum spread of ±0.10∆p
p

. The secondary beam then proceeds through M2 and M3

beamlines into the Delivery Ring.

The goals in the Delivery Ring are twofold. First, the beam cycles around the Deliv-
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ery Ring to create a spatial separation between the pions/muons and the more massive

protons (slightly lower velocity for the same momentum), so that the protons can be

removed. Protons with momentum 3.094 GeV/c have a relativistic γ of 3.3 and travel

at about 95% the speed of light. Muons with a γ of 29.3 travel within 0.1% of the

speed of light. Therefore, after each trip around the Delivery Ring the protons fall 25 m

behind the muons. Secondly, essentially all pions decay in flight into muons, so that the

outgoing beam is a very pure muon beam. The pion decay line is ∼2 km long while the

one of Brookhaven was only 120 m. Four orbits around the Delivery Ring are enough to

achieve both goals.

After the Delivery Ring, the now muon beam is extracted onto the path toward the

Storage Ring. Through the pion decay process the high and low energy muons have a

net spin polarization (as discussed in section 1.2.1), and the beamline design acceptance

is narrow around the filtered secondary energy of 3.1 GeV/c. The muons produced at

3.094 GeV/c by the pion beam are forward decays and thereby achieve a net spin po-

larization of around 95%. The distribution of delivered muons has a momentum RMS

of approximately 2% centered around 3.094 GeV/c and a temporal length of 120 ns. Of

these injected muons, only 1% to 2% can be stored. A bunch of muons produced in the

beamline is referred to as a “fill”. These fills deliver O(104) muons to the storage ring

at an average rate of 11.4 Hz [15]. With a 4.5 cm radius storage region and a 7.112 m

orbit radius, the E989 ring can at best store muons within approximately 0.5% of the

design momentum.

3.2 The Storage Ring

Figure 3.3: Top down and cross sectional view of the Storage Ring [15].
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After a final focusing, the beam enters through a hole in the “back-leg” of the magnet

and then crosses into the superconducting inflector magnet [54], which provides an almost

field free region, delivering the beam to the edge of the storage region. Without it, muon

injection into the storage ring would not be possible because passage through the fringe

field would deflect the beam into the magnet iron. Once that the beam is injected it

requires to be kicked otherwise it will impact against the inflector after one turn. The

exit of the inflector is displaced 77 mm radially outward from the center of the storage

region, so that the beam is injected in an orbit slightly shifted from the designed one. To

store the particles that enter the storage ring vacuum, a pulsed kicker magnet fires as the

muon beam crosses the ideal orbit 90◦ around the ring from the injection site. The kicker

pulse length is ideally less than the muon orbital period, 149 ns, so that each particle is

only kicked once. The ideal kick is exactly strong enough to deflect design-momentum

muons onto the ideal orbit. Copper collimators placed around the ring define a 9 cm

diameter transverse area of the beam.

Figure 3.4: Diagrammatic illustration of injection into the storage ring [15]. During the
first turn after injection, the kickers provide the deflection necessary to place muons onto
the central storage orbit.
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3.2.1 The magnetic field

The E989 magnetic Storage Ring, shown in Fig. 3.1 and 3.3 is the same one previously

used in the E821 Muon g-2 Experiment at Brookhaven National Lab. The magnetic field

in the vacuum chamber is generated by three superconducting NbTi/Cu coils around a

C-shaped yoke as shown in figure 3.3. They operate with a current of 5176 A, providing

an uniform vertical magnetic field [15]. The C-shape faces the interior of the ring so

that positrons from the muon decay, which spiral inward, can travel unobstructed by

the magnet yoke to detectors placed around the interior of the storage ring. During the

assembly of the ring a shimming process was applied to be sure that the magnetic field

is as uniform as possible inside the beam storage volume.

The magnetic field is of critical importance to the muon g-2 experiment. A mag-

netic field of 1.4513 T puts muons with “magic” momentum, 3.094 GeV/c, into uniform

circular motion at the “magic” radius of 7.112 m. In this magnetic field the muons cir-

culate many times around the ring (∼4500 orbits in 700 µs), until they all decay. A very

precise measurement of the magnetic field is crucial for the success of the experiment,

for two main reasons. To first order, the value of ~B directly affects the rate of muon

spin precession and cyclotron frequency, as seen in section 1.1.1. To second order, the

magnetic field influences the beam dynamics of the stored muons. These deviations in

beam dynamics make the analysis which matches muon trajectories with the magnetic

fields along them more difficult, and therefore add uncertainty to the determination of

the expectation value for ωp.

3.3 The detectors

When a muon decays, the produced decay positron has less energy than its parent muon

and correspondingly a smaller orbit radius in the storage ring’s magnetic field; decay

positrons curl toward the center of the ring. There are 24 electromagnetic calorimeters

stationed around the inner radius of the storage ring to intercept these decay positrons

and measure their energies and hit times. This process is illustrated in Figure 3.5. With

24 calorimeters equally spaced azimuthally, the probability that a decay positron will

hit a calorimeter (called the acceptance) becomes very high, about 80%, for the decay

positrons nearest the endpoint of the energy spectrum [15].
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Figure 3.5: Illustration of muon decay in the storage ring [56]. The black curves delineate
the storage region, and the dashed line is its center. The rectangular objects represent
the electromagnetic calorimeters. When a muon decays in the storage region, its decay
positron will curl inward and may strike a calorimeter. The red and magenta curves
show the paths that decay positrons of two different energies would take if they were
born at the same location with momenta tangent to the ideal orbit.

3.3.1 Calorimeters

The calorimeters are the primary instruments for the ωa measurement. The main purpose

of the calorimeters is to establish a time and energy for each detected positron. Each one

consists of a 6 high by 9 wide array of lead fluoride (PbF2) crystals, each one is a 14 cm

long block with a square cross section of side 2.5 cm (Fig. 3.6). Every crystal is coupled

with a Silicon PhotoMultiplier (SiPM) detector (Fig. 3.7), with a sensitive area smaller

than the crystal it’s attached to. While this kind of calorimeter has not been extensively

used in the past, its properties are particularly well suited to the needs of the Muon g-2

experiment: PbF2 has very high density (7.77 g/cm3), a 9.3 mm radiation length and

a Molière radius of RM = 22 mm for energy deposition. High density allows for decay

positrons to deposit virtually all of their energy in a relatively compact calorimeter. The

crystals are 14 cm long, that is approximately 15 radiation lengths. The width of 2.5 cm

is higher than the Molière radius, thus the energy depositions of a typical decay positron

is contained almost entirely within one or two crystals. The segmentation of the detector

decreases the likelihood of two decay events occurring simultaneously in the same SiPM.

These double events are referred to as pileup and were a major source of uncertainty in

E821 [15].

Incoming positrons deposit energy in each crystal by producing an electromagnetic
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Figure 3.6: Model of the E989 calorimeter [56]. The active volume comprises a 6 by
9 array of PbF2 crystals. There are 24 calorimeters equally spaced around the E989
storage ring.

shower, and emitting Čerenkov radiation in few nanoseconds. The refraction index of

PbF2 is 1.8: Čerenkov radiation is produced only by positrons that travel faster than

c/1.8, that is with a kinetic energy of∼100 keV. All the positrons emitted by the decaying

muons have an energy significantly higher than 100 keV. The choice of a pure Čerenkov

material is driven by the almost instantaneous signal produced when an electron strikes

a crystal. There is no delay as one would expect from a scintillator. Considering the 14

cm crystal lengths, the relevant time scale for Čerenkov light production is on the order

of 1 ns. In addition, the PbF2 crystals have a very low magnetic susceptibility, perfect for

working in a magnetic environment without perturbing the magnetic field itself. Each

crystal is wrapped in a black-tedlar absorptive material which, even if it has a light yield

lower than a reflective one, ensures a faster response of the crystal.

The SiPMs work as a Geiger-mode counter, with 57344 pixels each one 50 µm wide

on a 1.2 × 1.2 cm2 device. Each pixel contains a resistor in series with the avalanche

photodiode (APD), called the quenching resistor. They serve to arrest the avalanche

and allow the device to recover with a recovery time constant typically of ∼10 ns. This

recovery time will be one of the important aspect of the study described in chapter 6.

Finally, the produced electrical current passes through a custom electronic readout board

where it is converted into a voltage signal. These voltage signals are recorded by 12-bit,
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800 MS/s waveform digitizers [55].

The SiPMs are intrinsically non-linear. The term ”Geiger-mode” refers to the fact

that a given pixel either fires (produces signal) or it does not. The consequence of this is

that a SiPM can never count more photons than the number of its pixels, 57344 in this

case. The number of pixels that produce signal can be expressed as:

Nfired = Ntot

(
1− e−

εNγ
Ntot

)
Nγ→0−−−→ εNγ (3.1)

where ε is the probability that an incident photon will induce a signal in a pixel, Ntot is

the number of pixels (57344) and Nγ is the number of incident photons. The response is

linear only in the approximation of low energy (low Nγ). The typical number of Čerenkov

photons emitted by a high-energy decay positron is about 2000, resulting in a number

of pixels that fire ∼2% less than the linear case.

Figure 3.7: The silicon photomultiplier (SiPM) detectors and their readout board [57].

Choosing SiPMs over PMTs is advantageous, as they can be placed inside the storage

ring field without perturbation, avoiding the long light guides that would be needed for

remote PMTs as in E821. On the other hand, SiPMs are very sensitive to temperature

and bias voltage, thus making their gain calibration a challenging and important task.

All the 1296 channels are calibrated during data taking using the Laser Calibration

System, described in chapter 4.
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3.4 Measuring aµ

The experimental technique was briefly presented in Chapter 2 following the historical

development of the experiment, and will be described here with more detail.

A charged particle with mass m, and placed in an uniform external magnetic field

will follow a circular path because of the the Lorentz force, and this motion is called

cyclotron motion. If the particle has spin, its direction will also rotate (precess) in the

same plane of the circular orbit.

In the absence of electrical fields, and with the particle velocity perpendicular to the

magnetic field, the equations governing this motion are:

~ωs = −ge
~B

2m
− (1− γ)

e ~B

mγ
(3.2)

~ωc = − e
~B

mγ
(3.3)

ωs is the spin precession angular frequency and ωc is the cyclotron frequency. γ is the

relativistic Lorentz factor, and g is the particle’s g-factor. The second term of Eq. 3.2 is

a relativistic correction to the Lorentz force, called Thomas precession. It accounts for

the rotation of the particle’s frame of reference. The rotation of the particle spin with

respect to its momentum is called anomalous precession frequency, ωa, and is:

~ωa = ~ωs − ~ωc = −
(
g − 2

2

)
e ~B

m
≡ −aµ

e ~B

m
(3.4)

The E989 experiment houses several electrostatic quadrupoles, in the magnetic region,

that serve to focus the beam. The anomalous precession frequency is sensible to such

electric fields:

~ωa = − e

m

[
aµ ~B −

(
aµ −

1

γ2 − 1

)
(~β × ~E)

]
(3.5)

However, for a muon beam with magic momentum pµ = 3.094 GeV/c, corrisponding to

a value of γ = 29.3, the second term of Eq. 3.5 cancels out, so that Eq. 3.4 holds.

From Eq. 3.4 we see that we can evaluate the anomalous magnetic moment aµ from the

measurement of ωa and ~B:

~ωa = −aµ
e ~B

m
→ aµ = −m

e

~ωa
~B

(3.6)
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This means that two values have to be measured with high accuracy in order to achieve

the final 0.14 ppm precision. The value of ωa is measured by the observation of the

decay positrons as a function of time, and this is done by the calorimeter system. The

value of the magnetic field can be measured by the observation of the Larmor precession

frequency of the proton (ωp) in the same magnetic region where the muons are stored.

We can rewrite the Equation 3.6 using the following relations:

B =
h̄ωp
2µp

e =
4meµe
h̄ge

(3.7)

where µp is the proton’s magnetic dipole moment; ge, µe, and me are the g-factor, the

magnetic dipole moment, and the mass of the electron. The three latter terms are given

by past experiments. We get:

aµ =
ωa
ω̃p

ge
2

mµ

me

µp
µe

(3.8)

where ω̃p is the particle distribution weighted spatial average of ωp. The first fraction

ωa/ω̃p is what this experiment will measure. The other three fractions are known from

prior experiments with high enough precision, as reported by CODATA [58].

3.4.1 The proton precession frequency ωp

The magnet field measurement consists of various components and techniques used to

determine the value of ωp, the free proton Larmor precession frequency in the storage

ring. To achieve this, 378 Nuclear Magnetic Resonance (NMR) fixed probes are placed

along the ring under and over the vacuum chamber. The probes keep monitoring the field

during the whole data taking. Once in a while, especially after changes in the magnetic

field or ring shutdowns, trolley runs are performed: a cylinder equipped with 17 NMR

probes, is moved on rails inside the vacuum chamber along all the ring (Fig. 3.8). The

trolley measurements produce a three dimensional map of the magnetic field inside the

storage region. All these expedients are used to bring the field uncertainty at about 70

ppb.

3.4.2 The anomalous precession frequency ωa

The measurement of the anomalous precession frequency is performed using the calorime-

ters. The standard analysis procedure is to identify individual decay positrons and plot

the rate of their arrival versus time. The number of detected positrons above a single
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Figure 3.8: (a) The electrostatic quadrupole assembly inside a vacuum chamber showing
the NMR trolley sitting on the rails of the cage assembly. Seventeen NMR probes are
located just behind the front face in the places indicated by the black circles. The storage
region has a diameter of 9 cm. (Copyright 2006 by the American Physical Society.) (b)
A contour plot of the magnetic field averaged over azimuth, 0.5 ppm intervals.

energy threshold Eth is

N(t) = N0e
− t
τ [1 + A cos(ωat+ φ)] (3.9)

where the normalization N0, the asymmetry A and the initial phase φ are all dependent

on the energy threshold. τ represents the lifetime of the muon in the laboratory system,

that is γτµ. There is a number of ways to extract ωa using such function, differing on how

to weight the events depending on energy. The T-Method (Threshold) uses a weight of

1 for positrons above a certain energy (usually 1.7 GeV) and 0 for positrons below that

threshold. The E-Weighted and A-Weighted methods instead weight the events linearly

on energy and on the asymmetry respectively. The A-Weighted technique yields the

maximum possible statistical power for a given threshold using the event identification

technique. The histogram used to plot the positron counts as a function of time is called

wiggle plot and is shown in Fig. 3.9.

Equation 3.9 contains five parameters (N0, γτµ, A, ωa, φ) and it represents the

number of counts we expect for muons that orbit exactly with the magic radius without

any side effect. A real-world experiment has these effects that affect the measurement

to some degree. For example, the beam has its own dynamics due to the magnetic and

electric field applied in the storage ring by the dipoles, the kickers and the electrostatic
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Figure 3.9: Illustration of the T-Method for ωa analysis [56]. On the left are the calorime-
ter signals in a number of different energy windows. Summing the signals from all energies
above a certain threshold yields the one dimensional T-Method histogram shown on the
right. This histogram is also called the wiggle plot. The T-Method signal is wrapped
on itself every 87 µs to show the entire 700 µs measurement period. The period of the
oscillations visible in the T-Method histogram is 2π/ωa.

quadrupoles for focusing. In particular it oscillates both in the radial and in the vertical

directions with a frequency dependent on the quadrupoles strength. This phenomenon is

called Betatron Oscillation. The functions used to fit the T-Method histogram contains

a number of parameters that depends on how many corrections are being addressed.

Listing here some of them, we have:

• Coherent Betatron Oscillation (CBO): is the correction for the oscillation

of the beam in the radial direction. The direction of the positrons emitted by

the decay is influenced by this effect, resulting in an oscillation in the number of

events. The correction is parameterized using 4 parameters (ACBO, τCBO, ωCBO,

φCBO) and applied to Eq. 3.9 as a multiplicative term:

N9par(t) = N5par(t) ·
[
1− ACBOe

− t
τCBO (cos(ωCBOt) + φCBO)

]
(3.10)

where τCBO is the CBO lifetime and the other parameters have similar meanings

to the 5-parameters equation 3.9.

• Lost Muons: is a correction that accounts for the muons that are lost by the

storage ring. This loss lowers the number of positron counts, with the effect of

altering the exponential shape of the muon decay. This correction is parameterized



Chapter 3 | The E989 experiment at Fermilab 55

by one parameter L defined as

N10par(t) = N9par(t) ·
[
1−Kloss

∫ t

0

L(t′)e−
t′
τ dt′

]
(3.11)

where L(t) is the number of lost muons as a function of time in the fill window of 700

µs, τ = γτµ is the lifetime of the muons and Kloss is the parameter, an acceptance

factor. The function L(t) is found using a dedicated analysis and extracted prior

the ωa fit.

• Vertical Oscillation (vBO): similar to the radial oscillation of the beam, this

correction accounts for the oscillation in the vertical direction. It is parameterized

using four parameters in the same way as the CBO correction:

N14par(t) = N10par(t) ·
[
1− Ave−

t
τv (cos(ωvt) + φv)

]
(3.12)

In conclusion, the positron count versus time plot contains many frequencies embed-

ded in the distribution. They can be studied using a Fast Fourier Transform (FFT)

technique, as shown in Fig. 3.10, and their typical values are listed in table 3.1.

Frequency name Symbol Typical value
Cyclotron ωc 6.71 MHz

Anomalous precession ωa 0.23 MHz
Coherent Betatron Oscillation ωCBO 0.37 MHz
Vertical Betatron Oscillation ωv 2.19 MHz

Table 3.1: Frequencies expected in the positron hit time histogram. Values are taken
from E989 Run 1 [56].

3.4.3 Detector corrections

In addition to the corrections considered in the fitting function of the positron count

versus time distribution, other corrections have to be applied prior to the construction of

the distribution itself. In fact, while the functions N(t, E) and A(t, E) can be calculated

theoretically, the quantities E and t are measured by the detectors, and they contain

systematic biases that must be accounted for. Such effects depend on detector hardware

and software.

The primary known detector effects of concern are pileup, which happens when two or
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Figure 3.10: Fast Fourier Trasform of the 5-Parameters fit residuals. The two peaks
indicated by the arrows correspond to the CBO and vBO oscillation frequencies.

more particles are reconstructed as one, and gain instability, which is a time-dependent

shift of the conversion factor from positron energy to detected energy. In addition to

that, all the 1296 detectors must be precisely synchronized to measure the time arrival

of the particles with high accuracy.

Figure 3.11: Energy spectrum of the positrons as measured by the calorimeters. The
end-point should be at ∼3.1 GeV, but the plot shows a long tail due to the pileup events
[59].
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The pileup is a rate-dependent effect, and distorts the energy spectrum in a different

manner between early and late times in a fill. The pileup correction can be evaluated

by studying the energy spectrum of the observed positrons. Since the muons have an

energy of ∼3.1 GeV, any detected signal with an energy higher of that comes probably

from a pileup event, that is two or more positrons producing signal in the same SiPM

simultaneously. Figure 3.11 shows the tail of the energy distributions corresponding to

these pileup events. The study of this tail is used to obtain a statistical correction to

events with all energies. This correction is applied to the wiggle plot before the fit pro-

cedure.

Gain is the conversion factor between the physical energy deposition in a calorimeter

and the quantifiable detected signal, such as an ADC value. Typically, through a cal-

ibration procedure, the gain is measured so the detected signal can be converted back

into physical energy units, such as MeV. The gain can vary with external factors such as

temperature and hit rate. Gain fluctuation can affect the measured precession frequency

if not properly corrected for. In fact, since the T-Method relies on an energy threshold,

gain shifts over the course of a fill result in a change in the effective energy threshold, thus

affecting the parameters N , A, and φ, and indirectly biasing the precession frequency.

For example, a decreased gain of the detectors is equivalent to a higher energy threshold.

Gain fluctuations were the main source of systematic errors in the E821 BNL experiment.

One of the improvements of this new E989 experiment is the installation of an accurate

calibration system that uses laser pulses to monitor the gain response of the calorimeters

during data taking. These gain fluctuations have effects on various time scales:

• long term (hours, days), due to temperature variations of the environment where

the experiment is placed;

• short term (∼ 50 µs), due to the muon decay rate that is maximal at the beginning

of the muon fills;

• very short term (∼ 10 ns), due to the overlap of the positron signals.

The Italian team, sponsored by the Istituto Nazionale di Fisica Nucleare (INFN), is

responsible of the construction, the installation, and the maintenance of this Laser Cal-

ibration System, that is described in Chapter 4. This thesis work was performed using

such system, and conducted in collaboration with the Italian team.





Chapter 4

The Laser Calibration System

Figure 4.1: The optical table of the Laser Calibration System. On the right: me.

The Muon g-2 experiment at Fermilab (E989) plans to measure the muon anomaly

aµ to an uncertainty of 16 ·10−11 (0.14 ppm), consisting of a 0.1 ppm statistical error and

two systematic uncertainties of about 70 ppm on the spin precession angular velocities of

both muons (ωa) and protons(ωp) in the same magnetic field. This improves the precision

of the BNL E821 experiment by a factor 4. To reach this level of accuracy, systematic

59
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uncertainties have to be lowered with respect to the E821 (BNL) experiment: Table 4.1

lists these errors and the planned goal for the new E989 experiment.

The laser calibration system (Fig. 4.1) is one of the improvements: its main task is to

monitor the gain fluctuations of the detectors (SiPM) allowing for a total systematic

uncertainty of 20 ppb.

Error E821 [ppb] E989 goal [ppb]
Gain changes 120 20
Lost muons 90 20
Pileup 80 40
CBO 70 40
E and pitch 50 30

Total 180 70

Table 4.1: List of the E821 systematic errors and the planned goal for the E989 experi-
ment [61].

The detector response may vary on both a short timescale of a single beam fill, and

a long one of accumulated data over a period of more than one year. To achieve this,

the calorimeter gain must be measured and corrected at the level of 0.1% over the time

scale of a 700 µs muon fill and at the sub-per cent scale over the longer term of the entire

data collection. This is a challenge for the design of the calibration system because the

desired accuracy is at least one order of magnitude higher than that of all other existing

or past calibration systems for calorimetry in particle physics [62]. In addition, the SiPM

response to consecutive positron hits in the time scale of 100 ns must be addressed: this

effect is important in particular for the firsts 50 µs of the muon fill, where the decay rate

is higher.

The implemented solution is based on the method of sending simultaneous light

calibration pulses onto each of the 1296 crystals of the electromagnetic calorimeter. Light

pulses should be stable in intensity and timing in order to correct drifts in the response of

the crystal readout devices (SiPM). The stability of the laser intensity is monitored with

a suitable photo-detector system. The guidelines given by the experiment to define the

architecture of the entire system are detailed in [63]. The crucial point for the realization

of this system are the light sources and the distribution system.
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4.1 The Laser Heads

First of all, since the laser system is used to calibrate the detectors, the light wavelength

must be in the range of the calorimeter SiPM sensitivity and the light source must have

an adequate power to deliver an appropriate amount of light to all crystals. Then, the

light pulses produced by the laser heads must be stable in intensity and timing to correct

for systematic effects due to drifts in the response of the SiPMs. For the choice of the

light source, the following criteria were used as reported in [15]:

• light wavelength must be in the spectral range accepted by the detector and deter-

mined by the convolution of the spectral density of the Čerenkov signal produced

by electrons in PbF2 crystals with the spectral transmission of the crystals, and

with the spectral quantum efficiency of the photodetector;

• the energy of the calibration pulses must be in the range of the electron deposit

in the crystal, typically 1-2 GeV; this corresponds to a luminous energy of about

0.01 pJ at 2 GeV;

• the pulse shape and time width must be suitable to infer on the readout capability

in pile-up event discrimination; pulse rise/trailing time must be of the order of

some hundreds of picoseconds, the total pulse width should not exceed 1 ns;

• the pulse repetition rate must be of the order of 10 kHz; this value is obtained

searching the best compromise between the need of having enough calibration

statistics and the need to avoid saturation of the DAQ bandwidth and perturbation

of data due to the laser pulses.

The laser heads used to accomplish these requirements are LDH-P-C-405M from

Picoquant (Fig. 4.2), with a wavelength of 405 ± 10 nm and a pulse FWHM of < 600

ps. Some of the properties of the laser are listed in Table 4.2.

Property Value
Wavelength 405± 10 nm

Pulse FWHM 700 ps
Average Power (@40 MHz) 28 mW

Power stability 1% RMS, 3% peak to peak (12 h)
Measured light output 1 nJ/pulse at 10 kHz

Table 4.2: Properties of the Picoquant LDH-P-C-405M laser sources. [64]
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Figure 4.2: The LDH-P-C-405M laser head by Picoquant.

4.2 Distribution system

The task of the distribution chain is to divide and carry the light from the laser source to

the different calorimeter stations placed around the ring, preserving as much as possible

uniformity and intensity of the laser light source.

4.2.1 The Laser Hut

Right next to the storage ring, a black room called Laser Hut houses the electronics and

the optical table of the laser calibration system. The reason why this room is located

outside the ring is to avoid electromagnetic perturbations of the local field induced by

the current flow used to excite the lasers.

A scheme of the optical table is shown in Fig. 4.3. The six laser heads are controlled by

the PDL 828 Sepia II 8 channel multi-laser driver. First of all, the laser light is split in

two by a splitter cube, as described in section 4.3.1, where the reflected beam goes into

the Source Monitor. Then, the beam that continues straight passes trough a motorized

Filter Wheel, that houses several (12) different transmittance filters. This filter wheel is

used to regulate the amount of light reaching the SiPMs. After that, the beam is split in

four beams and coupled to quartz fibers. These fibers, called launching fibers are 25 m

long and bring the light to all the 24 calorimeters inside the storage ring. A new piece of

equipment has been installed on the optical table, as described in chapter 6, not shown

in the figure 4.3.
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Figure 4.3: Schematic of the optical table inside the Laser Hut. Most of the major
components are shown and labeled.

4.2.2 Connection to calorimeters

At the calorimeter end of the launching fibers, the light enters in a light distribution box

(Fig. 4.4 where the light exits the fiber and then goes through a collimation lens and

an engineered diffuser (Thorlabs ED-20 ) which tailors the light intensity from the fiber

to a flat top profile. After the diffuser, the light illuminates a fiber bundle containing

54 one meter long fibers, that bring the light to each crystal of the calorimeter via a

light distribution plate. This plate is made of 1 cm thick plastic material (Delrin) and is

placed in front of the calorimeter crystals. Other than providing the calibration signal,

this plate also holds the crystals in place from the front side. There are, in each plate, 54

total channels where fibers are inserted. At the end of each channel (and fiber) an optical

prism steers the light at 90 degrees into the crystal it is facing. The light illuminates

then each of the 54 PbF2 crystals in every of the 24 calorimeter stations. In addition to

the fiber bundle just mentioned, the diffused light illuminates two more 25 m long fibers,
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one made of quartz and the other made of PMMA. These two fibers are sent back to the

laser hut where their light is measured by the Local Monitor.

Figure 4.4: Light distribution box of one calorimeter. The launching fiber (yellow) on
the right brings the light from the Laser Hut. The white panel on the left distributes
the light to the 54 crystals.

4.3 Monitors

The intensity variations of the light source used for calibration are monitored by a mon-

itor called Source Monitor (SM), while the intensity variations in the light distribution

are monitored by the Local Monitor (LM).

4.3.1 Source Monitor

The light from each laser is divided just after the source with an unbalanced beam split-

ter in two (70%-30%) where the lower intensity beam goes to the SM. The other beam

continues straight trough the Filter Wheel and then toward the remaining splitting optics.

The SM consists of a commercial integrating sphere (Thorlabs IS200 ) equipped with

two large area (1 cm2) photodiodes (Hamamatsu S3590-18 ) and one PhotoMultiplier

Tube (PMT) (Hamamatsu H5783 ). In addition, a low activity (6 Hz) Am source coupled

to a NaI crystal illuminates the PMT, thus providing an absolute calibration reference.
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A mini-bundle of fibers is attached to one of the integrating sphere’s ports; it consists

of ten 3 m long fibers that brings some of the light to the Local Monitor PMTs. This

direct signal is compared in the LM with the delayed signal that has made a round trip

to the calorimeters. For the SM a custom made electronics has been made which is

integrated with the optics and detectors. Everything is placed in an aluminum housing

that provides a large thermal inertia. A schematic of the source monitor is shown in

figure 4.5.

Figure 4.5: Schematic of the vertical section of one source monitor.

4.3.2 Local Monitor

As mentioned earlier, two fibers return to the Laser Hut from each calorimeter. The

light coming from those is measured by the Local Monitor. The principal component is

a Photonics XP2982 PMT that receives two laser pulses. The first one is a reference

signal that comes from the SM thanks to the mini-bundle, while the other is the one

coming from the calorimeters and is representative of the calibration signal sent to the

calorimeters. The PMTs are contained in custom made cases which hold 10 tubes each

and signal conditioning electronics.

Before reaching the PMTs, the light passes through an interferential band-pass filter

centered at 405 nm, with 10 nm half width, which filters out possible background light
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coming from other sources than the lasers themselves. The two signals, which are pro-

duced by the same laser pulse, are separated by about 250 ns (Fig. 4.6) since the first

only travels from the SM to the PMTs with 2 m long fibers and the second goes to the

calorimeter and back, traveling trough a 50 m fiber. Two pulses can be directly com-

Figure 4.6: Typical plot of a Local Monitor PMT signal [65]. The first pulse comes from
the SM mini-bundle, while the second has traveled to and from the calorimeters.

pared since the expected gain fluctuations of a PMT at this timescale are negligible. In

order to study and compensate for any fluctuations due to temperature of the transmis-

sion coefficient of the local monitor optical fibers, two types of fiber materials are used:

quartz and PMMA. The system is redundant, and allows to monitor any aging effect of

the PMMA fibers [65].

4.4 Operating modes

The laser is operated in two distinct modes. The first is enabled during physics runs with

the muon beam, and used to correct for systematic gain variation of the SiPMs caused by

the varying muon decay rate and the flash of particles at the beginning of the muon fill.

The second is devoted to the test runs, without beam, in order to exercise the detector

and DAQ with specific laser pulse time sequences and to study the SiPM response to

double pulses. This latter operating mode is new and developed and tested as discussed

in chapter 6. Also, the laser data taken during beam is used for time alignment of the

SiPMs in a calorimeter and between calorimeters. This type of study has performed as
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described in chapter 5.

A dedicated and custom electronic board, the Laser Control Board (LCB) allows the

following operating modes:

• Calibration mode, or generation of in-fill pulse trains, at programmable frequencies,

superimposed on the physics data provided in a 700 µs muon fill. To sample

homogeneously the gain of SiPMs at different points in the muon fill, the pattern is

shifted at each fill by a fraction of the pulse period (Fig. 4.7. The measured early-

to-late gain perturbation is used to correct reconstructed pulse energies during

analysis. The number of samples at each point is determined by the calibration

goal of a 10−4 relative error, that allows an ultimate gain systematic uncertainty

of less than 20 ppb.

• Physics event simulation, or operation in “flight simulator” mode, entails trigger-

ing the laser according to the exponential decay time function e−t/τ expected in

the experiment due to muon decay. In fact, an essential feature of the LCB is

the capability of generating pulses, or triggering the laser, according to any time

distribution. This mode provides flexible testing of the SiPMs to determine, for ex-

ample, their response linearity and gain stability. Moreover it allows fully realistic

tests of the readout electronics, DAQ and data processing.

• Synchronization of detectors and electronics by providing a reference pulse on re-

quest, or in connection to an accelerator machine signal produced as the muon

beam approaches the storage ring.
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Figure 4.7: Pattern of laser pulses for various muon fills [56]. Each curve is the sum of
all SiPM voltage signals, or traces, within a given calorimeter across the first 400 µs of a
muon fill. Within each trace, there are four clear pulses: the first is the sync pulse used
for timing synchronization on all fills, the second and largest pulse is the beam injection,
and the last two pulses are the in-fill laser pulses. Each subsequent vertically offset curve
is the next fill in which in-fill laser pulses appear.



Chapter 5

The time synchronization of the

detectors

The precise measurement of the precession frequency relative to momentum, ωa, requires

an extremely precise determination of the response of each detector, in particular what

regards the energy calibration and the time synchronization.

This chapter discusses how well the relative time synchronization among the SiPMs

can be determined by using the laser sync pulse, a flash of light issued by the laser cali-

bration system a few microseconds before muon injection, together with positron signals

and lost muons, i.e. muons which are scraped out of the beam path and spiralize inward,

hitting the calorimeters.

This work is an independent check on the synchronization constants used within the

reconstruction software, described in [66] and [67].

At the end we will see that the relative synchronization can be determined at the

level of ∼ 100 ps, being limited by the time spread of electromagnetic showers within a

calorimeter. This value is much smaller than the sampling frequency, which is ∆t = 625

ps, and it is highly reproducible at the level of ∼ 10 ps among different runs throughout

the data taking period.

69
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5.1 Hardware induced delays

Whenever the laser calibration system is prompted to fire a light pulse, the Laser Control

Board (LCB) sends two signals to a NIM crate that, after some logic gates, sends six

outputs to the Sepia-II driver, which triggers the six laser heads on the optical table. As

shown schematically in Fig. 5.1, the laser light of each head is then split into four beams

and sent to four calorimeters via a 25 m long launching fiber. Each one of those fibers

encounters a diffuser that spreads the light (almost) evenly to a bundle of 54 fibers, which

finally convey the light to each crystal through a set of reflecting prisms mounted on a

panel. Due to the mechanical structure of the system, the 54 fibers are cut into three

groups of different lengths: 45-55-65 cm. The light gets then detected by the SiPMs and

the signals are sent to the waveform digitizer via HDMI cables.

This complex structure makes it obvious that when a trigger is provided, the light

does not reach each crystal (and the digitizers) at the same time. We can divide this

long journey into three main sections: the launching fibers (that also contains the trigger-

to-laser path), the fiber bundles, and the SiPM signal paths. To correctly synchronize

the output pulses, it is necessary to accurately measure the relative delays between the

SiPMs and the waveform digitizers, so that it would be possible to correct the time

measurement of the positron signals.

Figure 5.1: Schematic sketch of the overall structure of the laser system.
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5.2 The Fiber Bundles

To derive the delays due to the fiber bundles, we assume that signals from positron

showers reach all involved SiPMs at the same time. Monte Carlo simulations show that

this statement is correct at the level of ∼ 100 ps (see [68]).

The measured arrival time of a laser pulse for each crystal (ti, where i runs from 0

to 53 for each calo) can be written as

tLi = ttrigger + T fiberi + T bundlei + T signali (5.1)

where ttrigger is the time the trigger fires, which is the same for every crystal and can be

defined as 0. T fiberi is the travel time inside the launching fiber and it is the same for

every crystal belonging to the same calorimeter. Since positron events are calorimeter-

confined, also this can be set equal to 0. T bundlei is the time needed from the light to go

from the diffuser to each SiPMs, and T signali is the one from the SiPMs to the Waveform

Digitizer. tLi is the value measured by the digitizer and expressed in clock ticks.

In a similar way, the measured time of a positron hit is

t+i = t+ + T signali (5.2)

where t+ is the true time of the positron hit. For two crystals (i & j) belonging to the

same positron shower, we have

t+j − t+i = T sj − T si ≡ δsignalij (5.3)

since the positron arrival time t+ is the same. Normally the time difference δsignalij is

constant, but, due to the digitizer jitter, a difference as large as ±2 c.t. can be observed.

This eventual difference is however constant within a muon fill.

By subtracting 5.1 from the equation 5.2:

t+i − tLi = t+ − T bundlei (5.4)

that actually means to subtract the sync pulse time from all the positron events of the

same fill, we then get

−δbundleij = t+j − tLj − t+i + tLi ≡ t+,Lj − t+,Li (5.5)

where t+,L is the positron arrival time with respect to the laser synchronization pulse.
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The delays δij can then be evaluated with respect to a reference crystal. We choose

crystal 22 because it is one of the central ones and this is convenient from a statistical

point of view. We therefore define δi as

δi = δ22i = ti − t22 (5.6)

so that δ22 = 0.

We used two different methods to calculate the δbundlei , as described in the next two

subsections.

5.2.1 The adjacent method

We first look at every positron event and collect the time difference between two adja-

cent crystals (horizontally and vertically), when they are hit by the same shower. The

distributions obtained (Fig. 5.2) for each crystal pair are Gaussian, with the variance

reflecting the pulse fitting uncertainty (∼50 ps) and the mean representing δij.

To evaluate the δi with respect to the reference crystal we can propagate (sum) the δij
and their errors starting from the reference one to crystal i. Many paths allow to reach

crystal i from the reference one, leading to different values of δi. The spread of these

values is smaller than 100 ps. As an example, in Fig. 5.3 the δi obtained by following

two sample paths are shown.

(a) Horizontal time difference between adjacent
crystals of calorimeter 10.

(b) Vertical time difference between adjacent
crystals of calorimeter 10.

Figure 5.2: Example of the time difference distributions.

The result of this technique is shown in Fig. 5.3, for calorimeter 10. The δi calculated

using the two different paths are similar, with a maximum difference of ∼50 ps which
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Figure 5.3: δbundlei for calorimeter 10 calculated with the adjacents method. For the blue
dots δi is evaluated by propagating horizontally first and then vertically (see text). The
opposite happens for the red dots. A cut on the energy of each crystal is applied: E>100
MeV in the left figure and E>600 MeV in the right one.

Figure 5.4: Photo of the fiber bundle panel. The different fiber lengths are highlighted.

can be considered an upper limit of the precision of this method. The crystals in this

plot are ordered by column, from column 1 to 9, as in Fig. 5.4. The three visible groups

of δi reflect the fact that the fibers in the bundle are of three different lengths. The

points within the same group show a dependency on the column number, probably due

to different light paths in the crystals caused by different reflection angles.
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Some cuts on the dataset are applied, in particular:

1. cluster time > 50 µs, to avoid pileup events;

2. cluster energy > 1.2 GeV;

3. crystal energy > Ethr.

Figure 5.3 shows the distribution of the time correction terms for two different values of

Ethr, corresponding to different topologies: when Ethr = 100 MeV the energy is normally

concentrated in the central crystal, while in the case of Ethr = 600 MeV it is more evenly

distributed. The relative delays change between the two topologies at the 50 − 100 ps

level, which reflects the fact that the assumption of a perfectly synchronized response

of the SiPMs to an EM shower is only correct at this level. We can assume an induced

systematic error of 100 ps.
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5.2.2 The χ2 method

A more sophisticated method has also been used: its concept is to calculate all the δi at

the same time. This is done building a function similar to a χ2 test (hence the name) as

seen in [67]:

fχ2 =
∑

+

∑
i

(t+ − t+i + δi)
2

σ2
i

(5.7)

where t+ (without subscript) is now a variable that represent the true arrival time of the

cluster, with the condition that

δ22 = t+22 − t+ = 0 (5.8)

We have to find the δi and t+i values which minimize fχ2 . Setting the partial derivatives

to zero we obtain

∂fχ2

∂δi
= 0 →

∑
+

t+ +Niδi =
∑

+

t+i (53 equations) (5.9a)

∂fχ2

∂t+
= 0 →

∑
i

δi +N+t
+ =

∑
i

t+i (ne+ equations) (5.9b)

where Ni is the number of times that the crystal i is hit by all the positron events, and

N+ is the number of crystals hit by a single positron event. We then have a set of 53

(that is 54 minus the equation with i = 22) plus ne+ linear equations, where ne+ is the

number of positron showers used in the analysis. Due to statistical and computational

limitations, we filter the run so that each crystal appears in at least 500 clusters and

the overall number of equations is around 15000. This enormous linear system can be

considered as a square symmetrical matrix, mostly diagonal and very sparse. To solve

this system, a matrix inversion is computationally prohibitive, since it scales roughly

as O(n3). The ROOT class TMatrixDSparse, built specifically to handle this kind of

matrices, helps to solve this very efficiently.

This method finds all the δi at once, without having to propagate them inside the

calorimeter, but it is limited by the dimensions of the matrix.

In Fig. 5.5 the χ2 solution for calorimeter 10 is shown, with the adjacent method

results for comparison.
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Figure 5.5: δbundlei for calorimeter 10 calculated with the χ2 method. The δi calculated
with the adjacent method are superimposed for comparison.

5.2.3 Comparisons

Calculating the δbundlei for different runs and methods we can compare the results.

Calorimeter 10 is shown as example.

The adjacent method is very stable as shown in Fig. 5.6. The values agree very well for

each run, even for the crystals that showed some difference in the propagation path of

the δij. However, the χ2 method is less stable, as visible in Fig. 5.7, probably due to

systematic correlations that arise at the calorimeter level. The spread of the values is of

the order of 200 ps, in particular for the crystals near the beam (crystal number > 35).

We now average the values found in different beam runs for each method, and compare

them with the ones found in [66] (ref ), as shown in Fig. 5.8. Plotting the difference with

respect to the ref values, we see a good agreement (< 50 ps) for the adjacent method,

with a slight deviation in the columns 1-3 (short fibers). The values of the χ2 method

do not have the same level of agreement, showing some deviation in the long fibers and

a row correlation in the short fibers.
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Figure 5.6: Comparison of the δi of Calorimeter 10 calculated with the adjacent method
for 4 different runs.

Figure 5.7: Comparison of the δi of Calorimeter 10 calculated with the χ2 method for 4
different runs.
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Figure 5.8: Comparison of the δi of Calorimeter 10 calculated between the two methods
and the reference (here named Kim (fcl)). The plot below shows the difference with
respect to ref values.
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5.3 The Launching Fibers

Now that the time correction of the crystals within a calorimeter is found, we can syn-

chronize different calorimeters using lost muons events. Some muons, specially in the

firsts microseconds of each fill, are scraped from the beam. They start to curl inward,

hitting some calorimeters before decaying. These events have a particular signature:

the muons mostly hit only one crystal per calorimeter depositing an energy typical of a

MIP. The muons travel at 0.9994c (γ = 29.3), making one full turn of the ring in 149.1

ns. So the average Time of Flight (TOF) between two consecutive calorimeters is 6.21 ns.

To solve this new problem we can use two methods in a complete analogy to the

previous section. As before, we can build the time equations for laser and muon events:

tLi = ttrigger + T fiberi + T bundlei + T signali (5.10)

tµi = tµ + T signali (5.11)

As before we can now subtract eq. 5.10 from eq. 5.11 obtaining

tµi − tLi = tµ − T fiberi − T bundlei (5.12)

that is, for two different crystals i & j

tµj − tLj − t
µ
i + tLi = tTOF − δfiberij − δbundleij (5.13)

We finally have the 23 equations for the launching fibers:

−δfiberi = tµ,Li + δbundlei − ntTOF − tµ,L22|22 (5.14)

where the subscript i of the last term is written as XX|Y Y , where XX is the calorimeter

(1-24) and Y Y is the crystal (0-53), e.g. crystal 7 of calo 14 is 14|07. ntTOF is the time of

flight (theoretic or real) of the muon between crystals i and 22|22, and n is their distance

in calorimeter units, i.e. XX − 22.

Relativistic muons hit two consecutive calorimeters at a time difference ∆t ∼6.25 ns.

In this analysis, a muon track is required to cross a single crystal and to deposit the

typical MIP energy. An energy cut of 120 < Ehit < 220 MeV is applied, as show in Fig.

5.9.
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Figure 5.9: Uncut energy spectrum of the double coincidence of adjacent calorimeters.
The red lines represent the applied 170± 50 MeV cut.

As the calorimeter response is not yet synchronized, a strict time cut cannot be ap-

plied and events are accepted if |∆t| < 30 ns. Residual background due to low-energy

positrons misidentified as muons, or independent muons falling in the coincidence win-

dow, has a flat distribution in time and it is eliminated during the analysis by imposing

the constrain ∆t = 6.21 nsec, as described in the next section.

5.3.1 The TOF method

The TOF method is very similar to the one shown in section 5.2.1: the δfiberij are cal-

culated collecting the measured TOF times of each pair of adjacent calorimeters and

removing the average TOF of all the pairs (Eq. 5.15). In fact, the sum of all the δij
going around the ring must be zero, therefore the average of the measured TOF should

approach the true value of 6.21 ns.

−δfiberi,i+1 = tµ,Li+1 + δbundlei+1 − tµ,Li − δbundlei − 〈tTOF 〉 (5.15)

In Fig. 5.10 the distribution of the time difference between calorimeters 7 and 8 is

plotted, after correcting each crystal time according to Eq. 5.15. The mean of the peak
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is shifted with respect to the average tTOF : the difference is the δij of the corresponding

launching fibers. In Fig. 5.11 it is possible to see the effect of these corrections on the

TOF times of all calorimeters. In particular, Fig. 5.11a shows the distribution of the

difference tµi+1 − t
µ
i for each calorimeter. In Fig. 5.11b the laser sync pulse is subtracted

and in Fig. 5.11c the fiber bundle correction is applied, narrowing the distributions at

each step.

Figure 5.10: Spectrum of the TOF between two adjacent calorimeters. The red dashed
line is the muon flight time (6.21 ns). A flat and small background is visible.

Taking as a reference calorimeter 22, Fig. 5.12 shows the correction terms to be

added in order to synchronize the response among all the calorimeters. This method

is very stable and similar values are found for different runs. The measured correction

terms are grouped in four, each group corresponding to a laser head. The pulse from

laser 1 (first four calorimeters) is delayed by ∼3 ns with respect to the others. This value

is within specifications, but it must be corrected for in order to synchronize the global

response.
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(a) Raw TOF times (b) TOF - tL (c) TOF - tL + δbundlei

Figure 5.11: Sequence of corrections to the raw TOF times, according to eq.5.15, for
each calorimeter.

Figure 5.12: δfiberi for each calorimeter, calculated with the TOF method for four different
runs.

5.3.2 The χ2 method

Since the problem is very similar to the positron one, we can also use the χ2 method,

with the function slightly modified in order to accommodate for the muon travel time

tTOF :

fχ2 =
∑
µ

∑
i

(tµ − tµi − δbundlei + ntTOF + δi)
2

σ2
i

(5.16)
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Setting the partial derivatives to 0 we now have 24 (that is 23 for the δi plus one for the

tTOF ) + nµ equations.

Solving this system of equations the same way as in section 5.2.2 we obtain the 24 values

shown in Fig. 5.13. This method is quite stable, with the exception of few points that

are different for calorimeters 6 and 17.

Figure 5.13: δfiberi for each calorimeter, calculated with the χ2 method for four different
runs.
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5.3.3 Comparisons

We now average the values found in different runs for each method as done in section

5.2.3, and compare them with [66], as shown in Fig. 5.14. Plotting the difference with

respect to the ref values, we see a better agreement (< 200 ps) for the TOF method

with respect to the χ2 one, that shows a big deviation of the order of 1 ns in the firsts

calorimeters.

Figure 5.14: Comparison of the δfiberi between the two methods and the reference. The
plot below shows the difference with respect to the reference values.
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5.4 Hardware measurement

At the end of July 2018, one month after the data taking, we have tried to measure

the δfiberi directly in the ring with an oscilloscope. Each calorimeter is equipped with a

probe fiber connected to the diffuser that has an open end. By connecting the probes

of two different calorimeters to a PMT, we can monitor the arrival times of the same

laser pulse with an oscilloscope and actually measure the δfiberi . In our setup the PMT

is connected directly to the probe of the calorimeter 24. The other calorimeters’ probe

is reached using a 20 m long fiber, as shown in fig 5.15. The time difference between the

two peaks observed in the oscilloscope represent the time the light needs to travel the

20 meters (that is always the same) plus the δfiberi24 .

Figure 5.15: Schematic of the hardware measurement setup.

For each calorimeter we recorded 500 waveforms, and after fitting every peak with a

parabola (Fig. 5.16), we obtain a distribution of the time difference between the peaks:

∆ti = tpeak2
i − tpeak1

i = t20m + δfiberi24 (5.17)

The distributions are then Gaussian fitted and shown in fig. 5.17. The peak number 24

represents the delay of the calorimeter 24 with itself, that is t20m. To obtain the final δfiberi24

we must subtract this value from all the other peaks. Two additional peaks (number

25 and 26) are visible in the same spot as peak 24: they are repeated measurements of

the same calorimeter 24 at different conditions. One is performed 2 hours after the first
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measurement and the other with the 20 m fiber fully stretched. No systematic effects

are observed.

Figure 5.16: One waveform per calorimeter, as recorded by the oscilloscope. Parabolic
fits are performed for both peaks, here shown in red.

Figure 5.17: Time difference for each calorimeter. The distributions are gaussian fitted.
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5.4.1 Amplitude dependence

One possible systematic error of this analysis comes from the amplitude of the PMT

signal. A larger pulse could systematically shift the fitted time. To test whether this

is relevant or not, we repeated the measurement of calorimeter 1 five times, changing

the corresponding laser filter wheel value from 3 to 7. In figure 5.18 are shown all the

different amplitudes as seen from the oscilloscope waveforms.

Figure 5.18: Waveforms for calorimeter 1 with different filter wheels.

Fitting with a Gaussian all the distributions as shown before, we find that there is

no significant difference between the filters (Fig. 5.19). The only exception is the filter

7 (the shortest amplitude), that anyway shows a shift less than 100 ps with respect to

filters 3-5.

Despite the fact that an amplitude correction is not needed for the precision we aim for,

we decided to correct the amplitude of the pulse of each calorimeter acting on the filter

wheels.
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Figure 5.19: Results of the time difference between the second peak and the first peak,
for different filter wheels.
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5.4.2 Comparison with the analysis

The result of the hardware measurement is shown in Fig. 5.20. Comparing the measured

δi with the lost muons analysis we see that the values are more or less comparable, except

for lasers 1 and 2. We suspect that this discrepancy is due to some hardware modifications

in the crate happened between the last physics run and this measurement (1 Aug 2018)

which modified the trigger delay for the first two laser heads. However the trend within

each subgroup is well represented, showing the consistency of the methods.

Figure 5.20: Results of the hardware measurement. Also plotted the lost muons analysis
result (TOF method) in black and the reference in red.





Chapter 6

The Double Pulse System

The gain stability of the calorimeters is one of the requirements of the Muon g-2 exper-

iment. The systematic uncertainty of the measurement of ωa associated with the gain

stability has to be lowered from 120 ppb to 20 ppb, as shown in Table 4.1 (Chapter 4).

As discussed before, measuring the correct energy of the decay positrons is crucial be-

cause of the energy dependence of the decay asymmetry of the muon. Therefore, one of

the requirements it the knowledge of the response of the SiPMs in every regime. In par-

ticular, when two positrons hit the same calorimeter in a time scale of few nanoseconds,

the expectation is that the first pulse causes a systematic reduction in the measured

energy of the second signal due to charge depletion in the capacitive components of the

system’s electronics [69]. With the Laser Calibration System we also want to study this

phenomenon, by artificially sending two laser pulses with ns-level delay in dedicated runs

and analyzing the SiPM response as a function of time separation and energy.

This chapter summarizes the work I did to make this correction possible, starting

from the addition to the Laser System of a new operating mode, called Double Pulse,

the data analysis of the dedicated laser runs, and its application to the positron data.

6.1 Construction

The six laser heads placed on the optical table of the Laser Calibration System are

driven by an electronic module called Sepia-II. For the Double Pulse mode it is desirable

to have the two pulses provided by two different laser heads instead of firing the same

laser repeatedly, some of the reasons are:

• the laser maximum repetition rate of 10 MHz does not allow to test the nanosecond

91
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time scale;

• in case of two consecutive pulses, the laser output light for the second one can be

systematically lower than the first one, while light fluctuations for different lasers

is uncorrelated;

• the laser light output fluctuates at the percent level from pulse to pulse; this

fluctuation is monitored by two PIN diodes, which have a response time of the

order of tens of microseconds. Therefore they cannot be used to correct close-by

pulses.

For all these reasons, the laser optics has been modified to include the possibility of

sending 2 different laser pulses to the same calorimeter. The solution comes by having

an external electronic module that can trigger two different laser heads with high enough

precision, and one of the two laser being deviated to follow the path of the other one. In

standard data taking, each laser sends pulses to four calorimeters. The laser light is split

by three splitter cubes, as shown in Fig. 6.2, and then directed by a mirror to 4 quartz

fibers, also known as launching fibers. The light of one laser can be deflected from its

normal path using motorized mirrors, so that they can be inserted only when necessary,

and injected to the path of another laser light using its first splitting cube. The movable

mirrors are mounted on motorized flipflop stands Thorlab MFF101/M (Fig. 6.1). The

stand has 2 positions, at 90 degrees rotation one from the other, allowing for a beam

stability better than 0.1 µrad.

A set of 12 fixed and 6 movable mirrors has been placed and aligned on the optical

table. Thanks to these mirrors it is possible to deflect the laser light of all the 6 laser

heads, pair by pair. This design allows the odd lasers (1st, 3rd, 5th) to illuminate the

same fibers that are usually lighted up by the even ones (2nd, 4th, 6th) and vice-versa.

A consequence of this setup is that only half of the calorimeters can be studied during

each Double Pulse acquisition run.

6.1.1 Remote operation of the system

One motorized mirror is placed in front of each laser, just after its filter wheel. They

are simple flip-flops: the mirror position is in either up-state or down-state. This move-

ment allows the mirrors to be removed from the laser path when a Double Pulse is not

desired, i.e. in normal acquisition mode. Each mirror is controlled by a switch pad with

a button, but they can also be controlled with external TTL signals. Six USB-to-TTL

(TTL-232RG) cables have been soldered as shown in Fig. 6.3. Each cable uses a serial
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Figure 6.1: Motorized mount
used to move the mirrors in and
out from the light path. On the
right, the motorized filter wheel.

Figure 6.2: Double pulse laser setup. One set of
lasers is reflected onto a different optical path with
a movable mirror (red), and the reflected laser re-
ceives a trigger delayed with respect to the non-
reflected laser trigger.

communication via its USB plug, and since it provides a voltage of 5 V, it is possible

to generate a TTL signal using the Request-To-Send (RTS, green wire) bit. All the six

cables are connected to an USB hub (Fig. 6.4), interfaced to a control computer in the

Laser Hut.

Finally, a driver has been written in C++ to send the signals using the serial com-

munication of the USB ports. This allows the remote control of the mirrors, provided

a remote connection to the Laser computer. With this driver is possible to move each

mirror individually or in groups: in the typical scenario of a Double Pulse acquisition

run, the odd or even mirrors are moved simultaneously.

6.1.2 The delay generator

With the mirrors in place, the laser heads are triggered with a programmable delay. The

electronic module used for this job is a Digital Delay Generator (DG) SRS DG645, a

device that, provided an external trigger, is capable to generate a pattern of pulses with

very precise delays, with an error of less than 100 ps.
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Figure 6.3: Open wires of one
cable. The black and green
wires are soldered to a 2.5mm
co-axial plug.

Figure 6.4: The six USB-to-TTL cables are plugged
into the same USB hub.

The trigger is given by the Laser Control Board (LCB) [70], at a rate of about 10

Hz, and the output is given by two separate channels. This device supports TCP/IP

communication, so we connected it to the laser computer with an Ethernet cable. In

particular, I coded a driver in C++ by which it is possible to reprogram the settings

remotely, both with interactive commands and bash scripts. This is necessary to change

the delays automatically for the Double Pulse acquisition runs, as it is desirable to scan

over a range of delays. The ranges which are relevant for the calorimeter response are

[0-100] ns, relative to the short-timescale gain recovery following a significant pulse, and

[0-100] µs, relative to the gain response to a high sustained rate of light pulses [69].

Each output channel of the DG drives 3 lasers, the ODD lasers and the EVEN ones,

respectively. To operate the laser both in the standard mode and in the double pulse

mode, a logical FI/FO NIM module is used as an OR gate having, as input, the DG and

the LCB signals. This allows to operate the laser without passing through the Delay

Generator. The outputs finally reach the device that actually fires the lasers: the con-

troller PicoQuant PDL 828 ”Sepia II”. The full diagram is shown in Fig. 6.5.

An additional feature of the DG, which turns out to be very useful in signal nor-

malization, is the prescale option: each DG output can be independently prescaled by a

factor N = 1 − 10000, such that only 1 signal every N triggers is actually issued. This

feature is used to prescale the prompt signal. If P is the prompt signal and T is the

delayed (or test) signal, then by using the prescale it is possible to build the following
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Figure 6.5: Schematic of the NIM logic used to trigger the lasers both with the LCB and
the Delay Generator.

sequence of pulses:

P + T ;T ;P + T ;T ; ... (6.1)

This sequence allows to use the T-only signals as normalization. The whole system is

controlled by the data acquisition (DAQ) software, that supplies the triggers and records

the data coming from the calorimeters. The trigger structure for Double Pulse runs is

represented in Fig. 6.6. In addition, using a feature of the DG called burst mode, it

is possible to increase the collected statistics for the short-term study by firing four (or

more) Double Pulse events for every fill. The same option is used to fire a burst of many

impulses for the long-term study.
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Figure 6.6: Trigger structure of the Double Pulse mode. The bottom two lines are the
first and the second (delayed) pulses.

6.2 Short Time Double Pulse

With the Short Time Double Pulse (STDP) analysis, we want to study the response of

the silicon photomultipliers (SiPM), to two signals hitting the same channel few nanosec-

onds apart. The SiPM response depends on the Front End Electronics, as described in

detail in [69]. Briefly, when a SiPM fires, it delivers charge, which is replenished af-

terwards. The delivered charge comes from all available sources, particularly the SiPM

array itself. The SiPM array behaves as a charged capacitor; i.e., the bias voltage ex-

perienced by the SiPM array drops momentarily before the charge is recovered. As an

example, suppose that 1600 pixels fired simultaneously on the SiPM board, 100 pixels

ineach of the 16 channels. The charge delivered by a fired pixel is 1.5 · 106 electrons,

for a total charge for each channel of 24 pC. This results in a voltage drop of 96 mV,

taking into account the 250 pF capacitance of each of the 16 channels [69]. The relative

voltage drop is 4% compared to the typical operating over voltage bias of 2.5 V. The

charge is replenished from the capacitors on the SiPM board. The only available path

for the charge to the SiPM pixel goes through its quenching resistors. The product of

the pixel capacitance, 55.8 fF, and the value of the quenching resistor, 100 kΩ, sets the

expected timing constant for the charge recovery of about ∼6 ns.
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The Short-Time gain study can be performed by inserting the movable mirrors and

by operating the Delay Generator as described in the previous section. The delays that

separate the two pulses range from 0 ns up to 80 ns. One double pulse event is shown

in Fig. 6.7.

Figure 6.7: Example of a double pulse signal shape.

6.3 Reconstruction software

The STDP data is analyzed using the g-2 software, developed within the art framework

[71, 72]. The analysis procedure is divided in three steps:

• Step 1 - Pulse reconstruction. In this step the raw data acquired during the

dedicated STDP runs is processed. Each individual signal recorded by a SiPM is

fitted with a template fit. The templates used for the pulse fit are collected using

dedicated runs. In particular, they are characterized for each crystal and for each

type of signal: positrons and laser hits have different templates. In addition, the

light from two laser heads hit the same SiPM during a STDP run: the first is called

standard and the second crossed, since it is reflected from its normal path using the

extra mirrors as described in section 6.1. The standard and crossed templates are

very similar (Fig. 6.8a), but a closer look to the difference (Fig. 6.8b) shows a %

change, a variation that has to be accounted for in these precision studies [73]. The

reconstruction module detects if two signals are close in time (∆t < 100 ns) and
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then applies a particular multi-fit with the respective templates added together, as

defined in Eq. 6.2.

fSTDP (b, a1, t1, a2, t2) = b+ a1 · fstd(t1) + a2 · fcross(t2) (6.2)

where fstd and fcross are the standard and crossed templates for that particular

SiPM. a1 (a2) and t1 (t2) represent the amplitude and time of the first (second)

peak, while b is the baseline. Each fit gives, among other information like χ2, the

two main variables that we want to extract: energy and time.

(a) (b)

Figure 6.8: (a) Standard and crossed laser templates for one SiPM (Calo01, Xtal01). The
commissioning template (blue) represents a standard template taken 4 months earlier.
(b) Difference between the new standard templates and the other templates. Percent level
changes are visible in the difference which cause percent level changes in the extracted
amplitude (energy).

• Step 2 - Dataset creation. After the reconstruction of each pulse from the raw

data, the second step puts together the information extracted to form a STDP

analyzable data set. Thus, this step extracts the double pulse information from

the art data and builds a reduced ROOT-tuple. Recalling Eq. 6.1, if there is more

than one Test pulse for each Double pulse, the average energy of the n available

test pulses is taken. The overall sequence is represented in table 6.1. Usually our

STDP acquisition runs have b = 4 burst pulses and n = 2 test pulse fills.
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Fill Burst number
number 1 2 · · · b

0 (DP )1 (DP )2 · · · (DP )b
1 T 1

1 T 1
2 · · · T 1

b

2 T 2
1 T 2

2 · · · T 2
b

...
...

...
...

n T n1 T n2 · · · T nb

Table 6.1: Schematic view of the STDP data structure. For each fill there are b repetitions
both for Double Pulse and for Test pulses. If n > 1, the normalization energy is taken
as the average Enorm = 1

n

∑n
i=1 T

i.

• Step 3 - Gain analysis. For each SiPM, the gain is analyzed by plotting the ratio

E2/Enorm versus the measured delay ∆t = t2− t1. For each time delay set with the

Delay Generator there are few thousands double pulse events. The ratio can be

determined either by the average of the ratio
〈

E2

Enorm

〉
or the ratio of the averages

〈E2〉
〈Enorm〉 . The latter is preferred since systematic variations in the energy of the test

pulses (due to temperature, for example) are not expected in the time scale of a

STDP run (few minutes for each delay). For each delay we expect the distribution

of E2 and Enorm to be Gaussian, so that the average corresponds to the peak value.

Otherwise, if the distribution is skewed, a bias could be introduced by taking the

bare average. A check on the distributions shows that they are indeed Gaussian

(Fig. 6.9), so that the usage of the ROOT TProfile object is adequate for this

task.

Figure 6.9: Distributions of E2/Enorm for two different SiPMs, ∆t and Filter Wheels.
The average value is always compatible with the fitted Gaussian mean.
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6.3.1 Preliminary results

During the spring of 2018, before the first beam run of the E989 experiment, a data set of

STDP runs was taken with only one Filter Wheel combination. More details on the use

of Filter Wheels for this STDP study will be given in section 6.5. For this preliminary

data taking, no test pulse was injected, so the gain shape is evaluated only using the

energy of the second pulse. In Fig. 6.10 the profiles for the energies of the two pulses are

shown as a function of ∆t. The energy of the first pulse remains constant as expected,

while the energy of the second pulse shows an exponential drop at low ∆t. Note that the

measured points oscillate around the exponential function: this effect is not physical and

will be resolved in later analyses. The function used to fit the graph is an exponential

with three free parameters:

E2 = Einf ·
(

1− a · e−
∆t
τ

)
(6.3)

a represents the extrapolated intercept at ∆t = 0, while τ is the recovery constant. Since

the energy is not normalized here, Einf is the fitted asymptote at ∆t → ∞. A study

on all the 1296 SiPMs shows that the two gain parameters are on average a ≈ 0.1 and

τ ≈ 15 ns.

Figure 6.10: Profiles of the energy of the first pulse (left) and second pulse (right) as a
function of the time separation, for one SiPM.

6.4 STDP correction in the ωa analysis

As discussed before, the systematic error budget on the measurement of the anomalous

precession frequency ωa is 70 ppb. In particular, each contribution and correction to
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the data has to be evaluated by terms of how much the correction influences the ωa
measurement. The STDP gain correction has to be applied to the positron data, since

the gain recovery of the SiPM is an expected and now observed phenomenon. Its effect

is nonetheless expected to be small, since the gain correction is at the percent level and

the probability of two positrons hitting the same SiPM in a 100 ns window is again at

the percent level.

The correction has been tested on a data set called 60h dataset, acquired in the days

from 22nd to 25th April 2018, for a total of ∼ 109 positrons with E > 1.8 GeV. In this

first study a unique correction is applied to hits which are closer in time than 80 ns:

G(∆t) = 1− 0.1 · e−
∆t

15.0 (6.4)

The energy of the second cluster is thus modified as follows:

E ′2 = E2 − Eover
2 ·

(
1− 1

G(t2 − t1)

)
(6.5)

where Eover
2 is the energy deposited by the second particle to the SiPMs shared by both

clusters. Note that, since G < 1, the correction is always positive, so that E ′2 ≥ E2. This

correction is applied in chronological order, so that if three particles produce signals in

the defined time separation window, the second particle is corrected first and the third

particle is corrected last.

6.4.1 Fitting the wiggle plot

First of all, we want to determine how much the STDP correction affects the measurement

of the ωa value. The analysis is based on the techniques described in section 3.4.2. Figure

6.11 shows the wiggle plot with and without the STDP correction. Here, the histograms

are filled using the T-Method with an energy threshold of 1.7 GeV. The fit performed

has nine parameters: the standard five parameters (N0, τ , A, ωa, φ) and the four CBO

parameters, and the fit range is [40, 400] µs. The fit procedure is blinded, so that instead

of ωa the value R is shown. The difference in the value of R is ∼40 ppb. Increasing

the fit range to [32, 400] µs (Fig. 6.12), we see that ∆R is ∼200 ppb. This is expected,

since the muon decay rate increases exponentially going backward in time, and so the

probability of double pulses.

The aim of this analysis is only to have a preliminary idea of the impact of the STDP
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Figure 6.11: Wiggle plot before (left) and after (right) the STDP correction. The fit is
performed using the 9-Parameter function in the range [40, 400] µs.

Figure 6.12: Wiggle plot before (left) and after (right) the STDP correction. The fit is
performed using the 9-Parameter function in the range [32, 400] µs.

correction on positron data as a first-order approximation. The important conclusion

is that the STDP correction affects the ωa measurement at the level of O(100) ppb, in

particular when the fit is performed from early (<40 µs) times.

6.4.2 Double Pulse events in beam data

We expect the distribution of double pulse events to be uniform, since the events are

independent and the time gap is much smaller than the muon decay time γτ = 64.4

µs. Figure 6.13 shows a flat distribution, as expected, but with an initial transition that

starts from 3.75 ns and reaches the plateau at 6.25 ns. These two values correspond to

3 and 5 clock ticks respectively, and this slope can be explained by an inefficiency of the
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reconstruction software ability to distinguish two pulses that are very close. Such events

are considered pileup.

Figure 6.13: Distribution of the time separation of positrons that fall in the STDP
condition. A time cut of t > 25 µs and an energy cut of E > 400 MeV have been applied
to remove Lost Muons events.

The fraction of STDP events over the time of a fill is shown in Fig. 6.14 together with

the wiggle plot of Fig. 6.11, in logarithmic scale. The blue graph is the distribution of

the positrons with energy greater than 1.7 GeV, and its slope represents the exponential

decay of the muons, with lifetime τ = γτµ ≈ 64 µs. The black graph is the distribution of

the positrons that are affected by the STDP correction, again with the E > 1.7 GeV cut

applied. We expect that the distribution of STDP events decays with half the lifetime

of the muon. In fact, the probability of having two muon decays in a time window t+ δt

is

p(t+ δt)2 δt→0−−−→
(
e−

t
τ

)2

= e−
t
τ/2 (6.6)

A 5-Parameter fit shows an exponential decay with a lifetime of τSTDP ≈ 32 µs.

Figure 6.15 shows the ratio between these two distributions. We can see then that the

fraction of positrons affected by STDP is around 3% at the beginning of the fill and

decays to ≈ 0.1% after 250 µs. This correction has more effect at early times, as already

demonstrated in Fig. 6.12.
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Figure 6.14: Distribution of positrons (blue) and STDP (black) events in the fill time
scale (700 µs). A TMethod-like energy cut of 1.7 GeV has been applied. Both distribu-
tions have been fitted with a 5-Parameter function in a small time range.

Figure 6.15: Ratio of the two distributions of Fig. 6.14. The STDP events correspond
to ∼3% of all data at early times, decaying to less than 0.1% after 250 µs.
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Muons that have a momentum that is too far from the ”magic” one of 3.094 GeV/c

are scraped out of the storage region. They then curl inward and hit one or more

calorimeters, producing signals characteristic of minimum ionizing particles (MIP). In

fact, they deposit on average ∼170 MeV of energy in one crystal, and when they hit two

or more consecutive calorimeters they can be tagged using a coincidence time window

corresponding to the Time Of Flight (∼6 ns). Figure 6.16 shows the energy spectrum

of STDP events between 0 and 1 GeV. Several peaks are visible: the first one is the 170

MeV signal, and the others are pileup events of 2 or more muons in the same crystal.

The blue curve is the spectrum before the correction, while the orange curve is after the

application of STDP. A Gaussian fit on the first peak shows a 5 MeV shift to the right.

Figure 6.16: Energy spectrum of the detected particles in the 0-1 GeV range. The several
peaks correspond to single and multiple (pileup) lost muons events. The application of
the STDP correction shows a 5 MeV shift to the right of the first peak.

6.5 Study on energy dependence

As discussed in section 6.2, the STDP gain effect is related to the recovery time of the

individual pixels of the silicon photomultipliers. While the time constant τ depends on

the electronics, the gain drop a is expected to depend on the energy of the first pulse. In

fact, as the energy is higher, more pixels are fired and have to recover. When the second
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pulse arrives, it will ”see” a reduced amount of available pixels, this effect being higher

if the first pulse was very energetic.

The energy dependence of STDP is investigated with a simple toy Monte Carlo

simulation (section 6.5.1), and has been studied with great depth with dedicated STDP

laser runs (section 6.5.2). In the first case, it is sufficient to simulate different numbers of

photons that hit the SiPM for the first pulse. In the laser STDP runs, different amount

of energies are studied thanks to the use of Filter Wheels.

6.5.1 Toy Monte Carlo simulation

To predict and interpret the behavior of the gain shape with different energies for the two

pulses, I developed a small Monte Carlo simulation. Here a SiPM with 57600 Geiger-like

pixels is simulated, with a recovery time for every pixel set at 12 clock ticks (15 ns).

Two particles are then simulated with various arrival times, with the second one delayed

from -20 to 60 c.t. with respect to the first one. A particle is simulated as a number of

photons hitting the pixels in a instantaneous time window, uniformly distributed over

the surface of the SiPM. The signal of real positrons develops in few nanoseconds, so

this simulation has some limits for small ∆t.

Different particle energies are simulated using different number of photons. Figure

6.17 shows three gain shapes, with the energy of the first pulse going from 1000 to 3000

photons and the energy of the second pulse fixed at 1000 photons. Here the gain is

defined as the ratio between the number of photons observed and the number of photons

simulated, for the second pulse. The gain curve is fitted with the exponential function

G(∆t) = N(1− ae−∆t/τ ). We observe that different energies for the first pulse only vary

the gain drop amplitude a (Fig. 6.17). The recovery time constant is measured to be 12

c.t. as expected. The asymptote doesn’t reach 1, so for 1000 photons there’s a non-linear

response, with a 1% difference with respect to the linear case. This is coherent to what

is expected as seen in Eq. 3.1. Figure 6.18 shows again three gain shapes, but now

varying the energy of the second pulse, from 500 to 1500 photons. The exponential fits

show that the a and τ parameters remain constant, while the only difference is caused

by the non-linearity of the detector. We observe a 0.5% difference at 500γ, and a 1.3%

difference at 1500γ.

With this simulation we can conclude that the parameter a is expected to depend

on the energy of the first pulse (E1) but not on the second pulse. On the other hand,
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Figure 6.17: Simulated gain shape with different energy values for the first pulse (1000,
2000 and 3000 photons). The energy of the second pulse is fixed at 1000 photons.

Figure 6.18: Simulated gain shape with different energy values for the second pulse (500,
1000 and 1500 photons). The energy of the first pulse is fixed at 2000 photons.
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the parameter τ is expected to be independent on energy. To further investigate the

parameter a(E1), a scan from 0 to 4000 photons for the first pulse has been simulated,

with a step of 200 photons. Figure 6.19 shows the values of a, with a linear fit on top.

The dependence is linear, with an intercept compatible with 0 and a slope of 0.00168

%/γ. The photon-to-energy conversion is approximately 1 detected photon per MeV

[74], so that the observed slope here is ≈2 %/GeV.

Figure 6.19: Values of a as a function of simulated photons for the first pulse. The points
are fitted with a linear function. p0 is the intercept and p1 is the slope.

6.5.2 Analysis of the STDP laser runs

The study on the energy dependence of the STDP gain shape has been performed ana-

lyzing dedicated laser runs. In particular, the energies of the two pulses can be modified

thanks to the presence of the Filter Wheels on the optical table. Since the two pulses

are generated from two different laser heads, the two Filter Wheels allow independent

choice on the two energies.

Several analyses and optimizations of the procedure has been performed in the months

from October 2018 to February 2019. This section will describe only the latest and offi-

cial analysis, ignoring the hardware and software problems that had to be overcome.
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The final data set of STDP laser runs was acquired varying the delay between the

pulses from 0 to 60 clock ticks, at 2 c.t. steps. For each delay, few thousand laser event

are triggered over a time period of 5 minutes. The whole sequence has been repeated for

18 combinations of the Filter Wheels. Calling FW1 the Filter Wheel of the first pulse

and FW2 the one of the second pulse, the combinations used six values for FW1 (from

5 to 10) and three for FW2 (5, 7, 9). These numbers label the filters inside the Filter

Wheels, with higher numbers corresponding to higher Optical Density, and therefore to

lower transmittivity. Table 6.2 relates each number with its transmittance factor. This

whole acquisition is repeated two times, for the calorimeters illuminated by the odd and

even lasers respectively. This is needed since the double pulse system redirects half of

the lasers on top of the other half. At the end, the STDP data set is composed of

30 · 18 · 2 = 1080 runs that have to be reconstructed first and then analyzed.

Filter number 1 2 3 4 5 6 7 8 9 10 11
Nominal transmittance [%] 100 79 65 50 47 36 26 21 17 13 5

Table 6.2: Transmittance values for each filter number. The highlighted values corre-
spond to the ones used for this STDP analysis.

The goal of this analysis is to find the energy dependence of the parameters a and τ of

the gain shape defined as:

G(∆t; i, E1, E2) = 1− a(i, E1, E2) · e−
∆t

τ(i,E1,E2) (6.7)

where i represents the SiPM number. In addition, another functional form that describe

a smooth return to G = 1 at ∆t = 0 is named Lognormal and defined as:

G(∆t) = 1− a · e
1
2 [log2(∆t/τ)]/[log2(tM/τ)] (6.8)

where tM and a are the position and the amplitude of the minimum, while τ is the

recovery time. An example of the two fits is shown in Fig. 6.20 for one SiPM. The

two functions mostly overlap for ∆t > 10 c.t.. For this Double Pulse analysis only the

exponential function will be considered. In the final reconstruction of the positron data,

an artificial dead time of 2-4 ns (corresponding to the first point of Fig. 6.20) is set as

a lower limit on the time separation between two signals. Thus, the two gain shapes are

effectively equivalent.

For each SiPM the ratio between the energy of the second pulse and the normalization

energy is computed for each delay, and fitted with the function of Eq. 6.7. This is
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Figure 6.20: Gain recovery of one SiPM. The blue curve is the exponential function,
while the red curve is the Lognormal function.

repeated for every combination of FWs. As a first qualitative study, the values of a and

τ are averaged for each SiPM and plotted as a function of the two FWs (Fig. 6.21). Any

dependence of the parameters on the energies would here be visible as a global shift.

The values of τ are constant and don’t shown any visible dependence on any of the two

Filter Wheels. On the other hand, the values of a show a very clear ”staircase” shape.

They are constant with respect to FW2, while they decrease in a linear fashion with

respect to increasing values of FW1. This qualitative behavior confirms what has been

found with the Monte Carlo simulation of Sec. 6.5.1. Since the parameter τ does not

depend on energy, the values for each SiPM are taken from the Filter Wheel combination

(FW1, FW1) = (6, 7), that provided the most stable fits (Fig. 6.22, right). The few points

that appear to be far away from the bulk of the distribution are addressed separately

one by one. The parameter a cannot be studied as a function of the FW1, since the

energy deposited by the laser is not uniform among all the 1296 SiPMs. For each SiPM

we plot the value of a versus the measured energy of the first pulse, as shown in Fig.

6.23. The six Filter Wheel combinations (FW1, FW2) = (5 · · · 10, 7) are considered for

this study. The values of a for each SiPM are fit with a linear function. The linearity

is expected from the Monte Carlo Simulations of the previous section. The parameter

p0 (intercept) and p1 (slope) are at first left free to float, and their distributions are



Chapter 6 | The Double Pulse System 111

Figure 6.21: Lego plots of the average values of a (left) and τ (right) with respect to
FW1 and FW2.

Figure 6.22: Values of a (left) and τ for each SiPM for the Filter Wheel combination
(6,7).

shown in Fig. 6.24. The intercept distribution is compatible with zero, with a mean of

-0.27% and a standard deviation of 0.36%. The distribution of the slopes shows a peak

centered at ∼ 4.5%/GeV and some SiPMs distributed as a tail on the right. Since the

parameter p0 is compatible with value zero, the linear fits are performed again but now

fixing p0 = 0. Figure 6.25 shows the two distributions of the slope before (left) and after

(right) fixing p0. The change is small, with the mean value shifting from 4.8%/GeV to

4.6%/GeV. Finally, figure 6.26 the two linear fits are shown for one particular SiPM.
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Figure 6.23: This graph shows the parameter a versus the energy of the first pulse, with
the values taken from the Filter Wheel combinations that have filter 7 for the second
pulse. 1296 lines are drawn, one for each SiPM.
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Figure 6.24: Distributions of the intercept (left) and the slope (right) of the linear fit
applied to the values of a versus the energy of the first pulse. The mean value of the
intercept is compatible with zero.

Figure 6.25: Distributions of the slope of the linear fits with a floating (left) and fixed
(right) intercept.
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Figure 6.26: The two linear fits applied to one particular SiPM: calorimeter 1, crystal 0.
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6.6 Final application to the official dataset

The STDP correction has been applied to the official 60h dataset. Similarly to what is

described in section 6.4, when two signals are produced in the same SiPM in the time

window [5,75] ns, the energy of the second signal is corrected with the formula:

E ′2 =
E2

G(∆t;E1)
(6.9)

with the gain defined as:

G(∆t;E1) = 1− p1 · E1 · e−∆t/τ (6.10)

where E1 is the energy of the first signal, τ is the recovery time of the SiPM, and p1 is

the slope of the linear fit of a versus E1 for that SiPM as found in section 6.5. After the

STDP correction, the histogram of positron counts versus time is constructed with the

T-Method technique: only the positrons with E > 1.7 GeV are considered. Figure 6.27

shows this histogram (wiggle plot) in logarithmic scale. Every bin is 149.2 ns wide: this

value corresponds to the cyclotron period. A function with five parameters is fitted from

30 µs to 650 µs and shown on top. The 5-Parameter function is

N(t) = N0e
− t
γτ [1 + A cos(ωat+ φ)] (6.11)

The analysis on the 60h dataset reported here was performed in collaboration with

the European analysis team, one of the six independent groups contributing to the ωa
measurement of the experiment [75]. Due to a blinding procedure, the ωa frequency

returned by the fit is actually an adimensional parameter R defined as the fractional

offset, in ppm, from a given and unknown reference value. The residual of the histogram

with respect to the fitted function is then analyzed with a Fast Fourier Transform (FFT)

technique, that serves to identify and quantify the oscillation frequencies that the fit is

not addressing. Figure 6.28a shows this FFT analysis for the 5-Parameter function: the

largest peak corresponds to the expected radial CBO frequency. The results from this

fit are given in table 6.3.

Adding three corrections to the wiggle function, namely the radial CBO, the vertical

waist and the lost muons correction, we obtain the following 13-Parameter function as
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Figure 6.27: Wiggle plot of the 60h dataset for the T-Method. The histogram is wrapped
around every 100 µs for aesthetic purposes.

Parameter Value Uncertainty
N0 [1 · 106] 3.54935 205 · 10−3

γτ [µs] 64.356 2.10 · 10−3

A 0.36434 4.28 · 10−5

R [ppm] -44.1541 1.34
φ [rad] 2.0913 2.19 · 10−4

Table 6.3: Results from the 5 parameter fit [75].

described in section 3.4.2:

N(t)13par = N(t)5par ·
[
1− e−t/τCBOACBO cos(ωCBOt+ φCBO)

]
·
[
1− e−t/τVWAVW cos(ωVW t+ φVW )

]
· [1−KLM · J(t)] (6.12)

The function J(t) is an estimation of the number of observed lost muons at a given time,

evaluated from the same dataset. The parameters written in Eq. 6.12 are 14, but the
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(a) (b)

Figure 6.28: Fast Fourier Transform of the residual between the fitted function and the
histogram of Fig. 6.27. On the left the 5-Parameter fit, on the right the 13-Parameter
fit.

parameter τVW is fixed at the value

τVW = τCBO
ωCBO
ωVW

(6.13)

The reason is that the vertical oscillation is difficult to measure, because its lifetime

is shorter than the radial CBO lifetime and dies out in ' 60 µs. The number of free

parameters is then 13, and their fitted values are listed in table 6.4. Figure 6.28b shows

the FFT of the residuals of the 13-Parameter fit, and the larger peaks are not visible

anymore. Some improvements can still be achieved with more corrections, but they are

not discussed here.

The effect of the Short-Time-Double-Pulse correction on the parameter R is now investi-

gated. To evaluate the effect of the STDP on the parameter R, the gain correction G(∆t)

is multiplied by an artificial factor, ranging from 0 to 2, and applied to the data. After

the reconstruction, the 13-parameter fit is repeated and the new R value evaluated. Fig.

6.29 shows the behavior of ∆R as a function of the multiplier. A linear trend is visible,

with an effect on R of ∼ 28.6 ppb per multiplier. In particular, the difference between

no correction and nominal STDP correction is 20 ppb (leftmost point in the plot). Note

that, although negligible with respect to the statistical error for this subsample, a shift

of 20 ppb corresponds to the full admitted budget for the gain calibration error (see

Table 4.1), thus its application will become fundamental once the full statistics will be

collected.
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Parameter Value Uncertainty
N0 [1 · 106] 3.57407 918.5 · 10−3

γτ [µs] 64.4406 3.77 · 10−3

A 0.36436 4.335 · 10−5

R [ppm] -42.7109 1.3416
φ [rad] 2.0910 2.20 · 10−4

τCBO [µs] 158.598 12.1348
ACBO [1 · 10−3] 4.42 0.16
ωCBO [rad/µs] 2.3271 5.10 · 10−4

φCBO [rad] 2.929 0.038
AVW [1 · 10−3] 1.92 0.44
ωVW [rad/µs] 14.399 0.015
φVW [rad] 2.75 0.66
KLM [1 · 10−3] 12.55 0.45

Table 6.4: Results of the 13-Parameter fit.

Figure 6.29: Scan of the STDP correction effect on the R value, varying an artificial
factor that scales the STDP gain functions [76]. A factor < 1 means that the gain
correction is reduced, while for values > 1 is enhanced. A linear fit shows a slope of 28.6
ppb per multiplier.

The shift on R due to a wrong, or missing, STDP correction is also coupled to the fit start

time. Figure 6.30 shows the variation on R caused by the STDP correction at different
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starting times for the wiggle fit. The difference is evaluated with respect to the nominal

correction (black points). An oscillation corresponding to the ωa frequency is visible for

no correction applied (blue) and for a doubled correction (red). This is expected, since

the number of positrons corrected by the STDP is dependent on the detected positron

rate, which in turn is correlated with the spin direction, as high energy positrons are

emitted mostly in the forward direction, and thus to the anomalous precession frequency.

Again, the difference between correction and no correction at the typical starting value

of 30 µs is 20 ppb.

Figure 6.30: Scan of the STDP correction effect on the fit start time [76]. The blue curve
corresponds to no STDP correction applied, while the red curve shows the effect of a
doubled correction. The values are compared to the nominal correction (black).

In conclusion, the Short-Time Double-Pulse correction evaluated with the laser cali-

bration system has been applied to the official reconstruction with success. In particular,

its effect on the very recent analysis of the 60h dataset is visible at the 20 ppb level on

the ωa measurement.





Conclusions

A precise measurement of the muon anomalous magnetic moment aµ is a very sought-

after quantity, given the discrepancy of 3.4 σ measured by the E821 experiment at BNL

with respect to the Standard Model prediction. The new Muon g-2 (E989) experiment

at Fermilab (FNAL) aims to investigate this discrepancy by reducing the experimental

error by a factor 4, with a final goal of 140 ppb. This error is the quadrature sum of the

statistical error of 100 ppb and an equal systematic error of 100 ppb. In particular, the

measurement of the anomalous magnetic moment implies the measurement of two values:

the anomalous precession frequency of the muon ωa and the proton Larmor frequency

ωp, when the particles are placed in an uniform magnetic field. These two quantities

will be measured with an expected systematic error of 70 ppb each. The measurement

of ωa involves a system of 24 calorimeters, each one composed of a 6 by 9 array of PbF2

crystals coupled with silicon photomultipliers (SiPM). One of the factors that contribute

to the 70 ppb systematic uncertainty of the ωa measurement is the gain stability of the

SiPMs. A new Laser Calibration System is used to monitor such fluctuations, granting

a stability level of 10−4 both in the short and long time scales. The systematic error

budget relative to the gain will be then reduced with respect to the E821 experiment

from 120 ppb to 20 ppb. In this thesis, two analysis have been discussed, both of them

making use of the Laser Calibration System.

The first one is a time synchronization of the 1296 SiPMs. The ωa measurement

involves the detection of the decay positrons in the calorimeters, that have the job to

measure the energy of the particle and its time of arrival. It is therefore important to

have all the SiPMs synchronized in order to make use of all calorimeters together. This

analysis has been described in chapter 5.

With the use of a laser pulse at the beginning of each muon fill, and the signals produced

by muons that are lost from the storage region, it is possible to determine a relative

synchronization of all the SiPMs at the 100 ps level, only being limited by the time

spread of the electromagnetic showers within a calorimeter. This value is much smaller
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than the sampling frequency (800 MHz, that is one sample every 625 ps), so a successful

synchronization is achieved.

The second study of this work, described in chapter 6, is a measurement of the gain

response of the SiPMs to signals closer than 100 ns in time. After the detection of

a signal, the SiPM sensitive pixels recover with a characteristic lifetime of ∼15 ns. If

another signal is detected after less than 5-6 lifetimes, many pixels still have to recover, so

the measured energy is lower than the true value. This analysis probes this effect using a

new appositely-built operating mode of the Laser Calibration System called Short Time

Double Pulse. The gain is studied for each SiPM using couples of laser pulses fired at

various delays and with different intensities. A preliminary Monte Carlo simulation has

also been conducted to predict the behavior of the SiPMs. The gain correction obtained

has been then applied to a dataset containing beam data acquired in March 2018 during

a period of 60 hours. The effect of this STDP correction on the positron data has been

investigated, and results in a visible shift of the ωa value at the 20 ppb level. At this

moment, the statistical error on ωa is still at the 1.3 ppm level.
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