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Abstract

The inner Galilean moons orbiting Jupiter are locked into the so-called “Laplace
resonance”, where the orbital periods of Ganymede, Europa and Io maintain a 4:2:1
ratio respectively. Resonant dynamics appear several times across the Solar System
and determining whether the Jovian resonance is deepening or loosening would
provide a direct insight into the origin and the evolution of the Solar System.

At the moment, our knowledge of the Galilean moons’ dynamics is not accurate
enough to establish in which direction the system is evolving. Including stellar
occultation observations obtained from an orbiting spacecraft could result in a
critical improvement of these estimations. Since the spacecraft’s orbit and the stars’
position are generally very well known, every time one of the moons crosses the
line-of-sight from the spacecraft to the star its position can be constrained very
accurately.

The results of this Thesis lay the foundations for the introduction of stellar
occultation observations in the Orbit Determination process of planetary satellites
and other celestial bodies. First, a geometrical/mathematical model of the distance
between the moon’s limbs and a given star detected in its surroundings was developed
and tested. Afterwards, a code to detect and archive all the stellar occultation
events in a given time span was implemented. Finally, a parametric Covariance
Analysis was performed to obtain a preliminary assessment of the improvements
provided by the introduction of stellar occultation observations and investigate the
influence of each variable on the Orbit Determination problem.
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Chapter 2

Introduction

2.1 The Jovian system
Jupiter is the fifth planet in line from the Sun and it is twice as massive as all

the other planets combined. Earth would fit eleven times across Jupiter’s equator,
however the gas giant’s atmosphere is predominantly made up of very light elements,
such as helium and hydrogen, and if it has a solid core at all, it is probably about
the size of the Earth. Jupiter’s familiar stripes and swirls are actually cold, windy
clouds of ammonia and water, while Jupiter’s iconic Great Red Spot is a giant
storm bigger than Earth that has raged for hundreds of years.

Figure 2.1: Color-enhanced picture of Jupiter’s southern hemisphere taken by NASA’s
Juno spacecraft, credits: [8].

The gas giant does not offer an hospitable environment for the evolution of
life as we know it, but the same is not true for some of its many moons. Jupiter
has 79 satellites orbiting around it, but scientists are particularly interested in
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2 CHAPTER 2. INTRODUCTION

the so-called "Galilean moons": Io, Europa, Ganymede and Callisto. These four
satellites were discovered by Galileo Galilei in 1610 and they are some of the most
interesting destinations in our Solar System still today. Io is the most volcanically
active body in our planetary system. Europa has been under the spotlight since
evidence of the existence of a liquid ocean under its icy crust was collected from the
Galileo mission and the Hubble Space Telescope. This discovery makes Europa one
of the the most promising places to look for present-day environments suitable for
life. Ganymede is the biggest moon in our Solar System, even bigger than planet
Mercury. On top of this, the three inner Galilean moons’ motion follow a very
interesting periodic pattern, called "Laplace resonance", for which in the same time
Ganymede completes one orbit around Jupiter, Europa and Io complete two and
four orbits respectively [9].

2.2 The Laplace resonance
The first investigation of the Jovian system’s resonance dates back to 1798,

when the French mathematician and astronomer Pierre-Simon marquis de Laplace
showed in the Traité de Mécanique Céleste that Ganymede, Europa and Io are in
mean motion resonance with ratio 4 : 2 : 1. Since then, the resonant interaction
between the inner Galilean moons has been a research topic for many scientists and
to these days it is still quite a controversial matter.

One of the key factors affecting the Jovian system’s dynamics is the tidal
interaction between the giant gaseous planet and its closest moon Io: the orbital
energy dissipation due to the tides that Jupiter raises on Io modifies the semi-major
axis of the moon and this in turns affects the orbits of Europa and Ganymede,
due to their resonant interaction. So far, the researches on the contribution of this
dissipation mechanism to the Galilean moons dynamics have led to very different
results, which disagree both in order of magnitude and sign. This means that
scientists are still discussing not only the scope of the tidal interaction, but also
whether the moons are accelerating (i.e. moving toward Jupiter) or decelerating
(i.e. drifting away from it).

An additional challenge related to the estimation of the Jovian system ephemerides
is given by the extent and the diversity of the available data. The measurements to
be included in the estimation are spread across a very long time span, from the
19th century to the present days, and come from many different sources, from Earth
observations to spacecraft trackings. This means that the data accuracy varies
considerably from one sample to the other and that all the secular forces need to be
modeled, as even the smaller effect becomes relevant on such a wide period of time.

The Jovian system can be considered as a downsized model of the Solar System,
so understanding how the Laplace resonance is currently evolving could shed light
not only on the Galilean moons’ interaction, but also on the dynamics of the
whole Solar System and on those of other resonant bodies. Up to now, two main
theories have been formulated: the first one supports the idea that the Galilean
moons evolved into the Laplace resonance after their creation, so that the actual
configuration is the arrival point of the moons’ orbital evolution; the second theory
affirms that the Galilean moons were already locked into the Laplace resonance
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the moment they were formed. Thus, if the resonance is currently deepening, that
would support the first theory; conversely, if the resonance is loosening, that would
favor the primordial theory (without excluding the other one).

In general, the concept of orbital resonance applies to any physical system in
which the ratio of two orbital periods is a rational number. Assuming that T1, the
orbital period of the first body, is bigger or equal to T2, the orbital period of the
second body, the mathematical definition of resonance is given by:

T1

T2
= a

b
= q ≥ 1

Where a and b are coprime integers. However, from a physical point of view,
this definition is quite weak as it may be argued that one can always find a rational
number that approximates the orbital periods ratio. In order to avoid this ambiguity,
we add the conditions that a and b have to be small enough and that the resonance
relation must be maintained at least for some multiple of max{T1, T2}.

This kind of resonance is not uncommon in the Solar System, but it usually
involves two bodies only, as in the case of Tethis and Mimas (4:2), Dione and
Enceladus (2:1) or Pluto and Neptune (2:3) [11].

The Laplace resonance which binds the first three Galilean moons can be
considered as a double orbital resonance in which the ratio between the three
orbital periods is not only rational, but also small and integer. The inner Galilean
moons have been the only known case of three-body resonance until the recent
discovery of a similar interaction between Pluto’s small moons [10]. Small ratios
are particularly useful as they allow each configuration to repeat in a relatively
small time period. Defining Io as body number 1, Europa as body number 2 and
Ganymede as body number 3, the expressions for the angular velocity in anomaly
can be expressed as:

µ1 = 4ω
µ2 = 2ω
µ3 = ω

Where ω = 51,0571 deg/day. In terms of mean motion one can write:

n1 − 2n2 = η1

n2 − 2n3 = η2

and researchers noticed that η1 = η2 = η = 0.7395 deg/day. Combining the
above relations the classical Laplace resonance equation is obtained:

n1 − 3n2 + 2n3 = 0 (2.1)

Assuming that the Laplace resonance is maintained in time, so that equation 2.1
holds true, the resonance itself is said to be in equilibrium if η̇ = 0, to be loosening
if η̇ > 0 or deepening if η̇ < 0 [12].
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2.3 The JUICE mission
So far, nine spacecrafts have visited Jupiter and NASA’s mission Juno is currently

orbiting it. The next expeditions to the Jovian system will be ESA’s mission JUICE
and NASA’s Europa Clipper. The JUpiter ICy moon Explorer was selected by
ESA in May 2012 to be the first large mission within the Cosmic Vision Program
2015–2025. In particular, this mission addresses two of the key science themes of
the Program: “What are the conditions for planet formation and the emergence of
life?” and “How does the Solar System work?”.

JUICE is expected to launch from Kourou, French Guiana, in June 2022 onboard
the Ariane 5 ECA Rocket. The spacecraft will use an Earth-Venus-Earth-Earth
gravity assist strategy and it is expected to reach Jupiter in July 2030. After the
orbit insertion maneuver, JUICE will perform a 2.5 year tour in the Jovian system
focusing on continuous observations of Jupiter’s atmosphere and magnetosphere.
This phase of the mission will also include frequent flybys of Callisto, which will
enable unique remote observations of the moon and in situ measurements in its
vicinity, and two flybys of Europa, focusing on the composition of the non water-
ice material and the first subsurface sounding of an icy moon. The mission will
culminate in a dedicated eight months orbital tour around Ganymede during which
the spacecraft will perform detailed investigation of the moon and its environment.
At the end of the mission the spacecraft will impact the moon, either following the
free evolution of the orbit for several weeks or constraining the location of the crash
with a modest fuel expenditure, if required.

Thanks to the JUICE mission scientists will be able to characterize the potential
habitable environments of Ganymede, Europa, and Callisto. JUICE will also provide
a thorough investigation of the Jovian system, which serves as a miniature Solar
System in its own right, and will thus contribute to a better understan ding of the
origins of our planetary system and other exoplanetary systems [13].

Figure 2.2: JUICE spacecraft, credits: [14]
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The only Galilean moon that JUICE will not be able to reach directly is the inner
one, Io. This little satellite is extremely interesting for the scientific community due
to its tidal interaction with Jupiter which plays a key role in the resonant dynamics
of the Jovian system and makes Io the most volcanically active body in the Solar
System.

The main idea underlying this Thesis is that, despite the fact that JUICE will
never come close to Io, ancillary observations of the little moon could bring precious
information about its motion. In particular, a new application to stellar occultation
observations will be investigated in the following chapters.

A strong campaign of stellar occultation observations has already been scheduled
throughout the JUICE mission, in particular during the first year orbiting Jupiter,
at the approach and departure of Europa flybys and in the Ganymede Elliptical
Orbit (GEO) phase. At the moment, the main objective of the campaign is to
spot and investigate Europa’s plumes, proving the moon’s geological activity. The
stellar occultations observation will be performed by JUICE-UVS, an Ultraviolet
Spectrograph which strongly relies on the heritage of Juno-UVS and whose design
and expected performance can be found in [15]. When performing stellar occultation
observations, the Spectrograph instrumentation first scans the FOV and selects a
target stars, usually basing on its magnitude and location. Once the target has
been acquired, the Ultraviolet Spectrograph locks on the star and measures its
radiation emission. A stellar occultation spectra is usually characterized by a rapid
and momentary drop in the radiation intensity, as shown in Figure 2.3.

Figure 2.3: Solar occultation spectra acquired by the Alice instrument, credits: [26]
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2.4 MONTE
MONTE (Mission Analysis, Operations, and Navigation Toolkit Environment)

is the astrodynamic Python library developed by the Mission Design National
Aeronautics and Space Administration and Navigation Section at the Jet Propulsion
Laboratory, with sponsorship from NASA’s Jet Propulsion Laboratory Multimission
Ground System and Services (MGSS/AMMOS) program office. The library was
built to support JPL’s deep space exploration program and so far it has been used
to fly different spacecrafts to Mars, Jupiter, Saturn, Ceres and many Solar System
small bodies.

All the codes developed and implemented throughout this Thesis have been
written using Python programming language. MONTE library was particularly
useful as it provides all the basic astrodynamic infrastructure, such as trajectory
models, coordinate frames, high precision time and astrodynamic event searches,
and it can be used in conjunction with other Python scientific libraries to create
customized applications [16].



Chapter 3

Stellar occultations model

3.1 Stellar occultations

Figure 3.1: Venus Express performing a solar occultation at Venus, credits: [23]

In general, a stellar occultation can be defined as the event in which a third
body occults a visible star as seen from the observer’s point of view, as shown in
Figure 3.1. In the past, this kind of observations have been exploited to discover
and characterize exoplanets [6] [5], probe ring systems [2] [3] and investigate the
atmosphere composition of distant celestial bodies [4]. The main advantage of

7
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using stellar occultations in these studies is that the spatial resolution that can be
reached with these observations is better than any other Earth-based method [24].
Regarding the orbit determination problem, stellar occultations have been used to
develop autonomous navigation technologies which aim at increasing the spacecraft
autonomy of operations in the proximity of a celestial body, such as in [7].

Throughout this work the term stellar occultation will refer to any configuration
in which a star is occulted by the moon Io, as seen from the JUICE spacecraft.
However, all the concepts and the models that will be presented hereafter can be
easily applied to any observer-third body-star system.

For the purposes of this Thesis, a stellar occultation observation carries a critical
information in order to determine the moon’s position: since the inertial direction
vector from the spacecraft to the star is generally very well known, every time
that the moon’s limbs cross it, the moon’s position with respect to the spacecraft
can be constrained very accurately. Of course, this kind of measurements is more
effective in the transverse direction as one single occultation measurement brings
no information as to the distance between the spacecraft and the moon. If one
couples the beginning and the end of a stellar occultation, then a lower limit to the
moon’s projected dimensions, and thus an upper limit to the moon’s distance from
the spacecraft, can be set.

The stellar occultation observations can be performed by optical cameras, but
more often photometric instruments are used. These measure the intensity of
radiation of a given wavelength and in a specific direction. The same mathematical
model applies to both kinds of instrumentation.

3.2 Geometrical model

Figure 3.2: Stellar occultations geometrical model, credits: [25]

From a geometrical point of view, modeling a stellar occultation observation
reduces to the computation of the 2D distance between an ellipse and a point. The
ellipse is given by the projection of the moon’s ellipsoid on the focal plane of the
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spacecraft’s camera and it depends on the satellite’s shape, orientation and distance
from the spacecraft. The point is given by the projection of the star direction on
the focal plane and it only depends on its right ascension and declination since the
stars are considered to be at infinite distance from the camera.

Figure 3.3: Io’s ellipsoid and stars’ direction projection on the focal plane

3.2.1 Ellipsoid projection
The algebraic process to obtain C, the projected ellipse matrix, was adapted

from [22] and it starts from the ellipsoid matrix Q. This represents the equation of
an ellipsoid in homogeneous coordinates, expressed in a reference frame which has
the origin coincident with the center of the ellipsoid and the axes coincident with
the principal axes of the ellipsoid (so that the frame is rotating with the celestial
body):

Q =


1/a2 0 0 0

0 1/b2 0 0
0 0 1/c2 0
0 0 0 −1


Where a, b and c are the principal semi-axes of the ellipsoid.

The first transformation applied to the ellipsoid matrix is a translation from
the body-fixed frame to the camera frame. The translation vector ~trl is expressed
in the body-fixed frame and it is directed from the camera to the observed body.
This translation transformation can be expressed in homogeneous matrix form as:
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T =


1 0 0 trl[0]
0 1 0 trl[1]
0 0 1 trl[2]
0 0 0 1


Where trl[0] , trl[1] and trl[2] are the first, second and third component of the
translation vector ~trl 1. The translation is then applied as follows:

Qt = T−TQT−1

The rotation from the body-fixed frame to the camera frame was split into two
rotations passing from EMO2000 so that the overall rotation transformation can
be written as:

Qc = R−TECR
−T
BEQtR

−1
BER

−1
EC

Where REC and RBE are 4x4 matrices representing the rotation from EMO2000
to the camera frame and the rotation from the body-fixed frame to EMO2000
respectively, in homogeneous coordinates.

The matrix Qc obtained after translation and rotation needs to be projected
on the camera focal plane in order to obtain C. This is done multiplying for the
intrinsic camera parameters matrix K:

K =

f 0 0 0
0 f 0 0
0 0 1 0


Where f is the focal length, which is defined as the distance from the lens to the
principal foci of the lens. The projection transformation is performed as follows:

C−1 = KQcK
T

Here K is expressed as 3x4 matrix so that a 3x3 matrix (C−1) is obtained from a
4x4 matrix (Qc). Finally, the matrix has to be inverted to get the projected ellipse
matrix C, in homogeneous coordinates.

3.2.2 Star direction projection
In order to obtain the star projection point on the camera focal plane, the star

direction unit vector is normalized by its third component and projected using
matrix Ks:

~x = Ks ~xs
1
zs

=

f 0 0
0 f 0
0 0 1


xsys
zs

 1
zs

In this case, Ks is the intrinsic camera parameters matrix expressed as a 3x3 matrix,
which is obtained omitting the fourth column of zeros in K.

1Python indexing system was adopted
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3.2.3 2D distance
Initially, the geometric 2D distance between the moon’s ellipse and the star’s

position point was considered. This approach allows the measurements to keep
their physical meaning and maintain a direct connection to the real-life scenario.
Although this was very useful to plot the stars’ distribution around Io and have
an intuitive validation of the model, the architecture of the problem resulted to be
quite inconvenient in order to compute the partial derivatives at a later stage.

For this reason, the algebraic distance was adopted instead. In this way the
direct relation to the physical distance is lost, but the expression to be implemented
is much easier:

h = ~xTC~x (3.1)
Where h is the ellipse-point distance, ~x is the star 2D position vector in homogeneous
coordinates and C is the projected ellipse matrix. This approach relies on the
simple fact that when a point lays on the ellipse limbs it has to satisfy equation
h = ~xTC~x and thus h = 0. Analogously, h > 0 when the star is not occulted (i.e.
outside the ellipse area), and h < 0 when the star is occulted (i.e. inside the ellipse
area). In this way, the beginning of a stellar occultation can be identified looking
for the moment in which h turns from positive to negative, while the opposite is
true for the end of the occultation. Figure 3.4 provides a visual confirmation of the
distribution of h in the surroundings of the projected ellipse.

The integral code written to detect all the stellar occultations taking place in a
given time span can be found in Appendix A.2.

Figure 3.4: 3D behavior of h as a function of the distance from the projected ellipse (red
line)
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3.3 Model implementation
Hereafter the salient parts of the code developed to compute the 2D distance

between Io and the surrounding stars will be briefly commented in order to show
how the models and the techniques presented above have been applied in practice.
All the referenced codes can be found in A.1.

One of the main simplifications adopted throughout this work is that the camera
frame is always pointing towards Io. Indeed, the frame is defined by two direction
vectors: one refers to the Z axis, which is always pointing from JUICE to Io, and the
other defines the XY plane reference direction and points from JUICE to Jupiter.
This simplification allows to detect all the potential occultations and implement the
optical parameters at a later stage. In order to find a stellar occultation, the first
thing to do is to investigate which stars can be found in the background around
Io at the time of interest, as seen from JUICE. Thus a star catalog needs to be
loaded and then used as a database containing all the useful information regarding
a given set of stars, such as their position, magnitude, parallax and spectral type.
For this work, the UCACT-PI star catalog was adopted. It results from the merge
of UCAC2 and Tycho-2 catalogs, but with parallax information from Hipparcos
and magnitudes corrections for Cassini’s clear filter.

Using MONTE it is possible to obtain a list of all the stars which lay inside
a given search circle centered around a given direction vector. In this case, the
direction of interest was the one from JUICE to Io and the radius adopted for the
search circle 10 deg. The minimum value for the stars’ apparent magnitude was set
to −2 since there are no brighter stars in the catalog anyway, while the maximum
was set to 6 to ensure the stars were bright enough to be detected by UVS. In order
to determine the distance between Io’s limbs and each star around it, the moon’s
ellipsoid projection has to be computed following the procedure detailed in Section
3.2.1.

Finally, iterating over the number of stars detected in the surroundings of Io,
the star direction projection is computed and the distance between the moon’s
ellipse and the star point is obtained.



Chapter 4

Partial derivatives

After having defined a suitable model for the stellar occultation events, one has
to understand which are the main parameters affecting the chosen observable. In
fact, this is the information conveyed by the partial derivatives: in which measure is
h influenced by the variation of the each parameter? Some of these parameters are
of interest and we want to estimate them, so the partials represent the sensitivity
of the measurements to these parameters. Others are just an input, not to be
estimated, and the partials represent the influence of an error in their knowledge
on the measurements.

In this case, the first step consisted in identifying all the variables involved
and then include the ones worth considering (i.e. which have a relevant influence
on the observable). This was one of the most critical and complex parts of the
work. Since the model for the observable h had been designed from scratch, there
was no immediate reference as to the influence that other parameters have on it.
After a preliminary selection, 11 parameters were included in the partial derivatives
analysis:

• The star position, expressed as right ascension and declination;

• The shape of Io, expressed as the three semi-major axis defining the moon’s
ellipsoid;

• The 3-dimensional position of Io;

• The 3-dimensional position of JUICE;

Other parameters, such as the focal length f , the coordinate system rotations and
the spacecraft’s attitude, were first considered and then discarded due to their
limited (or null) influence on the problem, as it will be explained in the following
sections.

In order to validate the results of the calculations, both the numerical and the
algebraic partial derivatives were computed and then compared. Numerical partials
may be affected by numerical errors but they are more straightforward to obtain, so
that they can be easily used as a first reference to double-check the algebraic ones.

13
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4.1 Algebraic Partials
Table 4.1 contains the equations of the partial derivatives of h with respect to all

the aforementioned parameters. To derive the expression of the algebraic partials,
one has to go back and start from equation (3.1). Differentiating the equation of h
with respect to a generic scalar parameter q leads to the following expression:

∂h

∂q
= ∂~xT

∂q
C~x+ ~xT

∂C

∂q
~x+ ~xTC

∂~x

∂q

Since the first and the third term on the right hand side are scalars, they can be
summed up to obtain:

∂h

∂q
= 2~xTC∂~x

∂q
+ ~xT

∂C

∂q
~x (4.1)

As can be seen from equation (4.1), the right hand side is made up by two main
components: the first one contains the partial derivative of the star 2D position on
the focal plane x with respect to q, while the second contains the partial derivative
of the projected ellipse matrix C with respect to q.

4.1.1 Ellipse matrix derivative
From section 3.2.1, one can retrieve the expression of matrix C as a function of

Qc, which becomes:
C = (Cinv)−1 = (KQ−1

c KT )−1

So that:
∂C

∂q
= ∂(Cinv)−1

∂q
(4.2)

Recalling the formulation for the matrix inverse derivative B.1, equation (4.2) can
be expressed as:

∂C

∂q
= ∂(Cinv)−1

∂q
= −(Cinv)−1∂Cinv

∂q
(Cinv)−1 =

= −C∂(KQ−1
c KT )
∂q

C = −C(∂K
∂q

Q−1
c KT +K

∂Q−1
c

∂q
KT +KQ−1

c

∂KT

∂q
)C

And applying again (B.1) to Qc in the middle term of the right hand side:

∂C

∂q
= −C(∂K

∂q
Q−1
c KT +KQ−1

c

∂Qc

∂q
Q−1
c KT +KQ−1

c

∂KT

∂q
)C

So that the computation of the partial derivative of C reduces to the computation
of the partial derivative of K and Qc.

As shown in section 3.2.1, matrix K is a function of f only. It can be demon-
strated that the focal length does not affect the observable h. In fact, both the
projected ellipse and the star position point are scaled by f and its contribution
cancels out when the terms are multiplied for each other in (4.1). This means that
∂K
∂q

= 0 and thus the first and the third term on the right hand side nullify.
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The full expression for matrix Qc can be retrieved from section 3.2.1 as follows:

Qc = R−TECR
−T
BET

−TQT−1R−1
BER

−1
EC (4.3)

Now, one has to evaluate the partial derivative of Qc with respect to each one of
the parameters. Looking at equation (4.3) and at the expression of the matrices
REC , RBE and T in section 3.2.1, it is clear that Qc is not affected by the star’s
position coordinates. In fact, only a, b and c, the semi-major axis of Io’s ellipsoid,
and trl[0], trl[1] and trl[2], the coordinates defining Io’s position in the body-fixed
frame with respect to the camera, appear in the equation.

For the first triplet of parameters we obtain:

∂Qc

∂q
= R−TECR

−T
BET

−T ∂Q

∂q
T−1R−1

BER
−1
EC

Where ∂Q
∂q

becomes for a, b and c respectively:

∂Q
∂a

=


−2/a3 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0



∂Q
∂b

=


0 0 0 0
0 −2/b3 0 0
0 0 0 0
0 0 0 0



∂Q
∂c

=


0 0 0 0
0 0 0 0
0 0 −2/c3 0
0 0 0 0


The parameters defining Io’s position appear in the translation matrix only, so that
the partial derivative of Qc becomes:

∂Qc

∂q
= R−TECR

−T
BE

∂T−T

∂q
QT−1R−1

BER
−1
EC +R−TECR

−T
BET

−TQ
∂T−1

∂q
R−1
BER

−1
EC

And once again using equation (B.1) one can write:

∂T−1

∂q
= −T−1∂T

∂q
T−1

Where ∂T
∂q

for x = trl[0], y = trl[1] and z = trl[2] can be written as:

∂T
∂x

=


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0
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∂T
∂y

=


0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0



∂T
∂z

=


0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0


The partials derivatives with respect to JUICE’s position can be obtain simply
changing the sign of the derivatives calculated for Io’s translation. In fact, from
a physical point of view, moving JUICE has the same and opposite effect on
the translation vector as moving Io. Additionally, ∂T

∂q
has to be rotated from Io

body-fixed to EME2000 as JUICE’s position is expressed in the inertial frame.
In the first place also the six angles defining the rotation from the body-fixed

frame to EMO2000 and the rotation from EMO2000 to the camera frame were
considered. However, their influence on the problem was quite limited and their
observability was deemed small enough to neglect them without major consequences.
Similarly, the attitude of the spacecraft was first considered and then discarded.
In fact, the orientation of JUICE affects both the ellipsoid projection and the star
direction projection in the same way, so that in the end its effect vanishes.

4.1.2 Star vector derivative
From section 3.2.1, one can retrieve the expression for ~x and differentiate it with

respect to the generic scalar parameter q:

∂~x

∂q
=
∂(K ~xs

1
zs

)
∂q

=
∂ 1
zs

∂q
K ~xs + 1

zs

∂K

∂q
~xs + 1

zs
K
∂ ~xs
∂q

As explained in the previous paragraph, ∂K
∂q

= 0 since matrix K is a function
of f only. If ~xs is expressed as a function of the star’s right ascension (Ra) and
declination (Dec) as follows:

~xs =

cos(Ra)cos(Dec)
sin(Ra)cos(Dec)

sin(Dec)


one can see that ~xs is a function of Ra and Dec while 1

zs
is a function of Dec only.

Thus, the derivative of ~x with respect to the right ascension becomes:

∂~x
∂Ra

= 1
zs
K

−sin(Ra)cos(Dec)
cos(Ra)cos(Dec)

0


While the derivative with respect to the star’s declination can be written as:

∂~x
∂Dec

= − cos(Dec)
z2

s
K ~xs + 1

zs
K

−cos(Ra)sin(Dec)
−sin(Ra)sin(Dec)

cos(Dec)
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4.2 Numerical Partials
The numerical partials were obtained imposing a given variation of one pa-

rameter at the time and then applying the finite difference method to obtain the
approximation of the partial derivative:

∂h

∂q
≈ h(q + ∆q)− h(q)

∆q (4.4)

Appendix A.3 reports the code section which computes the partial derivative
of h with respect to the first ellipsoid semi-major axis a as an example of the
implementation scheme adopted. First, ∆a has to be chosen and summed to the
actual value of a, which is stored among the information regarding Io and its shape
’Io Ellipsoid’. Then C matrix is computed and given as an input to the function
which returns the value of the perturbed observable hda for all the stars in the
surroundings of Io. Finally, the partials associated with each star are obtained
using equation (4.4). The values delivered by this code where compared to the
ones obtained using the algebraic equations detailed in section 4.1 at the same time
and for the same set of stars. The same procedure was iterated for all the other
parameters.

Figures 4.1, 4.2 and 4.3 show an example of visual validation of the partials
derivatives for a single star on a 2-days time span. The relative error between
algebraic and numerical partials was obtained as:

relative error = algebraic− numerical
numerical

100

Figure 4.1: Time evolution of the relative error associated to Io’s ellipsoid’s semi-major
axis a, b, c
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Figure 4.2: Time evolution of the relative error associated to the Io’s position coordinates
x, y, z

Figure 4.3: Time evolution of the relative error associated to the star’s right ascension
and declination

The validation was successfully completed as the magnitude of the relative error
computed at different times and for different stars was found to be smaller than
0.2% for all the parameters of interest.
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Chapter 5

Covariance Analysis

When confronting a new physical problem, one has to investigate which are the
main parameters affecting the system and to what extent their misrepresentation
can influence the outcome of the analysis. Generally, in a satellite orbit determi-
nation problem two different kinds of parameters can be identified: measurement
parameters and dynamic parameters. The former define the relationship between
the satellite at a given time and an observation of the satellite at that same time.
The latter affect the time evolution of the state of the satellite [18]. For example,
in the stellar occultation problem treated here the JUICE spacecraft’s position is
a measurement parameter, while the positions of the other Galilean moons are
dynamic parameters. The standard deviation associated with one of the satellite’s
state components results from the uncertainties on both measurement and dynamic
parameters. The critical point is to understand which are the fundamental sources
of ambiguity so that one knows where to focus in order to improve the estimation
of the unknown quantities.

When evaluating the relevance of a parameter’s misrepresentation two factors
have to be considered: what is the impact of the parameter’s inaccuracy on
the estimation of the state of the satellite and how likely the parameter is to
be misrepresented. The usual approach in this case is to develop a model of the
physical problem at hand and obtain an estimation of the satellite’s state in nominal
conditions. Subsequently, the same model is used to solve a new orbit determination
problem in which the input value of the parameter being studied differs of what
is believed to be the standard deviation of the parameter itself. The solutions
delivered by the two settings are compared so that the time evolution of the effects
of one sigma variation of the given parameter on the satellite’s state is obtained.
Of course, this process can be quite expensive from a computational point of view.
If this is the case, the Covariance Analysis can be an effective alternative to obtain
(almost) the same results.

The Covariance Analysis consists in computing the state covariance matrix only,
without actually estimating the state of the satellite. Using this technique one
can obtain the standard deviation of the components of the state, which is the
square root of the diagonal terms of the covariance matrix, and investigate how
the uncertainty on each parameter influences the estimated uncertainty on the
satellite’s state. However, the true error between the estimated state and the a
priori state cannot be determined as the actual state estimation is not performed.

21
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Usually, the true error is bigger than the standard deviation, so that the results
of the Covariance Analysis tend to be optimistic and this is the main drawback
related to this technique.

5.1 Variance, covariance and correlation
In general, the covariance matrix P associated to n estimated variables is a

n-dimensional squared symmetric matrix whose structure can be schematized as
follows:

P =



σ2
1 σ12 · · · σ1i · · · σ1n

σ12 σ2
2 · · · σ2i · · · σ2n

... ... . . . ... ...
σ1i σ2i · · · σ2

i · · · σin
... ... ... . . . ...
σ1n σ2n · · · σin · · · σ2

n


The elements on the diagonal correspond to the variance of each variable, which is
the square of the standard deviation and for the generic i-th random variable X it
is defined as:

σ2
i = var(X) = E[(X − E[X])2] = cov(X,X)

Where E is the expectation operator and E[X] is the expected value of the variable
X. The off-diagonal elements represent the covariance of the variables, which is
a measure of their joint variability and for the generic i-th variable X and j-th
variable Y it is defined as:

σij = cov(X, Y ) = E[(X − E[X])(Y − E[Y ])]

So the covariance matrix includes information regarding both the uncertainty
associated to each variable and how each one is correlated with the others. In fact,
one can also compute the correlation coefficient, which is a normalized form of the
covariance and it can be easily extracted from matrix P as follows:

ρij = corr(X, Y ) = cov(X, Y )
σiσj

= E[(X − E[X])(Y − E[Y ])]
σiσj

The correlation coefficient varies between 1 (i.e. perfect direct relationship between
the variables, or correlation) and -1 (i.e. perfect inverse relationship between the
variables, or anticorrelation). If the two variables considered are independent their
correlation number is equal to zero and they are said to be "uncorrelated".

In order to have a visual and immediate indication of how the variables are
influenced by each other, the correlation matrix can be computed and plotted. This
appears as a large squared symmetric table where the color of the cells varies from
white (no correlation, ρij = 0) to black (full correlation, |ρij| = 1) depending on
the relationship between the corresponding variables. The correlation matrix for
the stellar occultation problem treated here can be found in section ??.
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5.2 Covariance matrix derivation
The covariance matrix P is obtained using the following formulation:

P = (P−1
0 + ATWA)−1 (5.1)

Where P0 is the a priori covariance matrix, which contains the information regarding
the initial uncertainty of the parameters, A is the matrix containing the partial
derivatives of the measured observable with respect to each one of the parameters
and W is the weighting matrix. A qualitative analysis of this formula suggests that
the covariance matrix relies both on the a priori knowledge of the system and on
the contribution of the measurements. However, the measure in which these two
kind of information are included in the calculation may vary. Indeed, if the initial
uncertainty associated to the parameters is high, the contribution of P0 will be
lower since the a priori knowledge does not bear much information. Analogously,
the function of the weighting matrix is to account for the accuracy and reliability
of the measurements: if these are deemed to be a good source of information, their
weights will be higher and their contribution more significant. On the other hand,
if the uncertainty associated to measurements is too high, their weights will be
lowered accordingly.

Hereafter the matrices appearing in (5.1) will be analyzed individually and their
application to the stellar occultation problem will be illustrated.

5.2.1 Partial derivatives matrix
The function of matrix A is to bring into the estimation the new information

associated to the measurements performed. In practice, if one has m measurements
~z = (z1, z2, ..., zm) and n variables to be estimated ~x = (x1, x2, ..., xn), A is a (m,n)
matrix defined as:

A =



∂z1
∂x1

∂z1
∂x2

· · · ∂z1
∂xn

∂z2
∂x1

∂z2
∂x2

· · · ∂xn

∂xn

... ... . . . ...
∂zm

∂x1
∂zm

∂x2
· · · ∂zm

∂xn


In the stellar occultation problem, the measurements correspond to the stellar
occultations detected and selected throughout the JUICE mission. Originally, the
distance h, modeled in section 3.2, was adopted as observable. However, this choice
made the selection of the weighting coefficients of matrix W quite burdensome
because of the non-direct physical meaning so in the end the observable was switched
from the distance measurement h to the occultation time measurement t. The
partial derivative associated to the new observable were easily obtained considering
that when an occultation take place h(t, ~x) = 0 and thus 1:

dh

d~x
= ∂h

∂~x
+ ∂h

∂t

∂t

∂~x
= 0

1here ~x is the vector containing all the variables involved in the estimation, not the 2D distance
vector mentioned in Chapter 3 and Chapter 4
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∂t

∂~x
= −

(
∂h

∂t

)−1
∂h

∂~x
(5.2)

Where the term on the left hand side corresponds to the time partials, the first
derivative on the right hand side was computed numerically, as outlined in 4.2, and
the second are the distance partials.

At this point, the variables to be included in the estimation had to be selected.
After a few trials, the final choice included the parameters listed in Table 5.1. A part
from the moons’ state, all the other parameters have been estimated independently at
each occultation event. This adjustment allows to take into account the uncertainty
associated to each variable in a simpler but less conservative way with respect to
the consider parameters technique.

Table 5.1: Parameters included in the covariance analysis 2

Symbol Description Quantity

~xM , ~vM position and velocity of the four Galilean moons at the
starting time t0, expressed in the inertial frame EME2000

24

a, b, c
shape of Io, expressed as the three semi-major axis defin-
ing the moon’s ellipsoid and estimated independently at
each occultation

3m

Ra, Dec
star position, expressed as right ascension and decli-
nation in the inertial frame EME2000 and estimated
independently at each occultation

2m

~xsc
JUICE position, expressed as the x, y and z coordinates
in the inertial frame EME2000 and estimated indepen-
dently at each occultation

3m

5.2.1.1 Building the partial derivatives matrix

As mentioned above, each row of matrix A corresponds to one occultation, or
more precisely to the time in which the occultation takes place, ti. The partials
derivatives of ti with respect to the parameters a(ti), b(ti), c(ti), Ra(ti), Dec(ti),
xsc(ti), ysc(ti) and zsc(ti) had already been computed as shown in section 4.1. The
partials with respect to the state of the moons at t0 was obtained using the chain
rule as follows:

∂ti
∂~xM(t0) = ∂ti

∂~xIO(ti)
∂~xIO(ti)
∂~xM(t0) (5.3)

∂ti
∂~vM(t0) = ∂ti

∂~xIO(ti)
∂~xIO(ti)
∂~vM(t0) (5.4)

Where the subscript M indicates any of the moons Io, Europa, Ganymede or
Callisto. Note that the i-th occultation time measurement is influenced directly by

2m is the number of stellar occultations considered
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the position of Io, and in turn by the position and velocity of the other moons due
to their gravitational influence on Io’s orbital evolution. From table 4.1 one can get:

∂h

∂~xIO(ti)
=
[
∂h

∂x
,
∂h

∂y
,
∂h

∂z

]
(5.5)

And then equation (5.2) can be used to switch from h to ti and obtain ∂ti
∂~xIO(ti) .

The terms ∂~xIO(ti)
∂~xM (t0) and ∂~xIO(ti)

∂~vM (t0) are usually referred to as "state transition matrix"
and they describes how the position of Io at time ti is influenced by the state of
the Galilean moons (including Io itself) at the starting time t0.

5.2.1.2 Implementing the partial derivatives matrix

The state transition matrix was computed as a part of the orbit determination
problem by integration of the variational equations. In this work the partials
were obtained from the satellites’ partials ephemerides released by the JPL, thus
assuming to use the same dynamical model. In particular, the state transition matrix
was derived using MONTE’s method M.ParamList.transitionMatrix( Epoch t,
ParamList q ). To do so, Io’s parameters of interest, ~xIO = (xIO, yIO, zIO), were
declared as a ParamList, q_Io, and the state of all the moons was defined as a
separate ParamList, q_moons. All the elements in q_Io have to be represented in Io
body-fixed frame, to be consistent with the reference frame of the partials in (5.5),
while the parameters in q_moons must be defined in EME2000, so that the resulting
partial derivatives to be included in A are expressed in the inertial frame. Asking for
q_Io.transitionMatrix( t_plot, q_moons ) returns the 3x24 transition matrix
to be used in (5.3) and (5.4), selecting the terms relative to the moons’ position or
velocity respectively.

5.2.2 Weighting matrix
Matrix W was introduced in formulation 5.1 to account for the reliability of the

measurements, weighting each of them accordingly. In general, if m measurements
are available, W is a m-dimensional squared diagonal matrix. It is common practice
to assume the measurements noise to be un-correlated (white) and use the reciprocals
of the variance associated to each measurement as diagonal entries, such that W
results to be:

W =



1
σ2

1
0 · · · 0

0 1
σ2

2
· · · 0

... ... . . . ...
0 0 · · · 1

σ2
n


In this way, the higher the variance (i.e. the uncertainty) associated to a measure-
ment, the lower to corresponding weight and the smaller its contribution to the
estimation process.

Having switched from the observable h to the time of the occultation t, the
choice of the weights for the stellar occultation problem was quite straightforward.
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In fact, the measurements timing accuracy is given by the characteristics of the
UVS instrument and the on-board clock, so that W becomes:

W = 1
σ2
time

I

Where I is the identity matrix.
The time accuracy for JUICE is 1ms at best so that, in order to be conservative,

σtime = 5ms was chosen as nominal value.

5.2.3 A priori covariance matrix

The purpose of the a priori covariance matrix P0 is to include the contribution
of the current knowledge of the problem in the estimation. From a mathematical
point of view, this is a way to obtain a reliable solution when the problem is not
fully observable, such as when the measurements do not carry much information
about some variables. This is the case, for example, the outer moons’ state.

As the name suggests, P0 has the same structure and characteristics as matrix
P , so section 5.1 can be taken as a reference. In this case, P0 was chosen to be a
diagonal matrix, thus excluding any a priori correlation between different variables.
If n is the number of parameters included in the estimation, P0 is a n-dimensional
square diagonal matrix whose structure simplifies to:

P0 =



σ2
01 0 · · · 0

0 σ2
02 · · · 0

... ... . . . ...

0 0 · · · σ2
0n



As shown by equation 5.1, the a priori covariance matrix has to inverted in order to
obtain P . In this way, the higher the initial uncertainty of one parameter, the lower
the diagonal element and the smaller the contribution of the a priori knowledge
associated to that parameter.

5.2.3.1 Choice of the a priori standard deviation

The choice of the a priori σ0 values for the estimated parameters is a quite
delicate one. In principle, one can retrieve this information from the literature.
However, the material is not always easily accessible. Additionally, the numerical
effect of the a priori knowledge must be taken into account as well as the choice of
P0 has a relevant influence on the numerical stability of the problem.

So after many researches and a few tuning investigations, the final a priori
values were selected as reported in table 5.2.
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Table 5.2: A priori standard deviations

Parameter σ0 Reference

Io initial position 50km [1]

Europa initial position 0.5km [1]

Ganymede initial position 0.05km [1]

Callisto initial position 0.5km [1]

Moons initial velocity 0.0001km/s N/A

Io dimensions 6.3km [20]

stars position 10µas [19]

JUICE position 0.1km [21]

According to [1], the current uncertainty on the Galilean moon’s position is
5km in all the three radial, downtrack and out-of-plane directions. Yet, the a priori
σ0 on Io’s position was set to 50km not to constrain the estimation.

On the other hand, the accuracy on the other three Galilean moons’ position
is likely to improve considerably. In fact, JUICE will orbit Ganymede for 8
months, gaining crucial information on the moons’ dynamics, so that it can be
safely assumed that the satellite’s position uncertainty will decrease to 0.05km
approximately. Analogously, since both JUICE and Europa Clipper will perform
various flybys of Europa and Callisto, the uncertainty on the two moons’ position
was reduced to 0.5km. Also, the values in [1] have been calculated propagating
the moons’ trajectory from 1990 to 2020, which is a considerably long period of
time, so the uncertainty is likely to be a bit overestimated if applied to a mission
which lasts 2.5 years.

Unfortunately no reliable reference was found for the a priori moons’ velocity
uncertainty so the value of 0.0001 km/s was chosen believing it to be a reasonable
one.

The uncertainty on Io’s dimensions is related to the unevenness of its surface
rather than to the precision of the ellipsoid semi-axes definition. In fact, the time
of the occultation is affected by the actual morphology of Io’s surface, i.e. by the
irregularity of its limbs as seen from the camera. Additionally, the uncertainty
associated to the semi-axes of the ellipsoid shape is considerably lower than the
average dimension of Io’s geographical features, so this approach is conservative
anyway. Since the average elevation of the moon’s mountains is 6.3km, this value
was taken as a priori σ0.

The stars’ position accuracy adopted is the one recently obtained thank to the
GAIA mission. As stated in [19], the uncertainty on the location of the brightest
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stars (i.e. whose apparent magnitude is lower than 12) varies between 5 and 16 µas.
Since in this work only the stellar occultations of stars whose apparent magnitude
is lower than 6 mag were considered, the a priori σ0 was taken to be equal to 10
µas, being conservative.

According to [21], the uncertainty associated to the JUICE spacecraft’s position
will be 10 m in terms of formal error. So to adopt a conservative value for the a
priori formal error, 0.1 km was chosen.

5.3 Covariance matrix propagation
Once the covariance matrix P has been computed, one knows what is the

estimated uncertainty associated to each variable at the reference time. However,
hardly ever the investigation is restricted to a singular time instant and so a tool
to propagate the estimation in time is needed. Once again, the state transition
matrix is used, just as in section 5.2.1.1, but this time it is applied through matrix
multiplication as follows:

P (t) = Φ(t, t0)P (t0)Φ(t, t0)T

Where P (t0) is the covariance matrix calculated at the reference time t0, Φ(t, t0) is
the state transition matrix from t0 to the current time t, and P (t) is the covariance
matrix associated to time t.

The state transition matrix was provided by MONTE using the
M.ParamList.transitionMatrix( Epoch t, ParamList q ) method, as explained
in section 5.2.1.1. The only difference is that in this case the ParamList q_Io is
defined in Io’s RTN reference frame, so that the propagated covariance matrix is
expressed in this frame and one does not need to manually rotate it. In fact, from
a physical point of view, it is more meaningful to analize the position uncertainty
in the radial, tangential and normal direction of the orbital reference frame.
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Results

Hereafter the results obtained from the Covariance Analysis will be discussed.
The main aim of this investigation is to understand how the a priori knowledge of
the estimated parameters and the selection of the stellar occultations affect the
estimation of the position of the target moon, Io.

The analysis will start presenting the results of the Covariance Analysis for the
nominal case, then a parametric analysis which highlights the influence of each
parameter on the estimation will follow and in the end the effects of the number
and distribution of the stellar occultation observations will be examined.

6.1 Nominal case analysis
For the nominal case 239 occultation events were considered, imposing a maxi-

mum frequency of one observation every three days and a star apparent magnitude
between -2 and 6 mag. The occultations available on ESA’s Cosmos website [23]
were used as a loose reference for the scheduled number of stellar occultation events.
As expected, the quantity of occultations detected by the code developed for this
Thesis is considerably higher that the one foreseen by ESA, even excluding the
observations disturbed by other celestial bodies. This is due to the fact that the
simplified camera frame used here assumes that UVS is always pointing towards Io,
thus detecting more occultations than the actual instrument would.

The time interval considered throughout the analysis coincides with JUICE’s
2.5 years tour of the Jovian system (January 2030 - June 2033). The only difference
is that instead of including also the very first orbital phase after the Jupiter Orbit
Insertion (JOI), it was chosen to set the beginning of the investigation in April 2030
so to limit the maximum distance between Juice and Io and deal with more regular
orbits, as can be seen in Figure 6.1. Looking at the graph, it is clear that, even if
the occultations have been selected to be no closer that three days from each other,
the distribution of the measurements is not uniform. In fact, in the last phase of
the mission, when JUICE will be orbiting Ganymede, the occultations are denser
with respect to the first period. A clear indication of this unevenness is that the
time interval considered here goes from 20th April 2030 to 26th June 2033, so that
the middle value falls on 22th November 2031, while the (239/2)th occultation takes
place on 27th March 2032. This means that roughly the 62% of the occultations is

29
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detected in the second half of the mission.

Figure 6.1: Occultations time distribution
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6.1.1 Time evolution
To gain a first insight into the effectiveness of the estimation, one can analyze

the time evolution of the standard deviation of the variable of interest, which in
this case is the position of Io. In order to distinguish between the uncertainty
associated to each position component, the standard deviation in the radial, normal
and transverse direction were plotted separately.

To better appreciate the estimation improvement, the value of the ratio σ/σ0 is
plotted against time in Figure 6.4. This time a semi-logarithmic scale was chosen
to better display the differences between the three components.

The previous plots are affected by visible periodic oscillations. To highlight the
long-period variations, the moving average technique was applied. This basically
consists in averaging a certain set of values and each time a new entry is added to
the set, the oldest one is discarded. This allows to absorb many of the short-period
oscillations while keeping the general trend of the variable evolution. In this case,
the value of σ in each direction was computed 10 times each orbital period of Io
and then averaged on the same time interval. As shown by Figures 6.3 and 6.5,
this procedure allows to obtain a much "clearer" picture of the estimated standard
deviation.

As can be seen from Figure 6.2 and 6.3, the time evolution of the uncertainty
in the R, T and N directions differs from one component to the other. As predicted
by the Euler-Hill equations, the oscillations in the R direction are bounded, while
the T component shows an increasing trend moving away from the central region.
This is due to the fact that the R and T components are coupled, so that the
uncertainties in the R direction determine a variation in the transverse position
that accumulates in time, leading to an increasingly higher error in this direction.

Looking at Figure 6.5, one can see that the uncertainty ratio in the R and T
directions remains well below 10−2, meaning that the estimated uncertainty can be
considered to be independent from the initial condition. This means that choosing
a different value for σ0R or σ0T would not affect the estimated standard deviation.
On the other hand, the N component ratio oscillates just above 10−2, so that the
predicted value cannot be considered to be completely independent from the a priori
uncertainty. This is probably due to the fact that a variation of Io’s position in the
N direction is not completely observable with the stellar occultation measurements.
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Figure 6.2: Time evolution of the formal uncertainty in the position of Io, in the radial,
transverse and normal direction

Figure 6.3: Long-period time evolution of the formal uncertainty in the position of Io, in
the radial, transverse and normal direction
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Figure 6.4: Time evolution of σ/σ0 in the position of Io, in the radial, transverse and
normal direction

Figure 6.5: Long-period time evolution of σ/σ0 in the position of Io, in the radial,
transverse and normal direction
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6.1.2 Correlation matrix

Figure 6.6 reports the correlation matrix associated to the four Galilean moons’
state in correspondence of the 30th detected occultation, on 27th June 2031.

Looking at the section corresponding to Io’s state, a strong correlation can be
identified between the radial position of the moon and the tangential velocity. This
should be expected as broadening or shrinking Io’s orbits determines a change in
the orbital speed. Also, the tangential position is correlated to the radial velocity
since the orbital speed changes along the orbital trajectory.

The chart also shows a strong correlation between the in-plane components of
the state of Io, Europa and Ganymede, due to the orbital resonance which binds
them. Conversely, the interaction between Io and Callisto is weaker since the latter
is not involved in the resonance. Also, the outer moons are very correlated with
each other since they are not observed independently.

Figure 6.6: Correlation matrix relative to the moons’ state at time 27-JUN-2031
20:20:48.3803 ET
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6.2 Estimated uncertainty parametric analysis
A key point in the Covariance Analysis is to understand how and in which

measure the different parameters affect the outcome of the estimation. In order to
do so, the a priori uncertainty σ0 associated to each parameter was iterated over a
set of values distributed around the nominal one and the corresponding σ on Io’s
position was computed. Using this technique on each and one variable at the time
allows to "isolate" the effect of that variable on the given problem.

To summarize the results of this analysis in one plot for each parameter, the
time-averaged standard deviation on Io’s position was considered. In practice, for
each value of the parameter being studied, the covariance matrix at the reference
time was computed and then propagated in time. The values of σR, σT and σN at
each time instant were computed and then averaged on the whole time span.
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6.2.1 Timing accuracy
The timing accuracy of JUICE-UVS enters in the covariance matrix formula 5.1

as weighting coefficient through matrix W , and thus from an intuitive point of view
it represents the degree of reliability of the measurements. As can be seen from
Figure 6.7, as long as the timing accuracy is kept below 10−2 its influence on the
estimation is rather modest. However, as the time precision deteriorates, so does
the effectiveness of our estimate. Still, one may argue that 5 s is a rather loose
accuracy for a space-certified instrumentation and so overall the influence of this
parameter can be considered quite limited. This plot also shows that the nominal
value adopted in this work is a reasonable one and that a further refinement of the
time accuracy would not result in a significant improvement of the estimation.

Since this parameter determines what is the influence of the measurements
information in the estimation process, it also plays a role in ensuring the conver-
gence of the problem. In fact, some numerical instabilities might arise when the
measurements weights become too small. A first indication of this inconsistency
can be spotted in the trend of σN on the far left end of the plot.

Figure 6.7: Standard deviation on Io’s position as a function of the timing accuracy
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6.2.2 Io position accuracy
Figure 6.8 shows how an error on the position of Io at the initial time t0 can

affect the prediction of its position at a later time.
As expected, the uncertainty associated to the R and T components remains

almost unchanged despite of the variations in the a priori error. This is because, as
explained in section 6.1.1, the radial and transverse components can be considered to
be independent from the initial conditions. Conversely, the estimation of Io’s position
in the N direction deteriorates as the a priori uncertainty increases, confirming
the dependence of the normal position component on the initial conditions. Still,
the estimation error stabilizes below and above a certain value. In the first case,
this is due to the fact that even if the position of the satellite is extremely well
known, other uncertainty sources come into play and prevail on the beneficial effect
of a tighter initial constraint. On the other hand, if the knowledge of the starting
position is already very poor, a further degradation of the a priori error does not
affect the estimated uncertainty.

Figure 6.8: Standard deviation on Io’s position as a function of the a priori uncertainty
on Io’s position at t0
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6.2.3 Other moons’ position accuracy

Figure 6.9, 6.10 and 6.11 show how the initial uncertainty on the position of
Europa, Ganymede and Callisto respectively can affect the quality of the prediction
of Io’s position in time. These three plots show a common trend which results in
an increase of σ on Io as σ0 on the moons’ position deteriorates. Predictably, this
behavior is more marked when an error on the position of Europa or Ganymede is
considered. This is due to fact that the orbital resonance which binds the three
inner Galilean moons amplifies the effect of an initial uncertainty on their position.
Additionally, the closer the moon is to Io, the more significant its influence. In fact,
it is reasonable that a variation on the position of Europa would affect Io more that
a variation on the position of Callisto, which is considerably further away 1.

Once again the plots confirm that the values adopted for the a priori uncertainties
on the moons’ position are satisfactory, but while a variation of σ0 on Ganymede’s
or Callisto’s position has no effect for a wide interval of values, a degradation of
Europa’s position uncertainty would result in a slightly less accurate prediction
of Io’s position. However, overall these parameters can be considered to have a
modest influence on the problem.

Figure 6.9: Standard deviation on Io’s position as a function of the a priori uncertainty
on Europa’s position at t0

1the distance between Io and Callisto is almost 6 times that between Io and Europa



6.2. ESTIMATED UNCERTAINTY PARAMETRIC ANALYSIS 39

Figure 6.10: Standard deviation on Io’s position as a function of the a priori uncertainty
on Ganymede’s position at t0

Figure 6.11: Standard deviation on Io’s position as a function of the a priori uncertainty
on Callisto’s position at t0
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6.2.4 Moons’ velocity accuracy
Considering the Galilean system as a whole it is clear that the position of Io is

affected not only by the moons’ location, but also by their velocity. Since the a
priori uncertainty adopted for the velocity is the same for all the four moons, this
was treated as a single variable. Thus, Figure 6.12 shows how the estimation of Io’s
position is influenced by the initial uncertainty on the velocity of the four Galilean
moons. Once again, as expected, the higher the a priori error, the wider the resulting
standard deviation. However, in this case the nominal value adopted is not the best
possible so that the estimation could benefit from a further refinement of the initial
constrain on the moons’ velocity. Conversely, increasing the a priori uncertainty
would result in a wider error on the predicted position of Io. Anyhow, the values of
the standard deviation remain well below the a priori ones and considering that
the graph represents the combined effect of the velocity uncertainty on all the four
moons, its effect on the estimation is not dramatic.

Figure 6.12: Standard deviation on Io’s position as a function of the a priori uncertainty
on the moons’ velocity at t0
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6.2.5 Io’s shape accuracy
Figure 6.13 shows how the estimation is affected by the uncertainties in the

modeling of Io’s shape. As explained in section 5.2.3.1, the unevenness of Io’s surface
affects the time of the stellar occultations and, lacking a detailed model of Io’s
elevations and depressions, this translates in an uncertainty on the measurements
and thus on the position of Io. For the sake of simplicity, in this work the
error associated to the moon’s geographical characteristics was translated into
an uncertainty in the value of Io’s ellipsoid’s semi-major axis. Although this is not
an extremely rigorous approach, it is much simpler and conservative.

Figure 6.13: Standard deviation on Io’s position as a function of the a priori uncertainty
on the shape of Io

From the graph it is clear that the the knowledge of Io’s morphology considerably
influences the estimation. Indeed, one order of magnitude variation of the a priori
uncertainty associated to Io’s shape parameters results in a comparable variation
in the predicted position of the moon. This is actually something quite foreseeable
since the principle underlying the stellar occultation observations is to detect the
exact time instant in which Io’s limbs cross the LOS to the star. Thus if the
limbs are highly irregular and the knowledge of the geographical characteristics
is too poor, the occultation measurements lose their meaning and deliver very
little information. On the other hand, the plot shows that the estimation still has
considerable room for improvement. In fact, the nominal value adopted in this
analysis is right in the middle of the steepest curve region, suggesting that even a
modest improvement in the a priori knowledge of Io’s shape could bring substantial
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benefits to the estimation. Of course, in this case the a priori uncertainty cannot
be reduced directly, as this would mean that Io’s mountains have become smaller,
but a detailed model of the moon’s characteristics could be implemented so that
the estimator would know where and when to expect an irregularity, adapting its
prediction accordingly.
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6.2.6 Spacecraft’s position accuracy
An error on the position of the spacecraft affects the estimation of Io’s location

in a similar way as the moon’s shape uncertainties do. In fact, JUICE’s position
modifies the LOS direction and if this is not constrained accurately enough the stellar
occultation measurement is not able to provide sufficient information regarding the
position of the moon. However, the current uncertainty on the spacecraft’s location
is better than the one associated to the moon’s shape and indeed looking at Figure
6.14 one can see that the nominal value in this case lays in the asymptotic region.
This means that the current knowledge of the spacecraft position is already good
enough to obtain the best possible estimation.

Figure 6.14: Standard deviation on Io’s position as a function of the a priori uncertainty
on the position of JUICE
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6.2.7 Stars’ position accuracy
The last variable which affects the direction of the LOS from JUICE to the

stars is of course the stars’ angular position. Luckily enough, the data stored in the
star catalogs are usually very accurate from this point of view. As can be seen from
Figure 6.15, the position accuracy reached by the GAIA mission’s star catalog is
definitely good enough with respect to the uncertainties level of this estimation. In
fact, even deteriorating the a priori knowledge of a few orders of magnitude, does
not affect the estimation considerably. The prediction worsens appreciably only
when σ0 becomes bigger than 10−6. Considering that for the current star catalogs
the stars’ position precision hardly ever goes below 100 mas, which correspond to
4 ∗ 10−6 rad, the accuracy of this variable can be considered satisfactory whatever
the source of information.

Figure 6.15: Standard deviation on Io’s position as a function of the a priori uncertainty
on the stars’ position

6.3 Influence of stellar occultations selection
Since the estimation model presented in this Thesis solely relies on stellar

occultation measurements, it is quite obvious that the number of occultation events
considered will influence the accuracy of the estimation. Simply, the more the
stellar occultations detected, the more the information supplied to the estimator
and the more accurate the prediction. However, it is interesting to investigate how
the choice of the selection criteria used to determine which observations to take
and which to discard can affect the outcome of the estimation problem.
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6.3.1 Number of occultations

As mentioned above, the error on Io’s estimated position is expected to decrease
the more occultation measurements are considered. This is exactly what happens
in Figure 6.16, where the standard deviation on Io’s position was plotted against
the number of occultations included in the Covariance Analysis. The number of
measurements considered N was increased requiring the occultations to be separated
by and increasingly smaller time span. The trend of the σ curves displayed here
is proportional to 1√

N
, as expected when adding new independent measurements

to the estimation. Indeed, the estimation error is considerably higher when just
a few occultations are considered and it diminishes with a progressively shallower
inclination moving to the right, as more and more occultations are included.

This is a predictable behavior if one considers that if just a small number of
measurements are supplied to the estimator, the information available is rather
scattered, so that adding a few other observations brings in a lot of new data
if compared to the ones already accessible, with considerable benefits on the
estimation. Conversely, when a few hundreds measurements have already been
included, a substantial volume of information has already been processed by the
estimator so that adding a small number of occultations does not make much
difference.

Figure 6.16: Standard deviation on Io’s position as a function of the number of occultations
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6.3.2 Occultations distribution
A part from the total number of occultations included in the estimation, the

second most influential specification is how sparse the measurements are.
Knowing that the occultations are scattered along the time interval of interest

as outlined in section 6.1, one can investigate the influence of the distribution of the
observations considering the first and the second half of the occultations separately.
To do so, the total number of occultations detected was increased to 676, imposing
a frequency of 3 occultations per day. This is a necessary step since otherwise each
set would contain only 119 occultations and, as can be seen in Figure 6.16, this is
not a sufficient number of measurements to perform a sound analysis.

First, the occultations were halved so that each set contained the same number
of occultations (i.e 676/2=338). In this way the number of measurements considered
is the same, but the first half results to be sparser than the second. Figure 6.17
shows how, compared to the reference solution which spans on the whole time
interval, both the first and the second set deliver a poorer estimation. However,
it is also clear that the first half outperforms the second, thus confirming that, in
terms of occultations distribution, the sparser the better.

Still, one may argue that the first half spans a longer time interval compared
to the second, since less occultations take place in the first period but the first
and second set were imposed to contain the same number of measurements. To
solve this discrepancy, a second case was considered in which the occultations
were halved splitting the time interval rather then the number of measurements.
The result is that the first half contains 212 occultations and spans from 20th

April 2030 to 22th November 2031, while the second half contains 464 occultations
and it covers from 22th November 2031 to 26th June 2033. The results of this
analysis are shown in Figure 6.18 and it is clear that, at least for a few hundred
measurements, the first set outperforms the second again. Of course, since the first
set of measurements contains 212 occultations only, the plot cannot go any further.
However, comparing the trend with the other graphs as well, it is reasonable to
assume that the estimation delivered by the first set will be more accurate even
when a larger number of occultations was considered.
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Figure 6.17: Standard deviation on Io’s position as a function of the occultations distribu-
tion - the first and the second half contain the same number of measurements

Figure 6.18: Standard deviation on Io’s position as a function of the occultations distri-
bution - the first and the second half cover the same time interval
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Chapter 7

Conclusions

Overall, the results of the Covariance Analysis can be considered satisfactory
and the stellar occultations proved to be a promising way to improve the satellites’
ephemerides and constrain the Laplace resonance evolution. Through the estimation
process it was possible to tighten the constraint on Io’s position up to two orders
of magnitude, which is remarkable taking into account the fact that only stellar
occultation observations were included. Additionally, these measurements can be
performed even if the spacecraft is relatively far away from the moon and using
an instrument and a technology that would be present onboard anyway. So a part
from the objective potential of stellar occultations, the benefits they could bring
is even higher considering that virtually no expense would be required to include
these measurements in the mission plan.

Adopting reasonable values for the measurements accuracy and for the a priori
uncertainties, the standard deviation on Io’s position in the radial, transverse
and normal direction reached a minimum of 0.5 km, 1.2 km and 0.75 km respec-
tively. While the R and T components can be considered completely independent
from the initial conditions, the N component is not fully observable through stel-
lar occultations measurements and is thus effected by the choice of the a priori
uncertainty.

Subsequently, a parametric analysis was performed to investigate the influence
of the different parameters on the estimation. Above all, a strong dependence on
the accuracy of Io’s shape model was observed. In fact, this can be considered the
key feature to further improve the estimation. The position of JUICE affects the
estimated uncertainty as well, however the current knowledge of the spacecraft’s
position is sufficiently accurate to avoid the error on Io’s position to diverge. The
influence of the other parameters considered varies slightly from one to the other,
but overall their effect on the estimation is modest.

Finally, the influence of the number of stellar occultations included in the
Covariance Analysis was investigated. Predictably, the accuracy on the position of
Io improves as more and more occultations are added to the estimation, showing
a trend proportional to 1√

N
. As a thumb rule, no sound investigation can be

performed with less than 100 measurements approximately, at least in this case.
A brief analysis of the effects of the stellar occultations distribution in time was
performed and it looks like the sparser the measurements, the better the estimation.
However, further investigations on the optimal selection of the stellar occultations
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are needed to draw more decisive conclusions.

7.1 Further developments
The Covariance Analysis performed and discussed in this Thesis is just a first step

in the investigation of the potential benefits that the stellar occultation observations
can bring to the Orbit Determination process. Hereafter the most immediate
developments and improvements that can be implemented in the work done so far
will be listed and briefly discussed.

First of all, a full Orbit Determination analysis could be performed. The
Covariance Analysis presented in this work relies exclusively on stellar occultations
measurements. In order to make the analysis more realistic one can introduce
different kinds of observations, such as Doppler and range measurements, and
estimate also the orbit of JUICE and the other satellites, which are now constraint
by the a priori values.

One of the most relevant simplification applied to this analysis is that UVS is
always pointing toward Io but, of course, this is quite an unrealistic scenario. So one
straightforward improvement would be to implement the actual pointing direction
of the spectrograph. This would allow to reduce the total number of occultations
detected and select them more accurately and more realistically. However, one
should not expect this upgrade to improve the quality of the estimation. In fact, as
mentioned in Chapter 6, the number of occultations considered in the above analysis
was compared to the one published by ESA to be sure that the investigation was
as authentic as possible.

As already pointed out, the most effective way to improve the current estimation
would be to include a detailed mapping of Io’s geographical characteristics. This
would not probably be a straightforward implementation since the geometrical
projection techniques used in this work assume that Io can be modeled as a
three-dimensional ellipsoid. Thus one may think about modifying the current
mathematical formulation of the problem to allow for the introduction of an
irregular model of Io’s shape.

Regarding the influence of the stellar occultations choice, in this analysis the
effects that the number of occultations considered and their time distribution
have on the estimation have been investigated. However, a deeper examination is
needed to assess which are the optimal selection criteria. This is a crucial point
when it comes to actually plan the occultations campaign: since the number of
measurements that can be performed throughout a mission is usually limited, it
is essential to identify which occultation events are more significant and bring the
most information.

Finally, moving to a more mathematical aspect, one could include the angular
error on the frame rotations in the Covariance Analysis. As explained in section 4.1,
this source of uncertainty was neglected in the current investigation as its influence
was found to be sufficiently small to discard it without consequential discrepancies.
However, including it would benefit the completeness and robustness of the analysis.

Having implemented all these improvements, it would certainly be interesting to
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apply the models and techniques developed for JUICE and Io to other spacecraft-
satellite couples. The adjustment to a different system should be straightforward,
but the results and insights it may bring could be less predictable. Also, the model
could be adapted to detect and investigate various kinds of occultations, such as
between two different moons or between stars and ring systems.

Since the employment of stellar occultations to determine the position of celestial
bodies is quite an unexplored field, a whole range of additional applications could
be discussed, but this goes beyond the scope of this Thesis.
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Appendix A

A.1 Code - geometrical model

# define camera frame
camera_frame = M. DirectionFrame (boa , ’camera frame ’,
’EMO2000 ’, M. TimeInterval (),
M. PositionDir ( M. TrajQuery (boa , ’Io’,
’Juice ’, ’EMO2000 ’)),
M. PositionDir ( M. TrajQuery (boa ,
’Jupiter Barycenter ’,
’Juice ’, ’EMO2000 ’)) , False )

#star search
st=M. StarCatalogBoa .read(boa)
directionij =io.state( t_plot ).pos ()-juice.state( t_plot ).pos ()
stars_aroundg =st. search (t_plot , ’EMO2000 ’, M. Dbl3Vec ( directionij

),
M. UnitDbl (angle , ’deg ’),
minMagnitude , maxMagnitude )

# multiplication
Itw4x4 =np. matrix ([[1, 0, 0, trl[0]],
[0, 1, 0, trl[1]],
[0, 0, 1, trl[2]],
[0, 0, 0, 1.0]])
Qt=np. transpose (np. linalg .inv( Itw4x4 ))*Q*np. linalg .inv( Itw4x4 )
Qi=np. transpose (np. linalg .inv( R_BE4x4 ))*Qt*np. linalg .inv( R_BE4x4

)
Qc=np. transpose (np. linalg .inv( R_EC4x4 ))*Qi*np. linalg .inv( R_EC4x4

)
Cinv=K3x4*Qc.I*K3x4.T
C=Cinv.I

# compute h
h=[]
for n in range(len( stars_aroundg )):
starnumber =n
starvector =( stars_aroundg [ starnumber ].dir(t_plot ,’camera frame ’)

)
starv=np. matrix ([[ starvector [0]],[ starvector [1]],[ starvector [2]]

])
starvproj =np.dot(K,starv)
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star2D =np. matrix ([[ starvproj .item(0)/ starvproj .item(2)],
[ starvproj .item(1)/ starvproj .item(2)],
[1.0]])
h. append (np. transpose ( star2D )*C* star2D )

A.2 Code - occultations detection

import os
import Monte as M
import numpy as np
import mpylab as plt
import time

#load boa stuff
gin=’/home/monte/ lockfile /juice/ Juice_monte_lockfile_latest .boa ’
sat=’/home/monte/ephem/ se_jup310_de430_17991218_22000114_r131115 .

boa ’
pln=’/home/monte/ephem/ pe_de430_18491226_21500122_r130321 .boa ’
juice=’/home/naif/ kernels /juice/spk/ juice_latest .boa ’
boa=M. BoaLoad ([pln ,sat ,juice ,gin])
trajs=M. TrajSetBoa .read(boa)

# useful constants
j2000=M.Epoch(’01 -JAN -2000 12:00 ET’)
minMagnitude =-2 #leave it like this , there are no brighter stars

in the catalog
maxMagnitude =6 #tuned with the GIF
angle=10 #The radius of the search circle , in the unit of angle.
distanceJuiceIo_max =10 ** 10 #max distance between Juno and G
hyperbolic_const =0.0018 #in minutes
mean_radiusG =1821.6 #km
t_tol=10 ** (-3) # occultation time tolerance (while cycle to refine

occ time) #02:01:23.6173 , 0.
278664112091 , 16 iter

h_tol=10 ** (-16)
numiter_max =1000 #max number of iterations (while cycle to refine

occ time)

# EMO2000
juice=M. TrajQuery (boa , ’Juice ’, ’Jupiter Barycenter ’, ’EMO2000 ’)
io=M. TrajQuery (boa , ’Io’, ’Jupiter Barycenter ’, ’EMO2000 ’)
europa =M. TrajQuery (boa , ’Europa ’, ’Jupiter Barycenter ’, ’EMO2000 ’)
ganymede =M. TrajQuery (boa , ’Ganymede ’, ’Jupiter Barycenter ’, ’

EMO2000 ’)

# define camera frame
camera_frame = M. DirectionFrame (boa , ’camera frame ’, ’EMO2000 ’,
M. TimeInterval (), M. PositionDir ( M. TrajQuery (boa , ’Io’, ’Juice ’, ’

EMO2000 ’)),
M. PositionDir ( M. TrajQuery (boa , ’Jupiter Barycenter ’, ’Juice ’, ’

EMO2000 ’)) , False )
InertialFrame (boa , ’camera frame inertial ’, ’camera frame ’, ’

EMO2000 ’, M. TimeInterval () )
velg=M. TrajQuery (boa , ’Io’, ’Juice ’, ’camera frame inertial ’)
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#get ellipsoid parameters
ellipse =M. ShapeBoa .read(boa ,’Io Ellipsoid ’)
ell= ellipse . ellipsoid ()
a_ellipsoid =ell.a()
a_ellipsoid = a_ellipsoid .value ()
b_ellipsoid =ell.b()
b_ellipsoid = b_ellipsoid .value ()
c_ellipsoid =ell.c()
c_ellipsoid = c_ellipsoid .value () #all in km
Q=np. matrix ([[1/( a_ellipsoid ** 2), 0, 0, 0],[0, 1/( b_ellipsoid ** 2),

0, 0],[0, 0, 1/( c_ellipsoid ** 2),
0],[0, 0, 0, -1]])

# define intrinsic camera parameters matrix
f=1
K=np. matrix ([[f, 0, 0],[0, f, 0],[0, 0, 1]])
K3x4=np. matrix ([[f, 0, 0, 0],[0, f, 0, 0],[0, 0, 1, 0]])

#TIME CYCLE
start = time.time ()
st=M. StarCatalogBoa .read(boa)
t_start =M.Epoch(’01 -JAN -2030 00:00:00.0000 ET’)
t_end=M.Epoch(’26 -JUN -2033 00:00:00.0000 ET’)

# define small delta_t --> proportional to delta_alfa
delta=[]
delta_t_time =M.Epoch.range (t_start ,t_end ,M. Duration (’60:00’))
for k in range(len( delta_t_time )):
R=(juice.state( delta_t_time [k]).pos ()-io.state( delta_t_time [k]).

pos ()).mag () #km
angular_aperture = mean_radiusG /R #rad
delta_alfa =0.05* angular_aperture #rad
vel=sqrt(velg.state( delta_t_time [k]).vel ()[0] ** 2+velg.state(

delta_t_time [k]).vel ()[1] ** 2) #km
/s

angular_velg =vel/R #rad/s
delta. append ( delta_alfa / angular_velg ) #s
delta_t =M. UnitDbl (min(delta),’sec ’) #s
if delta_t <M. UnitDbl (10.0,’sec ’):
delta_t =M. UnitDbl (10.0,’sec ’)

occultation_time_vector1 =[]
occultation_star_vector1 =[]
occultation_distance_vector1 =[]
occultation_time_vector1_exit =[]
occultation_star_vector1_exit =[]
occultation_distance_vector1_exit =[]
T= t_start
while T<t_end:
R=(juice.state(T).pos ()-io.state(T).pos ()).mag ()
vel=sqrt(velg.state(T).vel ()[0] ** 2+velg.state(T).vel ()[1] ** 2)
DELTA_T =M. UnitDbl ( hyperbolic_const /(vel/R),’min ’)
if (vel/R)>0. 000002 :
DELTA_T =M. UnitDbl ( hyperbolic_const /(2.5*vel/R),’min ’)
if DELTA_T >M. UnitDbl (6.0,’hour ’):
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DELTA_T =M. UnitDbl (6.0,’hour ’)

#Get stars
directionij =io.state(T).pos ()-juice.state(T).pos ()
print (" Refreshing stars_aroundg (T=\%s)..." \% (T))
stars_aroundg =st. search (T, ’EMO2000 ’, M. Dbl3Vec ( directionij ) , M.

UnitDbl (angle , ’deg ’),
minMagnitude , maxMagnitude )

#t cycle
t=M.Epoch. range (T,T+DELTA_T , delta_t ) #G position refresh time
t. append (T+ DELTA_T )
print (" Looking for occultations from \%s to \%s..." \% (t[0],t[-1]

))
h_old=np. matrix (np.ones ((600 ,1)))

for j in range(len(t)):
# Translation vector
rig=M. TrajQuery (boa , ’Io’, ’Jupiter Barycenter ’, ’Io Mean Equator

Prime_Meridian of Date Non -
Inertial IAU_2000 ’)

ric=M. TrajQuery (boa , ’Juice ’, ’Jupiter Barycenter ’, ’Io Mean
Equator Prime_Meridian of Date
Non - Inertial IAU_2000 ’)

rig=np. matrix ([[rig.state(t[j]).pos ()[0]],[rig.state(t[j]).pos ()[1
]],[rig.state(t[j]).pos ()[2]]])

ric=np. matrix ([[ric.state(t[j]).pos ()[0]],[ric.state(t[j]).pos ()[1
]],[ric.state(t[j]).pos ()[2]]])

trl=rig-ric #in EMO !!!

# Rotation matrices
coord=M. CoordSetBoa .read(boa)
rotation_fromGtoEMO =np. matrix (coord. rotation (t[j],’EMO2000 ’,’Io

Mean Equator Prime_Meridian of
Date Non - Inertial IAU_2000 ’).m().
toArray ())

rotation_fromEMOtoC =np. matrix (coord. rotation (t[j],’camera frame ’,’
EMO2000 ’).m(). toArray ())

rotation_fromGtoC =np. matrix (coord. rotation (t[j],’camera frame ’,’Io
Mean Equator Prime_Meridian of

Date Non - Inertial IAU_2000 ’).m().
toArray ())

rotation_fromEMOtoC4x4 =np. matrix (np.zeros ((4,4)))
for i in range(3):
rotation_fromEMOtoC4x4 [i,0:3]= rotation_fromEMOtoC [i,0:3]
rotation_fromEMOtoC4x4 [3,3]=1

rotation_fromGtoEMO4x4 =np. matrix (np.zeros ((4,4)))
for m in range(3):
rotation_fromGtoEMO4x4 [m,0:3]= rotation_fromGtoEMO [m,0:3]
rotation_fromGtoEMO4x4 [3,3]=1

# Multiplication
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Itw4x4 =np. matrix ([[1, 0, 0, trl[0]],[0, 1, 0, trl[1]],[0, 0, 1,
trl[2]],[0, 0, 0, 1.0]]) #DO NOT

ROTATE THE TRASL VECTOR
Qt=np. transpose (np. linalg .inv( Itw4x4 ))*Q*np. linalg .inv( Itw4x4 )
Qi=np. transpose (np. linalg .inv( rotation_fromGtoEMO4x4 ))*Qt*np.

linalg .inv( rotation_fromGtoEMO4x4
) #same with np.dot

Qc=np. transpose (np. linalg .inv( rotation_fromEMOtoC4x4 ))*Qi*np.
linalg .inv( rotation_fromEMOtoC4x4
) #same with np.dot

Cinv=K3x4*Qc.I*K3x4.T
C=Cinv.I

# Compute h
if (juice.state(t[j]).pos ()-io.state(t[j]).pos ()).mag ()<

distanceJuiceIo_max :
h=[]
for n in range(len( stars_aroundg )):
starnumber =n
starvector = stars_aroundg [ starnumber ].dir(t[j],’camera frame ’)#T[k]

t[j]
starv=np. matrix ([[ starvector [0]],[ starvector [1]],[ starvector [2]]])
starvproj =np.dot(K,starv)
star2D =np. matrix ([[ starvproj .item(0)/ starvproj .item(2)],[ starvproj

.item(1)/ starvproj .item(2)],[1.0]
])

h. append (np. transpose ( star2D )*C* star2D )
if h_old[n]>0.0 and h[n]<0.0:
print ("There is an occultation starting at time \%s with star

number \%s" \% (t[j],n))
#Store occultation info
if occultation_time_vector1 ==[]:
occultation_time_vector1 . append (t[j])
occultation_distance_vector1 . append (h[n])
occultation_star_vector1 . append ( stars_aroundg [n])
elif occultation_time_vector1 !=[]:
if stars_aroundg [n].name ()!= occultation_star_vector1 [-1].name ():
occultation_time_vector1 . append (t[j])
occultation_distance_vector1 . append (h[n])
occultation_star_vector1 . append ( stars_aroundg [n])
elif h_old[n]<0.0 and h[n]>0.0:
print ("There is an occultation finishing at time \%s with star

number \%s" \% (t[j],n))
if occultation_time_vector1_exit ==[]:
occultation_time_vector1_exit . append (t[j])
occultation_distance_vector1_exit . append (h[n])
occultation_star_vector1_exit . append ( stars_aroundg [n])
elif occultation_time_vector1_exit !=[]:
if stars_aroundg [n].name ()!= occultation_star_vector1_exit [-1].name

():
occultation_time_vector1_exit . append (t[j])
occultation_distance_vector1_exit . append (h[n])
occultation_star_vector1_exit . append ( stars_aroundg [n])

h_old=h
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T=T+ DELTA_T

print time.time () - start

with open(’/home/ fandreoli /cases/ stellar_occultation /
occultations_LONG .txt ’, ’w’) as f
:

f.write(’#\%s \%s, \%s\r\ n’ \% (’Time interval considered :’,
t_start ,t_end))

f.write(’#\%s\%s \%s\%s \%s\%s \%s\%s\%s \%s\%s \%s\%s \%s\%s\r\ n
’ \% (’minMagn =’,minMagnitude ,’
maxMagn =’,maxMagnitude ,’search
angle=’,angle ,’max distance Juice
-Io=’,distanceJuiceIo_max ,’km’,’
hyperbolic const=’,
hyperbolic_const ,’h tolerance =’,
h_tol ,’max number iter=’,
numiter_max ))

f.write(’#\%15s\r\ n’ \% (’ Occultations starting time ’))
f.write(’#\%15s \%26s\r\n’ \% (’ TIME ’,’ STAR NUMBER ’))

start = time.time ()
print (’Refining the starting occultation time ... ’)
# Refine occultation time
occultation_time_vector1A =[]
occultation_distance_vector1A =[]
occultation_star_vector1A =[]
for k in range(len( occultation_time_vector1 )):
low= occultation_time_vector1 [k]- delta_t #since t= delta_t is the

time between h + and -, it is an
appropriate delta time

high= occultation_time_vector1 [k]
numiter =0
h_acc=1.0
while h_acc>h_tol or h_acc<-h_tol and numiter < numiter_max :#(high -

low). seconds ()>M. UnitDbl (t_tol ,’
sec ’) and numiter < numiter_max :

numiter = numiter +1
add=(high-low)/2.0
new=low+add

# translation vector
rig=M. TrajQuery (boa , ’Io’, ’Jupiter Barycenter ’, ’Io Mean Equator

Prime_Meridian of Date Non -
Inertial IAU_2000 ’)

ric=M. TrajQuery (boa , ’Juice ’, ’Jupiter Barycenter ’, ’Io Mean
Equator Prime_Meridian of Date
Non - Inertial IAU_2000 ’)

rig=np. matrix ([[rig.state(new).pos ()[0]],[rig.state(new).pos ()[1]]
,[rig.state(new).pos ()[2]]])

ric=np. matrix ([[ric.state(new).pos ()[0]],[ric.state(new).pos ()[1]]
,[ric.state(new).pos ()[2]]])

trl=rig-ric
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# rotation matrices
rotation_fromGtoEMO =np. matrix (coord. rotation (new ,’EMO2000 ’,’Io

Mean Equator Prime_Meridian of
Date Non - Inertial IAU_2000 ’).m().
toArray ())

rotation_fromEMOtoC =np. matrix (coord. rotation (new ,’camera frame ’,’
EMO2000 ’).m(). toArray ())

rotation_fromGtoC =np. matrix (coord. rotation (new ,’camera frame ’,’Io
Mean Equator Prime_Meridian of
Date Non - Inertial IAU_2000 ’).m().
toArray ())

rotation_fromEMOtoC4x4 =np. matrix (np.zeros ((4,4)))
for i in range(3):
rotation_fromEMOtoC4x4 [i,0:3]= rotation_fromEMOtoC [i,0:3]
rotation_fromEMOtoC4x4 [3,3]=1

rotation_fromGtoEMO4x4 =np. matrix (np.zeros ((4,4)))
for m in range(3):
rotation_fromGtoEMO4x4 [m,0:3]= rotation_fromGtoEMO [m,0:3]
rotation_fromGtoEMO4x4 [3,3]=1

# multiplication
Itw4x4 =np. matrix ([[1, 0, 0, trl[0]],[0, 1, 0, trl[1]],[0, 0, 1,

trl[2]],[0, 0, 0, 1.0]]) #DO NOT
ROTATE THE TRASL VECTOR

Qt=np. transpose (np. linalg .inv( Itw4x4 ))*Q*np. linalg .inv( Itw4x4 )
Qi=np. transpose (np. linalg .inv( rotation_fromGtoEMO4x4 ))*Qt*np.

linalg .inv( rotation_fromGtoEMO4x4
) #same with np.dot

Qc=np. transpose (np. linalg .inv( rotation_fromEMOtoC4x4 ))*Qi*np.
linalg .inv( rotation_fromEMOtoC4x4
) #same with np.dot

Cinv=K3x4*Qc.I*K3x4.T
C=Cinv.I

# compute h
starvector = occultation_star_vector1 [k].dir(new ,’camera frame ’)
starv=np. matrix ([[ starvector [0]],[ starvector [1]],[ starvector [2]]])
starvproj =np.dot(K,starv)
star2D =np. matrix ([[ starvproj .item(0)/ starvproj .item(2)],[ starvproj

.item(1)/ starvproj .item(2)],[1.0]
])

h_acc=np. transpose ( star2D )*C* star2D
if h_acc>0.0:
low=new
else:
high=new
print ("There is an occultation starting at time \%s with star

number \%s (\%s) (\%s)" \% (new ,
occultation_star_vector1 [k].name
(),k, numiter ))

with open(’/home/ fandreoli /cases/ stellar_occultation /
occultations_LONG .txt ’, ’a’) as f
:
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f.write(’\%9s \%9s\r\ n’ \% (new , occultation_star_vector1 [k].name
()))

#Store occultation info
occultation_time_vector1A . append (new)
occultation_distance_vector1A . append (h_acc)
occultation_star_vector1A . append ( occultation_star_vector1 [k])

with open(’/home/ fandreoli /cases/ stellar_occultation /
occultations_LONG .txt ’, ’a’) as f
:

f.write(’#\%15s\r\ n’ \% (’ Occultations finishing time ’))
f.write(’#\%15s \%26s\r\ n’ \% (’ TIME ’,’ STAR NUMBER ’))

print (’Refining the finishing occultation time ... ’)
# Refine occultation time
occultation_timeA_vector1_exit =[]
occultation_distanceA_vector1_exit =[]
occultation_starA_vector1_exit =[]
for k in range(len( occultation_time_vector1_exit )):
low= occultation_time_vector1_exit [k]- delta_t
high= occultation_time_vector1_exit [k]
numiter =0
h_acc=-1.0
while h_acc>h_tol or h_acc<-h_tol and numiter < numiter_max :
numiter = numiter +1
add=(high-low)/2.0
new=low+add

# translation vector
rig=M. TrajQuery (boa , ’Io’, ’Jupiter Barycenter ’, ’Io Mean Equator

Prime_Meridian of Date Non -
Inertial IAU_2000 ’)

ric=M. TrajQuery (boa , ’Juice ’, ’Jupiter Barycenter ’, ’Io Mean
Equator Prime_Meridian of Date
Non - Inertial IAU_2000 ’)

rig=np. matrix ([[rig.state(new).pos ()[0]],[rig.state(new).pos ()[1]]
,[rig.state(new).pos ()[2]]])

ric=np. matrix ([[ric.state(new).pos ()[0]],[ric.state(new).pos ()[1]]
,[ric.state(new).pos ()[2]]])

trl=rig-ric

# rotation matrices
rotation_fromGtoEMO =np. matrix (coord. rotation (new ,’EMO2000 ’,’Io

Mean Equator Prime_Meridian of
Date Non - Inertial IAU_2000 ’).m().
toArray ())

rotation_fromEMOtoC =np. matrix (coord. rotation (new ,’camera frame ’,’
EMO2000 ’).m(). toArray ())

rotation_fromGtoC =np. matrix (coord. rotation (new ,’camera frame ’,’Io
Mean Equator Prime_Meridian of
Date Non - Inertial IAU_2000 ’).m().
toArray ())

rotation_fromEMOtoC4x4 =np. matrix (np.zeros ((4,4)))
for i in range(3):
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rotation_fromEMOtoC4x4 [i,0:3]= rotation_fromEMOtoC [i,0:3]
rotation_fromEMOtoC4x4 [3,3]=1

rotation_fromGtoEMO4x4 =np. matrix (np.zeros ((4,4)))
for m in range(3):
rotation_fromGtoEMO4x4 [m,0:3]= rotation_fromGtoEMO [m,0:3]
rotation_fromGtoEMO4x4 [3,3]=1

# multiplication
Itw4x4 =np. matrix ([[1, 0, 0, trl[0]],[0, 1, 0, trl[1]],[0, 0, 1,

trl[2]],[0, 0, 0, 1.0]]) #DO NOT
ROTATE THE TRASL VECTOR

Qt=np. transpose (np. linalg .inv( Itw4x4 ))*Q*np. linalg .inv( Itw4x4 )
Qi=np. transpose (np. linalg .inv( rotation_fromGtoEMO4x4 ))*Qt*np.

linalg .inv( rotation_fromGtoEMO4x4
) #same with np.dot

Qc=np. transpose (np. linalg .inv( rotation_fromEMOtoC4x4 ))*Qi*np.
linalg .inv( rotation_fromEMOtoC4x4
) #same with np.dot

Cinv=K3x4*Qc.I*K3x4.T
C=Cinv.I

# compute h
starvector = occultation_star_vector1_exit [k].dir(new ,’camera frame ’

)
starv=np. matrix ([[ starvector [0]],[ starvector [1]],[ starvector [2]]])
starvproj =np.dot(K,starv)
star2D =np. matrix ([[ starvproj .item(0)/ starvproj .item(2)],[ starvproj

.item(1)/ starvproj .item(2)],[1.0]
])

h_acc=np. transpose ( star2D )*C* star2D
if h_acc<0.0:
low=new
else:
high=new
print ("There is an occultation finishing at time \%s with star

number \%s (\%s) (\%s)" \% (new ,
occultation_star_vector1_exit [k].
name (),k, numiter ))

with open(’/home/ fandreoli /cases/ stellar_occultation /
occultations_LONG .txt ’, ’a’) as f
:

f.write(’\%9s \%9s\r\ n’ \% (new , occultation_star_vector1_exit [k]
.name ()))

#Store occultation info
occultation_timeA_vector1_exit . append (new)
occultation_distanceA_vector1_exit . append (h_acc)
occultation_starA_vector1_exit . append (

occultation_star_vector1_exit [k])

print time.time () - start
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A.3 Code - numerical partials

# partial derivative with respect to a
delta_a =1.0

ui. setup. EditEllipsoidShape (boa ,
Name = "Io Ellipsoid ",
Body = "Io",
AxisA = (1. 829400000000000e +03 + delta_a ) *km)

#Get C
C_da = project_ellipsoid (boa , t_plot , ’Io’, f)

#Get h
h_da = get_h( stars_aroundi ,f,t_plot ,C_da)

# Partials computation
partialsa =[]
for k in range(len(h_da)):
partialsa . append (( float (h_da[k])- float(h[k]))/ delta_a )



Appendix B

B.1 Matrix inverse derivative
Noticing that for a generic matrix A and a generic scalar parameter x:

0 = ∂I

∂x
= ∂AA−1

∂x
= ∂A

∂x
A−1 + A

∂A−1

∂x

A
∂A−1

∂x
= −∂A

∂x
A−1

The partial derivative of the inverse of matrix A can be written as:

∂A−1

∂x
= −A−1∂A

∂x
A−1 (B.1)
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