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To whom is near, to whom is far,
and especially to whom cannot come back anymore





E tutto vidi nella creazione di Dio
Ma ad ogni cosa che esiste
A tutto quel che accade sotto il sole
Un senso l’uomo non riesce a dare
Lì sopra gli uomini si affaticano
Senza poter trovare
E il sapiente che dice di sapere
Neppure lui ha trovato

Qohèlet





Sommario

L’utilizzo di modelli matematici sta assumendo un ruolo sempre più cen-
trale nella ricerca oncologica. La complessità del cancro ha stimolato grup-
pi di ricerca interdisciplinare nello sviluppo di modelli quantitativi per
rispondere alle numerose domande aperte che riguardano l’insorgenza,
la progressione, la diagnosi, la risposta al trattamento terapeutico e l’ac-
quisizione della resistenza ai farmaci dei tumori. La varietà di approcci
matematico-fisici ben si adatta allo studio di una materia così eterogenea.
In questo lavoro presentiamo innanzitutto gli aspetti biologico-clinici che
caratterizzano il cancro, per poi introdurre i modelli che sono stati utiliz-
zati per comprenderli. Abbiamo preso in considerazione il caso del mie-
loma multiplo, una neoplasia che colpisce le plasmacellule. In particolare
proponiamo un modello matematico per lo studio della patogenesi delle
lesioni ossee causate dal mieloma. L’insorgere di questo tumore rompe
l’equilibrio fisiologico del tessuto osseo, causando un aumento dell’attivi-
tà degli osteoclasti ed una diminuzione dell’attività degli osteoblasti, fe-
nomeni che, combinati, comportano le caratteristiche fratture. Abbiamo
optato per un approccio di tipo ecologico, in cui i diversi tipi di cellule
sono considerati come specie interagenti in meccanismi di cooperazione
o sfruttamento. Questo fenomeno è stato modellizzato all’interno della
classe degli Interacting Particle Systems, che sono sistemi di processi di
Markov localmente interagenti. Abbiamo inizialmente studiato il caso del-
l’osso sano per poi passare a quello in cui sono presenti le cellule del mie-
loma. Infine, abbiamo svolto simulazioni per delineare l’evoluzione nel
tempo delle specie cellulari. Abbiamo riservato una particolare attenzione
alla definizione dei parametri del modello: non solo essi ci permettono di
riprodurre diversi stadi e forme del mieloma, ma possono descrivere l’in-
tervento terapeutico sul tumore, costituendo un nuovo strumento per la
ricerca oncologica.





Abstract

Mathematical modelling has recently been gaining crucial importance in
oncological research. The complexity of cancer has stimulated interdis-
ciplinary research to address the many open questions about tumor ini-
tiation, progression, diagnosis, treatment response and drug resistance.
The variety of mathematical and physical approaches is well-suited to the
study of such a heterogeneous topic as cancer. In this thesis we firstly
present the biological and clinical aspects that characterize cancer. Suc-
cessively, we describe models that were developed to understand them.
We decided to focus on the case of multiple myeloma, a neoplasia that af-
fects plasmacells. In particular, we propose a mathematical model for the
study of the pathogenesis of multiple myeloma bone disease. In fact, the
onset of this tumor disrupts the physiological homeostasis of bone tissue.
It enhances the osteoclasts activity and suppresses the osteoblast activity:
these phenomena combined lead to bone lesions distinctive of myeloma.
We opt for an ecological approach, where different kind of cells are consid-
ered as species, involved both in cooperative and exploitative interactions.
This phenomenon has been modelled in the framework of the interact-
ing particle systems, a class of systems composed by locally interacting
Markov processes. Firstly, we study the healthy bone case, then the one
in which myeloma cells are present. Lastly, we perform simulations to re-
produce the time evolution of cellular species. We pay special attention
to the model parameter setting: they allow us to simulate different stages
and forms of myeloma and, moreover, they can describe the therapeutic
intervention.
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INTRODUCTION

LEGGE DI WOLF

SULLA PIANIFICAZIONE

Un buon posto per cominciare
è dove sei.

During the past two decades, the study of a complex problem such
as cancer has stimulated the interest of physicists, mathematicians, engi-
neers and chemists. The encounter of different approaches is able to cre-
ate a breeding ground ideal for new ideas for understanding and tackling
cancer to blossom. This is especially crucial considering that, nowadays,
cancer represents one of the most prominent causes of death.

Physics aims to provide quantitative models, in order to interpret and
integrate clinical data. These have lately become more and more available,
thanks to new techniques for DNA sequencing, epigenetic classification
and so on.

Our thesis places itself in this framework, proposing a statistical me-
chanics model for the pathogenesis of multiple myeloma-induced bone
disease. We opted for an ecological approach: simply put, we considered
cancer as a result of interactions between cellular species. Successively, we
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developed an interacting particle model and simulated it as a succession
of points of a Poisson process over a lattice.

Scientists bring to interdisciplinary research their own knowledge, their
methods but, unfortunately, also their language. Indeed, the major prob-
lem for experts from different fields is the ability to communicate. Because
of this, a priority for us has been to maintain an impartial interdisciplinary
approach towards the topic, discussing it both from a clinical-biological
and from a mathematical-physical point of view.

In order to achieve this, we tried to produce a piece of work accessible
to readers coming from various research fields. On the one hand, we did
not go into in-depth mathematical details, that could prove disorientating
to a biologist. On the other hand, we introduced two chapter of biomed-
ical subject, alongside a glossary of biological terms, in order to facilitate
the reading for physicists. We decided to alternate the chapters in order to
highlight the process through which the toolbox of a physicist, who stud-
ies a real phenomenon, suits to the features of the phenomenon itself.

We commence Chapter 1 with an introduction, from a biological point
of view, of the main features of cancer. Firstly, we are going to describe
the hallmarks, i.e. the distinctive traits, of cancer, defined in 2000 in a
well-known paper by D. Hananan and R. A. Weinberg [1]. We will deal
with tumor progression, from the initial genome mutation to the diagnos-
tic methods, working through the description of aspects such as angiogen-
esis and metastasis.

In Chapter 2, we are going to do a review of the approaches to cancer
of mathematics and physics. First of all, we are going to try to explain
how physics can be linked to oncology and especially how physics can be
useful for both diagnosis and therapy. Later, following the structure of
Chapter 1, we are going to introduce models and techniques applied by
mathematical oncology. In particular, we will focus on some very useful
tools such as branching processes.

In Chapter 3, we are going to focus on multiple myeloma, a neoplasia
of plasmacells, often associated to lytic bone lesions. We will firstly intro-
duce the physiology of healthy bone tissue and then we will describe the
effect that myeloma has on it. Particularly, we are going to list the molecu-
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lar pathways that lead to the pathogenesis of multiple myeloma-induced
bone disease.

In Chapter 4, which is of a purely mathematical nature, we will dwell
on the toolbox needed to develop our model. Having introduced the
reader to the main concepts of Markov chains and Poisson processes, we
will analyse in details two of examples interacting particle systems: the
Curie-Weiss model and the Voter Model.

In Chapter 5 we are going to describe our model of pathogenesis of
multiple myeloma-induced bone disease. Before doing this, we will briefly
introduce the evolutionary game theory approach to the same problem.
We will show step-by-step how we have created the model and how we
designed the simulations.

In the following two sections, we will show the code we developed and
the figures we obtained.

Two appendices will follow : the first one contains details about proba-
bility theory, that can be useful for understanding Chapter 4; the other one
looks into the relation between evolutionary game theory and population
dynamics.

To conclude, a glossary of the lesser-known biomedicals terms used
was included.
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CHAPTER

1

THE BIOLOGY OF CANCER

OSSERVAZIONE DI AVERY SUL TEATRO

Non importa se cadi per terra,
purché quando ti alzi prendi qualcosa
dal pavimento.

Cancer is a genetic disease of multicellular organism, consequence of
the accumulation of somatic mutations. It is characterized by a break-
down of cooperation between individual cells [2] and by an abnormal cell
growth [3]. Thus, all cancer types share a common pathogenesis [4]. It
can be both benign, if it is localized in situ, or malignant, if it is invasive
and causes metastasis. Cancer begins with a single genetically altered cell
and then invades the adjacent tissue through clonal expansion. Cancer is
the result of a process of Darwinian evolution among cell populations em-
bedded in their environment. As a Darwinian process, its development is
marked by two feature: firstly, the continuous acquisition of heritable ge-
netic variations in individual cells by more-or-less random mutations and,
secondly, the natural selection acting on the resultant phenotypic diversity.
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The biology of cancer

Figure 1.1: Acquired capabilities of cancer.

1.1 The hallmarks of cancer

D. Hanahan and R. A. Weinberg, at the beginning of this century, have
tried [1] to find a logical framework for understanding cancer, identify-
ing a small number of traits (molecular, biochemical and cellular) that all
cancer types have in common. These functional capabilities are acquired
during the multistep process that leads healthy cells to become malignant
ones, called tumorigenesis.

Between all the unessential traits, they highlighted (Fig. 1.1):

• Self-sufficiency in growth signals
In order to proliferate, a healthy cell requires signals that stimulate
mitosis. Many oncongenes can simulate the effects of these growth
signals: thus, the proliferation of malignant cells is independent from
exogenous stimulation, but is self-sustained, other than chronic and
unregulated.

• Insensitivity to anti-growth signals
As for what concern the reproduction, also for cellular quiescence
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The biology of cancer

are required antigrowth signals, that, blocking proliferation, guar-
antee tissue homeostasis. It has been discovered that cancer cells
are insensitive to these growth-inhibitory signals: they disregard the
programs that negatively regulate cell proliferation. When tumor
occurs, many tumor suppressors, ordinarily responsible for limiting
cell reproduction, become deactivated.

• Tissue invasion and metastasis
Malignant cells become detached from the primary tumor and in-
vade adjacent and also, flowing through blood vessels, distant tis-
sues. New masses, called metastasis, are the cause of 90% of deaths
related to cancer. Metastasis share with the primary tumor mass the
same traits described here.

• Sustained angiogenesis
Oxygen and nutrients are essential for the cell survival and they are
carried throughout the body by circulatory system: the cell must re-
side within about 100 mµ of a capillary. Physiologically, after organo-
genesis is ended, the process of growth of a blood vessel, termed an-
giogenesis, is transitory and carefully regulated. By contrast, when
cancer occurs, an angiogenic switch is almost always activated and
remains on, causing normally quiescent vasculature to continually
sprout new vessels.

• Resisting cell death
Cancer cells acquire resistance toward apoptosis, that is programmed
cell death.

• Limitless replicative potential
The characteristics that we have already listed show that the growth
program of a malignant cell is decoupled from signals in its environ-
ment. Nevertheless, disruption of cell-to-cell signaling is not enough
in order to ensure expansive tumor growth: all types of mammalian
cells are provided for a cell-autonomous program that limits their
multiplication and initiates the process of senescence. In neoplastic
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disease, some tumor suppressors are, as we have already said, deac-
tivated, making these cells able to multiply. Cancer cells do not have
a limited number of successive cell growth-and-division cycles: this
trait is termed immortalization.

In 2011 the same authors have added [5] some other features (Fig. 1.2)
to the hallmarks of cancer found in 2000.
First of all, they consider that the acquisition of the six hallmarks above
described can be reached depending on two enabling characteristics:

• Genome instability and mutation
Normal cells become malignant gaining, step by step, the capabilities
that we are describing and this process happens thanks to a succes-
sion of random alterations in the genome. Some mutant genotypes
confer selective advantage on subclones of cells, enabling their out-
growth and eventual dominance in local tissue environment. Also
clonal expansion is usually triggered by the acquisition of a mutant
genotype. It should be remembered that the stability of the DNA
is ensured by an extremely efficient genome maintenance system.
Nevertheless, cancer can damage the components of this machinery,
making the mutability possible.

• Promoting inflammation
Recent techniques have shown that every neoplastic lesion contains
immune cells, demonstrating that tumor masses trigger the immune
system response. Studies on this issue sustain that tumor can evade
immune destruction, even if immune system, after it has recognized
the cancer, tries to eradicate it. Tumor-associated inflammatory re-
sponse, carried out especially by innate immune system cell, can,
paradoxically, promote tumor progression. In fact, inflammation can
contribute to multiple hallmark capabilities by supplying bioactive
molecules to the tumor microenvironment, including growth fac-
tors that sustain proliferative signaling, survival factors that limit
cell death, proangiogenic factors, extracellular matrix-modifying en-
zymes that facilitate angiogenesis, invasion, and metastasis.
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The biology of cancer

In the second place, they defined two other hallmarks of cancer:

• Avoiding immune destruction
An outstanding problem is the attempt of the immune system to re-
sist or eradicate formation and progression of incipient neoplasia,
already formed tumor masses and metastasis. In some way, in fact,
tumors succeed in avoid immune system detection and thus they
limit the extent of immunological killing.

• Deregulating cellular energetics
The progression of cancer cells involves also an alteration of energy
metabolism in order to fuel cell growth and division. In normal
tissue, under aerobic conditions cells process glucose, first to pyru-
vate via glycolysis in the cytosol and thereafter to carbon dioxide in
the mitochondria; under anaerobic conditions, glycolysis is favoured
and relatively little pyruvate is dispatched to the oxygen-consuming
mitochondria. In tumor masses, cells can modify their glucose metabolism,
limiting it to glycolysis. This condition has been termed aerobic gly-
colysis.

Figure 1.2: Emerging hallmarks and enabling characteristics.

9



The biology of cancer

In the paper of 2011, Hananhan and Weinberg also drew attention on
the importance of what they called tumor microenvironment in tumorigene-
sis. They claimed that cancer is not, as it has been considered for long, an
isolated mass of proliferating malignant cells. Rather, it is a complex tis-
sue composed of multiple distinct cell types that interact with one another
(see also [6]).

1.2 Mutations and cancer

As we have already said, cancer is initiated by a random mutation in a cell,
followed by clonal expansion, during which the cell undergoes a series of
mutation and selection events (a process that can be considered similar to
the evolution of species) and would then expand its lineage. However,
not all the somatic mutations that can occur are implicated in the devel-
opment of cancer [4]. Some of them are deleterious and lead the clone
straight to extinction. Others, called passenger mutation, are neutral, do
not confer any advantage to the clone: they are somatic mutations with-
out functional consequences. Only driver mutations are directly involved
in oncogenesis: they confer to the clone a growth advantage that enables
it to spread in the tissue. A recent study [7] suggests that passenger muta-
tions can involve protein-coding genes and other functional elements that
can potentially have deleterious effects on cancer progression. So, even if
the individual effect of a passenger mutation is almost neutral, the collec-
tive burden of passengers can take action in the development of the cancer,
leading to several oncological phenomena that are difficult to explain with
traditional driver-centric view, suche as spontaneous regression.

1.3 Cancer risk

The aetiology of cancer is an outstanding problem. C. Tomasetti and B.
Vogelstein [8], in 2015, proposed that the majority of cancer (about two
third) does not originate from environmental factors or inherited predis-
positions, but is due to random mutations arising during DNA replica-
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tion in normal, noncancerous stem cells. Simply put, cancer is due to
"bad luck". This study has raised a significant debate. Some researchers
[9], in fact, consider the report by Tomasetti and Vogelstein a pioneering
work, that have highlighted the fact that stochastic accumulation of mu-
tations during DNA replication is the major cause of variations in can-
cer incidence between tissues, opening new interesting questions. On the
other hand, many scientists [10] [11] [12] [13] [14] [15] are extremely criti-
cal about this statement. They sustain that environmental and hereditary
factors and lifestyle (such as sun exposure for melanoma, tobacco for lung
cancer, viruses and obesity for hepatocellular carcinoma, and so on) play
a fundamental role in carcinogenesis. Furthermore, they bring to light
another delicate topic, the role of prevention: if cancer was due only to
random mutation, prevention would be completely worthless.

As a matter of fact, many factors contribute to cancer initiation, and
they are very difficult to be distinguished from each other. Studies that
try to investigate this problem are complicated by the difficulty to collect
data for all cancer types, and moreover by the fact that different popula-
tions (for example people from different countries) with different cancer
patterns could provide different results.

1.4 Oncogenes and oncosuppressors

Mutations involved in tumor progression affect two types of genes:

• Oncogenes
In the DNA there are some genes that normally help cell growth, the
so-called proto-oncogenes. When these oncogenes are present in too
many copies or when they undergo some mutation, they become ma-
lignant genes, the oncogenes. There are several mechanisms by which
an oncogene can be activated: translocation, point mutation, dele-
tion, insertional activation, amplification. When they are triggered,
they become permanently responsible for increasing cell prolifera-
tion.
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• Oncosuppressors
Oncosuppressors are genes in charge of protecting the cell genome:
when a cell expresses some mutated genes, they code for proteins
that promote apoptosis, repress cell cycle regulation or repair DNA
damage.

The most important oncosuppressor gene is p53, and its central role is
reflected by its nickname: "guardian of the genome". This gene is evolu-
tionary conserved in all animals and it plays a key role in many cellular
metabolic pathways, where it acts as a regulator of the network. p53 reacts
to stress signal and DNA damage by stimulating DNA repair or, in ex-
treme cases, by inducing senescence or apoptosis. Unfortunately, in many
cancer types, p53 does not function correctly. This happens for two reason:
on the one hand, p53 could be itself mutated, or, on the other, it could be
deactivated by another gene, MDM2, that fosters genetic degradation.

1.5 Cancer stem cells

Tumor masses are composed by a heterogeneous cell population, because
of the accumulation of different driver and passenger mutations. Accord-
ing to the traditional view, all cancer cells have the same tumorigenic po-
tential. Instead, following new suggestions, cancer cells can be consid-
ered hierarchically organized, with cancer stem cells (CSCs) at the top of the
pyramid. CSCs are defined by two properties: they can re-grow the tumor
from which they are isolated and their lineage differentiation is multipo-
tent.
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1.6 Angiogenesis and metastasis

Two of the most representative features of cancer are:

• Angiogenesis
The tumor has the capability of inducing the growth of new blood
vessels from the existing ones. This process is fundamental because
the additional blood vessels are devoted both to bring oxygen and
nutrients to cancer cells and to evacuate metabolic waste and car-
bon dioxide. Angiogenesis [16] is regulated by a balance between
pro- and antiangiogenic molecules. These molecules can be secreted
from cancer cells, endothelial cells, stromal cells, blood and connec-
tive cells. Their contribution, that control the angiogenesis, could
change in respect of tumor type, site and developmental stage.

• Formation of Metastasis
Cancer cells can spread across the body, flowing through blood ves-
sels or lymphatic system (Fig. 1.3). Metastasis [17] is an orderly
sequence of basic step, mediated by different classes of metastasis
genes: local invasion, intravasation (that means the entry of tumor
cells into the bloodstream), survival in the circulation, extravasation
(the exit of tumor cells from capillary beds) and colonization. The
temporal gap between organ infiltration and colonization produces
a period of metastatic latency. This latency is considered an ineffi-
cient multistep process. In fact, malignant cells, during their journey
through vessels and tissues, should overcome different obstacles,
such as shear, compressive stresses and so on. In order to perform
these tasks, cancer cells can modify their own structure and func-
tionality. For example, they can change their cytoskeleton, or express
new surface receptors. As well as stem cells, also metastatic cells de-
fine metastatic niches, made of peculiar locations, stromal cell types,
diffusible signals and extracellular matrix proteins that sustain the
survival and self renewal of malignant cells. It is interesting to note
that different tumor types usually colonize some typical metastatic
sites.
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Figure 1.3: Cellular transformation and tumour growth.
a| Growth of neoplastic cells must be progressive, with nutrients for the expanding tu-
mour mass initially supplied by simple diffusion. b| Extensive vascularization must oc-
cur if a tumour mass is to exceed 1–2 mm in diameter. The synthesis and secretion of an-
giogenic factors establish a capillary network from the surrounding host tissue. c| Local
invasion of the host stroma by some tumour cells occurs by several parallel mechanisms.
Thin-walled venules, such as lymphatic channels, offer very little resistance to penetra-
tion by tumour cells and provide the most common route for tumour-cell entry into the
circulation. d| Detachment and embolization of single tumour cells or aggregates occurs
next, most circulating tumour cells being rapidly destroyed. After the tumour cells have
survived the circulation, they become trapped in the capillary beds of distant organs by
adhering either to capillary endothelial cells or to subendothelial basement membrane
that might be exposed. e| Extravasation occurs next, probably by mechanisms similar to
those that operate during invasion. f| Proliferation within the organ parenchyma com-
pletes the metastatic process. To continue growing, the micrometastasis must develop
a vascular network and evade destruction by host defences. The cells can then invade
blood vessels, enter the circulation and produce additional metastases.
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1.7 Big data in cancer

The last decades have seen the development of high-throughput or next-
generation sequencing technologies, allowing researchers to obtain large
amounts of data at relatively low cost for DNA sequence, transcriptome
profiling, miRNA expressions, DNA-protein interactions and epigenetic
classifications. These data, in order to be available for the entire scien-
tific community, are usually collected in public databases. Some examples
are: the Cancer Genome Atlas (TCGA: https://tcga-data.nci.nih.gov/tcga/),
managed by the US National Cancer Institute; the UK-based Catalogue of
Somatic Mutations in Cancer (COSMIC: http://cancer.sanger.ac.uk/cosmic/);
the database of International Cancer Genome Consortium (https://icgc.org/)
and the Gene Expression Omnibus (GEO: http://www.ncbi.nlm.nih.gov/geo/).
Even if these data are available in enormous number, they are not so easy
to be understood, because they are really heterogeneous. This happens for
different reasons: first of all, mutation patterns are very different from pa-
tient to patient, even if they are affected by the same tumor. Another factor
of variability is introduced by the experimental methods of data collecting
and by the sequencing platforms used in each study.

1.8 Diagnostic methods

As it can be easily understood, the main goal of medicine is to detect the
cancer as soon as possible, in order to intervene in the most appropriate
way. Unfortunately, diagnosis often follows the illness of the patient; at
that point, is likely that the cancer has already grown significantly. More-
over, when a tumor is discovered, it has already formed metastasis or have
spread malignant cells that can remain in a latent state and come up later.
After diagnosis, primary tumor mass can be removed by surgery and ir-
radiation, whereas cancer cells spread throughout the organism can be
treated by chemotherapy. If there are metastatic cells in latent state and
they come up after a first treatment, they may have become chemoresistant
and so insensitive to subsequent cycles of chemotherapy. This scenario is
responsible for 90% of death due to neoplastic diseases. Regarding future
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perspectives in this field, the purpose is to identify biomarkers that would
allow the prevention of cancer cells spreading and also biomarkers that
would help follow the treatment effect.
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CHAPTER

2

THE PHYSICS OF CANCER

Are there tangible examples of novel
insights into cancer progression
produced by mathematical modelling?
Does the pay-off justify experimental
and clinical cancer researchers
"embracing the horror" of equations
and calculus?

A. Anderson and V. Quaranta [18]

2.1 What does physics have to do with cancer?

First of all we want to build a bridge to link biology and physics. Why
physicists, mathematicians and engineers have started to worry about prob-
lems such as cancer?

As has been mentioned before, thanks to new sequencing techniques,
the capacity to gather experimental or clinical cancer data has grown enor-
mously. However, it is not an easy task to integrate and interpret these
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large amount of data and to translate them into models and treatments. In
a recent paper, F. Michor and her group noticed that physicists are well-
trained to deal with problems in which large numbers of simple part in-
teract, leading to the emergence of collective behaviours.

Cancer is perhaps such a system. It has now become clear
that cancer is not a strictly deterministic disease that progresses
through a simple, fixed succession of specific mutations in two
or three genes. Rather, there are many molecularly distinct
routes to clinically identical cancers, and the final development
of malignancy is influenced by a multitude of factors, encom-
passing the immune system, ageing, nutrition and microenvi-
ronmental details within particular tissues. Like other emer-
gent phenomena, cancer cannot be readily understood by merely
characterizing all its components. Developing a fundamen-
tal understanding of cancer that recognizes and embraces the
great heterogeneity of tumors and their emergent properties
may benefit from integrated teams of physicists, cancer biol-
ogists, mathematicians and engineers. [19]

Thus, physics, mathematics, engineering and chemistry can make a
decisive contribution to different aspects that concern oncology: they can
define models, do data analysis, create new therapies, specifically tailor
them to patient diseases, and so on. As concerns mathematical modelling,
its greatest power lies in the capability to relate multiple components of
a complex process to extract emergent properties that they themselves
do not possess individually and also in the ability to reveal previously
unknown and counterintuitive physical principles that might have been
overlooked or missed by a qualitative approach to biology.

When applied to experimental data, statistical techniques can
reveal whether a particular intervention produces a significant
response or whether a correlation exists between observable
phenomena. Establishing why such correlations arise requires
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the statement of hypotheses postulating which physical pro-
cesses are involved and how they interact. The biological ex-
periments needed to test such hypotheses can be time-consuming,
expensive and/or impossible with existing technology. In such
cases, mathematical modelling can have an intermediate role,
by providing an independent check of the consistency of the
hypotheses: if a model is unable to reproduce the observed
phenomena, then the original hypotheses should be revised be-
fore continuing. Mathematical models can also improve exper-
imental design by highlighting which measurements are needed
to test a particular theory and whether additional information
can be gained by collecting supplementary data. [20]

Mathematical modelling of cancer is a multistage and iterative process:
once that a first model is defined, it is necessary to check and validate its
solutions and predictions through experimental data and biological and
clinical observations. Then the model can be improved and its new predic-
tions must be tested again (Fig. 2.1). Furthermore, according to the variety
of mathematical tools that can be employed in studying cancer, it could
be difficult to make a decision between different models, also consider-
ing that different approach can reproduce the same experimental results.
Once that a model is chosen, mathematicians shall face another problem:
the level of detail that should be reached.

In such cases, it may be appropriate to appeal to Occam’s razor
to develop a model that includes sufficient detail to address
the question of interest but not so much that it becomes ob-
scured in detail. In practice, close collaboration between the-
oreticians and biomedical researchers is crucial to getting this
balance right, because the models are only ever as good as the
assumptions used to construct them and the data with which
they are validated. Indeed, in many respects the form of the
initial model is less important than starting the dialogue be-
tween experimentalists and modellers because the model is al-
most certain to be wrong. [20]
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Figure 2.1: From biological hypothesis to testable prediction by mathe-
matical modelling.
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In this frame, it would be desirable a more and more closer collabora-
tion between mathematicians and biologists: everyone could take advan-
tage from an effective interdisciplinary dialogue.

Integrative mathematical oncology gradually creates a common
language that on the one hand enables mathematicians to un-
derstand the biology, explain complex mathematics simply and
build relevant realistic models, and on the other hand empow-
ers cancer biologists with sufficient mathematical literacy to
frame experiments in the context of quantitative models, trans-
posing qualitative hypotheses into quantitative ones. [18]

A final remark is about the implementation of these theoretical mod-
els of cancer. They are usually complex and unfeasible to be solved by
standard mathematical analysis and, consequently, they are nearly always
sorted out through computational analysis. Such computational solutions,
either numerical or simulation-based, require a great deal of computing
power, which has only recently become widely available. It seems clear
that we are now seeing the emergence of computational models as the
dominant tool in mathematical models of cancer.

2.2 Mathematical oncology: integrating quanti-
tative models

There are different way to classify mathematical models of cancer.
An initial approach [18] to this classification could be the distinction be-

tween descriptive and mechanistic models. The first ones try to reproduce
the tumor cell population dynamics, leave out the cell biological details.
The second ones, instead, focus on the biological aspects of tumor initia-
tion and progression, in order to explain them. Obviously, there are many
models that are between these distant perspectives.

Facing this issue from another point of view, models can be classified
according to their mathematical and/or physical structure [21]. Single-
cell-based models provide an appropriate description of cancer starting
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from the properties of individual cells in order to predict collective be-
haviour of the whole tissue. They allow a portrayal of cell-cell and cell-
microenvironment interactions. Several different individual-based mod-
els of tumor growth have been developed, including cellular automata
models, Potts models, agent-based models or lattice-free models (for a re-
view, see [22]). On the other hand, in continuous models molecules and
cells are assumed to have a continuous distribution (for a review, see [23]).
An example of this class are the deterministic reaction-diffusion models,
that consider the tumor as a single continuous density varying both in
space and time. Hybrid models, instead, combine the positive sides of
discrete and continuous modelling techniques and portray, in a single
model, chemical reactions and tissue environment. Between them, mul-
tiscale models play an important role: they are developed to describe in-
teractions across different spatial and temporal scales and to encompass
disparate components of a complex system, highlighting the emergence
of collective behaviours.

2.2.1 The role of randomness

All biological dynamical systems evolve under stochastic forces,
if we define stochasticity as the parts of the dynamics that we
either cannot predict or understand or that we choose not to
include in the explicit modelling. To be realistic, models of bi-
ological systems should include random influences, since they
are concerned with subsystems of the real world that cannot
be sufficiently isolated from effects external to the model. The
physiological justification to include erratic behaviours in a model
can be found in the many factors that cannot be controlled,
such as hormonal oscillations, blood pressure variations, res-
piration, variable neural control of muscle activity, enzymatic
processes, energy requirements, cellular metabolism, sympa-
thetic nerve activity, or individual characteristics like body mass
index, genes, smoking, stress impacts, etc. Also to be consid-
ered are external influences, such as small differences in the ex-
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perimental procedure, temperature, differences in preparation
and administration of drugs (if this is included in the exper-
iment). In addition, experimental runs may be conducted by
different experimentalists who inevitably will exhibit small dif-
ferences in procedures within the protocols. Different sources
of errors will require different modelling of the noise, and these
factors should be considered as carefully as the modeling of the
deterministic part, in order to make the model predictions and
parameter values possible to interpret. [24]

Regarding models that deal with large groups of individuals, where
deterministic models can be applied, the stochasticity that characterizes
the individual behaviour is often considered negligible. However, it is
clear that such approach is an approximation: if individuals evolve in a
stochastic manner, so do finite populations. Thus, the best way to get in
these phenomena is to define stochastic models and, possibly, to show
that by some law-of-large-numbers effect it is well approximated by a de-
terministic simplification. In this scenario it is possible to estimate the
magnitude of errors involved, that is, how much the "stochastic reality"
differs from the "deterministic simplification".

Population randomness through individual variability is called
demographic stochasticity. Another source of randomness is
environmental stochasticity, caused by spatial and/or tempo-
ral variation in environmental factors, that affects the popula-
tion as a whole or their members individually. The environ-
ment in its turn can be influenced by the population. [. . . ]
Whereas the impact of demographic stochasticity can diminish
for large population sizes, the effects of environmental stochas-
ticity remain important for larger populations and should be
included in model formulations, if relevant to the real biolog-
ical system. Additional sources of randomness to be incorpo-
rated may be the effects of measurement errors or factors not
explicitly included in a model, but lumped together into an un-
specified random effect. [25]
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Even though there are so many ways to make a distinction between
mathematical models of cancer, we preferred a different approach com-
pared to those described above. In the previous chapter we defined the
main features that characterized cancer. Therefore, we introduce, sec-
tion by section, the principal physical and mathematical tools and mod-
els, grouped according to the aspect of cancer they try to understand [26].
This can’t be, for obvious reason, an exhaustive review of all the different
mathematical models applied to oncology, but just a window over an area
of research that is nowadays in the works.

2.3 Cancer initiation and progression

Historically, first modelling of tumor growth were based on the studies
about population dynamics, starting from the ones about human popula-
tion growth and demography made by Thomas Malthus between the 18th
and the 19th century. Thus, the growing tumor has been considered as a
deterministic dynamic system represented by ordinary differential equa-
tions.

For tumor growth, the critical part is the period of growth (re-
gression) and not so much the period of true stagnation which
even may not be achieved before the death of the host. [. . . ]
The central concept of a dynamical system is the trajectory. For
tumor growth the trajectory is the growth curve that describes
the change in tumor size with time from the start of prolifera-
tion of initial tumor cells. The tumor size is expressed by mass
or volume or cellularity, depending on what is measured. [27]

Two of the most widely used models for the growth of cancerous cell
populations are the Gompertz and the logistic equations. The first one1 is
a sigmoid curve, described from the differential equation

dN

dt
= −gN ln

(
N

K

)
,

1Initially formulated by Benjamin Gompertz in 1825 to study the human mortality.
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where N is the population and the constants g and K are respectively the
growth rate and the carrying capacity (that is the asymptote for the popu-
lation, when t → ∞, established by the available resources). The solution
of the above equation is

N(t) = Keae
−gt

,

where the value of a is given by imposing the initial condition

N(0) = N0 → a =

(
N0

K

)
.

The logistic curve, or Verhulst2 model, instead, is described, using the
above notation, by

dN

dt
= gN

(
1− N

K

)
.

Here a different assumption is made: the growth rate is proportional both
to the population size and to available resources. The solution is

N(t) =
KN0 e

gt

K +N0( egt − 1)
.

After these first, naive approaches, great deal of progress has been made.

2.3.1 Branching and Moran processes

Branching processes [25] are a class of simple stochastic models that have
been used extensively to study the probabilistic growth of cell population.
Many deterministic models are expectation versions of them. They can be
defined in discrete time or continuous time and with evolution rules that
may or may not depend on time.

A branching process is a Markov process (see Chapter 4 for further de-
tails) in which every, at time t, individual cell produces a random number
of offspring at a later time t+ ∆t (fig. 2.2).

2Introduced for the first time by Pierre F. Verhulst in 1838.
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Figure 2.2: Branching process: realization of three time steps.

In discrete time, the Galton–Watson process is the oldest and best known
branching process (for more details, see [28]). The underlying idea is the
following (this is a slightly improved version of Galton-Watson model:
the simplest one does not include mutations). An individual (a cell) goes
through a number of events: proliferation, mutation or death. The basic
assumption is that each event is characterized by a given rate which is in-
dependent of population size and composition. As mutations accumulate
in the cell population, each new cell type that emerges may have a new set
of rates. It is worth noting that independence in reproduction and survival
among different individuals is assumed. The rationale for this is that the
models are meant for small populations, in which can be presumed that
resource limitations, for example, do not play an important role.

Approaches of this kind have been used, for instance, to investigate
the onset of a driver mutation during tumorigenesis [29] or also to model
the accumulation of passenger and driver mutations during cancer pro-
gression. In their paper [30], I. Bozic et al. modelled tumors as a discrete
time branching process that starts with a single driver mutation and pro-
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ceeds as each new driver mutation, reducing the death rate of mutated
cells, leads to a slightly increased rate of clonal expansion. The authors
proposed a formula that relates the number of driver mutations to the total
number of mutations in the tumor, and applied this methodology to exper-
imental data to infer the selective advantage conferred by typical somatic
mutations. B. Bauer et al. [31], instead, used a branching process to study
the impact of a large amount of passenger mutation on cancer progression,
whereas C. Tomasetti and B. Vogelstein [32] (in a previous and preparatory
paper of the one [8] we have discussed in the previous chapter) used the
same mathematical tool to investigate the evolution of somatic mutations
in which all relevant phases of a tissue history are considered: the tissue
formation during development, the tissue homeostasis and self-renewal
and the tumorigenesis, initiated by one driver mutation. They found that
the number of somatic mutations in tumors of self-renewing tissues is pos-
itively correlated with the age of the patient at diagnosis, because older tis-
sue have had more time to accumulate alterations, and they claimed that
half or more of the somatic mutations in certain tumors of self-renewing
tissues occurs before the onset of neoplasia.

If we introduce in the modelling, instead of a fixed fitness value, the
concept of a fitness distribution such that a randomly drawn fitness value
is assigned to each mutation, the best mathematical approach available is
the fixed-size Moran process.
The Moran process (Fig. 2.3) is used to model the stochastic dynamics in
a population of constant size. An individual is selected at random, but
with probability proportional to its fitness. This individual produces an
identical offspring, that replaces another individual randomly chosen to
die. If there are n species, i = 1, 2, . . . , n, the numbers of individuals for
each type are N1, N2, . . . , Nn, which sum to N (and N remains constant
over time), and if the species can have different fitness value f1, f2, . . . , fn,
then, the probability that the i-th species increases of one individual and
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the i-th species decreases is

P (Ni → Ni + 1, Nj → Nj + 1) =
Nifi

Nifi +Njfj

Nj

N
.

The Moran process can also include random mutations, nonrandom death
proportional to "weakness" (or inverse fitness) or time-dependent fitness.
Moran processes are used to model the dynamics of mutation accumula-
tion. For example, J. Foo, K. Leder and F. Michor [33] used a Moran process
to model the compartments of cells where cancer could arise. In a similar
way, in another work [34], authors designed a mathematical model of the
evolutionary processes of mutation accumulation both in healthy tissue
during the phase prior to tumor initiation and during the clonal expan-
sion phase of the tumor.

Figure 2.3: Moran process: realization of one time step.
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In the study of the dynamics of mutation accumulation it is also im-
portant to investigate the cell type in which mutations arise. For this
purpose, many models have been formulated. Some of them are deter-
ministic, such as [35], where it is shown that the hierarchical organization
strongly suppresses cells carrying multiple mutations and thus reduces
the risk of cancer initiation. Nonetheless, many diseases are based on the
accumulation of multiple mutations. Then, closed solutions for the deter-
ministic clonal dynamics and the reproductive capacity of single clones are
derived. Stochastic framework, instead, are useful to find out whether a
stem cell, a progenitor cell or a terminally differentiated cell is more likely
to undergoes a malignant mutation, becoming the origin of a tumor. The
answer to this question depends on the type of tumor: for example, in
hematopoietic neoplasia [36] progenitor cells seems to be the origin of tu-
morigenesis, meanwhile in brain cancer [37] stem cells are more likely to
initiate the tumor.

The first attempts to model a cancer mass has been the uniform spher-
ical models in one-dimension, where tumor growth is measured by the
distance of a cell from the tumor center. Such models treat the tumor as
a growing spherical mass: they consist of an ordinary differential equa-
tion, derived from mass conservation, coupled to one or more reaction-
diffusion equations, that describe the distribution, within the tissue, of nu-
trients and growth factors. Usually the spheroid is composed by different
layers: there is a central core of necrotic cells, surrounded by a rim of qui-
escent cells and by an outer annulus of proliferating cells [38] [39]. These
models have been later extended to two dimension: in [40], S. Ferreira et
al. analyzed the avascular cancer growth in a model including cell pro-
liferation, motility and death, as well as competition for nutrients among
normal and cancer cells, with particular interest in the role of capillary
vessels. A further extension of these models has been the 3D simulation of
tumors. X. Li et al. [41] developed an adaptive boundary integral method
to simulate nonlinear tumor growth in 3D.
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A cancerous mass is initially composed by cells that contain the same
core of genetic mutation and the final heterogeneity observed is due to
later alterations. B. Waclaw and his collaborators [42], instead, described,
thanks to a 3D model, how short range dispersal and cell turnover can
account for the expansion and mixing of these alterations inside the tu-
mor. Following a different approach, reaction-diffusion modelling [43]
predicted that glioma (a neoplasia that affects the glia cells of the brain
and of the spine) growth can be modelled as a travelling wave with a
diameter that increases linearly in time. Talking about brain tumor, it is
worth emphasizing [44] the importance of emerging quantitative imaging
methods that pave the way to a new generation of predictive methods.
Indeed, magnetic resonance imaging (MRI) and positron emission tomog-
raphy (PET) have matured to the point where they offer patient-specific
measures of tumor status at the physiological, cellular, and molecular lev-
els.

2.3.2 Temporal order of events in cancer progression

An outstanding question is about the temporal sequence in which alter-
ations occur during human tumorigenesis. Some authors (for example
[45], that identified different stages in colorectal carcinoma) assume that
exists a single temporal sequence, a straight-like chain, and so events are
always sequential, never simultaneous. But this idea, if has been proved
successful for some cancer types, can be inadequate for others. So, fur-
ther approaches have been introduced, especially in the light of recent im-
provement of cancer genome studies [46] [47].

One of the most thriving idea is the oncotree model, that is based on
a probabilistic phylogenetic tree3 approach [48] [49]. The temporal order
of events is computed as a function of the distance of an event from the
root node, that is, the time between the initiation and the event. Also
oncotree models, however, show some limitation: for example they do not
allow shared ancestors for multiple leaves. To overcome these aspects,

3That is, a branching, tree-structured graph that represents the evolutionary relation-
ship among different mutational stages of tumor cell population, quantified by some
measure of distance between individual cells or patient samples. [26]
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other acyclic graphical models have been introduced [50]. These models
determine the order of somatic alterations from cross-sectional data sets,
but manage to do this at the cost of large computational burden owing to
increased model complexity.

Another successful approach is borrowed from population dynamics,
also coupled with optimization algorithms: it makes possible to study the
evolutionary dynamics [51] of cell populations, with particular interest in
the accumulation of malignant mutations. These models are often based
on Moran processes, that are used to calculate transitions between differ-
ent mutational states. They show that most cancer types are characterized
by multiple evolutionary trajectories that lead to the fully transformed
state, which suggests a large extent of heterogeneity in the temporal or-
der of cancerous events.

Lastly, another tool employed to go into the temporal order of can-
cer event is the agent-based simulation4: in [52], researchers found that
the utilisation of cross-sectional data to infer mutational order could be
misleading, while phylogenetic methods based on sampling intratumor
heterogeneity may reconstruct more accurately the evolutionary history
of tumors.

2.3.3 Tumor microenvironment

Cancer progresses as a result of the collective dynamics that emerge from
interactions between tumor cells and their microenvironment. However,
for long time, the importance of the environment has been ignored5, but
recent studies have been more and more focused on the role of the tumor
stroma, that includes the extracellular matrix, fibroblasts, immune and in-

4Agent-based simulation is a computational approach that models complex systems
consisting of interacting discretized items or "agent". In cancer modelling, these agents
often represent cells, which can mutate into other types, divide into two cells, die or
move in space. These simulations can be implemented according to either probabilistic
or deterministic laws. [26]

5An exception was the Paget’s seed and soil hypothesis. The English surgeon Stephen
Paget compared tumor cells with the seed of plants, in that they are both “carried in all
directions; but they can only live and grow if they fall on congenial soil”. Similarly, he ar-
gued that metastatic cells must thrive only where conditions are in some way favourable.
[6]
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flammatory cells and blood-vessels cell. The relative amount of stroma
and its composition vary considerably from tumor to tumor and do not
correlate with the degree of tumor malignancy. But the interactive sig-
nalling between tumor and stroma contributes to the formation of a com-
plex multicellular organ, such as cancer [6].

As it can be easily understood, the mathematical modelling of mi-
croenvironmental interactions often requires complex model considera-
tions, also because they must include biophysical properties and inter-
related processes. The most useful and versatile mathematical tools for
this purpose are ordinary and partial differential equations. Of course
there is a huge mathematical literature about this topic, but we prefer to
cite the few, intuitive words of P. Altrock, L. Liu and F. Michor:

Systems that are deterministic (exactly or approximately) can
be described by ordinary differential equations (ODEs). Their main
characteristic is that they have one independent variable. For
dynamic systems, the independent variable is time. Dependent
variables can be the volume of a tumor, the fraction of a genetic
alteration in a population or the chance of finding a receptor
in a certain state at a certain time. ODEs can describe systems
of few and many dimensions, and allow chaotic and complex
behaviour. [. . . ] For dynamic systems in which the quantities
of interest — such as the concentration of oxygen — depend
on more than one independent variable (for example, time and
space), partial differential equations (PDEs) are used. This is ben-
eficial especially when descriptions in higher dimensions are
needed. For example, the concentration of oxygen in a tissue at
time t in position x (for example, the distance to the centre of a
blood vessel) can be denoted by c(x, t). [. . . ] Typically the oxy-
gen concentration is only one component of a system of PDEs,
on which the behaviour of tumor cell density depends. [26]

32



The physics of cancer

Talking about the interplay between malignant cells and tumor mi-
croenvironment, it emerges the key role of hybrid models. These models
represent cells as individual discrete entities and use continuous concen-
tration or density fields to model intracellular and extracellular environ-
ments. By their very nature, hybrid models are ideal for examining direct
interactions between individual cells and between cells and their microen-
vironment, but they also allow us to analyze the emergent properties of
complex multicellular systems.

Hybrid models can be sorted in two classes: on- and off-lattice [53],
where this means that the positions of the cells are or are not imposed, but
in both cases the underlying chemical or physical fields are typically de-
fined on regular grids. The on-lattice model are easier to handle in compu-
tational implementation, but are less realistic: changes in the underlying
chemical fields are modeled on the cell scale and therefore discontinuities
in these values may not reflect the smooth changes in chemical gradients.
These approaches on grids are often collected under the name of cellular
automata (CA). Off-lattice models, instead, have a more realistic represen-
tation of cell spatial location, but they need special algorithms to handle,
also from a computational point of view, the complexity of cells movement
and of interactions with the underlying environment (Fig.2.4).

To take another example, in [54], the authors joined a continuous de-
terministic model of the extracellular matrix dynamics and a discrete cel-
lular automata-like model of the cell migration and interaction in order
to examine the effects of tumor cell heterogeneity upon the overall spatial
structure of tumor and also to emphasize the importance of cell-cell and
cell-environment interactions.

An hybrid cellular automata model [55] have been also developed to
study the deregulation of glucose metabolism, that is the emergence of the
glycolytic phenotype. The authors, through a neural network approach,
analyzed the influence of the tissue oxygen concentration and extracellu-
lar matrix density on the dynamics of tumor growth: they observed that
glycolytic phenotype is most likely to emerge in anaerobic condition and
in tissue with a high matrix density.
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Figure 2.4: Reciprocal relation between the numbers
of cells handled by the models and the level of in-
cluded cellular details. For more details about "IBCell":
https://labpages.moffitt.org/rejniakk/IBCell.html
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2.4 Angiogenesis and metastasis

Angiogenesis is a well-orchestrated sequence of events involving endothe-
lial cell migration, proliferation, degradation of tissue, new capillary ves-
sel (sprout) formation, loop formation (anastomosis) and, crucially, blood
flow through the network. Studies of tumor-induced angiogenesis have
been almost always related to the ones about the interaction between tu-
mor and environment. Some of them have been performed following
a continuous, deterministic approach and they are capable of capturing
some features of angiogenesis such as average sprout density and network
expanding rate. Other ones, instead, used a discrete probabilistic frame-
work, that makes easier to follow the motion of individual endothelial
cells. However, as we have already made clear, many researchers eventu-
ally choose to use hybrid models [56] (for a review, see [57]).

In 1997, M. Orme and M. Chaplain [58] developed a two dimensional
model of capillary-vessel formation. Three dimensional models have been
designed later [59]. P. Macklin et al., instead, formulated a multiscale
mathematical model for tumor solid growth [60] which couples with a
model of tumor-induced angiogenesis. They performed nonlinear simula-
tions in order to show the importance of the coupling between the devel-
opment and remodeling of the vascular network, the blood flow through
the network and tumor progression.

The angiogenic process is both adaptive and dynamic: these feature
have been studied [61] following the hypothesis that blood flow can affect
the growth of the network in many ways: through the diffusion of an-
giogenic factors, through migratory cues via the extracellular matrix and
through perfusion-related haemodynamic forces.

Historically, the first attempt to model cancer metastases has been the
already mentioned seed and soil hypothesis by S. Paget, in 1889. This idea
has been later resumed. In 2003, I. Fidler [62] has redefined it through
three principles that comprehend the hetereogeneity and the clonal origin
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of metastases masses and their specificity in colonizing organs. Ten years
later, the seed and soil hypothesis has been renamed after "diaspora" [63],
that is the scattering of people from an established homeland. Accord-
ing to this comparison, cancer, in this paper, is considered from an eco-
logical point of view (we will spend a few words about this approach to
oncology later). The diaspora paradigm takes into account several vari-
ables: the quality of the primary tumor microenvironment, the fitness of
individual cancer cell migrants as well as migrant populations, the rate of
bidirectional migration of cancer and host cells between cancer sites and
the quality of the target microenvironments to establish metastatic sites.

However, many other approaches have been used to model metasta-
sis features. Earliest descriptions [64] portrayed metastasis in the light of
competition between healthy tissue and malignant cells, in the framework
of population dynamics. More recently, cell-based model [65], with related
agent-based computational simulation, has been used to understand how
the interaction of cancer stem cells and their nonstem progeny can influ-
ence the formation of metastasis, highlighting the fact that tumor popula-
tions devoid of stem cells or developed from cancer stem cells could still
persist as long-term dormant lesions.

Again, a Markov chain Monte Carlo mathematical approach [66] has
been used to determine a pathway diagram that classifies metastatic tu-
mors as "spreaders" or "sponges" and that orders the timescales of progres-
sion from site to site. The authors, thanks to this method, tried to quantify
the stochastic, systemic and often multidirectional aspects of cancer pro-
gression. In particular, they take into account the self-seeding6 of the pri-
mary tumor (primary seeding), the re-seeding of the primary tumor from a
metastatic site (secondary seeding) and the re-seeding between metastatic
tumors (metastatic seeding). Talking about different types of self-seeding,
a study [67] has been conducted to elucidate the differences and relative
probabilities between them, following the representation of the vascular
system as a network throughout which the circulating tumor cells can
spread. Researchers developed a model to test the relative likelihood of

6The phenomenon of tumor "self-seeding" occurs when circulating tumor cells (CTCs)
repopulate the primary tumor and accelerate its growth.
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primary and secondary seeding, showing that, in the end, secondary is far
more likely than the other.

H. Heano and F. Michor [68], instead, designed a stochastic model of
the evolution of tumor metastases in an expanding cancer cell population.
They also calculated the probability of metastasis formation at a given time
during tumor evolution, the expected number of metastatic sites and the
total number of cancer cells as well as metastasized cells.

Talking about the already formed metastasis, many studies have in-
vestigated the heterogeneity of the cells of a single metastasis and also the
differences between metastatic cells and primary tumors cells. V. Almen-
dro et al. [69], by defining quantitative measures of intratumor cellular
genetic and phenotypic heterogeneity in primary and metastatic breast
tumors and by assessing tumor topology, found that distant metastatic
tumors are the most diverse. This fact can explain the frequent therapy-
resistance of advanced stage disease. Another reason of the heterogeneity
of tumor metastasis has been found [70] to be the diversity in circulating
tumor cells that mirrors the variety of the populations of competing phe-
notypes within the primary tumor.

A stochastic Markov chain model for metastatic progression have been
developed by P. Netwon et al. [71]: they defined a network construction of
metastatic sites with dynamics modeled as an ensemble of random walk-
ers on the network. Successively, they calculated transition probabilities
interpreted as random variables and used them to construct a circular bi-
directional network of primary and metastatic locations.

A final mention has to be made about the models of metastasis that
have tried to include the biophysical properties of the milieu through which
circulating tumor cells spread. To cite just an example, A. Pathak e S. Ku-
mar [72] tried to shed light, thanks to a 3D culture, over the role of interac-
tion between migrating tumor cells and the extracellular matrix, empha-
sizing the importance of extracellular matrix stiffness and geometry.
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2.5 Treatment and drug resistance

This section is going to be really heterogeneous. In fact, many aspects
of clinical treatment and of drug response and resistance are related to
physics or mathematical modelling: tumor forecasting7, radiotherapy and
its dosing strategies, immunotherapy, how the resistance to drugs evolves
and so on.

As concerns radiotherapy, an earliest approach has been the attempt
to find the growth curve of neoplasms treated with radiotherapy with re-
spect to the one followed by untreated tumor (that is well represented
by an exponential or, as we have seen before, by a Gompertzian growth
curve). An important role has been played by linear-quadratic model, a
prominent heuristic model used to describe cell survival under radiation.
The number of surviving cells after a certain dose of radiation has been
administered takes the form of an exponential function with a linear and a
quadratic term in its argument. An example of this picture could be the pa-
per by R. Dale [74], that investigated the application of a linear-quadratic
dose-effect formalism in the context of radiotherapy.

More specifically, many studies have been conducted about the re-
sponse to radiation therapy of glioblastoma multiforme (GBM), that is the
most common and malignant form of glioma. R. Rockne et al. [75] ap-
plied a patient-specific, biologically-based mathematical model for GBM
growth, that quantifies the response to radiotherapy: they used reaction-
diffusion partial differential equations to describe tumor cell proliferation
and invasion, along with the linear-quadratic model for the response to
radiation therapy. Their model makes possible the creation of a virtual
in silico tumor with the same growth kinetics as a particular patient and
can not only predict treatment response in individual patients in vivo but
also provide a basis for evaluation of response in each patient to any given
therapy. Still talking about patient-specific therapies, a study by D. Cor-
win [76] exposes a biomathematical model of glioma proliferation, inva-
sion and radiotherapy that tries to optimize the dose for treatment, using
the pioneering metric of "Days Gained".

7That has been often compared to metereology. [73]

38



The physics of cancer

This last concept is a prognostic tool firstly introduced by M. Neal et
al. in [77]: the metric of "Days Gained" is defined as the difference in time
between the post-treatment MRI scan and the predicted time at which the
tumor would have reached the same radius if the patient had not been
treated; the latter is estimated relying on the pre-treatment MRI scan and
on the subsequent tumor simulations.

Immunotherapy is considered one of the most promising cancer treat-
ment approaches: the immune system is clearly capable of recognizing
and eliminating tumor cells. However, tumors frequently interfere with
the development and function of immune responses. Thus, the challenge
for immunotherapy is to use advances in cellular and molecular immunol-
ogy to develop strategies that effectively and safely augment antitumor
responses [78], without harming healthy tissue. The phenomenon of com-
petition between cancer and immune cells has been examined through de-
terministic models. Inter alia, a prominent role is played by prey-predator
models8, of ecological inspiration [27]. Later, multiscale mathematical
models [79] have been developed: at a sub-cellular scale, the main ac-
tivities are within the cells or at the cell membrane (genetic changes, ex-
pression of signals between cells,. . . ); the cellular scale refers to the main
interactive activities of the cells (activation and proliferation of tumor cells
and competition with immune cells); lastly, at a macroscopic scale occur
the phenomena that are typical of continuum systems: cell migration, dif-
fusion and so on.

However, tumor response is often transient and therapy frequently
fails due to emergence of resistant populations. That could happens be-
cause, although cancer is a highly dynamic systems, cancer therapy is typ-
ically administrated following a fixed protocol. A recent clinical approach
has introduced the idea of "adaptive therapy" [80], that evolves in response
to the temporal and spatial variability of tumor microenvironment and
cellular phenotype as well as therapy-induced perturbations. The aim of

8These models, also known as Lotka-Volterra dynamics, are used to describe the dy-
namics of ecological species, or types, as a nonlinear deterministic process. They were
originally used to describe population dynamics of predators and prey, taking into ac-
count abundance, interactions and population growth and diminution. They can also be
used to describe mutualistic and competitive evolutionary dynamics. [26]
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adaptive therapy is to enforce a stable tumor burden by permitting a sig-
nificant population of chemo-sensitive cells to survive so that they, in turn,
suppress proliferation of the less fit, but chemo-resistant, subpopulations.

Also methods from evolutionary dynamics have suggested therapeu-
tic innovative strategies, such as combination therapy. Researchers [81]
found, modeling cancer as a continuous time multitype branching process,
that dual therapy results in long-term disease control for most patients,
obviously if there are no single mutations that cause cross-resistance to
both drugs; in patients with large disease burden, triple therapy is needed.
Moreover, they discovered that simultaneous therapy with two drugs is
more effective than sequential one.

Even considering the differences between techniques, the crucial, promis-
ing innovation in cancer treatment is targeted and patient-specific therapy.
But, despite all, the biggest, already unsolved, problem is drug resistance.

One of the models more widely used to derive the probability of ac-
cumulating resistant cells in exponentially expanding populations is the
Luria-Delbrück model9.

This approach assumes that both sensitive and resistant cells
grow exponentially, and that sensitive cells can generate resis-
tant cells during cell division. A two-type birth–death process
can be used to calculate the probability of pre-existing resis-
tance and the expected number of resistant cells before diag-
nosis. The latter was found to be independent of the mutation
rate if mutations are rare, but to increase with the tumor size at
detection. The probability of pre-existing resistance increases
in proportion to both detection size and mutation rate. [26]

To investigate this phenomenon, other stochastic dynamical systems have
been developed. Y. Iwasa, F. Michor and M. Nowak [83] tried to answer
the following question: if a genetically diverse population of replicating

9The Luria-Delbrück experiment investigated whether mutations occur indepen-
dently from, or owing to, selection. In its first formulation [82], data from growth experi-
ments in which bacteria were challenged to a stochastic process model used to calculate
the probability of having a certain number of resistant mutants. The findings suggested
the mutations occurred randomly over time and were not a response to selection. [26]

40



The physics of cancer

organisms is challenged with a selection pressure that has the potential to
eradicate it, what is the probability that this population will produce es-
cape mutants? They used a multitype branching process to describe the
accumulation of mutations in order to calculate evolutionary escape dy-
namics for a malignant population that has undergone a biomedical inter-
vention with the potential aim to eradicate it. Depending on initial distri-
bution and fitness landscape, they succeeded in quantifying how escape
depends on the pre-existence or on the emergence of resistant mutants.
A. Coldman and J. Goldie [84] [85] chosen a cell-based model for tumor
growth coupled with a stochastic branching process to explain intrinsic
and acquired resistance. N. Komarova and D. Wodarz [86] found that re-
sistance arises mainly before the start of treatment and, for cancers with
high turnover rates, combination therapy is less likely to yield an advan-
tage over single-drug therapy.

2.6 An ecological point of view

Many of the models above introduced talk about evolutionary or ecological
features of tumor onset and progression. Let us explain how it is possible
to speak of an ecological perspective over a problem such as cancer.

During the past decade, it has become increasingly recognized
that a tumor is not genetically homogeneous but is rather com-
posed of many genetically diverse cancer cells. If variability
in the population is heritable and if it affects fitness, then the
system is going to evolve, leading to competition for space and
common resources and resulting in different clones being se-
lected for or weeded out of the population due to natural selec-
tion. [. . . ] From an ecological perspective, one can look at this
process as an attempt of new species (cancer cells), which have
different metabolic and reproductive strategies compared with
the resident population (somatic cells) to invade a new habitat
(tissue). Successful invasion will result in the formation of a
primary solid tumor. [87]
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B. Ujivari, B. Roche and F. Thomas [88] underlined five different "eco-
logical" aspects of cancer:

• Somatic selection shapes malignancies
As we have already explained in details, cancer is an evolutionary
process, result of accumulation of somatic mutations. From an evo-
lutionary game theory perspective10 [87], individuals within a cell
population in healthy tissue have been moving toward an evolu-
tionarily stable strategy (ESS). Theoretically, when ESS is established,
invasions are unlikely to happen. However, if one of the species es-
capes its ecological constraints and proliferates rapidly, the balance
is destroyed, triggering extinctions of other species and ecosystem
collapse [89].

• Ecological principles explain how cancers interact with microenvi-
ronments

There is no such thing as fitness for a gene or individ-
ual except in relation to a specific ecological environment.
Fitness is a characteristic not of genotypes, but of pheno-
types interacting with environments. The microenviron-
ments inhabited by cancers influence their growth, as much
as their genotypes. Furthermore, the growth of a tumor
creates microenvironments that can speed or slow subse-
quent growth. [88]

For example, hypoxia induces the angiogenic switch; clones gain
an advantage if they have the capacity to adapt their metabolism
to sudden changes in oxygen tension or nutrient availability with-
out changes in their genomes; cancer cells may enter in a quiescent
state if the nutrient supply is limited and so on. Once that cancerous
cells begin to propagate in the tissue, they can construct their own
niche. This last concept is purely ecological and, to be applied to

10We are going to show an example of evolutionary game theory applied to cancer in
Chapter 5 and in Appendix B.
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cancer, should include the definition of nutrients (glucose, phospho-
rus, iron, lipids and other materials necessary fro cell growth and
reproduction), space (including extra cellular matrix, which is often
destroyed by tumors) and predators (cells of the immune system).
Invaders (cancer cells) can modify the niche to be better suited for
them or they can exploit the niche in such a way to make it uninhab-
itable by anyone, inducing increased migration. According to this
picture, isolated tumor and metastasis can be studied through the
principles of island biogeography: cancer is similar to a geographic
expansion of invasive species.

A last remark is about biodiversity: it makes the ecosystem more sta-
ble and resilient, and this hold true both for healthy and malignant
ecosystems.

Tumor heterogeneity can not only accelerate evolution but
also directly select for more aggressive cancer. [. . . ] The-
oretical models also predict that the harsh microenviron-
ments created by the tumor itself can create a selective pres-
sure for more aggressive cancer lineages. This study also
found that increasingly stressful microenvironments lead
to a morphological transformation of the tumor from smooth
and non-invasive margins to margins with finger-like pro-
trusions that are associated with an aggressive and inva-
sive phenotype. [89]

• Behavioral ecological principles explain competition among can-
cer clones
Recent studies have been highlighted the possibility that different
clones can provide resources that promote the survival and replica-
tion of other clones in a process that is something like cooperation.
Even if the current knowledge of ecological dynamics within tumor
is limited, till today many tools have been used to model cancer pro-
gression in this point of view: for example, the logistic growth curve
or the Allee effect11.

11A commonly observed deviation from logistic growth, with the per-capita growth
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The Allee effect, in particular, could be exploited to describe many
phenomena that frequently occur in cancer, such as the fact that large
tumors are more difficult to be treated by drugs and radiotherapy. Or
also the so called minimal residual disease (MRD), that is the possibility
that some cancers recur after treatment, because a number, even very
low, of malignant cell remains in the organism. Moreover, the Allee
effect is also used to study cooperation among cells and clones, that
can have a positive effect on population ecology, growth thresholds
and resilience to perturbations.

• Natural selection explains why cancer is rare
We have already discuss the ability of natural selection to shape mech-
anisms to prevent cancer, such as the activity of oncosuppressors.
This is the first reason why cancer is so uncommon. From an ecolog-
ical perspective, these mechanisms can be viewed as prey-predator
systems.

• Evolutionary medicine explains why cancer is common
This happens because evolutionary medicine tries to investigate why,
despite the presence of the control mechanisms, some mutations lead
to malignancies: it can depend on the environmental factors, on the
stochastic probability that a mutation anyway happens, on the trade-
offs that are intrinsic to all cancer prevention mechanisms and so on.

rate reaching a maximum at an intermediate population size. One often distinguishes
between a strong Allee effect, when the growth rate is negative at small population sizes,
and a weak Allee effect, when the growth rate at small population sizes small but posi-
tive. [89]
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Figure 2.5: Schematic representation of the possible mechanism of tu-
mor initiation and progression from an ecological point of view.
Tumor initiation corresponds to the mechanism of species invasion and is hypoth-
esized to be possible when the environment is permissive, in particular, when
there are excess nutrients (new niche) and when competitors (somatic cells) are
less fit compared with the invaders. Tumor promotion corresponds to niche colo-
nization and modification by the invading species through pH alteration, recruit-
ment of growth factors, and others, as well as avoidance of predators (immune
suppression).
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CHAPTER

3

HEALTHY BONE TISSUE AND MULTIPLE MYELOMA

Poi che null’altro che vacuo ci resta
d’ogni cosa ch’esiste,
Poi che difetto e sconfitta colgono al
fine ogni cosa,
Considera bene: ogni cosa che è, è in
realtà nulla;
Medita bene: ogni cosa ch’è nulla, è in
realtà tutto.

Omar Khayyâm

In the following sections we are going to introduce the physiology of
the healthy bone tissue and the myeloma-related bone disease. This is not
a complete description of these issues: we will focus just on the traits that
are essential for understanding the problem and on the traits that can be
modelled.
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3.1 Bone tissue

Bone tissue is a kind of connective tissue composed by cells and extracel-
lular matrix [90]. Its specificity is the high degree of mineralization, that
gives it the distinctive hardness. The bone apparatus constitutes the scaf-
folding of the human body and protects the more delicate internal organs.
More than its intuitive mechanical and protective functions, it has a very
important role in the mineral turnover, since it takes part in the Calcium
homeostasis. Even after the end of the somatic growth, it is able to mod-
ify its structure and architecture as a results of mechanical and hormonal
stimuli (skeletal homeostasis). So, the bone tissue can be considered truly dy-
namic and plastic. Moreover, in its cavities is contained the bone marrow,
that has haematopoietic functions. The bone is externally covered by the
periosteum, a fibrous connective with intertwined bundles, excepted from
the joints, that are covered by cartilage. In the shafts of long bones, the
medullar canal is covered by the endosteum, a tiny, loose connective tissue.

The cells that can be found in the bone tissue are osteoprogenitors, os-
teoblasts, osteocytes and osteoclasts; they all derive from the mesenchymal
stem cell, except from the osteoclasts, that derive from circulating cells
(monocytes) originated from the the granulocyte-monocyte colony-forming
unit (GM-CFU). The organic component of the extracellular matrix (both fib-
rillary and amorphous) is made of type I collagen fibers, glycoproteins,
proteoglycans, and enzymes. The present minerals are mainly Calcium
phosphates, Calcium carbonate, other salts and residues of Na, K, Sr, Mn,
Zn, Cu.

3.1.1 Osteoblasts, ostecytes and osteoprogenitor cells

Osteoprogenitor cells, osteoblasts and osteocytes are three different stages
of the same cellular type. The first ones derive from the mesenchymal
stem cells, are localized in the periosteum and in the endosteum and are
very active in mitosis. Osteoprogenitor are on the dormant surface of the
bones. They probably play a role of mediation in the exchange between
the blood and the interstitial liquid that flows through the bone lacunae.
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Osteoblasts, that differentiate from the osteoprogenitors when it is nec-
essary, are voluminous, mononuclear cells (Fig. 3.1). They have cubic
shape and are aligned along the surface of the pre-osseous matrix in the
process of deposit. Osteoblasts carry out a strong osteogenic activity: they
produce the organic matrix and regulate the deposit of the inorganic one.
Most osteoblasts remain walled in the extracellular matrix they have pro-
duced and turn into osteocytes. Otherwise, they return in the stage of
osteoprogenitor cells.

Figure 3.1: Osteoblasts lining the osseous matrix they have produced.
The arrows indicate osteoblasts entrapped in the mineralized matrix that
are becoming osteocytes.

Osteocytes are star-shaped cells that build up the mature bone. When
an osteoblast secretes the extracellular matrix, it gets stuck in a lacuna,
where it becomes quiescent and takes the name of osteocyte. The main
body of the osteocyte remains in the lacuna, but the cell expands its cyto-
plasmatic extensions in some channels through the matrix, called canali-
culi, that link the osteocyte to the Haversian channels, where the blood ves-
sels flow. Osteocytes do not perform mitosis: the increase of the bone
thickness can be realized just by apposition and is never of interstitial kind.
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3.1.2 Osteoclasts

Osteoclasts are polynucleated large cells (Fig. 3.2). As already mentioned,
osteoclasts result from mononucleated monocytes that merge together to
form a syncytium. This event happens in reaction to receptor activator
of nuclear factor (NF)-B ligand RANKL. Once formed, osteoclasts are in
charge of the bone matrix degradation: they reabsorb the aged, damaged
or immature matrix. Osteoclasts are found attached to the bone surface at
sites of active bone resorption, where they form a cavity called resorption
bay or Howship lacuna. These cells pursue this activity when, urged by local
or systemic stimuli, they adhere to bone surface.

Figure 3.2: An osteoclast adherent to the osseous matrix for reabsorbing
it. Note the numerous nuclei concentrated at the opposite side to that
engaged in reabsorption.

3.1.3 Bone homeostasis

Over the course of the entire life, bones renew themselves, thanks both
to resorption and to deposit and the rate of renewal depends on the age.
Osteoblasts have receptors for the PTH (parathyroid hormone), that induces
the secretion of osteoprotogerin ligand (OPGL) and of an osteoclasts stimu-
lation factor, that are needed for the differentiation and for the activation
and for the differentiation of the osteoclasts.
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One of the fundamental regulatory system of bone remodeling is the
RANK/RANKL signaling pathway. RANK (receptor activator of nuclear fac-
tor (NF ) − κB) is a transmembrane receptor that is expressed on the sur-
face of osteoclast precursors. RANK ligand (RANKL) is a cytokine of the
tumour necrosis factor (TNF) superfamily expressed by bone marrow stromal
cells (BMSCs) of osteoblastic lineage. When RANKL binds to RANK, the
osteoclast precursors fuse together into multinucleated cells that become
mature osteoclasts. Once the mature osteoclasts attach to the bone sur-
face, the bone resorption process is initiated. On the other hand, the func-
tion of bone resorption and the capability of differentiation are inhibited
by the osteoprotegerin (OPG), a cytokine of the TNF superfamily produced
by BMSCs and osteoblasts, that is a decoy for RANKL and inhibits os-
teoclastogenesis. The equilibrium between osteogenesis and osteolysis is
therefore regulated by the osteoblasts, that adjust the osteoclasts activity,
as a response to hormonal stimuli. The hormones involved are PTH and
calcitonin, with antagonist effects.

3.2 Multiple myeloma disease

Multiple Myeloma disease (hereinafter simply MM) is the most impor-
tant plasmacells neoplasia and constitutes the neoplastic proliferation of
plasmacells resulted from a single clone [91] [92]. It is characterized by os-
teolytic bone lesions, hyper-calcaemia, anaemia, kidney failure, acquired
immune anomalies and, more rarely, by infections and neurological symp-
toms. It usually shows up with cancerous masses spread throughout the
skeletal system.

There are different kinds of myeloma, besides the MM as such, that
is the more aggressive form of them: the smouldering myeloma, the mon-
oclonal gammopathy of undetermined significance (MGUS), the lymphoplasma-
cytic lymphoma and the solitary plasmacytoma, all with different pathological
features, staging and prognosis.

The MM aetiology has not yet been clarified. Unfortunately, malignant
forms of MM are considered just treatable, but not curable, so they gener-
ally lead the patient to death.
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3.2.1 Pathogenesis of bone disease in multiple myeloma

MM-induced bone disease is a hallmark of multiple myeloma [93] [94]. At
the moment of diagnosis, up to 80% of the patients shows osteolytic bone
lesions and has an increased risk of skeletal-related events associated with
increased morbidity and mortality. MM cells interact with bone marrow
microenvironment and activate molecular cascade. Other tumors, such as
breast cancer, prostate cancer and lung cancer, can cause bone metastases,
but there is a significant difference: both MM and other tumors show in-
creased osteoclastic bone destruction, but only in MM osteoblast activity
is either reduced or absent. Consequently, MM gives rise to the highest
incidence of fracture (43%), compared to other types of cancer. Moreover,
MM patients who experienced pathological fractures had at least a 20%
increased risk of death compared to MM patients without them.

So, osteoclast activity boosts in MM. Besides, histological studies of
bone biopsies from MM patients have shown that intensified osteoclast ac-
tivity occurs adjacent to MM cells. This has led to the hypothesis that local
cytokines produced or induced by MM cells are responsible both for the
osteoclast formation and for the increased bone resorptive activity. In ad-
dition to this, osteoblast functionality is lowered: when MM occurs, bone
formation becomes decreased or absent at all. Further, osteoblast apopto-
sis is increase due to high cytokine levels and physical interaction between
osteoblasts and MM cells.

The main feature of MM-related bone disease is the deregulation of
the RANK/RANKL/OPG pathway. MM cells produce themselves and
stimulate the secretion of RANKL that promotes the process of osteolysis,
and also reduce the OPG levels.
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Figure 3.3: Histopathological image of multiple myeloma cells.

Below we list the main molecular pathways involved in the pathogen-
esis of MM-induced bone disease (Fig. 3.4).

Molecular pathways primarily implicated in increased osteoclast activ-
ity:

• Notch pathway
The Notch signaling pathway, consisting of four trasnmembrane re-
ceptors (Notch 1-4) and of their ligands (Jagged 1, 2 and Delta-like 1,
3, 4), is actively implicated in MM-induced osteoclastogenesis: in
fact it stimulates the production of RANKL by MM cells and by
BMSCs. Moreover, it may facilitate the establishment of the pre-
metastatic environment in the bone.

• Osteopontin
Osteopontin is a bone matrix glycoprotein produced by osteoclasts. It
is involved in osteoclast activation and in local angiogenesis. In MM
patients high levels of this protein are usually associated with high
osteolytic activity and advanced disease.

• CCL-3 (MIP-1α)/CCL-20
Chemokine (C-C motif) ligand3 (CCL-3) and chemokine (C-C motif) lig-
and 20 (CCL-20) are chemokines produced by MM cells and are im-
plicated in the pathogenesis of MM induced bone disease.
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CCL-3 and its receptors (CCR1 and CCR5), that are expressed on BM-
SCs, osteoclasts, osteoblasts and MM cells, are involved in osteolytic
bone disease and MM cells migration. CCL-20 and its receptor CCR6
are over expressed in the bone marrow and are also responsible for
osteoclastogenesis.

• Activin A
Activin A is a member of the TGFβ (Transforming growth factor beta)
superfamily and may play different roles depending on the tumor
microenvironment. Primarily, it induces RANK expression and os-
teoclasts differentiation.

• Interleukins
Interleukin 3 (IL-3) is a bifunctional cytokine that stimulates osteo-
clast formation and inhibits osteoblast differentiation. Moreover it
stimulates the production of activin A.
Interleukin 6 (IL-6) is a multifunctional cytokine implicated in bone
metabolism: it promotes the osteoclast differentiation and supports
the MM cells survival. IL-6 production by marrow stromal cells is
strongly induced by the myeloma plasmacells-derived interleukin 1
(IL-1β).
Interleukin 17 (IL-17) is a pro-inflammatory cytokine that is mainly
secreted by T-helper cells (Th17). It enhances osteoclast activation
and osteolytic lesions.

• TNF superfamily
TNF-α is a signaling cytokine that is involved in the pathogenesis of
MM bone disease. TNF-α operates together with RANKL in promot-
ing osteoclatogenesis.

• BTK and SDF-1α
Bruton’s tyrosine kinase (BTK) is a nonreceptor tyrosine kinase that
is involved in osteoclast differentiation. Stromal cell-derived factor-1α
(SDF-1α) is a chemokine that supports the migration and homing of
MM cells. Furthermore, it induces osteoclast activity.
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• Annexin II
Annexin II is a calcium-dependent phospolipid-binding member of
the annexin family. It supports MM cells adhesion and growth, an-
giogenesis and osteoclastogenesis.

• PU.1
Pu.1 is a transcriptional factor that has a fundamental role in osteo-
clast formation.

Molecular pathways primarily implicated in suppressed osteoblast ac-
tivity:

• WNT pathway
Wingless and integration-1 (WNT) is a signaling pathway that, when
physiologically activated, is involved in gene expression responsible
for promoting the proliferation, expansion and survival of osteoblas-
tic cells. When, instead, it is aberrantly activated, it takes part in the
proliferation of MM cells. Non-canonical WNT pathway is also in-
volved in migration and invasion of myeloma plasmacells.

• Sclerostin
Sclerostin is a protein secreted by osteocytes. In MM patients, scle-
rostin can be produced by MM cells in bone marrow. It can stimulate
apoptosis of mature osteoblasts and prevent osteoblast-driven bone
formation. Moreover, it inhibits the binding of type I and type II bone
morphogenetic proteins (BMPs) to their receptor and, consequently, it
reduces the BMP-mediated mineralization. Moreover, it increases
the RANKL/OPG ratio and, thus, promotes osteoclastogenesis.

• DKK-1
Dickkopf-1 (DKK1) is a member of the DKK family that acts against
the WNT pathway. It gets involved in the BMSCs differentiation in
mature osteoblasts, interrupting it. Furthermore, undifferentiated
BMSCs produce IL-6, that induces the proliferation of MM plasma-
cells secreting DKK1. DKK1 and sclerostin work together to weaken
osteoblast activity. DKK1, like sclerotin,also augments the RAN-
KL/OPG ratio.
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• Periostin
Periostin is a disulfide-linked cell adhesion protein that is produced
by BMSCs. It is involved in several forms of cancer and MM because
it fosters tumor growth and metastasis formation.

• RUNX2, GFI1 and IL-7
Runt-related transcription factor 2/core binding factor Runt domain sub-
unit 1 (RUNX2/CBFA1) is part of the non-canonical WNT signaling
pathway and acts as a regulator in osteoblastogenesis. MM cells stop
RUNX2 activity in BMSCs and in osteoprogenitor cells and, thus,
block osteoblast differentiation.
Growth factor independence-1 (GFI1) is a transcriptional repressor that
binds to RUNX2 and decreases its expression. High levels of GFI1
have been found in MM patients.
Interleukin 7 (IL-7) downregulates RUNX2 transcriptional activity and
so it prevents osteoclast differentiation. IL-7 also encourages the se-
cretion of RANKL.

• TGFβ and BMPs
Inactive form of TGFβ is secreted by osteocytes and osteoblasts in
bone matrix and then activates by osteoclasts during bone resorp-
tion. When TGFβ pathway is not well regulated, it is involved in the
MM bone disease, because it prevents BMSCs from differentiate in
mature osteoblasts.
Bone morphogenetic proteins (BMPs) are included in TGFβ super-
family. MM cells damage BMP-mediated osteoblast differentiation.

• TNF superfamily
As we have already seen, TNF-α supports osteoclastogenesis. Be-
sides that, it inhibits both osteoblast precursor recruitment from pro-
genitor cells and RUNX2, jeopardising osteoblast differentiation.

• EphB2/EphB4 signaling pathway
The Ephrin (Eph) receptors are tyrosine kinase receptors that are
activated by ligands called ephrins and their dual function plays a
fundamental role in bone homeostasis. On the one hand, EphB2
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is expressed in osteoclasts and it is induced by PTH; on the other,
EphB4 is expressed in osteoblasts and BMSCs. When EphB2 binds to
EphB4, two different signaling cascades occur: the forward one sup-
ports osteoblast differentiation, whilst the reverse signaling inhibits
osteoclast differentiation. In MM patients it has been found that both
EphB2 ad EphB4 expression is reduced in BMSCs.

• Adiponectin
Adiponectin is an adipocyte-derived hormone that is produced both
by osteoblasts and BMSCs and that has an important role in bone
remodeling; both osteoblasts and osteoclasts express adiponectin re-
ceptors. In MM patients, adiponectin deficiency is related to bone
lesions.

Figure 3.4: Schematic overview of myeloma-related bone disease and of
its characteristic molecular pathways.
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CHAPTER

4

MATHEMATICAL BACKGROUND

Milleseicentodieci, ai dieci di gennaio.
Galileo Galilei
vide che il cielo non c’era.

B. Brecht - Vita di Galileo

In this chapter we are going to shortly illustrate the theoretical back-
ground needed to develop our model and to implement the simulations.
We are firstly going to define continuous-time Markov processes, that will
be our modelling framework. Simply put, Markov chains are stochastic
processes for which the future and the past states of the process are in-
dependent, once the present state is given. Then, we are going to give a
representation of continuous-time Markov chains with finite state space in
terms of competing Poisson point processes. Such a representation will be
later used in the next chapter to define our model and, moreover, it will
be very useful for simulations. In fact, we will portray cancer progression
as a set of cells on a lattice, that undergoes a succession of Poisson point
processes. In this theoretical framework, it is possible to derive rigorously
mean field equations for the dynamics of two classical models from sta-
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tistical mechanics: the mean field Ising model, also known as Curie-Weiss
model and the Voter model.

For an introduction to the basics concepts of probability and to the
Poisson distribution, we suggest to the reader the Appendix A.

4.1 Continuous-time Markov chains

Definition 4.1.1 A stochastic process {X(t)}t∈R+ with values in E is a continuous-
time Markov chain if, for alli, j, i1, . . . , ik ∈ E , all t, s > 0 and all s1, . . . , sk ≥ 0

with sl ≤ s, for l = 1, . . . , k, we have

P (X(t+s) = j|X(t) = i,X(s1) = i1, . . . , X(sk) = ik) = P (X(t+s) = j|X(s) = i).

timet1 t2 t3 t4 t5

X(t)

Figure 4.1: Continuous-time Markov chain.

Definition 4.1.2 A continuous-time Markov chain {X(t)}t∈R+ is homogeneous
if

P (X(t+ s) = j|X(s) = i) = P (X(t) = j|X(0) = i).
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4.1.1 Transition semigroup

Let then
P(t) = {pij(t)}i,j∈E

where
pij(t) = P (X(t+ s) = j | X(s) = i).

The family {P(t)}t≥0 is the transition semigroup of the continuous-time ho-
mogeneous Markov chain. Let us make some observations. First of all, it
is possible to obtain the Chapman-Kolmogorov1 equation

pij(t+ s) =
∑
k∈E

pik(t)pkj(s),

that, in compact form, is

P(t+ s) = P(t)P(s).

Also
P(0) = I,

where I is the identity matrix.
Let the distribution at time t of X(t) be the vector µ(t) = {µi(t)}i∈E

where µi(t) = P (X(t) = i). Then µ(t)T = µ(0)TP(t).
The probability distribution of a continuous-time homogeneous Markov

chain is entirely determined by its initial distribution and its transition
semigroup. That is, for all t1, . . . , tk such that 0 ≤ t1 ≤ t2 ≤ · · · ≤ tk, and
for all states i0, i1, . . . , ik

P (X(tk) = ik, X(tk−1) = ik−1, . . . , X(0) = i0) = P (X(0) = i0)
k∏
j=1

pij−1ij(tj−tj−1).

1For a proper derivation of the Chapman-Kolmogorov equation, we suggest the Chap-
ter IV of [95].
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4.1.2 Infinitesimal generator

Let {P(t)}t≥0 be a transition semigroup on E , that is, for each t, s ≥ 0,

i. P(t) is a stochastic matrix,

ii. P(0) = I ,

iii. P(t+ s) = P(t)P(s).

Suppose, moreover, that the semigroup is continuous at the origin, that
is,

lim
h→0

P(h) = P(0) = I,

where the convergence therein is pointwise and for each entry.

Theorem 4.1.1 (Local Characteristics) Let {P(t)}t≥0 be a continuous transi-
tion semigroup on the countable state space E . For any state i, there exists

qi = lim
h→0

1− pij(h)

h
∈ [0,∞]

and for any pair i, j of different states, there exists

qij = lim
h→0

pij(h)

h
∈ [0,∞).

For a proof, see [96], Chapter VIII.

Definition 4.1.3 The numbers qij are called the local characteristics of the semi-
group, or of the corresponding continuous-time homogeneous Markov chain. The
matrix

L = (qij)i,j∈E

is called the infinitesimal generator of the semigroup, or of the continuous-time
homogeneous Markov chain.

In compact notation,

L = lim
h→0

P(h)−P(0)

h
,

where the meaning of this equation is given by the ones of Th.4.1.1. Thus,
in this sense, the infinitesimal generator L is the derivative at 0 of the func-
tion t 7→ P(t).

62



Mathematical background

4.2 Finite state space

In view of the semigroup properties, for all t ≥ 0 and all h ≥ 0

P(t+ h)−P(t)

h
= P(t)

P(h)− I
h

=
P(h)− I

h
P(t),

therefore, if the passage to the limit is allowed, which is the case when the
state space E is finite, we obtain a differential system

d

dt
P(t) = P(t)L = LP(t),

where L is the infinitesimal generator.
The equation

d

dt
P(t) = LP(t),

can be written explicitly. For all i, j ∈ E ,

d

dt
pij(t) = −qipij(t) +

∑
k∈E,k 6=i

qikpkj(t).

Systems like these are Kolmogorov’s backward differential systems.
The forward differential system is

d

dt
P(t) = P(t)L,

that is, for all i, j ∈ E ,

d

dt
pij(t) = −pij(t)qi +

∑
k∈E,k 6=i

pkj(t)qik.

For a continuous-time Markov chain with finite state space, for all states
i, it holds

qi =
∑

j∈E,j 6=i

qij.
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This implies also that, for f(i) : E → R

Lf = Lf(j) =
∑
i∈E

qjif(i) =
∑
j 6=i

qji[f(i)− f(j)].

This means that the chain is determined by the generator, so these two
concepts can be identified.

Theorem 4.2.1 Let {Xk(t)}k be a sequence of Markov processes with values
in Xk and denote by Lk the corresponding infinitesimal generators, defined on
D(Lk). Moreover, let L be the infinitesimal generator of another Markov process
X(t) with values on X and let C be the core for L. Assume that, for every k,
Xk ⊆ X . And each function in C is an element of D(Lk), when restricted to Xk.
If the condition

lim
k→∞

sup
x∈Xk

|Lk(f(x))− L(f(x))| = 0

holds for every f ∈ C and Xk(0) converges to X(0) in distribution, then the
sequence of processes {Xk(t)}k converges to the process X(t) in distribution as
k →∞.

For a proof, see [97].

4.3 Point processes

A random point process is, roughly speaking, a countable random set of
points on the real line [96]. A point of a point process is the time of occur-
rence of some event, and this is why points are also called events.

Definition 4.3.1 A random point process on the positive half-line is a sequence
{Tn}n≥0 of nonnegative random variables such that

i. T0 ≡ 0,

ii. 0 < T1 < T2 < . . . ,

iii. limn→∞ Tn = +∞.
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Condition (ii) may be relaxed and thus multiple point allowed. When
condition (ii) holds, one speaks of simple point process. Also, condition (iii)
is not required in the more general definition, where it may occur that
P (limn→∞ Tn < +∞): with positive probability there is an explosion, that is
an accumulation of events in finite time.

For any interval (a, b] in R+, we define

N((a, b]) = |T ∩ (a, b]| =
∑
n≥1

1(a,b](Tn),

that is an integer-valued random variable counting the events occurring
in the time interval (a,b]. For sake of simplicity, it will be usually denoted
by N(a, b]. For t ≥ 0, let us use the notation

N(t) = N(0, t].

In particular, N(0) = 0 and N(a, b] = N(b) − N(a). The family of ran-
dom variables {N(t)}t∈R+ is called the counting process of the point process
{Tn}n≥1. Since the sequence of events can be recovered from N(t), also the
latter will be called point process.

4.4 Poisson processes

A Poisson process can be defined in different ways. We will introduce two
of them: the first one clearly shows the link with random point processes,
meanwhile the second, focusing on what happens in the infinitesimal time
dt, offers a more intuitive view of this process, useful with the prospect of
application to our model.

Definition 4.4.1 Let {N(t)}t∈R+ be a point process. It is a homogeneous Poisson
process with intensity λ > 0 if

i. for all times ti, i ∈ [1, k], such that 0 ≤ t1 ≤ t2 ≤ · · · ≤ tk, the random
variables N(ti, ti+1], i ∈ [1, k − 1], are independent,

ii. for any interval (a, b] ⊂ R+, N(a, b] is a Poisson random variable with
mean λ(b− a).
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Thus, for all k ≥ 0,

P (N(a, b] = k) = e−λ
[λ(b− a)]k

k!

and in particular,
E[N(a, b]] = λ(b− a).

In this sense, λ is the average density of points.

Condition (i) is the property of independence of increments of Poisson
processes. It implies in particular that for any interval (a, b], the random
variable N(a, b] is independent of (N(s), s ∈ (0, a]). The increments of ho-
mogeneous Poisson processes have no memory of the past.

A second way to define Poisson processes is given by substituting the
(ii) of Def. 4.4.1 with

P (|T ∩ (t, t+ dt]| = 1) = λdt+ o(dt)

where o(dt) means that limdt→0
o(dt)
dt

= 0.

4.4.1 Competing Poisson processes

Let {T 1
n}n≥1 and {T 2

n}n≥1 be two independent homogeneous Poisson pro-
cesses on R+ with respective intensities λ1 > 0 and λ2 > 0. Their super-
position is defined to be the sequence obtained by merging {T 1

n}n≥1 and
{T 2

n}n≥1 (see Fig.4.2). It is noted that

• the point processes {T 1
n}n≥1 and {T 2

n}n≥1 have no points in common;

• the point process {Tn}n≥1 is an homogeneous Poisson process with
intensity λ = λ1 + λ2.

The above statement can be extended to several, possibly an infinity of,
homogeneous processes as follows.
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T1

T 1
1

T 2
1 T 2

2

T 1
2

T2 T3

T 1
3

T 2
3

T4

T 1
4

T 2
4

T5 T6 T7 T8t = 0

Figure 4.2: Superposition, or sum, of two point processes.

Theorem 4.4.1 Let {Ni}i≥1 be a family of independent homogeneous Poisson
processes with respective positive intensities {λi}i≥1. Then

i. two distinct homogeneous Poisson processes of this family have no points
in common,

ii. If
∞∑
i=1

λi = λ <∞

then

N(t) =
∞∑
i=1

Ni(t)

defines the counting process of a homogeneous Poisson process with inten-
sity λ.

For a proof, see [96], Chapter VIII.
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Let us now see a central result of the theory of Poisson system:

Theorem 4.4.2 (Competition Theorem) Let {Ni}i≥1 be a family of indepen-
dent homogeneous Poisson processes with respective positive intensities {λi}i≥1,
where

∑∞
i=1 λi = λ < ∞. Denote by Z the first event time of N =

∑∞
i=1Ni and

by J the index of the homogeneous Poisson process responsible for it; in particular,
Z is the first event of NJ . Then

P (J = i, Z ≥ a) = P (J = i)P (Z ≥ a) =
λi
λ
e−.

In particular, J and Z are independent, P (J = 1) = λi/λ and Z is exponential
with mean λ−1.

For a proof, see [96], Chapter VIII.

N1

N2

N3

T 1
1

T 2
1

N4

T 3
1

T 4
1

Z = T 3
1 J = 3

Figure 4.3: Competition among four point processes.

Furthermore, for a continuous-time Markov chain we have

P (X(t+ h) = i | X(t) = i) = 1− qih+ o(h)
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and, if i 6= j,

P (X(t+ h) = j | X(t) = i) = qijh+ o(h).

Once introduced the basic definitions above, we would like to give rep-
resentation of Markov chain, related to the Competition Th.4.4.2 and here-
after we follow the notation set there), that could be particularly useful
to understand the simulations of our model. Let {X(t)}t∈R+ be a regular
jump chain taking its values in E = {1, 2, 3, . . . }. Suppose to start from
X(0) = k0 and indicate with K 6=0 = {j1, j2, . . . }, the set of states that are
different from k0. Let’s take Nji with intensity qk0ji . We note that, due to
the fact that this is a regular jump process, the chain is stable and conser-
vative, that is ∑

j 6=k0

qk0ji = qk0 < +∞

Let set the dynamics of the chain as follows

• if Z ∈ Nji , then X(t) = ji till the next jump;

• there is competition between the Poisson processes with λz = qjiz,
where z 6= ji.

Let us calculate the transition semigroup of the chain

pij(h) = P (z ∈ (0, h))P (J = j)

= qi
qij
qi

+ o(h)

= qij.

From here on out, we will refer to qij as the transition rate from state i to
state j.
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4.5 Interacting particle systems

Interacting particle systems are countable systems of locally interacting
Markov processes. They are usually defined on a d-dimensional inte-
ger lattice: at each site of this lattice there is situated a continuous-time
Markov process with a finite state space, whose transition rates depend
on the states of the Markov processes on the near-by sites. For a deeper
insight in this field, see [98] [99] [100].

Now we will briefly explain two paradigmatic examples of interacting
particle systems: the Curie-Weiss model and the voter model.

4.6 Curie-Weiss model

The Curie-Weiss model [101] is one of the simplest classical systems of
ferromagnetism: it corresponds to the mean field theory of the well known
Ising model. It is also considered, in its dynamical version, as an example
of interacting particle system.

Let us consider a set of N spins: we write
{
σ(t)

}
t∈[0,T ]

for the stochastic
process defined as follows. If the state space of the system, at an arbitrary
time t, is defined by the arbitrary configuration

σ = (σ1, . . . σN) where σi = {−1,+1},

the dynamics is described by the probability of transition, in an infinitesi-
mal time dt, from the previous state to

σi = (σ1, σ2, . . . ,−σi, . . . , σN),

where the i−th spin is flipped. This probability is given by the product of
the transition rate for dt

P (σ(t+ dt) = σi | σ(t) = σ) = ωi dt = e−σi(t)βmN (t)dt,

where β > 0 is a parameter and mN = 1
N

∑N
i=1 σi(t) is the magnetization.
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The dynamics described above is ferromagnetic (or cooperative), in the
sense that

• if σi and mN have different sign (simply put, they are not aligned),
the exponent of the transition rate is positive,−σi(t)βmN(t) > 0. This
means that the transition rate is high.

• if σi and mN have the same sign (simply put, they are aligned), the
exponent of the transition rate is negative, −σi(t)βmN(t) < 0. This
means that the transition rate is low.

Theorem 4.6.1 As N → ∞, the process {mN(t)}t∈[0,T ] converges in distribu-
tion to the solution ofṁ(t) = 2 sinh [βm(t)]− 2m(t) cosh [βm(t)];

m(0) = m0.

Using the theory developed in this chapter, we will briefly sketch the proof
of this theorem. Let us consider the transition between the previous de-
scribed states: from σ to σi

σi(t)→ −σi(t+ dt).

Using the results of the section 4.4.2, we can write the infinitesimal gener-
ator for the markovian dynamics of mN , that is

LNf(mN) =
N∑
i=1

e−σiβmN

[
f

(
mN −

2σi
N

)
− f(mN)

]
.
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Then, using the Th.4.2.1, we read the limiting process from the limit of
LN , as N goes to infinity. We have

LNf(mN) =
N∑
i=1

e−σiβmN

[
f

(
mN −

2σi
N

)
− f(mN)

]

=
N∑
i=1

e−σiβmN

[
−2σi
N

∂f

∂x

∣∣∣∣
x=mN

+ o

(
1

N

)]

=
∑
i:σi=1

e−βmN

[
− 2

N

]
∂f

∂x

∣∣∣∣
x=mN

+
∑

i:σi=−1

eβmN

[
2

N

]
∂f

∂x

∣∣∣∣
x=mN

+ o

(
1

N

)

=
N∑
i=1

1 + σi
2

e−βmN

[
− 2

N

]
∂f

∂x

∣∣∣∣
x=mN

+
N∑
i=1

1− σi
2

eβmN

[
2

N

]
∂f

∂x

∣∣∣∣
x=mN

+ o

(
1

N

)
=
(
e−βmN −mNe

−βmN + eβmN −mNe
βmN

) ∂f
∂x

∣∣∣∣
x=mN

+ o

(
1

N

)
=
(
2 sinh [βmN ]− 2mN cosh [βmN ]

)∂f
∂x

∣∣∣∣
x=mN

+ o

(
1

N

)
.

Hence, the limiting generator is

Lf(mN) =
(
2 sinh [βmN ]− 2mN cosh [βmN ]

)∂f
∂x

∣∣∣∣
x=mN

,

that corresponds to the process

ṁ(t) = 2 sinh [βm(t)]− 2m(t) cosh [βm(t)].
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The time evolution of the magnetizationm, that is called order parameter
of the system, has different qualitative behaviours (Fig. 4.4), varying the
values of the parameter β: these phenomenon is called phase transition.
The threshold value for the phase transition is β = 1.

time

0.2

0.4

0.6

0.8

1.0

m

(a) β < 1

time

0.2

0.4

0.6

0.8

1.0

m

(b) β > 1

Figure 4.4: Curie-Weiss model - Magnetization mN .

4.7 Voter model

The voter model [102] [103] is a toy spin system that has been firstly used
to describe the evolution of opinions in a spineless population. Each in-
dividual resides on a site of an arbitrary network and can assume one of
q equivalent opinion state. The basic picture occurs when each voter can
be one of two state, for example, 1 or 0. A voter is selected at random and
adopts the opinion of a randomly chosen of its neighbors. This update is
repeated at unit rate until the finite population of N individuals reaches
consensus. It is important to remark that each agent is influenced only by
a fixed set of neighbours and that there are not other types of interactions.

Let us explain more in details the case of a voter model on a lattice with
just two opinions. Thus, at each lattice site i, the opinion state of the voter,
ηi, can be in one of two states, 0 or 1. Each spin flips at a rate that equals
that fraction of its neighbours in the opposite opinion state (Fig. 4.5).
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Figure 4.5: The flip rates for the central voter as a function of the state of
its local neighborhood on the square lattice.

The flipping rule can be encoded by the rate wi at which this voting in
i state changes is

wi(η(t)) =
1

2

(
1− ηi(t)

z

∑
j ∼ i

ηj(t)

)
, (4.1)

where z is that lattice coordination number and j ∼ i means that the
sum is over the nearest neighbors of site i. Furthermore, the index i in the
rate wi points out that only the voter at site i changes opinion in an update
event. A crucial feature of this transition rate is its linearity in the number
of disagreeing neighbors, that underlies the solvability of the voter model.

Now we want to describe the mean field approximation of voter model.
Let us consider a set of N spins: we write

{
η(t)

}
t∈[0,T ]

for the stochastic
process defined as follows.

Let us assume that the state space of the system, at an arbitrary time t,
is defined by the arbitrary configuration

η = (η1, . . . , ηN) where ηi = {0, 1}.
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If we denote ηi = 0 with η0 and ηi = 1 with η1, the dynamics is de-
scribed by

P (η(t+ dt) = η0 | η(t) = η) = η̄0 =
1

N

N∑
i=1

δηi(0),

P (η(t+ dt) = η1 | η(t) = η) = η̄1 =
1

N

N∑
i=1

δηi(1).

It is worthwhile to notice that, because in the voter model the probabil-
ity of transition is determined by the number of individual of each type,
the transition rates correspond to the mean values of individuals of each
species

ωk(η) = η̄k =
1

N

N∑
i=1

δηi(k).

Such as for the Curie-Weiss model, we can write the infinitesimal gen-
erator for the markovian dynamics of η̄k

LNf(η̄k) =
N∑
i=1

{
η̄0 [f(ηi = 0)− f(η)] + η̄1 [f(ηi = 1)− f(η)]

}
.

Then, using the Th.4.2.1, we obtain the limiting generator

LNf(η̄0) =
N∑
i=1

{
η̄0 [f(ηi = 0)− f(η)] + η̄1 [f(ηi = 1)− f(η)]

}
=
∑
i:ηi=1

η̄0

(
− 1

N

)
∂f

∂x

∣∣∣∣
x=η̄0

+
∑
i:ηi=0

η̄1

(
1

N

)
∂f

∂x

∣∣∣∣
x=η̄0

=− η̄0

(
1

N

N∑
i=1

δηi(1)

)
∂f

∂x

∣∣∣∣
x=η̄0

+ η̄1

(
1

N

N∑
i=1

δηi(0)

)
∂f

∂x

∣∣∣∣
x=η̄0

= (−η̄0 η̄1 + η̄1 η̄0)
∂f

∂x

∣∣∣∣
x=η̄0

= 0.
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The same holds for η̄1, thus, summing up, the limiting generators are

LNf(η̄0) = 0,

LNf(η̄1) = 0,

that correspond to
˙̄η0(t) = 0, ˙̄η1(t) = 0.

Thus, in average, fraction of each population remains constantly equal
to its initial value. Nevertheless when N is finite, η̄1 = 0 and η̄1 = 1

are absorbing states for the microscopic dynamics and in the long run the
chain will end in one of these states. In such a situation the quantity of
interest is the mean time to absorption. For the simple voter model it scales
polynomially with system size N while in more structured models, the
same quantity may grow exponentially in N .
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CHAPTER

5

OUR MODEL FOR THE PATHOGENESIS OF
MM-INDUCED BONE DISEASE

Stochastic evolutionary models of
carcinogenesis are unique in the sense
that they combine a large degree of
reductionism (the simplicity of the
model setting) with a high degree of
analytical tractability, simultaneously
providing insights into unknown
aspects of carcinogenesis. [. . . ]
Models of this type have provided a
window into the microscopic tumor
dynamics.

T. Jackson et al. [21]

Multiple myeloma is not a tumor of bone cells, thus, is not possible
to study its rise up as a mutation of pre-existing cells during mitosis. A
better way of describe the pathology initiation is in term of a new species
that attempts to invade a resident species of normal cells. After that, the
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development of cancer in the environment of healthy bone tissue can be
modelled as the interaction between cell populations. For this reason, an
ecological point of view over the problem is preferable to others.

5.1 Same problem, different approach

Our work was inspired by a paper [106] by J. Pacheco and his collabo-
rators, in which they studied the pathogenesis of multiple myeloma bone
disease from an evolutionary game theory (EGT) perspective. In this para-
graph we sum up their work, without going through the details, in order
to clarify the different method followed.

For a more complete understanding, we suggest to the reader the Ap-
pendix B.

Understanding the dynamics of tumour growth and response
to therapy is incomplete unless the interactions between the
malignant cells and normal cells are investigated in the envi-
ronment in which they take place.[. . . ] Such processes impose
costs and benefits to the participating cells that may be conve-
niently recast in the form of a game pay-off matrix. As a result,
tumour progression and dynamics can be described in terms of
evolutionary game theory, which provides a convenient frame-
work in which to capture the frequency-dependent nature of
ecosystem dynamics. [106]

First of all, the authors tried to model the phenomenon of normal bone
remodeling. Due to the fact that osteoclast-mediated (OC) bone resorption
and bone formation due to osteoblast (OB) activity are balanced, the best
way to reproduce their interplay is a co-existence game, that can be realized
by a pay-off matrix like this
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where e and a are both positive reals, that means that the interactions
between OB and OC are stronger than self-interactions.

Indeed, we have:

φOC(x) = (1− x) a,

φOB(x) = x e,

where x stands for the fraction of OC cells and (1 − x) for the fraction
of OB cells. The replicator equation, then, reads

ẋ = x (1− x) (a (1− x)− e x).

This dynamics has three fixed points: x∗ = 0, x∗ = 1, both unstable, and
x∗ = a/(a + e), that is stable and represents the balance of OB and OC1.
When multiple myeloma (MM) occurs, as we have already explained, MM
cells have a net benefit in the interaction, mediated by different molecular
pathways, with OC and OB. This condition, illustrated by Fig. 5.1, is de-
scribed by this pay-off matrix

where all parameters are non negative. The minimal pay-off matrix,
that is the matrix with the smallest number of parameters compatible with
this dynamics, is

The dynamics of two population, such as the OB-OC dynamics, could
be represented along the segment 0 ≤ x ≤ 1. The OB-OC-MM dynamics,
instead, proceeds in a two-dimensional space, called simplex, and thus

1that is φOB(x
∗) = φOC(x

∗).

79



Our model for the pathogenesis of MM-induced bone disease

Figure 5.1: Pathological bone turnover - EGT model

could be depicted by an equilateral triangle, each vertex of which repre-
sents a monotypic population. Edges of the simplex represent population
configurations in which at least one of the cell types is missing. The inte-
rior of the simplex, in turn, corresponds to configurations of population
in which all cell types coexist, albeit with different fractions in different
points. The number and nature of the fixed points in the simplex will
naturally depend on the relative balance between β and δ in the pay-off
matrix:

• if β < 1, MM cells can go extinct and OB and OC may again re-
establish the stable dynamic equilibrium (Fig. 5.2 a).

• if β < 1 and β + δ > 1 here appears a typical saddle point struc-
ture in the interior of the simplex, which still ensures that normal
homoeostasis is a possible ‘end-game’ of the coevolutionary process.
In this case, therapies that change β may provide important contri-
butions to overall disease eradication. (Fig. 5.2 b)

• if β > 1, the OB population is drastically lowered, and the only stable
equilibrium is the coexistence of OC and MM cells. (Fig. 5.2, c)
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Figure 5.2: Evolutionary dynamics of OC, OB and MM cell types - EGT
model

5.2 From a real phenomenon to a physical model

As we have shown in the third chapter, the pathogenesis of multiple myeloma
bone disease is a very complex phenomenon. Of course, modelling every
details is an impossible task, so we have made some reasonable simplifi-
cations. Many of them are already present in the paper of J. Pacheco [106],
but we prefer to explain and underline them, in order to better understand
our work.

We have considered just three cell populations: osteoblasts (OB), osteo-
clasts (OC) and multiple myeloma cells (MM). Thus, we have left out all
the intermediate stages, such as osteoprogenitor cells or osteocytes.

To model the derivation of OB and OC, we have supposed the presence
of two sources, initially with different rates of production for the two kind
of cells.

We have pictured the interplay between OB and OC in the healthy bone
tissue as cooperation. After the onset of myeloma, we have, on the one
hand, summed up all the molecular pathways that enhance osteoclasts
activity as cooperation between MM and OC. On the other, the fact that
MM cells suppress osteoblasts activity is modelled as an increased death
rate for OB when MM are present. In this initial model, each interaction
could have different intensities depending on the direction.
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Once the rate transition and the equations have been set, we made
a further simplifications to make the simulations: we suppose that the
sources of OB and OC are identical and that all the interactions of cooper-
ation are specular.

5.3 Our model

We modelled the phenomenon of multiple myeloma bone disease as an
interacting particle system. First of all, we described the healthy bone
tissue, with two species only (OB and OC), to verify that these coexist
and cooperate to maintain the tissue physiological equilibrium. Then we
introduced in that framework the malignant cells of myeloma, modelling
a system with three cellular species.

The system is defined over a two-dimensional square lattice, at each
site of which there is a cell that undergoes a continuous-time Markov pro-
cess.

An algorithmic description (Fig. 5.3) of this model update rule is the
following

i. at time t, a random cell is picked with the same probability for each
site (for the case with MM cells this point is slightly modified, as we
will explain later);

ii. the selected cell is removed and substituted by another one, chosen
depending on some transition rate;

iii. the time is incremented, t→ t+ dt.

In other words, at each time step, in a site of the lattice can occur a point of
a Poisson process, whose sequence determines the time evolution of cell
populations.
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Figure 5.3: Cell removal and substitution

Let us introduce some notations.
The i-th empty site will be denoted with ♦i.
For sake of simplicity, we will use B for indicate osteoblasts (OB), C

for osteoclasts (OC) and M for multiple myeloma cells (MM) (e.g., nB will
stand for the number of OB).

Concentrations will be denoted as

η̄K(t) =
nK(t)

nTOT
,

whereK = B (for OB), C (for OC) ,M (for MM) and nTOT = nB+nC+nM .
The transition rate of (K → ♦i → L) will be ωKL, where K,L =

B,C,M . Of course there is no transition between, for example, OC and
OC, so the terms with K = L will be equal to zero.
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As a first step, we study the time evolution of cell populations over the
lattice in the mean field approximation, that is, when the rates are calcu-
lated over the whole lattice. In other words, each cell interacts with all the
others and there is no concept of space. Then, we make a more realistic
step: we develop a local model, supposing that each cell interacts only
with its nearest neighbours.

Figure 5.4: Mean field and local configuration

For the mean field case, in analogy with what we have done for the
Curie-Weiss model and for the voter model, we can write the space state
of the system as {η(t)}t∈[0,T ]. Let us assume that the space state of the
system, at an arbitrary time t, is defined by the arbitrary configuration

η = (η1, . . . , ηi, . . . , ηN) where ηi = {OB, OC, MM}

and that the dynamics is described by some transition rates ωKL.
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Then, the infinitesimal generator for the markovian dynamics of η̄K is

LNf(η̄K) =
N∑
i=1

{
ωBC [f(ηi = OC)− f(ηi = OB)]

+ ωBM [f(ηi = MM)− f(ηi = OB)]

+ ωCB [f(ηi = OB)− f(ηi = OC)]

+ ωCM [f(ηi = MM)− f(ηi = OC)]

+ ωMB [f(ηi = OB)− f(ηi = MM)]

+ ωMC [f(ηi = OC)− f(ηi = MM)]
}
,

where f(ηi = L)− f(ηi = N) is the gradient of the configurations, consid-
ering the transition from an initial state L and a final state N .

All our results are shown in the appendix Supplementary Figures, but,
to explain our model, we will exhibit some of them also in this chapter.

We have also reported, in the appendix Code, as examples, two com-
mented codes of the simulations.

The discussion of the parameters, how they modify the behaviour of
the system and their biological and clinical meaning will be the subject of
the next section. Here we want just to clarify the theory behind our model
and behind the simulations we performed.

5.3.1 Healthy bone homeostasis

First of all, we try to describe the homeostasis of the healthy bone tissue.
We define the transition rates, that is the rate at which an empty site (indi-
cated by ♦i) is occupied by a cell of a specific type, taking into account the
presence of sources and cooperative interactions.

(♦i → OC) with rate ωBC = a+ b nB,

(♦i → OB) with rate ωCB = c+ d nC ,
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where (Fig. 5.5)

• a is the rate of formation of OC;

• b is the rate at which OB cells help OC cells, stimulating their activa-
tion;

• c is the rate of differentiation of OB by the osteoprogenitor cells;

• d is the rate at which OC cooperate with OB, in order to ensure home-
ostasis.

All the parameters are positive.

Figure 5.5: Healthy bone tissue homeostasis

It is important to remark that a and c represent two sources and that
the production of OB and OC does not depend on the number of OB and
OC that are already present.

• Mean Field Approximation

We initially cope with the mean field approximation. We firstly trans-
late the problems in terms of concentrations, so the total number of
them sums to 1.

η̄B(t) =
nB(t)

nTOT
, η̄C(t) =

nC(t)

nTOT
.
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Hence, we can write the infinitesimal generator for the dynamics of
η̄B and η̄C

LNf(η̄K) =
N∑
i=1

{
ωBC

[
f(ηi = OC)− f(ηi = OB))

]
+ ωCB

[
f(ηi = OB)− f(ηi = OC))

]}
.

Using the Th.4.2.1, we read the limiting process from the limit of LN ,
as N goes to infinity. We can write

LNf(η̄B) =
N∑
i=1

{
ωBC

[
f(ηi = OC)− f(ηi = OB))

]
+ ωCB

[
f(ηi = OB)− f(ηi = OC))

]}
=

N∑
i=1

{
(a+ b η̄B)

[
f(ηi = OC)− f(ηi = OB))

]
+(c+ d η̄C)

[
f(ηi = OB)− f(ηi = OC))

]}
=

∑
i:ηi=OB

(a+ b η̄B)

(
− 1

N

)
∂f

∂x

∣∣∣∣
x=η̄B

+
∑

i:ηi=OC

(c+ d η̄C)

(
1

N

)
∂f

∂x

∣∣∣∣
x=η̄B

= −(a+b η̄B)

( ∑
i:ηi=OB

1

N

)
∂f

∂x

∣∣∣∣
x=η̄B

+(c+ d η̄C)

( ∑
i:ηi=OC

1

N

)
∂f

∂x

∣∣∣∣
x=η̄B

=
[
η̄C(c+ d η̄C)− η̄B(a+ b η̄B)

]∂f
∂x

∣∣∣∣
x=η̄B

.
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The same holds for η̄C . Thus, the limiting generators are

LNf(η̄B) =
[
η̄C(c+ d η̄C)− η̄B(a+ b η̄B)

]∂f
∂x

∣∣∣∣
x=η̄B

,

LNf(η̄C) =
[
η̄B(a+ b η̄B)− η̄C(c+ d η̄C)

]∂f
∂x

∣∣∣∣
x=η̄C

,

that correspond to the mean field equations

˙̄ηB(t) = η̄C(t)(c+ d η̄C(t))− η̄B(t)(a+ b η̄B(t)),

˙̄ηC(t) = η̄B(t)(a+ b η̄B(t))− η̄C(t)(c+ d η̄C(t)).

It is also possible2 to write the mean field equations, substituting
η̄B(t) with x(t) and η̄C(t) with y(t), as

ẋ(t) = y(t)(c+ d y(t))− x(t)(a+ b x(t)),

ẏ(t) = x(t)(a+ b x(t))− y(y)(c+ d y(t)).

Considering that we are working with concentration, we have that
y(t) = 1 − x(t) for ∀t. Hence we need only one equation to describe
the system in the mean field case

ẋ(t) = (1− x(t))(c+ d (1− x(t)))− x(t)(a+ b x(t)). (5.1)

In Fig. 5.6 we show

– (a): the time evolution of OB (in orange) and OC (in blue) pop-
ulations simulated through the Poisson process over the lattice;

– (b): the superposition of the simulated time evolution of OB
cells and the mean field equation (in red) 5.1.

This comparison assures us that our model correctly reproduce the
time evolution of the mean field differential equation derived from
the theory.

2This substitution is useful to compare these equations with the code.
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Figure 5.6: Healthy Bone Tissue - Mean Field: a = b = 1.2; c = d = 1.

• Local Model

Then we simulate the local model for the healthy tissue: as we have
explained above, we compute the rate for each site just over the near-
est neighbours on the lattice. In this way, for the healthy bone tissue
we reproduce (Fig. 5.7) the same qualitative behaviour of the mean
field equation.
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Figure 5.7: Healthy Bone Tissue - Local Model: a = b = 1.2; c = d = 1.

Both for the mean field and the local case, to perform the simulations,
we do a further simplification. We reduce the number of parameters3,
supposing that the rate at which OB and OC are formed is the same, that
is a = c.

3A parallel may be drawn here between some of our parameters and the ones of [106]:
b(our model) = a(paper by Pacheco) and d = e.
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5.3.2 Multiple myeloma progression

We want now to model the progression of multiple myeloma cells through
the healthy tissue. As we have already underlined, multiple myeloma is
a cancer of plasma cells, so there is no mutation of bone cells in malig-
nant ones: we portray the system with MM cells already present. We have
performed the same steps we made for the healthy case, but with some
variations: so we are not going to repeat the arguments when they are
analogous to the ones already explained, but we will dwell on the pecu-
liar features of the myeloma case.

The first difference is that the cell are not picked at random with the
same probability. To model the fact that MM cells reduce the OB activity
and, consequently, their number, we have decided to make "more likely"
OB cells to be chosen.

Figure 5.8: Pathological bone turnover - Our model

We define the model parameters as follows (Fig. 5.8).

• a, b, c, d are the same as in the healthy case;

• f is the rate at which MM cells have an harmful interaction with OB;

• R is the rate at which a random cell is picked;
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• e is the rate at which MM cells enhance the OC activity;

• g is the reproduction rate of MM cells;

• h is the rate at which OC cells support MM cells.

The Heaviside step function is used to clarify that, if there is not MM cells,
OC can not produce them. All the parameters are positive.

We want to clarify how the transition rates can include the fact that OB
cells are more likely to be picked. Let us suppose that a cell is picked at
random with rate R; we then assume that an OB cell is chosen with a rate
R + f nM > R.

If we take into account the transition (OC → ♦i → OB), we write

ωCB = R
c+ d nC

R

= c+ d nC .

Instead, if we consider the transition (OB → ♦i → OC), we write

ωBC = (R + f nM)
a+ b nB + e nM

R

= R (1 +
f

R
nM)

a+ b nB + e nM
R

= (1 + f̃ nM) (ã+ b̃ nB + ẽ nM).

Without losing generality, we can set R = 1, hence f̃ = f , ã = a and so
on.
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Then, the transition rates are

(OB → ♦i → OC) with rate ωBC = (1 + f nM)(a+ b nB + e nM),

(OB → ♦i →MM) with rate ωBM = (1 + f nM)(g nM + h nC θ(nM)),

(OC → ♦i → OB) with rate ωCB = c+ d nC ,

(OC → ♦i →MM) with rate ωCM = g nM + h nC θ(nM),

(MM → ♦i → OB) with rate ωMB = c+ d nC ,

(MM → ♦i → OC) with rate ωMC = a+ b nB + e nM .

• Mean Field Approximation

In a similar way as in the healthy case, having translated the problem
in terms of concentrations, we can derive the limiting generators

LNf(η̄B) =
[
η̄C(c+ d η̄C) + η̄M((c+ d η̄C))

− η̄B(1 + f η̄M)(a+ b η̄C + e η̄M)

− η̄B(1 + f η̄M)(g η̄M + h η̄C θ(η̄M))
]∂f
∂x

∣∣∣∣
x=η̄B

,

LNf(η̄C) =
[
η̄B(1 + f η̄M)(a+ b η̄C + e η̄M)

+ η̄M(a+ b η̄C + e η̄M)

− η̄C(c+ d η̄C)− η̄C(g η̄M + h η̄C θ(η̄M))
]∂f
∂x

∣∣∣∣
x=η̄C

,

LNf(η̄M) =
[
η̄B(1 + f η̄M)(g η̄M + h η̄C θ(η̄M))

+ η̄C(g η̄M + h η̄C θ(η̄M))

− η̄M(c+ d η̄C)− η̄M(a+ b η̄C + e η̄M)
]∂f
∂x

∣∣∣∣
x=η̄C

.
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Hence, the mean field equations are

˙̄ηB(t) = η̄C(t)(c+ d η̄C(t)) + η̄M(t)(c+ d η̄C(t))

− η̄B(t)(1 + f η̄M(t))(a+ b η̄C(t) + e η̄M(t))

− η̄B(t)(1 + f η̄M(t))(g η̄M(t) + h η̄C(t) θ(η̄M(t))),

˙̄ηC(t) = η̄B(t)(1 + f η̄M(t))(a+ b η̄C(t) + e η̄M(t))

+ η̄M(t)(a+ b η̄C(t) + e η̄M(t))

− η̄C(t)(c+ d η̄C(t))− η̄C(t)(g η̄M(t) + h η̄C(t) θ(η̄M(t))),

˙̄ηM(t) = η̄B(t)(1 + f η̄M(t))(g η̄M(t) + h η̄C(t) θ(η̄M(t)))

+ η̄C(t)(g η̄M(t) + h η̄C(t) θ(η̄M(t)))

− η̄M(t)(c+ d η̄C(t))− η̄M(t)(a+ b η̄C(t) + e η̄M(t)).

Substituting η̄B(t) with x(t), η̄C(t) with y(t) and η̄M(t) with z(t), we
can write

ẋ(t) = y(t)(c+ d y(t)) + z(t)(c+ d y(t))

− x(t)(1 + f z(t))(a+ b y(t) + e z(t))

− x(t)(1 + f z(t))(g z(t) + h y(t) θ(z(t))),

ẏ(t) = x(t)(1 + f z(t))(a+ b y(t) + e z(t))

+ z(t)(a+ b y(t) + e z(t))

− y(t)(c+ d y(t))− y(t)(g z(t) + h y(t) θ(z(t))),

ż(t) = x(t)(1 + f z(t))(g z(t) + h y(t) θ(z(t)))

+ y(t)(g z(t) + h y(t) θ(z(t)))

− z(t)(c+ d y(t))− z(t)(a+ b y(t) + e z(t)).
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Remembering that x(t) + y(t) + z(t) = 1 for ∀t, we can write z(t) =

1− x(t)− y(t) and reduce the number of equations

ẋ(t) = y(t) (c+ d y(t)) + (1− x(t)− y(t))(c+ d y(t))

− x(t)(1 + f (1− x(t)− y(t)))(a+ b y(t) + e (1− x(t)− y(t)))

− x(t)(1 + f (1− x(t)− y(t)))(g (1− x(t)− y(t))

+ h y(t) θ((1− x(t)− y(t))), (5.2)

ẏ(t) = x(t) (1 + f (1− x(t)− y(t)))(a+ b y(t) + e (1− x(t)− y(t)))

+ (1− x(t)− y(t))(a+ b y(t) + e (1− x(t)− y(t)))

− y(t)(c+ d y(t))− y(t)(g (1− x(t)− y(t))

+ h y(t) θ((1− x(t)− y(t))). (5.3)

Even in this case, both for the mean field and the local model, to
perform the simulations we do a further simplification. We reduce
the number of parameters, supposing that

– the rate at which OB and OC are formed is the same: a = c;

– the cooperation between OB and OC has the same intensity in
both directions: b = d;

– also the cooperation between OC and MM has the same inten-
sity in both directions: e = h.

A parallel may be drawn here between some of our parameters and
the ones of [106]; we will then renamed our reduced parameters after
that used by J. Pacheco et al.: we will call e = h→ β and f → δ.
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In Fig. 5.9 we show

– (a): the time evolution of OB (in orange), OC (in blue) and MM
(in green) populations simulated through the Poisson process
over the lattice;

– (b): the superposition of the simulated time evolution of OB
and OC cells and the mean field equations 5.2 (in red) and 5.3
(in light blue).

Also for the modelling of tumor progression, this comparison as-
sures us that our model correctly reproduce the time evolution of
the mean field differential equations derived from the theory.
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(b) g = 1.2

Figure 5.9: Multiple Myeloma - Mean Field: β = 2.0 and δ = 0.

• Local Model
Simulating the dynamics of OB, OC and MM cells from a local point
of view, we reproduce, for large time scale, that is after the equilib-
rium is reached, the qualitative behaviour (Fig. 5.10) of the mean
field approximation.
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Figure 5.10: Multiple Myeloma - Local Model: β = 2.0; δ = 0.

• Initial concentration of MM cells
Lastly, we try to model the spatial spreading of MM cells. To do
this, we drew at the center of the lattice a concentration of MM cells
and fill the remaining of the lattice only with OB and OC cells. We
then observe the time evolution of the system, thanks to our well-
established simulation of Poisson processes. In this case, the qualita-
tive behaviour of the system strongly depends on the parameter, as
we explain in next section.

Figure 5.11: An example of initial concentration of MM cells on the lat-
tice.
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5.3.3 Parameters characterization

Our main results is the reproduction, varying parameters, of qualitative
behaviours of time evolution of cell populations in presence of MM. Below
we want to describe the meaning of the reduced parameters and how the
system depends on them.

First of all, in our simulations we arbitrary set some parameters:

• a = c = 1.2, that is, the sources of OB and OC have the same rate
of cells production;

• b = d = 1.0, that means that the cooperative interaction between
OB and OC is symmetric.

The relevant parameter, for whose changing values we perform differ-
ent simulations, are

• e = h = β, the intensity of symmetric cooperation between OC and
MM cells. β has been linked [106] to the secretion of MIP-1α or of IL-
1β. In general, it is related to the molecular pathways that enhance
osteoclast activity. Actually, increasing β will lead to more bone de-
struction, higher tumor burden and faster tumor progression. From
our simulations, we observe that, as long as β < 1, the MM cells
population can go extinct and OB and OC may re-established the
physiological bone homeostasis. On the contrary, if β > 1, at the
equilibrium there is always the coexistence of the three cell types,
that, unfortunately, means a negative prognosis for the patient.

• f = δ, the intensity of harming action of MM on OB. This param-
eter is related with the molecular pathways that reduce osteoblast
activity. In particular, [106] it has been associated to WNT pathway
and to DKK-1. High values of δ portray a very diminished osteoblast
activity.

• g, the rate of MM mitosis. We propose that, through this parameter, it
may be possible to discriminate between different forms of myeloma
[107] [91] [92].
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We suggest, for example, that g = 1.0 can represent the monoclonal
gammopathy of undetermined significance (MGUS), that is a plasma cells
discrasia that may or not evolve into myeloma. Patients affected by
MGUS show lower levels of antibodies, a lower number of plasma
cells in the bone marrow, but they rarely have symptoms or major
problems.

- The value g = 1.2 can be linked to the lymphoplasmacytic lymphoma
or the smouldering multiple myeloma (SMM), that are precursor condi-
tions of myeloma and that do not present bone destruction. Patients
with SMM may have a stable disease state for many years (about the
75% of them move forward malignant myeloma in 15 years) before
the progression to active myeloma.

Indolent multiple myeloma (IMM), instead, has a shorter pre-malignant
state (10 months), thus can be represented by g = 2.0.

Lastly, g = 3.5 stands for the active multiple myeloma, the most ag-
gressive form of plasma cells neoplasia.

The complete set of parameters, {a, b, c, d, e, f, g}, can describe a patient-
specific case of tumor: they can reflect tumor-host interactions and the
variability of disease due to differences in the host rather than the cancer-
ous cell genotype.

Of course, different combinations of these parameters can lead to dif-
ferent equilibria for cell populations and some values of them can in-
fluence the model behaviour so much that the system will become non-
sensitive to the other parameters variation. For example, if g = 3.5, the
tumor will quickly develop and will invade the lattice (that is, the bone),
regardless of the values of β and δ.

Considering the tumor progression, it can be possible to modify the
parameters values through different kind of therapies, in order to offer to
the patient a better prognosis. For example, both bone marrow transplan-
tation and drug treatment can lower the values of β and δ, trying to avoid
a MM cells invasion of the tissue.

Moreover this model could help to estimate the risk of progression of
MGUS and other precursor forms into multiple myeloma.
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CONCLUSIONS AND FUTURE PERSPECTIVES

PRIMA LEGGE DI FUDD

SULLA CREATIVITÀ

Per avere una buona idea,
fatti venire molte idee.

CONTROLEGGE DI FUDD

Più idee ti fai venire, più sarà difficile
riconoscere quella buona.

Having faced such a wide field as mathematical oncology, we now
want to draw the conclusions of our work.

We tried to develop a model with a bottom-up approach, starting from
the study of the biological problem. In such a manner, we tackled all the
steps that lead to the creation of a model from a real phenomenon to its
simulation. We also made the decisions required to render the problem
manageable, both from a mathematical and a computational point of view.
By doing so, we have offered a novel approach to the study of tumor pro-
gression through healthy tissue. We define the model for the specific case
of multiple myeloma through bone tissue. However, it is applicable, via
appropriate modifies of transition rates and parameters, to every kind of
neoplasia.
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In particular, we managed to formulate a realistic model of microscopic
interactions between healthy and cancerous cells. Moreover, we were able
to simulate the system from a local point of view, as well as in its mean
field approximation. This factor (aspect, trait, feature..) opens up new
interesting opportunities over the in-depth study of phenomena such as
diffusion or segregation of malignant cells.

We hope that in the near future it will be possible to test models like
ours on clinical data, in order to perform statistical inference over the
free parameters. By doing this, the models may become powerful tools
to make diagnoses and to analyse the feasibility of treatment, both surgi-
cally and pharmacologically. Moreover, the models lend themselves, by
their very nature, to the application to patient-specific therapy, which is
considered as the forthcoming landing of the clinical practice.
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CODE

Below we report the code of the simulations for

• the Healthy Mean Field Model
Firstly, we show the parameters and variables definition; then the
core of the code, that is the Poisson process on the lattice for two
species of cells (OB and OC) and, lastly, the simulation of the mean
field differential equation;

• the Myeloma Model with an initial concentration of cancerous cells
Firstly, we show the parameters and variables definition and how to
make a disk of MM cells in the center of the square lattice. Succes-
sively, we show the core of the code, that is the Poisson process on
the lattice for three species of cells (OB, OC and MM).
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Code

Healthy mean field model

(*set the number of iterations (Niter), the time interval (dt);

the paramenters (a, b, c, d) and the dimensions of the lattice (L)*)

Niter = 3000;

dt = 0.01;

a = c = 1.2;

b = 1.;

d = 1.;

L = 30;

(*Ntot is the total number of sites of the lattice*)

Ntot = L*L;

(*define the initial arrays*)

(*rateOB and rateOC are the matrices of the rate of transitions,

calculated for each site of the lattice.

They are calculated for each iteration of the simulation*)

rateOB = Table[0, {ix, 1, L}, {jx, 1, L}] ;

rateOC = Table[0, {ix, 1, L}, {jx, 1, L}];

(*Reticolo is the vector of matrices that describe the lattice.

There are Niter matrices L*L.

The matrices are initially filled with random number (0 or 1).

O stands for OB cells, 1 stands for OC cells.

In this case the proportion of random number is OB=0.2, OC=0.8*)

Reticolo = Table[Table[RandomChoice[{0.2, 0.8} → {0, 1}],

{ix, 1, L}, {jx, 1, L}] , {kx, 1, Niter}];

(*nOB and nOC are the vectors of the total number of OB or OC

cells on the lattice for each iteration*)

nOB = Table[0, {k, 1, Niter}];

nOC = Table[0, {k, 1, Niter}];

(*popOB and popOC are the vectors of the fraction of the OB and OC

population over the total number of cells.

That is, for example, popOB=nOB/nTOT*)

popOB = Table[0, {k, 1, Niter}];

popOC = Table[0, {k, 1, Niter}];
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For[k = 1, k ≤ Niter - 1, k++,

(*for each iteration, nOC = number of 1 on the lattice,

nOB = number of 0 on the lattice.

popOB and popOC are the relative fractions

over the total number of sites.

These are the vectors that will be plot later*)

nOC[[k]] = Total[Total[Reticolo[[k]]]];

nOB[[k]] = Ntot - nOC[[k]];

popOB[[k]] = N[nOB[[k]]/Ntot];

popOC[[k]] = N[nOC[[k]]/Ntot];

For[j = 1, j ≤ L, j++,

For[i = 1, i ≤ L, i++,

(*for each iteration, rateOC and rateOB

are calculated for each site of the matrix*)

(*N.B.: this is a mean field case,

rates are computed over the entire lattice*)

rateOC[[i, j]] = a + b* N[nOB[[k]]/Ntot];

rateOB[[i, j]] = c + d*(1. - N[nOB[[k]]/Ntot]);

];

];

For[jx = 1, jx ≤ L, jx ++,

For[ix = 1, ix ≤ L, ix ++,

(*for each site, a random number (z) is generated*)

z = RandomReal[];

(*rate is the sum, for each site of rateOB and rateOC*)

rate = N[rateOC[[ix, jx]] + rateOB[[ix, jx]]];

If[z < rate*dt,

(*if z<rate*dt, there is a point of the Poisson process

(that is, the cell on that site is removed)

and another random number (w) is generated*)
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w = RandomReal[];

(*f is, for each site, rateOC/rate*)

f = N[rateOC[[ix, jx]]/rate];

If[w < f,

(*if w<f, then the empty site is occupied by an OC,

otherwise by an OB*)

Reticolo[[k + 1]][[ix, jx]] = 1;,

Reticolo[[k + 1]][[ix, jx]] = 0;

];,

(*if z>rate*dt, nothing happens and

the k-th matrix of Reticolo remains unchanged*)

Reticolo[[k + 1]][[ix, jx]] = Reticolo[[k]][[ix, jx]];,

Reticolo[[k + 1]][[ix, jx]] = Reticolo[[k]][[ix, jx]];

];

];

];

];

(*solve the mean field differential equation*)

s = NDSolve[{x'[t] ⩵ (1 - x[t]) (c + d*(1 - x[t])) - x[t] (a + b*x[t]),

x[0] ⩵ prop}, {x}, {t, (dt *Niter)}];
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Code

Myeloma model with the initial concentration of cancerous cells

(*set the number of iterations (Niter),

the time interval (dt); the paramenters (a, b, c, d, e, f)

and the dimensions of the lattice (L)*)

Niter = 10000;

dt = 0.01;

a = c = 1.2;

b = d = 1.;

e = h = 0.5;

f = 0.;

g = 1.0;

L = 30;

(*raggio is the radius of the circle of MM cells

that we want to put at the center of the lattice*)

raggio = 2;

(*Ntot is the total number of sites of the lattice*)

Ntot = L*L;

(*define the initial arrays*)

(*rateOB, rateOC, rateMM and deathOB are

the matrices of the rate of transitions,

calculated for each site of the lattice.

They are calculated for each iteration of the simulation*)

rateOB = Table[0, {ix, 1, L}, {jx, 1, L}] ;

rateOC = Table[0, {ix, 1, L}, {jx, 1, L}];

rateMM = Table[0, {ix, 1, L}, {jx, 1, L}] ;

deathOB = Table[0, {ix, 1, L}, {jx, 1, L}] ;

(*Reticolo is the vector of matrices that describe the lattice.

There are Niter matrices L*L.

The matrices are initially filled with random number (0 or 1).

O stands for OB cells, 1 stands for OC cells.

In this case the proportion

of random number is OB = 0.5, OC = 0.5*)
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Reticolo = Table[Table[RandomChoice[{0.5, 0.5 } → {1, 0}],

{ix, 1, L}, {jx, 1, L}] , {kx, 1, Niter}];

(*disco is a L*L matrix of 0, with a disk of -1 of radius

"raggio" at the center of the matrix*)

disco = Table[-(DiskMatrix[raggio, L]), {kx, 1, Niter}];

(*nOB nOC and nMM are the vectors of the total number

of OB, OC or MM cells on the lattice for each iteration*)

nOB = Table[0, {k, 1, Niter}];

nOC = Table[0, {k, 1, Niter}];

nMM = Table[0, {k, 1, Niter}];

(*popOB, popOC and popMM are the vectors of the fraction of the OB,

OC and MM population over the total number of cells.

That is, for example, popOB=nOB/nTOT*)

popOB = Table[0, {k, 1, Niter}];

popOC = Table[0, {k, 1, Niter}];

popMM = Table[0, {k, 1, Niter}];

(*here, for each iteration, the matrix disco

is overlaid to the k-th matrix Reticolo.

Thus, after this cycle, the matrix Reticolo

(filled with 0 and 1) has a disk of -1 in the center*)

For[k = 1, k ≤ Niter, k++,

For[i = 1, i ≤ L, i++,

For[j = 1, j ≤ L, j++,

If[disco[[k]][[i, j]] ⩵ -1,

Reticolo[[k]][[i, j]] = disco[[k]][[i, j]],

Reticolo[[k]][[i, j]] = Reticolo[[k]][[i, j]]

];

];

];

];
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For[k = 1, k ≤ Niter - 1, k++,

(*for each iteration, nOC = number of 1 on the lattice,

nOB = number of 0 on the lattice,

nMM = number of -1 on the lattice.

popOB, popOC and popMM are the relative

fractions over the total number of sites.

These are the vectors that will be plot later*)

nOC[[k]] = Count[Flatten[Reticolo[[k]]], 1];

nOB[[k]] = Count[Flatten[Reticolo[[k]]], 0];

nMM[[k]] = Count[Flatten[Reticolo[[k]]], -1];

popOB[[k]] = N[nOB[[k]]/Ntot];

popOC[[k]] = N[nOC[[k]]/Ntot];

popMM[[k]] = N[nMM[[k]]/Ntot]; For[j = 1, j ≤ L, j++,

For[i = 1, i ≤ L, i++,

(*for each iteration, rateOC, rateOB, rateMM and deathOB

are calculated for each site of the matrix*)

(*N.B.: this is a local case, rates are

computed just over the nearest neighbours*)

rateOC[[i, j]] = a + (b/4.)* Count[{Reticolo [[k ]]

[[i, Mod[j - 1, L, 1]]], Reticolo [[k ]][[i, Mod[j + 1, L, 1]]],

Reticolo [[k ]][[Mod[i - 1, L, 1], j]],

Reticolo [[k ]][[Mod[i + 1, L, 1], j]]}, 0] + (e/4.)*

Count[{Reticolo [[k ]][[i, Mod[j - 1, L, 1]]], Reticolo [[k ]]

[[i, Mod[j + 1, L, 1]]], Reticolo [[k ]][[Mod[i - 1, L, 1], j]],

Reticolo [[k ]][[Mod[i + 1, L, 1], j]]}, -1];

rateOB[[i, j]] = c + (d/4.)*Count[{Reticolo [[k ]]

[[i, Mod[j - 1, L, 1]]], Reticolo [[k ]][[i, Mod[j + 1, L, 1]]],

Reticolo [[k ]][[Mod[i - 1, L, 1], j]],

Reticolo [[k ]][[Mod[i + 1, L, 1], j]]}, 1];
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rateMM[[i, j]] = (g/4.)*Count[{Reticolo [[k ]]

[[i, Mod[j - 1, L, 1]]], Reticolo [[k ]][[i, Mod[j + 1, L, 1]]],

Reticolo [[k ]][[Mod[i - 1, L, 1], j]],

Reticolo [[k ]][[Mod[i + 1, L, 1], j]]}, -1] + (h/4.)*

Count[{Reticolo [[k ]][[i, Mod[j - 1, L, 1]]],

Reticolo [[k ]][[i, Mod[j + 1, L, 1]]],

Reticolo [[k ]][[Mod[i - 1, L, 1], j]],

Reticolo [[k ]][[Mod[i + 1, L, 1], j]]}, 1] *

HeavisideTheta[Count[{Reticolo [[k ]]

[[i, Mod[j - 1, L, 1]]], Reticolo [[k ]][[i, Mod[j + 1, L, 1]]],

Reticolo [[k ]][[Mod[i - 1, L, 1], j]],

Reticolo [[k ]][[Mod[i + 1, L, 1], j]]}, -1]];

deathOB[[i, j]] = (f/4.)* Count[{Reticolo [[k ]]

[[i, Mod[j - 1, L, 1]]], Reticolo [[k ]][[i, Mod[j + 1, L, 1]]],

Reticolo [[k ]][[Mod[i - 1, L, 1], j]],

Reticolo [[k ]][[Mod[i + 1, L, 1], j]]}, -1]

];

];

For[jx = 1, jx ≤ L, jx ++,

For[ix = 1, ix ≤ L, ix ++,

(*for each site, a random number (z) is generated*)

z = RandomReal[];

(*rate is the sum, for each site of rateOB, rateOC and rateMM*)

rate = rateOC[[ix, jx]] + rateOB[[ix, jx]] + rateMM[[ix, jx]];

(*rateplus is the sum, for each site of rateOB, rateOC,

rateMM and deathOB*)

rateplus = rate + deathOB[[ix, jx]];

(*step is, for each site, rateOC/rate*)

step = rateOC[[ix, jx]]/rate;

(*step2 is, for each site, (rateOB+rateOC)/rate*)

step2 = (rateOB[[ix, jx]] + rateOC[[ix, jx]])/rate;
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If[Reticolo[[k]][[ix, jx]] ⩵ 0,

(*if the site is occupied by an OB,

we have to consider rateplus*dt as a threshold*)

If[z < rateplus*dt,

(*if z<rateplus*dt, there is a point of the Poisson process

(that is, the cell on that site is removed)

and another random number (w) is generated*)

w = RandomReal[];

If[w < step,

(*if w<step, then the empty site is occupied by an OC*)

Reticolo[[k + 1]][[ix, jx]] = 1;

];

If[step ≤ w ≤ step2,

(*if step≤w≤step2, then the empty site is occupied by an OB*)

Reticolo[[k + 1]][[ix, jx]] = 0;

];

If[step2 ≤ w ≤ 1,

(*if step2≤w≤1, then the empty site is occupied by an MM*)

Reticolo[[k + 1]][[ix, jx]] = -1;

];,

(*if z>rate*dt, nothing happens and

the k-th matrix of Reticolo remains unchanged*)

Reticolo[[k + 1]][[ix, jx]] = Reticolo[[k]][[ix, jx]];,

Reticolo[[k + 1]][[ix, jx]] = Reticolo[[k]][[ix, jx]];

],

(*if the site is occupied by and OC or by an MM,

the threshold is rate*dt *)
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If[z < rate*dt,

(*if z<rate*dt, there is a point of the Poisson process

(that is, the cell on that site is removed)

and another random number (w) is generated*)

w = RandomReal[];

If[w < step,

(*if w<step, then the empty site is occupied by an OC*)

Reticolo[[k + 1]][[ix, jx]] = 1;

];

If[step ≤ w ≤ step2,

(*if step≤w≤step2, then the empty site is occupied by an OB*)

Reticolo[[k + 1]][[ix, jx]] = 0;

];

If[step2 ≤ w ≤ 1,

(*if step2≤w≤1, then the empty site is occupied by an MM*)

Reticolo[[k + 1]][[ix, jx]] = -1;

];,

(*if z>rate*dt, nothing happens and

the k-th matrix of Reticolo remains unchanged*)

Reticolo[[k + 1]][[ix, jx]] = Reticolo[[k]][[ix, jx]];,

Reticolo[[k + 1]][[ix, jx]] = Reticolo[[k]][[ix, jx]];

];

];

];

];

];
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SUPPLEMENTARY FIGURES

In this appendix we show the simulations we performed. Firstly, there
are the ones about the healthy bone tissue, both mean field and local.
Then, there are the plots about the progression of multiple myeloma: mean
field, local and the simulations that start with an initial concentration of
myeloma cells, with following dispersal or invasion.

For sake of simplicity we show here the color legend.

Figure 5.12: Legend

The initial conditions refer to the proportions according to which the
OB, OC and MM cells are initially randomly spread over the lattice.

The time step is always 0.01.
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Supplementary figures

• Healthy Bone Tissue - Mean Field
Iterations : 3000
Lattice dimension : 30× 30

Initial conditions : OB = 0.2, OC = 0.8

• Healthy Bone Tissue - Local Model
Iterations : 3000
Lattice dimension : 30× 30

Initial conditions : OB = 0.2, OC = 0.8

• Multiple Myeloma - Mean Field
Iterations : 10000
Lattice dimension : 30× 30

Initial conditions : OB = 0.2, OC = 0.5, MM = 0.3

• Multiple Myeloma - Local Model
Iterations : 10000
Lattice dimension : 30× 30

Initial conditions : OB = 0.4, OC = 0.4, MM = 0.2

• Multiple Myeloma with initial segregation
Iterations : 10000
Lattice dimension : 30× 30

Initial conditions : OB = 0.5, OC = 0.5, with a disk of radius 2 of MM
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Supplementary figures
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Figure 5.13: Healthy Bone Tissue - Mean Field: a = b = 1.2; c = d = 1.
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Figure 5.14: Healthy Bone Tissue - Mean Field: a = b = 1.2; c = 1.; d = 1.5

0 5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

time

co
n
ce
n
tr
at
io
n

(a) c = d = 1.
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(b) c = 1.; d = 1.5

Figure 5.15: Healthy Bone Tissue - Local Model: a = b = 1.2
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Supplementary figures
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(c) g = 1.2

0 20 40 60 80 100
0.0

0.1

0.2

0.3

0.4

0.5

time

co
n
ce
n
tr
at
io
n

(d) g = 1.2
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(g) g = 3.5
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(h) g = 3.5

Figure 5.16: Multiple Myeloma - Mean Field: β = 0.5 and δ = 0.
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Figure 5.17: Multiple Myeloma - Mean Field: β = 0.5 and δ = 0.3
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Figure 5.18: Multiple Myeloma - Mean Field: β = 0.5 and δ = 1.0
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Figure 5.19: Multiple Myeloma - Mean Field: β = 2.0 and δ = 0.
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Figure 5.20: Multiple Myeloma - Local Model: β = 0.5; δ = 0.
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Figure 5.21: Multiple Myeloma - Local Model: β = 0.5; δ = 0.3
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Figure 5.22: Multiple Myeloma - Local Model: β = 0.5; δ = 1.0
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Figure 5.23: Multiple Myeloma - Local Model: β = 2.0; δ = 0.
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Figure 5.24: Multiple Myeloma with initial segregation: β = 0.5; δ = 0.
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Figure 5.25: Multiple Myeloma with initial segregation: β = 0.5; δ = 0.3
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Figure 5.26: Multiple Myeloma with initial segregation: β = 0.5; δ = 1.0
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Figure 5.27: Multiple Myeloma with initial segregation: β = 2.0; δ = 0.
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APPENDIX A

Basic concepts of probability

Below we want to give a couple of definitions that could be useful to a
reader that is not trained with probability theory. This appendix is not
exhaustive, but collects just some concepts used in chapter VI.

Definition 5.3.1 (Independence) Two events A and B are called independent
if

P (A ∩B) = P (A)P (B).

Two random variables X and Y are called independent if for all a, b ∈ R,

P (X ≤ a, Y ≤ b) = P (X ≤ a)P (Y ≤ b).

Definition 5.3.2 (Conditional Probability) The conditional probability of A
given B is the number

P (A|B) =
P (A ∩B)

P (B)
,

defined when P (B) > 0.
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Definition 5.3.3 (Conditional Independence) Two events A and B are con-
ditionally independent given C if

P (A ∩B|C) = P (A|C)P (B|C).

Let X, Y, Z be randonm variables taking their values in the denumerable sets
E ,F ,G, respectively. X and Y are conditionally independent given Z if, for all
x, y, z in E ,F ,G, respectively, events {X = x} and {Y = y} are conditionally
independent given {Z = z}.
Theorem 5.3.1 (Markov property for events) Let A1, A2, A3 be three events
of positive probability. Events A1 and A3 are conditionally independent given A2

if and only if the "Markov property" holds, that is,

P (A3|A1 ∩ A2) = P (A3|A2).

For a proof, see [96], Chapter I.

Theorem 5.3.2 (Markov Property for Random Variables) Let X, Y, Z be three
discrete random variables with values in E ,F and G, respectively. If for some
function g : E × F → [0, 1], P (X = x|Y = y, Z = z) = g(x, y) for all x, y, z,
then P (X = x|Y = y) = g(x, y) for all x, y and X and Y are conditionally
independent given Z.

For a proof, see [96], Chapter I.

Definition 5.3.4 (Stochastic Variables) A stochastic, or random, variable is a
function X : Ω → R̄ such that, for all a ∈ R, the event {X ≤ a} = {ω;X(ω) ≤
a} can be assigned a probability, that is,

{X ≤ a} ∈ F .

A function X : Ω → E , where E is a denumerable set is called a discrete random
variable if for all x ∈ E

{X = x} ∈ F .
From a stochastic variable X derives and infinity of other stochastic

variables, that is all quantities Y that are defined as functions of X by
some mapping f .
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Definition 5.3.5 (Stochastic Process) These quantities Y may be any kind of
mathematical object, in particular also functions of an additional variable t

YX(t) = f(X, t).

Such a quantity Y ()t is called a random function or, since in most cases t stands
for time, a stochastic process. Thus a stochastic process is a function of two vari-
ables, time t and a stochastic variable X .

Poisson Distribution

Suppose that you want to know how many times a binary event occur.
Just to make a naive example: if I flip a coin, how many tails (let us

assume this means 1) can I, statistically, observe?

Consider a sequence {Xn}n≥1 of random variables that can have two val-
ues, 0 or 1, with the same probability distribution

P (Xn = 1) = p,

P (Xn = 0) = 1− p.

where p ∈ (0, 1). Suppose, moreover, that the {Xn} are independent. Since
P (Xj = aj) = p or 1 − p depending upon ai = 1 or 0, and since there are
exactly

∑n
j=1 aj numbers among a1, . . . , an that are equal to 1,

P (X1 = a1, . . . , Xk = an) = p
∑n

j=1 aj(1− p)n−
∑n

j=1 aj .

Let us define

SN = Xi + · · ·+XN

as a succession of N random binary events. For sake of simplicity, we
assume that 1 corresponds to a success, while 0 to a failure. The probability
of observing, after N repetitions, a succession of k successes and N − k

failures is

P (k) = P (SN = k) =

(
N

k

)
pk(1− p)N−k,
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where
(
N
k

)
= N !

k!(N−k)!
is the binomial coefficient. This is the well-known

binomial distribution.

Now we ask ourselves a slightly different question: if I flip a coin, how
many tails can I, statistically, observe, knowing the average number of
times that this event occurs?

For a large number of turnsN , the probability distribution is the following

P (Xn = 1) =
α

N
,

where α is the known average per time unit. Thus, the number SN of tails
is distributed according to

P (k) = P (SN = k) =

(
N

k

)( α
N

)k (
1− α

N

)N−k
.

The limit of the distribution of SN as N →∞ is

lim
N→∞

= e−α
αk

k!
,

that is the Poisson distribution. By definition, a Poisson random variable
with parameter θ > 0 is a random variable such that, for all k ≥ 0,

P (X = k) = e−θ
θk

k!
.

Let X1 and X2 be two independent Poisson random variables with
means θ1 > 0 and θ2 > 0 respectively. Then X = X1 + X2 is a Poisson
random variable with mean θ = θ1 + θ2.

Let {Xn}n≥1 be independent random variables taking values 0 and 1

with probability (1− p) and p respectively, where p ∈ (0, 1).
Let T be a Poisson random variable with mean θ > 0, independent of
(Xn)n≥1. Define

S = X1 + . . . XT .

Then S is a Poisson random variable with mean p θ.
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EGT and Cell Populations Dynamics

Evolutionary game dynamics results from the transfer of eco-
nomic ideas to biology. In economics, rational players try to
find the best strategy to maximize their payoffs. In biology,
those individuals who use the best strategy obtain the highest
reproductive fitness and spread in the population. Tradition-
ally, evolutionary game dynamics is considered in infinitely
large, well–mixed populations. This typically leads to the repli-
cator dynamics, a system of nonlinear differential equations
governing the evolutionary dynamics. For any composition of
the population, the replicator dynamics determines determin-
istically the direction and velocity of evolutionary dynamics.
The replicator dynamics can be derived from microscopic mod-
els of strategy spreading, which are typically stochastic. [113]

First of all, it would be appropriate to introduce the main equation of EGT,
that is, the replicator equation [114].
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Let us assume that a population is divided into n different species,
M1...Mn with corresponding frequencies x1, . . . , xn. The fitness of the i-
th population, fi, is a function of the whole population, that is, of x =

(x1, ..., xn). If the population is very large, and if the generations blend
continuously into each other, we may assume that the state x(t) evolves as
a differentiable function of t. The rate of increase of a species, ẋi/xi, can
be considered as a measure of the evolutionary success of the i-th species.
Thus, we may express it as the difference between the fitness fi(x) and the
average fitness f̄(x) =

∑
xifi(x)

ẋi
xi

= fi(x)− f̄(x),

which yields to the replicator equation

ẋi = xi
(
fi(x)− f̄(x)

)
.

Let us now apply this concept to the case of cancer. We consider a
population A of normal cells of initial population NA(0): every cell of this
population replicate itself with a constant rate α. Assuming infinite re-
sources, the equation that describe the time evolution of the population A
is

dNA(t)

dt
= αNA(t),

NA(t) = NA(0) eαt.

In the same way, for a populationB composed by malignant mutated cells,
with constant reproduction rate β

dNB(t)

dt
= βNB(t),

NB(t) = NB(0) eβt.
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In this unrealistic scenario, in which the overall population grows ex-
ponentially, there are two possible situations: if α/β > 1, the normal cell
population will overcome the mutant population; if α/β < 1, the opposite
happens.

To make the scenario a little bit more realistic, we can assume that the
available resources impose a constant population size (carrying capacity).
We can include this assumption in the above equations

dNA(t)

dt
= NA(t)(α− ω),

dNB(t)

dt
= NB(t)(β − ω).

Imposing the conservation of total population size (NT ≡ const. =

NA(t) +NB(t)) leads to

NT ω = NA(t) α +NB(t) β.

That is, ω stands for the average reproductive rate of population and
all that matters is how α and β compare with ω: the population that re-
produces with a rate bigger than the average, will outgrow the other. To
describe the evolution of a two-population dynamics, due to the fact that
we consider the total size of the population conserved, we need just one
equation. Choosing the population of healthy cell, A, we have

dNA(t)

dt
= NA(t)(NT −NA(t))(α− β).

If population size is large enough, is possible to convert the cell number
into frequencies x

dx(t)

dt
= x(t)(1− x(t))(α− β).

This nonlinear ordinary differential equation is a particular case of repli-
cator equation. It describes the evolutionary dynamics of two species with
constant rate of reproduction, assuming that the total population size is
conserved. The rate of reproduction, at this stage, can be considered as
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a measure of cell fitness. Indeed, this crude assumption is pretty rough
for different reason: firstly, the cell population with higher fitness will cer-
tainly overgrow the other; secondly, the fitness of cells remains constant in
time. Moreover, it doesn’t matter if a population is composed by 10 or a
million cells, the replication rate remains the same.

EGT provides one possible means to overcome this shortcomings: to
make the fitness frequency-dependent. Replacing αwith φA(x) and β with
φB(x), it is possible to write down a general form of replicator equation for
this scenario

ẋ = x(1− x)(φA(x)− φB(x)).

This simple form of frequency-dependence of the fitness derives from
a mean field (or well-mixed) approximation, that is, every cell interacts
with any other cell at the same time.

The interaction of two cells can be computed by inspection of the so-
called pay-off matrix [

pAA pAB

pBA pBB

]
where pij stands for what a cell of type i gets from interacting with a cell of
type j. Interaction here is understood in a very general sense, to include
competition for space and nutrients as well as exchange of information
through cytokines and growth factors. It can be assumed that this is how
the fitness of a cell is, directly or indirectly, modified when this cell is in
the presence of another cell (which can be of the same type or of another
type). The average fitness is then

φA(x) = x pAA + (1− x) pAB,

φB(x) = x pBA + (1− x) pBB.

Naturally, the previous situation, without frequency-dependent cell fit-
ness, can be easily recovered setting pAA = pAB = α and pBA = pBB = β.
It is obviously possible to generalize these results for the case of three cell
types: there will be two replicator equations, with two independent fre-
quencies and the pay-off matrix will be a 3× 3 matrix.
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Here we would try to give an explanation of the main terms, that we have
used throughout the entire work, whose meaning is not so intuitive or
well-known. This glossary does not pretend to be exhaustive, but just to
be an helpful tool to understand also the clinical and the biological sides
of the problem.

Definitions are taken from [116].

• Chemokine
A diverse family of small secreted proteins that are chemotactic for
leucocytes, a subset of the cytokines.

• Clone
A population of cells or organisms derived from a single progenitor
and therefore genetically identical.

• Cytokine
A rather loose category of small proteins that are released by cells
and that affect the behaviour of other cells. Normally taken to in-
clude interleukins, lymphokines, chemokines and several related sig-
nalling molecules such as tumour necrosis factor and interferons but
not hormones or growth factors except perhaps transforming growth
factor β (TGFβ).
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• Fibroblast
The mesodermally derived cells of connective tissue that are respon-
sible for the synthesis and secretion of procollagen, fibronectin, col-
lagenase, and extracellular matrix components.

• Growth Factor
A diverse group of proteins that are important in the regulation of
cell proliferation (growth) and differentiation. The distinction be-
tween growth factors and cytokines is blurred since some cytokines
act as growth factors and some cytokines, originally described as im-
portant in the haematopoietic lineages, act on a broader range of cell
types. Autonomous growth factor production or altered responsive-
ness to growth factors is a common characteristic of many neoplastic
cells which thereby lose growth control.
Trasforming Growth Factor
A family of growth factors secreted by transformed cells that induce
the phenotypic characteristics of cell transformation (e.g. the ability
to grow in semisolid agar), but do not cause hereditable changes.

• Ligand
Any molecule that binds to another; generally the smaller of the two,
especially if there is no signal transduction by the receptor. Ligands
are not necessarily small molecules such as hormones or neurotrans-
mitters; sugar residues attached to proteins or lipids and incorpo-
rated in the membrane are often referred to as ligands for lectins.

• Mesenchyme
Embryonic tissue that derives from mesoderm.

• Mitosis
The process of nuclear division in the somatic cells of eukaryotes in
which the genomic information, copied during S phase of the cell
cycle, is distributed equally between two daughter cells so that each
contains a diploid set of chromosomes identical to that of the parent
cell. In prophase the nuclear envelope breaks down, the chromo-
somes condense, and the two chromatids become visible.
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The centriole divides and the two daughter centrioles separate to de-
fine the two poles of the mitotic spindle. The spindle consists of
interdigitated microtubules (spindle fibres) nucleated from the two
pericentriolar organizing centres together with microtubules attached
to kinetochores of chromosomes. In the next stage, metaphase, the
chromosomes align on the equatorial plane of the spindle, the meta-
phase plate. Then in anaphase the paired chromatids separate, one
toward each pole, a process that is completed during telophase. The
chromatids, now considered to be chromosomes, lengthen and be-
come diffuse, new nuclear envelopes form round the two sets of
chromosomes, and the spindle disassembles. Mitosis is usually fol-
lowed by cell division or cytokinesis in which the cytoplasm is also
divided to give two daughter cells.

• Neoplasia
Literally, a term meaning ‘new growth’ but referring to abnormal
new growth that persists in the absence of the original stimulus. The
term covers both tumours, where there is an actual swelling, and
other proliferative disorders, such as leukaemias, all colloquially re-
ferred to as "cancer". The cells in benign tumours do not spread
and such tumours are not life-threatening unless the growth pres-
sure causes damage. Malignant neoplasia involves the loss of both
growth control and positional control and the malignant cells invade
territory normally occupied by other cells.

• Parathyroid Hormone (PTH)
A peptide hormone (parathormone, parathyrin, 84 aa) secreted by
the parathyroid glands. Parathyroid hormone acts on osteoclasts and
causes an increase in blood calcium ion concentrations.

• Parenchyma
The functional tissue of an organ, as opposed to the connective tissue
(stroma).

• Receptor
At a cellular level, an immobilized molecule, usually a membrane-
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bound or membrane-enclosed protein, that binds to, or responds to,
a smaller and more mobile ligand. Specificity of the interaction is
implicit.

• Repressor protein
A DNA-binding protein that binds to the operator region and blocks
transcription. Originally described as a control mechanism for regu-
lating bacterial gene expression (see lactose operon) but analogous
mechanisms exist for eukaryotes, although they are more usually
thought of as transcription factors.

• T-cell or T lymphocyte
One of the two major lymphocyte classes, those that are of thymic
origin. T-cells are involved in cell-mediated responses and regulated
B-cells development. They have antigen receptors. Various subsets
are now recognized T-helper cells, T-regulatory cells, etc.

• T-helper cell
Classically two subclasses of T-helper cells, Th1 and Th2, have been
recognized. Th1 cells are responsible for clearing intracellular patho-
gens and are involved in cell-mediated immunity. They produce IL-
2, interferon-γ, and TNFα but not IL-4, IL-5, and IL-10. Selective
activation of Th1 cells is promoted by interferon-γ and IL-12 and in-
hibited by IL-4 and IL-10, the products of Th2 cells. Th2 cells are in-
volved with the humoral immune response, produce IL-4, IL-5, and
IL-10, and promote antibody production; IL-4 is essential for growth
and differentiation of Th2 cells. There is cross-inhibition between
the two classes; if one subclass is activated it will inhibit the activity
of the other so that the response is polarized. More recently a third
class of Th cells that produce IL-17 in response to autoimmune tissue
damage has been identified.

• Transcription factor
A protein that binds to a specific DNA sequence upstream of a cod-
ing region and triggers the assembly of an RNA polymerase complex

138



Glossary

and the production of mRNA or other RNA species. A range of dif-
ferent transcription factors are known.

• Tyrosine kinase
A protein kinase that phosphorylates tyrosine residues. There are
two subfamilies: receptor tyrosine kinases with an extracellular ligand-
binding domain and an intracellular tyrosine kinase domain; and
nonreceptor tyrosine kinases, which are soluble, cytoplasmic kinases.
Both forms play important roles in signalling systems.

• Stroma
Loose connective tissue that has few resident cells (stromal cells).
Tumor stroma
Compartment providing the connective-tissue framework of the tu-
mour. It includes fibroblasts, immune and inflammatory cells, fat
cells and blood-vessel cells.
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[101] M. Kochmański, T. Paszkiewicz, and S. Wolski. “Curie-Weiss mag-
net—a simple model of phase transition”. In: European Journal of
Physics 34 (Nov. 2013). DOI: 10.1088/0143-0807/34/6/1555.

[102] P. L. Krapivsky, S. Redner, and E. Ben-Naim. A kinetic view of statis-
tical physics. Cambridge University Press, 2010.

[103] S. Redner. “Reality Inspired Voter Models: A Mini-review”. In: arXiv
e-prints (Nov. 2018), arXiv:1811.11888.

[104] C. Gardiner. Handbook of stochastic processes. Springer-Verlag, New
York, 1985.

[105] D. Tovazzi. “Self-sustained periodic behaviors in interacting sys-
tems: macroscopic limits and fluctuations”. Tesi di Dottorato di
Ricerca in Scienze Matematiche. Università degli Studi di Padova.

[106] J. M. Pacheco, F. C. Santos, and D. Dingli. “The ecology of cancer
from an evolutionary game theory perspective”. In: Interface Focus
4.4 (2014), p. 20140019. DOI: 10.1098/rsfs.2014.0019.

154

https://doi.org/10.1038/s41408-017-0037-4
https://doi.org/10.1088/0143-0807/34/6/1555
https://doi.org/10.1098/rsfs.2014.0019


[107] J. A. Lust et al. “Induction of a chronic disease state in patients with
smoldering or indolent multiple myeloma by targeting interleukin
1β-induced interleukin 6 production and the myeloma prolifera-
tive component”. In: 84.2 (2009), pp. 114–122.

[108] A. Bazzani. “Fisica dei sistemi complessi”. Dispense del corso.

[109] E. Ferrero. “Processi stocastici”. Dispense del corso.

[110] A. Celani. Processi stocastici: istruzioni per l’uso. 2010.

[111] C. A. Dinarello. “Targeting the pathogenic role of interleukin 1β
in the progression of smoldering/indolent myeloma to active dis-
ease”. In: 84.2 (2009), pp. 105–107.

[112] C. Tu et al. “Reconciling cooperation, biodiversity and stability in
complex ecological communities”. In: arXiv preprint arXiv:1805.03527
(2018).

[113] P. M. Altrock and A. Traulsen. “Deterministic evolutionary game
dynamics in finite populations”. In: Physical Review E 80.1 (2009),
p. 011909.

[114] J. Hofbauer and K. Sigmund. Evolutionary games and population dy-
namics. Cambridge: Cambridge University Press, 1998.

[115] M. Agnolon. “Ecology of cancer: an evolutionary game theory ap-
proach to model cancer growth”. Tesi di Laurea Triennale in Matem-
atica. Università degli Studi di Padova.

[116] J. Lackie. A dictionary of biomedicine. Oxford University Press, 2010.

155





Se cerchi la tua strada verso Itaca,
Spera in un viaggio lungo,
Avventuroso e pieno di scoperte.
I Lestrígoni e i Ciclopi non temerli,
Non temere l’ira di Poseidone.
Mai troverai tali mostri sulla tua via,
Se non li porti dentro, nel tuo cuore
Se l’anima non te li mette contro.

Devi augurarti che la strada sia lunga.
Che siano tanti i mattini d’estate,
Quando nei porti - finalmente e con che gioia -
Toccherai terra tu per la prima volta:
Negli empori fenici indugia e
Acquista madreperle coralli,
Ebano e ambre,
Tutta merce fina
E voluttuosi aromi d’ogni sorta;
Più profumi inebrianti che puoi.
Visita molte città egizie.
Impara quello che puoi dai sapienti.

Pensa ad Itaca, sempre
Il tuo destino ti ci porterà
Non hai bisogno di affrettare il corso
Fa’ che il tuo viaggio duri anni, bellissimi,
E che tu giunga all’isola ormai vecchio,
Ricco di insegnamenti appresi per via,
Non sperare ti giungano ricchezze,
Il regalo di Itaca è il bel viaggio,
Senza di lei non l’avresti intrapreso,
Di più non ha da darti.

E se ti appare povera all’arrivo,
Non t’ha ingannato.
Carico di saggezza e di esperienza,
Avrai capito un’Itaca cos’è.

Kostantinos Kavafis
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