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Abstract

L’inferenza di modelli di spin è uno strumento diffuso nell’approccio statis-
tico ai sistemi complessi. Tipicamente ci si limita a modelli con interazioni
a uno e due corpi: per il principio di massima entropia, ciò equivale ad
assumere che magnetizzazioni e correlazioni a due unità costituiscano le
variabili rilevanti (statistiche sufficienti) del sistema. L’assunzione non è
giustificata nel caso generale; il problema della selezione tra modelli con
interazioni di ordine arbitrario è però alto-dimensionale. Esso può essere
affrontato tramite una particolare euristica Bayesiana che permette di ot-
tenere le variabili rilevanti direttamente dal campione; la selezione avviene
nella classe delle misture, e i risultati vengono proiettati sulla rappresen-
tazione di spin. Il risultato è l’ottenimento delle statistiche sufficienti senza
alcuna assunzione a priori. Il numero di tali statistiche è modulato da quello
di differenti frequenze empiriche nel campione; in regime di sottocampiona-
mento, esso è molto minore della dimensione del modello completo. Ciò
rende il problema di inferenza dei parametri tipicamente basso-dimensionale.
Il principale scopo di questo lavoro è quello di investigare esplicitamente
come l’informazione sia organizzata nella mappa tra misture e modelli di
spin. La comprensione dettagliata di tale mappa suggerisce nuovi approcci
per la regolarizzazione; inoltre i risultati gettano luce sulla natura delle
statistiche sufficienti, che risultano essere funzioni degli stati solo tramite
le frequenze empiriche di questi. Mostriamo come da un approccio inte-
gralmente Bayesiano emerga sotto opportune condizioni un termine rego-
larizzatore “L2”; verifichiamo numericamente se tali condizioni sono tipica-
mente soddisfatte. Presentiamo infine alcune osservazioni qualitative circa
l’emersione di loop stuctures nella mappa da misture a spin; queste aprono
scenari interessanti per la ricerca futura.
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Introduction

A chemist notices a surprising phenomenon. Now if he has a high
admiration of Mill’s Logic,. . . he must work on the principle
that, under precisely the same circumstances, like phenomena are
produced. Why does he then not note that this phenomenon was
produced on such a day of the week, the planets presenting a
certain configuration, his daughter having on a blue dress, he
having dreamed of a white horse the night before, the milkman
having been late that morning, and so on? The answer will be
that in early days chemists did use to attend to some such
circumstances, but that they have learned better.

Charles Sanders Peirce [1]

Modelling: a verbous introduction

Abstract modelling, as the ability of building an inner model of the environ-
ment and using it to make predictions about that environment, is something
which is not at all peculiar of human beings. Any living creature’s success
in the two fundamental - and universally shared - tasks of survival and
reproduction is driven by the quality of their choices in relation to the envi-
ronment they live in. These choices arise, directly or indirectly, from models
- and the very notion of ”choice“ here does not need to raise issues regard-
ing the presence or absence of something that we could call ”consciousness“:
we can (sloppily - but effectively) define choices to address emergences of
functional, nontrivial behaviors in living systems - from the policies and
strategies adopted by ant colonies in the complicated task of food foraging
(strategies that must necessarily be modulated by contingent observations
of the environment’s states), to more ”bottom“ behaviors like the switching
between metabolic states in elementary organisms (modulated by the ”ob-
served“ concentrations of nutrients and toxins in the surroundings).
This elementary capability of making predictions (be them implicit or ex-
plicit) out of observations of the environment, and ”choosing” effective poli-
cies relying on these, is then enough to characterize what we mean when we
speak of ”modelling“ at the most abstract level possible.
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Scientific modelling comes into play the moment we let mathematics in,
and allow it to be used as the main tool and language at our disposal for
developing descriptive schemes of the world, and extracting preditions out
of them. The very definition of what the boundaries of science are exhibits
implicitly the strict requirement of a mathematical kind of reasoning: if this
wasn’t the case, we would probably include into the castle of science some
astonishing medieval ”outliers“ like Johannes Buridanum (XIV century - fa-
ther of the theory of impetus), Thomas Bradwardine, and Nicole d’Oresme,
all of which developed, with different fortune, pre-mathematical versions of
quantities that later became part of the foundations of classical physics (see,
for instance, [2] and references within).
Even before the choice of a logical scheme, science by constitution requires
exploitation of the unreasonable effectiveness of mathematics [3] in describ-
ing natural phenomena. This can be done, and has been done, both in a
more top-down, ”empirical“, inductive, statistically oriented fashion (e.g.
empirical laws in early thermodynamics) and a bottom-up, ”ab initio“, de-
ductively oriented one (e.g. statistical mechanics). Science has developed as
a complicated intertwining of instances with these different directions; yet
the objectives have always been shared, and so the fundamental practices.

In recent times - with the Information Technology revolution, the sudden
availability of huge amounts of data and the consequent change of focus to-
wards the so-called complex systems - the distinction between physical and
statistical modelling has become more and more important.
A physical model is tipically a product of a long logical process, in alternat-
ing stages of induction, abduction, and deduction, leading ultimately to a
theory which yiels a representation of the experimental results which is the
simplest possible. A lot of energy is spent in the task of identifying which of
the many available observables are relevant and which are not - this being
a fact which is often not fully recognized. The quote from C.S.Peirce at the
beginning of this chapter expresses this precise idea; the same observations
can be found in Wigner [3]:
”It is, as Schrodinger has remarked, a miracle that in spite of the baffling
complexity of the world, certain regularities in the events could be discovered.
One such regularity, discovered by Galileo, is that two rocks, dropped at the
same time from the same height, reach the ground at the same time. [...]
the regularity which we are discussing is independent of so many conditions
which could have an effect on it. It is valid no matter whether it rains or not,
whether the experiment is carried out in a room or from the Leaning Tower,
no matter whether the person who drops the rocks is a man or a woman.
It is valid even if the two rocks are dropped, simultaneously and from the
same height, by two different people. [...] It is the skill and ingenuity of
the experimenter which show him phenomena which depend on a relatively
narrow set of relatively easily realizable and reproducible conditions.“
The process of selecting relevant variables ensures that the physical model
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will depend on as few parameters as possible; once this model is established,
it will yield correct preditions because it will capture essential features of
the phenomenon that it describes - and will be obviously specific for that
specific phenomenon.

The situation is completely different when we look at statistical models;
quoting from [4]:
”[...] The Big Data deluge has shown that understanding is no more nec-
essary to solve problems, such as image or speech recognition and language
translation. A statistical model trained on a sufficiently large number of in-
stances of the solution can learn how to generalize from examples in ways
that resemble the “unknown rules” that humans follow“.
This holds inasmuch as the notion of ”solving“ we look at is the one of
”making correct and useful predictions“ - this notion being, after all, a
pretty reasonable one! Yet, if our task is to uncover possible fundamental
laws and principles governing the system under study, it is highly probable
that such models won’t provide the best possible weaponry to do that; this
mainly because of their dependence on a huge number of parameters, and
their nonspecificity (for instance, a DNN with one and the same architecture
can be trained to solve many different problems), qualities that place these
models very far from the simplicity we desire for insightful descriptions.

This thesis

This thesis is concerned with statistical model selection as a tool to enforce
a request of simplicity while addressing some specific classes of inverse prob-
lems in a statistical mechanical framework. We rely mainly on [5], describing
the method devised in it, correcting some minor errors, and adding some
results and insights, both from an analytical and a numerical point of view.

• Chapter 1 will be devoted to a comprehensive introduction to statisti-
cal model selection. We will first discuss how we can regard statistical
parametric models as manifolds in the space of probability distribu-
tions, and how we can use these models’ parameters as coordinates
on these manifolds. We’ll then see how the notion of distinguishabil-
ity of distributions induces a natural measure on these manifolds; we
will discuss how such measure can be normalized to become a sound
prior for the Bayesian learning of parameters. Lastly, we will define
a quantity called geometric complexity of a model, and argue that we
can interpret it as a measure of its ”simplicity”.

• In Chapter 2 basic notions about spin models with interactions of ar-
bitrary order are presented, and a Bayesian-grounded procedure of
model selection is attempted in the general case within this class; this
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will bring up a geometric complexity term, of the type introduced
in the preceding chapter; discussion of this term will lead us to the
conclusion that uninformative Bayesian analysis alone does not justify
restriction to at-most-pairwise interactions between spins. We close by
noting that the number of spin models with interaction of arbitrary
order is huge, and selection performed directly within this class in is
practice unfeasible.

The first two chapters can be thought as a long introduction, to both
understand with conceptual motivation for the subsequent exposition,
and familiarize with the notation. The main point one has to get for
all what follows is the absence of theoretical justification for restriction
to low-order spin models from an information-theoretic point of view.

• In Chapter 3 we discuss the method devised in [6] to actually obtain
an effective selection within generalized spin models in a feasible man-
ner: this will be done by first performing model selection on the class
of mixture models, where this task turns out to be straightforward,
and then projecting the results on the spin representation, via a linear
application χ mapping mixture parameters into spin ones, and con-
taining all the information about the selected mixture model. This
will lead to the identification of a small group of sufficient statistics in
the form of specific linear combinations of spin operators. We discuss
regularization and stability issues for the parameter estimation stage
on selected models. We then close presenting some numerical results.

• In Chapter 4 we give a full, in detail characterization of how informa-
tion about different sets of the mixture is organized inside the matrix
χ. We obtain an analytical characterization of the spectrum of this
matrix, whose interpretation possibly leads to a previously unconsid-
ered method of regularization. As a bonus, we present a qualitative
finding linking mixture models with families of spin loops; this section
is not formal, and serves merely as motivation for future investigations.

• In Chapter 5 we complicate the framework used in Chapter 3 by adopt-
ing a fully Bayesian approach for mixture selection, and try to see how
the act of averaging over models’ posterior probabilities affects the
definition of our sufficient statistics. We find that, given that some
reasonable conditions are met, we can analitically derive from this ap-
proach a loss function for parametric estimation containing a ”L2“
regularizing term. We then run simulations to check if the necessary
conditions are met in typical cases, and discuss the results.
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Original contributions

Chapter 3 presents already existing work; we add some original interpre-
tations of results, an additional numerical result, and correct a few former
imprecisions. Chapters 4 and 5 are entirely composed of original work by
the authors.
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Chapter 1

Model Selection in statistical
inference

Introduction: modelling complex systems

Big data is not enough. The recent revolution in our capabilities of extract-
ing huge amounts of observational data in a wide class of systems, from
biological to financial ones, has surely permitted an outstanding jump for-
ward in a plethora of applications, but has also raised an important issue:
while extracting data has become easier by orders of magnitude, extracting
useful information from it has shown to be usually a nontrivial task.

Complex systems don’t allow for detailed theories to emerge before ob-
servation; consequently, they don’t allow for problem-specific shaping of the
experimental designs beyond some relatively trivial constraints. The result
is that we often find ourselves with enormous amounts of data that could
very plausibly contain enough information to characterize in full detail the
functioning of a system, but our understanding (whatever we precisely want
to mean by this) of such system does not progress much, due to our funda-
mental incapability to spot what is relevant inside this data.

This being said, the aforementioned absence of prior models often puts
us in the situation where the most meaningful thing to do is to try and char-
acterize the statistical dependencies between observed quantities: in other
words, we aim for reconstruction of the generative probability distribution
from which supposedly our sample has been “drawn”.

Implicit in this line of thought is that we are, in general, looking at
a set of sample points that we suppose to be independent and identically
distributed (i.i.d). 1 These being the premises, let’s set up things.

1Infinite digressions could be possible here, from the most abstract ones about the
many pitfalls of “iid reasoning” when dealing with real phenomena (cfr. the beautiful
discussion in chapter 3 of [7]) to many more problem-specific ones; we will just ignore
all of these: the hope is that we can resort to Wigner’s “skill and ingenuity” at least for
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1.1 Statistical model selection

Suppose we have collected data: x̂N = (x(1), · · · , x(N)), x(i) ∈ Ω ∀i ∈ [1, N ]
consisting of N observations x(i) that we suppose i.i.d ∼ ρ∗ : Ω→ [0, 1].
The process by which one obtains an estimate ρ̂ for the function ρ∗ (the
generative distribution) starting from data is usually divided in two steps:

• Choice of a parametric family (model) for our putative ρ̂ to live in;

• Parameter estimation, to be performed once we’ve taken for granted
a parametric family to work with.

Let’s elucidate what we mean with a classic example: suppose we are given
a set of points on the xy plane like the one in figure 1.1:

Figure 1.1: A sample of observations on the xy plane

What we will do in a case like this is tipically opt for a noisy linear model.

yi = α+ βxi + ηi (1.1)

with {ηi} modeled to be iid and Gaussian, so that:

ρ(y|x;α, β, σ) =
1√

2πσ2
e−

(y−α−βx)2

2σ2 (1.2)

The classic recipe for the estimation of α and β prescribes then that we look
for the values α̂,β̂ maximizing the likelihood :

P (x̂N |α, β, σ) =

N∏
i=1

ρ(yi|xi;α, β, σ) (1.3)

what’s enough to be reasonably confident that no highly relevant, data-point dependent,
latent variables have been left outside of our analyses.
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Showing that α̂,β̂ do not depend on σ and finding their values is a classic
exercise in basic statistical courses. What is seldom drawn attention to is
the model selection stage, that we implicitly performed the moment we de-
cided to resort to a linear function. We could have actually chosen an higher
degree polynomial: the increase in the number of parameters of our model
allows for its higher espressivity, resulting in higher scaled loglikelihoods
and smaller mean square errors; yet, it is intuitively clear that this gain in
interpolation power (the so-called goodness of fit) masks a huge loss in gen-
eralization capability: if we found our high-degree “best fit” parameters for
N data points, and then drawed another independent observation, chances
are that the added data point’s position would be predicted very poorly,
surely worse than under a linear assumption; the reason, in this simple case,
is evident: beyond first order, we are fitting the noise.

Figure 1.2: “Perfect fit“ using a high-dimensional model

Let’s take a moment to ponder on the fact that, weren’t we in the lucky
case of simultaneously being in two dimensions (so that things are easily
visualizable) and having an “evidently” linear data (so that things are eas-
ily interpretable) we would not have had any predefined strategy on how to
choose the correct model.
From now on, in the present chapter, our task will thus be that of discussing
model selection, intended as a family of tools and strategies aimed at being
able to find, in a nonparametric framework, models which have a nice good-
ness of fit while securing ourselves against their potential overfitting ([8]).
From now on, we will work in a more formal fashion, and assume the reader
is familiar with basic instruments in probability theory, especially in its
Bayesian framework (as a reference, see for instance [9] [10]).
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1.2 Hypotheses testing and distinguishability

We will closely follow the exposition in [11] and [12] in this section. We will
also use classic results at the interface between statistics and information
theory, a detailed exposition of which can be found for instance in [13].

1.2.1 Distinguishing probability distributions

Consider the space P of all probability distributions on a discrete alphabet
S. Take two points P1, P2 of this space, i.e. two probability distributions
on S, and regard them as alternative statistical hypotheses for an unknown
distribution P ∗ from which we have means of drawing data samples ŝN .
Once we have fixed the number N of sample points to be drawn, it is a
meaningful question to ask ourselves wether we can effectively distinguish
between P1 and P2, as candidates for the generative distribution of the data,
by observing a number N of data points. In other words, the main question
is: are N i.i.d. sample points enough to determine the correct hypothesis
with a “good” (arbitrarily set) confidence? In order to assess this ques-
tion, let’s first recall the usual definition of error probabilities in hypothesis
testing:

α = P1(A) β = P2(A) (1.4)

Here, A ∈ SN is the acceptance region of P1, i.e. the subset of samples for
which we accept P1, and A = P \A is its rejection region; α then represents
the probability of erroneously rejecting P1, and β the probability of erro-
neously accepting it. Ideally, we would like to make both these quantities
as small as possible. The quantitative definition of a possible acceptance
region is naturally given by setting a threshold T on the posterior ratio:

AT =

{
ŝN |

P1(ŝN )

P2(ŝN )
> T

}
(1.5)

Here, once specified both a threshold T , we can absorb the information of
the latter in the former, getting a “likelihood ratio”-like criterion with a
modified threshold:

AT =

{
ŝN |

P1(ŝN )

P2(ŝN )
> T̃π

}
, T̃π =

T (1− π)

π
(1.6)

Another useful representation of this set can be obtained by first taking
logarithms:

AT =

{
ŝN | log

(
P1(ŝN )

PŝN (ŝN )

)
> log

(
P2(ŝN )

PŝN (ŝN )

)
+ log(T̃π)

}
(1.7)
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and then averaging over PŝN , it being the empirical distribution (also known
as type) of the sample:

AT =
{
ŝN | DKL(PŝN ||P1) < DKL(PŝN ||P2) + log T̃π

}
(1.8)

From this last expression we get a natural geometrical interpretation of the
acceptance criterion as an evaluation of which hypothesis is “closest” (in the
DKL sense) to the empirical distribution.
If we now look for the empirical distribution PX which, while belonging to
AT , minimizes DKL(PX ||P2), we find [13]:

P λX(s) =
P λ1 (s)P 1−λ

2 (s)∑
r P

λ
1 (r)P 1−λ

2 (r)
(1.9)

where the Lagrange multiplier λ has to be assigned a value so as to match
the required threshold T.
Equation (1.9) can be interpreted as a “straight line” linking P1 and P2; a
basic result of large deviation theory, Sanov’s theorem (see again [13]), tells
us that if we fix α = ε then our lowest possible value for β is

βN = 2−NDKL(Pλ||P2)+o(ε) (1.10)

1.2.2 Models

Let’s get back to P. The choice of a parametric family

p(·|~θ) = f(·, ~θ) : S −→ R

of normalized functions identifies, by letting θ vary continuously inside some
parametric domain Θ ⊂ Rn, a subset M ⊂ P that we’ll call a parametric
model. Let’s now take two close points

~θ0, ~θ | ~dθ| = |~θ − ~θ0| � 1

on this model, and ask ourselves again wether we are able to distinguish
between them. In particular, we are interested in the case in which these
two distributions are the maximum likelihood distributions relative to two
“similar” samples.
Fixed a confidence level ε � 1, it is not guaranteed that βN � ε, since
DKL(P1||P2)� 1 now as well.
There will be then, in general, a region Vε,N (~θ0) ⊂M, surrounding ~θ0 com-
posed of distributions that cannot be confidently distinguished on the basis
of N sample points only. To get some sort of measure of the size of this
region, we can use Stein’s lemma:

ε > 2
−NDKL(P~θ0

||P~θ) (1.11)
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Expanding the Kullback-Leibler divergence around ~θ0:

DKL(P~θ0 ||P~θ) =−
∑
s

(
P ~θ0(s) log

P ~θ0+ ~dθ
(s)

P ~θ0(s)

)
=−H[P ~θ0 ]−

∑
s

(
P ~θ0(s) logP ~θ0+ ~dθ

(s)
)

≈−H[P ~θ0 ] +H[P ~θ0 ]−
∑
s

(
P ~θ0(s)

∑
i

dθi
∂

∂θi

[
logP~θ

]
θ0

)
+

−
∑
s

P ~θ0(s)
∑
i,j

dθidθj
2

∂

∂θi

∂

∂θj

[
logP~θ

]
θ0


=
∑
i

dθi
∑
s

P ~θ0(s)
1

P ~θ0(s)

∂

∂θi

[
P~θ
]
θ0

+

−
∑
i,j

dθidθi
2

∑
s

P ~θ0(s)
∂

∂θi

∂

∂θj

[
logP~θ

]
θ0

=
∑
i

dθi
∂

∂θi
[Es(1)]− 1

2

∑
i,j

dθidθj Es[∂i∂j logP ~θ0 ]

=
1

2

∑
i,j

dθidθjJij(~θ0)

(1.12)

where we identified the Fisher information:

Jij(~θ) = −Es[∂i∂j logP~θ] (1.13)

We finally get:

ε > e−
N
2
~δθ
T
J(~θ0) ~δθ (1.14)

leading to:

~δθ
T
J(~θ0) ~δθ < − 2

N
log ε (1.15)

Geometric interpretation

This inequality is, geometrically, the definition of a small ellipsoid’s interior.
Its interpretation must be that of a tiny set of probability distributions
between which we cannot effectively distinguish, at chosen sample size N
and threshold T . In this respect, the Fisher information matrix turns out
to be closely related to the notion of what resolution we can afford in the
space of putative probability distributions.
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This result will be crucial for us, since we shortly derive from it a sound
solution to the old problem of what prior probabilities P0( ~θM|M) should be
chosen for inference when working with continuously-parametrized families
of distributions.

1.2.3 Counting probability distributions

The ellipsoid we just managed to define has volume:

Vε,N (~θ0) ∝ 1√
det J(~θ0)

(1.16)

so that the number of such ellipsoids in a small cube ~∆θ0 surrounding ~θ0

will be:

∆µ(~θ0) =
~∆θ

Vε,N (~θ0)
∝
√

det J(~θ0) · ~∆θ (1.17)

In the limit N →∞ these ellipsoids become infinite and “dense”, but the ra-
tio between the number of them in a small region and the number of them in
the whole parametric family converges ([11]), defining a “distinguishability
measure” over M:

dµ(~θ) =


√

det J(~θ)∫
M

√
det J(~θ′) ~dθ′

 ~dθ (1.18)

We thus get an insightful result:
Given a sample size N, the space of probability distributions is effectively
partitioned in “distinguishable” cells.
In the limit N →∞ these define a natural measure on M weighting equally
parametric regions containing the same number of distinguishable distribu-
tions. 2

Thus, a distribution over ~θ which is uniform with respect to this measure is
effectively a uniform distribution over all distinguishable distributions. Such
distribution is known as “Jeffreys prior”:

ρ0(~θ)d~θ =

√
det J(~θ)∫

M

√
det J(~θ′) ~dθ′

d~θ (1.19)

It acts as an “ignorance” prior in the sense just described, and enjoys many
useful properties - above all, full invariance under reparametrization. We’ll
now see how this object and his properties affect model selection.

2For a full differential-geometrical treatment of models as Riemannian manifolds under
a Fisher Information defined metric, see [14]
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1.3 Bayesian Model Selection

One of the most popular, and theoretically sound, recipes for performing
model selection is that of simply applying Bayes rule. If we define a set of
possible models to choose between, we can then compute the conditional
probabilities of different models, conditioned on the observed sample:

P (M|x̂N ) =
P (x̂N |M)P (M)

P (x̂N )
(1.20)

We’re not making any kind of assumptions on the nature of models yet: if
we choose to regard models as particular parametric families of distributions
(e.g. the gaussian family, the mixture family, the “finite polynomials of order
k” family...), then we can expand at the right hand side:

P (M|x̂N ) =
P (M)

P (x̂N )

∫
M
dθMP (x̂N |θM,M)ρ(θM|M) (1.21)

If the data points are supposed to be iid, the likelihood at the integrand
factors, giving:

P (x̂N |θM,M) =
N∏
i=1

P (x̂(i)|θM,M) = e
∑N
i=1 logP (x̂(i)|θM,M)

=eN logP (x̂|θM,M) ≡ eNLx̂(θ)

(1.22)

in which the horizontal line denotes an arithmetic mean among the N ob-
servations. When N is large, we can expand Lx̂(θ) to second order around
its maximum, to later use saddle point integration:

P (M|x̂N ) ≈P (M)

P (x̂N )
eNLx̂(θ∗)

∫
M
dθMρ(θM|M)e−

N
2

∑|M|
a,b dθadθb(−∂a∂bLx̂(θ))

(1.23)

Let’s now drop P (x̂N ) since it serves merely as a normalization factor here,
and assume we have no information that allows to prefer a model over an-
other, so that our prior P (M) will be chosen as uniform (and thus dropped
out as well); the problem would now remain of choosing a suitable prior
P (θM|M) over the parameter space defined by modelM...if we hadn’t just
solved this problem via the introduction of our distinguishability metric!
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Plugging 1.1.19 in our present expression yields then:

P (M|x̂N ) ∝ eNLx̂(θ∗)∫
M

√
det J(~θ′) ~dθ′

∫
M
dθM

√
det J(~θ)e−

N
2

∑|M|
a,b dθadθb(−∂a∂bLx̂(θ))

=

√
det J(θ∗)√

det Jx̂N (θ∗)

eNLx̂(θ∗)∫
M dθM

√
det J(θM)

(
2π

N

) |M|
2

= exp

[
NLx̂(θ∗)− |M|

2
log

(
N

2π

)
− cBMS
M − rBMS

M (x̂N )

]
(1.24)

where we defined:

cBMS
M =

∫
M
dθM

√
det J(θM) (1.25)

to be the geometric complexity of the model, and

rBMS
M (x̂N ) = log

√
det Jx̂N (θ∗)

det J(θ∗)
(1.26)

to be its relative complexity with respect to the drawn sample.
There are a few things to notice here. The four terms in the last exponent
have different behavior for growing N :

• For N very large, as expected, our posterior estimate for the proba-
bility of a given model is completely driven by maximization of the
scaled loglikelihood Lx̂ = 1

N

∑N
i=1 logP (x̂(i)|θM,M);

• as N shrinks, the second term, with its logarithmic dependence upon
N , becomes more and more relevant: this term, known in the literature
as Bayesian Information Criterion (BIC) and widely used in practice
when addressing general model selection problems, acts as a penaliza-
tion directly proportional to the number of parameters in the chosen
parametric family M . It has the net effect of shifting our estimate
away from models which overfit the data due to excessive degrees of
freedom (remember our first example!), and guiding us towards “sim-
pler” models (by a first naive notion of simplicity as “number of free
parameters”).

• As N shrinks even more towards the undersampling regime, the terms
cBMS
M and rBMS

M (x̂N ) come into play.
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1.4 Geometric interpretation of cBMS
M and rBMS

M (x̂N)

Let’s start from the geometric complexity cBMS
M =

∫
M dθM

√
det J(θM).

As for what we’ve seen in section 1.2, the geometric interpretation of this
term is evident: its value is directly proportional to the number of distin-
guishable probability distributions contained in the parametric family M. In
this sense we will say that a model is geometrically more complex if it is
capable of reproducing a large number of distributions; this must be thought
of as an effect beyond the one of mere dimensionality, since the complexity
relative to the model dimension has already been taken care of in the BIC
term.

Figure 1.3: “Naturalness“ of models.
[ Image from: V. Balasubramanian, ”A Geometric Formulation of Occam’s Razor

for Inference of Parametric Distributions“ ([[11]]) ]

The relative complexity rBMS
M (x̂N ) is more of a local quantity: the way

it emerges during the evaluation of the above integral suggests that its ge-
ometric meaning is that of a ratio between the number of distinguishable
distributions on the model manifold in the close surroundings of the max-
imum likelihood point and the total numer of the model’s distinguishable
distributions. In other words , it measures what fraction of the distributions
seen by the model lies “close” to the best one. In [11], the author refers to
this property of “accumulation” around the true estimate as naturalness of
a model. Again: we could say that this term measures the robustness of the
model, intuitively defined as its sensitivity to the precise choice of parame-
ters. Consider again our first example: in that case the high-degree model
was not at all robust : in that case adding an additional data points is of
maximum likelihood parameters a lot. This great sensitivity of the parame-
ters with respect to additional data implies that the model is very sensitive
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to sampling noise, and thus will exhibit potentially very different estimates
for different realizations of a sample draw. This behavior is the same de-
scribed in recent work on so-called sloppy models (see for instance [15], [16]),
and is peculiar of models that overfit the data. Notice that if the true dis-
tribution lies within the considered model family, Jx̂N (θ∗) approaches J(θ∗)
as N grows large, thus making this term negligible; if, conversely, the true
distribution lies outside of the model chosen, this term acts as a precious
proxy for robustness of our approximation of this true distribution.

1.5 Recap

Let’s repeat, in summary, what we have achieved so far:

• We have raised the issue of model selection, and understood its im-
portance, especially in application to complex systems, as the stage of
inference when we should secure ourselves as much as we can from the
risk of overfitting ;

• We have introduced basic notions and results about distinguishabil-
ity of hypotheses given limited datasets; an information-theoretic ap-
proach has permitted us to obtain a well defined, quantitative distin-
guishability metric which not only allows us to solve the problem of
choosing priors on parameter spaces, but also enables many geomet-
rical considerations and interpretations about subsequent results and
objects;

• We have followed a plain Bayesian procedure to try and quantify the
asymptotic behavior of the posterior distribution of models; this way
we have retrieved the classic BIC criterion, plus two more complexity
penalties arising from the geometric features of the models chosen.

In the following chapter, we will employ the concepts just described in
order to justify the choice of a particular class of systems to perform model
selection in, namely spin systems with interactions of arbitrary order, for
the general statistical inverse problem in complex scenarios.
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Chapter 2

Spin models & their
complexity

Introduction: modelling with spin systems

Nowadays, we have access to direct observation of microscopic degrees of
freedom of complex systems in a variety of cases. The most notable examples
are found in biology, where for instance today we have:

• the possibility of simultaneous recording of multiple neuron’s activity
in vivo via multi-electrode arrays;

• the rapidly advancing DNA and mRNA sequencing technologies;

• the possibility to determine 3D structure of proteins via X-ray cristal-
lography;

To treat these phenomena with the machinery of statistical physics means
to enforce statistical mechanical models, then estimate models’ parameters
from data.

A comprehensive review of statistical inverse problems arisen in the Big
Data era can be found in [17]. A paradigmatic case is that of models con-
stituted of asseblies of binary interacting units. This is a natural setting
when, for instance, we work with neurons’ activity patterns (where the two
states are “firing” and “not firing” for each neuron); the astonishing spread
of artificial neural based architectures in the machine learning practice has
made binary spin models a crucial framework to be investigated and under-
stood in detail.
What is usually found in the statistical learning literature and practice is
that whenever we adopt a binary spin model to describe some system, we
restrict ourselves to at most pairwise interactions 1; this means that the

1 yet, see [18], [19]
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Hamiltonian for a system of n spins will be of the form

H(s) =
n∑
i=1

hisi +
n∑
i=1

∑
j<i

Jijsisj

and the corresponding Boltzmann distribution will look like:

ρ(s) =
1

Z~h, ~J
eβ(

∑
i hisi+

∑
i6=j Jijsisj) (2.1)

We recall that for distributions in the exponential family: P (s) = e
∑
j cjfj(s)

the classic result is that the functions f(s) are the sufficient statistics of the
model; this means that their average over the sample is a quantity contain-
ing all the possible information about the associated parameters cj - and
through them, about the generative distribution (see, for instance, [20]). In
this perspective, the choice of including only one and two body interactions
in 2.1 entails a strong prejudice about the fact that only one and two point
correlations are relevant for characterization of the system’s behavior. This
sharp prior confidence in which are the relevant informations contained in
the data and which are not is often not justified by the preliminar informa-
tion we have at our disposal. The reasons why at-most-pairwise models are
so popular are simple:

• there is a lot of theoretical work that can be borrowed from orthodox
statistical mechanical theory for pairwise-interacting systems;

• the number of parameters to be inferred (i.e. the dimensionality of the
model) grows very fast as we raise the maximum order of interactions
allowed. So if we have n degrees of freedom for a non interacting n-
spin model, we’ll have n+ n(n−1)

2 ∼ o(n2) for a single+pairwise model,
o(n3) for an at-most-triplewise one, and so on. It is usually enough of
a struggle to perform stable inference in the pairwise case, so that a
complete treatment looks “nice, but not affordable”.

• pairwise models often work very well ; a detailed discussion of this
phenomenon of “pairwise sufficiency” be found in [21] (also note that,
as argued in [22], adding pairwise-correlated latent units allows to
mimic interactions of every order).

• the great success of machine learning architectures composed on large
assemplies of pairwise interacting neurons has stimulated a lot of re-
search work in this particular setting.

Still, from an abstract point of view, there’s no justification in this choice.
In this chapter we will argue that the attempt to give formal justification

to the choice of pairwise models on the ground of Bayesian Model Selection
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protocols is doomed to fail. We will do this by exhamining the structure of
the “any-order-interactions” general model while enforcing complete prior
uninformativity.
We will follow mainly [4].

2.1 Generalities

2.1.1 Spin systems with interactions of arbitrary order

A binary spin system of size n ∈ N is an assembly of n random binary
variables:

(s1, · · · , sn) = s

sj = ±1 ∀j ∈ {1, · · · , n}

s ∈ {−1,+1}n ≡ Sn

Definition

If we want to take into account interactions of arbitrary order between spins,
and to do so without structurally enforcing any kind of simmetry in our
system, we can resort to this basis of generalized spin operators:

φµ(s) =
∏
i∈µ

si (2.2)

Where µ ∈ P({1, 2, · · · , n}) identifies a subset of spins (e.g. φ(1,2,7)(s) =
s1s2s7).
Our generic spin Hamiltonian will then be a linear combination

H(s) =
∑
µ

gµφµ(s)

of these operators; we can retrieve from it the usual cases (e.g. Ising, Curie-
Weiss, REM...) simply by enforcing constraints to be obeyed by the param-
eters g (e.g. requiring gµ = 0 for any µ comprising more than two spins
gives a pairwise model).

Indexing

To avoid awkward notations for the indices µ, we represent each subset
of {1, · · · , n} as a binary string, with “1”s placed in positions denoting
(counting from right to left) spins belonging to the subset chosen; we then
assign to µ the natural value whose binary representation coincides with
that string.
For instance, if n=9:

φ(1,2,7)(s)→ (1, 2, 7)→ 001000011→ 26 + 21 + 20 = 67→ φ67(s)
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φ(1,2,7)(s) ≡ φ67(s)

so that µ = 67 will denote the interaction between the binary units (1, 2, 7).
This means that now we can just use natural numbers: µ ∈ {0, 1, · · · , 2n−1};
here we also included µ = 0, corresponding to the identity operator :

φ0(s) = 1 ∀s ∈ S

Let’s call Ωn the set of operators just defined

Properties

We’ll now highlight some interesting properties of the spin operator family.
First of all, it is trivial to verify that Ωn is closed under multiplication:

φµ(s)φν(s) =
∏
i∈µ

∏
j∈ν

sisj =
∏
k∈µ
k∈ν

s2
k

∏
i∈µ
i/∈ν

∏
j∈ν
j /∈µ

sisj =
∏
i∈µ
i/∈ν

∏
j∈ν
j /∈µ

sisj = φµ⊕ν(s)
(2.3)

where we denote by ⊕ the XOR operator between the binary strings repre-
senting the two operators.
Also:

φµ(s)φ0(s) = φµ(s) ∀µ ∈ Ωn (2.4)

φµ(s)φµ(s) = φµ⊕µ(s) = φ0(s) = 1 (2.5)

from which is evident that Ωn constitutes an Abelian group under multipli-
cation of operators; since every element in it is its own inverse, this group
is isomorphic to Z2

n.
The two most useful properties of these operators are their orthogonality :∑

s∈S
φµ(s)φν(s) =

∑
s∈S

φµ⊕ν(s) = 2nδµ⊕ν,0 = 2nδµ,ν (2.6)

and completeness:∑
µ

φµ(s)φµ(r) =
∑
µ

(
∏
i∈µ

si)(
∏
j∈µ

rj) =
∑
µ

∏
i∈µ

siri

=
∑
µ

φµ(s1r1, s2r2, · · · , snrn)

= 2n
n∏
i

δsiri,1 = 2nδs,r

(2.7)
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This last relation in particular is crucial, since it shows us how we can use the
{φµ} basis to represent any desired function f(s) of the spin configurations:

f(s) =
∑
r

δs,rf(r) =
1

2n

∑
r

∑
µ

φµ(s)φµ(r)f(r)

=
∑
µ

φµ(s)
∑
r

φµ(r)f(r)

2n
=
∑
µ

gµφµ(s)

(2.8)

It is also useful to take note of the following two relations, arising from the
orthogonality and completeness properties∑

s∈S
φµ(s) =

∑
s∈S

φµ(s)φ0(s) = 2nδµ,0 ∀φµ ∈ Ωn (2.9)

∑
µ

φµ(s) =
∑
µ

φµ(s)φµ(+, · · · ,+) = 2nδs,(+,··· ,+) = 2n
n∏
i

δsi,1 ∀s ∈ S

(2.10)

the second one being true due to the fact that φµ(+, · · · ,+) = 1 ∀µ ∈ Ωn.

Generating sets, independent sets

We’ve seen above that Ωn, as a group equipped with the XOR composition
operator, is isomorphic to Zn2 . A little pondering on this induces us to
introduce the notion of a generating set of operators.
We will call a collection of operators “generating for Ωn” if every element of
Ωn is obtainable by an arbitrary number of XOR compositions of elements
of this collection.
The simplest generating set thinkable is the set of all “monomial” operators:

I1 = {φ10···0, φ01···0, · · · , φ00···1} ⊃ Ωn

from which it is trivial to obtain any other one.

We’ll call a collection of operators independent if no operator belonging
to it can be obtained by XOR compositions of the others.
It is clear that our “monomial” example set I1 is independent. It is also
clear that there is no other element that can be added to this collection
without compromising its independency.
In general, a set of n independent operators is automatically a generating
set of Ωn.

In the following, it can happen that we do not refer to the entire space
Ωn, but to a subset M (a model) of it. The definition of “generating set of
M will then be the one naturally induced from the general case.
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2.1.2 Spin models

A particular choice of a family of operatorsM⊆ Ωn identifies a parametric
family for the system’s Hamiltonian to live in, and thus, specifies a model.
Given modelM, we construct the Boltzmann / maximal entropy probability
distribution for our spin variables:

P (s|g,M) =
1

ZM(g)
e
∑
µ∈M gµφµ(s)

(2.11)

To lighten the notation, we’ll define:

g0(g) = − logZM(g) (2.12)

so that:

P (s|g,M) = eg
0+

∑
µ∈M gµφµ(s) = e

∑
µ∈M̃ gµφµ(s) (2.13)

where M̃ ≡M∪ {φ0}.
From now on, we will use the symbolM in both cases: it will be clear from
context if we are implicity or explicitly expressing the partition function.

A model will be called nondegenerate if it contains no additional con-
straints to be fulfilled by its parameters (any fully disordered system is non-
degernerate in this sense); degenerate models are those in which we enforce
some such additional constraints (e.g. the usual Ising model is degenerate,
since we require that all pairwise interactions have the same magnitude:

g12 = g13 = · · · = g23 = · · · = J

2.2 Bayesian Model Selection on spin models

It is easy to see that the number of different nondegenerate models possible
is 2|Ωn| = 22n−1, which is huge; the core question therefore is: to what
extent we can, if given a sample ŝN of N observed (and supposed
iid ∼ ρgen) spin configurations, significantly select a model for the
distribution ρgen that generated the sample?

A Bayesian estimate

Let’s again look for the posterior distribution af models conditioned on the
observed data and repeat the computation we already went through in Chap-
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ter 1, this time with details specific of this particular case:

P (M|ŝN ) =
P (ŝN |M)P (M)

P (ŝN )
=

P (ŝN |M)P (M)∑
M′ P (ŝN |M′)P (M′)

=
P (M)

∫
dgMP (ŝN |gM,M)P (gM|M)∑

M′ P (M′)
∫
dgM′P (ŝN |gM′ ,M′)P (gM′ |M′)

∝ P (M)

∫
dgM

N∏
i

(
e
∑
µ∈M gµφµ(s(i))

)
e−N logZM(gM)P (gM|M)

= P (M)

∫
dgMe

N(
∑
µ∈M gµφµ(ŝN )−logZM(gM))P (gM|M)

(2.14)

where we defined the empirical averages: φµ = 1
N

∑N
i=1 φ

µ(s(i)).
We get the saddle point:

ĝM = arg max
gM

∑
µ∈M

gµφµ(ŝN )− logZM(gM)


so that for N � 1:

LŝN (gM) ≡
∑
µ∈M

gµφµ(ŝN )− logZM(gM)

=

∑
µ∈M

ĝµφµ(ŝN )− logZM(ĝM)

+

− N

2

∑
µ

∑
ν

(gµ − ĝµ)(gν − ĝν)∂µ∂ν logZM(ĝM)+

+ o((g − ĝ)3)

=LŝN (ĝM)− N

2

∑
µ

∑
ν

∆µJ [ŝN ]
µν ( ˆgM)∆ν + o(∆3)

(2.15)

(with ∆µ = gµ− ĝµ) . Notice how the J matrix can here be defined directly
in terms of the partition function ZM, since the second order derivatives of
all “single operator” terms in the log likelihood vanish; this means that we
can write:

J [ŝN ]
µν ( ˆgM(ŝN )) =− ∂µ∂ν logP (s|gM,M)| ˆgM(ŝN )

=∂µ∂ν logZM(gM)| ˆgM(ŝN )

(2.16)
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By the same line of reasoning, we get for the Fisher information:

Jµν(gM) = E
P (s|gM,M)

[−∂µ∂ν logP (s|gM,M)]

= E
P (s|gM,M)

[∂µ∂ν logZM(gM)]

=∂µ∂ν logZM(gM)

(2.17)

so that if we evaluate the latter for gM = ˆgM(ŝN ), it coincides with the
former.
Let’s see how this affects the computation: we are now going to insert both
the second order loglikelihood expansion and the appropriate Jefferys prior
(as discussed in Chapter 1) into our expression for the posterior P (M|ŝN ),
drop any normalization constant, and perform saddle point integration:

P (M|ŝN ) ∝ P (M)eNLŝN (θ∗)∫
M

√
det J(~θ′) ~dθ′

∫
M
dθM

√
det J(~θ)e−

N
2

∑|M|
µ,ν dθµdθν∂µ∂ν logZM( ˆgM(ŝN ))

=P (M)

√
det J(θ∗)√

det JŝN (θ∗)

eNLŝ(θ
∗)∫

M dθM
√

det J(θM)

(
2π

N

) |M|
2

=P (M)

√
det J(θ∗)√

det JŝN (θ∗)
exp

[
NLŝN (θ∗)− |M|

2
log

(
N

2π

)
− cBMS
M

]
(2.18)

Which coincides with the expression we found in chapter 1, but with the
relative complexity term left explicitly written. In fact, in this case this term
gives no contribution whatsoever, since we’ve just seen that, when evaluated
at the maximum likelihood point, J(θ∗) ≡ JŝN (θ∗)
One can show that this result is valid not only for spin models, but for the
whole exponential family. We can write finally:

P (M|ŝN ) ≈ P (M) exp

[
NLŝN (θ∗)− |M|

2
log

(
N

2π

)
− cBMS
M

]
(2.19)

In order to extract useful information from this formula, we first need a
couple more tools.

2.3 Gauge transformation & loops

Consider an independent collection of n operators:

I = {φµ1 , φµ2 , · · · , φµn} (2.20)
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This constitutes, as we said above, a generating set of Ωn.
We can use this collection to generate a group automorphism ϕI of Ωn (or,
equivalently, a group automorphism σI of the state space Sn, seen as a group
equipped with the spinwise product composition operator):

φµ(σI(s)) =

n∏
i=1

φµi(s) = φ⊕
n
i=1 µi(s) = φϕI(µ)(s) (2.21)

We will call this kind of automorphism a gauge transformation.
As group automorphisms, gauge transformations leave the identity element
unchanged (be it φ0 in the “operator” picture, or (+,+, · · · ,+) in the “state”
one)

Notice that gauge transformations can quite freely change the orders of
the operators they act on. If we start from, say, a pairwise model, and
act upon it with a suitable gauge tranformation, we end up with a model
with the same algebraic structure of the first, but composed of operators of
potentially any order. It will then be interesting to study how the complexity
of a model changes under such transformations, in order to assess one of the
fundamental questions we are interested in, namely: are models with lower-
order interactions simpler?

Drawing conclusions in this sense requires that we first investigate the
partition function of a model M.

2.3.1 The partition function ZM(g)

Since the operators φµ can only assume values {−1,+1}:

eg
µφµ(s) = cosh(gµφµ(s)) + sinh(gµφµ(s))

= cosh(gµ) + φµ(s) sinh(gµ)
(2.22)
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Now if we write the partition function:

ZM(g) =
∑
s

M∏
µ

eg
µφµ(s) =

∑
s

M∏
µ

(cosh(gµ) + φµ(s) sinh(gµ))

=
∑
s

M∏
µ

[cosh(gµ)(1 + φ(s)µ tanh(gµ))]

=(cosh(gµ))|M|
∑
s

M∏
µ

(1 + φ(s)µ tanh(gµ))

=
∑
s

M∏
µ

[cosh(gµ)(1 + φ(s)µ tanh(gµ))]

=(cosh(gµ))|M|
∑
s

∑
M′⊆M

M′∏
µ

(tanh(gµ))

M′∏
ν

φ(s)ν

=(cosh(gµ))|M|
∑
s

∑
M′⊆M

φ⊕M′ µ(s)
M′∏
µ

(tanh(gµ))

=(cosh(gµ))|M|
∑
M′⊆M

[(M′∏
µ

(tanh(gµ))

)∑
s

φ⊕M′ µ(s)

]

(2.23)

If we recall the orthogonality property of spin operators, we can see that in
the sum over models M′ only those terms for which

⊕
µ∈M′

µ ≡ 0 (2.24)

will give a nonzero contribution (precisely, they’ll contribute with a 2n). We
will call subset of operators obeying equation (2.24) loops, and denote them
from now on with the letter l. The set of all loops contained in a model M
will be denoted by L(M).
The partition function will then become:

ZM(g) =2n(cosh(gµ))|M|
∑

l∈L(M)

[(
l∏
µ

(tanh(gµ))

)]
(2.25)

Notice how its functional form depends on the model M only through:

• its “loop structure” L(M)

• the total number |M| of operators in it.

32



2.3.2 Invariance of loop structures

Here is the main claim:

The loop structure L(M) is invariant under gauge transformations.

In order to prove this, let’s first check that:

φϕI(µ)(s)φϕI(ν)(s) =
∏
i∈µ

φρi(s)
∏
i∈ν

φρi(s)

=
∏

{i|i∈µ∧i∈ν}

(φρi(s))2
∏

{i|i∈µ∧i/∈ν}

φρi(s)
∏

{i|i/∈µ∧i∈ν}

φρi(s)

=1 ·
∏

{i|i∈µ∧i/∈ν}

φρi(s)
∏

{i|i/∈µ∧i∈ν}

φρi(s) =
∏
i∈µ⊕ν

φρi(s)

=φϕI(µ⊕ν)(s)

(2.26)

meaning that ⊕ and ϕI commute.
It is now immediate to check that:

• a loop l, under a gauge transformation, gets mapped into a loop l′ =
ϕI(l) of the same length;

• a collection M′ of operators which do not form a loop gets mapped,
under a gauge transformation, into a collection of operators not form-
ing a loop as well.

This means that our expression for ZM(g) is completely insensitive to gauge
transformations! Now if we reconsider (2.17) we arrive at the necessary
conclusion that not only ZM(g), but also cBMS

M is a gauge-invariant
quantity.

This is the main result. We stop here: a lot of mathematical character-
ization of loops, models, and actual values of the geometric complexity can
be brought through: for all this we refer the reader to ([4]).

2.4 So what?

What can we learn from this result? Well, the main point we get to is that
model selection alone does not justify restriction to pairwise models.
This is because, as we’ve seen before, gauge transformations can change and
shuffle quite freely the orders of interactions of a given model. Now, once we
have fixed the number n of spins and the number |M| of operators to be used,
the only quantity left helping us to discriminate between models’ posterior
probabilities is cBMS

M . The fact that this quantity is gauge-invariant means
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that the set of all possible models is effectively partitioned in classes of
complexity which are basically classes of equivalence with respect to gauge
tranformations.
Inspection of these classes reveals that lower-order interaction are not a
symptom of simplicity, while actual proxies we can look for in this sense
exist: in fact, each complexity class contains models with interactions of
very different orders.

Higher-order interactions are especially justified in all contexts in which
we deal with latent (unobserved) variables (see for instance [23], [24]) - and
this is usually the case when studying complex systems. For those reasons,
our following efforts will address the problem of model selection within the
class of spin models with interactions of arbitrary order. In the next chapter
we will present and discuss an heuristic to perform such selection without
having to enforce any prior restriction on possible models.
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Chapter 3

A heuristic for spin model
selection

Introduction

3.0.1 Outline of the chapter

The number of possible nondegenerate n-spin models with interactions of
arbitrary order is 2|Ωn| = 22n−1. The task of selecting a “best candidate”
in this set on the basis of N observations (where N , in the undersampling
regime we commonly find ourselves in while studying complex systems, can
easily be of order ∼ 2n) is evidently unfeasible.
Yet it is reasonable to think that the systems we are studying will not be
completely disordered; we actually expect that in any interesting system
there will be a fair amount of structured dependencies: our aim is to repre-
sent these in a statistical model of interacting variables, without assuming
the structure of such model a priori.

In this chapter we present an heuristic which should make the task of
selecting between so many models less daunting; we do so by a two-step
procedure in which:

• We first perform model selection in the space of mixture models, where
this operation is, as we will see, straightforward;

• We then project the results obtained on the class of spin models.

This procedure has first been described in [6]. We will mainly follow that
work, together with [25], for this exposition, adding some original compu-
tations and interpretations of results. We close presenting some numerical
results and discussing them.
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3.0.2 “Why mixtures?” General motivation and the inverse
formula for ĝ

We can derive a useful formula from the completeness property of generalized
spin systems; if we start from the maximum entropy distribution

P (s|~g) = e
∑
µ g

µφµ(s)

and take logarithms:

logP (s|~g) =
∑
µ

gµφµ(s),

then multiply both sides by φν(s) and sum over s:∑
s

φν(s) logP (s|~g) =
∑
µ

gµ
∑
s

φν(s)φµ(s)

Then thanks to completeness:∑
s

φν(s) logP (s|~g) =
∑
µ

gµ2nδµν = 2ngν .

We thus have an inverse formula for the values of couplings given the prob-
abilities of states:

gµ =
1

2n

∑
s

φµ(s) logP (s|~g) (3.1)

This is interesting because now if we somehow manage to obtain decent
estimates for the values P (s) from repeated observations, we can then im-
mediately get estimates for the strength of interactions, without performing
numerical optimizations of any kind.
However, attempting this without the necessary care will result in wild over-
fitting: after all, we have as many free parameters as many states there are
- we are in a situation analogous to the high-degree polynomial “perfect fit”
we saw in chapter 1.
We already know the proper “cure” for overfitting is model selection; what
this formula suggests is that maybe we can try performing such selection
forgetting for a moment about the spin representation and working on mix-
tures, these being models whose parameters are the probabilities of individ-
ual states themselves; we thus perform selection within the class of mixture
models, and only then map our estimate into the spin representation, fol-
lowing the formula above. Model selection entails dimensionality reduction
in mixture space, in the form of enforced simmetries between probabilities
P (s) of different states: if we are lucky and do things properly, as we pass
through (3.1) to the spin representation it is reasonable to hope for dimen-
sionality reduction to be mantained also in ~g space.
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In fact, mapping a selected mixture model onto a spin one will effectively
provide definition of what are the sufficient statistics of the model; these
will come in the form of specific linear combinations ψ(s) =

∑
µ uµφ

µ(s) of
spin operators, and will turn out to be way less, in number, than the spin
operators themselves (their number will be of the order of the number of dif-
ferent empirical frequencies k̂s with which states occur in our dataset). This
way we will achieve a data-driven separation between relevant and irrelevant
variables.

This being the logical path we have to keep in mind, let’s now see things
in detail.

3.1 Selection on mixtures: fundamentals

3.1.1 The danger of over-resolving states

Consider a system composed of n binary spins, of which only k are interact-
ing. The Hamiltonian of such system will look like this:

H0(s) =
∑

µ∈M[k]

gµφµ(s)
(3.2)

where M[k] denotes a model composed of operators which only involve our
chosen k spins.
We expect the marginal distributions for the states of the noninteracting
units to be uniform:

P (sk+1 = σk+1, sk+2 = σk+2, · · · , sn = σn) =
1

Z
∑

s1,··· ,sk

e−βH(s1,··· ,sk,σk+1,··· ,σn)

=
1

2n−k
((((((((((((((((∑

s1,··· ,sk e
−βH(s1,··· ,sk,σk+1,··· ,σn)

((((((((((((((((∑
s1,··· ,sk e

−βH(s1,··· ,sk,σk+1,··· ,σn)

=
1

2n−k
(3.3)

Now imagine we find ourselves in the position of who knows nothing about
the system under investigation, and tries to perform inference from scratch
on the n spin assembly.
What we would consider in this case a “good” protocol of inference is one
that leads us to recognizing that n− k of our spins are free: we would like
to end up with a selected model not containing operators which are not in
H0(s).
First, let us restate the by now established fact that maximum likelihood
alone does not yield satisfying results in this context: in fact, when we apply
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Figure 3.1: A subcomplete spin system
Only k of the n spins in our model are actually interacting. Since we have

interactions of arbitrary order, pictorial representation of our spin system requires
we resort to a hypergraph - a simple graph being able to account only for

singlewise and pairwise interactions (links).

maximum likelihood to obtain estimates for the generative probabilities of
states from sample statistics, we get:

P (s)MLE = arg max
ρ̂,
∑
ρr=1

P (ŝN | ~ρ)
def
≡ arg max

ρ̂,
∑
ρr=1

P (ŝN | (P (r) = ρr ∀r))

= arg max
ρ̂,
∑
ρr=1

N∏
i=1

ρs(i)

= arg max
ρ̂,
∑
ρr=1

∏
s

ρk̂ss = arg max
ρ̂,
∑
ρr=1

log

(∏
s

ρk̂ss

)
= arg max

ρ̂,
∑
ρr=1

∑
s

k̂s log ρs

where k̂s is the sample frequency of state s, i.e. the number of times this
state is observed in the dataset. This equation is solved by enforcing:

δρ(
∑
s

k̂s log ρs)− αδρ(
∑
s

ρs) = 0

leading to

P (s)MLE = ρ∗s =
k̂s
N

(3.4)
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This result implies that our maximum likelihood estimates for the proba-
bilities of states will spot equiprobable ones as actually being so only if we
observe all such states the same exact amount of times - the probability of
this event occurring being way more than negligible in all practical situa-
tions. In all other cases, we end up with a distribution that fits the noise,
giving us all sorts of nonzero spurious couplings when we pass to the spin
representation.

3.1.2 A two-states example

Assume we are in the simple case n = 1: we have 1 binary unit and a series
of N independent observations of its state. There are two possible mixture
models:

M0 = {“P (1) = P (−1) = 1/2′′}
M1 = {P (1) = ρ; P (−1) = 1− ρ}

(3.5)

Geometrically, the first contitutes a point and the second a one-dimensional
curve in the space of distributions.
Let’s now compute the respective posterior probabilities:

P (M0|ŝN ) =
P (ŝN |M0)P (M0)

P (ŝN )
=

1

2N
P (M0)

P (ŝN )

P (M1|ŝN ) =
P (ŝN |M1)P (M1)

P (ŝN )
=
P (M1)

∫
ρ dρP (ŝN |ρ,M1)P (ρ|M1)

P (ŝN )

=
P (M1)

∫
ρ dρρ

k̂1(1− ρ)N−k̂1P (ρ|M1)

P (ŝN )
(3.6)

Now we need to fix a prior P (ρ|M) on the distribution of the parameter
ρ ∈ [0, 1]. A convenient choice for mixture models are Dirichlet priors:

P (ρ|M)dρ =
Γ(a1 + a2)

Γ(a1)Γ(a2)
ρa1−1(1− ρ)a2−1dρ (3.7)

They are conjugate priors with respect to multinomial (mixture) sampling
distributions1. Plus, they are quite expressive priors, this meaning that for
suitable values of their parameters they can represent in an efficient manner
a more than sufficient amount of possible states of knowledge 2.
We will choose a1 = a2 = a since we have no prior information justifying

1This basically means that, using these, posteriors will mantain the same functional
form as priors, which is really useful in case of repeated updatings of our state of knowledge
via subsequent observations.

2Still, see [26] for some criticism of these priors.
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asymmetry between the probabilities of the two possible outcomes.
Inserting the chosen prior into our expression, we find:

P (M1|ŝN ) =
P (M1)

P (ŝN )

Γ(2a)

Γ(a)2

∫
ρ
dρρa−1+k̂1(1− ρ)a−1+N−k̂1

=
P (M1)

P (ŝN )

Γ(2a)

Γ(a)2

Γ(a+ k̂1)Γ(a+N − k̂1)

Γ(2a+N)

(3.8)

We can now evaluate the ratio between posteriors:

P (M1|ŝN )

P (M0|ŝN )
=
P (M1)

P (M0)
2N

Γ(2a)

Γ(a)2

Γ(a+ k̂1)Γ(a+N − k̂1)

Γ(2a+N)
(3.9)

We will work with the “uniform” prior a = 1; for a detailed discussion of
this and other possible choices, see Appendix A.

Model M1 is to be preferred over M0 if:

1 <
P (M1|ŝN )

P (M0|ŝN )
=
P (M1)

P (M0)

1

N + 1

[
1

2N

(
N

k̂1

)]−1

(3.10)

We can take logarithms, and evaluate factorials via Stirling’s approximation
(assuming N >> 1):

0 < log
P (M1)

P (M0)
− log(N + 1)− log

(
N

k̂1

)
+N log 2

≈ log
P (M1)

P (M0)
−NH

[
k̂1/N

]
+ log

√
2π

N
+

1

2

(
log

k̂1

N
+ log(1− k̂1

N
)

)

Expanding around the maximum x1 ≡ k̂1
N and truncating at second order in

(x1 − 1
2):

0 < log
P (M1)

P (M0)
− log 2 + log

√
2π

N
+ 2

(
x1 −

1

2

)2

(N − 1)

which finally leads to:

∣∣∣∣ k̂1

N
− 1

2

∣∣∣∣ >
√√√√ log P (M1)

P (M0) + log
√

2N
π

2N
∼

√√√√ log
√

2N
π

2N

(3.11)

So we see that Bayesian analysis returns the desired answer: a model in
which the two states are to be considered separate is to be preferred only if
the difference in the frequencies of observations between the two is enough
to be statistically significant ; relative fluctuations of frequencies are more
and more significant the more sample points we draw, in the spirit of the
weak law of large numbers.

We show in figure 3.2 a generalization to the case n = 3.
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Figure 3.2: Acceptance regions for different models
Partition of the 3-simplex in sets of empirical distributions corresponding
to different “best” models. Blue: “single-state” model M0 is preferred;

Red: a model clamping together two of the three states is preferred; Green:
the model Mf resolving all three states is preferred. Image from: A.

Haimovici, M. Marsili, “Criticality of most informative samples: a Bayesian
model selection approach” ([25])

What did we just learn?

The main conceptual result is a quantitative restatement of a trivial assert:
in absence of particular prior information, we are not allowed, in general, to
consider states as if they were different (for what concerns their probability)
if we see them a sufficiently close number of times.
“The definition of states s is made by the observer, not by the system” [25].
Configuration of planets has no influence on a chemistry experiment, yet
sampling noise could well make planets look as relevant variables! The fact
that Bayesian analysis gives a quantitative tool for spotting invariances in
our data is thus more and more valuable as the systems we look in become
more complex, and our intuitive understanding of their inner functioning
decreases.

3.2 Selection on mixtures: the general case

Let’s now study in detail the general case, in which we have an arbitrary
number of states. Here a mixture model formally corresponds to a particular
partition

Q = {Q1, Q2, · · · , Q|Q|}

Qi
⋂
Qj = ∅, 1 ≤ i < j ≤ |Q|
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⋃
i

Qi = S

of the space S of states. Selection will thus be performed among all possible
partitions Q.
There is no reason to expect that the behavior of the posteriors observed
in the 2-states case would change by raising the number of possible states
(and indeed, it doesn’t, as has been checked in [25]). Thus, in general, the
frequency partition K, i.e. the partitioning of states clamping together the
ones observed exactly the same number of times, has a posterior probability
which is higher than the finest one S. This is not enough: to understand
“how good is K” we need full characterization of the posterior distribution
P (Q|ŝN ).

Notation

We will refer to partition sets Qj as Q-states (groups of “equivalent” s-
states). Their cardinalities will be denoted by mj = |Qj |.
The parameters of the mixture model are the probabilities “ρj” of Q-states:

P (s ∈ Qj) = ρj (3.12)

~ρQ as vectors belong to the (|Q| − 1) - dimensional probability simplex3 in
R|Q|.
States within the same partition set have the same probability. We denote
these by:

P (s | s ∈ Qj) = µj =
ρj
mj

(3.13)

The normalization for ~µ thus becomes:∑
j

mjρj = 1 (3.14)

3.2.1 Computation of model posteriors P (Q|ŝN)

The posterior probability of a partition Q reads:

P (Q|ŝN ) =
P (Q)P (ŝN |Q)

P (ŝN )
(3.15)

If we call Q0 the trivial partition composed of a single set containing all
states, we can expand ∀Q 6= Q0:

P (Q|ŝN ) =
P (Q)

P (ŝN )

∫
~ρQ

d~ρQP (ŝN |~ρQQ)P (~ρQ|Q) (3.16)

3This is defined by the constraints:
∑
j ρj = 1, ρj > 0 ∀j < |Q|.
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Inside the integral in the right hand side, we must insert the likelihood :

P (ŝN |~ρQ,Q) =

N∏
i=1

ρQj(s(i)) =

Q∏
j

(ρQj)
Kj(ŝN ) (3.17)

(where j(s(i)) as an index identifies the partition set Qj to which the state

s belongs, and Kj(ŝN ) =
∑

s∈Qj k̂s is the total number of observations of

states belonging to the partition set Qj); and we must insert the prior, for
which we choose symmetric Dirichlet functions for each Q:

P (~ρQ|Q) =
Γ(|Q|aQ)

Γ(aQ)|Q|

Q∏
j

ρ
aQ−1
Qj δ

(∑
j

ρQj − 1
)

(3.18)

Whith these two objects in place, we obtain:

P (Q|ŝN ) =

∫
~ρQ

d~ρQ
P0(Q)

P0(ŝN )

Γ(aQQ)

Γ(aQ)QΓ(aQQ+N)

Q∏
j=1

[
Γ(aQ +Kj)

m
Kj
j

]
(3.19)

Finally, we choose aQ = 1 ∀Q (see Appendix A for discussion of prior
choices), and find:

P (Q|ŝN ) =
P0(Q)

P0(ŝN )

(|Q| − 1)!

(N + |Q| − 1)!

|Q|∏
j=1

[
Kj !

m
Kj
j

]
(3.20)

3.2.2 The optimal partition Q∗

A “best candidate” partition is now model Q∗ maximizing the posterior just
obtained:

Q∗ = arg max
Q

P (Q|ŝN ) (3.21)

The numerical task of finding this partition has been studied and discussed
in detail in [25]. For our purposes, the main insight we need to borrow
from that work is the fact that Q∗ appears to be always a coarse-graining
of K, i.e. a partition obtained by just clamping together specific (precisely:
“adjacent“ in frequency, as one would expect) sets of the latter;

We thus end up, after little effort, with two possible choices for the P (s)
estimate to be inserted in 3.1, namely:

P (s|ŝN ,K) = µKj(s) =
ρKj(s)

mKj(s)

and
P (s|ŝN ,Q∗) = µQ∗j(s) =

ρQ∗j(s)

mQ∗j(s)
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In which the vectors ~ρQ are to be regarded as random vectors distributed
as P (~ρQ|ŝN ,Q). The obtained ~g couplings will be consequently treated as
random variables themselves.

3.3 Projection on spin models: fundamentals

3.3.1 Symmetries and dimensionality reduction

Regardless of how our estimates ρQj(s) turn out to be actually distributed,
what is really important here is that they will in any case depend on the
sample ŝN only through frequencies of observations (remember: Q∗ is a
coarse-graining of K). This assures that we can in any case rewrite:

gµ =
1

2n

S∑
s

φµ(s) logµ(k̂(s)) =
1

2n

∑
k

 ∑
s, k̂(s)=k

φµ(s)

 logµ(k)

=
1

2n

K∑
j=1

χµj logµj

(3.22)

where last sum is over the sets Kj ∈ K, and χµj =
∑

s∈Kj φ
µ(s). Notice

how the final formula returns the components of a (2n − 1) - dimensional
vector as linear functions of a |K| − 1 - dimensional one (both ”-1“ being
due to normalization). This means that the vector ~g must necessarily lie on
a |K| − 1 dimensional surface in the g-space, and this in turn means that
it should in principle be possible to redefine our basis of operators {φµ} in
order to obtain a model which only contains (|K|−1) operators. This would
produce a model which is sparse in this new representation.

Example: full-pairwise generative model

We closely follow the exposition in [6].
Consider a four-spin system with a Ising-like generative Hamiltonian, i.e.
an Hamiltonian comprising all possible two-spin interactions (with a shared
coupling constant J) and no interaction of any other order:

H0(s) = J
(
φ(1,2)(s) + φ(1,3)(s) + φ(1,4)(s) + φ(2,3)(s) + φ(2,4)(s) + φ(3,4)(s)

)
(3.23)

We give a pictorial representation of this system in figure 3.3. The model
is exchangeable, i.e. insensitive to permutations of the n spins, and it is
not hard to convice oneself that due to degeneracy of parameters, the set
of states is naturally partitioned into three classes of equiprobable ones; in
fact, given the low dimensionality we can check by hand:
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Figure 3.3: Full-pairwise 4-spin model.

s H(s) s H(s) s H(s) s H(s)

+ + ++ 6J +−++ 0 −+ ++ 0 −−++ −2J
+ + +− 0 +−+− −2J −+ +− −2J −−+− 0
+ +−+ 0 +−−+ −2J −+−+ −2J −−−+ 0
+ +−− −2J +−−− 0 −+−− 0 −−−− 6J

So that we get a ”true partitioning“ Qgen composed of the three sets:

Qj = {s : s1 + s2 + s3 + s4 = (+2J, 0,−2J)}

What we expect is that, with enough data, the optimal partition Q∗ would
itself group together members of these three classes; if this is the case, we
can check that our formula 3.1 sets automatically to 0 all gµs corresponding
to odd-order (singlewise and triplewise) interactions:

g(1) = g(2) = g(3) = g(4) = g(1,2,3) = g(1,2,4) = g(1,3,4) = g(2,3,4) = 0

The same formula also outputs nonzero, all equal pairwise couplings:

g(1,2) = g(1,3) = g(1,4) = g(2,3) = g(2,4) = g(3,4) = ĵ(~ρ∗Q)

and a nonzero four-body coupling:

g(1,2,3,4) = ĉ4(~ρ∗Q)

In these relations only the numerical values of ĵ and ĉ4 depend on the
posterior parameter estimates ~ρ1Q∗ - the constraints obtained depend on
the choice of the partition alone! Equation 3.1 is thus translating the di-
mensionality reduction obtained via model selection in mixture space into
a (even stronger!) dimensionality reduction in spin model space: out of
22n−1 = 32768 possible models of four spins, symmetries in data here al-
lowed us to reduce the set of possible models to just three:

M1 ={{φ}pairwise, φ(1,2,3,4)}
M2 ={{φ}pairwise}
M3 ={φ(1,2,3,4)}

(3.24)
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We include the latter two because in principle we could discover that, besides
the information contained in the choice of Q∗, the very posterior estimates
of the probabilities ~ρQ are such that ĵ(~ρQ∗) = 0 or ĉ4(~ρQ∗) = 0. If we check
manually, via (3.1), the conditions on single state probabilities under which
M2 or M3 would be the correct ones. We find that:

• M3 would correspond to the additional constraint p++++ ≡ p++−−;
but, were this true, we would have obtained via mixture selection a
further coarse-grained Q∗, not distinguishing between these two states
either. The fact that we didn’t allows us to rule out this model.

• M2 corresponds to the additional constraint: p++++p
3
+++− ≡ p4

++−−;
now, this condition is completely transparent to the eyes of mixture
selection; thus, we cannot reject this model on the basis of the obtained
Q∗ alone.

We can picture the result of inference as having identified a 2-dimensional
manifold in a 2n−1 - dimensional space; the retrieved manifold is parametrized
by ĵ, ĉ4.
This picture traslates naturally to the general case - we will now see in detail
how it does.

3.4 Projection on spin models: the general case

3.4.1 Singular Value Decomposition of χ

Our task will be now the one of characterizing the (|Q| − 1) - dimensional
manifold in ~g space on which our inferred couplings gµQ live.
The natural way to do this is to decompose χ via Singular Value Decompo-
sition (SVD):

χµj =
∑
ν∈Ωn

∑
k∈Q

UµνΛνkWkj (Λνk = Λkδνk)

=
∑
k∈Q

UµkΛkWkj

(3.25)

where U is a 2n − 1× 2n − 1 unitary matrix (we discard g0, this being fixed
by normalization and thus not being a free parameter of the model) and W
is |Q| × |Q| and unitary as well. U in particular allows for changes of basis
in the ~g space. If we define a new operator basis:

ψη(s) =
∑
µ∈Ωn

φµ(s)Uµη (3.26)
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we see that the Hamiltonian can be rewritten:

H(s) =
∑
µ

gµφµ(s) =
∑
µ,ν

gµδµνφ
ν(s) =

∑
µ,ν

gµ

(∑
η

UµηUνη

)
φν(s)

=
∑
η

(∑
µ

gµUµη

)(∑
ν

φν(s)Uνη

)
=
∑
η

(∑
µ

gµUµη

)
ψη(s)

=
∑
η

g̃ηψη(s)

under suitable redefinition of the coupling constants:

g̃η =
∑
µ

gµUµη (3.27)

We now see that there are at most |Q| − 1 nonzero couplings g̃η in the
new representation: inserting (3.25) into (3.1) :

gµ =
1

2n

∑
j∈Q

∑
k∈Q

UµkΛkWkj log
ρj
mj

(3.28)

then inserting this in 3.27:

g̃η =
∑
µ

gµUµη =
1

2n

∑
j∈Q

∑
k∈Q

(∑
µ

UµηUµk

)
ΛkWkj log

ρj
mj

=


Λη
2n

∑
j∈Q

Wηj log
ρj
mj

, 1 ≤ η ≤ |Q| − 1

0 otherwise.

(3.29)

The ”-1“ comes from the fact that the
∑

µ χµj = 0 constraint translates in
a singular value Λ0 being = 0.

3.4.2 Sufficient statistics

If we rewrite the probability distribution for the states in this new basis:

P (s|g̃) =
1

Z
e
∑
η g̃ηψ

η(s) (3.30)

we see that these relatively few functions (less than |K| in any case!) consti-
tute the sufficient statistics of the model. 4. They emerged via a Bayesian

4For a mathematical characterization of sufficient statistics, see [27]; for a characteri-
zation of their importance in statistical physics, see [28]
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model selection procedure, this meaning that they should be robust against
overfitting. We achieved great dimensional reduction: in the undersampling
regime one always has |K| � 2n, and the number of our sufficient statistics
is modulated by the former quantity.

The derivation of the statistics ψη is the main result of [5], and of the
pèresent chapter.
Once the ψ functions are determined, parameter estimation is performed in
practical cases by maximum likelihood estimation (see Appendix B). The
authors argue in [5] that inference can be made more stable by neglecting
the statistics corresponding to the smallest singular values Λη. In chap-
ter 4 we will elaborate on this in full detail, by analytically characterizing
the spectral properties of the χ matrix in relation to its defining partition Q.

The following section reviews two strategies for the ~g estimation stage;
the effort is aimed at gaining some insight about stability of inference.
It can be skipped at a first reading.

3.5 Insights via parameter estimation

We’ll work with K, but extension to Q∗ requires mere substitutions in the
expressions. Our core formula reads:

gµK =
1

2n

∑
j

χµj log
~ρKj
mKj

(3.31)

Where, we recall, ~ρK ∼ P1(~ρK|ŝN ,K) are random vectors, distributed as
their K-fixed-model posterior given the sample.

Treating ~g as random vector: stability of inference

A first choice is to accordingly treat ~g as a random variable itself, and try
and characterize its distribution. For this, we will need to explicitly write
the expression for P (~ρK|ŝN ,K):

P (~ρK|ŝN ,K) =
P (ŝN |~ρK,K)P (~ρK|K)

P (ŝN )
=

S∏
r

(
ρj(r)

mj(r)

)k̂r P (~ρK|K)

P (ŝN )

=
1

P (ŝN )

 K∏
j

(
ρj
mj

)K̂j Γ(a|K|)
Γ(a)|K|

 K∏
j

(ρj)
a−1


=C ·

 K∏
j

(ρj)
K̂j+a−1


(3.32)
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C being a constant. Normalization now entails:

P (~ρK|ŝN ,K) =

∏
j Γ(K̂j + a)

Γ(N + a|K|)

K∏
j

ρ
K̂j+a−1
j δ(

∑
j ρj−1) (3.33)

Now that we have a full expression of the distribution for ~ρ, let’s turn to the
spin representation and first compute the average couplings (and also drop
partition indices):

E [gµ] =
1

2n

∑
j

χµj (E [log ~ρj ]− logmj) (3.34)

In order to be able to evaluate E [log ~ρj ] we can define the auxiliary function:

Z(~λ) = E

∏
j

ρ
λj
j

 (3.35)

and take derivatives:

∂λj logZ(~λ)

∣∣∣∣
~λ≡0

=
∂λjZ(~λ)

∣∣
~λ≡0

Z(0)
= E

[
log ρj

∏
k

ρλkk

∣∣∣∣
~λ≡0

]
= E [log ρj ] (3.36)

Now all we need is an explicit expression for Z(~λ):

Z(~λ) =

∫
~ρ
d~ρ
∏
j

ρ
λj
k P (~ρ|ŝN ,K)

=

∏
j Γ(K̂j + a)

Γ(N + a|K|)

∫
~ρ
d~ρ
∏
j

ρ
λj+K̂j+a−1
k δ(

∑
j ρj−1)

=
Γ(N + a|K|+

∑
j λj)

Γ(N + a|K|)
∏
j

Γ(K̂j + a)

Γ(K̂jλj + a)

(3.37)

so that:

∂λj logZ(~λ)

∣∣∣∣
~λ=0

=ψ(0)(K̂j + a)− ψ(0)(N + a|K|) (3.38)

in which ψ(r)(x) = dr

dxr log Γ(x) is the polygamma function.
If we now insert this into 3.34 we get:

E [gµ] =
1

2n

∑
j

χµj

(
ψ(0)(N + a|K|)− ψ(0)(K̂j + a)− logmj

)
(3.39)
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We don’t need to further characterize this object here. What we care much
more about is the covariance:

Cov [gµgν ] =
1

22n

∑
j,k

χµj χ
ν
kCov [(log ρj − logmj)(log ρk − logmk)]

=
1

22n

∑
j,k

χµj χ
ν
kCov [log ρj log ρk]

(3.40)

We again exploit Z(~λ); note:

∂λj∂λk logZ(~λ)

∣∣∣∣
~λ=0

=
∂λj∂λkZ(~λ)

∣∣
~λ=0
− ∂λjZ(~λ)

∣∣
~λ=0

∂λkZ(~λ)
∣∣
~λ=0

Z(0)

=E [log ρj log ρk]− E [ρj ]E [ρk] = Cov [log ρj log ρk]

(3.41)

while also being equal to:

∂λj∂λk logZ(~λ)

∣∣∣∣
~λ=0

=ψ(1)(N + a|K|)− δjkψ(1)(K̂j + a) (3.42)

so that:

Cov[gµgν ] =
1

22n

∑
j,k

χµj χ
ν
k(ψ(1)(N + a|K|)− δjkψ(1)(K̂j + a))

We can further simplify by using a useful property of the χ matrix:∑
j

χµj =
∑
j

∑
s∈Qj

φµ(s) =
S∑
s

φµ(s) = 0 (3.43)

(χ by definition does not contain the ”µ = 0“ row!).
Thanks to this we can finally write:

Cov[gµ, gν ] =
1

22n

∑
j

χµj χ
ν
jψ

(1)(K̂j + a) (3.44)

If we now look at the variance of the ”transformed“ couplings g̃η:

V ar[g̃η] =
∑
µ

∑
ν

UµηUνηE [gµgν ]−

(∑
µ

UµηE [gη]

)
=
∑
µ

∑
ν

UµηUνηCov[gµ, gν ]

=
1

22n

∑
µ

∑
ν

UµηUνη
∑
j

χµj χ
ν
jψ

(1)(K̂j + a)

=
1

22n

∑
j,a,b

ΛaΛbWajWbj

∑
µ

UµηUµa
∑
ν

UνηUνbψ
(1)(K̂j + a)

=

(
Λη
2n

)2∑
j

W 2
ηjψ

(1)(K̂j + a)

(3.45)
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We see that this is proportional to Λη, meaning that the average statisti-
cal error in the estimation of couplings gη relative to our different sufficient
statistics φη is proportional to the corresponding singular value of the χ
matrix.
It would be tempting now, as pointed out in [6], to regard the statistics cor-
responding with largest Λη as so-called sloppy modes, in the sense of [15]; yet
from our discussion in Chapter 1 we should be convinced that high param-
eter sensitivity to sampling noise is a symptom of overfitting - with respect
to which we should be relatively safe, thanks to us having performed model
selection in the first place. Resolution of this apparent paradox amounts to
noting that the values of gη are proportional to Λη themselves (cfr. 3.29).
This means that across our family of sufficient statistics, relative fluctuations
in the inferred parameters are of comparable magnitude.

Estimating ~ρ before insertion in 3.1

Instead of using the random vector ~ρ, we can compute a posterior estimate
P (s|ŝN ,K) and insert this in 3.1 as our s-probability:

P (s|ŝN ,K) =

∫
~ρK

d~ρKP (s|ŝN , ~ρK,K)P (~ρK|ŝN ,K)

=

∫
~ρK

d~ρKP (s|~ρK,K)
P (ŝN |~ρK,K)P (~ρK|K)

P (ŝN )

=
1

P (ŝN )

∫
~ρK

d~ρK
ρj(s)

mj(s)

S∏
r

(
ρj(r)

mj(r)

)k̂r
P (~ρK|K)

∝
∫
~ρK

d~ρK

K∏
j

(
ρj
mj

)K̂j+δj,j(s)
· Γ(|K|a)

Γ(a)|K|

K∏
j

ρa−1
j δ(

∑
j ρj−1)

=

 Γ(a|K|)
Γ(a)|K|Γ(N + a|K|)

∏
j Γ(K̂j + a)

m
K̂j
j

 1

mj(s)

K̂j(s) + a

N + a|K|

One can check (see chapter 5 for details) that normalization in this case
amounts exactly to division by the quantity in parentheses. This way we
end up with the posterior K-estimate:

P (s|ŝN ,K) =
1

mj(s)

K̂j(s) + a

N + a|K|
(3.46)

The reader familiar with classic Bayesian statistics will recognize in this
expression an instance of Laplace’s rule of succession. We now need to fix
the prior parameter:

51



• for a→ 0 we get:

P (s|ŝN ,K, I0) =
1

mj(s)

K̂j(s)

N
=
k̂s
N

(3.47)

which turns out to coincide with the maximum likelihood estimator;
this is the prior used throughout all of [6].

• for a = 1 we get:

P (s|ŝN ,K, I1) =
1

mj(s)

K̂j(s) + 1

N + |K|
(3.48)

Which we will call a 1-pseudocount posterior : it amounts in fact to an
empirical frequency estimation, where said frequency is corrected by
attributing one fake observation to each ”grouped“ state.
Pseudocount estimators are very popular in inference problems (and
have in some cases be found to be a necessary choice; see [29]), because
they tipically allow to overcome the problem of divergencies caused by
unobserved states. In fact, if we plug our a → 0 estimate into 3.1 we
see immediately that for any state s0 such that k̂s0 = 0 we have a
”log(0)“ divergence. Next section will be devoted to discussion of this
issue.

3.6 Unobserved states and the need for regular-
ization

Consider again our core formula:

gµ =
1

2n

∑
j

χµj log
ρj
mj

If we resort to maximum likelihood estimation for ~ρQ, this becomes:

gµ =
1

2n

∑
j

χµj log
K̂j

mjN
=

1

2n

∑
j

χµj log
k̂sj
N

(3.49)

where sj is a representative state belonging to the jth partition set: s ∈ Qj .
Now we see that if there are states that are never observed (k̂ = 0) we get
divergencies in the estimated values of gµ - to be precise, we’ll have divergent
couplings for every µ such that χµ∅ 6= 0.
The bad news is that in practice, we are more or less always in this situation,
since a good sampling of a 2n-sized alphabet would require in all interesting
application huge sample sets, that we can’t afford. Plus, these divergencies
are in general mantained in the g̃η-basis.

How can we then regularize these divergencies? Here we state two main
possible recipes for doing so:
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• The most popular regularizing devices are L1 (Lasso) and L2 (ridge)
regression methods; they both amount to adding a penalty term to
the cost function to be optimized (in our case - the loglikelihood of the
sample) such that greater magnitudes of the couplings are penalized.
L1 regression optimizes:

L(g) = logP (ŝN |g)− α
∑
µ

|gµ| (3.50)

While L2 regression optimizes:

L(g) = logP (ŝN |g)− α
∑
µ

(gµ)2
(3.51)

• A method to avoid said divergencies would be that of not resort-
ing to plain maximum likelihood estimation, thus mantaining partial
bayesianity and for instance using the 1-pseudocount posterior esti-
mates:

P (s|ŝN ,K, I1) =
1

mj(s)

K̂j(s) + 1

N + |K|
(3.52)

as described in the previous section. Pseudocounts ensure that no
divercency whatsoever is possible. This is the most sound choice from
a Bayesian point of view, and in turn a Bayesian point of view is
arguably mandatory when we work in the deep undersampling regime,
which is the one in which prior informations have the widest influence
on our inference procedures.
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3.7 Numerical results

We replicated some numerical results found in [6] and [5]. There, the au-
thors applied the method discussed to the data used in [30] referring to the
decision of a U.S. Supreme Court on 895 cases. This court is composed of
nine judges, each expressing a binary vote with respect to a given case. The
court is thus modeled as a n = 9 spin system, with a sample of 895 observa-
tions (cases). In [30] a graphical model was reconstructed while admitting
only two-spin interactions; the aim in [6] was to understand whether the sys-
tem at hand could be more ”simply“ described by admitting higher order
interactions. Here, following [6], we perform inference both on this dataset
and, for comparison, on a synthetic one generated from a fully connected
pairwise n = 9 fully degenerate spin model, with a temperature chosen as
to match the average two-spin correlations in the real dataset.

We provide estimated couplings E[~g] in different cases:

• Absence of regularization schemes - resulting in very high (→ diver-
gent) values of the inferred parameters;

• Regularization via pseudocounts (a=1)

Details on the dataset can be found in [30].

3.7.1 Synthetic data: full pairwise model

The chosen Hamiltonian is the one of a ferromagnetic Ising model:

Hfull pair =

9∑
i=1

∑
j<i

sisj (3.53)

(we use the sign convention: P (s|g) = e+ β
n

∑
µ g

µφµ(s)); we set β = 2.2.
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Sample frequencies
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Figure 3.4: Sample frequencies statistics.
Top left: empirical frequencies of states plotted against their rank; notice how, in

our dataset, we have only 120 observed states, out of 29 = 512 possible ones.
Top right: empirical frequencies K(j) relative to the frquency partition set, as

defined in Chapter 3, plotted against their rank. There are 16 different frequencies
occurring in the sample, so that the K partition is composed of 16 sets.

Bottom: same two plots in logarithmic scale.
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Inferred couplings: orders of interactions

Figure 3.5: Orders of inferred interactions
Plots of the values of E[gµ] by their order as spin interactions. Left: No

regularization performed; the values appear finite just because of the limits of
numerical approximation. Right: ”pseudocount“-regularized (a=1) case. Blue

dots refer to parameters obtained under the K partition, red ones refer to the Q∗

optimal one.

As we see in figure 3.5, non-regularized ”a = 0“ inference is extremely
noisy; two-order interactions are prominent as desired, yet we have no
sharp separation between these and the remaining ones. In the case of a
pseudocount-regularized scheme, we see that the situation is far better.
We also see how while interactions of odd order are 0 on average, ”spurious“
interactions of even order emerge.
A last observation is that inference seems to be very lightly affected by pass-
ing to the optimal Q∗ partition, at least in this low dimensional case. This
reassures us about the fact that we can safely use, in practice, the frequency
one.

The emergence of spurious interactions like the fourth-order ones in fig-
ure 3.5 is interesting because it is arguably robust against L1, L2 schemes
for sparsification. Extensive numerical investigations on synthetic datasets
generated using various models show that this phenomenon is general and
order - independent. What happens is that simple XOR combinations of the
”true” operators tend to get high rankings. When this happens, the obtained
strength for a spurious interaction is proportional (in absolute value) to the
strengths of the “true” inferred interactions that generated it via XOR com-
bination.
A precise characterization of this effect is lacking, and will be the object of
future investigations.
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3.7.2 Real data: the U.S. Supreme court
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Figure 3.6: Sample frequencies statistics.
Top left: empirical frequencies of states plotted against their rank.
Top right: empirical frequencies K(j) relative to the frquency partition set plotted
against their rank.
Bottom: same two plots in logarithmic scale.
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Inferred couplings: orders of interactions

Figure 3.7: Orders of inferred interactions
Plots of the values of E[gµ] by their order as spin interactions. Top: No

regularization performed; the values appear finite just because of the limits of
numerical approximation. Bottom: ”pseudocount“-regularized (a=1) case. Blue

dots refer to parameters obtained under the K partition, red ones refer to the Q∗

optimal one.

We clearly see that first and second order interactions ore prominent.
Yet, in agreement with [6], we see that many fourth order interactions are
in the top 5% couplings. This prediction comes from an uninformative
Bayesian procedure, can arguably advocate for specific relevance of these
interactions for the system.
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Chapter 4

Mining the χ matrix

In this chapter, we will complete the exposition contained in the previous
one, with the presentation of original findings about how the information
about the selected partition Q is represented in the SVD decomposition of
the χ matrix.
We will discover a nice correspondence between the singular values Λη and
the sizes |Qj | of the partition sets, allowing us to argue that the choice of
discarding the smallest singular values is actually not justified - in fact, this
new interpretation suggests that a possible mean of regularization would be
that of discarding the single one biggest singular value.

4.1 Analytical results for the χ matrix

We will devote this section to raw calculation, and pospone discussion of the
results to the next one. The main results of next subsection are formulas
4.3 and 4.14. Details of their derivation can be skipped at a first reading.

4.1.1 {ψη}η as functions of (W ,Λ,Q)

We can write some meaningful identities starting from the definition of the
sufficient statistics ψη.
First, we compute, ∀η : Λη 6= 0:

ψη(s) =
∑
µ>0

φµ(s)Uµη =
∑
µ>0

φµ(s)
∑
j

χµjWηjΛ
−1
η

=
∑
j

WηjΛ
−1
η

∑
µ>0

φµ(s)
∑
r∈Qj

φµ(r)

=
∑
j

WηjΛ
−1
η

∑
r∈Qj

∑
µ≥0

φµ(s)φµ(r)− 1
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Due to the orthogonality of the spin operators:

ψη(s) =
∑
j

WηjΛ
−1
η

∑
r∈Qj

(δr,s2
n)− |Qj |


=
∑
j

WηjΛ
−1
η (δj,j(s)2

n − |Qj |)

=
2nWηj(s)

Λη
−
∑

jWηj |Qj |
Λη

(4.1)

that, if we define:

ωj ≡
|Qj |
2n

, λη =

(
Λη
2n

)2

, Wη ≡
∑
j

ωjWηj

becomes:

ψη(s) =
Wηj(s) −Wη√

λη
∀η : Λη 6= 0 (4.2)

This is an important result! It demonstrates how the sufficient statistics
ψη, as functions of the alphabet, only depend on the states through their
frequencies:

ψη(s) = ψη(j(s)) (4.3)

“j“ denoting here a specific partition set. This key observation enables var-
ious further characterizations; as a first thing, we can say that this equation
must also be true:

ψη(s) = ψη(j(s)) =
1

|Qj(s)|
∑

r∈Qj(s)

[ψη(r)] =

=
1

|Qj(s)|
∑

r∈Qj(s)

∑
µ>0

φµ(r)Uµη =

=
1

|Qj(s)|
∑
µ>0

Uµηχµj(s) =

√
ληWηj(s)

ωj(s)

Which we’ll write, forgetting s, as:

ψη(j) =

√
ληWηj

ωj
(4.4)
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4.1.2 {Wηj}η,j as functions of ({λη}η, {ωj}j)

Putting together (4.2) and (4.4) we see that, ∀η : λη 6= 0 , ∀j:

Wηj −Wη√
λη

≡
√
ληWηj

ωj

from which:

ληWηj = ωj
(
Wηj −Wη

)
(4.5)

Summing over j:

λη
∑
j

Wηj = Wη −Wη = 0

meaning that, since λη 6= 0 by hypothesis:∑
j

Wηj = 0 ∀η : Λη 6= 0 (4.6)

Also, from (4.5) we get:

Wηj

[
ωj − λη
ωj

]
= Wη (4.7)

from which we see that the expression at left hand side must be constant
with respect to j.
We also see that whenever we choose η such that λη coincides with ωj for
some j, we get:

Wη = 0 ∀η : ∃j : ωj ≡ λη (4.8)

Whereas for other choices of η we can write:

Wηj =
ωjWη

ωj − λη
∀η : @j : ωj ≡ λη (4.9)

Since W is unitary, we can impose normalization of its rows:

1 =
∑
j

W 2
ηj = Wη

2∑
j

(
ωj

ωj − λη

)2

∀η : @j : ωj ≡ λη

meaning:

Wη =
1√∑

k

(
ωk

ωk−λη

)2
∀η : @j : ωj ≡ λη

(4.10)
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so that (4.8) and (4.10) give us Wη in all cases.
Substituting (4.10) in (4.9) we get all “non degenerate” W elements as
functions of the spectrum, and of the partition sets’ cardinalities:

Wηj =

ωj
ωj−λη√∑
k

(
ωk

ωk−λη

)2
∀η : @j : ωj ≡ λη (4.11)

Giving us the “non-degenerate” sufficient statistics, as a function of χ’s
spectrum and Q-sets’ cardinalities only:

ψη(j) =

λη
ωj−λη√∑
k

(
ωk

ωk−λη

)2
∀η : @j : ωj ≡ λη (4.12)

Note that, ∀η : @k : λη = ωk, the entries Wηj (and so ψη(j) as well), are
constant along “degenerate” components:

Wηj = cη(ω) ∀j ∈ Jω ≡ {j | ωj = ω} (4.13)

4.1.3 The spectrum {λη}η
The main contribution to our comprehension of the spectrum comes from
(4.9): multiplying both sides by ωj and summing over j:

1 =
∑
j

ω2
j

ωj − λη
∀η : @j : ωj ≡ λη (4.14)

This last formula allows us to investigate and characterize properly the spec-
trum of singular values; for a given choice of ~ω on the |Q|-dimensional prob-
ability simplex, the shape of the right hand side, seen as a function of λ,
is depicted in figure 4.1; there, divercengies correspond to values of λ such
that λ ≡ ωj for some j.
If we order the indices η by the increasing value of Λη (and thus λη), and
the indices j by the increasing value of the cardinalities |Qj | (and thus ωj),
we can immediately write down the properties:

λ0 ≡ 0

λk ∈ [ωk, ωk+1] ∀k : @j : ωj ≡ λk
(4.15)

or, equivalently:

Λ0 = 0

Λk ∈
[√

2n|Qk|,
√

2n|Qk+1|
]
∀k : @j : |Qj | ≡

Λ2
k

2n

(4.16)
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Figure 4.1: Plot of 4.14
the values λη correspond to intersections between the green function and the
dashed line y = 1. One has vertical asymptotes for values λ = ωj , and one λη

solution between each pair of these lines; if ωj = ωk for some j, k, the
corresponding solution is λη = ωj = ωk.

Exhamine the plot. If all the cardinalities |Qj | are different we get all the
|Q|−1 nonzero singular values trapped in |Q|−1 of the above intervals, one
for each singular value, whereas everytime we make the cardinality of two
different partition sets coincide the corresponding interval (always contain-
ing one of the singular values) gets “squished” inside a single divergency. By
this line of reasoning we conclude that everytime we have degeneracies in
the cardinalities we’ll observe degeneracy in singular values: more precisely,
we’ll observe |Qjdeg |− 1 coincident singular values, all of value λjdeg = ωjdeg .
Further characterization of the spectrum can be found in Appendix C.

4.1.4 The “degenerate“ rows of the W matrix

Consider (4.7) for some j (if it exists) for which ωj 6= λη: the expression in
square brackets is, in this case, 6= 0; yet we know from (4.8) that Wη = 0.
This implies:

Wηj ≡ 0 ∀(η, j) : (∃k : ωk ≡ λη) ∧ (ωj 6= λη) (4.17)

. In turn, we cannot determine the values of W for all other values of j.
For each “degenerate” |Qk| we’ll thus have |Qk − 1| “localized” (they have
nonzero components only along the corresponding degenerate partition sets),
singular vectors, forming an orthonormal set (due to the above properties);
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this set can be completed to become a basis of the linear space spanned
unconstrainedly by those nonzero component, by adding a vector which is
constant along those directions, and zero elsewhere.
Indeed, the Λ0 = 0 row is a constant row - since W is unitary, and its
other rows span the linear subspace orthogonal to the (1, 1, · · · , 1) vector;
its entries are :

W0j =
1√
|Q| (4.18)

4.1.5 W-redefinition of the sufficient statistics

Let’s see what happens when we write the maximum entropy distribution
for the ψη and enforce normalization:

P (s|g) =
1

Zg
e
∑
η g

ηψη(s)
(4.19)

Now, using (4.1):

P (s|g) =
1

Zg
e
−

∑
η
gη

Λη
2nWηje

∑
η
gη

Λη
2nWηj(s)

=
1

Zc
e
∑
η c
ηζη(j(s))

(4.20)

where

ζη(j) ≡
√
|Q|Wηj

cη ≡ gη√
λη|Q|

(4.21)

This equivalent redefinition of our sufficient statistics is nice because, since
W is unitary, we now see that the ζη functions obey the same orthogonality
and completeness relations as the old basis functions φµ:∑

η

ζη(j)ζη(k) = |Q|δj,k∑
j

ζη(j)ζρ(j) = |Q|δη,ρ
(4.22)

Also, we can check via 3.45 that the variance of the inferred parameters in
this representation is no more modulated by the singular values:

V ar[cη] =
1

λη|Q|
V ar[gη] =

1

λη|Q|
λη
∑
j

W 2
ηjψ

(1)(K̂j + a)

=
1

|Q|
∑
j

W 2
ηjψ

(1)(K̂j + a)

(4.23)
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If we fix a prior parameter a > 1.5, so that ψ(1)(K̂j + a) is always positive,
it is meaningful to write the bound:

V ar[cη] <
ψ(1)(K̂max

j + a)

|Q|
(4.24)

4.2 Pause and ponder: a new method for regular-
ization?

Let’s pause now and try to understand what significance there is in last
section’s findings: from our point of view, the main achievement is the
discovery of relation (4.14) for the magnitudes of χ’s singular values λη. In
particular, this relation tells us that the biggest singular value λmax correlates
with the partition set containing the highest number of states:

Qjmax , jmax = arg max
j
mj

The typical statistical features of samples in the undersampling regime are
such that the most populated partition set usually coincides with the set of
unobserved states.
This hints that maybe an efficient strategy for regularization is that of dis-
carding the biggest singular value, in place of the smaller ones (and thus
“stop listening” to unobserved states). Exploration of this path is a per-
spective for future research.

4.3 Bonus: reverse engineering partitions & hid-
den loop structures

It is clear that the interface between mixtures and spin models hides plenty
of structure; here, we want to highlight a nice result emerging from some
experimenting with mappings between these two classes.
What follows has not yet been properly formalized; we thus adopt a more
informal style, giving first a couple examples to gain some insight, then pre-
senting a somewhat general empirical observation. This all must be intended
as a hint towards future investigation.

4.3.1 Spin to mixture constructive recipe: examples

The following is motivated by a simple question. We have seen how to map
mixture models into spin models, via the χ matrix associated to a partition
Q. Now pretend we don’t know any of this for a bit and ask ourselves: given
a desired partitioning of a set of states, how can we construct a spin model
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that returns probabilities of states generating precisely that partitioning?
Let’s start from scratch. The empty Hamiltonian:

H0(s) = 0 (4.25)

generates a uniform distribution P (s) = 1
|S| . Thus, the corresponding parti-

tion is the “single-chunk” one Q0. If we add (+gµφµ(s)) to our Hamiltonian:

H0(s) = gµφµ(s) (4.26)

we induce a partitioning of states in two equally sized classes:

• the set {s+} of states for which φµ(s+) = +1;

• the set {s−} of states for which φµ(s−) = −1;

where {s+}
⋃
{s−} ≡ S.

Let’s see, for example, what happens for a 4-spin model:

s H0(s) = 0 s H(s) = g1φ1(s)
+ + ++

H = 0 −→

+ + ++

H = g1

+ + +− + + +−
+ +−+ + +−+
+ +−− + +−−
+−++ +−++
+−+− +−+−
+−−+ +−−+
+−−− +−−−
−+ ++ −+ ++

H = −g1

−+ +− −+ +−
−+−+ −+−+
−+−− −+−−
−−++ −−++
−−+− −−+−
−−−+ −−−+
−−−− −−−−

If we now “turn on” another operator, say, φ2(s):
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s H0(s) = 1 H(s) = φ1(s) H(s) = φ1(s) + φ2(s)

+ + ++

H = 0

H = g1

H = g1 + g2+ + +−
+ +−+
+ +−−
+−++

H = g1 − g2+−+−
+−−+
+−−−
−+ ++

H = −g1

H = −g1 + g2−+ +−
−+−+
−+−−
−−++

H = −g1 − g2−−+−
−−−+
−−−−

we split each of the previous partition sets in half. Thus it seems that we
have a general recipe to split state spaces in 2k distinct sets. Moreover,
if we now decide to impose some degeneracy, for instance the additional
constraint g1 = g2 = g, we manage to merge partition sets together: in
fact we see that our (4, 4, 4, 4) partition becomes a (4, 8, 4) one, because the
Hamiltonians of the middle two partition sets become both identically = 0.
Let’s add one more operator! We’ll make two different choices: the natural
choice φ3 and also the choice φ(1,2). Let’s check what happens:

s g1φ1(s) + g2φ2(s)
+g3φ3(s)

s g1φ1(s) + g2φ2(s)
+g(12)φ(12)(s)

+ + ++
+g1 + g2 + g3 + + ++

+g1 + g2 + g(12)+ + +− + + +−
+ +−+

+g1 + g2 − g3 + +−+
+ +−− + +−−
+−++

+g1 − g2 + g3 +−++

+g1 − g2 − g(12)+−+− +−+−
+−−+

+g1 − g2 − g3 +−−+
+−−− +−−−
−+ ++ −g1 + g2 + g3 −+ ++

−g1 + g2 − g(12)−+ +− −+ +−
−+−+ −g1 + g2 − g3 −+−+
−+−− −+−−
−−++ −g1 − g2 + g3 −−++

−g1 − g2 + g(12)−−+− −−+−
−−−+ −g1 − g2 − g3 −−−+
−−−− −−−−
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We see that while in the first case we have a further splitting of the states,
in the second case we are not modifying the partition. A little thinking
convinces us of the basic fact that adding an operator which is not indepen-
dent from the ones already present in the Hamiltonian does not change the
corresponding partition. Here “independency” is to be intended in the sense
specified in chapter 2.
We can play around with degeneracies in both cases. What one sees is that:

• Enforcing constraints in an independent Hamiltonian, as is the one on
the left, can merge sets together, but cannot produce sets of cardinality
different than a power of two;

• Particular constraints in a dependent Hamiltonian of the type on the
right can produce sets with richer cardinalities.

To verify this second claim, let’s require: g1 = g2 = −g(12) = g. We get:

s g(φ1 + φ2 − φ(12))
+ + ++

+g
+ + +−
+ +−+
+ +−−
+−++

−g

+−+−
+−−+
+−−−
−+ ++
−+ +−
−+−+
−+−−
−−++
−−+−
−−−+
−−−−

We thus managed to create a partition set composed of 12 elements. This
would have not been possible with just independent operators.

4.3.2 General construction

Let’s try and be more general now. We gained some useful insight but we
are very far from having gained the ability of fully manipulating partitions
through specific choices of spin models.
We will proceed one step at a time. We have seen that “single-operator”
Hamiltonians correspond to splittings of the set of states in two halves, each
of cardinality 2n−1. There are 1

2

(
2n

2n−1

)
possible such splittings (the order in
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which we place partition sets is irrelevant), and these are many more than
the 2n−1 operators we can use. This means that we can only reproduce via
single operator Hamiltonians a small portion of all possible half splittings -
yet, if we could actually recreate all such half splittings, we would be able to
recreate any possible partition just by easily predeterminable combinations
of the half-splitting Hamiltonians. Let’s see why this must be true:

• First, choose a state s. Let’s say we want a half-splitting such that s
ends up in the set of the two corresponding to the highest value of the
Hamiltonian; there will be, in total,

(
2n−1

2n

)
such splittings. We will

say that these splittings boost the state s.

• Assume we have access to the Hamiltonians corresponding to splittings
that boost s, each with couplings normalized such that half of the
states have energy (+1) and the other half have energy (-1).

• Then we can add all the s-boosting Hamiltonians together to get a
bigger one Hs: this implies that state s gets boosted

(
2n−1

2n

)
times, and

acquires energyHs(s) =
(

2n−1
2n

)
, while all other states get by symmetry

boosted the same number of times (precisely: Hs(r) = 1
2n−1

(
2n−1
2n−1

)
).

• We have thus generated a partition in two sets, one of which is com-
posed of state s alone. It is easy to see that if we can do this for one
state, we can create any possible desired partitioning, just by suitable
linear combinations of Hs hamiltonians for all possible states s.

We then are now convinced that half-splittings are enough for construction
of any possible partition. The problem remains of how to find Hamiltonians
Hhalf for half splittings.
We conducted by hand investigations in systems with a low number of spins,
and found that, in all cases, Hamiltonians Hhalf are composed by families of
operators forming loops (recall the definition of loop from Chapter 2).

Example

Let’s see an example of this; consider a 3-spins system. There are |S| = 8
states, and 1

2

(
8
4

)
= 35 different partitions of the states space in half. The 7

possible single-operator models lead to 7 of these partitions: (+ + +,+ +
−,+−+,+−−), (· · · )→ {φ(1)}
(+ + +,+ +−,−+ +,−+−), (· · · )→ {φ(2)}
(+ + +,+ +−,−−+,−−−), (· · · )→ {φ(12)}
(+ + +,+−+,−+ +,−−+), (· · · )→ {φ(3)}
(+ + +,+−+,−+−,−−−), (· · · )→ {φ(13)}
(+ + +,+−−,−+ +,−−−), (· · · )→ {φ(23)}
(+ + +,+−−,−+−,−−+), (· · · )→ {φ(123)}
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The remaining 28 partitions are obtained under degenerate “loop” models
comprised of 1 spin operator φµ with corresponding coupling constant gµ,
and three spin operators φν1 ,φν3 ,φν3 such that φν1⊕ν2⊕ν3 = φµ, all with cou-
pling constant −gµ.
(+ + +,+ +−,+−−,−−−), (· · · )→ {+φ(3),−φ(1),−φ(2),−φ(12)}
There are 7 possible 4-loops; we get 28 different partitions because for each
loop we have to choose which operator will have a sign opposite to the oth-
ers, this giving us 7 · 4 possible choices. A global inversion of the signs of
operators does not change the partition (it simply reverses the energies of
different partition sets). Also, reversing the sign of only the odd operators
is equivalent to reversing all the spin signs in my alphabet; this changes our
partition in the one with exactly opposite states.

This finding, that all half partitionings are generated by loops, has been
verified as true in a multiplicity of cases. Yet, we lack full characterization
of the “loop” picture: this path will be investigated in future research. It
is nice to see loops pop out from the mixture - spin model mapping: this,
together with the fact that, as we have seen, we can always reexpress the spin
partition function ZM(g) of a spin model in the “loop expansion” manner,
hints for a possibility of devising a procedure of model selection in the “loop
representation”.

4.3.3 Relation with the χ matrix

Now, let’s reconsider last section’s results through the glass of Chapter 3’s
findings. We have seen that, in general, we can generate a desired parti-
tion by boosting separately its different component sets. We have also seen
that the boosting Hamiltonians involved are composed of particular sums of
loops.
Now, we must realize that all these findings must be represented, in some
way, in the structure of the χ matrix, since this matrix constitutes itself the
mapping from a desired partition to the corresponding spin model. In par-
ticular, we see from 3.1 that single partition sets are associated with single
columns of the χ matrix. What we realize is this these columns coincide (up
to rescalings) with the boosting Hamiltonians we could sistematically build
in the manner just described.

We thus can try and look for loop-like structures inside the χ matrix
itself. A possible path in this sense starts from the fact that, as we have
seen, our sufficient statistics depend on the states only through the partition
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sets they belong to:

j = j(s) ≡ j(r) =⇒ ψη(s) = ψη(r)

=⇒
∑
µ>0

Uµηφ
µ(s) =

∑
µ>0

Uµηφ
µ(r)

=⇒
∑
µ>0

Uµη(φ
µ(s)− φµ(r)) = 0

(4.27)

From here:∑
s∈Qj

(φν(s) · 0) = 0 =
∑
s∈Qj

φν(s)
∑
µ>0

Uµη(φ
µ(s)− φµ(r)) =

=
∑
µ>0

Uµη

∑
s∈Qj

φν(s)φµ(s)− φµ(r)
∑
s∈Qj

φν(s)


=
∑
µ>0

Uµη

∑
s∈Qj

φν⊕µ(s)− φµ(r)χνj


=
∑
µ>0

Uµη

[
χν⊕µj − φµ(r)χνj

]
(4.28)

Then, summing over r:

0 =
∑
µ>0

Uµη

[
|Qj |χν⊕µj − χµj χ

ν
j

]
=
∑
µ>0

Uµη

[
χ0
jχ

ν⊕µ
j − χµj χ

ν
j

]
≡
∑
µ>0

UµηA
µν
(j)

(4.29)

What one sees numerically in elementary cases is that:
1) diagonalizing the matrix Aj leads to only |Qj | − 1 nonzero eigenvalues,
all of value 2n|Qj |;
2) Aµν(j) is, in very simple cases, different from zero only for particular values

of ν. This values form a loop (actually, at least two distinct loops l+j and

l−j , each composed of constant numerical entries).
A is symmetric, so property (2) implies that also, keeping fixed ν, the matrix
is different from 0 only on values of µ in these two loops. This hints at a
possibility of detailed characterization of the U matrix in terms of loops
that would be really useful, for it may lighten the computational process
of re-mapping of the ψη functions back on the spin representation. These
relations will be investigated in future research.
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Chapter 5

The Q-expansion

Introduction

Reconsider for a second the various possibilities for the p(s) estimate to be
plugged into our core forumla 3.1.
Until now, we mainly worked with the frequency partition, thus using

P (s|ŝN ,K(ŝN ), I0) =
ks
N

(5.1)

as a posterior estimate; as we have seen, this can be interpreted both as a
maximum likelihood estimate, and as a posterior average EP (~ρ|ŝN ,K)

[
ρj(s)

]
over the |K|-probability simplex (each dimension of which represents a set
of the frequency partition induced on the alphabet by the sample ŝN ) when
using a symmetric a→ 0 Dirichlet prior Pa→0(ρj(s)|K).

We can also keep conditioning on K(ŝN ) as being the ”right” partition,
but change the parameter in the prior, obtaining a ”pseudocount” posterior
estimate:

P (s|ŝN ,K(ŝN ), Ia) =
ks + a

N + a|K| (5.2)

Another possible choice would be using P (s|ŝN ,Q∗(ŝN ), Ia), i.e. the pos-
terior estimate obtained from a symmetric Dir-prior on the Q*-simplex - Q*
being the ”optimal” partition maximizing P (Q|ŝN ).

In this chapter, we adopt a fully Bayesian point of view. This means
that we don’t fix any particular partition, and just expand the posterior
estimate on the basis of all the possible partitions of the alphabet:

P (s|ŝN ) =
∑
Q
P (s|ŝN ,Q)P (Q|ŝN ) (5.3)
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From here, we show that only the terms of this sum corresponding to par-
titions that are not coarser than the K one affect the selection of sufficent
statistics. Numerical simulations in [25] suggest that these finer partitions
have low posterior probabilities. We show analytically that in the regime in
which this probabilities are very low we can model their effect on inference
as generating an L2 regularizator, thus providing a Bayesian justification for
the introduction of such term.
We then run simulations to try and argue if this is the regime in which we
work in practical applications.

5.1 The Q-expansion

Let’s exhamine separately the two conditional probabilities appearing in 5.3:
To keep things light, we defer details of computations to Appendix D. For
the posterior probabilities of states we get (see D.0):

P (s|ŝN ,Q) =
1

mQj(s)

KQj(s) + aQ

N + aQQ
(5.4)

which is an instance of laplace’s rule of succession for model Q.

Model posteriors P (Q|ŝN)

As seen in Chapter 3, for aQ = a = 1 (see D.1 for discussion of the case
a→ 0):

P (Q|ŝN ) =
P0(Q)

P0(ŝN )

(Q− 1)!

(N +Q− 1)!

Q∏
j=1

[
Kj !

m
Kj
j

]
(5.5)

If we now take a set Qk of Q and “split” it in two separate sets Qk1, Qk2,
we obtain a model Qsplit whose posterior probability we can compare with
the one of Q:

P (Qsplit|ŝN )

P (Q|ŝN )
=
P0(Qsplit)
P0(Q)

|Q|
|Q|+N

(
m(k1)

m(k1)+m(k2)
)−m(k1)k1(

m(k2)

m(k1)+m(k2)
)−m(k2)k2(k1m(k1)+k2m(k2)

k1m(k1)

)
(5.6)

5.2 Cutting the K partition

5.2.1 1-cuts

For instance, we could compute the posterior ratio for a single splitting of
the K partition; in this case we obtain, for typical cases (see D.2) and in
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the limit N � 1:

P (K1(12)|ŝN )

P (K|ŝN )
∼ ∆0N

− 1
4 (5.7)

This effect grows with growing number of cuts.
This tells us that we can reasonably expect the posterior probabilities of
partitions which contain “cuts” with respect to the K one (i.e. partitions
that are not coarser then K) to become small in the N � 1 regime.

5.3 Finer vs coarser partitions

The initial Q-expanded sum can be manipulated in order to highlight the
effect of all the partitions which are not coarser then K, i.e. not obtainable
by K just by merging some of its sets. If we define:

µQj(s) =
ρQcj(s)

mQcj(s)
(5.8)

We can obtain (see D.3):

P (s|ŝN ) =
∑
Qc>K

µQj(s)P (Qc|ŝN ) + µKj(s)P (K|ŝN )

1 +
∑
Qf<K

µ
Qf
j(s)

µKj(s)

P (Qf |ŝN )

P (K|ŝN )


(5.9)

Here, inside the parentheses, the “µ/µ” ratio is always less than 1 by con-
struction, and the second ratio is a cut posterior ratio of the form studied
before. We can thus conclude safely that the last parentheses can be written
as (1 + ε(N, ŝN , s)) where ε goes to 0 as N grows. If we insert this whole
posterior in 3.1 and then this latter into 3.25, we eventually get (see D.4):

p(s|ĝ) =
e
∑
λ g̃

λψ̃λ(j(s)) (1 + η(s))∑K
j

[
|Kj |e

∑
λ g̃

λψ̃λ(j) (1 + η(s))
] (5.10)

Where:

η(s) =

∑
Qf<K µ

Qf
jQf (s)P (Qf |ŝN )∑

Qc≥K µ
Qc
jQc (s)P (Qc|ŝN )

(5.11)
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5.3.1 Perturbative treatment

We can treat η(s) as a random variable. Then we can expand our p(s|ĝ):

pη(s|ĝ) =
e
∑
λ g̃

λψ̃λ(j(s)) (1 + η(s))∑K
j

[
|Kj |e

∑
λ g̃

λψ̃λ(j)
(

1 + 1
|Kj |

∑
s∈Qj η(s)

)]
=
e
∑
λ g̃

λψ̃λ(j(s)) (1 + η(s))∑K
j

[
|Kj |e

∑
λ g̃

λψ̃λ(j)
] ∑K

j

[
|Kj |e

∑
λ g̃

λψ̃λ(j)
]

∑K
j

[
|Kj |e

∑
λ g̃

λψ̃λ(j)
(

1 + 1
|Kj |

∑
s∈Qj η(s)

)]
= p0(s|ĝ)

1 + η(s)

1+ < η >ĝ,η=0

(5.12)

So that the log-likelihood gradient becomes:

∂λ log(pη(ŝN |ĝ)) =∂λ log(p0(ŝN |ĝ))− ∂λ log (1+ < η >ĝ,η=0)

= N

[
ψ̄λ− < ψλ >ĝ,η=0 +

< η >< ψλ > − < ηψλ >

1+ < η >

]
≈N

(
ψ̄λ− < ψλ >ĝ,η=0 −Cov~g,η=0

[
η, ψλ

])
(5.13)

We are interested in how the presence of η(s) affects the definition of our
sufficient statistics. η(s), as a function of the states, can be decomposed on
the ψ basis:

η(s) =
∑
η

cηψ
η(j(s)) +

∑
ρ

cρψ
ρ(s) (5.14)

Where the index ρ denotes the 2n − |K| directions in ~g space along which,
in the unperturbed case, we would have g̃η = 0.
The first of these two sums does not affect the definition of the sufficient
statistics, as it depends on the states s only through their frequencies; the
second sum could instead add additional degrees of freedom to our model,
along directions previously discarded.
If we evaluate the log-likelihood gradient along an “irrelevant” direction ρ
at the unperturbed maximum (gρ = 0) we have that

ψ̄ρ− < ψρ >ĝ,η=0= 0 (5.15)

and thus:

∂ρ log(pη(ŝN |ĝ)) = −NCov~g,η=0

[
η, ψλ

]
(5.16)
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which is small if η is small. We can thus espand it at first order in the
“irrelevant” directions gρ:

∂ρ log(pη(ŝN |ĝ)) ≈ −Ngρ · ∂ρCov~g,η=0

[
η, ψλ

] ∣∣∣∣
girr=0

(5.17)

which is equivalent of having redefined the scaled log-likelihood L:

L̃ = L −
irr∑
ρ

g2
ρ

2

[
∂ρCov~g,η=0

[
η, ψλ

] ∣∣∣∣
girr=0

]
= L −

irr∑
ρ

g2
ρCρ (5.18)

his having the form of a L2 regularizator for “irrelevant” directions. To
recap: whenever the η � 1 assumption is justified, we have a Bayesian
justification for the use of a L2 regularizator, at least for what concerns the
“irrelevant” directions.

We can now try and characterize numerically the typical behavior of
η, to check whether in practice it really is small enough to justify such
perturbative treatment.

5.4 Numerical characterization of η

An exact numerical computation of η(s) would require that we computed
posterior probabilities P (Q|ŝN ) for all possible partitions Q. This is unfea-
sible even in simple cases due to the high number of partitions involved.
We thus adopted a twofold strategy:

• First, following the heuristic principles discussed in [25], we restricted
our analysis to partitions not clamping together states which are not
seen a similar number of times.
This has been done by representing the set of states as an array, in
which states are ordered by their frequency k̂s:

s(1) s(2) s(3) s(4) s(5) s(6) s(7) · · · s(|S|)

k̂s(1)
≥ k̂s(2)

≥ k̂s(3)
≥ · · · k̂s(|S|)

and then generating partitions Q as specific choices of sets of separa-
tors between states:

s(1) s(2) s(3) s(4) s(5) s(6) s(7) · · · s(|S|)

This way, we “only” have 22n−1 partitions to handle.
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• Second, we resorted to a Markov Chain Monte Carlo (Metropolis-
Hastings) algorithm to sample the posterior distribution P (Q|ŝN ) on
this reduced set of partitions. As a benchmark, in the low-dimensional
case n = 4 (where we have 224−1 = 32768 models) we also computed
the posterior exactly via exhaustive enumeration of the admissible
partitions.

5.4.1 n = 4: Exact treatment

We generated synthetic samples from 4-spins Hamiltonians, with models
chosen at random. We split the set of possible partitions into 4 categories:

• Coarse-grained partitions are the one obtainable from the frequency
one K by only merging together sets of the latter (i.e. only by removal
of separators);

• Q0-intact partitions are those in which some set of states observed with
the same frequency k̂s 6= 0 has been split, but the set of unobserved
states has not;

• Qobs-intact partitions are the ones in which the set of unobserved
states has been split, but no observed one has;

• Both split partitions are the ones in which both observed and unob-
served frequency sets have been split.

We plotted the marginal posterior probabilities for these four classes of
partitions in figure 5.1, as a function of the sample size.
The plots are quite noisy; this is because of the fact that sampling noise here
affects the very definition of the frequency partititon KŝN for all incremental
steps, while the four classes of partitions we consider are defined in terms
of this “noisy-defined” KŝN . Furthermore, in these plots we are redrawing
from the same Hamiltonian an entire brand new sample ŝN for each N .
A fix is that of re-doing the simulation by subsequently adding observations
to a same list of states, a little chunk ∆N at a time; then, repeat the
same procedure from scratch for a certain number of other realizations of
the sampling process, and finally average the results. An average over 50
realizations of the sampling process can be seen in figure 5.2.

A few comments:

• There is good agreement between the exact and approximated plots;
we thus feel confident that Monte Carlo simulations applied also in
higher dimensional cases will give meaningful results.

• The results in this n = 4 case, for our purposes, are discouraging. We
see that in order to have, for instance, Pcoarse grained > 0.9, we need
N ∼ 5000, which is really high for a 4-spin system (in proportion, the
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Figure 5.1: Posterior probabilities of different types of partitions.
Hamiltonian: H = φ(1) + φ(4) − 1.2 · φ(2,3,4) − 1.3 · φ(1,3)

Top left: exact posterior probabilities P (Q|ŝN ) computed for all 32768 admissible
partitions.

Top right: MCMC estimates for the same posteriors. Each point on the plot is
the result of a Metropolis-Hastings algorithm (105 iterations).

Bottom: Same plots, zoomed on samples N < 3000.
Different colors correspond to different marginal probabilities for sets of partitions

of the same type (see main text).

79



Figure 5.2: n = 4 averaged posteriors
Monte carlo estimated posterior probabilities P (Q|ŝN ) plotted against the size of

the sample set. Left: N ≤ 20000, averaged over 50 realizations; resolution
∆N = 5. Right: N ≤ 2000, averaged over 50 realizations, resolution ∆N = 100.

For N ∼ 400 the coarse grained class becomes the most probable one.

datasets used in chapter 3 were N ∼ 900 for n = 9 spins!). It then
seems that our perturbative approach would only be meaningful in
regimes which are very far from the practical ones.

• While probabilities of splittings of the unobserved set fall rapidly to
negligible values, splittings of the observed ones are very slow to be
ruled out.
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Figure 5.3: n = 5 model posteriors.
Left: N < 20000 (for comparison: it’s the same range as the plots made for the

n = 4 case. Average over 50 realizations, resolution ∆N = 1000.
Zoom on the first N = 7500 sample sizes. For N ∼ 4000 the coarse grained class

becomes the most probable one. Average over 50 realizations, resolution ∆N = 5.

5.4.2 n = 5

Results for the n = 5 and n = 6 case are plotted in figures 5.3 and 5.4.
This time we just resort to Monte Carlo, since the admissible models are
too many (∼ 109, ∼ 1019 respectively) for exact enumeration.

We see clearly that our situation worsens quickly with the increasing
dimensionality of the system.
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Figure 5.4: n = 6 model posteriors.
Left: N < 20000 (for comparison: it’s the same range as the plots made for the

n = 4 case. Average over 50 realizations, resolution ∆N = 100.
Right: for N ∼ 50000 the coarse grained class becomes the most probable one.

Average over 20 realizations, resolution ∆N = 10000.

5.4.3 Conclusions

We characterized precisely the typical behavior of the marginal posteriors
for our different classes of models.

What we see is that the regime, in terms of sample size, in which a per-
turbative treatment of the ratio η would be justified is well beyond practical
affordability.

The non negligibility of the “refined“ partitions even for large datasets
can a posteriori be attributed to the fact that in the undersampling regime
(in which we are both in the n = 5 and n = 6 simulations: we never got
close to N ∼ 2|S|) we tend to have in samples a clamping of low-frequency
states which does not correspond to simmetries in the generative distribu-
tion. In this respect a macroscopic value of the ”refined“ posterior signals
that Bayesian analysis intrinsically aknowledges this phenomenon.

This results makes it evident that our Q-expansion cannot, in practice,
serve as a justification for a L2 regularization scheme.
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Chapter 6

Conclusions

In the present work we described a Bayesian model selection procedure for
spin models with interactions of arbitrary order. These are in astronomical
numbers, even for modest n. The choice of restricting to the class of pairwise
models, as is commonly done in practical applications, significantly reduces
the dimesionality of the problem; yet this choice, as we have seen, cannot
be justified in principle by means of Bayesian model selection arguments.
Instead, we show how to peform selection in the class of mixtures, and then
project the result in the space of spin models. This approach is able to
spot symmetries between states that have been observed a similar number
of times; these simmetries are then mapped into constraints between the
spin parameters gµ. In very simple cases, as we have checked, this mapping
alone allows to retrieve the correct model - or a very small set of admissible
models - in that it fixes values gµ = 0 for all those interactions φµ which
are not consistent with the observed simmetries. What is left in the spin
representation, after we enforce all the constraints generated by these sym-
metries, is a set of sufficient statistics ψη whose empirical averages allow
us to compute the maximum likelihood parameters ĝη of the model. These
functions ψη are thus relevant variables for the system under study, emerg-
ing from a Bayesian procedure aimed at optimally reducing overfitting. We
show that the number of different ψη is determined by the number of sets
composing the selected partition (be it the frequency one K, or the optimal
one Q∗) and thus it is controlled by the different frequencies observed in the
data, rather than by the total number of states 2n. This is convenient for
situations in which one is in the undersampling regime, since in this case
tipically |K| � 2n.

The main contribution of the present work is that of having charac-
terized in detail the structure of the mapping between mixture and spin
representation. This mapping is encoded in a matrix χ: we have shown
how the information relative to different sets Qj of the selected partition
is organized in this matrix, by establishing a correspondence between these
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sets and the singular values Λη of χ. This allowed us to understand how
different sufficient statistics ψη correlate with different sets Qj . We also
found some identities allowing to reconstruct analitically the functions ψη

by only knowing the singular values Λη and the cardinalities |Qj |, a result
which reduces the computational cost of retrieval of these functions.

We also explored how a fully Bayesian approach to mixture selection,
via “Q-expansion”, would affect the definition of the sufficient statistics.
We considered the posterior probability ratio between partitions which are
not coarser than the frequency one K, and ones that are; we showed that if
this ratio becomes very small we can derive a “Bayesian regularizator” for
parameter inference. We then checked numerically the typical behavior of
this ratio. We found that, unluckily, it is not small for samples of reasonable
size.

There are many perspectives for future investigations:

• The result that sufficient statistics ψη(s) depend on states only through
their empirical frequencies is an insightful one. It calls for further
characterization of the “dynamics” of the K partition for sampling pro-
cesses corresponding to different classes of systems; insight in this di-
rection can probabily be gained from some recent results about “most
informative samples” (see [31], [25], [32]).

• The revealed structure of the χ mapping suggests that a possibility
for regularization could be that of discarding the largest singular value
Λmax in its spectrum: this because Λmax turned out to correlate with
the largest set of the selected partition, and this set, in the under-
sampling regime, almost always coincides with the set of unobserved
states, which in turn are the ones causing the divergencies. Yet the
matter is subtle, since this strategy would amount to arbitrarily dis-
carding potentially valuable informations, in contradiction with the
“Bayesian philosophy” about inference. This is an interesting path
that will be followed in the near future;

• The observation made in last section of Chapter 4, that partitions
seem to have special links to loop structures in the spin representations,
calls for closer investigations. In particular, full characterization of the
mapping between the two could possibly lead to an analytical recipe
to reconstruct the mapping U between spin operators φ and sufficient
statistics ψ - in a fashion similar to the discussion in Chapter 4 leading
to full characterization of the W matrix (giving the values of ψ as
functions of Q-states). This would arguably reduce the numerical cost
of the inverse mapping ĝη → gµ.

• As has been noted in [33], the exponential family of probability distri-
butions is equipped with a hierarchical structure, by which low order
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and high order interactions are entangled in non-trivial ways. It seems
necessary to understand how much the emergence of spurious inter-
actions (e.g. the four-body and eight-body ones for the “synthetic”
dataset in Chapter 3) is linked to this particular structure; and to un-
derstand how this picture fits with the observation that the structure of
dependencies between spin operators is preserved under order-mixing
gauge transformations.

• In non-trivial cases, our inferred models will be sparse in the ψ repre-
sentation, but not in the φ one. Extension to system with high dimen-
sionality requires that efficient strategies for sparsification in the gµ

space are devised (a recipe that could be adapted is maybe the one in
[34]). . Heuristics as well as more standard methods for doing so are
being presently evaluated and will be the focus for further research.

Inference problems of all kinds are nowadays addressed with astonishing
results by many recent devices of statistical learning theory. For instance,
deep learning has changed the way we address inverse problems in physics
and many other fields. Yet, efforts concerning more fundamental aspects of
the kind discussed here is valuable: developing a deeper understanding of
the process of separation between relevant variables, in the form of sufficient
statistics, and irrelevant ones is a necessary step towards what could become,
in some sense, comprehension of the systems under study, in the spirit of
the quote with which we opened this dissertation.
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Appendix A: the “a”
parameter for symmetric
Dirichlet prior distributions

How do we fix a value for a? The most common choices in practice are:

• a=1; this amounts to a uniform distribution on the space of parameters
(which constitutes a probability simplex ; in the two-states case, this
corresponds to the line (0, 1)→ (1, 0) in the P (1), P (−1) plane);

• a = 1
2 : this turns out to be Jeffreys’ reparametrization-invariant prior

for Dirichlet distributions (as explicitly shown at the end of this Ap-
pendix).

• a → 0. This improper prior is used in cases in which we are not
even sure of what precisely is the space of states of our system; usage
of this parameter in the prior entails that, said colorfully, we do not
even concieve things we don’t observe; the posterior probability of any
unobserved state under this prior choice will be exactly equal to 0, and
the alphabet will be effectively enlarged by one state any time we see
a particular one that we had never previously observed.

See [35], [7] for a detailed discussion of these priors. In general, the a
parameter modulates a symmetric Dirichlet distribution in a way such that a
high (� 1) value of it expresses a strong prior confidence in the probabilities
ρj being close to each other, i.e. on the distribution of states being close to
uniform.

“Explorer”’s prior choice a→ 0: example

Let’s repeat the calculation done in 3.1.2 for model selection over a 2-states
system, but choosing “a → 0” for our prior. We recall that the asymptotic
behavior of the gamma function is such that:

Γ(ε) ∼ 1

ε
(6.1)
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Figure 6.1: The 3-Dirichlet distribution.
The distribution is plotted on the 3-simplex for different values of the parameters.

Left: (a1 = 1, a2 = 1, a3 = 1);
Center: (a1 = 2, a2 = 2, a3 = 2);
Right: (a1 = 2, a2 = 1, a3 = 2);

This means that our posterior ratio becomes:

P (M1|ŝN )

P (M0|ŝN )
∼ a · P (M1)

P (M0)

(k̂1 − 1)!(N − k̂1 − 1)!

21−N (N − 1)!
−→ 0, ∀k̂1 ≤ N (6.2)

In this case we see that we end up selectingM0 irrespective of the observa-
tions made. This is clearly an unwanted behavior; in Chapter 5 we checked
that the same thing happens, for a→ 0, also in the general case (arbitrary
number of states). This is the reason why we mainly resort to the choice
a = 1 for mixture model selection.

Why Dir(1
2) is Jeffrey’s prior

Assume we have a Dirichlet prior which is ”s-symmetric”:

Da(~ρ
(Q)) =

Γ(aQ)

Γ(a)Q

Q∏
j=1

(
~ρ

(Q)
j

)a−1

δ

( Q∑
j=1

mj~ρ
(Q)
j − 1

)
and not ”j-symmetric”, which would mean:

D̃a(~ρ
(Q)) =

Γ(aQ)

Γ(a)Q

Q∏
j=1

(
~ρ

(Q)
j

)a−1

δ

( Q∑
j=1

~ρ
(Q)
j − 1

)
Now, it is easy to show that the Fisher Information matrix of this first
distribution is:

Jij =
δij
pi

+
1

pQ
∀i, j ∈ [1, Q− 1]

One can prove that the determinant of a matrix obtained by summing a
N ×N constant (b) matrix to a diagonal ({di}i) one is:

detA =

N∏
i=1

(
di − b

)
+ b

N∑
i=1

∏
j 6=i

(
di − b

)
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So that:

det J =

Q−1∏
i=1

(
1

pi
+

1

pQ
− 1

pQ

)
+

1

pQ

Q−1∑
i=1

∏
j 6=i

1

pj
=

=

(Q−1∏
i=1

1

pi

)(
1 +

1

pQ

Q−1∑
i=1

pi

)
=

=

(Q−1∏
i=1

1

pi

)(
1 +

1− pQ
pQ

)
=

=

(Q−1∏
i=1

1

pi

)
1

pQ
=

=

Q∏
i=1

1

pi

(6.3)

The Jeffreys’ volume element is
√

det J(~ρ(Q)).
This leads immediately to the choice of a = 1

2 .
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Appendix B: ~g estimation via
log-likelihood maximization

As anticipated, the recipe we will mainly use for simulations is that of search-
ing for the parameter values that maximize the logligelihood of the data.
We recall that this loglikelihood reads:

logP (ŝN |g̃) =

M∑
η>0

N∑
i

gηψη(s(i))−N logZM(g̃)

=N
(
g̃ηψη − logZM(g̃)

) (6.4)

where we defined the empirical averages ψη = 1
N

∑N
i ψ

η(s(i)). Maximum of
this function is found imposing:

0 =
∂

∂gη
logP (ŝN |g̃) = N

(
ψη − ∂η logZM(g̃)

)
=N

(
ψη− < ψη >

P (s|g)

) (6.5)

So that likelihood is maximized for those values of the couplings such that
the empirical averages of ψ functions coincide with their ensemble average.
In other words, the maximum likelihood parameters g̃∗ reproduce exactly
the statistics of the sample; in this respect, it is easy to check that the
probability of any state s under this choice of parameters will coincide with
the observed frequency of that state:

P (s|g∗) ≡ k̂s
N

(6.6)

From this last relation we can convince ourselves that as long as we don’t
arbitrarily prune our model by eliminating some operators, there’s no point
in numerically performing the maximization of loglikelihood - we can obtain
directly the components of g∗ via formula 3.1.
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Appendix C: one more
identity for the spectrum of
χ

Once we verify that the sufficient statistics are orthogonal:

∑
s

[
ψη(s)ψρ(s)

2n

]
=

1

2n

∑
s

∑
µ>0

∑
ν>0

UµηUνρφ
µ(s)φν(s)


=
∑
µ>0

∑
ν>0

UµηUνρδµν

=
∑
µ>0

UµηUµρ = δηρ ∀η, ρ : Λη 6= 0,Λρ 6= 0

(6.7)

we can compute, using (4.2):

∑
s

[
ψη(s)ψρ(s)

2n

]
= δηρ =

1√
λη

1√
λρ

∑
j

{
ωj
[
(Wηj −Wη)(Wρj −Wρ)

]}
=
WηWρ −W ηW ρ√

ληλρ
(6.8)

And thus:

WηWρ = W ηW ρ η 6= ρ (6.9)

λη = W 2
η −Wη

2
(6.10)
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Now summing over η, and using the orthogonality of W :∑
η

λη =
∑
η

∑
j

W 2
ηjωj −

∑
η

∑
j

∑
k

ωjωkWηjWηk

=
∑
j

ωj · 1−
∑
η

Wη
2

= 1−
∑
η

Wη
2

= 1−
∑
j

∑
k

ωjωkδjk

= 1−
∑
j

ω2
j

meaning that: ∑
j

ω2
j ≡

∑
η

Wη
2

(6.11)

∑
η

(
λη + ω2

η

)
=
∑
η

(
λη +Wη

2
)

= 1 (6.12)

Which we can manipulate:∑
η

(
λη + ω2

η

)
=
∑
ηnd

ληnd +
∑
ηdeg

ληdeg +
∑
j

ω2
j = 1

∑
ηnd

ληnd = 1−
∑
j

ω2
j −

∑
ηdeg

ληdeg

And, finally: ∑
ηnd

ληnd = 1−
∑
j

ω2
j −

∑
ηdeg

ωη (6.13)
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Appendix D: Detail of
calculations for the
|Q|-expansion

D.0: State posterior probabilities P (s|ŝN ,Q)

Although we already stated precisely what this term is equal to, let’s get rid
of any possible doubt by a raw calculation:

P (s|ŝN ,Q) =

∫
~ρQ

d ~ρQP (s|~ρQ,Q, ŝN )P (~ρQ|Q, ŝN )

=

∫
~ρQ

d ~ρQ
ρQj(s)

mQj(s)
P (~ρQ|Q, ŝN )

=

∫
~ρQ

d ~ρQ
ρQj(s)

mQj(s)
P (ŝN |~ρQ,Q)

P (~ρQ|Q)

P (ŝN |Q)

=
1

P (ŝN |Q)

∫
~ρQ

d ~ρQ
ρQj(s)

mQj(s)

q∏
j=1

[
ρj
KQj

m
KQj
Qj

]
P (~ρQ|Q)

=
1

P (ŝN |Q)

∫
~ρQ

d ~ρQ
ρQj(s)

mQj(s)

q∏
j=1

[
ρj
KQj+aQ−1

m
KQj
Qj

]
Γ(aQQ)

Γ(aQ)Q
δ(
∑
j

ρj − 1)

=

 1

P (ŝN |Q)

Γ(aQQ)

Γ(aQ)QΓ(aQQ+N)

Q∏
j=1

[
Γ(KQj + aQ)

m
KQj
Qj

] 1

mQj

KQj(s) + aQ

N + aQQ

(6.14)

Now, if I sum this over s I get, enforcing normalization:

P (ŝN |Q) =
Γ(aQQ)

Γ(aQ)QΓ(aQQ+N)

Q∏
j=1

[
Γ(KQj + aQ)

m
KQj
Qj

]
(6.15)

So that, finally:

P (s|ŝN ,Q) =
1

mQj(s)

KQj(s) + aQ

N + aQQ
(6.16)
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Which is an instance of Laplace’s rule of succession for model Q.

D.1: The case ”a→ 0”

Maximum likelihood parameter estimation is a popular strategy, and we
have seen it is equivalent to the a → 0 estimator for P (s|ŝN ). It would
be tempting to try and transpose that choice of prior parameter in this
new setting by letting all aQ → 0, but there are important issues with this
operation.
First, let’s see what happens when aQ = a ∀Q, for a single-cut posterior
ratio (starting from any partition Q). Recall:

P (Q1(12)|ŝN )

P (Q|ŝN )
=
P0(Q1(12))

P0(Q)

Γ(aQm + a)Γ(aQm +N)Γ(a+K1)Γ(a+K2)

Γ(aQm)Γ(a)Γ(aQm + a+N)Γ(a+K1 +K2)
η−K1

1 η−K2
2

(6.17)

Now if a→ 0:

P (Q1(12)|ŝN )

P (Q|ŝN )
≈ a

{
P0(Q1(12))

P0(Q)

qm
qm + 1

B(K1,K2)η−K1
1 η−K2

2

}
+ o(a2)

(6.18)

meaning that:

P (Q|ŝN )→ δQ,Q0 (6.19)

where Q0 is the partition composed by a single set.
We thus see that if we perform this limit in this way, we get for small values
of a an unwanted, strong bias in favor of merging sets. In the limit, this
would mean that our posterior will assign equal probability to all possible
outcomes, irrespective of the observations made.
This is formally equivalent to the posterior we would find if we performed
inference on parameters with the finest model Q = S:

P (s|ŝN , I) =

∫
d~µS

∏
s∈S

[
ρs
ks

]
P0(~ρ, Ia)

in the case of ”a→∞” as a prior choice. A legitimate question would then
be whether by relaxing the condition aQ = a ∀Q we can find a way of letting
all parameters go to 0 without getting a singular posterior: it can be shown
that this is possible only if we assume that:

aQ = a(|Q|) = a
|Q|−1
2
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and then proceed with a2 → 0. In that particular case we get:

P (Qsplit|ŝN )

P (Q|ŝN )
=
P0(Qsplit)
P0(Q)

Q

Q+ 1

η−K1
1 η−K2

2(
K1+K2−2
K1−1

)
=
P0(Qsplit)
P0(Q)

Q

Q+ 1

(K1 +K2)(K1 +K2 − 1)

K1K2

η−K1
1 η−K2

2(
K1+K2

K1

)
(6.20)

If we try and compute the N >> 1 asymptotics for this object as we did in
the a = 1 case, we see that in this limit the ratio diverges (splitting becomes
infinitely times more favorable), for all possible samples. It is difficult to
interpret this result, and this calls for a more careful investigation of what
kind of information we are really representing when we choose the values
{aQ}.

D.2: cutting the K partition

1-cuts

The posterior ratio for a single splitting is:

P (K1(12)|ŝN )

P (K|ŝN )
=
P0(K1(12))

P0(K)

K

K +N

(
mk(1)

mk(1)+mk(2)
)−kmk(1)(

mk(2)

mk(1)+mk(2)
)−kmk(2)(k(mk(1)+mk(2)))

kmk(1)

)
(6.21)

that if (kmk(1) >> 1, kmk(2) >> 1) becomes

P (K1(12)|ŝN )

P (K|ŝN )
≈
P0(K1(12))

P0(K)

K

K +N

√
2πkmk(1)mk(2)

mk(1) +mk(2)

(
1 + ∆

)
, (6.22)

∆ =
1− (mk(1) +mk(2))

12k(mk(1) +mk(2))
+ o(k−2) + o((km)−2).

We can work out a decent bound for this expression in the large N limit. In
typical cases, both K and kmk are of order ∼

√
N . Now if we realize that,

in the above expression for the posterior ratio, we can rewrite:√
2πkmk(1)mk(2)

mk(1) +mk(2)
=
√

2πk(mk(1) +mk(2))η1η2 =
√

2πkmkη1η2
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(from now on η1 =
mk(1)

mk(1)+mk(2)
and so on), then we can substitute and get:

P (K1(12)|ŝN )

P (K|ŝN )
∼
P0(K1(12))

P0(K)

K

K +N

√
2πkmk(1)mk(2)

mk(1) +mk(2)

(
1 + · · ·

)
∼

∼
P0(K1(12))

P0(K)

√
N√

N +N

√√
N
√

2πη1η2

(
1 + · · ·

)
∼

∼ ∆0N
− 1

4

(6.23)

which is the result used in the text.

2-cuts

We can also compute at once the probability for many splits. Let’s first
exhamine the case in which we are allowed to split each K-set only once
(we’ll call these separate splittings):

P (K2s|ŝN )

P (K|ŝN )
=
P0(K2s(12)(34))

P0(K)

K

K +N

K + 1

K +N + 1
·

· (η1)−k12mk(1)(η2)−k12mk(2)(k12(mk(1)+mk(2)))

k12mk(1)

) · (η3)−k34mk(3)(η4)−k34mk(4)(k34(mk(3)+mk(4)))

k34mk(3)

)
(6.24)

(in which: η1 =
mk(1)

mk(1)+mk(2)
and so on) leading to:

P (K2s(12)(34)|ŝN )

P (K|ŝN )
=
P0(K2s(12)(34))P0(K)

P0(K1s(12))P0(K1s(34))

P (K1s(12)|ŝN )

P (K|ŝN )

P(K1s(34)|ŝN )

P(K|ŝN )
·

·
(

1 +
1

K

)(
1− 1

N +K + 1

)
(6.25)

which is an exact expression.
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c-cuts

The probability for c separate cuts c < (K −
∑K

j=1 δmj ,1) is then:

P (Kcs(c1)(c2)···|ŝN )

P (K|ŝN )
=
P0(Kcs(c1)(c2)···)P0(K)c−1∏c

j=1 P0(K1(cj))

c∏
j=1

[
P (K1(cj)|ŝN )

P (K|ŝN )

]
·

·
c−1∏
j=1

[(
1 +

j

K

)(
1− 1

N +K + j

)] (6.26)

this also being an exact formula.

D.3: Finer vs coarser partitions

We can compute:

P (s|ŝN ) =
∑
Q
P (s|ŝN ,Q)P (Q|ŝN )

=
∑
Qc>K

P (s|ŝN ,Qc)P (Qc|ŝN )

+ P (s|ŝN ,K)P (K|ŝN )

1 +
∑
Qf<K

P (s|ŝN ,Qf )

P (s|ŝN ,K)

P (Qf |ŝN )

P (K|ŝN )


=
∑
Qc>K

P (s|ŝN ,Qc)P (Qc|ŝN )

+ P (s|ŝN ,K)P (K|ŝN )

1 +
∑
Qf<K

mKj(s)

mQj(s)

KQj(s) + aQ

KKj(s) + aK

N + aKK
N + aQQ

P (Qf |ŝN )

P (K|ŝN )


=
∑
Qc>K

µQj(s)P (Qc|ŝN ) + µKj(s)P (K|ŝN )

1 +
∑
Qf<K

µ
Qf
j(s)

µKj(s)

P (Qf |ŝN )

P (K|ŝN )


(6.27)
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D.4: Perturbed maximum entropy distribution

gµ = 2−n
∑
s

φµ(s) log(P (s|ŝN ))

= 2−n
∑
s

φµ(s) log

( ∑
Qc>K

µQcj(s)P (Qc|ŝN ) + µKj(s)P (K|ŝN ) (1 + ε(N, ŝN , s))

)

= 2−n
∑
s

φµ(s) log

 ∑
Qc≥K

µQcj(s)P (Qc|ŝN )

(1 + ε(N, ŝN , s)
µKj(s)P (K|ŝN )∑

Qc≥K µ
Qc
j(s)P (Qc|ŝN )

+ o(ε2)

)
= 2−n

∑
s

φµ(s) log

 ∑
Qc≥K

µQcj(s)P (Qc|ŝN )

+ 2−n
∑
s

φµ(s) log (1 + C(s, ŝN )ε(N, ŝN , s))

= 2−n
K∑
j

χµj log f(j(s)) + 2−n
∑
s

φµ(s) log (1 + C(s, ŝN )ε(N, ŝN , s))

(6.28)

Now, if we decompose χ via SVD and evaluate the sum
∑

µ g
µφµ(s):∑

µ

gµφµ(s) =
∑
λ

g̃λψλ(s) + 2−n
∑
µ

φµ(s)
∑
r

φµ(r) log (1 + C(r, ŝN )ε(N, ŝN , r))

=
∑
λ

g̃λψλ(s) + log (1 + C(s, ŝN )ε(N, ŝN , s))

(6.29)

Note that:

C(s, ŝN )ε(N, ŝN , s) =

∑
Qf<K µ

Qf
j(s)P (Qf |ŝN )∑

Qc≥K µ
Qc
j(s)P (Qc|ŝN )

(6.30)

So that our final p(s|ĝ) looks like this:

p(s|ĝ) =
1

Zε
exp

∑
λ

g̃λψλ(s) + log

1 +

∑
Qf<K µ

Qf
j(s)P (Qf |ŝN )∑

Qc≥K µ
Qc
j(s)P (Qc|ŝN )


(6.31)

In which:

Zε =
∑
s

e∑λ g̃
λψλ(s)

1 +

∑
Qf<K µ

Qf
j(s)P (Qf |ŝN )∑

Qc≥K µ
Qc
j(s)P (Qc|ŝN )

 (6.32)

Recall now that the sufficient statistics ψη(s) depend on the individual sets
only through the index of the partition set they belong to:

ψη(s) = ψη(jQ(s)) (6.33)
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With this in mind, we can write:

Zε =

K∑
j

e
∑
λ g̃

λψ̃λ(j)
∑
s∈j

1 +

∑
Qf<K µ

Qf
j(s)P (Qf |ŝN )∑

Qc≥K µ
Qc
j(s)P (Qc|ŝN )


=
K∑
j

e
∑
λ g̃

λψ̃λ(j)

|Kj |+
∑

s∈j
∑
Qf<K µ

Qf
j(s)P (Qf |ŝN )∑

Qc≥K µ
Qc
j P (Qc|ŝN )

 (6.34)

That, for simmetry, equals:

Zε =
K∑
j

e
∑
λ g̃

λψ̃λ(j)|Kj |

1 +

∑
Qf<K µ

Qf
j P (Qf |ŝN )∑

Qc≥K µ
Qc
j P (Qc|ŝN )

 (6.35)

so that we can write a heavy but complete expression for p(s|ĝ):

p(s|ĝ) =

e
∑
λ g̃

λψ̃λ(j(s))

(
1 +

∑
Qf<K

µ
Qf
j(s)

P (Qf |ŝN )∑
Qc≥K µ

Qc
j(s)

P (Qc|ŝN )

)
∑K

j

[
|Kj |e

∑
λ g̃

λψ̃λ(j)

(
1 +

∑
Qf<K

µ
Qf
j P (Qf |ŝN )∑

Qc≥K µ
Qc
j P (Qc|ŝN )

)] (6.36)
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