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ABSTRACT 

The unprecedented iridium-catalyzed asymmetric hydrogenation of N-allyl phthalimides to 

afford enantioenriched chiral amines bearing a β-methyl is presented. Recently developed Ir-

MaxPHOX are used as catalysts for this enantioselective transformation. The hydrogenation 

reaction has been studied in detail in order to find the optimal conditions. The mild reaction 

conditions and the feasibility of the removal of the phthalimido protecting group makes this 

process easily scalable and of interest for multiple synthetic applications. 

 



 

 

 

Contents 

Introduction ................................................................................................................................ 1 

Catalytic Asymmetric Hydrogenation .................................................................................... 1 

Iridium P,N complexes, Asymmetric Catalysis ...................................................................... 2 

The Crabtree’s catalyst ....................................................................................................... 2 

The Pfaltz’s catalysts .......................................................................................................... 3 

The Andersson’s and Dieguez’s catalysts ........................................................................... 5 

Other Ir-P,N catalysts ............................................................................................................. 6 

Ir-MaxPHOX catalysts ........................................................................................................ 7 

Pfaltz asymmetric hydrogenation of unfunctionalized olefins with Ir-PHOX catalysts ... 10 

Andersson and Dieguez asymmetric hydrogenation of unfunctionalized olefins with 

biarylphosphinite-Ir-PHOX libraries ................................................................................ 10 

Zhang asymmetric hydrogenation of allylic amines ......................................................... 12 

Aim of the thesis ...................................................................................................................... 13 

Chiral β-methyl amines ........................................................................................................ 13 

Results and discussion .............................................................................................................. 15 

Substrates .............................................................................................................................. 15 

Catalysts screening ............................................................................................................... 16 

Scope of the asymmetric hydrogenation reaction ................................................................. 22 

Synthetic application ............................................................................................................ 25 

Conclusions .......................................................................................................................... 27 

General information .............................................................................................................. 29 

General procedures and materials ..................................................................................... 29 

Instrumentation ................................................................................................................. 29 

Experimental procedure for the synthesis of catalyst Ir-MaxPHOS t-Bu 2 ......................... 30 

Experimental procedures and characterization data ............................................................. 33 



 

 

Preparation of the aryl-substituted N-allyl phthalimides .................................................. 33 

Iridium-Catalyzed Asymmetric Hydrogenation of N-Allyl Phthalimides ........................... 38 

General procedure GP ....................................................................................................... 38 

 



1 

 

Introduction 

Catalytic Asymmetric Hydrogenation 

Asymmetric hydrogenation of alkenes mediated by organometallic catalysts is a powerful tool 

for organic synthesis, both in academia and industry settings.
 [1,2]

 Furthermore, it is a simple 

and fully atom economical reaction. Although the reaction is simple, it provides synthetic 

intermediates or valuable hydrogenated compounds, which are of great interest for their use in 

the preparation of pharmaceutical or research materials. The impact of asymmetric 

hydrogenation is testified by the Nobel Prize in Chemistry awarded to some of the pioneers of 

asymmetric hydrogenation (Knowles and Noyori) in 2001. Among the many different existing 

ligands, phosphorous ones have proven very useful for these procedures.
[3]

 The ligand plays a 

vital role in the catalysis, as the ligand’s chirality can be transferred to the product. There is a 

wide range of P-based chiral ligands, which can be classified in three groups depending on 

where the chirality lies; on the P atom, on the backbone or on both the P atom and the 

backbone.
[4,5]

 Furthermore, among the P-based ligands we could, generalizing, differentiate 

two large main groups: the P,P and the P,N ligands.
[6,7]

 

The P,P based catalysts are built around two phosphorous atoms that coordinate the metal. 

With metals such as rhodium or ruthenium, these catalysts are often proficient in the 

hydrogenation of functionalized olefins (amides or carboxylic acids work well as coordinating 

groups, for example). However, when it comes to selectively hydrogenating minimally or 

even un-functionalized double bonds, these catalysts usually fail in providing sufficient 

asymmetric induction and reactivity. For these substrates, recently, P,N ligands based 

catalysts, coordinated to iridium, have emerged as a promising alternative to the other 

catalysts. Thus, the Pfaltz’s and Dieguez’s research groups have extensively investigated the 

iridium-catalyzed enantioselective hydrogenation reaction using un-functionalized olefins as 

substrates. In addition, they investigated also terminal alkenes bearing a neighboring group 

which belong to minimally functionalized olefins. The most common substrates available in 

the literature are limited to allylic alcohols, allylic acetates and allyl silanes. 

Frequently, for these procedures, the solvent is chosen accordingly; for P,P catalysts, 

coordinating solvents like alcohols are normally employed, while for the P,N type non-

coordinating solvents like dichloromethane are used. This is a classification that cannot be 

taken very strictly because there is a broad spectrum of compounds that lay in-between the 



2 

 

functionalized and the completely non-functionalized substrate distribution. It is important to 

understand that this approach as a rough classification, used to give a general overview on the 

topic. 

Iridium P,N complexes, Asymmetric Catalysis 

Iridium complexes with chiral P,N ligands are efficient catalysts for the enantioselective 

hydrogenation of un-functionalized alkenes.
[8,9]

 In this respect, they clearly distinguish 

themselves from chiral rhodium and ruthenium catalysts, which only perform well with 

substrates bearing a polar coordinating group next to the C=C bond.
[10,11,12]

 

The Crabtree’s catalyst 

During the 70’s, Crabtree designed the first P,N-Ir catalyst (Figure 1). This compound was 

both faster and more effective than its diphosphine analogs in the hydrogenation of non-

functionalized tri- and tetrasubstituted alkenes.
[13,14]

 This catalyst, before it undergoes 

hydrogen activation, is air stable. However, it did have a shortcoming; when the coordination 

with the alkene is weak, the active catalyst dimerizes and trimerizes, ending up forming 

inactive clusters.
[15]

 Consequently, high loadings were often required for full conversions. It 

does not induce enantioselectivity, being achiral. 

 

Figure 1 Crabtree’s catalyst; the first P,N-Ir catalyst. 
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The Pfaltz’s catalysts  

In 1997 Pfaltz and co-workers developed a chiral version of the Crabtree’s catalyst, the Ir-

PHOX (Figure 2).
[16]

 Unlike Crabtree’s catalyst, Pfaltz’s catalyst has a phosphinooxazoline 

molecule as ligand. Consequently, the P and the N metal-chelating units are bound together 

by a chiral C-backbone. This complex performs particularly well on the asymmetric 

hydrogenation of N-arylimines
[16]

 and non-functionalized tri- and tetrasubstituted alkenes.
[17]

 

However, as a hexafluorophosphate salt, it also exhibited the issue of deactivation by 

aggregation into inactive clusters when the coordination with the substrate is feeble.
[18]

 Up to 

3 mol% loading of the catalyst was often required. Pfaltz overcame this shortcoming by 

exchanging the counteranion for BArFˉ, a large, weakly coordinating counteranion.
[19]

 While a 

more coordinating counteranion like PF6ˉ might interfere with the alkene coordination to the 

metal, the BArFˉ counteranion does not hamper the coordination at all. Therefore, the catalyst 

is “virtually saturated with alkene” and the hydrogenation pathway clearly predominates over 

the deactivation by formation of inactive hydride-bridged trinuclear complexes.  

 

Figure 2 The Ir-PHOX catalyst; chiral P,N-Ir catalyst with BArF
‒
 as counteranion. 

 

Subsequently, Pfaltz reported in 2001 a new class of iridium complexes with 

phosphooxazoline ligands, the SerPHOX and the ThrePHOX.
[20]

 In comparison to the Ir-

PHOX, the phosphorous unit on these catalysts is attached next to the stereogenic center of 

the oxazoline moiety. 

Another quite interesting catalysts that Pfaltz developed in 2004 are the SimplePHOX (Figure 

3).
[21]

 As the name tells, the selling point is their very simple preparation. Reaction between a 
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chiral amino alcohol (obtained from an amino acid) and 2-hydroxy-2-methylpropionic acid 

affords the corresponding oxazonyl alcohol, direct precursor of the SimplePHOX ligand. 

 

Figure 3 The SerPHOX, the ThrePHOX and the SimplePHOX Ir catalysts. 

Pursuing of achieving a more similar coordination sphere to the Crabtree’s catalyst, Pfaltz 

developed another noteworthy type of catalysts derived from pyridine and quinoline (Figure 

4).
[22]

 These complexes proved to be useful in the asymmetric hydrogenation of purely alkyl-

substituted olefins and furans.
[23]

 

 

Figure 4 Pyridine and quinolines derived Pfaltz’s complexes. 
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The Andersson’s and Dieguez’s catalysts 

Andersson and co-workers, between 2004 and 2006,
[24,25,26]

 studied and developed new P,N 

ligands that contain a rigid bicyclic backbone and an oxazole or a thiazole moiety (Figure 5). 

A norbornane-oxazoline based ligand was also developed. These ligands, once coordinated to 

iridium, perform at the same level as the best oxazoline-based complexes. 

 

Figure 5 Andersson’s Ir-P,N catalysts. 

In 2009 Dieguez, Andersson and Borner joined forces to develop a library of up to 96 

phosphite oxazoline ligands.
[27]

 These ligands are formed out of a SerPHOX or ThrePHOX 

derived backbone plus different chiral biarylphosphinites (Figure 6). With Ir as metal and 

BArFˉ as counteranion, they hydrogenated for instance a series of aryl-alkyl substituted 

terminal alkenes with good results. 

 

Figure 6. Ir / Phosphite oxazoline catalyst library. 



6 

 

Other Ir-P,N catalysts 

Chiral P,N-Iridium catalysts have arisen a lot of interest from many research groups, 

prompting the disclosure of many complexes belonging to this class. Herein, few noteworthy 

examples are reported. 

Knochel,
[28]

 in 2003, developed another new pyridine-phosphine catalyst to hydrogenate 

methyl α-acetamidocinnamates with ee’s up to 97%, as shown in Figure 7. Zhou developed in 

2006 a new ligand that he named SIPHOX.
[29]

 This phosphine-oxazoline ligand contains a 

rigid and bulky spirobiindane backbone. Once coordinated to iridium, with BArFˉ as 

counteranion, the complex is efficient for example in the asymmetric hydrogenation of N-aryl 

imines. 

 

Figure 7 Knochel’s and Zhou’s Ir catalysts. 

Finally, Burgess reported in 2003 a new iridium catalyst.
[30]

 The catalyst contains the 

common oxazoline moiety and, although the P-group has been replaced by a heterocyclic 

carbene, it is worth to mention this complex (Figure 8). The catalyst has been used in the 

hydrogenation of bis and monoarylalkenes, allylic alchohols, enoates and more.
[31]

 

 

Figure 8 The Burgess’s catalyst. A N,Carbene-Ir complex. 
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Ir-MaxPHOX catalysts 

The Prof. Riera’s group developed a methodology to synthesize chiral aminophosphines by 

SN2@P reaction between an amine and the chiral synthon tert-butylmethylphosphinous acid 

borane. Applying this procedure, the synthesis of the MaxPHOX ligand and its coordination 

to iridium was reported (Figure 9). The complexation involves a 3-step procedure; first, there 

is the deprotection with neat pyrrolidine. This cyclic amine proved to be a better reagent for 

deprotection than, for example, the well-known DABCO basically due to purification issues. 

Once the phosphine is deprotected, the pyrrolidine can be removed under high vacuum. The 

borane protected pyrrolidine byproduct formed is not volatile, but it does not affect the 

procedure and can be purified straightforwardly at the end of the synthesis. The free ligand, 

under N2 atmosphere, is resolubilized with CH2Cl2 and then [IrCl(cod)]2 is added. After 1 h, 

NaBArF is added and the reaction is left stirring for another hour. The catalyst, with BArFˉ as 

counteranion, can be easily purified by chromatography on silica with hexanes / CH2Cl2.  

 

Figure 9 The 3 step procedure for the coordination of MaxPHOS with Ir. 

The Ir-MaxPHOX catalysts bear three independent chiral centers; one is the P unit and the 

other two are located in the C-backbone. Therefore, for one type of Ir-MaxPHOX catalyst 

(same substituents) there are four possible diastereoisomers, as shown in Figure 10. As the C-

backbone chiral groups can be easily changed (Ph, Bn, iPr, t-Bu, etc), the possible 

combinations are many. Hence, one of the strong points of this family of catalysts is the 

possibility to fine-tune the complex until the asymmetric catalytic process proceeds as 

desired.  
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Figure 10 There are four diastereoisomers for one Ir-MaxPHOX catalyst. The other 4 stereoisomers would be 

the corresponding enantiomers. 

 

Our group has used the Ir-MaxPHOX family to asymmetrically hydrogenate the following 

substrates (Figure 11): 

a) N-aryl imines 

b) N-alkyl imines 

c) Cyclic Enamides 

d) N-sulfonyl allylic amines 

 

Figure 11 Amine substrates used with Ir-MaxPHOX catalysts.
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Minimally functionalized olefins 

As mentioned, the alkenes used in asymmetric hydrogenation reactions can be classified in 

three different classes: un-functionalized, minimally functionalized and functionalized. The 

un-functionalized olefins are alkenes which do not have a coordinating group and their 

hydrogenated products give practically hydrocarbons (Figure 12, compounds A and B). On 

the other hand, the functionalized olefins are alkenes in which the double bound is conjugated 

with a coordinating group such as amides or carboxylic acids. Between these two classes 

there are the minimally functionalized olefins. Even if the double bound is conjugated with a 

polar neighboring group, this group does not have strong coordinating properties. For this 

reason this classification is not a “black and white” expression; so many alkenes fall into the 

“gray area”. 

The asymmetric hydrogenation of minimally functionalized olefins is a challenging field. 

Although these substrates are easy to hydrogenate, it is difficult to induce enantioselectivity 

since they lack coordinating groups that can bind the metal generating geometrically ordered, 

defined complexes. In this context, di-substituted terminal alkenes are an even more 

challenging substrate class than the more widely investigated trisubstituted olefins. In facts, 

regarding to terminal alkenes, only few examples can be found in the literature and, as 

mentioned above, most of these are limited to allylic alcohols, allylic acetates and allyl 

silanes.  

 

Figure 12 Examples of un-, minimally functionalized and functionalized olefins. 
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Pfaltz asymmetric hydrogenation of unfunctionalized olefins with Ir-PHOX 

catalysts 

As above mentioned, Pfaltz reported the first iridium N,P based catalyst capable of reducing 

1,1-disubstituted alkenes in useful selectivity (Ir–SerPHOX).
[18]

 The later developed catalyst 

Ir–ThrePHOX was found to give even higher enantioselectivities and is now commercially 

available as the BArF salt.
[19]

 First of all, the authors investigated aryl-alkyl substituted 

terminal alkenes with successful results in terms of conversion and enantiomeric excess (ee) 

(Figure 13). Later, they tested these catalysts with an allylic alcohol obtaining satisfactory 

results regarding conversion and ee. 

 

Figure 13 Substrates used by Pfaltz in the asymmetric hydrogenation. 

Andersson and Dieguez asymmetric hydrogenation of unfunctionalized olefins 

with biarylphosphinite-Ir-PHOX libraries 

A combined research effort by the groups of Dieguez, Andersson, and Borner initiated a 

combinatorial study utilizing the SerPHOX and ThrePHOX backbones in combination with a 

chiral biarylphosphinite moiety. A library of 96 possible phosphite oxazoline ligands was 

synthesized with systematic changes to the backbone and with special attention to the biaryl 

phosphite group (Figure 14).  
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Figure 14 Library of phosphite oxazoline ligands. 

This large class of complexes was found to be highly selective for the hydrogenation of aryl–

alkyl substituted terminal alkenes, terminal alkenes bearing two sterically different aryl 

groups, and heterocyclic substrates (Figure 15). 

 

Figure 15 Asymmetric hydrogenation with the phosphite oxazoline library.  
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Zhang asymmetric hydrogenation of allylic amines 

Zhang’s group published on 2005 the first work about catalytic asymmetric hydrogenation of 

di-substituted allyl phthalimides 
[32]

 mediated by Rh and Ru complexes, to form chiral 

phthalimides which act as precursors to the β-methyl chiral amines. The asymmetric 

hydrogenation reaction was carried out on a variety of substrates as we can see in Figure 16. 

 

Figure 16 Asymmetric hydrogenation of allyl phthalimides performed by Zhang. 

Substrates with a primary n-alkyl substituent such as ethyl, n-butyl, or benzyl group at the 2-

position of the allylphthalimides afforded products with high ee values. In contrast, the 

hydrogenation of the aromatic substrate proceeded with moderate enantioselectivity. 
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Aim of the thesis 

Chiral β-methyl amines 

β -chiral amines bearing a methyl group on the chiral center, and their derivatives, are key 

structural elements in natural products and pharmaceuticals.
[33,34] 

 

 

Figure 17 Examples of chiral β-methyl amines. 

For example, in  

Figure 17, compound A is a potent positive allosteric modulator of 2-amino-3-(5-methyl-3-

hydroxyisoxazol-4-yl)-propanoic acid (AMPA) receptors. 
[35]

 Compound B (NPS 1392) is a 

potent stereoselective antagonist of the NMDA receptor, which can be used for the control of 

ischemic strokes 
[36]

, whereas compound C (Lorcaserin) is the active principle of a 

commercial anorectic drug. 
[37]

 For these substrates, although several asymmetric syntheses 

based on kinetic resolution or stoichiometric reagents have been explored 
[38]

 there is not any 

literature reports in which asymmetric hydrogenation is employed as the key step of the 

reaction. It remains a significant challenge. 

Towards this task, our group has studied the catalytic asymmetric hydrogenation of N-tosyl 

allylic amines.
 [39]

 Although the reactions worked very well, the difficulties encountered in the 

removal of the N-tosyl protecting group was a significant shortcoming of this approach. To 

overcome this drawback, the focus was moved to the asymmetric hydrogenation of allylic 

phthalimides. The phthalimides are of great interest because they are easily synthesized 

compounds, and, in contrast with the previously applied N-tosyl products, much easier to 

deprotect under hydrazinolytic conditions. 
[32]

 As mentioned, the only examples available for 

the catalytic asymmetric hydrogenation of allylic phthalimides do not accommodate arylic 

substrates with good results. However, some very preliminary experiments collected in the 

group have shown that it should be possible to achieve good results in this reaction by using 

some iridium-P,N complexes. 
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On these premises, the aim of my thesis has been: 

1) Study, develop and optimize the catalytic asymmetric hydrogenation reaction of a 

representative phenyl allylic phthalimide substrate using different Ir-P,N complexes 

and reaction conditions. (Figure 18) 

 

 

Figure 18 Optimization of the asymmetric hydrogenation with the phenyl substrate. 

2) Study the scope of the reaction by synthesizing a series of phthalimide substrates and 

testing their behavior under the optimized conditions.(Figure 19) 

 

 

Figure 19 The scope of the asymmetric hydrogenation. 

3) Apply the catalytic methodology towards a synthetic target. Lorcaserin was identified 

as suitable target, based on the following retrosynthetic analysis. (Figure 20) 

 

 

Figure 20 The retrosynthesis of Lorcaserin. 
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Results and discussion 

Substrates 

The substrates for the asymmetric hydrogenation reactions were prepared via a three-step 

sequence from commercially available acetophenones. The first step is a Wittig olefination, as 

outlined in Figure 21, and afforded the desired olefins in good yields (>80%). The olefins 

were used directly in the second step (halogenation reaction) without further purification. 

 

Figure 21 The first step of the synthesis. 

The second step of the sequence is a halogenation in the alpha position of the terminal alkene, 

as shown in Figure 22. The reaction proceeds via radical mechanism and the halogenated 

product is obtained in good yields. During the synthesis of the ortho-bromophenyl substrate 

we realized that the halogenated product was quite lachrymatory. For this reason, for this 

substrate the reaction was conducted in a laboratory dedicated to dangerous compounds. The 

halogenated olefins were used directly in the third step (amination reaction) without further 

purification. 

 

Figure 22 The second step of the synthesis. 

The third and the last reaction is a simple SN2 (nucleophilic substitution reaction, Figure 23). 

The reaction afforded the products in good yields and quite clean; nevertheless, the products 

needed purification for the next step of the study (asymmetric hydrogenation). Thus, silica gel 

chromatography was performed using an automated chromatography system.  

 

Figure 23 The third step of the synthesis. 
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Catalysts screening  

Albert Cabré, the PhD student who has supervised me during the work of this thesis, has 

worked on the asymmetric hydrogenation, and, more in the specific, on the asymmetric 

hydrogenation of N-tosyl allyl amines.
[39]

 During his work, he also tried to hydrogenate 

different related substrates, with good results for conversion and enantiomeric excess. One of 

these substrates was an aryl N-allyl phathalimide. The hydrogenation of this substrate was 

performed asymmetrically using the UbaPHOX catalyst, which was designed by Pfaltz, and 

now is commercial available (Figure 24). The reaction gave the desired product with excellent 

yield and good ee, but the operative conditions were far from being optimal. 

 

Figure 24 Preliminary results in the asymmetric hydrogenation of phthalimides. 

Thus, with these promising results in hand, we decided to study the asymmetric 

hydrogenation of allylic phthalimides in detail, starting with the optimization of the reaction 

on the simple phenyl substrate (Table 1). For doing this, we decided to start with a screening 

of catalysts, carrying out the reaction with the operative conditions found by Albert Cabré, 

with slight modifications (Figure 25).  

 

Figure 25 Scheme of the reaction. 
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Thus, we decided to test different Iridium P,N catalysts including the MaxPHOX family 

which was introduced by our research group. Furthermore, a Rhodium catalyst was also tested 

to confirm the poor reactivity and enantiomeric induction with these types of substrates. 

 

Figure 26 The Rh complex and the commercial catalyst used in the catalyst screening. 

The structure is shown in Figure 26 and as above mentioned is a Rh complex in which the 

backbone belong to the MaxPHOS family. The second structure in Figure 26 is a Pfaltz’s 

catalyst which is commercially available. All the others belong to the Ir-MaxPHOX family, 

which were synthetized within the research group (Figure 27). 

Table 1 Catalysts screening of the asymmetric hydrogenation  

Entry
a 

Catalyst Cat. Loading Conversion
b
 (%)

 
ee

c
 (%) 

1 1 10 mol% 29 n.d. 

2 Ir-1 iPr 5 mol% >99 6 

3 Ir-2 iPr 5 mol% >99 64 

4 Ir-3 iPr 5 mol% >99 20 

5 Ir-4 iPr 5 mol% >99 32 

6 4 5 mol% 78 7 

7 Ir-2 tBu 5 mol% >99 90 

 a
Reaction conditions: substrate (0.2 mmol), DCM (2 mL), cat. (x mol%), 1 bar H2, RT, 17 h. 

b 
Determined by 

1
H 

NMR spectroscopy. 
c 
Determined by chiral stationary phase HPLC. 



18 

 

Figure 27 The MaxPHOX catalysts synthetized by our group. 

As expected, the asymmetric hydrogenation of this substrate works well with the Ir P,N 

catalysts in terms of conversion but the results are not satisfactory regarding the ees, while the 

rhodium and the commercial iridium catalysts 1 and 4 give poor results.(Table 1 entry 3) 

which allows obtaining the hydrogenated product with excellent yield and moderate values of 

enantiomeric excess. We decided to carry out another experiment to see if the chiral 

substituents which lie on the backbone of the Iridium catalyst could influence the 

enantioselectivity. Thus, since the catalyst which works better is the diastereoisomer 2, we 

thought to employ the same diastereoisomer but with a different substituent on the chiral 

oxazoline portion. In this case, instead of an isopropyl group, there is a ter-butyl group 

(Figure 28), which is more sterically hindered. 

 

Figure 28 The structure of the Ir(MaxPHOX)-2 t-Bu catalyst. 

As we can see from the Table 1(Entry 8) this catalyst can afford the hydrogenated product in 

excellent yield and with a good, yet not fully satisfactory, ee. After this result, we decided to 

investigate how the catalyst and, more generally, the reaction performs under high pressure. 

Accordingly, we carried out the asymmetric hydrogenation as shown in Figure 29, with the 

catalysts which gave the best results: Ir-2 iPr and Ir-2 tBu. 

In Table 2 we can see that both catalysts manage to catalyze the reaction by providing a full 

conversion; nevertheless the enantiomeric excess has worsened respect the previous reaction 

with lower hydrogen pressure. In particular, we can see the Ir-2 iPr loses several percentage 

points of ee (56% vs 64%) whereas the Ir-2 tBu has lowered his ee by a few percentage points 

(88% vs 90%). 
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Figure 29 Scheme of the reaction with high pressure. 

Table 2 Catalysts screening changing the pressure 

Entry
a 

Catalyst Cat. Loading (mol %) Conversion (%)
b 

ee (%)
c 

1 Ir-2 iPr 5 >99 56 

2 Ir-2 tBu 5 >99 88 

a
Reaction conditions: substrate (0.2 mmol), DCM (2 mL), cat. (5 mol%),50 bar H2, RT, 17 h.  

b 
Determined by 

1
H NMR spectroscopy. 

c 
Determined by chiral stationary phase HPLC. 

After this preliminary investigation, we can conclude that the best catalyst for giving high 

conversion and good ee is the Ir-2-t-Bu. This is a good result, because the catalyst has been 

designed within the research group, giving an added value to my work.
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Optimization of reaction conditions 

For the optimization of the reaction, we changed some operative conditions to see how the 

reaction responded (Figure 30).  

 

Figure 30 Scheme of the reaction. 

We started trying to reduce the catalyst loading. Normally, for asymmetric synthesis, it is 

important to minimize as much as possible the quantity of catalyst in the reaction to reduce its 

cost for a possible future industrial application.  

As can be seen from the Table 3, we have reduced the catalytic load from 5 mol % to 1 mol % 

(Entries 1,2). The reaction goes to full conversion and the ee is not affected at all. 

Subsequently, we have moved our attention to the screening of the solvents. We tried solvents 

more coordinating than dichloromethane, such as EtOAc and THF. As we expected (see 

Introduction) the results in terms of conversion and ee are worse, as shown in the Table 3, 

Entries 3,4. 

As last change in operative conditions, we have done an experiment changing the 

temperature. As displayed in the Table 3 we have lowered the temperature up to -20 °C using 

a cryo-cool machine.  

Table 3 The optimization of the reaction: screening of catalyst load, solvent and temperature 

Entry
a 

Cat. load (mol %) Solvent Temperature (°C) Conversion (%)
b 

Ee (%)
c 

1 5 DCM Rt >99 90 

2 1 DCM Rt >99 90 

3 1 EtOAc Rt 60 89 

4 1 THF Rt 5 n.d. 

5 1 DCM -20 >99 98 

a
Reaction conditions: substrate (0.2 mmol), Solvent (2 mL), Ir(MaxPHOX)-2 t-Bu (x mol%), 1 bar H2, 

Temperature, 17 h. 
b 
Determined by 

1
H NMR spectroscopy. 

c 
Determined by chiral stationary phase HPLC. 
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It is quite common in asymmetric synthesis to reduce the temperature to favor the formation 

of one of the two possible enantiomers. In fact, lowering the temperature we could see an 

increase of enantiomeric excess, and up to 98% of ee was afforded (Entry 5). 

Finally, we can state that the best operating conditions for this reaction are: 1 mol % of 

catalytic loading, in DCM, 1 bar pressure, -20°C (Figure 31). 

 

Figure 31 Optimized conditions for the asymmetric hydrogenation. 
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Scope of the asymmetric hydrogenation reaction  

After all the screenings for finding the best conditions for the asymmetric hydrogenation we 

investigated the scope of the reaction, using the previously synthetized substrates changing 

the substituents in the aromatic ring of the terminal alkene, with both electron withdrawing 

group and electron donor group in ortho-, meta- and para-position. 

The operating conditions are those previously studied and found to be the best, and are shown 

in Figure 32. 

 

Figure 32 Asymmetric hydrogenation of different phthalimide substrates. 

In Table 4 are displayed the results of the hydrogenation of all the substrates. We can say that 

the Ir P,N catalyst can promote the formation of the hydrogenated product with excellent 

enantioselectivity, irrespective of the nature and position of the substituent on the aromatic 

ring. In fact, we can say that our catalyst induces excellent ee’s for the para- and meta- 

positions with ee’s up to 99%, whereas, for the ortho-position the ee’s are lower but still good 

with values up to 91% of ee. We can induce excellent enantioselectivity also with napthalenic 

substituents.  
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Table 4 The scope of the asymmetric hydrogenation  

Substrate (R) Conversion
a 
(%) Ee

b 
(%) 

H (standard substrate) >99 98 

p-Me >99 97 

p-F
 

>99 >99 

p-Cl
 

97 97 

p-I
 

99 98 

p-Br 99 97 

m-MeO >99 98 

m-Cl >99 99 

o-Me >99 91 

o-Br >99 90 

o-MeO 98 83 

2-Naph
 

>99 97 

a
Determined by 

1
H NMR spectroscopy. 

b
Determined by chiral stationary phase HPLC. 

After an experiment of hydrogenation of the para-fluorine substrate we noted in the NMR 

spectrum some other signals which did not belong to the hydrogenated product. In fact, we 

noted near the characteristic signals of the double bound of the terminal alkene of the starting 

substrate two small signals. Initially, we did not understand what it was. Thus, we carried out 

an experiment at reduced reaction times. Without further purification we brought the reaction 

crude directly to 
1
H-NMR analysis. The spectrum is shown below in Figure 33. 
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Figure 33 The isomerization of the substrate with an electron withdrawing group. 

Examining the NMR spectrum we noted that the more intense signals derived from the double 

bound of our starting material accompanied by the two, previously detected, signals of the 

new product which was now identified as the E and Z form of an enamide derived by 

isomerization of the starting substrate. Therefore, we supposed that when there is an electron-

withdrawing group on the aromatic ring, such as the fluorine, our substrate could isomerize.  

This isomerization could be a problem in the HPLC analysis. Thus after this discovery, we 

have purified all the substrates with EWG in the aromatic ring, leading to the results reported 

in Table 4. 

In conclusion, we have been able to isolate and characterize the hydrogenated products with 

excellent results in terms of conversion, and especially, enantiomeric excess. 
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Synthetic application 

By the high importance of chiral β-methyl amines in the biological field, we were encouraged 

to prove the applicability of our catalytic methodology. We set our efforts on the synthesis of 

(R)-Lorcaserin. It presents a tetrahydro-3-benzazepine skeleton, which is a common structural 

feature in many natural and pharmaceutical products. Lorcaserin has serotonergic properties 

and is currently used as a weight-loss drug. 
[35,37] 

Several racemic synthesis of this compound 

have been reported. In its asymmetric form, only few strategies can be found in the literature, 

most of them using kinetic resolution or stoichiometric reagents, and even less applying 

asymmetric catalysis.
[37]

 For this reason, we envisioned that we could apply the novel 

synthetic methodology presented here to develop a new access to lorcaserin in enantiopure 

form. 

For this purpose, the corresponding meta-chlorophenyl acetophenone was used as starting 

material for a 8-step synthetic route to afford optically pure (R)-Lorcaserin (Figure 34). After 

the synthesis of our phthalimide, the corresponding selective Ir-catalyzed asymmetric 

hydrogenation took place smoothly, to afford the hydrogenated product in good yield and 

with excellent ee. Further deprotection gave the corresponding free amine in 65% yield. 
[32]

  

 

Figure 34 The synthetic pathway proposed. 

This amine has been already used in the literature as the key starting material for the synthesis 

of Lorcaserin through an N-acylation followed by reduction. 
[40]

 As last step of the synthesis, 

a Lewis-acid promoted intramolecular Friedel-Crafts alkylation was used. This reaction 

occurred selectively to the para-position of the aromatic ring due to steric control, thus 
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forming a 7-membered ring and, consequently, Lorcaserin. In conclusion, we proposed this 

synthetic pathway which includes our asymmetric hydrogenation as the key step of the 

synthesis.  
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Conclusions  

Considering the results obtained, we were able to achieve our goals. In particular, we can 

conclude that: 

1. we have found satisfactory conditions for our planned asymmetric hydrogenation 

using a non-commercial catalyst developed by our research group (Figure 35) 

 

Figure 35 The optimized reaction. 

2. We studied the reaction with several different substrates, and we obtained good results 

in terms of yields and, enantiomeric excesses independently from the aromatic 

substituent. (Figure 36) 

 

Figure 36 The scope of the reaction. 



28 

 

 

3. A synthetic application of our optimized reaction was shown, by the formal synthesis 

of Lorcaserin. (Figure 37) 

 

Figure 37 The total formal synthesis of Lorcaserin. 
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Experimental Part 

General information 

General procedures and materials 

Unless otherwise indicated, materials were obtained from commercial suppliers and used 

without further purification. All reactions that required anhydrous conditions were performed 

in dried glassware under a dry nitrogen atmosphere. Dichloromethane and THF were 

degassed and anhydrised with a solvent purification system (SPS PS-MD-3). Anhydrous 

dichloroethane and DMF were used from Sigma Aldrich. Solvents were removed under 

reduced pressure with a rotary evaporator. Silica gel chromatography was performed using an 

automated chromatography system (PuriFlash® 430, Interchim). 

Instrumentation 

NMR spectroscopy: 
1
H and 

13
C were recorded on the NMR spectrometers of the Centres 

Científics i Tecnològics de la Universitat de Barcelona. The employed spectrometers were a 

Varian Mercury 400 MHz. Chemical shifts (δ) were referenced to internal solvent resonances 

and reported relative to TMS (tetramethylsilane). The coupling constants (J) are reported in 

Hertz (Hz). The following abbreviations are used to define multiplicities: s (singlet), d 

(doublet), t (triplet), q (quartet), dd (doublet of doublets), ddd (doublet of doublet of 

doublets), ddd (doublet of doublet of triplets), dddd (doublet of doublet of doublet of 

doublets), dt (doublet of triplets), td (triplet of doublets), ddq (doublet of doublet of quartets),  

dtd (doublet of triplet of doublets), dq (doublet of quartets), tt (triplet of triplets), qt (quartet of 

triplets), m (multiplet), br s (broad signal).  

High Resolution Mass Spectrometry: High resolution ESI-MS spectra were recorded in an 

LC/MSD-TOF G1969A (Agilent Technologies) of the Centres Científics i Tecnològics de la 

Universitat de Barcelona. 

 

IR spectroscopy: IR spectra were measured in a Thermo Nicolet 6700 FT-IR spectrometer 

using an ATR system, of the Department of Organic Chemistry in the Universitat de 

Barcelona. 
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Optical rotations were measured at room temperature (25°C) using a Jasco P-2000 iRM- 800 

polarimeter. Concentration is expressed in g/100 mL. The cell sized 10 cm long and had 1 mL 

of capacity, measuring λ was 589 nm, which corresponds to a sodium lamp.  

Melting points were determined using a Büchi melting point apparatus and were not 

corrected. 

Experimental procedure for the synthesis of catalyst Ir-MaxPHOS t-Bu 2 

Following the experimental procedure described in the literature 
[41]

, catalysts were afforded 

after 4 synthetic steps.  

            

(R)-2-amino-N-((R)-1-hydroxy-3,3-dimethylbutan-2-yl)-3-methylbutanamide, S1 

 

Following the experimental procedure described in the literature 
[41]

, S1 was obtained as a white solid (5.52 g, 

89% yield). m.p. 87 - 91 ºC. [α]D
25

: +36 (c 0.7, CHCl3).  
1
H NMR (CDCl3, 400 MHz) δ: 7.80 (d, J = 8.4 Hz, 

1H), 3.90 (ddd, J = 11.0, 3.1, 0.6 Hz, 1H), 3.76 (td, J = 8.6, 3.1 Hz, 1H), 3.54 (ddd, J = 11.0, 8.6, 0.6 Hz, 1H), 

3.33 (d, J = 3.6 Hz, 1H), 2.42 – 2.31 (m, 1H), 1.99 (s, 2H), 1.02 (d, J = 7.0 Hz, 3H), 0.97 (s, 9H), 0.83 (d, J = 6.9 

Hz, 3H) ppm. 
13

C NMR (101 MHz, CDCl3) δ: 176.26, 64.26, 60.26, 33.21, 30.58, 27.14, 19.97, 16.11 ppm. 

HRMS (ESI) calculated for C11H25N2O2 217.1911, found 217.1917 [M+H]
+
. IR (ATR-FTIR) νmax = 3324, 3292, 

2953, 2869, 1650, 1629, 1537 cm
-1

. 
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(R)-2-(((S)-tert-butyl(methyl)phosphanyl)amino)-N-((R)-1-hydroxy-3,3-dimethylbutan-2-yl)-3-

methylbutanamide borane, S2 

 

Following the experimental procedure described in the literature 
[41]

, S2 was obtained as a white solid (2.06 g, 

69% yield). m.p. 150-152 ºC. [α]D
25

: +27 (c 0.8, CHCl3).  
1
H NMR (400 MHz, CDCl3) δ 6.07 (d, J = 8.8 Hz, 

1H), 3.87 (dd, J = 11.2, 3.1 Hz, 1H), 3.79 (ddd, J = 8.9, 7.7, 3.1 Hz, 1H), 3.58 (dd, J = 11.2, 7.7 Hz, 2H), 2.15 (s, 

1H), 2.12 – 2.05 (m, 1H), 1.36 (d, J = 8.9 Hz, 3H), 1.14 (d, J = 14.1 Hz, 9H), 1.00 (d, J = 6.8 Hz, 3H), 0.97 (s, 

9H), 0.93 (d, J = 6.9 Hz, 3H). 13
C NMR (101 MHz, CDCl3) δ 174.46, 110.21, 63.65, 62.83, 60.44, 33.31, 32.77, 

32.74, 31.08, 30.69, 27.19, 24.73, 24.70, 19.72, 17.95, 10.68, 10.29. 31
P NMR (202 MHz, CDCl3) δ 71.0 – 71.0 

(m, P-BH3) ppm. HRMS (ESI) calculated for C16H39BN2O2P 333.2842, found 333.2849 [M+H]
+
. IR (ATR-

FTIR) νmax = 3312, 3244, 2960, 2861, 2367, 2328, 1644, 1556, 1366, 1067, 1052 cm
-1

. 

 

 

(S)-1-tert-butyl-N-((R)-1-((R)-4-(tert-butyl)-4,5-dihydrooxazol-2-yl)-2-methylpropyl)-1-

methylphosphanamine borane, S3 

 

 

Following the experimental procedure described in the literature
[41]

, S3 was obtained as an oil (1.02 g, 80% 

yield). [α]D
25

: +28 (c 0.6, CHCl3).  
1
H NMR (CDCl3, 400 MHz) δ 4.22 (dd, J = 10.2, 8.7 Hz, 1H), 4.06 (t, J = 8.6 

Hz, 1H), 3.95 (dt, J = 10.0, 5.0 Hz, 1H), 3.84 (ddd, J = 10.2, 8.5, 0.7 Hz, 1H), 2.35 (d, J = 10.0 Hz, 1H), 2.00 

(dtd, J = 13.8, 6.9, 4.6 Hz, 1H), 1.33 (d, J = 9.0 Hz, 3H), 1.14 (d, J = 14.0 Hz, 9H), 0.94 (d, J = 6.8 Hz, 3H), 0.90 

(s, 9H), 0.89 (d, J = 6.9 Hz, 4H). 13
C NMR (101 MHz, CDCl3) δ 75.49, 69.13, 56.74 (d, J = 2.6 Hz), 33.62 (d, J 

= 2.9 Hz), 33.52, 31.31 (d, J = 37.8 Hz), 25.98, 24.63 (d, J = 3.2 Hz), 18.60, 17.70, 10.65 (d, J = 42.2 Hz). 31
P 

NMR (202 MHz, CDCl3) δ 70.5 – 69.5 (m, P-BH3) ppm. HRMS (ESI) calculated for C16H37BN2OP 315.2731, 

found 315.2742 [M+H]
+
. IR (ATR-FTIR) νmax = 3332, 2958, 2865, 2390, 2368, 2336, 1668, 1464, 1357, 1137 

cm
-1

. 
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[Ir(MaxPHOS)(COD)]BArF, t-Bu 2
 

 

Following the experimental procedure described in the literature
[41]

,Ir-MaxPHOS t-Bu 2 was obtained as an 

orange solid (162 mg, 70% yield). m. p. 228 - 230 ºC (descomposition). [α]D
25

: -76 (c 0.3, CHCl3). 
1
H NMR 

(CDCl3, 400 MHz) δ 7.71 (s, 5H), 7.53 (s, 4H), 4.87 (s, 1H), 4.59 (dd, J = 9.7, 3.4 Hz, 2H), 4.44 (p, J = 7.3 Hz, 

1H), 4.25 (t, J = 9.7 Hz, 1H), 3.92 (dd, J = 9.1, 3.4 Hz, 2H), 3.28 (ddd, J = 25.2, 9.3, 7.0 Hz, 1H), 2.46 (dd, J = 

15.6, 7.9 Hz, 1H), 2.40 – 2.17 (m, 4H), 2.16 – 2.04 (m, 2H), 1.91 (dt, J = 13.9, 9.0 Hz, 1H), 1.57 (d, J = 6.3 Hz, 

3H), 1.52 – 1.42 (m, 2H), 1.17 – 1.06 (m, 12H), 1.00 (s, 9H), 0.88 (d, J = 6.7 Hz, 3H). 13
C NMR (101 MHz, 

CDCl3) δ 175.32, 162.59, 162.09, 161.59, 161.10, 134.94, 129.51, 129.45, 129.20, 129.17, 128.88, 128.83, 

128.59, 128.55, 126.05, 123.35, 117.66, 117.63, 117.59, 117.55, 93.06, 92.96, 88.24, 88.10, 72.38, 71.10, 63.41, 

59.25, 56.32, 38.85, 38.82, 37.79, 37.74, 36.09, 35.71, 34.17, 33.32, 33.30, 28.91, 25.92, 25.88, 25.42, 24.40, 

24.38, 21.45, 18.37, 16.51, 16.22. 31
P NMR (202 MHz, CDCl3) δ 53.8 ppm. HRMS (ESI) calculated for 

C24H45N2OPIr 601.2893, found 601.2914 [M+H]
+
. IR (ATR-FTIR) νmax = 3430, 2961, 1624, 1612, 1352, 1273, 

1157, 1119, 1094 cm
-1

. 
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Experimental procedures and characterization data 

 

Preparation of the aryl-substituted N-allyl phthalimides 

 

Step 1. In an oven dried flask, methyl triphenylphosphonium bromide (1.2 equiv.) was taken 

and to this anhydrous THF (1.6 mL/mmol) was added. The suspension was cooled to 0 ºC, 

KOtBu (1.2 equiv.) was added and the resulting yellow suspension was stirred at 0 ºC for 45 

min. To this suspension, a solution of ketone (1.0 equiv.) in THF (0.7 mL/mmol) was added 

dropwise and the resulting mixture was warmed gradually to r.t. and stirred at r.t. for 16 

hours. Afterwards, the reaction mixture was concentrated and redissolved with hexanes. The 

crude was filtered by a plug of silica and washed (x3) with hexanes, to afford the desired 

product which was used for the next step without further purification.  

Step 2. In an oven dried flask the alkene (1 equiv.) was dissolved in THF (3 mL/mmol). To 

the resulting solution, NBS (1.05 equiv.) and p-TsOH (0.1 equiv.) were added and the 

solution was refluxed for 4 hours at 100ºC. Afterwards, the reaction mixture was cooled to 

room temperature and taken up with Hexane (15 mL/mmol), washed three times with H2O 

(15 mL x 3) and the organic layer dried over MgSO4. The solvent was removed in vacuum 

and an oil was obtained which was used for the next step without further purification.
[42]

 

Step 3. Potassium phthalimide (1.1 equiv.) was added to a solution of the α-bromo alkene (1 

equiv.) in DMF (2.76 mL/mmol) at room temperature. The resulting mixture was stirred for 

18 hours. Afterwards, DCM (30 mL) was added and the mixture poured onto water (100 mL). 

The aqueous phase was separated and extracted with DCM for three times. The combined 

organic extract was then washed with NaOH aq. (0,2 M) and dried over MgSO4. The solvent 

was removed in vacuum and the residue purified by column chromatography (Hexane:EtOAc 

70:30) to afford the protected product as white solid.
 [43

 

For the synthesis of the following compounds, 1 g of ketone was used as starting material for 

all cases.  
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2-(2-phenylallyl)isoindoline-1,3-dione 

 

White solid (790 mg, 50% yield). 1
H NMR (400 MHz, CDCl3) δ 7.85 (dd, J = 5.4, 3.1 Hz, 2H), 7.71 (dd, J = 

5.5, 3.0 Hz, 2H), 7.52 – 7.48 (m, 2H), 7.37 – 7.28 (m, 2H), 5.44 (t, J = 0.9 Hz, 1H), 5.16 (t, J = 1.6 Hz, 1H), 4.71 

(t, J = 1.3 Hz, 2H). The analytical data for this compound were in excellent agreement with the reported data.
[44]

 

 

2-(2-(4-fluorophenyl)allyl)isoindoline-1,3-dione 

 

White solid (696 mg, 34% yield). 1
H NMR (400 MHz, CDCl3) δ 7.84 (dd, J = 5.5, 3.0 Hz, 2H), 7.74 – 7.69 (m, 

2H), 7.49 – 7.43 (m, 2H), 7.05 – 6.98 (m, 2H), 5.39 (s, 1H), 5.19 – 5.16 (m, 1H), 4.67 (t, J = 1.3 Hz, 2H). The 

analytical data for this compound were in excellent agreement with the reported data.
[43]

 

 

2-(2-(4-chlorophenyl)allyl)isoindoline-1,3-dione 

 

White solid (845 mg, 44% yield). 1
H NMR (400 MHz, CDCl3) δ 7.87 – 7.81 (m, 2H), 7.75 – 7.69 (m, 2H), 7.45 

– 7.40 (m, 2H), 7.33 – 7.27 (m, 2H), 5.44 – 5.42 (m, 1H), 5.22 (t, J = 1.6 Hz, 1H), 4.67 (dd, J = 1.5, 1.0 Hz, 2H). 

The analytical data for this compound were in excellent agreement with the reported data.
[43] 
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2-(2-(4-bromophenyl)allyl)isoindoline-1,3-dione 

 

White solid (608 mg, 35% yield). 1
H NMR (400 MHz, CDCl3) δ 7.84 (dd, J = 5.4, 3.1 Hz, 2H), 7.71 (dd, J = 

5.5, 3.0 Hz, 2H), 7.48 – 7.43 (m, 2H), 7.39 – 7.35 (m, 2H), 5.44 (d, J = 1.1 Hz, 1H), 5.23 (t, J = 1.5 Hz, 1H), 

4.67 (dd, J = 1.5, 1.0 Hz, 2H). The analytical data for this compound were in excellent agreement with the 

reported data.
[45]

 

 

2-(2-(4-iodophenyl)allyl)isoindoline-1,3-dione 

 

White solid (620 mg, 39% yield). m.p. 178-181ºC. 1
H NMR (400 MHz, CDCl3)

 
δ 7.87 – 7.79 (m, 2H), 7.74 – 

7.68 (m, 2H), 7.65 (dq, J = 8.1, 1.6, 1.2 Hz, 2H), 7.25 – 7.21 (m, 2H), 5.44 (s, 1H), 5.22 (d, J = 1.6 Hz, 1H), 4.66 

(p, J = 0.8 Hz, 2H).
 13

C NMR (101 MHz, CDCl3)
 
δ 168.05, 141.79, 138.09, 137.66, 134.23, 132.08, 128.44, 

123.57, 115.23, 93.96, 41.39. HRMS (ESI) calculated for C17H12INO2 389.9985, found 389.9988 [M+H]
+
. IR 

(ATR-FTIR) νmax = 1766, 1703, 1390, 1110 cm
-1

. 

 

2-(2-(p-tolyl)allyl)isoindoline-1,3-dione 

 

White solid (679 mg, 33% yield). 1
H NMR (400 MHz, CDCl3) δ 7.86 – 7.82 (m, 2H), 7.71 (dd, J = 5.5, 3.1 Hz, 

2H), 7.42 – 7.38 (m, 2H), 7.17 – 7.11 (m, 2H), 5.41 (d, J = 1.4 Hz, 1H), 5.14 – 5.07 (m, 1H), 4.69 (t, J = 1.4 Hz, 

2H), 2.33 (s, 3H). The analytical data for this compound were in excellent agreement with the reported data.
[43]
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2-(2-(3-chlorophenyl)allyl)isoindoline-1,3-dione 

 

White solid (584 mg, 30% yield). m.p. 122-124 ºC. 1
H NMR (400 MHz, CDCl3) δ 7.85 – 7.77 (m, 2H), 7.70 – 

7.64 (m, 2H), 7.45 (dt, J = 2.5, 1.0 Hz, 1H), 7.35 (ddd, J = 6.3, 2.8, 1.7 Hz, 1H), 7.26 – 7.21 (m, 2H), 5.42 (d, J = 

1.1 Hz, 1H), 5.18 (t, J = 1.6 Hz, 1H), 4.64 (t, J = 1.4 Hz, 2H). 
13

C NMR (101 MHz, CDCl3) δ 167.83, 141.34, 

140.32, 134.35, 134.07, 131.92, 129.63, 128.09, 126.69, 124.49, 123.41, 115.18, 41.20. HRMS (ESI) calculated 

for C17H12ClNO2 298.0629, found 298.0631 [M+H]
+
. IR (ATR-FTIR) νmax = 3029, 2927, 1775, 1709, 1390   cm

-

1
. 

 

2-(2-(3-methoxyphenyl)allyl)isoindoline-1,3-dione 

  

White solid (834mg, 43% yield). 1
H NMR (400 MHz, CDCl3) δ 7.84 (dd, J = 5.5, 3.0 Hz, 2H), 7.71 (dd, J = 5.4, 

3.0 Hz, 2H), 7.25 – 7.22 (m, 1H), 7.09 (ddd, J = 7.7, 1.7, 1.0 Hz, 1H), 7.06 – 7.02 (m, 1H), 6.83 (ddd, J = 8.2, 

2.6, 0.9 Hz, 1H), 5.45 (q, J = 1.0 Hz, 1H), 5.17 (t, J = 1.6 Hz, 1H), 4.69 (t, J = 1.3 Hz, 2H), 3.82 (s, 3H). 

The analytical data for this compound were in excellent agreement with the reported data.
[44]    

2-(2-(2-bromophenyl)allyl)isoindoline-1,3-dione 

 

White solid (635 mg, 37% yield). m.p. 120-122 ºC. 1
H NMR (400 MHz, CDCl3) δ 7.86 – 7.80 (m, 2H), 7.74 – 

7.68 (m, 2H), 7.58 – 7.54 (m, 1H), 7.25 – 7.18 (m, 2H), 7.13 (ddd, J = 7.9, 6.8, 2.3 Hz, 1H), 5.38 (td, J = 1.5, 0.7 

Hz, 1H), 5.16 (q, J = 1.0 Hz, 1H), 4.62 (t, J = 1.3 Hz, 2H)..
 13

C NMR (101 MHz, CDCl3)
 
δ 167.70, 143.48, 

140.78, 133.96, 132.73, 131.98, 130.59, 129.20, 127.22, 123.32, 122.30, 117.34, 42.37. HRMS (ESI) calculated 

for C17H12BrNO2 342.0124, found 342.0126 [M+H]
+
. IR (ATR-FTIR) νmax = 3069, 2914, 1770, 1705, 1421, 

1389, 1108 cm
-1

. 
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2-(2-(2-methoxyphenyl)allyl)isoindoline-1,3-dione 

 

White solid (479 mg, 25% yield). 1
H NMR (400 MHz, CDCl3) δ 7.81 (ddd, J = 5.5, 3.2, 0.4 Hz, 2H), 7.69 (ddd, 

J = 5.7, 2.9, 0.4 Hz, 2H), 7.26 – 7.21 (m, 1H), 7.15 (dd, J = 7.6, 1.8 Hz, 1H), 6.89 – 6.83 (m, 2H), 5.26 – 5.21 

(m, 1H), 5.19 (dt, J = 1.3, 0.7 Hz, 1H), 4.71 (t, J = 1.3 Hz, 2H), 3.86 (s, 3H). The analytical data for this 

compound were in excellent agreement with the reported data.
[46]

 

 

2-(2-(o-tolyl)allyl)isoindoline-1,3-dione 

 

White solid (579 mg, 28% yield). m.p. 102-105 ºC. 1
H NMR (400 MHz, CDCl3) δ 7.85 (dd, J = 5.4, 3.0 Hz, 

2H), 7.72 (dd, J = 5.4, 3.0 Hz, 2H), 7.22 – 7.08 (m, 4H), 5.19 (td, J = 1.8, 0.9 Hz, 1H), 5.03 (q, J = 1.4 Hz, 1H), 

4.49 (t, J = 1.6 Hz, 2H), 2.40 (s, 3H). 
13

C NMR (101 MHz, CDCl3) δ 167.83 , 143.50 , 135.60 , 133.99 , 131.99 , 

130.17 , 128.69 , 127.63 , 125.53 , 123.34 , 114.32 , 42.82 , 19.58. HRMS (ESI) calculated for C18H15NO2 

278.1176, found 278.1175 [M+H]
+
. IR (ATR-FTIR) νmax = 3461, 3018, 2926, 2850, 1770, 1709, 1415, 1388, 

1113 cm
-1

. 

 

2-(2-(naphthalen-2-yl)allyl)isoindoline-1,3-dione 

 

White solid (713 mg, 39% yield). m.p. 165-168 ºC. 1
H NMR (400 MHz, CDCl3) δ 7.96 (s, 1H), 7.84 (ddd, J = 

5.5, 3.1, 0.4 Hz, 2H), 7.82 – 7.78 (m, 2H), 7.72 – 7.68 (m, 2H), 7.64 (dd, J = 8.6, 1.9 Hz, 1H), 7.49 – 7.43 (m, 

2H), 5.59 (s, 1H), 5.29 (t, J = 1.5 Hz, 1H), 4.83 (t, J = 1.4 Hz, 2H).
 13

C NMR (101 MHz, CDCl3) δ 167.99, 

142.25, 135.67, 133.98, 133.20, 133.01, 131.99, 128.30, 127.99, 127.51, 126.22, 126.12, 125.26, 124.57, 123.35, 

114.59, 41.51. . HRMS (ESI) calculated for C21H15NO2 314.1176, found 314.1171 [M+H]
+
. IR (ATR-FTIR) 

νmax = 3092, 3056, 3021, 2923, 1770, 1698, 1425, 1397, 1108 cm
-1

. 
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Iridium-Catalyzed Asymmetric Hydrogenation of N-Allyl Phthalimides 

General procedure GP 

Into a low pressure reactor equipped with PTFE-coated stir-bar, the corresponding substrate 

(0.288 mmol, 1.0 equiv.) was charged and dissolved in anhydrous DCM (1 mL/0.1 mmol 

substrate). Once sealed, the reactor was purged and charged with 1 bar of H2. Then, the 

pressure reactor was placed in a cryocool bath. When it reached -20 ºC, the corresponding 

catalyst (t-Bu2) dissolved in 0.2 mL of anhydrous DCM was then added (1 mol%, otherwise 

indicated) with a pressure-syringe. The reaction was left stirring at -20 ºC overnight. 

Afterwards, the crude was filtrated with a short plug of silica to afford the corresponding 

isolated product. The conversion was measured by 
1
H NMR spectroscopy and the 

enantiomeric excess using chiral HPLC chromatography. 

 

(R)-2-(2-phenylpropyl)isoindoline-1,3-dione 

  

Following GP, the desired product was obtained as an oil (full conversion, 98% ee). 
1
H NMR (400 MHz, 

CDCl3) δ 7.75 – 7.69 (m, 2H), 7.64 – 7.58 (m, 2H), 7.21 – 7.18 (m, 4H), 7.15 – 7.09 (m, 1H), 3.83 – 3.68 (m, 

2H), 3.32 – 3.22 (m, 1H), 1.23 (d, J = 7.0 Hz, 3H). HPLC: CHIRALPAK IA. Heptane/iPrOH 90:10, 0.5 

mL/min, λ = 254 nm. t(R) = 12.5 min, t(S) = 14.3 min. The analytical data for this compound were in excellent 

agreement with the reported data.
[46] 
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 (R)-2-(2-(4-fluorophenyl)propyl)isoindoline-1,3-dione 

 

Following GP, the desired product was obtained as a white solid (full conversion, >99% ee). m.p. 60-63 ºC [α]D: 

+91.5 (c 1.2, CHCl3). 
1
H NMR (400 MHz, CDCl3) δ 7.82 – 7.76 (m, 2H), 7.72 – 7.66 (m, 2H), 7.24 – 7.18 (m, 

2H), 6.98 – 6.90 (m, 2H), 3.87 – 3.71 (m, 2H), 3.34 (h, J = 7.3 Hz, 1H), 1.29 (d, J = 7.0 Hz, 3H). 
13

C NMR (101 

MHz, CDCl3) δ 168.22, 162.86, 160.43, 138.89, 138.86, 133.90, 131.80, 128.74, 128.66, 123.20, 115.34, 115.13, 

44.85, 44.84, 37.81, 19.12.  HRMS (ESI) calculated for C17H14FNO2 284.1081, found 284.1081 [M+H]
+
. IR 

(ATR-FTIR) νmax = 2970, 2926, 2853, 2359, 2334, 2249, 1706, 1509, 1395, 1378, 1352, 1223 cm
-1

. HPLC: 

CHIRALPAK IA. Heptane/EtOH 50:50, 0.5 mL/min, λ = 210 nm. t(R) = 10.9 min, t(S) = 15.4 min. 

 

 

 

(R)-2-(2-(4-chlorophenyl)propyl)isoindoline-1,3-dione 

 

Following GP, the desired product was obtained as a a white solid (full conversion, 97% ee). m.p. 69-73 ºC [α]D: 

+98.8 (c 1.1, CHCl3). 
1
H NMR (400 MHz, CDCl3) δ 7.75 – 7.69 (m, 2H), 7.64 – 7.58 (m, 2H), 7.19 – 7.07 (m, 

4H), 3. 81 – 3.63 (m, 2H), 3.26 (h, J = 7.3 Hz, 1H), 1.21 (d, J = 7.0 Hz, 3H). 
 13

C NMR (101 MHz, CDCl3) δ 

168.21, 141.71, 133.92, 132.41, 131.79, 128.65, 128.59, 123.24, 77.31, 76.99, 76.68, 44.62, 37.98, 19.05. 

HRMS (ESI) calculated for C17H14ClNO2 300.0786, found 300.0797 [M+H]
+
. IR (ATR-FTIR) νmax 2970, 2926, 
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2853, 2363, 2242, 1767, 1708, 1394, 1378, 1351 cm
-1

. HPLC: CHIRALPAK IA. Heptane/EtOH 50:50, 0.5 

mL/min, λ = 210 nm. t(R) = 12.0 min, t(S) = 17.1 min. 

 

 

 

(R)-2-(2-(4-bromophenyl)propyl)isoindoline-1,3-dione 

 

Following GP and using 2 mol% of catalyst, the desired product was obtained as a white solid (full conversion, 

97% ee). m.p. 118-121 ºC [α]D: +98.4 (c 0.5, CHCl3). 
1
H NMR (400 MHz, CDCl3) δ 7.86 – 7.75 (m, 2H), 7.73 – 

7.65 (m, 2H), 7.42 – 7.33 (m, 2H), 7.17 – 7.09 (m, 2H), 3.88 – 3.69 (m, 2H), 3.33 (h, J = 7.3 Hz, 1H), 1.27 (d, J 

= 7.0 Hz, 3H). 
13

C NMR (101 MHz, CDCl3) δ 168.20, 142.24, 133.93, 131.78, 131.54, 129.04, 123.24, 120.51, 

44.52, 38.04, 19.02. HRMS (ESI) calculated for C17H14BrNO2 344.0281, found 344.0279 [M+H]
+
. IR (ATR-

FTIR) νmax = 2967, 2936, 2843, 2255, 1757, 1708, 1395, 1378, 1352 cm
-1

. HPLC: CHIRALPAK IA. 

Heptane/EtOH 50:50, 0.5 mL/min, λ = 210 nm. t(R) = 12.9 min, t(S) = 21.8 min. 
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(R)-2-(2-(4-iodophenyl)propyl)isoindoline-1,3-dione 

 

Following GP and using 2 mol% of catalyst, the desired product was obtained as a white solid (full conversion, 

98% ee). m.p. 151-155 ºC [α]D: +90.2 (c 0.5, CHCl3). 
1
H NMR (400 MHz, CDCl3) δ 7.84 – 7.76 (m, 2H), 7.73 – 

7.66 (m, 2H), 7.62 – 7.56 (m, 2H), 7.05 – 6.98 (m, 2H), 3.88 – 3.71 (m, 2H), 3.31 (h, J = 7.3 Hz, 1H), 1.27 (d, J 

= 7.0 Hz, 3H). 13
C NMR (101 MHz, CDCl3) δ 168.21, 142.95, 137.52, 133.94, 131.79, 129.36, 123.25, 92.01, 

44.48, 38.14, 19.00. HRMS (ESI) calculated for C17H14INO2 392.0142, found 392.0142 [M+H]
+
. IR (ATR-

FTIR) νmax = 2963, 2927, 2366, 1770, 1697, 1391, 1036, 1004 cm
-1

. HPLC: CHIRALPAK IA. Heptane/IPA 

95:5, 0.5 mL/min, λ = 210 nm. t(R) = 11.1 min, t(S) = 13.0 min. 
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(R)-2-(2-(p-tolyl)propyl)isoindoline-1,3-dione 

 

Following GP, the desired product was obtained as a colorless solid (full conversion, 97% ee). m.p. 50-53 ºC 

[α]D: +93.7 (c 1.3, CHCl3). 
1
H NMR (400 MHz, CDCl3) δ 7.83 – 7.77 (m, 2H), 7.72 – 7.65 (m, 2H), 7.19 – 7.13 

(m, 2H), 7.10 – 7.05 (m, 2H), 3.88 – 3.71 (m, 2H), 3.32 (h, J = 7.3 Hz, 1H), 2.29 (s, 3H), 1.28 (d, J = 7.0 Hz, 

3H). 
 13

C NMR (101 MHz, CDCl3) δ 168.32, 140.26, 136.21, 133.81, 131.93, 129.14, 127.12, 123.16, 44.94, 

38.06, 21.00, 19.04. HRMS (ESI) calculated for  C18H17NO2 , 280.1332 found 280.1333 [M+H]
+
. IR (ATR-

FTIR) νmax = 2998, 2927, 2851, 2366, 2242, 1706, 1394, 1376, 1351 cm
-1

. HPLC: CHIRALPAK IA. 

Heptane/EtOH 50:50, 0.5 mL/min, λ = 210 nm. t(R) = 10.2 min, t(S) = 13.2 min. 

 

 

 

(R)-2-(2-(3-chlorophenyl)propyl)isoindoline-1,3-dione 

 

Following GP, the desired product was obtained as an oil  (full conversion, 99% ee). [α]D: +101.2 (c 1.3, 

CHCl3). 
1
H NMR (400 MHz, CDCl3) δ 7.85 – 7.75 (m, 2H), 7.73 – 7.67 (m, 2H), 7.32 – 7.13 (m, 4H), 3.88 – 

3.73 (m, 2H), 3.32 (h, J = 7.3 Hz, 1H), 1.29 (d, J = 7.0 Hz, 3H). 
 13

C NMR (101 MHz, CDCl3) δ 168.21, 145.37, 

134.24, 133.94, 133.92, 131.82, 129.74, 127.56, 126.95, 125.46, 123.25, 44.57, 38.37, 18.83. HRMS (ESI) 

calculated for C17H14ClNO2 300.0786, found 300.0788 [M+H]
+
. IR (ATR-FTIR) νmax = 2957, 2971, 2850, 2361, 
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2337, 2245, 1711, 1396 cm
-1

. HPLC: CHIRALPAK IA. Heptane/EtOH 50:50, 0.5 mL/min, λ = 210 nm. t(R) = 

10.3 min, t(S) = 13.8 min. 

 

 

 

(R)-2-(2-(3-methoxyphenyl)propyl)isoindoline-1,3-dione 

 

Following GP, the desired product was obtained as an oil (full conversion, 98% ee). [α]D: +80.8 (c 1.3, CHCl3). 

1
H NMR (400 MHz, CDCl3) δ 7.83 – 7.77 (m, 2H), 7.72 – 7.65 (m, 2H), 7.19 (t, J = 7.9 Hz, 1H), 6.88 – 6.71 

(m, 3H), 3.90 – 3.77 (m, 2H), 3.76 (s, 3H), 3.33 (h, J = 7.3 Hz, 1H), 1.29 (d, J = 7.0 Hz, 3H). 
13

C NMR (101 

MHz, CDCl3) δ 168.29, 159.63, 144.97, 133.84, 131.91, 129.44, 123.18, 119.63, 112.91, 112.21, 55.14, 44.76, 

38.53, 18.97. HRMS (ESI) calculated for C18H17NO3 296.1281, found 296.1276 [M+H]
+
. IR (ATR-FTIR) νmax = 

3065, 2972, 2936, 2829, 1766, 1708, 1605, 1579, 1394, 1042 cm
-1

. HPLC: CHIRALPAK IA. Heptane/EtOH 

50:50, 0.5 mL/min, λ = 210 nm. t(R) = 10.9 min, t(S) = 17.1 min. 
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(R)-2-(2-(2-methoxyphenyl)propyl)isoindoline-1,3-dione 

 

Following GP, the desired product was obtained as an oil (full conversion, 78% ee). [α]D: +64.5 (c 1.3, CHCl3). 

1
H NMR (400 MHz, CDCl3) δ 7.78 (ddd, J = 5.5, 2.9, 0.4 Hz, 2H), 7.73 – 7.65 (m, 2H), 7.27 – 7.22 (m, 1H), 

7.20 – 7.11 (m, 1H), 6.91 (td, J = 7.5, 1.2 Hz, 1H), 6.74 (dd, J = 8.2, 1.1 Hz, 1H), 3.93 – 3.80 (m, 2H), 3.78 – 

3.71 (m, 1H), 3.64 (s, 3H), 1.30 (d, J = 6.9 Hz, 3H). 
 13

C NMR (101 MHz, CDCl3) δ 168.28, 157.28, 133.65, 

132.08, 131.52, 127.60, 127.49, 122.99, 120.62, 110.27, 55.11, 43.81, 31.98, 17.62. HRMS (ESI) calculated for 

C18H17NO3 296.1281, found 296.1281 [M+H]
+
. IR (ATR-FTIR) νmax = 2958, 2932, 2851, 1770, 1708, 1394, 

1242 cm
-1

. HPLC: CHIRALPAK IA. Heptane/EtOH 95:5, 0.5 mL/min, λ = 210 nm. t(R) = 15.8 min, t(S) = 16.9 

min. 
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(R)-2-(2-(o-tolyl)propyl)isoindoline-1,3-dione 

 

Following GP, using 3 mol% of catalyst and leaving the reaction stirring for 48 hours, the desired product was 

obtained as an oil (full conversion, 91% ee).  [α]D: +24.5 (c 0.5, CHCl3). 
1
H NMR (400 MHz, CDCl3) δ 7.86 – 

7.79 (m, 2H), 7.73 – 7.67 (m, 2H), 7.35 (dd, J = 7.6, 1.2 Hz, 1H), 7.21 (ddd, J = 7.7, 6.7, 2.5 Hz, 1H), 7.16 – 

7.08 (m, 2H), 3.87 – 3.73 (m, 2H), 3.69 – 3.56 (m, 1H), 2.40 (s, 3H), 1.26 (d, J = 6.9 Hz, 3H). 
13

C NMR (101 

MHz, CDCl3) δ 168.47, 141.51, 136.01, 133.90, 131.94, 130.42, 126.40, 126.26, 125.67, 123.20, 44.16, 33.64, 

19.39, 18.53. HRMS (ESI) calculated for C18H17NO2 280.1332, found 280.1343 [M+H]
+
. IR (ATR-FTIR) νmax = 

3461, 3065, 2967, 2923, 2856, 1775, 1706, 1394, 1350, 1276, 1042 cm
-1

. HPLC: CHIRALPAK IA. 

Heptane/EtOH 98:2, 0.5 mL/min, λ = 210 nm. t(R) = 16.5 min, t(S) = 18.1 min. 
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(R)-2-(2-(2-bromophenyl)propyl)isoindoline-1,3-dione 

 

Following GP and using 2 mol% of catalyst, the desired product was obtained as an oil (full conversion, 90% 

ee). [α]D: +47.2 (c 0.8, CHCl3). 
1
H NMR (400 MHz, CDCl3) δ 7.84 – 7.77 (m, 2H), 7.72 – 7.65 (m, 2H), 7.47 

(dd, J = 8.0, 1.4 Hz, 1H), 7.40 (dd, J = 7.8, 1.7 Hz, 1H), 7.31 (td, J = 7.6, 1.3 Hz, 1H), 7.05 (ddd, J = 8.0, 7.3, 1.7 

Hz, 1H), 3.95 – 3.86 (m, 2H), 3.85 – 3.77 (m, 1H), 1.33 – 1.27 (m, 3H). 
13

C NMR (101 MHz, CDCl3) δ 168.23, 

142.37, 133.85, 132.86, 131.93, 128.17, 127.78, 127.71, 124.79, 123.20, 43.67, 37.18, 18.57. HRMS (ESI) 

calculated for C17H14BrNO2 344.0281, found 344.0271 [M+H]
+
. IR (ATR-FTIR) νmax = 3466, 3056, 2963, 2923, 

2843, 1772, 1706, 1467, 1394, 1378, 1351, 1277, 1043, 1021 cm
-1

. HPLC: CHIRALPAK IA. Heptane/EtOH 

98:2, 0.5 mL/min, λ = 210 nm. t(R) = 27.3 min, t(S) = 30.6 min. 

 

 

 

 (R)-2-(2-(naphthalen-2-yl)propyl)isoindoline-1,3-dione 

 

Following GP, the desired product was obtained as a white solid (full conversion, 97% ee). m.p. 117-121 ºC 

[α]D: +66.1 (c 0.4, CHCl3). 
1
H NMR (400 MHz, CDCl3) δ 7.81 – 7.74 (m, 5H), 7.71 – 7.63 (m, 3H), 7.49 – 7.38 

(m, 3H), 4.04 – 3.83 (m, 2H), 3.55 (h, J = 7.3 Hz, 1H), 1.39 (d, J = 7.0 Hz, 3H). 
13

C NMR (101 MHz, CDCl3) δ 
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140.77, 133.84, 133.46, 132.47, 131.88, 128.16, 127.64, 127.58, 125.91, 125.88, 125.87, 125.58, 125.43, 123.20, 

44.69, 38.67, 19.16. HRMS (ESI) calculated for  C21H17NO2 316.1332, found 316.1329 [M+H]
+
. IR (ATR-

FTIR) νmax = 3458, 3050, 2964, 2932, 2872, 1767,1705, 1682, 1397, 1048 cm
-1

. HPLC: CHIRALPAK IA. 

Heptane/EtOH 70:30, 0.5 mL/min, λ = 210 nm. t(R) = 13.5 min, t(S) = 20.6 min. 
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