ALMA MATER STUDIORUM - UNIVERSITA DI BOLOGNA ` CAMPUS DI CESENA SCUOLA DI INGEGNERIA

CORSO DI LAUREA IN INGEGNERIA ELETTRONICA E TELECOMUNICAZIONI PER L'ENERGIA

INITIAL ACCESS TECHNIQUES FOR 5G SYSTEMS

Elaborato in Sistemi di Telecomunicazione LM

Relatore Chiar.mo Prof. Ing. DAVIDE DARDARI

Correlatori Dott. Ing. FRANCESCO GUIDI

Dott. Ing. ANNA GUERRA *Presentata da* ELIA LEONI

Sessione III

Anno Accademico 2017-2018

Acronyms

- 4G fourth generation
- 5G fifth generation
- IoT Internet of Things
- SOTA state-of-the-art
- gNB gNodeB
- SA stand alone
- NSA non stand alone
- IA initial access
- mmWave millimeter wave
- massive-MIMO massive-multiple input multiple output
- LTE long term evolution
- BS base station
- UE user equipment
- BF beamforming
- LOS line-of-sight
- NLOS non-line-of-sight
- PL path loss
- RT ray tracing
- PSS primary synchronization signal

iv ACRONYMS

- TX transmitter
- RX receiver
- SNR signal-to-noise-ratio
- PMD probability mass distribution
- MLRI memory-less random illumination
- SMBI statistic and memory-based illumination
- EA exhaustive search
- PDP power delay profile
- GPS global positioning system
- iBWS initial beam width selection
- SLS sector level sweep
- gSLS sector level sweep
- D-SLS dynamic - sector level sweep
- EDP enhanced discovery procedure
- DB geo-located context database
- ADd alternate direction discovery
- ADdV alternate direction discrovery with variable beam-width
- ADdS alternate direction discovery within a sector
- ADdVS alternate direction discovery variable beam-width within a sector
- ADdVS+ alternate direction discovery within a sector - extended
- HetNet heterogeneous network
- macro-BS macro cell base stations
- SC-BS small cell base stations
- HPBW half-power beamwidth
- MLS memory less search

MBS memory based search

dBi decibels relative to isotropic radiator

Sommario

Nei prossimi anni è previsto un aumento del traffico dati, e la quinta generazione cellulare 5G dovrá fare affidamento su nuove tecnologie, come le onde millimetriche e il massive-MIMO, per soddisfare tale richiesta. Lo spettro di frequenze sotto i 6 GHz risulta infatti sovra-utilizzato, e le frequenze relative alle onde millimetriche promettono di garantire alte velocità di trasmissione dei dati, grazie alla grande disponibilit`a di banda, specialmente attorno ai 60 GHz. Nonostante questo aspetto favorevole, si ha peró un elevato path loss e la difficolt´a nel penetrare gli ostacoli. Per ovviare a tali problemi, l'utilizzo di tecniche di beamforming, ottenibili grazie all'uso congiunto di frequenze a onde millimetriche e massive-MIMO, permette di direzionare il pattern dell'antenna nelle direzioni spaziali desiderate, e di compensare il path loss grazie all'aumento della direttività.

Considerando un sistema cellulare 5G, una comunicazione di tipo direttivo impone che i beam dell'utente e della stazione radio base debbano essere allineati per garantire la comunicazione, introducendo possibili ritardi nella fase di accesso iniziale. Di conseguenza, lo studio di algoritmi adhoc, progettati per velocizzare questa fase rappresenta un sfida importante per l'ottimizzazione dei futuri sistemi 5G. Nell'ottica quindi di velocizzare l'accesso iniziale nelle reti 5G, in questa tesi prima di tutto mostriamo gli approcci proposti nello stato dell'arte, mettendo in evidenza gli aspetti che possono essere migliorati. Successivamente viene spiegato il simulatore che abbiamo implementato su Matlab, e infine viene introdotto un nuovo algoritmo. In particolare, l'algoritmo proposto si basa sulla memoria degli utenti visti per settore e sull'utilizzo di diverse configurazioni dei beam. Questi due aspetti combinati tra loro risultano innovativi rispetto allo stato dell'arte. I risultati numerici ottenuti dimostrano la bontà della tecnica proposta negli scenari 5G considerati.

Contents

Introduction

With a view to face the expected growth in capacity demand [\[1\]](#page-102-1), the fifth generation [\(5G\)](#page-2-1) of wireless mobile systems will adopt new technologies such as millimeter wave [\(mmWave\)](#page-2-2) and massive-multiple input multiple output [\(massive-MIMO\)](#page-2-3). Given the fact that, the spectrum under 6 GHz is fragmented and crowded, the [mmWave](#page-2-2) frequencies promise to provide high data rates thanks to large chunks of untapped spectrum [\[2\]](#page-102-2). Nevertheless, the communication at such frequencies is not trivial due to the high propagation path loss [\(PL\)](#page-2-4) and the sensitivity to blockage due to the presence of obstacles [\[3\]](#page-102-3). Therefore, the usage of beamforming techniques enabled by the joint use of [mmWave](#page-2-2) and [massive-MIMO,](#page-2-3) seems to be the main way to face the aforementioned propagation issues because directional communications provides beamforming gain which compensates the high [PL](#page-2-4) and possibly enables spatial multiplexing thus increasing system data rate [\[3\]](#page-102-3).

Considering a [5G](#page-2-1) cellular system, directional links usually need the alignment of the user equipment [\(UE\)](#page-2-5) and base station [\(BS\)](#page-2-6) beams, thus introducing possible delays in the initial access [\(IA\)](#page-2-7) phase. In fact, upon entrance of a [UE](#page-2-5) into a cell, the [BS](#page-2-6) steers its beams in the whole angular space in order to find the [UE.](#page-2-5) Since, whenever a [UE](#page-2-5) enters within a cell it has to connect immediately to the network, the [IA](#page-2-7) phase has to be fast. Moreover, due to the aforementioned blockage caused by the obstacles at [mmWave,](#page-2-2) the [IA](#page-2-7) at different [BSs](#page-2-6) shall be repeated often at [UE](#page-2-5) side. Thus, the study of ad-hoc algorithms designed to improve this phase represents one of the challenges for optimizing [5G](#page-2-1) systems. The [IA](#page-2-7) algorithms can be classified in non stand alone [\(NSA\)](#page-2-8) and stand alone [\(SA\)](#page-2-9), depending on the joint use or not of a sub-6 GHz link (e.g. on long term evolution [\(LTE\)](#page-2-10)) with the [mmWave](#page-2-2) link, respectively. In this document, we first provide a review of the techniques proposed in the state-of-the-art [\(SOTA\)](#page-2-11) for the [IA](#page-2-7) procedure, then we present a Matlab simulator designed to test different algorithms in several scenarios [\(SA](#page-2-9) and [NSA\)](#page-2-8), and finally we introduce a novel algorithm to enhance the performance with respect to the [SOTA](#page-2-11) approaches. The document is organized as follows: in chapter 1, after a brief introduction of the [IA](#page-2-7) phase, we provide a description of several [SOTA](#page-2-11) algorithms. Our novel approach is described in chapter 2, focusing on both [BS](#page-2-6) and [UE](#page-2-5) side of the algorithm. The simulator we developed in Matlab with the purpose of testing the implemented algorithms is described in chapter 3. Finally, in chapter 4 we provide the numerical results obtained using our simulator and the main achievements are discussed.

Chapter 1

Initial Access in mmWave Cell

1.1 Introduction on 5G Systems

The [5G](#page-2-1) of wireless mobile systems is on the doorways. We expect a future where we will be surrounded by a pervasive presence of electronic devices connected to the web and capable of continuously interacting with us. Therefore, internet providers foresee to manage a larger number of devices operating at data rates at an unprecedented scale, that translates into an escalation of the required resources within the next years. Fig. [1.1](#page-13-1) shows some examples of applications where the next [5G](#page-2-1) is expected to have a tremendous impact, by putting in evidence different challenges that have to be faced, such as high data speed and reliability, while guaranteeing an extremely low latency.

In order to address this ever increasing traffic demand, the large amount of available bandwidth above 10 GHz especially at [mmWave](#page-2-2) frequencies (above 30 GHz) has the potential to greatly increase the capacity of fifth generation cellular wireless systems considering that the current [LTE](#page-2-10) spectrum under 6 GHz is fragmented and crowded [\[2\]](#page-102-2). Nevertheless, a higher path loss is experienced at [mmWave](#page-2-2) with respect to its counterpart in the lower microwave bandwidths. In addition, the blockage caused by obstacles could become an issue, due to the low capability of [mmWave](#page-2-2) signals to penetrate materials [\[4\]](#page-102-4). Thus, the usage of small cells promises to provide higher bandwidth signal and extend coverage for more users. Small cells are low power, short range wireless transmission systems where [BSs](#page-2-6) cover small geographical areas for indoor or outdoor applications [\[5\]](#page-102-5).

Notably, the joint use of [mmWave](#page-2-2) and massive array technologies allows to pack a large number of antennas (even hundreds) into a small area, thus enabling the possibility to integrate them into future portable devices. Several studies have been recently conducted towards this direction [\[6–](#page-102-6)[8\]](#page-102-7).

Figure 1.1: Example of several application fields with different requirements for the [5G](#page-2-1) [\[9\]](#page-103-0).

Therefore, thanks to the possibility of realizing near-pencil beam antennas, accurate beamforming operations can be performed, allowing to focus the beam in very precise spatial directions and, thus, to avoid in part the aforementioned [PL](#page-2-4) limitations.

Nevertheless, this spatial filtering also implies a different initial access to the cell: whenever a user enters a cell, it has to detect first the primary synchronization signal [\(PSS\)](#page-2-12) transmitted by the [BS](#page-2-6) and then to wait for a random access opportunity. After that phase a channel between the user and the network is set. This initial phase is called [IA.](#page-2-7) Since the [BS](#page-2-6) steers its beam in very precise spatial directions, the search by the [UE](#page-2-5) of the [PSS](#page-2-12) can become complex and lead to unsustainable delays also considering that due to obstacles such a phase could be repeated often. In the following, we first describe the [IA](#page-2-7) procedure, and successively we report the [SOTA](#page-2-11) on the current available techniques.

1.2 Introduction on Initial Access

In [LTE](#page-2-10) systems, the [UE](#page-2-5) is facilitated to obtain the time-frequency synchronization during the cell search phase, because the [PSS](#page-2-12) is transmitted with an omni-directional or weakly directive antenna in the downlink, thanks to the low [PL](#page-2-4) experienced in the microwave propagation, and beamforming is used only after a physical link has been established [\[2\]](#page-102-2). In the [mmWave](#page-2-2) cell instead, the [PSS](#page-2-12) is transmitted only in certain directions by the [BS,](#page-2-6) which means that the [UE'](#page-2-5)s beam (if the [UE](#page-2-5) does beamforming too) must scan

Figure 1.2: Initial Access in 5G. The [BS](#page-2-6) is here named gNodeB [\(gNB\)](#page-2-13) [\[10\]](#page-103-1).

the whole angular space to search for the [BS'](#page-2-6)beam and obtain the [PSS](#page-2-12) to complete the access to the cell.

To be more specific, in every mobile communication systems, a terminal transitioning from IDLE to CONNECTED mode must perform the following steps [\[2\]](#page-102-2):

- \bullet Cell Search;
- Random Access.

The cell search is the phase which permits to an IDLE [UE](#page-2-5) to find a suitable [BS](#page-2-6) to connect with. In this stage the [BS](#page-2-6) transmits the [PSS](#page-2-12) in several discrete directions scanning the whole angular space, as shown in Fig. [1.2.](#page-14-0)

The [UE](#page-2-5) has two options to detect the synchronization signal, according to its antenna: (i) by performing beamforming, in case it is equipped with an antenna array; (ii) or through an omnidirectional signal to explore the entire space. In this second scenario, the [UE](#page-2-5) suffers for the high [PL](#page-2-4) since it does not exploit the beamforming gain. On the other side, in (i) the [UE](#page-2-5) needs to scan the entire angular space like the [BS](#page-2-6) and thus the procedure is slower.

In our study we focus on the cell search described and in Chapter 2 we provide the description of an ad-hoc algorithm for optimizing this phase.

After the aforementioned step, the [UE](#page-2-5) does not have a channel available to inform the network about its desire to establish a connection; the random access stage provides a mean to set up this connection. Both the [UE](#page-2-5) and the [BS](#page-2-6) know, from the previous phase, the directions through which they should steer their beams, and therefore they will exchange random access messages. After this step the [UE](#page-2-5) is considered connected to the network.

The main problem of the previous stages, in particular of the first one, is that it must be very fast, because of the required low latency of the [5G](#page-2-1) network (< 1 ms). Moreover, due to the aforementioned blockage caused by the obstacles at [mmWave,](#page-2-2) the [IA](#page-2-7) at different [BS](#page-2-6) shall be repeated often at [UE](#page-2-5) side. Thus, it is very important to design a cell search algorithm which permits to create, when an [UE](#page-2-5) enters the cell, a physical link between [UE](#page-2-5) and the [BS](#page-2-6) in the shortest possible time. Therefore, the average discovery time, that is, the mean duration of the [IA](#page-2-7) phase, is a fundamental metric for the [IA](#page-2-7) approaches, together with the misdetection probability i.e. the probability of detecting a [UE](#page-2-5) once it enters within the cell.

Finally, the [IA](#page-2-7) algorithms can be classified in [SA](#page-2-9) and [NSA](#page-2-8) approaches: [SA](#page-2-9) identify an algorithm which does not rely on a sub-6 GHz link (e.g. on [LTE\)](#page-2-10), while in [NSA](#page-2-8) a low frequency (with respect to [mmWave](#page-2-2) frequencies) link is used as a control channel. [NSA](#page-2-8) approaches might reduce the average discovery time, but since there must be a dedicated link for the control channel, this type of algorithms lead to a waste of resources. On the other hand, in the [SA](#page-2-9) algorithms the [IA](#page-2-7) operations are more complex, but they permit to deploy a complete [5G](#page-2-1) system since there is no need for [LTE](#page-2-10) [BSs](#page-2-6).

1.3 State of the Art

In this Section, we provide a review of the main approaches adopted in the literature for [IA](#page-2-7) in [5G](#page-2-1) [mmWave](#page-2-2) cellular networks.

The table [1.3](#page-15-0) shows several [IA](#page-2-7) procedures. Every algorithm is described with six fields:

- \bullet [SA/](#page-2-9)[NSA](#page-2-8);
- \bullet Simulation Scenario: this field indicates if authors have evaluated only line-of-sight [\(LOS\)](#page-2-14) propagation or even non-line-of-sight [\(NLOS\)](#page-2-15) propagation in the simulation phases;
- Propagation Model: this column shows if the considered propagation model is statistical (e.g. [\[11\]](#page-103-2)), hybrid (e.g. [\[12\]](#page-103-3)) or deterministic;
- \bullet *Memory*: an algorithm is considered with memory if takes into account the results of previous experiences. For example an algorithm which takes into account the number of users saw per sector;

Algorithm	SA/NSA	Simulation Scenario	Propagation Model	Memory	Context Information	UE transmission/reception type $(BF \text{ or } \text{omni})$
Exhaustive search (section 1.3.1)	SA	LOS	Model in $[11]$	No	N _o	BF
Iterative (section 1.3.1)	SA	LOS	Model in $[11]$	N _o	N _o	BF
Weigth-based search algorithm (section 1.3.2)	SA	LOS	Model in $[11]$	Yes	N _o	BF
MLRI (section 1.3.3)	SA	LOS	Model in $[11]$	N ₀	N _o	BF
SMBI (section 1.3.3)	SA	LOS	Model in $[11]$	Yes	N _o	BF
Coordinated Initial Access (section 1.3.4)	SA	LOS		N _o	N _o	BF
iBWS (section 1.3.5)	NSA	LOS	Model in $[11]$	N _o	Yes	BF
gSLS (section 1.3.5)	NSA	LOS	Model in $[11]$	N _o	Yes	BF
$D-SLS$ (section 1.3.5)	NSA	LOS	Model in $[11]$	No	Yes	BF
EDP (section 1.3.5)	NSA	LOS	Model in $[11]$	N _o	Yes	BF
Based on geo-located context Data Bases (section 1.3.6)	NSA	LOS/ NLOS	Hybrid model $[12]$ / One reflection RT [13]	Yes	Yes	BF
Alternate Direction Discovery Algorithms (section 1.3.7)	NSA	LOS	Hybrid model $[12]$ / One reflection RT [13]	No	Yes	BF
Multi base stations cell assignment (section 1.3.8)	NSA	LOS	Hybrid model [12]	No	Yes	OMNI

Table 1.1: Table containing a list of algorithms for the [IA](#page-2-7) phase.

- *Context Information*: with context information we define the knowledge at the [5G](#page-2-1) [BS](#page-2-6) of the users position, user orientation, user profiles, etc.., thanks to the aforementioned control channel;
- \bullet *[UE](#page-2-5) transmission/reception type:* this field refers to the type of strategy at the [UE](#page-2-5) side (i.e., omnidirectional vs beamforming).

1.3.1 Exhaustive and Iterative Approach

In [\[14\]](#page-103-5), authors compare two algorithms, both consisting in a complete scan of the whole 360° angular space by the [BS](#page-2-6) and the [UEs](#page-2-5) in search for the best communication channel between them, according to fixed codebooks. More specifically, it is assumed a slot structure in which the [PSS](#page-2-12) is periodically transmitted in each angular direction.

Exhaustive search performs a sequential beam searching: the [BS](#page-2-6) has a predefined codebook of N directions (each identified by a beamfomring vector) that covers the whole angular space. While connecting a [BS](#page-2-6) to a [UE,](#page-2-5)

Figure 1.3: Comparison between Exhaustive and Iterative search [\[15\]](#page-103-6).

the goal of this approach is to identify the best *transmitter* (TX) *-receiver* (RX) beam pair. Therefore, the [BS](#page-2-6) sends messages in those N directions, in different slots, through narrow beams, while the [UE](#page-2-5) configures its antenna array in order to directionally receive such messages. Upon the reception of a [PSS,](#page-2-12) the [UE](#page-2-5) evaluates the signal-to-noise-ratio [\(SNR\)](#page-3-2) and, if it is above a pre-defined threshold, it sends back a PSS_{Rx} message to the [BS.](#page-2-6) After having scanned the whole 360° angular space, the [BS](#page-2-6) determines the best scanning direction to reach the [UE,](#page-2-5) on the basis of the highest received [SNR.](#page-3-2)

Iterative search performs a two-stage scanning of the angular space. Again, a codebook is available, in order to send synchronization messages in desired directions. In the first phase, the [BS](#page-2-6) performs an exhaustive search through four macro wide beams and, after having scanned the whole 360° space, determines its best beam, on the basis of the highest received [SNR](#page-3-2) (similarly the [UE](#page-2-5) finds the best direction to reach the [BS\)](#page-2-6). In the second phase, the [BS](#page-2-6) refines the search by performing a further exhaustive search, with a narrower beam, in the sector selected during the 1st phase. Fig. [1.3](#page-17-0) shows the differences between the approaches.

Simulation Scenario

The [BS](#page-2-6) is placed in the centre of a circular cell. At each iteration one [UE](#page-2-5) is deployed according to a uniform distribution.

Simulation Results

In [\[14\]](#page-103-5), it has been shown that the exhaustive approach ensures a lower misdetection probability than the iterative procedure but on the other hand the iterative one shows less *average discovery time* i.e. the time a [BS](#page-2-6) needs to identify all users in its coverage range. Tests show that both algorithms present an acceptable midsedection probability for users in the range $0 - 30$ m. Therefore, when considering cells having very small radius, it may not be desirable to implement exhaustive search, because of its higher discovery delay. However, the iterative technique is not recommended when dealing with very dense networks because if multiple users are found in different macro directions, it is necessary to refine all of them, one at a time. Moreover, iterative technique shows bad performance even for edge users (95 meters from the [BS\)](#page-2-6).

1.3.2 Weight-Based Search Algorithm

The algorithm proposed in [\[16\]](#page-103-7) accounts for the scan of the whole space like the aforementioned one, but in this case the order in which the sectors are scanned is based on the previous experience.

In this case the considered scenario consists in more [UEs](#page-2-5) all around the [BS.](#page-2-6) When the [BS](#page-2-6) steers its beam in a particular sector and identifies one or more [UEs](#page-2-5) (i.e. with [SNR](#page-3-2)>threshold) it increases a counter, which is associated to the sector. Authors define a vector for storing and updating the counters related to each sector. When a scan of the overall space has been completed, the vector values are re-organized in descending order to establish how the new scanning will be performed, that is, giving more priority from the sector most populated to the least.

Simulation Scenario

The [BS](#page-2-6) is placed in the centre of a circular cell. At each iteration one [UE](#page-2-5) is deployed according to a uniform distribution.

Simulation Results

This algorithm shows less discovery delay than the exhaustive and iterative approach shown in previous subsection, due to the exploitation of the past attempts. Moreover, this improvement is obtained with performance, in terms of misdetection, close to the previous algorithms. Consequently, this approach enhance the aforementioned algorithms with a simple modification.

1.3.3 Memory-less Random Illumination and Memorybased Illumination

A statistical approach is proposed in [\[17\]](#page-103-8) in order to minimize the mean discovery time of a user entered in a cell. The authors defines two probability mass distributions [\(PMDs](#page-3-3)):

- The probability p_i that a user enters from the *i*th sector;
- The entrance time probability w_k , with k indicating the index of the temporal slot (time is here divided into slots).

Fig. [1.4](#page-20-0) shows an example of p_i considered by the authors. Both *memory-less* random illumination [\(MLRI\)](#page-3-4) and statistic and memory-based illumination [\(SMBI\)](#page-3-5) algorithms are based upon the a-priori knowledge of p_i and w_k .

[MLRI](#page-3-4) considers the scan of the sectors with a probability q_i proportional to p_i without any update of the probability of entrance of the users. The equation in [1.1](#page-19-1) shows the probability q_i :

$$
q_i = \frac{1}{\sum_{j=1}^{N} \sqrt{\frac{p_j}{\epsilon_j}}} \sqrt{\frac{p_i}{\epsilon_i}} \tag{1.1}
$$

where N is the number of sectors in which the space is divided. Moreover, the authors associates to the *i*th sector a detection probability ϵ_i , which takes into account errors in the discovery process due to effect of noise, channel fading and interference.

[SMBI](#page-3-5) illuminates a certain sector in the time slot k based both on the statistics of users entrance $(p_i \text{ and } w_k)$ and on the fact that the user has not yet been discovered in the kth slot. They consider that the probability of finding the [UE](#page-2-5) in slot k illuminating sector l is:

$$
v_k(l) = \sum_{t=1}^k w_t \frac{p_l^{(t)}}{\sum_{i=1}^N p_i^{(t)}},\tag{1.2}
$$

where the probability that the [UE](#page-2-5) is in sector l, $p_l^{(t)}$ $\binom{t}{l}$ is updated considering the previously illuminated sectors and the fact that it entered at time t , i.e.:

$$
p_l^{(t)} = p_i \epsilon_i^{C(k,t,i)}, \tag{1.3}
$$

where $C(k, t, i)$ represents the number of times that sector i has been illuminated between time t and k . Finally, they obtain a deterministic sequence to scan the whole angular space ${b_k}$ by computing:

Figure 1.4: Example of sector entrance distribution p_i [\[17\]](#page-103-8).

$$
b_k = \underset{l}{\operatorname{argmax}} \, v_k(l). \tag{1.4}
$$

This sequence is considered to scan the space as long as p_i and w_i do not change.

Simulation Scenario

The [BS](#page-2-6) is placed in the centre of a circular cell. p_i (equilateral triangular [PMD](#page-3-3) with parameter L shown in fig [1.4](#page-20-0)) and w_k (exponential distribution) are used to deploy users into the spatial sectors at a certain time slot, respectively.

Simulation Results

In [\[17\]](#page-103-8), a comparison among [MLRI,](#page-3-4) [SMBI](#page-3-5) and exhaustive search is performed, by considering the average discovery time and the false alarm and misdetection probabilities as figures of merit to evaluate the performance. Notably, the average discovery time indicates the mean number of slots between the user entrance and its discovery by the [BS](#page-2-6) after the [IA](#page-2-7) procedure. Indeed, [SMBI](#page-3-5) outperforms both exhaustive search [\(EA\)](#page-3-6) and the [MLRI](#page-3-4) scheme in terms of misdetection probability by putting also in emphasis the need to carefully design the threshold to balance both the false alarm and the misdetection probability. Concerning the average discovery time, results show that [MLRI](#page-3-4) algorithm does not significantly improve [EA](#page-3-6) performance, due to the fact that it is based only on estimated p_i (it is possible that sectors are explored more than once in N consecutive slots), while [SMBI](#page-3-5) outperforms both algorithms also in terms of average discovery time thanks to the exploitation of the memory.

1.3.4 Coordinated Initial Access

The solution proposed in [\[18\]](#page-103-9) is based on the assumption that multiple [BSs](#page-2-6) are allowed to coordinate each other by sharing the power delay profile [\(PDP\)](#page-3-7) measurement reports via backhaul links in addition to the location and beam codebook information. This algorithm involves at least three [mmWave](#page-2-2) [BSs](#page-2-6) which cooperate to find the position of the [UE](#page-2-5) supposed to be positioned inside the triangle whose vortexes are the [BSs](#page-2-6) positions.

First, the [UE](#page-2-5) transmits a known sequence through beams covering the whole 360° angular space as depicted in Fig. [1.5.](#page-22-1) For every [UE](#page-2-5) beam, the [BSs](#page-2-6) store in a database the [PDP](#page-3-7) measure by steering their beams in random directions. After that the [BSs](#page-2-6) share each other the [PDPs](#page-3-7) and calculate an estimate of the angles between each [BS](#page-2-6) and the [UE.](#page-2-5) Therefore, thanks to the Carnot Theorem, this angles permit to evaluate the distances between every [BS](#page-2-6) and the [UE.](#page-2-5) After this operation, each [BS](#page-2-6) is enabled to steer its beam towards the [UE](#page-2-5) direction.

Simulation Scenario

The [UE](#page-2-5) is generated into the triangle whose vertexes are the three [BSs](#page-2-6). Figure [1.5](#page-22-1) shows the scenario.

Simulation Results

In [\[18\]](#page-103-9), the proposed solution is compared with a similar approach but in absence of coordination between the [BSs](#page-2-6). Simulation shows that the average discovery time is reduced with the exploitation of the backhaul link between the [BSs](#page-2-6). Authors also claim that this type of algorithm could even deal with a [NLOS](#page-2-15) case, thanks to the expected high density small cells deployment of the [5G](#page-2-1) i.e., at least three [BSs](#page-2-6) are always in [LOS](#page-2-14) with the [UE.](#page-2-5)

Figure 1.5: Scenario considered in [\[18\]](#page-103-9).

1.3.5 Approaches Based on Context Information

Several algorithms using context information (in particular spatial position of each [BS](#page-2-6) and [UE](#page-2-5) through global positioning system [\(GPS\)](#page-3-8) system) are defined in [\[13\]](#page-103-4). This subsection covers scenarios without obstacles whereas the effect of obstacles is investigated in the following section.

The awareness of the [GPS](#page-3-8) coordinates of both [BS](#page-2-6) and [UE](#page-2-5) (by means of a low frequency control channel, i.e. an [LTE](#page-2-10) connection) permits to point each others with a certain accuracy limited by the location error of the [GPS.](#page-3-8) The location error is the principal problem for this type of algorithm. Indeed, if the user's position could be known with absolute certainty, [BS](#page-2-6) and [UE](#page-2-5) would be able to point each other immediately in an obstacle-free environment.

The first constraint accounted for in [\[13\]](#page-103-4) is the scarce complexity affordable at the UE side. Consequently, a realistic solution cannot be much more complex than the sector level sweep [\(SLS\)](#page-3-9) i.e. an exhaustive search. Given such a consideration, authors propose initial beam width selection [\(iBWS\)](#page-3-10), a procedure which processes the [UE](#page-2-5) location and selects the best combination of beam widths at both [BS](#page-2-6) and [UE](#page-2-5) side. After that, they inform each other about what it has been selected through the separated control channel. The selection is based on the [GPS](#page-3-8) coordinates of the [UE,](#page-2-5) and it is useful to set the first direction and beam width for both the [BS](#page-2-6) and the [UE.](#page-2-5) There are three possible width combinations for the [iBWS](#page-3-10) procedure:

• Wide [BS](#page-2-6) - Narrow [UE](#page-2-5) ([wBS](#page-2-6) - nUE): the one with the largest beam

width at [BS](#page-2-6) side;

- Narrow [BS](#page-2-6) Wide [UE](#page-2-5) ($nBS wUE$ $nBS wUE$): the one with the largest beam width at [UE](#page-2-5) side;
- Balanced: the one with the minimum difference between the [BS](#page-2-6) and the [UE](#page-2-5) beam width.

After the aforementioned phase, three algorithms are proposed in order to extend the simple brute-force scanning of the sectors (i.e. [SLS](#page-3-9)) at the [BS](#page-2-6) side :

- \bullet sector level sweep [\(gSLS\)](#page-3-11);
- \bullet dynamic sector level sweep [\(D-SLS\)](#page-3-12);
- enhanced discovery procedure [\(EDP\)](#page-3-13).

[gSLS](#page-3-11) is a straightforward extension of the [SLS](#page-3-9) approach. It ignores [iBWS](#page-3-10) and considers a fixed beam width which corresponds to the narrowest available value in order to preserve the largest coverage. The procedure starts by configuring the beam parameters pair at [BS](#page-2-6) side (beam width and pointing direction) for the nominal user position, obtained from the control channel which knows the [GPS](#page-3-8) position of the [UE.](#page-2-5) Afterwards, if the user has not been found yet, the [BS](#page-2-6) proceeds to circularly sweep through adjacent beams until the whole circle has been explored or until the [UE](#page-2-5) has been detected. Users that cannot be discovered by this procedure are defined as unreachable.

[D-SLS](#page-3-12) is a search paradigm that dynamically adapts beam widths. The search starts considering the beam with the width and the direction set by the [iBWS](#page-3-10) strategy. If the user is not immediately detected, the [mmWave](#page-2-2) [BS](#page-2-6) sequentially scans around through every direction, keeping the same beam width. If no user is still found, the [mmWave](#page-2-2) [BS](#page-2-6) restarts the circular sweep with a reduced beam width. The following scanning operation considers a larger area (see Fig. [1.6-](#page-24-0)right) as well as a larger number of attempts. The procedure is repeated until every combination of beam width and pointing direction is explored.

[EDP](#page-3-13) exploits the context information in a smarter way than the others algorithms. The search starts in the same way as for the [D-SLS](#page-3-12) approach, but in this case if the user is not found within the first beam, the [BS](#page-2-6) varies the beam width scanning n adjacent sectors (adjacent to the user position and $2\pi/n$ wide) in a clock-wise and counter clock-wise way. [D-SLS](#page-3-12) and [EDP](#page-3-13) are shown in Fig. [1.6.](#page-24-0)

Figure 1.6: Left [EDP,](#page-3-13) right [D-SLS](#page-3-12). Estimated user location is (x_0, y_0) [\[13\]](#page-103-4).

Simulation Scenario

One [BS](#page-2-6) is placed in the middle of a 450×350 m² m area, while users (user's nominal positions i.e. the one indicated by the localization system) are dropped in this area according to a normal distribution centred in the [BS](#page-2-6) with standard deviation σ_{pos} . The user-location uncertainty is modelled by considering the real user position distributed as a symmetric and independent bivariate normal distribution centred in the nominal position with parameter $\sigma_x = \sigma_y = \sigma$.

Simulation Results

The performance of the search strategies is first evaluated in terms of location error, without [iBWS](#page-3-10) (at [UE](#page-2-5) side a simple [SLS](#page-3-9) strategy is assumed). In particular, it has been evidenced that [EDP](#page-3-13) generally outperforms [gSLS](#page-3-11) and [D-SLS,](#page-3-12) especially for small location errors (i.e., less than 100 m). In addition, concerning the [EDP](#page-3-13) strategy, the number of required steps might be reduced by increasing the number of adjacent sectors (i.e., n). On the contrary, the number of steps sharply increases when more sectors are used and the location error is large. Indeed, when the positioning error increases, the higher error sensitivity of narrower sectors negatively impacts on [EDP](#page-3-13) performance: the algorithm gets caught in a deep exploration of a sector that could be wrong due to the position inaccuracy.

Authors evaluate the impact of the [iBWS](#page-3-10) strategy in terms of average discovery time. They combine the aforementioned strategies with [D-SLS](#page-3-12) and [EDP](#page-3-13) search scheme, showing the performance as a function of the location error $\epsilon = 3\sigma$ in two cases which differ for the standard deviation of the normal distribution of the nominal positions is set:

- σ_{pos} =100 meters i.e. users on average more distant from the [BS;](#page-2-6)
- \bullet σ_{pos} =10 meters i.e. users on average closer to the [BS.](#page-2-6)

In the first case they prove that the [iBWS](#page-3-10) strategy with [wBS](#page-2-6) - [nUE](#page-2-5) gives results similar to the aforementioned approach without [iBWS,](#page-3-10) while [nBS](#page-2-6) [wUE](#page-2-5) shows an improvement with respect to it, since the location error is low $(\epsilon < 80 \,\mathrm{m}$ for [EDP](#page-3-13) and $\epsilon < 30 \,\mathrm{m}$ for [D-SLS\)](#page-3-12). On the other side, when [UEs](#page-2-5) are closer to the [BS,](#page-2-6) the [iBWS](#page-3-10) strategy is very effective when the location error is small, leading the discovery phase to be very close to the remarkable result of establishing a [BS](#page-2-6)[-UE](#page-2-5) connection at the first attempt.

In [\[13\]](#page-103-4), it is also proved that [EDP](#page-3-13) generally outperforms [D-SLS](#page-3-12) when the location error is small, while it degrades and becomes less convenient for larger errors. This is true for both aforementioned cases, but it is less evident when users are closer to the [BS.](#page-2-6) Thus, it emerges that it is more favorable to explore the space in the angular domain, as happens in [D-SLS.](#page-3-12)

1.3.6 Approaches Based on Geo-located Context Database

We now focus on the approach in [\[13\]](#page-103-4), but for scenarios with the presence of obstacles. The knowledge of the [GPS](#page-3-8) coordinates does not allow to find out the feasible steering directions at [BS](#page-2-6) side for the [NLOS](#page-2-15) [UE.](#page-2-5) Therefore, authors claim that a practical approach could leverage on a geo-located context database [\(DB\)](#page-3-14), useful to exploit reflected rays due to the quasi-perfect mirror behaviour of the surfaces in [mmWave](#page-2-2) propagation [\[13\]](#page-103-4).

The idea of using a DB is as follows (see Fig. [1.7\)](#page-26-0). The system starts without the knowledge of where and when [UEs](#page-2-5) can be detected. Then, once a new user is discovered the algorithm stores the correct beamforming configuration in the [DB](#page-3-14) in terms of $[(x, y), w, d]$ where (x, y) is the user estimated position and w, d are respectively the width and the direction of the beam which can reach the user. Such information, which is collected also for the successive [UEs](#page-2-5), can be exploited to speed-up the [IA](#page-2-7) process, by starting the search from the "known positions" that exhibited a higher presence of new [UEs](#page-2-5) in the past attempts. Notably, in [\[13\]](#page-103-4) only the beam parameters are stored, whereas the information on [UE](#page-2-5) orientation is discarded. In fact, according to the authors' considerations, even small [UE](#page-2-5) orientation errors can have a detrimental impact on the use of the previously collected data, thus limiting the beneficial effects.

Figure 1.7: Example of range m setup in geo-located context database.

In order to better understand the function of the [DB](#page-3-14) an important aspect is the concept of "closeness" to a position associated to a [DB](#page-3-14) entry. To this aim, authors introduced a range m. Given a new user requesting access from a nominal position $p = (x', y')$, m indicates the maximum distance from p to delimit the search in the [DB](#page-3-14) among the stored positions. Successively, the stored positions that are at a distance lower than m with respect to p , are first sorted starting from the closest one, and then tested to detect the [UE.](#page-2-5) If the user is not found using [DB](#page-3-14) information, the search proceeds by activating one of the algorithms proposed in the previous subsection.

Simulation Scenario

The scenario is the same as the previous subsection, but in this case obstacles are placed inside the area, generated with a uniform distribution for each simulated cycle. Obstacles have size 20×20 m², and they are considered as opaque bodies with reflecting edges. They assume the area boundary reflecting as well. Due to the 2-D characterization of the scenario, ground reflections are not considered in the ray tracing model, but are statically included in the propagation model in terms of random fading. The number of obstacles considered in the test phases is 0, 10 and 20.

Simulation Results

An important characteristic that must be discussed is the range m. Results obtained varying the location error prove that a too low value of m prevents the full exploitation of the [DB:](#page-3-14) in fact only users very close to a [DB](#page-3-14) entry can

access the [DB,](#page-3-14) even if the same information could be useful for more distant users. Vice versa, when the value of m is too large, many beams suggested by the [DB](#page-3-14) become uncorrelated with the user location, thus leading to a wastage of unsuccessful beamforming attempts.

Authors also test the impact of the range m on the probability of success conditioned on that at least one candidate [DB](#page-3-14) entry is available and considered for the incoming user. Tests put in evidence a trade-off between aspects. From one side, the increase of m implies that users "relatively far" from [DB](#page-3-14) have in most cases "non-empty" candidate sets. This generally decreases the conditioned success probability because it might badly associate users with [DB](#page-3-14) entries. However, increasing m enlarges the set of beam configurations that can be tested when the [DB](#page-3-14) is accessed, thus increasing the success probability, especially in case of location errors.

1.3.7 Alternate Direction Discovery Algorithms

In [\[19\]](#page-104-0), authors investigate a framework for [mmWave](#page-2-2) initial access relying on contextual information which considers several advanced features. First, it is assumed that smart directional cell discovery algorithms can be applied to both [BS](#page-2-6) and [UE](#page-2-5) devices. Second, they claim that different context type and accuracy can be available in real implementations, therefore this information could be used to improve the [IA](#page-2-7) performance.

To this aim they initially propose two algorithms which leverage on the information about user's position and orientation:

- alternate direction discovery [\(ADd\)](#page-3-15)
- alternate direction discrovery with variable beam-width [\(ADdV\)](#page-3-16)

[ADd](#page-3-15) is a straightforward extension of [SLS](#page-3-9) algorithm: once [iBWS](#page-3-10) selects the proper beam-width for [UE](#page-2-5) and [BS,](#page-2-6) a set of beam pointing directions is defined at both devices. Each device evaluates the angular difference between every beam pointing directions and the estimated direction toward the other device. Then, beams are sorted by increasing angular difference to define the beam sequence for the discovery. The area surrounding the devices is scanned according to that sequence.

[ADdV](#page-3-16) derives from the [ADd](#page-3-15) algorithm previously described by adding the possibility to dynamically select beam-widths during the discovery: considering the beam-width selected by [iBWS,](#page-3-10) [ADdV](#page-3-16) scans all the surrounding area as [ADd.](#page-3-15) If no connection is established, [ADdV](#page-3-16) reduces the beam-width and iteratively scans the area with a larger set of pointing directions. Hence,

allowing devices to increase their antenna gain, [ADdV](#page-3-16) can recover from the situations in which the selection made by the [iBWS](#page-3-10) procedure cannot guarantee the [BS](#page-2-6)[-UE](#page-2-5) communication.

These algorithms rely only on the user's position and user's information, therefore they propose three others algorithms, two for the [UE](#page-2-5) and one for the [BS](#page-2-6) which are based on the awareness of the user's position, user's orientation together with their error ϵ_l and ϵ_{ϕ} , respectively. In particular, it is shown that by assuming perfect knowledge of the [BS](#page-2-6) orientation and position, the beam selected at [UE](#page-2-5) side depends on both [UE](#page-2-5) position and [UE](#page-2-5) orientation errors, while the [BS](#page-2-6) beam selection can be affected only by [UE](#page-2-5) location error. Indeed, the [UE](#page-2-5) orientation error can have a larger impact on the [IA](#page-2-7) procedure since the [UE](#page-2-5) reference system can be completely changed. To mitigate this effect, they propose the following improved approaches:

- alternate direction discovery within a sector [\(ADdS\)](#page-3-17)
- alternate direction discovery variable beam-width within a sector [\(ADdVS\)](#page-3-18)
- alternate direction discovery within a sector extended [\(ADdVS+\)](#page-3-19)

[ADdS](#page-3-17) and [ADdVS](#page-3-18) are improvements of [ADd](#page-3-15) and [ADdV](#page-3-16) respectively at the [UE](#page-2-5) side. It is shown that the awareness of the orientation angle error at the [UE](#page-2-5) side allows defining an angular sector S_{ϕ} wherein the direction towards the [BS](#page-2-6) is most likely to be. Accordingly, the [UE](#page-2-5) can focus the discovery within S_{ϕ} and avoid the activation of unsuccessful beams. Thus, the [UE](#page-2-5) can reduce the number of beam attempts, and consequently the discovery duration

At the [BS](#page-2-6) side they propose a more sophisticated approach, the [ADdVS+](#page-3-19) algorithm which is an extension of [ADdV.](#page-3-16) They claim that the [UE](#page-2-5) position accuracy allows to define an angular sector wherein [UE](#page-2-5) is expected to be located. This sector points towards the [UE](#page-2-5) position and extends in such a way the circle defining the [UE](#page-2-5) position error is included within the two radii defining the sector. The area surrounding the [BS](#page-2-6) is divided into several of these sectors and each sector is explored according to the [ADdVS](#page-3-18) approach. If the first sector is scanned without a success, all adjacent sectors are alternately (clockwise and counter-clockwise) explored.

Simulation Scenario

In [\[19\]](#page-104-0), it is considered a [mmWave](#page-2-2) base station placed in the middle of a $450 \times$ 350 m^2 area surrounded by reflecting walls. A different number of squared 20×20 m² size obstacles are randomly placed depending on the scenario, while [UEs](#page-2-5) are randomly dropped according to a uniform distribution within the area; [UEs](#page-2-5) orientation is randomly chosen.

The user-location uncertainty is modelled by considering the nominal [UE](#page-2-5) position as a symmetric bivariate normal distribution centred in the real [UE](#page-2-5) position with standard deviation $\rho_x = \rho_y = \rho$.

The [BS'](#page-2-6)s orientation is assumed to be perfectly known, while [UE](#page-2-5) orientation error is modelled considering the estimated (nominal) [UE](#page-2-5) orientation as a uniformly distributed random variable with mean value corresponding to the real [UE](#page-2-5) orientation and variance equal to $\sigma_{\phi}^2/3$.

Simulation Results

The [ADd](#page-3-15) and [ADdV](#page-3-16) are initially tested in an obstacle-free scenario. Two performance metrices are considered: the average discovery time (evaluated in terms of antenna configuration switches at the [UE](#page-2-5) side) and the achievable coverage (evaluated in terms of successful initial access).

Tests demonstrate that, by applying the same discovery algorithm at both [BS](#page-2-6) and [UE,](#page-2-5) [ADd](#page-3-15) has a lower [IA](#page-2-7) duration than [ADdV,](#page-3-16) due to the fewer beam configuration probed. However, although the beam-width adaptation mechanism of [ADdV](#page-3-16) increases the search duration, it augments the probability to successfully discovery the UE.

After these tests, scenarios with obstacles are considered. In brief, results show that the presence of obstacles reduces the performance of the considered algorithms. In particular, obstacles exacerbate the trade-off between success rate and discovery delay.

Finally, authors test the others search approaches in the scenario with and without obstacles. Results are obtained by activating [ADdVS+](#page-3-19) at [BS](#page-2-6) side and several different algorithms at [UE](#page-2-5) side. In absence of obstacles, it is evidenced that [ADdS](#page-3-17) and [ADdVS](#page-3-18) algorithms, thanks to the richer context information, are effective in speeding up the initial access duration by reducing the search space with respect to [ADd](#page-3-15) an[dADdV,](#page-3-16) respectively. As the orientation accuracy decreases, the search space increases, hence [ADdS](#page-3-17) and [ADdVS](#page-3-18) performance gets closer to those attainable with [ADd](#page-3-15) and [ADdVS.](#page-3-18)

Moreover, in the scenario with obstacles, it has been demonstrated that the best configuration consists in [ADdVS+](#page-3-19) at the [BS](#page-2-6) and [ADdV](#page-3-16) at the [UE](#page-2-5) side, since the use of [ADdV](#page-3-16) could help at improving the performance in [NLOS](#page-2-15) with respect to [ADdS](#page-3-17) and [ADdVS](#page-3-18) are limited by the reduced search space.

1.3.8 Multi Base Stations Cell Assignment

A multi base station approach is proposed in [\[20\]](#page-104-1). As in [\[13,](#page-103-4)[19\]](#page-104-0), authors rely on a heterogeneous network [\(HetNet\)](#page-3-20) where there are both [LTE](#page-2-10) [BSs](#page-2-6) (macro cell base stations [\(macro-BS\)](#page-3-21)) and [5G](#page-2-1) [BS](#page-2-6) (small cell base stations [\(SC-BS\)](#page-3-22)), and on the awareness of the position of the [UE](#page-2-5) into the macro cell.

In the proposed search scheme, the [UE](#page-2-5) is initially connected to the [macro-BS.](#page-3-21) The [macro-BS](#page-3-21) can select some local [SC-BS](#page-3-22) that can potentially serve the [UE.](#page-2-5) A [SC-BS](#page-3-22) is to be selected according to the context information of the [UE](#page-2-5) (i.e. location information provided by the [GPS\)](#page-3-8). When a [SC-BS](#page-3-22) receives the command and the [UE'](#page-2-5)s location from the [macro-BS,](#page-3-21) it starts to sweep the area by transmitting reference signal in different directions in an exhaustive way starting from the [UE](#page-2-5) position provided by the [GPS.](#page-3-8)

Thus, in [\[20\]](#page-104-1) authors put particular emphasis on how the macro [BS](#page-2-6) selects the [SC-BS](#page-3-22) that can serve the [UE](#page-2-5) in the best possible way. More specifically, the selection criteria is based upon the estimated received power at the [UE,](#page-2-5) computable thanks to the knowledge of the estimated user's position and the known [SC-BSs](#page-3-22) positions.

According to the collected measurements, the [macro-BS](#page-3-21) selects the best [SC-BS](#page-3-22) for the [UE.](#page-2-5) Here the [macro-BS](#page-3-21) is considered as the entity that collects all the measurements, perform signal processing and sends commands to [SC-BS.](#page-3-22) In that sense, the [macro-BS](#page-3-21) performs the role of the network coordinator.

In this context, authors propose an ad-hoc [SC-BS](#page-3-22) selection scheme, expected to improve the current adopted approach.

In both approaches, the [macro-BS](#page-3-21) initially estimates the location of the [UE.](#page-2-5) In the traditional scheme, the [macro-BS](#page-3-21) successively sorts [SC-BSs](#page-3-22) according to the expected strength of their received signal in the estimated location of the [UE.](#page-2-5)

The [macro-BS](#page-3-21) starts by sending the estimated [UE'](#page-2-5)s location to the first [SC-BS](#page-3-22) with also the command to transmit a reference signal towards the [UE.](#page-2-5) After that, the [SC-BS](#page-3-22) tunes its beam direction towards the location that has been estimated by the [macro-BS](#page-3-21) and starts sweeping the surrounding area by adopting an exhaustive search.

If the selected [SC-BS](#page-3-22) cannot reach the [UE](#page-2-5) after a full beam search, the [macro-BS](#page-3-21) selects and commands the next [SC-BS](#page-3-22) in the candidates list. This process will continue until either the [UE](#page-2-5) discovers an [SC-BS](#page-3-22) or there is no [SC-BS](#page-3-22) left to search the area. In the latter case, the [macro-BS](#page-3-21) itself can be associated to the [UE.](#page-2-5)

The main difference between the conventional and the proposed approach is the criterion for sorting the [SC-BSs](#page-3-22) and selecting them. In the scheme proposed in [\[20\]](#page-104-1), the [SC-BSs](#page-3-22) are sorted according to the probability of detecting the [UE.](#page-2-5) For the *i*th [SC-BS](#page-3-22) authors define the probability $Pr_C^{(i)}$ as the probability that the [UE](#page-2-5) is within the coverage area. This probability depends on the [UE](#page-2-5) location measurements, the statistic of the estimation error, the position of the [SC-BS](#page-3-22) and its coverage area. This probability is calculated as follows:

$$
Pr_C^{(i)} = \int_{C_i} f_{\Psi_{\text{UE}}}(\Psi) d\Psi \tag{7}
$$

where C_i is the coverage area of the *i*th [SC-BS](#page-3-22) and $f_{\Psi_{\text{UE}}}(\cdot)$ is the probability density function of the [UE'](#page-2-5)s position. C_i is defined as the area in which the received power from the [SC-BS,](#page-3-22) is higher than a threshold. According to this definition, C_i results to be a circular area.

In the beginning of the proposed algorithm all available [SC-BSs](#page-3-22) are con-sidered candidates and the [SC-BS](#page-3-22) with the highest $Pr_C^{(\cdot)}$ are initially selected in order to maximize the probability $Pr_{C|selected}^{(\cdot)}$ of detecting the [UE.](#page-2-5) By considering the fact that previously selected [SC-BSs](#page-3-22) could not reach the [UE,](#page-2-5) the probability that the [UE](#page-2-5) is reached by another [SC-BS](#page-3-22) is calculated and considered as the [SC-BS](#page-3-22) selection metric:

$$
BS_{selected} = \arg\max_{BS_i} Pr_{C|selected}^{(i)}
$$
 (9)

where the probability $Pr_{C|selected}^{(i)}$ is calculated as follows:

$$
Pr_{C|selected}^{(i)} = \int_{C_i \cup C_{selected}} f_{\Psi_{UE}}(\Psi) d\Psi
$$
\n(10)

where $C_{selected}$ is the union of the coverage of all previously selected [SC-BSs](#page-3-22).

Simulation Scenario

In [\[20\]](#page-104-1) authors consider a [HetNet](#page-3-20) composed by a [macro-BS](#page-3-21) and arbitrary number of [SC-BSs](#page-3-22) of different types in random places within the macro cell area. Only [LOS](#page-2-14) communication is considered.

In the simulation the [UEs](#page-2-5) are generate once a time in the area. The [UE'](#page-2-5)s position $f_{\Psi_{\text{UE}}}(\cdot)$, is a two-dimensional Normal distribution centred at the estimated position.

Simulation Results

In [\[20\]](#page-104-1), the proposed scheme is compared to the conventional one in terms of probability that the best [SC-BS](#page-3-22) is selected before any other [SC-BSs](#page-3-22) (i.e. it guarantees the best receive power at [UE](#page-2-5) side), and in average discovery time i.e. the average number of scanning directions for cell assignment. In addition, it is also investigated when three [SC-BSs](#page-3-22) simultaneously transmit the reference signal in ad-hoc directions in search of the [UE.](#page-2-5)

Operating like this, it is demonstrated that the probability of finding the best [BS](#page-2-6) degrades when the density of the [SC-BSs](#page-3-22) increases, although the proposed scheme shows a better performance than the conventional one. Especially, the proposed scheme with 3 [SC-BSs](#page-3-22) which transmit simultaneously, ensures the discovery of the best [BS,](#page-2-6) that is, whenever the [UE](#page-2-5) is detected by a group of three selected [SC-BSs](#page-3-22), the best [BS](#page-2-6) is always among them and is discovered.

When the approaches are compared in terms of *average discovery time*, it emerges that the proposed scheme, with only one [SC-BS](#page-3-22) searching for the [UE,](#page-2-5) allows to reduce the number of transmissions of the 35% with respect to the conventional algorithm. If the number of [SC-BSs](#page-3-22) is set to 3, that number is reduced of the 70%, thus guaranteeing a much faster [IA](#page-2-7) procedure.

1.4 Conclusions

In the [SOTA,](#page-2-11) algorithms based on both single and multi [BS](#page-2-6) have been proposed. In this work, we are particularly interested on single [BS](#page-2-6) approaches, which were proposed relying only on [mmWave](#page-2-2) technology (SA) [\[14,](#page-103-5) [16,](#page-103-7) [17\]](#page-103-8) or considering also [LTE,](#page-2-10) low frequency dedicated channels or [GPS](#page-3-8) [\(NSA\)](#page-2-8) [\[13,](#page-103-4) [19\]](#page-104-0). Most part of the works inherent to [SA](#page-2-9) [IA](#page-2-7) use statistical channel evaluation in simple scenarios [\[11\]](#page-103-2) and usually neglect the [UE](#page-2-5) to improve the [IA](#page-2-7) procedure [\[14,](#page-103-5)[16,](#page-103-7)[17\]](#page-103-8). Statistical channels do not allow to account for the position mobile user and the correlation between the channels in different positions determined by the geometry of the environment. Thus, deterministic models are preferable to test memory-based approaches. Moreover, [SA](#page-2-9) algorithms which leverage on a memory-based system [\[16,](#page-103-7) [17\]](#page-103-8) do not associate the memory to several half-power beamwidths [\(HPBWs](#page-3-23)) i.e. different beam configurations, as described in chapter 3.

Thus, our aim is to propose a new [SA](#page-2-9) memory-based algorithm, tested with a deterministic channel model based on an ad-hoc ray tracing (RT) simulator.

The next chapter introduces the proposed novel approaches, while the chapter 3 shows how the [IA](#page-2-7) simulator works. Finally in chapter 4 we show the obtained results.

Chapter 2

The Proposed IA Algorithm

This chapter shows in details our proposed [IA](#page-2-7) technique. In the following, we describe how our novel algorithm is developed at the [BS](#page-2-6) and [UE](#page-2-5) side.

2.1 BS Side Implementation

The proposed algorithm at [BS](#page-2-6) side consists in a [SA](#page-2-9) approach which leverages on the possibility of adopting antenna array patterns with different [HPBW.](#page-3-23) Moreover, the algorithm exploits the past experience in the scenario, that is, it is based on the creation of a database that accounts for the number of detected users according to the sector and the exploited [HPBW.](#page-3-23)

The motivation behind the proposed method is to reduce the scanning time duration in the [IA](#page-2-7) procedure, to permit the [BS](#page-2-6) to detect the presence of a [UE](#page-2-5) in the shortest possible time, while guaranteeing a reliable misdetection probability. This aspect is important in the perspective of achieving low latency networks in next [5G.](#page-2-1) Hence, the possibility to learn from previous experience is fundamental for the next generation [BS](#page-2-6) to achieve a faster [IA](#page-2-7) phase. To improve the [IA](#page-2-7) procedure, large beams are usually preferred because they permit to scan the area in a shorter time, since the number of sectors forming the whole angular space decreases with the increase of the [HPBW,](#page-3-23) i.e. the width of the single sector. On the other hand, a larger beam usually implies a reduction in the antenna gain, so that the link budget between the [UE](#page-2-5) and the [BS](#page-2-6) worsen, and thus [UEs](#page-2-5) might not be detected.

First we rely on the possibility for the [BS](#page-2-6) to have several beam configurations available. Fig. [2.1](#page-35-0) shows different possible beams.

Second, the [BS](#page-2-6) can leverage on a knowledge database which takes the form of a table, that includes information about the detected [UEs](#page-2-5) per sector with the adopted [HPBW.](#page-3-23) Fig. [2.2](#page-35-1) shows an example of the table. The rows

Figure 2.1: Example of three beams with different [HPBW](#page-3-23) $H^{(1)}$, $H^{(2)}$, $H^{(3)}$.

of the matrix are as many as the number of considered [HPBW,](#page-3-23) N_{Beam} . The columns instead correspond to a discretization of the whole angular space. For example a beam with a [HPBW](#page-3-23) of 30° divides the whole angular space in 12 sectors. The discretization step is fixed by the beam with the minimum
HPBW $H^{(N_{Beam})}$ thus there are $N_{\text{max}} = \begin{bmatrix} 360^{\circ} \\ -360^{\circ} \end{bmatrix}$ columns. Each call in [HPBW,](#page-3-23) $H^{(N_{Beam})}$, thus there are $N_{Sect} =$ $H^{(N}$ Beam m columns. Each cell in the matrix is an incremental counter. Notably, as it will be detailed in the following (see Fig. [2.4\)](#page-38-0), specific ensembles of cells will form a tile.

Figure 2.2: Example of knowledge database.
For sake of clarity, we define:

$$
\mathbf{H} = [H^{(1)}, \dots, H^{(j)}, \dots, H^{(N_{Beam})}];
$$
\n(2.1)

$$
\mathbf{C} = [C^{(1)}, \dots, C^{(j)}, \dots C^{(N_{Beam})}]; \tag{2.2}
$$

$$
\mathbf{P} = [P^{(1)}, \dots, P^{(j)}, \dots, P^{(N_{Beam})}]; \tag{2.3}
$$

$$
H^{(j)} \iff \mathbf{S}^{(j)} = \left[S_1^{(j)}, \dots, S_k^{(j)}, \dots, S_{N_j}^{(j)} \right];\tag{2.4}
$$

$$
C^{(j)} \iff \mathbf{T}^{(j)} = \left[T_1^{(j)}, \dots, T_k^{(j)}, \dots, T_{N_j}^{(j)}\right].
$$
 (2.5)

where:

$$
\bullet \, N_j = \left\lceil \frac{360^\circ}{H^{(j)}} \right\rceil;
$$

- H is a vector containing the considered [HPBW](#page-3-0) from the wider to the thinner;
- C is a vector containing the configurations of the beams, that is, the representation of the beam widths in the matrix;
- **P** is a vector where the *j*th element $P^{(j)}$ represents the maximum power level detectable with the [HPBW](#page-3-0) $H^{(j)}$. Since, $P^{(1)} < \ldots < P^{(j)} < \ldots <$ $P^{(N_{Beam})}$, $H^{(j)}$ allows to detect every user with a received power less than or equal to $P^{(j)}$. Each $P^{(j)}$ corresponds to a row in the matrix. Fig. [2.3](#page-37-0) shows the beam widths and the corresponding maximum detectable power levels;
- \bullet The equivalence in Eq. [2.4](#page-36-0) shows the correspondence between the jth [HPBW](#page-3-0) and the *j*th vector of steering directions $S^{(j)}$;
- \bullet The equivalence in Eq. [2.5](#page-36-1) shows the correspondence between the jth configuration $C^{(j)}$ and the jth vector of tiles $\mathbf{T}^{(j)}$. The index j fixes the shape of the tile while k defines the position of the tile in the matrix;
- With $(H^{(j)}, S_k^{(j)})$ we define the couple [HPBW,](#page-3-0) kth steering direction;
- With $(C^{(j)}, T_k^{(j)})$ we define the couple configuration, kth tile in the matrix.

Fig. [2.4](#page-38-0) shows the examples of correspondence between the couples $(H^{(j)}, S_k^{(j)})$ and $(C^{(j)}, T_k^{(j)})$: for example the couple $(C^{(1)}, T_1^{(1)})$ in the table is equivalent to the couple $(H^{(1)}, S_1^{(1)})$ in the angular space. Thus, each direction of steering $S_k^{(j)}$ $\binom{1}{k}$ corresponds to a deviation of the beam in the azimuthal space, and

Figure 2.3: Example of several beams with different maximum detectable power levels. The matrix shows the tiles correspondent to the beams.

also indicates in the matrix the tile $T_k^{(j)}$ $\kappa^{(j)}$. Each configuration moves along the columns by a step equal to its length in terms of columns.

Since each jth element $H^{(j)}$ divides the whole angular space in N_j sectors, each $H^{(j)}$ corresponds to a different vector $S^{(j)}$. Hence, it is exactly the same for $C^{(j)}$ and the vector $\mathbf{T}^{(j)}$.

The knowledge database takes into account the number of [UEs](#page-2-0) saw with the couples $(H^{(j)}, S^{(j)}_k)$. Every time a [UE](#page-2-0) is detected with a beam defined by a [HPBW](#page-3-0) and a steering direction, the cells in the matrix correspondent to the couple $(C^{(j)}, T_k^{(j)})$ are incremented by one.

Whereby, it is possible to exploit this memory to privilege the beams with a [HPBW](#page-3-0) and a direction such as they have detected more users during the functioning of the algorithm.

In order to do this we designed a simple iterative algorithm which tests every possible couple $(C^{(j)}, T_k^{(j)})$ in the matrix, and counts how many users each couples contain.

Figure 2.4: Top: example of equivalence between the couples $(H^{(j)}, S_k^{(j)})$ and $(C^{(j)}, T_k^{(j)})$. From $S_1^{(1)}$ $S_1^{(1)}$ to $S_1^{(N_{Beam})}$ $t_1^{(NBean)}$ the beam is shrinking. Bottom: definition of the tile and the cell within the tile.

At each iteration, the algorithm does the following steps:

- 1. Fixes a couple $(C^{(j)}, T_k^{(j)})$;
- 2. Sums the number of [UEs](#page-2-0) inside the cells of the tile;
- 3. Saves this sum in a vector X ;
- 4. If the configuration $C^{(j)}$ has been checked for every $T_k^{(j)}$ $\mathbf{r}_{k}^{(j)}$, tries the next configuration, otherwise it tries the next tile. In both cases it restarts from 1. Once every combination of $(C^{(j)}, T_k^{(j)})$ has been tested it passes to the next step;

5. Rearranges the vector X in descent order and uses the obtained order to create a sequence of couple $(H^{(j)}, S_k^{(j)})$. This sequence represents the order in which the couples $(H^{(j)}, S_k^{(j)})$ are to be tested to find a new [UE.](#page-2-0)

Initially the matrix is empty, thus once the first [UE](#page-2-0) enters within the cell the [BS](#page-2-1) tests the couples $(H^{(j)}, S_k^{(j)})$ in a-priori defined order. Once the [UE](#page-2-0) is detected by the [BS](#page-2-1) with a certain $(H^{(j)}, S_k^{(j)})$, the correspondent couple $(C^{(j)}, T_k^{(j)})$ is incremented by one in the table.

Considering a fully operational situation, which means that the [BS](#page-2-1) has already filled the table, here we provide the main steps of the algorithm when a new [UE](#page-2-0) enters the cell:

- First of all the table is scanned as explained before. At the end of this operation a sequence of $(H^{(j)}, S_k^{(j)})$ is obtained;
- The [BS](#page-2-1) scans the space following the aforementioned sequence in search of the [UE;](#page-2-0)
- If the [BS](#page-2-1) detects the [UE](#page-2-0) with a certain $(H^{(j)}, S_k^{(j)})$, the cells in the table corresponding to the couple $(C^{(j)}, T_k^{(j)})$ are incremented by one.

The implementation and the results obtained with this approach are discussed in the chapters 3 and 4 respectively.

2.2 UE Side Implementation

According to the [SOTA,](#page-2-2) the [UE](#page-2-0) is not always equipped with an antenna array, but often with an omnidirectional antenna [\[20\]](#page-104-0). According to the considerations reported in chapter 1, when the [UE](#page-2-0) is assumed to be equipped with an antenna array, only approaches with a rather low complexity have been exploited [\[13,](#page-103-0) [14,](#page-103-1) [19\]](#page-104-1).

To improve current [SOTA,](#page-2-2) in our method we assume that the [UE](#page-2-0) takes advantage from three pieces of information: (i) the position deriving from the [GPS;](#page-3-1) (ii) the experience of previous users, shared in a common repository (e.g., cloud), where the sector index, [HPBW,](#page-3-0) etc. are stored once the detection is performed; (iii) the orientation, provided by internal sensors, so that it is possible correct the beamsteering weights according to the reference plane (apart from an error that will be discussed in Sec. [4.5\)](#page-86-0).

Indeed, the information on the [UE](#page-2-0) orientation helps at defining a unique reference system for the beamsteering operation, so that each user in the cell knows which is the correct beamforming configuration in order to point to the desired direction, unless an error due to its sensors.

Since the [UE](#page-2-0) needs to integrate low complexity technologies, we consider that it is capable to steer its beam only in few different directions, thus dividing the whole angular space in sectors, as reported in Fig. [2.5.](#page-40-0)

Figure 2.5: Sectors at UE side.

The main idea behind the algorithm is the sharing of the information between mobile users that have experienced the same position so far. In particular, whenever a [UE](#page-2-0) is detected in a certain cell, it saves in an online *database* its position, given for example by the [GPS,](#page-3-1) and the beam direction adopted for successfully performing the [IA](#page-2-3) procedure. In this way, the [UEs](#page-2-0) that will successively enter in the same cell, will take advantage by the available data that derives from the past [UEs](#page-2-0) experiences. In fact, each user is expected to access the information stored in the database, so that it knows which is the most favorable absolute steering direction for pointing towards the [BS](#page-2-1) in its position.

This database is organized as shown in Fig. [2.6.](#page-41-0) The rows correspond to the previous [UEs](#page-2-0), where N_{UE} is the overall number of past UEs. The columns correspond to the 3D [GPS](#page-3-1) coordinates and the others information [\(HPBW,](#page-3-0) sector, orientation etc..).

Nevertheless, using the database it is not straightforward. The information in the database is useful only if the new [UE](#page-2-0) in the cell can leverage on the information of the closer past [UEs](#page-2-0). The behaviour of further past user could be very different from the behaviour of the new [UE.](#page-2-0) To this aim we introduce the range R. This parameter defines if an entry in the database has to be considered or not. Fig. [2.7](#page-42-0) shows an example of usage of the range R . In the example UE_1 and UE_2 are considered near to the new UE_{new} , while UE_3 is farther. Hence only UE_1 and UE_2 information has to be considered in the database.

Figure 2.6: Database for the [UE](#page-2-0) side of the algorithm.

Thus, for what the [UE](#page-2-0) is concerned, the algorithm is organized as follows:

- A [UE](#page-2-0) enters within a [5G](#page-2-4) cell;
- \bullet It controls the previously downloaded *database*;
- It corrects its beamforming weights according to the reference plane i.e., it converts the absolute direction (sector) stored in the database into relative direction (sector) according to its reference system of coordinates (reference plane) using its local inertial sensors;
- The [UE](#page-2-0) orders its steering direction from the most usage to the least considering the directions used by the past [UEs](#page-2-0) within the range R ;
- The [UE](#page-2-0) steers its beams in search for the [BS;](#page-2-1)
- If the [UE](#page-2-0) detects the [BS](#page-2-1) it saves in the database its [GPS](#page-3-1) position and its steering direction in which it found the [BS.](#page-2-1)

The figure [2.8](#page-42-1) shows how the algorithm should work.

Figure 2.7: Example of range R . Each users within the circle defined by R is considered near the new user.

Figure 2.8: Acquisition and usage of the database. Thanks to the sharing of the information in the cloud the users could steers them beam immediately toward the [BS.](#page-2-1)

Chapter 3

Initial Access Simulator

This chapter describes the blocks developed in Matlab for testing [IA](#page-2-3) techniques for [5G,](#page-2-4) as depicted in the flowchart reported in [3.1.](#page-45-0) The four steps of the simulator will be described in the following sections, whereas the performance achieved with the algorithms, will be extensively investigated in the last chapters.

Thus, in the following we will introduce:

- Scenario Generation;
- BSs and UEs Generation;
- Channel Model;
- Implemented Algorithms.

3.1 Scenario Generation

First we introduce how the scenario containing the [BS](#page-2-1) and the [UEs](#page-2-0) is generated. Here there are two scenarios of interest:

- Random geometry;
- Fixed geometry.

The first one (similar to the one described in [\[13\]](#page-103-0)) consists of a rectangle area, whose size is a-priori decided, and where obstacles are randomly generated with variable dimension. For the sake of simplicity, each obstacle is here intended as a square with variable area, and it is assumed to be an opaque body with reflecting edges (this point will be clarified in the channel

Figure 3.1: Flowchart of the simulator.

section [3.3\)](#page-51-0). An example of generation of such a scenario is reported in [3.4,](#page-47-0) that shows the rectangle area with 20 obstacles inside.

This kind of scenario is useful to emulate for example a cell in a city, where users appear randomly located because they exit from the houses or because they switch on the mobile phone inside the cell. Fig. [3.2](#page-46-0) shows a possible real scenario similar to the simulated one.

The second scenario reproduces a street-like environment where the number of obstacles, here representing possible houses close to the street, are varied from 0 to 4. Notably, due to the presence of the street, obstacles are here placed in a deterministic way i.e. their position are a-priori defined. Fig. [3.5](#page-47-1) and [3.6](#page-48-0) show two examples with 0 and 4 obstacles, respectively.

This particular scenario permits to investigate how [IA](#page-2-3) techniques work where users enter the cell only from certain directions, because for example the [BS](#page-2-1) is positioned beside a street. Figure [3.3](#page-46-1) shows an example of cell, where the [BS](#page-2-1) is placed close to the street and there are only 2 possible ways to enter the cell (indicated by the black arrows).

Dwelling on this type of scenario, it is straightforward to consider that

Figure 3.2: A bird's eye view of New York City [\[21\]](#page-104-2).

an [IA](#page-2-3) algorithm can take advantage from the prior information on where the [UEs](#page-2-0) most frequently enter an area. To that purpose, ad-hoc algorithms, as the ones in [\[17\]](#page-103-2), have to be conceived.

Figure 3.3: Example of a real street environment.

Figure 3.4: Example of random scenario with 20 obstacles.

Figure 3.5: Example of street scenario with no obstacles.

Figure 3.6: Example of street scenario with 4 obstacles.

3.2 BSs and UEs Generation

Once the scenario is determined, [UEs](#page-2-0) and [BS](#page-2-1) are placed in the environment according to their pre-determined number.

In the *random* scenario the [BS](#page-2-1) is set in the centre of the area (case with only one [BS\)](#page-2-1), while the [UEs](#page-2-0) are generated according to a random uniform distribution. Figure [3.7](#page-49-0) shows the aforementioned environment, with one [BS,](#page-2-1) 5 [UEs](#page-2-0) and 10 obstacles inside the scenario. The aim of this type of generation is to simulate an environment where [UEs](#page-2-0) appear suddenly inside the cell, like people coming out of houses. This concept leverages on the hypotheses that [UEs](#page-2-0) inside a house are not reachable due to the blockage behaviour of [mmWave](#page-2-5) propagation [\[4\]](#page-102-0).

For this scenario we have also implemented a non uniform generation for the [UEs](#page-2-0). In this case the [UEs](#page-2-0) are generated in three different areas with uniform probability inside.

Figure [3.8](#page-50-0) shows an example of non uniform generation of the [UEs](#page-2-0). Unlike the previous [UEs](#page-2-0) generation, Fig. [3.8](#page-50-0) shows the presence of most of the [UEs](#page-2-0) in three different spots, marked by the black, the green and the red rectangles. There are also two [UEs](#page-2-0), indicated with the black arrows, that appear outside the three crowded areas within the colored boxes. The generation mechanism is as follows: once a [UE](#page-2-0) is generated it has 3 different probabilities, set a-

Figure 3.7: Example of random scenario with 10 obstacles, 1 [BS](#page-2-1) and 5 [UEs](#page-2-0).

priori to being generated inside one of the rectangle. There is also a little probability for an [UE](#page-2-0) to being generate outside the rectangle. Inside the rectangles the [UEs](#page-2-0) are setted with a uniform probability. This generation is related to the same concept considered in the fixed geometry scenario, but in this case, thanks to the random location of the scatterers, this scenario reproduces a larger variety of real environments.

In the second scenario, as the one depicted in Fig. [3.9,](#page-50-1) the BS is positioned near the main street, while the [UEs](#page-2-0) generation is bounded in three different locations. This particular generation is useful to simulate the street-like behaviour of the environment, for example in an hour of the day when is more likely for the car in the street to enter the cell from the right side instead of the left side. Figure [3.9](#page-50-1) shows three different UE positions generated according to a uniform distribution inside the three possible areas, marked by the rectangles. As the previous generation, once a [UE](#page-2-0) is generated it has three different probabilities to appear in the different areas of the street. Once the area is established, the position is determined according to a uniform distribution, since the user might not been detected immediately after its entrance in the cell.

Figure 3.8: Example of non uniform generation in the random scenario.

Figure 3.9: Example of fixed scenario with no obstacles, 1 [BS](#page-2-1) and 5 [UEs](#page-2-0).

3.3 Channel Model

For the [mmWave](#page-2-5) radio channel model we implemented a simple ray tracing software, realized in Matlab by following the guidelines in [\[13\]](#page-103-0). The main concept of our approach leverages on the high reflecting properties of walls at high frequency [\[22\]](#page-104-3).

Thanks to the aforementioned information, our ray tracing function computes the direct path and the reflected paths (thanks to the principle of the images) from the [BS](#page-2-1) to the considered [UE.](#page-2-0) Only first order reflections are considered because of the experienced high path loss at [mmWave](#page-2-5) whereas second order reflections are neglected.

The path loss model used in our work, i.e., a dual slope model designed with a 60 GHz carrier frequency, is the same as in [\[13\]](#page-103-0) which is based on [\[12\]](#page-103-3). The formulas for the direct (PL) and the reflected path (PL_r) are defined as follows:

$$
PL(l) = 82.02 + k \cdot 10 \log_{10} \left(\frac{l}{l_0}\right) + l \cdot \alpha_{O_2};
$$
\n(3.1)

$$
PL_R(l_r) = 82.02 + k \cdot 10 \log_{10} \left(\frac{l_r}{l_0}\right) - R - F + l_r \cdot \alpha_{O_2} \tag{3.2}
$$

where l and l_r depict the length of the [LOS](#page-2-6) and [NLOS](#page-2-7) path, respectively. l_0 represents the reference distance, here set to 5 m and the propagation factor k is 2.36, if the distance between the transmitter and the receiver is larger than the reference distance, or 2.00 otherwise. R and F include the reflection losses in the form:

$$
R = 20 \log_{10} \left(\frac{\sin \theta - \sqrt{B}}{\sin \theta + \sqrt{B}} \right), B = \epsilon - \cos^2 \theta; \tag{3.3}
$$

$$
F = \frac{-80}{\ln 10} \left(\frac{\pi \sigma \sin \theta}{\lambda} \right)^2.
$$
 (3.4)

More specifically, R is the square of the Fresnel reflection coefficient in dB considering a TE polarization for the transmitted waves, defined as the ratio between the reflected and the incident fields.

In [3.3,](#page-51-1) [3.4](#page-51-2) ϵ and σ represent the roughness and reflection coefficients of the material (namely, $\sigma = 0.2$ mm and $\epsilon = 4+0.2j$ [\[12\]](#page-103-3)), while θ the reflection angle of the reflected path.

Finally, α_{O_2} represents the oxygen loss, which is non negligible at 60 Ghz. Figure [3.10](#page-52-0) shows the values of the specific oxygen attenuation α_{O_2} in $[dB/Km]$

as a function of the frequency f and considering the following standard conditions for the atmosphere: pressure $= 1013$ hPa, temperature $= 15 °C$, humidity = 7.5 g/m^3 . Notably, there is a peak in correspondence of $f = 60 \text{ Ghz}$ which correspond to a specific attenuation of 15 dB/Km .

Figure 3.10: Oxygen specific attenuation for different frequencies. [\[23\]](#page-104-4).

Figures [3.11](#page-53-0) and [3.12](#page-54-0) show some examples of channel realizations while using the model previously described. In particular, the dashed lines represent the direct rays, while the continuous lines represent the reflected rays. Considering Fig. [3.11,](#page-53-0) in this scenario only one [UE](#page-2-0) (i.e., UE1 in the figure), is unreachable for the [BS,](#page-2-1) since it has no direct path or first order reflections for connecting. The other [UEs](#page-2-0) can instead establish a connection with the [BS](#page-2-1) if and only if, the received power at [UE](#page-2-0) side is greater than a certain threshold λ (described later). Fig. [3.12](#page-54-0) shows an example of scenario where each [UE](#page-2-0)[-BS](#page-2-1) channel presents at least two paths.

Figure 3.11: Example of channel realization in the random scenario with 20 obstacles, 1 [BS](#page-2-1) and 5 [UEs](#page-2-0).

Figure 3.12: Example of channel realization in the fixed scenario with 4 obstacles, 1 [BS](#page-2-1) and 3 [UEs](#page-2-0).

3.4 Antenna Models

In our work we have chosen the antenna model described in [\[12\]](#page-103-3). This model has been considered for its simplicity and because it takes into account the essential characteristics of the real world phased antenna array.

In particular, we define ϕ_{-3dB} and θ_{-3dB} as the [HPBW](#page-3-0) in azimuth and elevation-planes, respectively, and ϕ_0 and θ_0 as the azimuth and tilt angles of the direction of the main lobe (Fig. [3.14\)](#page-58-0). Fig. [3.13](#page-56-0) in the right side shows the definition of the [HPBW.](#page-3-0)

The expression of the array gain can be obtained starting from a twodimensional Gaussian function, as in [\[12\]](#page-103-3), used to express the main lobe gain in the form:

$$
G(\phi', \theta') = G_0 \cdot \exp(-\alpha \phi'^2) \cdot \exp(-\beta \theta'^2), \qquad (3.5)
$$

where ϕ' is the azimuth angle in the range $\{-\pi, \pi\}, \theta'$ is the elevation angle in the range $\left\{\frac{-\pi}{2}, \frac{\pi}{2}\right\}$ $\left\{\frac{\pi}{2}\right\}$, G_0 is the maximum gain corresponding to the direction ($\phi' = 0$, $\theta' = 0$). According to Fig. [3.13,](#page-56-0) the constants α and β are determined by considering ϕ_{-3dB} and θ_{-3dB} in the form:

$$
\frac{G(\phi',\theta')}{G_0} = \exp\left(-\alpha \left(\frac{\phi_{-3dB}}{2}\right)^2\right) = \frac{1}{2};\tag{3.6}
$$

$$
\frac{G(\phi',\theta')}{G_0} = \exp\left(-\beta \left(\frac{\theta_{-3dB}}{2}\right)^2\right) = \frac{1}{2},\tag{3.7}
$$

which gives:

$$
\alpha = \frac{4ln(2)}{\phi_{-3dB}^2}, \ \beta = \frac{4ln(2)}{\theta_{-3dB}^2}.
$$
 (3.8)

By including [3.8](#page-55-0) into [3.5,](#page-55-1) it is possible to obtain:

$$
G_{dB}(\phi', \theta') = G_{0, dB} - 12 \cdot \left(\frac{\phi'}{\phi_{-3dB}}\right)^2 - 12 \cdot \left(\frac{\theta'}{\theta_{-3dB}}\right)^2; \tag{3.9}
$$

$$
10\log(e) \cdot 4\ln(2) \approx 12. \tag{3.10}
$$

The main lobe beam widths ϕ_{ML} and θ_{ML} are defined by considering -20 dB with respect to the maximum gain value G_0 . Using [3.9](#page-55-2) one can obtain the relation between ϕ_{ML} and ϕ_{-3dB} for $\theta' = 0$ and between θ_{ML} and θ_{-3dB} for $\phi' = 0$ as follows:

Figure 3.13: Coordinates system and half-power beamwidth definition.

$$
\phi_{ML} \approx 2.6 \cdot \phi_{-3dB}, \quad \theta' = 0; \tag{3.11}
$$

$$
\theta_{ML} \approx 2.6 \cdot \theta_{-3dB}, \quad \phi' = 0. \tag{3.12}
$$

The maximum gain G_0 can be written as:

$$
G_0 = \frac{4\pi S}{\lambda^2}.\tag{3.13}
$$

where S is the aperture size measured in square meters and λ is a wavelength.

Note that the beam width of the main lobe can be simply related to the rectangular antenna aperture physical dimensions using the following equations:

$$
\phi_{ML} = \frac{2\lambda}{D_y}, \ \theta_{ML} = \frac{2\lambda}{D_x},\tag{3.14}
$$

where D_x and D_y are dimensions of antenna aperture along x and y axes accordingly. Assuming that:

$$
S = D_x \cdot D_y \tag{3.15}
$$

it is straightforward to obtain:

$$
G_{dB}(\phi,\theta) = 10\log\left(\frac{16\pi}{6.76 \cdot \theta_{-3dB}\phi_{-3dB}}\right) - 12 \cdot \left(\frac{\phi - \phi_0}{\phi_{-3dB}}\right)^2 - 12 \cdot \left(\frac{\theta - \theta_0}{\theta_{-3dB}}\right)^2.
$$
\n(3.16)

Since we have only considered 2D environments, the third term is neglected so that the beam scans only the azimuth plane. Therefore, in the following we consider only the first and the second terms of the equation [3.16.](#page-57-0)

The second term of [3.16](#page-57-0) allows to evaluate the gain as a function of the angles. In [3.16](#page-57-0) the variables ϕ' and θ' have been substituted by $\phi - \phi_0$ and $\theta - \theta_0$ respectively. In particular, ϕ_0 indicates the beam direction in the azimuth plane, as shown in Fig. [3.14](#page-58-0) (a). Fig. 3.14 (b) shows also θ_0 in the elevation plane, for the sake of completeness.

Note that ϕ_{-3dB} permits to define the number of sectors that the [BS](#page-2-1) or the [UE](#page-2-0) have to scan to cover the entire angular space. These sectors are listed into the codebook. The codebook is a table which contains the values of the gain for the entire angular space for each sector. For example a [HPBW](#page-3-0) of 30° divides the space into 12 sectors.

The choice of the [HPBW](#page-3-0) is fundamental for the [IA](#page-2-3) algorithm: the larger is ϕ_{-3dB} , the lower is the number of sectors, hence a shorter time delay is needed to cover the whole angular space in search for [UEs](#page-2-0). On the higher side, the maximum gain is reduced, with a higher probability to wrongly miss a user detection.

An [IA](#page-2-3) algorithm could leverage on multiple [HPBW](#page-3-0) (i.e. more beam configuration) to reach a trade off between number of scans and misdetection probability, but with an increase in the complexity of the hardware. This aspect will be explored in the next chapter.

Fig. [3.15,](#page-59-0) [3.16](#page-59-1) and [3.17](#page-60-0) report three examples of beams used at the [BS](#page-2-1) side, whereas Fig. [3.18](#page-60-1) an example for the [UE.](#page-2-0)

In addition, the aforementioned figures report also the beams for a different steering direction. More specifically, while the blue beam indicates the direction $\phi_0 = 0^{\circ}$, the orange ones represent their counterpart for $\phi_0 = 90^{\circ}$.

Figure 3.14: Example of the horizontal and the vertical beam patterns with the corresponding angles [\[20\]](#page-104-0).

Figure 3.15: Base station radiation pattern with [HPBW=](#page-3-0)15°.

Figure 3.16: Base station radiation pattern with [HPBW=](#page-3-0)30°.

Figure 3.17: Base station radiation pattern with [HPBW=](#page-3-0)45°.

Figure 3.18: User equipment radiation pattern with [HPBW=](#page-3-0)90°.

3.5 Implemented Algorithms

After having detailed the first three blocks reported in the flowchart of Fig. [3.19,](#page-62-0) we now describe how three algorithms inspired by the [SOTA,](#page-2-2) as well as the proposed approaches of Sec. [2,](#page-34-0) are implemented in our simulator in Matlab.

For the sake of clarity, the description of the algorithms implementation is separated at [BS](#page-2-1) and [UE](#page-2-0) side.

3.5.1 Base Station Algorithms Implementation

We first show the three approaches inspired by the [SOTA](#page-2-2) [\[13,](#page-103-0) [14,](#page-103-1) [16\]](#page-103-4).

The flowchart [3.19](#page-62-0) shows the common steps of the algorithms. First, during the initialization phase, the simulator sets the number of sectors at [BS](#page-2-1) and [UE](#page-2-0) side, that is, h and t, respectively. These numbers depend on the *codebook* dimension, and thus on the chosen [HPBW.](#page-3-0) Moreover, the algorithm sets the value of the threshold λ (discussed in the last chapter), that represents the required power for [UE](#page-2-0) detection.

After that, the algorithms work as follow:

- \bullet the [BS](#page-2-1) steers its beam according to its *codebook*;
- for each beam of the [BS](#page-2-1) there are two possibilities: if the [UE](#page-2-0) is omnidirectional the power budget is computed immediately. Otherwise the [UE](#page-2-0) first steers one of its beam.
- for each combination [BS-](#page-2-1)[UE](#page-2-0) the received power P_r is compared with the threshold. If the [UE](#page-2-0) is not found yet the algorithm returns to the step before, otherwise the process is stopped;
- if the [UE](#page-2-0) has not been seen, the process stops and the UE is declared unreachable;
- if the [UE](#page-2-0) leverages on beamforming the number of overall scans is augmented of a factor 4 (number of [UE](#page-2-0) sectors).

Figure 3.19: Flowchart which shows how algorithms in the simulator work.

Memory Less Search

The first considered approach is inspired by the [EA](#page-3-2) in [\[14\]](#page-103-1) where the area is scanned with a fixed [HPBW](#page-3-0) from the first sector to the last one in a counter clock-wise manner.

The main difference between the algorithms is that, as explained in [1.3.1,](#page-16-0) the approach in [\[14\]](#page-103-1) aims to find the best channel between the [UE](#page-2-0) and the [BS,](#page-2-1) whereas in our implemented memory less search [\(MLS\)](#page-3-3) approach, the search stops as soon as the [UE](#page-2-0) is detected, regardless it is whether or not the most suitable channel configuration.

The [MLS](#page-3-3) is a simple [SA](#page-2-8) algorithm, but it might cause a high discovery delay for the [UE.](#page-2-0) This algorithm has been named [MLS](#page-3-3) because the order in which the sector are steered is fixed, without the use of a memory, unlike the following algorithms.

Memory Based Search

With respect to the previous algorithm, this one leverages on the exploitation of a memory, that takes into account the number of historical users saw in every sector. This memory based search [\(MBS\)](#page-4-0) follows the concept explained in [\[16\]](#page-103-4), described in [1.3.2.](#page-18-0)

Notably, in this case there are few differences with the flowchart in Fig. [3.19:](#page-62-0) in the first step two vectors are defined, that is, S and U. S is a vector which takes into account the sequence of sectors that the [BS](#page-2-1) has to scan, while U is a vector of counters where each counter is associated to a sector, that is:

$$
\mathbf{S} = [S_1..., S_j, ...S_k];\tag{3.17}
$$

$$
\hat{\mathbf{S}} = [\hat{S}_1 \dots, \hat{S}_j, \dots \hat{S}_k];\tag{3.18}
$$

$$
\mathbf{U} = [U_1..., U_j, ...U_k];\tag{3.19}
$$

$$
\mathbf{I} = [I_1..., I_j, ...I_k]. \tag{3.20}
$$

Figure [3.20](#page-64-0) shows the added steps in the "UE find" block with respect to the [MLS](#page-3-3) algorithm.

Initially, the element U_j is incremented by one, where S_j is the j th sector where the user has been found. Then, U is ordered in descent way, permitting to obtain the vector I which contains the indices of the sectors, from the one with the largest number of users, till the one with the lowest number. Finally the vector S is arranged using the indices in I. The vector \hat{S} represents the new order of steering of the beams.

Figure 3.20: Flowchart of the memory-based fundamental part.

Database Search

This algorithm follows the idea considered in [\[13\]](#page-103-0), explained in [1.3.6.](#page-25-0) Unlike the previous approaches, this is a [NSA](#page-2-9) algorithm since it relies on a sub-6 GHz [LTE](#page-2-10) control channel that provides, at the [BS](#page-2-1) side, the knowledge of the [GPS](#page-3-1) coordinates of the [UEs](#page-2-0) once they enter the [5G](#page-2-4) cell. The main aspect of the algorithm is that the [BS](#page-2-1) has a database like the one explained in [1.3.6,](#page-25-0) with the difference that in our case the width of the beam is fixed, so that the database contains only the information about the position of the previously detected users and the beam direction at [BS](#page-2-1) side used to reach them.

When a user enters the cell, the [GPS](#page-3-1) coordinates are transmitted to the [BS](#page-2-1) with uncertainties σ_x and σ_y on the coordinate x and y, respectively. The [BS](#page-2-1) computes the euclidean distance between every [UE](#page-2-0) in the database and the selected [UE.](#page-2-0) When a stored [UE](#page-2-0) is considered close to the new one, that is the euclidean distance between the old [UE](#page-2-0) and the new [UE](#page-2-0) is less than a certain range m, the beam used to reach the old user is saved into a vector D.

Once the algorithm has controlled the whole database, the [BS](#page-2-1) steers its beams starting from the directions saved in D. If the user is found the algorithm stops and the information on the [UE](#page-2-0) detection is stored in the database. Otherwise if, after the scan of the whole database, there are no matches for a certain [UE,](#page-2-0) or the [UE](#page-2-0) has not been detected with the beam stored in D, the [BS](#page-2-1) steers its beam starting from the directions which are closer to the [GPS](#page-3-1) coordinates of the [UE](#page-2-0) and then considering the further ones if the [UE](#page-2-0) has not been detected. If the [UE](#page-2-0) is found the [BS](#page-2-1) saves the estimated position and the direction used in the database. If the [UE](#page-2-0) is not detected it is considered unreachable.

Novel Search Algorithm

Here we provide the implementation details at [BS](#page-2-1) side concerning our proposed algorithm described in [2.1.](#page-34-1) Considering the flowchart [3.19](#page-62-0) this algorithm follows the main steps of it, but in the first step, a matrix is also initialized and used to memorize the found users.

First of all, we considered $H^{(N_{Beam})} = 15^{\circ}$ and 3 values of the [HPBW,](#page-3-0) thus our matrix has $N_{Sect} = 24$ columns and $N_{Beam} = 3$ rows. Fig[.3.21](#page-65-0) shows the considered [HPBW](#page-3-0) from the wider to the thinner. Therefore, there are three elements in the vector H and C : Eq. [3.21](#page-65-1) and [3.22](#page-65-2) show the vector of the considered [HPBWs](#page-3-0) and the corresponding configurations, respectively:

$$
\mathbf{H} = [45^{\circ}, 30^{\circ}, 15^{\circ}];\tag{3.21}
$$

$$
\mathbf{C} = [C^{(1)}, C^{(2)}, C^{(3)}]. \tag{3.22}
$$

Fig. [3.22](#page-66-0) shows the correspondence between the [HPBWs](#page-3-0) and the configurations in the table, while Fig. [3.23](#page-67-0) shows an example of a matrix obtained in a simulation with 100 [UEs](#page-2-0) dropped into the random scenario with the non uniform generation. The height of the bins corresponds to the number of [UEs](#page-2-0) detected with the specific [HPBW](#page-3-0) and steering direction of the beam.

Figure 3.21: Beams widths at [BS](#page-2-1) side.

With respect to Fig. [3.23,](#page-67-0) with 1 we indicate the configuration on the table corresponding to the larger beam ($HPBW = 45^{\circ}$), because a [UE](#page-2-0) detected with this beam width is a user near to the [BS,](#page-2-1) i.e. with a high received power. Therefore, since such beam is three times wider than the thinner beam, it has to occupy three cells in the matrix, so one sector of this beam corresponds to three sectors of the thinner beam. The indicator 2 indicates instead the configuration on the table correspondent to the second beam width [\(HPBW](#page-3-0) $= 30^{\circ}$). A [UE](#page-2-0) detected with such beam might correspond to

a low power level [UE,](#page-2-0) because the second beam width could detect even the low power level [UE](#page-2-0) as the third beam width, or a mid power level [UE](#page-2-0) which can not be detected by the largest beam. Since the second beam width is two times the thinner one, it corresponds to two columns. Finally, the indicator 3 indicates the configuration for the first beam width. This beam permits to detect every possible user in a column with a received power more higher than the threshold.

Figure 3.22: Scheme which shows the equivalences between the configurations in the table and the [HPBWs](#page-3-0) of the correspondent beams widths.

The results obtained with this algorithm are discussed in the last chapter.

Figure 3.23: Example of [BS](#page-2-1) table. The three indicator 1, 2 and 3 show the three type of configurations considered in our implementation of the algorithm.

3.5.2 User Equipment Algorithms Implementation

In this section we provide a description of the algorithms for the [UE](#page-2-0) side that we have implemented in Matlab. Since an omnidirectional antenna can not modify its steering directions, we account only for the cases when the [UE](#page-2-0) is equipped with an antenna array.

Memory Less UE Search

Like the [MLS](#page-3-3) for the [BS](#page-2-1) described in [3.5.1,](#page-63-0) once the [BS](#page-2-1) has steered its beam towards a direction, the [UE](#page-2-0) iteratively points its beam towards four predetermined directions, according to its *codebook*. Notably, such directions are a-priori setted, and the procedure stops once the [UE](#page-2-0) has been detected. Fig. [3.24](#page-68-0) shows the four direction of steering:

Figure 3.24: Beam steering in four a-priori decided directions.

Memory Based UE Search

Following the idea explained in Sec. [2.2](#page-39-0) we implemented an approach smarter than the previous one in order to reduce the number of steering directions at [UE](#page-2-0) side.

In our implementation of the algorithm the *database* is a matrix with a number of rows equal to the number of past [UEs](#page-2-0). The columns instead are three: the first two contain the x and the y coordinates of the i th [UE,](#page-2-0) while the third column contains the sector in which the i th [UE](#page-2-0) detected the [BS.](#page-2-1)

The flowchart [3.25](#page-69-0) shows the main steps of the algorithm.

Figure 3.25: Flowchart of the smart [UE](#page-2-0) approach.

Initially we defined three vectors: **S**, **CT** and **I**. The vector **S** contains the sequence of steering directions for the [UE](#page-2-0) beams. In the beginning a default order is considered. CT instead contains the counters corresponding to the sector in S. Initially is a vector of zeros. Finally I is a vector of indices corresponding to the sectors in S.

When one [UE](#page-2-0) enters the cell it computes the euclidean distance between its coordinates and the coordinates of each [UE](#page-2-0) in the database. Whenever the new user finds a past [UE](#page-2-0) which has detected the [BS](#page-2-1) in a position within the range R , it increments the counter in CT associated to the j th sector in which the past user found the [BS.](#page-2-1)

Once the [UE](#page-2-0) has scanned the whole database, the elements of CT are

put in descent order. The resulting indices in I are used to rearrange the vector S, which represents now the new order of steering directions.
Chapter 4

Numerical Results

This chapter reports the results obtained with the simulator implemented in Matlab. The experiments have been conducted using the Monte Carlo method. The table [4.1](#page-73-0) shows the main parameters which we used for the numerical evaluations if not otherwise indicated. More specifically:

- A carrier frequency of 60 GHz has been chosen, in accordance with the path loss model described in Chapter 3;
- The transmitted power are set to $P = 1$ W, in accordance with [\[13,](#page-103-0)[14\]](#page-103-1);
- The power threshold has been chosen according to [\[13\]](#page-103-0);
- The [HPBW](#page-3-0) at [UE](#page-2-0) side has been considered in conformity with [\[14\]](#page-103-1), while the [HPBWs](#page-3-0) at [BS](#page-2-1) side according to [\[13\]](#page-103-0).

We considered two types of simulations for the two different scenarios. The simulations for the *random* scenario are implemented considering three Monte Carlo cycles:

- An external cycle where, for each iteration, the size of the cell is set;
- An intermediate cycle, where the position of the obstacles in the scenario is determined;
- The last inner cycle, where [UEs](#page-2-0) are generated, and the [IA](#page-2-2) algorithms launched.

This type of simulation is useful to average the effect of the obstacles which are generated with a uniform distribution in the area. For this scenario the dimension of the cell has been varied from 20 meters to 150 meters.

Carrier Frequency	$f_c = 60 \text{ GHz}$
Transmitted power	$P_t = 0$ dBW
Received power threshold	$\lambda = -103 \text{ dBW}$
HPBW at BS side	$\phi_{-3dB}^{BS} = 15/30/\overline{45^{\circ}}$
Maximum BS antenna gain	$G_0^{BS} = 20.4/14.3/10.8$ dBi
HPBW at UE side	$\phi_{-3dB}^{UE} = 90^{\circ}$
Maximum UE antenna gain	$G_0^{UE} = 4.79 \,\text{dBi}$

Table 4.1: Parameters for numerical evaluation.

The simulation for the fixed scenario includes, instead, only a Monte Carlo cycle, in which we varied the dimension of the cell. For each cell size, the [UEs](#page-2-0) are deployed into the scenario whereas the obstacles positions are fixed. We tested the fixed scenario with 4 obstacles. The dimension of the cell has been varied from 80 meters to 150 meters.

4.1 Evaluation of the Received Power

In this section we provide some examples of received power $(P_r$ in [dBW]) at [UE](#page-2-0) side with respect to the threshold λ . Figure [4.1](#page-74-0) and [4.3](#page-75-0) show the scenarios in which the simulation has been conducted, while Fig. [4.2](#page-75-1) and [4.4](#page-76-0) show the respective evaluated power at [UE](#page-2-0) side. In particular, in the xaxis we reported the index of the sector at [BS](#page-2-1) side, whereas in the y-axis the highest collected power for that index. The best steering direction for the [UE](#page-2-0) is written with a text-arrow for each point. Notably, according to Fig. [4.2,](#page-75-1) the best configuration is achieved when the [UE](#page-2-0) steers its beam towards its sector 3, whereas the [BS](#page-2-1) towards its sector 2. Despite the small size of the cell, the received power is only a few dBs higher than the threshold, due to the experienced high [PL.](#page-2-3)

Focusing on [4.4,](#page-76-0) since the [UE](#page-2-0) in Fig. [4.3](#page-75-0) is closer to the [BS](#page-2-1) than in Fig. [4.1,](#page-74-0) the received power is higher. Indeed, the [BS](#page-2-1) almost detects the [UE](#page-2-0) when this steers its beam in the first sector. This because there is a reflected ray which has sufficient power to reach the threshold.

In both the scenarios, the [UEs](#page-2-0) are detected thanks to the direct ray. This behaviour is due to the high losses for the reflected rays, which are always weaker than the [LOS](#page-2-4) component.

To better corroborate the aforementioned considerations Fig. [4.5](#page-76-1) shows the mean value of the [PL](#page-2-3) for both the directed and reflected rays, as a function of the cell dimension. These curves are obtained using a Monte Carlo simulation in the *random* scenario. For each cell size, 10000 [UEs](#page-2-0) have been randomly placed in the scenario in order to obtain the mean [PL](#page-2-3) for both the direct and the reflected ray.

The [PL](#page-2-3) for the reflected rays is always at least 15 dB greater than the [PL](#page-2-3) for the related [LOS](#page-2-4) paths. Hence, it becomes difficult to take advantage from the multipath when the [LOS](#page-2-4) between the [UE](#page-2-0) and the [BS](#page-2-1) is not present. In fact, by accounting for the parameters herein considered, [UEs](#page-2-0) in [NLOS](#page-2-5) propagation conditions are usually not detected (misdetection event). Thus, in order to recover lost [UEs](#page-2-0) it would be beneficial to increase the transmitted power level, that in real situations is always constrained by the power transmission mask.

Figure 4.1: Generation of 1 [UE](#page-2-0) in the random scenario.

Figure 4.2: Received power at [UE](#page-2-0) side, in the random scenario, for the different sectors at the [BS](#page-2-1) side.

Figure 4.3: Generation of 1 [UE](#page-2-0) in the *fixed* scenario.

Figure 4.4: Received power at [UE](#page-2-0) side, in the fixed scenario, as a function of the sectors at [BS](#page-2-1) side.

Figure 4.5: Path loss in dB as a function of the cell size for both the directed and the reflected paths.

4.2 Figures of Merit

The main target of the [IA](#page-2-2) phase is that it has to be fast. In simple terms, the [UE](#page-2-0) once it entered in a cell, has to detect a [PSS](#page-2-6) from the [BS](#page-2-1) immediately. Therefore, one of the most important figure of merit we have considered is the average discovery time evaluates in average number of scans required to establish a communication channel between [UE](#page-2-0) and [BS.](#page-2-1) In our simulations this figure of merits has been obtained through the sum between the scans at [BS](#page-2-1) side and [UE](#page-2-0) side.

Considering a scenario where the [UE](#page-2-0) might be present (H_1) or not (H_0) , the second figure of merit is related to the misdetection probability, defined as follows:

$$
P_{MD} = P(\hat{H}_0 | H_1). \tag{4.1}
$$

where, \hat{H}_0 is the decision that the [UE](#page-2-0) is not present. Thus, we defined the misdetection rate, as the ratio between the number of the misdetected [UEs](#page-2-0) N_{MD} and the total number of [UE](#page-2-0) generated in the scenario N_{tot} i.e.:

$$
MD_r = \frac{N_{MD}}{N_{tot}}.\tag{4.2}
$$

4.3 Memory Impact on the Performance

We now discuss the results obtained for the [MLS](#page-3-1) and [MBS](#page-4-0) algorithms described in Sec. [3.5,](#page-61-0) in order to evaluate the impact of the memory in the random and in the fixed scenario. We initially considered the [UE](#page-2-0) generation, with a uniform distribution, in the *random* scenario. In these first simulations the [BS](#page-2-1) [HPBW](#page-3-0) is set to 30°. Figures [4.6,](#page-78-0) [4.7,](#page-79-0) [4.8,](#page-79-1) [4.9,](#page-80-0) [4.10](#page-80-1) and [4.11](#page-81-0) report the simulation results.

In particular, such results put in evidence how the memory considerably reduces the *average discovery time* with respect to the memoryless case. This happens for both [UEs](#page-2-0) equipped with omni-directional or beamforming antennas. Focusing on Fig[.4.6](#page-78-0) and Fig[.4.7](#page-79-0) it is clear that the memory is useful not only for the *fixed* scenario, where the generation is non uniform, but also for the random scenario with uniform generation. This effect can ascribed to the fact that the memory somehow takes into account the positions of the obstacles. Hence, the sectors "shadowed" by obstacles are explored at last, because of the lower probability to detect [UEs](#page-2-0).

Obviously, the usage of the memory is more relevant in the fixed scenario, where the [UEs](#page-2-0) are concentrated in specific positions.

Figure 4.6: Mean number of scans vs cell dimension in the random scenario with uniform generation of [UEs](#page-2-0) equipped with omni-directional antennas.

Concerning the performance in terms of misdetection ratio, reported in Fig. [4.8](#page-79-1) and [4.11,](#page-81-0) the possibility to perform beamsteering at the [UE](#page-2-0) side allows to improve the results with respect to the adoption of an omni-directional antenna. In addition, according to Fig. [4.8](#page-79-1) the distance between the two curves is not very significant before 100 m because the misdtections are mostly due to the obstacles. When the distance becomes higher than 100 m the beamforming technique permits to reduce the misdetection, even if the gain at [UE](#page-2-0) side is not very high. Furthermore, differences in the misdetection ratios are higher in Fig. [4.11](#page-81-0) with respect to Fig. [4.8](#page-79-1) due to how [UEs](#page-2-0) are placed in the environment: in the *fixed* scenario the [UE](#page-2-0) are always generated in the edge of the cell. Thus, it represents a worst case scenario in terms of path loss, but the [BS](#page-2-1) and the [UEs](#page-2-0) are always in [LOS.](#page-2-4) On the contrary, in the random environment, even if the cell has the maximum dimension, the [UEs](#page-2-0) could be generated close to the [BS,](#page-2-1) because of the uniform distribution but the [LOS](#page-2-4) condition is not always guaranteed.

Figure 4.7: Mean number of scans vs cell dimension in the random scenario with uniform generation of [UEs](#page-2-0) equipped with beamforming antennas.

Figure 4.8: Misdetection ratio vs cell dimension in the random scenario with [UEs](#page-2-0) equipped with beamforming antennas vs [UEs](#page-2-0) equipped with omnidirectional antennas. This curve has been obtained with the [MLS](#page-3-1) approach with $HPBW = 30^\circ.$ $HPBW = 30^\circ.$

Figure 4.9: Mean number of scans vs cell dimension in the *fixed* scenario with non-uniform generation of [UEs](#page-2-0) equipped with omni-directional antennas.

Figure 4.10: Mean number of scans vs cell dimension in the fixed scenario with non-uniform generation of [UEs](#page-2-0) equipped with beamforming antennas.

Figure 4.11: Misdetection ratio vs cell dimension in the *fixed* scenario with [UEs](#page-2-0) equipped with beamforming antennas vs [UEs](#page-2-0) equipped with omnidirectional antennas. This curve has been obtained with the [MLS](#page-3-1) approach with a [HPBW](#page-3-0) = 30° .

Since, the initially considered fixed scenario has been useful to appreciate the impact of the memory when a specific geometry is considered but, since it is not a representative environment, we included also the non-uniform generation for the random scenario. This allows to reproduce several and different fixed scenarios, in order to average the performance. Indeed, this generation of the [UEs](#page-2-0) is more interesting than the previous one, because it is more representative of the real world, including different environments which are randomly created.

In this sense, Fig. [4.12,](#page-82-0) [4.13](#page-83-0) and [4.14](#page-83-1) show the performance obtained with the [MLS](#page-3-1) and the [MBS](#page-4-0) algorithm in these new conditions. Considering the comparison between the non uniform generation in the random scenario and the fixed scenario we noticed that results are very similar, as expected. Thus, in the following we consider only *random* scenarios that alternatively accounts for the uniform and non-uniform [UEs](#page-2-0) generation.

The misdetecion ratio in Fig[.4.14](#page-83-1) shows worse performance than Fig. [4.8](#page-79-1) since, when [UEs](#page-2-0) are generated with a non-uniform distribution, they are more often placed in the edge of the cell.

Figure 4.12: Mean number of scans vs cell dimension in the random scenario with non-uniform generation of [UEs](#page-2-0) equipped with omni-directional antennas.

Figure 4.13: Mean number of scans vs cell dimension in the random scenario with non-uniform generation of [UEs](#page-2-0) equipped with beamforming antennas.

Figure 4.14: Misdetection ratio vs cell dimension in the random scenario with [UEs](#page-2-0) equipped with beamforming antennas vs [UEs](#page-2-0) equipped with omnidirectional antennas. This curve has been obtained with the [MLS](#page-3-1) approach with a [HPBW](#page-3-0) $= 30^{\circ}$ and a non-uniform generation of the [UEs](#page-2-0).

4.4 NSA Algorithm Performance Evaluation

In the previous section we have evaluated the advantages obtained with a memory-based system. For example, Fig. [4.13](#page-83-0) shows that for a [SA](#page-2-7) approach taking into account the past [UEs](#page-2-0) is fundamental to achieve a lower number of scans. Therefore, in order to evaluate how the memory together with the [GPS](#page-3-2) coordinates can speed up the [IA](#page-2-2) phase we also tested the [NSA](#page-2-8) algorithm, explained in [3.5.1.](#page-64-0) We tested the algorithm with the 3 Monte Carlo nested cycle simulation, like the aforementioned. We fixed the [GPS](#page-3-2) accuracy to $\sigma_{GPS} = 2$ m following the consideration in [\[24\]](#page-104-0).

Fig. [4.15](#page-84-0) and [4.16](#page-85-0) show that, leverage on a database based on the [GPS](#page-3-2) coordinates lead to a great decrease in the [IA](#page-2-2) phase with respect to the [SA](#page-2-7) approaches shown before. Nevertheless, a dedicated control channel is required, hence with waste in spectral resources. These results motivated the design of a novel scheme aimed at improving the performance.

Figure 4.15: Mean number of scans vs cell dimension in the random scenario with uniform generation of [UEs](#page-2-0) equipped with omni-directional antennas.

Figure 4.16: Mean number of scans vs cell dimension in the random scenario with uniform generation of [UEs](#page-2-0) equipped with beamforming antennas.

4.5 Novel Approach Performance

In this section we finally compare the proposed approach, described in Chapter 2, with respect to the [MLS](#page-3-1) and the [MBS](#page-4-0) approaches, whose performance has been analysed in Sec. [4.3.](#page-77-0) More specifically, the proposed approach is first tested when the [UE](#page-2-0) is considered equipped with an omni-directional antenna or with the memoryless beamforming technique, while successively when the [UE](#page-2-0) has the capability to exploit a *database* containing prior information deriving from other [UEs](#page-2-0). In this simulations, in order to test each algorithm with the same misdetection ratio, we fixed the [HPBW](#page-3-0) to 15° for the [MLS](#page-3-1) and the [MBS](#page-4-0) algorithm. We test the algorithms in *random* scenario with both uniform and non uniform generation.

Figure 4.17: Mean number of scans vs cell dimension in the random scenario with uniform generation of [UEs](#page-2-0) equipped with omni-directional antennas.

Figures [4.17,](#page-86-0) [4.18](#page-87-0) and [4.19](#page-88-0) show the results achieved with the uniform generation. In particular, Fig. [4.17](#page-86-0) puts in evidence that our algorithm improves the performance with respect to the [MLS](#page-3-1) and [MBS](#page-4-0) approaches, when the cell size is lower than 100 m. After that, the proposed approach tends to deteriorate its performance while comparing to the other algorithms. This effect can be ascribed to the fact that this novel approach leverages on different [HPBWs](#page-3-0), and thus for larger distances testing with wider beam widths, which exhibit lower gains, might lead to misdetection and waste of time.

Concerning fig. [4.18](#page-87-0) we can notice the same behaviour, even if relieved thanks to the beamforming gain at [UE](#page-2-0) side which makes the channel less dependent on the gain at [BS](#page-2-1) side.

Nevertheless, considering in particular the beamforming case in Fig, [4.18,](#page-87-0) our algorithm allows to enhance the [MBS](#page-4-0) performance by a factor 10, as long

Figure 4.18: Mean number of scans vs cell dimension in the random scenario with uniform generation of [UEs](#page-2-0) equipped with beamforming antennas.

as the cell is not too large. The possibility to use several [HPBW](#page-3-0) lets the algorithm learn better the position of the obstacles with respect to the [MBS.](#page-4-0)

The misdetection ratios in Fig. [4.19](#page-88-0) and [4.22](#page-89-0) show a trend similar to the previous one, but in this case the omnidirectional and the beamforming curves are closer. This is due to the increase of the gain in the [BS,](#page-2-1) which permits to easily cover the whole cell. This means that the gain at [UE](#page-2-0) side in less relevant than in the preceding simulations.

Summarizing, it has been shown that the use of an algorithm which leverages on both a memory and a multi codebook system can considerably decrease the [IA](#page-2-2) delay without the support of a dedicated control channel.

Finally, we investigate the improvement obtained using the proposed [UE](#page-2-0) approach. The considered accuracy of the [GPS](#page-3-2) is the same as in Sec. [4.4,](#page-84-1) while error in the orientation estimation is set to $\sigma_N = 8^\circ$.

Figures [4.23](#page-90-0) and [4.24](#page-90-1) show the results obtained when the [UE](#page-2-0) is assumed to be capable to steer its beam towards four different sectors and to access an online database, as detailed in Sec. [3.5.2.](#page-68-0) Indeed, the improvement carried out by the database at the [UE](#page-2-0) side is not remarkable, since it leads to decrease the number of scans in average only by 1 with respect to the memoryless [UE](#page-2-0) approach. This effect comes from the following reason: assuming that the [BS](#page-2-1) steers its beam towards the correct direction, the memoryless [UE](#page-2-0) needs on average only 2-3 scans to find the best configuration, which is already well performing.

Thus, in case [UEs](#page-2-0) with more complex antennas are considered (i.e., more steering directions for the [UE\)](#page-2-0), the improvement is expected to become more evident.

Figure 4.19: Misdetection ratio vs cell dimension in the random scenario with [UEs](#page-2-0) equipped with beamforming antennas vs UEs equipped with omnidirectional antennas. This curve has been obtained with the [MLS](#page-3-1) approach with a [HPBW](#page-3-0) $= 15^{\circ}$.

Figure 4.20: Mean number of scans vs cell dimension in the random scenario with non-uniform generation of [UEs](#page-2-0) equipped with omni-directional antennas.

Figure 4.21: Mean number of scans vs cell dimension in the random scenario with non-uniform generation of [UEs](#page-2-0) equipped with beamforming antennas.

Figure 4.22: Misdetection ratio vs cell dimension in the random scenario with [UEs](#page-2-0) equipped with beamforming antennas vs [UEs](#page-2-0) equipped with omnidirectional antennas. This curve has been obtained with the [MLS](#page-3-1) approach with a [HPBW](#page-3-0) $= 15^{\circ}$ and non-uniform distribution of the [UEs](#page-2-0).

Figure 4.23: Mean number of scans vs cell dimension in the random scenario with uniform generation of [UEs](#page-2-0). The curves show the comparison between the memoryless and the memory-based algorithm at [UE](#page-2-0) side.

Figure 4.24: Mean number of scans vs cell dimension in the random scenario with non-uniform generation of [UEs](#page-2-0). The curves show the comparison between the memoryless and the memory-based algorithm at [UE](#page-2-0) side.

Conclusions

The standardization of the [5G](#page-2-9) of wireless mobile systems represents one of the most important challenges of these years. Considering the different technologies areas in which [5G](#page-2-9) is involved, satisfying the several requirements implies a detailed study on each aspect of the system. In this document we have focused especially in the [IA](#page-2-2) phase, primarily by studying the [SOTA](#page-2-10) approaches considering both [SA](#page-2-7) and [NSA](#page-2-8) algorithms. In particular, it has emerged that [SA](#page-2-7) algorithms usually consider statistical realization of the channels, which are not the most appropriate tool to evaluate a memorybased system because of they not dependence on user position. Moreover, the [SA](#page-2-7) approaches which leverage on a memory-based system do not rely also on several [HPBWs](#page-3-0) at [BS](#page-2-1) side and usually neglect the [UE](#page-2-0) to improve the [IA](#page-2-2) procedure. Thus, we have designed a novel approach which leverages at [BS](#page-2-1) side on a knowledge database that includes information about the detected [UEs](#page-2-0) per sector with the adopted [HPBW,](#page-3-0) and at [UE](#page-2-0) side on the availability of information shared among previous detected [UEs](#page-2-0). Finally, we have developed a simulator based on a [RT](#page-2-11) channel, in order to compare the algorithms.

The results we have obtained show that, first of all the [mmWave](#page-2-12) communications are not straightforward to manage. In particular we have demonstrated that in most cases only [LOS](#page-2-4) [UEs](#page-2-0) can establish a communication link with the [BS,](#page-2-1) while [NLOS](#page-2-5) [UEs](#page-2-0) are often unreachable. After that, we have proved that the memory is a key parameter for the [IA](#page-2-2) techniques: the use of a memory-based system at [BS](#page-2-1) and [UE](#page-2-0) side allows to significantly reduce the average discovery time. Moreover, with our novel approach we have demonstrated that the use at [BS](#page-2-1) side of a knowledge database, permits to notably enhance the performances with respect to the [SA](#page-2-7) [SOTA](#page-2-10) approaches. On the [UE](#page-2-0) side, since we have considered only 4 steering directions, using a *database* based on the sharing of information with others [UEs](#page-2-0) does not leads to a remarkable performance with respect to a memoryless [UE](#page-2-0) implementation.

Future works at [BS](#page-2-1) side might consider a larger number of [HPBWs](#page-3-0) configurations, in order to evaluate whether a further performance improvement of the proposed algorithm can be attained. Moreover, it would be advisable, whenever a [UE](#page-2-0) is detected by the [BS](#page-2-1) with a [HPBW,](#page-3-0) to increase in the knowledge database only the cells of the row associate to its received power, instead of the whole cells in the configuration. This would permit to discriminate the [UEs](#page-2-0) with different received powers detected with a certain [HPBW.](#page-3-0) Furthermore, it could be interesting to adapt the novel approach to a multi [BSs](#page-2-1) scenario, where the [BSs](#page-2-1) are able to share each others the knowledge database with the purpose to further decrease the *average discovery time*. On the other hand, concerning the [UE](#page-2-0) side of the proposed approach, further tests should be conducted considering a [HPBW](#page-3-0) less than 90°, in order to evaluate possible additional improvements even though that would require a more precise estimation of UE orientation which could be challenging. In perspective, it would be interesting to investigate the issue of [IA](#page-2-2) in future cell-free networks that are under investigation for beyond [5G](#page-2-9) systems.

Ringraziamenti

Ci siamo, questo percorso di studi é terminato, e con esso termina una parte della mia vita. Arrivato alla fine in parte sono stanco, perch´e comunque questa tesi ´e stata veramente difficile da scrivere e terminare in maniera dignitosa, ma soprattutto mi sento emozionato. In tutti questi bellissimi anni di Universit´a (si bellissimi, anche se spesso ho maledetto il giorno in cui mi sono iscritto ad ingegneria), sono sempre stato sicuro di quello che mi sarebbe accaduto il giorno dopo: sarei andato a lezione, oppure avrei avuto degli esami. Ma adesso devo affrontare quello che verrá dopo, e questo é veramente eccitante. Ho l'oblio davanti e va bene cosí.

Dopo il breve flusso di coscienza iniziale sará meglio ringraziare qualcuno visto il titolo di questo capitolo. In modo molto scontato ringrazio ovviamente i miei genitori che hanno creduto in me anche se non sono sempre stato un gran studioso, ma evidentemente loro sapevano che sotto sotto lo ero. E poi ringrazio tutti i miei amici che sono sempre disposti a bersi una birra con me e ascoltarmi durante i miei vaneggiamenti.

Un grandissimo ringraziamento va a Francesco Guidi e al Prof. Davide Dardari che mi hanno seguito tantissimo durante tutta questa tesi e che con tanta pazienza hanno corretto tutti i miei errori ed orrori (di inglese e non).

Non voglio dire altro che il tempo stringe e io adesso voglio andare a letto. Buonanotte.

List of Tables

List of Figures

Bibliography

- [1] A. Osseiran, F. Boccardi, V. Braun, K. Kusume, P. Marsch, M. Maternia, O. Queseth, M. Schellmann, H. Schotten, H. Taoka, H. Tullberg, M. A. Uusitalo, B. Timus, and M. Fallgren, "Scenarios for 5G mobile and wireless communications: the vision of the metis project," IEEE Communications Magazine, vol. 52, no. 5, pp. 26–35, May 2014.
- [2] M. Giordani, M. Mezzavilla, and M. Zorzi, "Initial access in 5G mmwave cellular networks," IEEE Communications Magazine, vol. 54, no. 11, pp. 40–47, November 2016.
- [3] S. Rangan, T. S. Rappaport, and E. Erkip, "Millimeter-wave cellular wireless networks: Potentials and challenges," Proceedings of the IEEE, vol. 102, no. 3, pp. 366–385, March 2014.
- [4] L. Wei, R. Q. Hu, Y. Qian, and G. Wu, "Key elements to enable millimeter wave communications for 5g wireless systems," IEEE Wireless Communications, vol. 21, no. 6, pp. 136–143, December 2014.
- [5] "What are small cells in 5G technology," [https://www.rfpage.com/](https://www.rfpage.com/what-are-small-cells-in-5g-technology/) [what-are-small-cells-in-5g-technology/,](https://www.rfpage.com/what-are-small-cells-in-5g-technology/) updated: September 2018.
- [6] M. Wang, Y. Li, H. Zou, M. Peng, and G. Yang, "Compact MIMO antenna for 5G portable device using simple neutralization line structures," in 2018 IEEE International Symposium on Antennas and Propagation USNC/URSI National Radio Science Meeting, July 2018, pp. 37–38.
- [7] W. Jiang, Y. Liu, Y. Cui, B. Wang, and S. Gong, "Compact wide-band MIMO antenna with high port isolation," in 12th European Conference on Antennas and Propagation (EuCAP 2018), April 2018, pp. 1–3.
- [8] S. Syedakbar, S. Ramesh, and J. Deepa, "Ultra wide band monopole planar MIMO antenna for portable devices," in 2017 IEEE International Conference on Electrical, Instrumentation and Communication Engineering (ICEICE), April 2017, pp. 1–4.
- [9] "Radio access networking challenges towards 2030." [https:](https://www.itu.int/en/ITU-T/Workshops-and-Seminars/201810/Documents/Matt_Latva-aho_Presentation.pdf) [//www.itu.int/en/ITU-T/Workshops-and-Seminars/201810/](https://www.itu.int/en/ITU-T/Workshops-and-Seminars/201810/Documents/Matt_Latva-aho_Presentation.pdf) [Documents/Matt](https://www.itu.int/en/ITU-T/Workshops-and-Seminars/201810/Documents/Matt_Latva-aho_Presentation.pdf) Latva-aho Presentation.pdf.
- [10] electronic component news (ECN), "Fact or fiction: What's real in 5G new radio," [https://www.ecnmag.com/article/2018/05/](https://www.ecnmag.com/article/2018/05/fact-or-fiction-whats-real-5g-new-radio) [fact-or-fiction-whats-real-5g-new-radio,](https://www.ecnmag.com/article/2018/05/fact-or-fiction-whats-real-5g-new-radio) october 2018.
- [11] M. R. Akdeniz, Y. Liu, M. K. Samimi, S. Sun, S. Rangan, T. S. Rappaport, and E. Erkip, "Millimeter wave channel modeling and cellular capacity evaluation," IEEE Journal on Selected Areas in Communications, vol. 32, no. 6, pp. 1164–1179, June 2014.
- [12] "FP7-ICT-608637 MiWEBA project deliverable D5.1 Channel modeling and characterization," [http://www.miweba.eu/wp-content/](http://www.miweba.eu/wp-content/uploads/2014/07/ MiWEBA_D5.1_v1.01.pdf) [uploads/2014/07/MiWEBA](http://www.miweba.eu/wp-content/uploads/2014/07/ MiWEBA_D5.1_v1.01.pdf) D5.1 v1.01.pdf, June 2014.
- [13] I. Filippini, V. Sciancalepore, F. Devoti, and A. Capone, "Fast cell discovery in mm-wave 5G networks with context information," IEEE Transactions on Mobile Computing, vol. 17, no. 7, pp. 1538–1552, July 2018.
- [14] M. Giordani, M. Mezzavilla, C. N. Barati, S. Rangan, and M. Zorzi, "Comparative analysis of initial access techniques in 5G mmwave cellular networks," in 2016 Annual Conference on Information Science and Systems (CISS), March 2016, pp. 268–273.
- [15] "Initial access - mmwave networking group," [http://mmwave.dei.unipd.](http://mmwave.dei.unipd.it/research/initial-access/) [it/research/initial-access/.](http://mmwave.dei.unipd.it/research/initial-access/)
- [16] R. Parada and M. Zorzi, "Cell discovery based on historical user's location in mmwave 5G," in European Wireless 2017; 23th European Wireless Conference, May 2017, pp. 1–6.
- [17] H. Soleimani, R. Parada, S. Tomasin, and M. Zorzi, "Statistical approaches for initial access in mmwave 5G systems," in European Wireless 2018 ; $24th$ European Wireless Conference, May 2018, pp. 1–6.
- [18] Y. Qi and M. Nekovee, "Coordinated initial access in millimetre wave standalone networks," in 2016 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), April 2016, pp. 59–64.
- [19] F. Devoti, I. Filippini, and A. Capone, "Mm-wave initial access: A context information overview," in 2018 IEEE 19th International Symposium on "A World of Wireless, Mobile and Multimedia Networks" $(WoWMoM)$, June 2018, pp. 1–9.
- [20] R. E. Rezagah, H. Shimodaira, G. K. Tran, K. Sakaguchi, and S. Nanba, "Cell discovery in 5G hetnets using location-based cell selection," in 2015 IEEE Conference on Standards for Communications and Networking (CSCN), Oct 2015, pp. 137–142.
- [21] "Chinadaily.com.cn: A bird's-eye view of new york city," [http:](http://www.chinadaily.com.cn/world/2015-07/09/content_21228787_2.htm) [//www.chinadaily.com.cn/world/2015-07/09/content](http://www.chinadaily.com.cn/world/2015-07/09/content_21228787_2.htm) 21228787 2.htm, updated: 2015-07-09 08:09.
- [22] R. J. Weiler, W. Keusgen, A. Maltsev, T. Kühne, A. Pudeyev, L. Xian, J. Kim, and M. Peter, "Millimeter-wave outdoor access shadowing mitigation using beamforming arrays," in 2016 10th European Conference on Antennas and Propagation (EuCAP), April 2016, pp. 1–5.
- [23] "Federal communications commission: Millimeter wave propagation: Spectrum management implications," [https://transition.fcc.gov/](https://transition.fcc.gov/Bureaus/Engineering_Technology/Documents/bulletins/oet70/oet70a.pdf) Bureaus/Engineering [Technology/Documents/bulletins/oet70/oet70a.](https://transition.fcc.gov/Bureaus/Engineering_Technology/Documents/bulletins/oet70/oet70a.pdf) [pdf,](https://transition.fcc.gov/Bureaus/Engineering_Technology/Documents/bulletins/oet70/oet70a.pdf) updated: July 1997.
- [24] "gps accuracy," [https://www.gps.gov/systems/gps/performance/](https://www.gps.gov/systems/gps/performance/accuracy/) [accuracy/.](https://www.gps.gov/systems/gps/performance/accuracy/)