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Abstract

L’obiettivo di questo elaborato è studiare il problema del tracciamento ef-
ficiente e continuo dell’angolo di arrivo dei cammini multipli dominanti in
un canale radio ad onde millimetriche. In particolare, viene considerato uno
scenario di riferimento in cui devono essere tracciati il cammino diretto da
una stazione base e due cammini riflessi da ostacoli in diverse condizioni op-
erative e di movimento dell’utente mobile. Si è assunto che l’utente mobile
può effettuare delle misure rumorose di angolo di arrivo dei tre cammini,
uno in linea di vista e gli altri due non in linea di vista, ed eventualmente
delle misure di distanza tra esso e le tre ”sorgenti” (ad esempio ricavandole
da misure di potenza ricevuta). Utilizzando un modello ”spazio degli stati”,
sono stati investigati due diversi approcci: il primo utilizza un filtraggio
di Kalman direttamente sulle misure di angolo di arrivo, mentre il secondo
adotta un metodo a due passi in cui lo stato è rappresentato dalle posizioni
della stazione base e dei due ostacoli, dalle quali vengono valutate le stime
degli angoli di arrivo. In entrambi i casi è stato investigato l’impatto che ha
sulla stima la fusione dei dati ottenuti dai sensori inerziali integrati nel dis-
positivo, ovvero velocità angolare ed accelerazione del mobile, con le misure
di angolo di arrivo. Successivamente ad una fase di modellazione matematica
dei due approcci, essi sono stati implementati e testati in MATLAB, svilup-
pando un simulatore in cui l’utente possa scegliere il valore di vari parametri
a seconda dello scenario desiderato. Le analisi effettuate hanno mostrato la
robustezza delle strategie proposte in diverse condizioni operative.
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Introduction

Nowadays the humankind need to exchange bigger data and information at
an ever high speed, with a lower energy consumption and more reliability.
The modern Fifth Generation (5G) cellular systems will require, for exam-
ple, larger throughput (1Gb/s or higher) and lower latency (less than 1ms)
compared to the conventional Long Term Evolution (LTE ) based systems [6].

Millimeter wave (mmWave) communications can provide a solution for
that issues, because they offer a larger and continuous bandwidth compared
to the conventional micro-wave communications: in fact, the latter work
typically at sub-6GHz frequencies (almost congested) with a bandwidth less
than 20MHz, while the former can use EHF bands (e.g. 28, 38, 60 and
70GHz) with a width from 500MHz to 2GHz [1].

Despite these advantages, mmWave communications introduce some is-
sues. First of all, due to the path loss increase with frequency, that systems
need apparently an higher transmission power or a greater number of base
stations (BSs) installed (due to the lower propagation range) compared to
the micro-wave systems [7]. Secondly, also the penetration loss increases
(due to higher reflection coefficients), so an hypothetical outdoor propaga-
tion cannot spread through buildings [7]. As before, this means the need of
more base stations, so the apparently growth of the costs of the technology.
Moreover, diffraction represents the weakest propagation component impair-
ment in mmWave mobile systems due to the relatively small wavelengths
involved [7].

These problems are closely related and to overcome them a typical Multiple-
Input Multiple-Output (MIMO) mmWave communication system, i.e., base
station and mobile user (MU ), exploits the multipath behavior of the channel
through adaptive beamforming using antennas arrays. Conventional MIMO
systems, in fact, permit both the base station and mobile user (or mobile sta-
tion, MS ) to use narrow beams and steer them, in order to provide the best
beam alignment and counteract the path loss with a beamforming gain [7].
However, because of the dynamics of the channel, due to the movement of
the mobile user or the presence of obstacles, the propagation parameters

3



evolve in space and time, therefore the best beam alignment must be track.
Moreover, the propagation could be charactered by multipaths that could be
resolved and exploited to increase the communication capacity (MIMO) as
well as its reliability.

This work aims at investigating this issue, that is how to efficiently and
continuously track the Angle-of-Arrival (AoA) of the dominant multipath
components using an antenna array. In particular, a reference scenario in
which the direct path from the base station and up to two paths reflected
by scatterers have to tracked is considered under mobile station movement
and different operating conditions. Is assumed that the mobile user can do a
noisy measurement of the AoAs of the three paths, one Line-Of-Sight (LOS )
and the others Non-Line-Of-Sight (NLOS ), and possibly of the distance from
itself to the scatterers (e.g., inferred from the received power).

Using a state-space modeling, two different approaches are investigated:
the first one considers a Kalman filtering (KF ) directly applied to the AoA
measurements, the second instead, adopts a two-state method in which the
state is represented by the position of the base station and scatterers from
which the AoA estimates are evaluated. In both cases the impact of fusing
the angular speed and position acceleration of the mobile station obtained
from an inertial device with the AoA measurements is investigated.

The following work is structured in five chapters:

� The first chapter is a short overview on the typical strategies adopted
for the beam tracking. It is explained how this work takes inspiration
from the existing approaches, in particular from the reference article [2],
and how data fusion was integrated in them.

� In the second chapter the first approach is introduced. In particular, the
reference scenario, the mobility and observation models are introduced,
then the implementation of the Kalman filtering for AoA tracking is
described.

� In the third chapter the second approach is presented, i.e., using the
noisy measurements of the three AoAs and the distance between the
mobile user and the scatterers to estimate the real values of the scat-
terers relative positions, and from them extrapolate the AoAs values.
As before, the reference scenario, the mobility and observation models
are introduced, then the implementation of filter for position tracking
is described.

� The fourth chapter shows the high-level flowchart of the algorithms and
gives an explanation of the MATLAB implementation.

4



� In the last chapter the MATLAB simulations obtained in different con-
ditions of movement, device rotation, noise values and filter parameters
are explained. Then the results in terms of Root Mean Square Error
(RMSE ) and outlier rate, for AoA and positions, are shown. The per-
formance of the two approaches are compared.

5
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Chapter 1

Overview on typical approaches
for beam tracking

Fist of all, it must be said that beam tracking in mobile communications is
the method that follows the initial access phase. In fact, a mobile user that
enters a cell for the first time must perform a scan of the space around itself
to find a base station from which to be served, like in Figure 1.1. To ensure
the best possible Quality of Service (QoS ), it must find the most accurate
alignment and keep it despite the dynamics of the channel and user.

Figure 1.1: The random access procedure in mmWave beamforming cellular
networks [1]

7



In order to ensure that alignment, it should be possible to change the
direction of the beams of the antenna arrays used by the base station and
possibly the mobile station. In multi-antenna systems the way to do that is
choosing appropriately the coefficients (weights) of the array elements [6] [1].
Since the high path loss at mmWave, narrow beams are required to obtain
an high beamforming gain and overcome this issue.

From the MIMO point of view (Figure 1.2), the multipath behavior of
the channel is an important resource, because a multi-antenna system can
typically exploit fading to increase capacity, range and radio link quality as
a result of diversity, array and multiplexing gains, as well as interference
reduction, using advanced signal processing.

Figure 1.2: Description of the multi-antenna communication, i.e., MIMO
principle, whereH is the time varying channel matrix and θk the parameters
to estimate [2]

In other words, since at mmWave the propagation contribution is given
by the LOS path (if exists) and few reflective paths, track them become
fundamental for achieve the advantages cited before.

1.1 Conventional techniques for tracking of

MIMO propagation path parameters

The approach from which the proposed work takes inspiration [2] is not
referred to mmWave propagation, but to micro-wave propagation, for which
there is an high multipath richness, especially in dense urban scenarios. Since
the method proposed in [2] is targeted to a different propagation scenario,
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in this thesis will be taken out only the parts that can be applied to the
scenario under consideration and that represent a solid starting point.

The reference paper proposes a state-space approach for tracking the
dynamic radio propagation path parameters over time, i.e., time-delays τ
and angles ϑ and ϕ (Figure 1.3), as well as the coefficients of the array
elements. A state-space model is derived and an Extended Kalman filtering
(EKF ) is applied for the parameter estimation of the non-linear measurement
model. In general, there are several advantages in direct sequential estimate
(tracking), as follows:

� Information about how parameters evolve over time, including the rate
of change, can be obtained.

� Due to filtering the estimate error is reduced.

� Sequential estimate reduces the computational complexity, since the
previous estimate can be updated using the new information captured
by the current measurement.

Figure 1.3: Double directional radio channel model parameters for a single
propagation path [1]

The EKF is formulated in a specific, computationally attractive form,
enabling scalability for large state and measurement dimensions. Realistic
models for state-noise covariance and propagation are developed in order
to capture the underlying physical phenomena, to keep the computational
complexity reasonable, and to obtain an estimator with good statistical per-
formance in terms of estimate error [2].

Another approach for the tracking of the dynamic space, time, and fre-
quency dependent MIMO radio channel was proposed in [8], based on Particle
Filter concept.

9



In the following sections the model and the estimate process will be ex-
amined.

1.1.1 State-space model

To describe the state-space model of the propagation paths, the paper [2]
proposes the following structure for realistic and identifiable modeling of the
dynamics. The state vector (parameters to track) at every time step k is
given by:

θk =
[
µT ∆µT αT φT ∆φT

]T
(1.1)

where φ and ∆φ are respectively the phases of the paths and their rate
of change, while α are the polarimetric path coefficients. These parameters
will not be taken into account for the rest of the paragraph. µ and ∆µ are
the vectors of parameters describing the propagation paths and their rates
of change, that is:

µ =
[
τ T ϕTT ϑ

T
T ϕ

T
R ϑ

T
R

]T
(1.2)

where ϑ are the elevation angles of departure/arrival and ϕ the azimuth
angles of departure/arrival respectively (Figure 1.3). For simplicity and with-
out losing in generality, the three dimensional (3D) approach from here on
is replaced by a 2D approach, so elevation is not taken into account. Also
the time delays of arrival τ are not considered.

Summing up, the state vector is now given by the AoAs and Angles-of-
Departure (AoDs) and their rates of change. Considering that for AoAs and
AoDs the treatment is equivalent, we can consider only one of them, that is
AoAs. Therefore:

θk =
[
µT ∆µT

]T
=
[
ϕTR ∆ϕTR

]T
. (1.3)

In this way it is possible to neglect some steps followed by the reference
paper, like the parametrization of the weights and the effects of the Doppler
shift in channel sounding [2].

The continuous-time dynamic equation for a single path can be expressed
as:

dθ(t)

dt
= F θ(t) + L w(t) =

[
0 1
0 0

] [
µT (t) ∆µT (t)

]T
+

[
0 0
1 0

]
w(t)

(1.4)
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where the rate of change of the structural parameters is perturbed by a
white Normal distributed process w(t) with a white power spectral density
W .

The choice for the process noise model is motivated by the assumption
that the noise dynamics of the structural parameters are governed by the
(macro-scale) motion of terminals and/or scatterers in the system. The val-
ues of W are essentially filter design parameters, so the selection and fine
tuning of these should be done according to the expected kinematics in the
system, as well as balancing between smoothness of the filtered estimates
versus faster tracking. The former leads to losing tracking of paths, whereas
the latter gives higher variance but enables robust performance and more
reliable tracking. In addition, the state noise term captures all the modeling
uncertainties [2].

State-space modeling of radio channel propagation parameters is based
on the observation that the parameters, if properly chosen, evolve slowly
with respect to the measurement interval, i.e., they are correlated in time.
The process can be described using a Gauss–Markov model, i.e., denoting
the state of the system at time k as in equation (1.1), with the Probability
Density Function (PDF ) of the next state dependent only on the current
state and Normal distributed. Therefore, the state-space model used in the
reference paper consists of a linear state equation, describing the dynamic
behavior of the paths propagation parameters, and a non-linear measurement
equation, mapping the double-directional model parameters to the channel
sounder output data.

In channel sounding the observation interval is usually constant. Thus,
the time between observations can be normalized to one and the discrete-
time (linear and time invariant) state transition and state-noise covariance
matrices can be solved in closed form using the following matrix fraction
decomposition [2]:

Q =

∫ ∆t

0

Φ(∆t− τ)LWLTΦT (∆t− τ)dτ ≈

≈ W

[
LLT∆t+

1

2
∆t2

(
FLLT +LLTF T

)
+

1

3
∆t3

(
FLLTF T

)]
(1.5)

where ∆t is the discretization interval.

The discrete-time state transition equation can be expressed as:

θk = Φk θk−1 + vk (1.6)
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where vk ∼ N(0,Q) is the state noise with covariance matrix Q deter-
mined as in equation (1.5) and Φk the state-transition matrix obtained as:

Φk = exp(F∆t) (1.7)

that is equal, for small ∆t, to multiply every member of the matrix F by
∆t and add the result to an identity matrix of the same dimension [2].

The non-linear measurement equation of the state-space model is given
by:

yk = f (θk) + rk (1.8)

where f (θk) is a function of the propagation paths parameters which
depends on the type of measurement, and the measurement noise is assumed
to be rk ∼ N(0,R) with covariance matrix R.

The core of proposed parameter estimation procedure (Figure 1.4), i.e.,
tracking the propagation path parameters over time, is based on the EKF.

Figure 1.4: Estimation procedure principle [1]. Second step is not taking
into account

The EKF uses Taylor series expansion to linearize the non-linear mea-
surement model about the current estimates and it is a low complexity im-
plementation of the Bayesian filtering.

The Bayesian filtering is a recursive algorithm to evaluate the marginal a-
posteriori distribution p (θk | y1:k−1) (belief) of the current state, depending
on all past measurements, by exploiting the mobility model p (θk | θ1:k−1)
and the measurement model p (yk | θk), i.e., the likelihood for the measure-
ments accounting for the observation noise, where yk are the new incoming
measurements.

The algorithm consists of three phases:

� Initialization, that is the first phase performed only once when the
algorithm starts. In this step the a-priori marginal distribution p (θ0:k)
is defined.

� Prediction, in which the algorithm evaluate the marginal a-posteriori
distribution p (θk | y1:k−1).
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� Update, where the prediction is refined exploiting the measurement
model, therefore p (θk | y1:k) is evaluated. This last step is repeated
recursively alternating with the prediction phase, until the algorithm
stops.

Figure 1.5 shows the Bayesian filtering flowchart:

Figure 1.5: Bayesian filtering flowchart

where the following equations show the results of the prediction and up-
date phases:

p (θk | y1:k−1) =

∫
p (θk | θk−1) p (θk−1 | y1:k−1) dθk−1 ; (1.9)

p (θk | y1:k) =
p (yk | θk) p (θk | y1:k−1)∫

p (yk | θk) p (θk | y1:k−1) dθk−1

. (1.10)

Relatively to the Kalman filtering, as it will be shown in the following
chapters, the algorithm provides respectively the average value mk and the
covariance Pk of the marginal a-posteriori distribution, that is Gaussian.

In case of Maximum A-Posteriori (MAP, or Minimum Mean Square Er-
ror, MMSE ) estimator, that average coincides with the estimate θ̂k at time
step k.

Therefore, under Markovian hypothesis, a Bayesian modeling of system
dynamics and measurements to account for uncertainties gives an optimal,
real-time and recursive solution, with low complexity despite the increase in
the number of time steps [2]. To improve the filtering is possible to modify
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the state model, and so the algorithm itself, introducing a term identifying an
external input, that contains, for the proposed work, data from the embedded
device sensors, as described in the next section.

1.2 Data fusion approach

A perfect beam alignment between the transmitter (TX ) and the receiver
(RX ) needs fine tuning and it is vulnerable to different factors such as mo-
bile device movement and rotation (Figure 1.6), i.e., a small misalignment
between TX and RX beams may cause a significant loss in the received power,
especially for systems with narrow beams.

Figure 1.6: Motion misalignment in beamforming [3]

The rapid development of low-cost Micro Electro-Mechanical Systems
(MEMS ) provides an inexpensive solution that could improve the perfor-
mance of the beam alignment. In most smart devices, the Inertial Measure-
ment Unit (IMU ) contains three key components: accelerometer, gyroscope
and magnetometer:

� Accelerometer measures the acceleration of each axis. The problem
of the accelerometer is mainly caused by additional force placed on
the handset and gravity that needs to be subtracted from the model
[4]. The accelerometer suffers from drifting issues due to the double
integration of measurement over time.

� Gyroscope measures the angular speed in the sensor frame. The at-
titude is acquired by the integration of measurement over time. The
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gyroscope is reasonably accurate over a short time, while the drifting is-
sue makes it inaccurate due to the integration over time. This problem
could be mitigated by the technique of sensor fusion [3].

� The magnetometer detects and measures the magnetic field. It offers
a great option to measure the absolute position with respect to the
Earth north pole. Yet the disadvantage is that the magnetic north
pole does not align with the geographic one. Moreover, the direction
varies based on nearby materials which could substantially affect the
magnetic field [3].

The combination of multiple streams of sensor data for a more accurate
result is called sensor (data) fusion. As shown in the literature [9] [4] [5], the
accuracy of MEMS measurements suffers from the drifting and measurement
noise in the long run. However, the problem is eased in the beamforming
scenario, where the integration time is relatively short: within the short
period, the drift accumulation is negligible [3].

1.2.1 Innovative algorithms for 3D mmWave beam track-
ing

An IMU includes a three-axis gyroscope, a three-axis accelerometer and a
three-axis magnetometer, which are embedded in the MEMS inside the smart
phones. In a 3D space, quaternion q algebra is widely used for defining the
orientation of a rigid body coordinated frame [5]. Moreover, Euler angles are
frequently used to specify the angular orientation of one coordinate system
relative to another [9].

It is appropriate to introduce these two concepts because the two ends
of the communication link only recognize the optimal direction in their own
coordinate, where the coordinate transformation is unclear unless detailed
geographic position and accurately environment model are given. Therefore,
it is typical to define a global coordinate system where the origin is located
at the base station [3] [9]. The optimal beam direction is given as mutual
directions within this frame provided the positions of the mobile user and
base station. Besides the global frame, there is a local coordinate system,
which is attached to the mobile device rigidly and moves and rotates with
the device itself. All the sensors in the mobile devices are working in this
frame, while the antenna array is also placed in a certain plane in the local
frame. Figure 1.7 shows how it is possible to compensate the misalignment
between the global and local frame [10] .
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Figure 1.7: Beamforming misalignment compensation [3].

For tracking behavioral changes (self-rotation) of the mobile user, [4] [5]
use the IMU of the smart phones to give self-measurements of the moving
device. Although the gyroscope itself can measure the three rotation angles
(yaw, pitch, roll) accurately in short time, the drift error caused by integra-
tion could cause significant errors in rotation tracking. For this reason, the
data obtained from these sensors are incorporated by EKF [4] or by gradi-
ent descent algorithm [5] for tracking behavioral changes of the mobile user,
where the gyroscope gives state update, while accelerometer and magnetome-
ter give measurement update to correct the gyroscope drift error [4].

Therefore equation (1.6) changes to:

θk = g (θk−1) + vk (1.11)

where the state vector θk consists now of the mobile user location and
speed at time step k, function g(.) of the previous estimate and of the gyro-
scope data [4] [5].

Measurements from Distance-of-Arrival (DoA) and Time-of-Arrival (ToA)
are gathered by the network to yield a mobile station position estimate, so
the shape of the measurement equation (1.8) does not change, but the func-
tion f(θk) and the noise associated now also depends on that values and on
the accelerometer and magnetometer data [4] [5].

1.3 Proposed idea

Starting from the idea given by the reference paper [2], that aims to estimate
and track the AoA at mobile user, and the innovative approaches that take in
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consideration data of the embedded sensors, this work proposes two different
approaches for tracking the dynamic mmWave propagation path parameters
over time.

For both of them the flowchart is the same:

� Definition of the scenario, hypothesis, state to estimate and type of
measurements allowed;

� Modeling of the system dynamic and its time-discrete equivalent, i.e.,
definition of the mobility model;

� Formulation of the measurement model;

� KF or EKF (depending on the linearity or non-linearity of the mea-
surement model) for the state estimate;

� Performance evaluation in term of RMSE.

The scenario and starting hypothesis are the same for both. The first
approach proposed is similar to [2], because the state is the AoA (and its rate
of change) of the multiple paths received from the mobile user, whereas in the
second approach the state is composed of the positions (and speeds) of the
base station and scatterers where the paths originate. For both the solutions
proposed, it is supposed that mobile user can get a noisy measurement of the
AoA (e.g., given by the antenna array) and possibly, for the second approach,
a noisy measurement of the distance between the sources of the paths and
the mobile user. Both suppose the possible use of data fusion to update the
mobility model.

In the following chapters a detailed explanation is given.
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Chapter 2

First approach: beam tracking
using AoA and its rate of
change as state to estimate

The first approach proposed in this work is similar to the reference paper [2],
due to the fact that it aims to track directly AoA of the multiple paths
received from the mobile station.

In the following sections it is shown how the approach is structured,
considering the starting hypothesis and the scenario, the mobility and mea-
surement models, concluding with the estimation algorithm.

2.1 Scenario

Without losing in generality compared to a 3D approach, in this work a
2D (outdoor) scenario has been studied (Figure 2.1). In particular, it is
hypothesized that a single mobile user is moving in a 200 × 200m area, a
typical size for systems using mmWave communications, in which the the
cell radius will be between few meters (e.g., ultra dense scenarios) and few
hundreds of meters (e.g., rural environments) [6]. The movement is supposed
random walk like, with a speed typical of a mobile user walking or moving
with a vehicle, depending on the testing conditions. The mobile user can
also rotate, but the center of the (relative) reference system is supposed to
be always the position of the mobile user itself.

Due to the consideration done in the introduction and in the first chapter
about the mmWave channel behavior, it can be reasonably assumed that
only few paths arrives at the mobile user with different AoAs. In particular,
three paths are taking in consideration, one due to the direct link between
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the only base station in the cell and the mobile user (LOS), and the others
two due to the reflections by scatterers, seen as equivalent sources. These
objects, for simplicity, are assumed to be points of reflection in the space.
The positions of the three sources are fixed and known a-priori only with a
large uncertainty.

Figure 2.1: 2D scenario

This type of physical systems can often be modeled with differential equa-
tions, i.e., it is possible to define a state-space model, as shown in Chapter
1.

2.2 Mobility model

The discrete mobility, or state-space, model describes the evolution of the
state over the time steps. In the proposed approach, the state θk at time
step k are the AoAs ϕk of the three paths received from the mobile user and
their rate of change ϕ̇k, as follow:

θk = [ ϕ1,k ϕ2,k ϕ3,k ϕ̇1,k ϕ̇2,k ϕ̇3,k ]T . (2.1)

The dynamics of the system is modeled by this time-continue equation:
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dθ(t)

dt
= F θ(t) +G u(t) + L w(t) =

=

[
03x3 I3

03x3 03x3

]

ϕ1(t)
ϕ2(t)
ϕ3(t)
ϕ̇1(t)
ϕ̇2(t)
ϕ̇3(t)

+ I6 u(t) +

[
03x3 03x3

I3 03x3

]
w(t) (2.2)

where the rate of change of the state is perturbed by an Additive White
Gaussian Noise (AWGN ) process w(t) with an angle acceleration spectral
density We. It could be considered also as an index about the ability of the
system to react to changes, i.e., system inertia.

The syntax 0ixj means a zeros matrix with i rows and j columns, while
Ii is the identity matrix with i rows and i columns. The control signal u(t)
will be investigated in subsection (2.2.1) and contains noisy data from the
gyroscope, in order to provide a better estimate.

As cited above, the system is sampled with a time step ∆t, therefore the
state evolves in a discrete manner between two consecutive time steps:{

ϕi,k = ϕi,k−1 + ∆t ϕ̇i,k−1 + ϕ̇gi,k + vϕi,k

ϕ̇i,k = ϕ̇i,k−1 + vϕ̇i,k

i = 1, 2, 3 . (2.3)

The system above can be written in a matrix form:


ϕ1,k

ϕ2,k

ϕ3,k

ϕ̇1,k

ϕ̇2,k

ϕ̇3,k


︸ ︷︷ ︸

θk

=

[
I3 diag3(∆t)

03x3 I3

]
︸ ︷︷ ︸

Φk


ϕ1,k−1

ϕ2,k−1

ϕ3,k−1

ϕ̇1,k−1

ϕ̇2,k−1

ϕ̇3,k−1


︸ ︷︷ ︸

θk−1

+ diag6(∆t)︸ ︷︷ ︸
B = G ∆t


ϕ̇g1,k
ϕ̇g2,k
ϕ̇g3,k

0
0
0


︸ ︷︷ ︸

uk

+


vϕ1,k

vϕ2,k

vϕ3,k

vϕ̇1,k

vϕ̇2,k

vϕ̇3,k


︸ ︷︷ ︸

vk

(2.4)

where the syntax diagi(∆t) means a diagonal matrix with i rows and i
columns and the element ∆t on the principal diagonal.

The matrix Φk is called state-transition matrix and describes how the
state evolves from the time step k-1 to the time step k. The reference paper [2]
gives a mathematical formula to evaluate this matrix, as follow:

Φk = exp(F∆t)
∆t→0−−−→ I6 + F∆t . (2.5)
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The vector vk ∼ N(0,Qe) represents the state noise, Normal distributed,
with zero mean and covariance matrix Qe determined as in equation (1.5).

2.2.1 Data fusion

Data from the gyroscope can give an additional information that could pro-
vide a more precise evaluation of the state evolution over the time steps.
Therefore, this work follows the idea proposed in [4] to include these data in
the control vector uk in order to act directly on the mobility model.

As mentioned about the gyroscope, this sensor is afflicted by drifting
issues due to the integration over time. However, since the sampling time is
very short, its data could be reasonably considered accurate. Therefore the
angular speed of the device could be considered known for every time step
and is evaluated as:

ϕ̇gi,k = −(rotk − rotk−1)

∆t
i = 1, 2, 3 (2.6)

where rotk is the self-rotation of the device at the time step k refers to the
non-rotated reference system (Figure 2.2). From the implementation point
of view, since the equation above considers two consecutive time steps, the
normalization for the sampling step ∆t will be implicit. Moreover, it is a neg-
ative contribute because, as it is evident in Figure 2.2, the counterclockwise
device rotation (rotk > 0) causes a reduction of the AoA between instants
k-1 and k.

Figure 2.2: Effect of the device self rotation on AoA and gyroscope data
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It is obvious that without this extra information the estimate of the next
state is less accurate, so this value contributes to refine the predicted AoAs
given by the product Φkθk−1 and acts in equal manner for every received
path (although Figure 2.2 is referred only to the base station).

In reality, it is necessary to give a clarification. With reference to the
Figure 2.2, the AoAs coincide with the values ϕk and ϕk−1 only for a per-
fect estimate, so is more correct to use the measured angles instead of the
expected values. Moreover, the gyroscope provides a noisy ”measurement”,
that in this work it is supposed to be Normal distributed and included di-
rectly on the angular speed ϕ̇gi,k value.

In the general situation the mobile station is also moving, so:

Figure 2.3: Effect of the device self rotation and movement on AoA and
gyroscope data

2.3 Measurement model

At every time step the device can obtain and elaborate some measurements
from the antennas array. In particular, following the ideas proposed in the
reference papers [4] [5], this work assumes that is possible to have a noisy
information about the effective AoAs between the received signal direction
and the RX beam direction, with the device self rotation embedded in them,
i.e., included in the value measured by antennas.
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Because of the noise that affects them and due to the Bayesian approach
adopted, measurements are modeled as stochastic process, as follows:

zk =

ϕ1,k

ϕ2,k

ϕ3,k

 =
[
I3 03x3

]︸ ︷︷ ︸
H

θk + rk (2.7)

where rk ∼ N(0,R) is the measurement noise, with covariance matrix
R = diag3(σ2) and σ its standard deviation, assumed to be constant for
hypothesis and depending on the antennas.

Due to the consistence between the type of measurements and the state,
the observation matrix H is linear and time-independent; moreover, the
AoA rates of change state components does not affect the measurements
themselves.

2.4 KF estimation algorithm

The filtering phase aims to estimate the current state value given past esti-
mates, current observations and the mobility model.

The Bayesian filter is optimum (time-varying filter) when the mobility
model is linear with additive Gaussian noise (sequential MMSE estimator).
In this case is called Kalman Filter and its equations can be solved in closed
form, with resulting distributions Normal distributed.

The KF is an algorithm to compute recursively mk, i.e., averages vector
of the a-posteriori Gaussian distribution of the state at time step k (for
MAP/MMSE estimators coincides with the point estimates θ̂k), and Pk, i.e.,
a-posteriori error covariance matrix, that give an idea about the accuracy of
the estimate.

The algorithm consists in three main phases:

� Initialization, that is the first phase performed only once when the al-
gorithm starts. In this step the a-priori averages vectorm0 and a-priori
error covariance matrix P0 of the Gaussian distributions representing
the state estimate are defined.

� Prediction, in which the algorithm tries to give a first estimate of the
state, predicting, at time step k, the averages vector mk and its un-
certainty Pk relying exclusively on the mobility model. Therefore the
Gaussian distribution moves in the ”space of the estimate” and gets
larger, i.e., its standard deviation increases.
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� Update, where the uncertainty is reduced thanks to the measurements
that refine the estimate. This last step is repeated recursively alternat-
ing with the prediction phase, until the algorithm stops.

To better understand how the distribution evolves towards this steps, the
Figure 2.4 explains schematically what has just been said.

Figure 2.4: Phases of the KF and evolution of the estimate distribution

The mathematical implementation is reported below:

Init :


m0 = [ m1,0 m2,0 m3,0︸ ︷︷ ︸

AoAs

ṁ1,0 ṁ2,0 ṁ3,0 ]T︸ ︷︷ ︸
Rates of change

P0 =

[
diag3 (σ2

Kal) 03x3

03x3 diag3 (σ2
Kal1)

] (2.8)

Prediction :

{
mk = Φmk−1 +Buk

Pk = ΦPk−1Φ
T +Qe

(2.9)
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Update :




vk = zk −Hmk

Sk = HPkH
T +R

Kk = PkH
TS−1

k{
mk = mk +Kkvk

Pk = Pk −KkSkK
T
k

(2.10)

where σ2
Kal and σ2

Kal1 are respectively the initial variances that afflict the
AoA values and their rates of change, which the former is typically bigger
than the variance σ2 of the measurement noise covariance matrix R. More-
over, vk is the innovation term while Sk its covariance, H is the (linear)
measurement model, Kk the Kalman gain, mk and Pk in the left members
of (2.10) are respectively the averages vector and the covariance matrix of a
Normal distribution evolving through the time steps, at time step k.

Because of the linearity of the mobility model and the Gaussian behavior
of the noise, the algorithm above returns an optimum MMSE estimate, where
θ̂k coincides withmk at every time step k. This means that the KF is a MAP
estimator.

A similar method that performs the EKF is valid for the second approach.
Therefore, because of the different type of state, some changes must be made,
that will be explained in the next chapter.
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Chapter 3

Second approach: beam
tracking using scatterers
positions and speeds as state to
estimate

The flowchart of the second approach is very similar to the one of the first
approach, with the main difference that it aims to track the positions of the
scatterers and base station in order to obtain a kind of knowledge of the
environment that could provide further Channel State Information (CSI ).
For example, knowing the relative position of the base station and scatterers
compared to the mobile station permits to know the distance between the
mobile station and these objects. This allows for both TX and RX to set
an appropriate power to provide the communication, in order to waste the
minimum possible energy.

In the following sections it is shown how the approach is structured,
considering the starting hypothesis and the scenario, the mobility and mea-
surement models, concluding with the estimation algorithm.

3.1 Scenario

In order to provide uniformity, the scenario is the same of the first approach
(Figure 2.1). Summing up the hypothesis considered are:

� 2D outdoor scenario, 200× 200m area;

� One mobile user moving random walk like, possibly with self-rotation;
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� Center of the reference system coincident with the position of the mo-
bile user itself, for every time step;

� Three paths (one LOS from base station and two from scatterers);

� Fixed reflection points known a-priori with large uncertainties;

� Markovian hypothesis and Bayesian modeling of system dynamics and
measurements.

3.2 Mobility model

The evolution of the state over the time steps is given by the discrete mobility,
or state-space, model. In the proposed approach, the state θk at time step
k is composed of the positions Pk of the base station and scatterers, i.e., the
source and reflection points, and their speeds Ṗk relative to the mobile user
reference coordinate system, as follows:

θk =
[
P1,k P2,k P3,k Ṗ1,k Ṗ2,k Ṗ3,k

]T
(3.1)

with: {
Pi,k = [ xi,k yi,k ]T

Ṗi,k = [ ẋi,k ẏi,k ]T
i = 1, 2, 3 . (3.2)

The sentence above does not mean that the base station and scatterers
are moving, but the meaning is that since the mobile user is moving, and so
the reference system is moving accordingly, the relative positions of the three
objects compared to the mobile user change at every time step, consistently
with the mobile user movement (Figure 2.3). In other words, in a global
reference system the base station and scatterers are fixed, but from the mobile
user point of view (center of the local reference system) the objects appear
in movement, so their positions evolve in time and must be tracked.

It is clear that tracking the positions permits also to obtain an estimate
ϕk of the AoAs of the three paths received from the mobile station, simply
applying the mathematical definition of arctangent:

ϕi,k = arctg

(
xi,k
yi,k

)
i = 1, 2, 3 . (3.3)

The dynamics of the system is modeled by this time-continue equation:
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dθ(t)

dt
= F θ(t) +G u(t) + L w(t) =

=

[
06x6 I6

06x6 06x6

]



x1(t)
y1(t)
x2(t)
y2(t)
x3(t)
y3(t)
ẋ1(t)
ẏ1(t)
ẋ2(t)
ẏ2(t)
ẋ3(t)
ẏ3(t)



+ I12 u(t) +

[
06x6 06x6

I6 06x6

]
w(t) (3.4)

where the speeds are perturbed by an AWGN process w(t) with an ac-
celeration spectral density We. Like in the first approach, We is an index
about the system inertia, but in this case is the same as the one of the ran-
dom walk process Wu, that is the mobile user acceleration (process) noise
spectral density.

The control signal u(t) will be investigated in subsection (3.2.1) and con-
tains noisy data from the gyroscope and accelerometer, in order to provide
a better estimate (data fusion).

The state evolves in a discrete manner between two consecutive time steps
due to the sampling with time step ∆t:

{
Pi,k = I2Pi,k−1 + diag2(∆t) Ṗi,k−1 + diag2(∆t)Ṗgi,k + vPi,k

Ṗi,k = I2Ṗi,k−1 + diag2(∆t)Ṗai,k + vṖi,k

(3.5)

and the system above can be written in a matrix form:



P1,k

P2,k

P3,k

Ṗ1,k

Ṗ2,k

Ṗ3,k


︸ ︷︷ ︸

θk

=

[
I6 diag6(∆t)

06x6 I6

]
︸ ︷︷ ︸

Φk=I12+F∆t



P1,k−1

P2,k−1

P3,k−1

Ṗ1,k−1

Ṗ2,k−1

Ṗ3,k−1


︸ ︷︷ ︸

θk−1

+ diag12(∆t)︸ ︷︷ ︸
B = G ∆t



Ṗg1,k
Ṗg2,k
Ṗg3,k
P̈a1,k
P̈a2,k
P̈a3,k


︸ ︷︷ ︸

uk

+



vP1,k

vP2,k

vP3,k

vṖ1,k

vṖ2,k

vṖ3,k


︸ ︷︷ ︸

vk

(3.6)
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where the vector uk of the gyroscope and the accelerometer data will be
investigated in the next subsection,Φk is the state-transition matrix [2] and
the vector vk ∼ N(0,Qe) represents the state noise, Normal distributed,
with zero mean and covariance matrix Qe determined as in equation (1.5).
In particular: {

vPi,k
= [ vxi,k vyi,k ]T

vṖi,k
= [ vẋi,k vẏi,k ]T

i = 1, 2, 3 . (3.7)

3.2.1 Data fusion

Data from the gyroscope and the accelerometer embedded in the device can
give an additional term that could provide a more precise evaluation of the
state evolution over the time steps. In particular, gyroscope provides an
information about the device rotation in term of its angular speed, while the
accelerometer provides the device spatial acceleration.

Therefore, this work follows the idea proposed in [4] to include these data
in the control vector uk in order to act directly on the mobility model, as I
did in the first approach. So uk is composed of:{

Ṗgi,k =
[
ẋgi,k ẏgi,k

]T
Gyroscope

P̈ai,k =
[
ẍai,k ÿai,k

]T
Accelerometer

i = 1, 2, 3 . (3.8)

The first term of equation (3.8) does not represent the raw measurements
obtained by the gyroscope, as it provides angular velocity, whereas in equa-
tion (3.8) the velocity is expressed in Cartesian coordinates. This means that
the values in equation (3.8) must be computed starting from the measured
angular velocity ϕ̇gk through a proper transformation. In particular it is:{

ẋgi,k =
∆xgk

∆t

ẏgi,k =
∆ygk

∆t

i = 1, 2, 3 (3.9)

with:

{
∆xgk = dk−1cos (ϕk−1 − ϕ̇gk)− dk−1cos(ϕk−1)cos (ϕ̇gk)

∆ygk = dk−1sin (ϕk−1 − ϕ̇gk)− dk−1sin(ϕk−1)cos (ϕ̇gk)
(3.10)

where dk−1 and ϕk−1 are respectively the measurements, at the previous
time step, of the distances between mobile user and base station (or scat-
terers) and the measurements of the AoAs, as it will be shown in the next
section. Indeed, since the vector uk acts to improve the state prediction, the
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measurements of distance and AoA at the time step k are not available yet.
Moreover, because of the normalization in equation (3.9), in this case the
value of the gyroscope data is given by:

ϕ̇gi,k = −(rotk − rotk−1) i = 1, 2, 3 (3.11)

as explained in Figure 2.2, and acts equally on the three AoAs of the
received signals. Therefore, the value ϕk−1 − ϕ̇gk is an AoA prediction.

The mapping ∆xgk of the angular speed at time step k given by the
gyroscope on the x axis could be obtained as the difference between the two
terms. The former is the abscissa of the base station (or scatterer) in the
rotated reference system at the time step k, while the latter is the projection
of the abscissa of the base station (or scatterer) in the rotated reference
system at the time step k-1 on the x-axis of the rotated system at time step
k. A similar reasoning could be done for the ∆ygk .

The graphic explanation of the equation (3.10) is given in Figure 3.1.

Figure 3.1: Mapping of the device angular speed to the Cartesian coordinates

As said previously, the accelerometer data act directly on the speed terms
of the mobility model, because it provides an information about the accelera-
tion of the mobile station in the global reference system, i.e., the acceleration
of the base station and scatterers in the local reference system where the mo-
bile station is the center. Therefore, the terms ẍai,k and ÿai,k of the control
vector uk are given by:
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{
ẍai,k =

ẋui,k−ẋui,k−1

∆t

ÿai,k =
ẏui,k−ẏui,k−1

∆t

i = 1, 2, 3 (3.12)

that are the speed variations compared to the x and y directions.

3.3 Measurement model

Compared to the first approach, the measurements that the device can ob-
tain from the antennas array and elaborate at every time step are slightly
different. Although the mobile user can still receive information about the
AoAs between the received signal direction and the RX beam direction, ex-
tra information about the distance between the mobile user and base station
(or scatterers) are supposed to be available. As before, the device self rota-
tion is already included in the value measured by antennas and all of these
measurements are noisy and modeled as stochastic process, as follow:

zk =


ϕ1,k

ϕ2,k

ϕ3,k

d1,k

d2,k

d3,k

 = h (θk) + rk (3.13)

where rk ∼ N(0,R) is the measurement noise, with covariance matrix R
defined as:

R =

[
diag3 (σ2) 03x3

03x3 diag3 (σ2
1)

]
(3.14)

with σ2 and σ2
1 are the variances of the noise that affects the AoAs and

distances respectively, assumed to be constant for hypothesis and depending
on the antennas.

It is evident from equation (3.13) that in this approach the relationship
between the measurement vector and state vector is non-linear. In particular,
the function h(.) links the position estimate Pi,k in the local reference system
to the estimate ϕi,k of the AoA and to the distance di,k estimate between the
mobile user and the base station (and scatterers), as follows:ϕi,k = arctg

(
mxi,k

myi,k

)
di,k =

√
m2
xi,k

+m2
yi,k

i = 1, 2, 3 . (3.15)
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Since the model is non-linear, the KF method cannot be applied. In
the following section we will use the EKF method, which is based on model
linearization of function h(.). The way to do that is to compute, at every
time step k, the first-order partial derivatives compared to the parameters of
the mobility model, i.e., the Jacobian matrix:

where: 
δϕi,k

δxi,k
=

myi,k

m2
xi,k

+m2
yi,k

δϕi,k

δyi,k
= − mx1,k

m2
xi,k

+m2
yi,k

i = 1, 2, 3 (3.16)

and: 
δdi,k
δxi,k

=
mx1,k√

m2
x1,k

+m2
y1,k

δdi,k
δyi,k

=
my1,k√

m2
x1,k

+m2
y1,k

i = 1, 2, 3 (3.17)

and all the other terms are zero.

3.4 EKF estimation algorithm

The filtering phase aims as before to estimate the current state value given
past estimates, current observations and the mobility model. Due to the non-
linearity of the measurement model, the KF is implemented in its extended
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version, that takes into account the linearization Hk of the function h(.) for
every time step k, as seen in the previous section.

Like in the first approach, the algorithm consists in the three main phases
(Figure 2.4) of Initialization, Prediction and Update, and its mathematical
implementation is reported below:

Init :


m0 = [ m1,0 m2,0 m3,0︸ ︷︷ ︸

Positions

ṁ1,0 ṁ2,0 ṁ3,0 ]T︸ ︷︷ ︸
Speeds

P0 =

[
diag6 (σ2

Kal) 06x6

06x6 diag6 (σ2
Kal1)

] (3.18)

with: {
mi,k = [ mxi,k myi,k ]T

ṁi,k =
[
ṁxi,k ṁyi,k

]T i = 1, 2, 3 (3.19)

Prediction :

{
mk = Φmk−1 +Buk

Pk = ΦPk−1Φ
T +Qe

(3.20)

Update :




vk = zk − h(mk)

Sk = HkPkH
T
k +R

Kk = PkH
T
k S
−1
k{

mk = mk +Kkvk

Pk = (I12 −KkHk)Pk

(3.21)

where σ2
Kal and σ2

Kal1 are respectively the initial variances that afflict the
positions and speed values, which ”nature” is different compared to the vari-
ances σ2 and σ2

1 of the measurement noise covariance matrix R. Moreover,
the meaning of the parameters vk, Sk and Kk is the same cited in section
(2.4).

In this case, due to the approximation performed (linaerization), the EKF
is not the optimum estimator. However, it is a MAP estimator yet, so the
estimates vector θ̂k coincide with the averages vector mk at every time step
k.

When the algorithms described are implemented in simulators like MAT-
LAB, there are some precautions and considerations that must be done to
provide the correct operation. In the following chapter this implementation
will be shown.
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Chapter 4

Algorithms implementation

The two proposed approaches have been implemented in MATLAB, to simu-
late how they actually work in a typical mmWave communications scenario.
As said in the end of the last chapter, there are some issues that emerge
and some precautions and considerations that must be taken to provide the
correct operation.

To check the algorithms behavior two different simulators were built, both
based on a Monte Carlo approach. This means that they were run cyclically
for a large number of times, with a randomness given by the measurements
noise and by the different trajectories of the mobile user, and setting equiva-
lent seeds between the two approaches to provide a fair comparison in terms
of AoAs RMSE and outlier rate, i.e., the probability that the RMSE evalu-
ated is higher than a fixed threshold.

4.1 First approach

The flowchart of the algorithm is shown in Figure 4.1 and explained step-by-
step in the following subsections.

Simulation parameters initialization

In this first step the user can set the key parameters of the Monte Carlo
simulation:

� Number of scatterers and measurements, with the corresponding value
of noise standard deviation σ.

� Area of the scenario, simulation time and simulation step ∆t.
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� Number of Monte Carlo iterations.

� Data fusion enabler flag and gyroscope noise standard deviation.

� Device rotation speed, acceleration spectral density Wu for the mobile
user and angle acceleration spectral density We for the mobility model.

� Standard deviations of the Kalman filter initialization phase that affect
the a-priori distributions.

� Percentage of values (simulation) on which evaluate the RMSE and
threshold value for the outliers.

Every different combination of these values leads to a different result (in
the last chapter will be shown the values of interest).

Base station and scatterers positions

These values are randomly chosen inside of the defined area. For every sim-
ulation there is a different set of positions.

Mobile user behavior

Here are defined the mobile station mobility model and the state-noise co-
variance matrix Qe, the random walk process whereby the mobile station
moves and the device rotation angle for every time step (compared to the
non-rotated reference system).

The random walk of the mobile user is governed by the following equations
(written in matrix form), that represent the evolution of the device position
over the time steps: 

xu,k
yu,k
ẋu,k
ẏu,k

 = Φu


xu,k−1

yu,k−1

ẋu,k−1

ẏu,k−1

+ vu,k (4.1)

where xu,k and yu,k are the coordinates of the mobile user at time step k,
ẋu,k and ẏu,k are the speeds of the device in the two axes, vu,k ∼ N(0,Qu)
represents the Normal distributed noise, with zero mean and covariance ma-
trix Qu determined as in equation (1.5), while Φu is the transition matrix
and describes how the position evolve from the time step k-1 to the time
step k, that is:
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Φu =


1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1

 (4.2)

Base station and scatterers relative positions

The base station and scatterers positions are evaluated and compared to the
local reference system, in which the mobile station is the center, i.e., how
these objects move compared to the mobile station.

AoA noiseless measurement

Due to the relative positions calculated above, noiseless AoA measurements
without the rotation term are given by an arctangent relation between the
x and y coordinates. These values are known only to the simulator, i.e., are
unknown to the estimation algorithm.

Phase correction

This is a fundamental step in the implementation of the simulator, indeed a
first issue emerges with the use of the MATLAB function atan2 to perform
the arctangent. Since this function assumes values in the interval [−π, π], a
correction of the AoAs to avoid any possible phase jump is required. Only
after this step is possible to add the rotation term to the noiseless measure-
ments and again correct this eventual issue.

AoA noisy measurement and gyroscope measurement

Now, at every time step, the AWGN noise is added to the measurements
and to the the gyroscope data, in different intensity due to the different
value of standard deviation σ. The gyroscope data is evaluated in agreement
with equation (2.6), with the only difference that the normalization for ∆t
is implicit.

Measurement and mobility models

This implicit normalization affects also the matrix B multiplied by the con-
trol vector uk, therefore B = G. The mobility model is defined in agreement
with equation (2.4) and the process noise covariance matrix Qe follows the
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equation (1.5). Due to the linearity of the measurement noise, the mobility
model is defined in this step too, and so its respective noise covariance matrix
R, in agreement with equation (2.7).

Kalman Filter

The estimation algorithm is the core of the simulator. It follows the steps
listed in the section (2.4), starting with an initialization phase in which the
a-priori AoA averages vectorm0 (using the first noisy measurement of AoAs)
and the corresponding error covariance matrix P0 are defined. Due to the
higher value of the filter standard deviations compared to the one of the
measurements, this first Gaussian distribution is very large, i.e., the a-priori
estimate is affected by huge uncertainty. If the algorithm starts with a bad
estimate of the state or with too high values of σKal and σKal1, it could not
converge.

Then the real iteration starts with the phases of prediction and update.
While the former agrees with equation (2.9), the latter is implemented in an
equivalent but more stable version shown in the Appendix 2. Moreover, in
the update phase, the innovation term vk must be mapped in the interval
[−π, π] in order to provide the correct operation.

At every time step the angle estimate error is finally evaluated as the dif-
ference between the noiseless AoA measurements and the actual estimates θ̂k
(because of the MAP estimator is the averages vectormk), by comparing this
value with the difference between the noiseless and noisy AoA measurements,
i.e., without the effect of the filtering.

RMSE and outlier rate evaluation

In this last phase the three AoAs RMSE and the outlier rates, i.e., the
probability that the algorithm does not converge thus providing an extremely
large error, are evaluated. The outlier event is detected by comparing the
RMSE with a fixed threshold and removed from the evaluation of the RMSE
itself.

4.2 Second approach

The flowchart of the algorithm is shown in Figure 4.2 and explained step-by-
step in the following subsections.
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Simulation parameters initialization

In this first step the user can set the key parameters of the Monte Carlo
simulation:

� Number of scatterers and measurements (and distance measurements
enabler flag), with the corresponding value of noise standard deviations
σ and σ1.

� Area of the scenario, simulation time and simulation step ∆t.

� Number of Monte Carlo iterations.

� Data fusion enabler flag and sensors noise standard deviations.

� Device rotation speed, acceleration spectral density Wu for the mobile
user and acceleration spectral density We for the mobility model.

� Standard deviations of the Extended Kalman filter initialization phase
that affect the a-priori distributions.

� Percentage of values (simulation) on which evaluate the RMSE and
threshold values for the outliers (AoAs and positions).

Base station and scatterers positions

These values are randomly chosen inside of the defined area. For every sim-
ulation there is a different set of positions.

Mobile user behavior

Here are defined the mobile user mobility model and the state-noise covari-
ance matrixQe, the random walk process whereby the mobile user moves and
the device rotation angle for every time step (compared to the non-rotated
reference system).

The random walk of the mobile user, due to the same seed value set in the
MATLAB implementation, is the same of the first approach and is governed
by equations (4.1) and (4.2).

Base station and scatterers relative positions

Then the base station and scatterers position are evaluated and compared
to the local reference system, in which the mobile station is the center, i.e.,
how these objects move compared to the mobile station.
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AoA and distance noiseless measurement

Due to the relative positions calculated above, noiseless AoA measurements
without the rotation term are given by an arctangent relation between the x
and y coordinates. Moreover, with the corresponding flag active, also noise-
less measurements of the distances between the mobile user and the three
”sources” are exploited and given by a Pitagora theorem relation between
the x and y coordinates. These values are known only to the simulator, i.e.,
are unknown to the estimation algorithm.

Phase correction

This is a fundamental step in the implementation of the simulator, indeed a
first issue emerges with the use of the MATLAB function atan2 to perform
the arctangent. Since this function assumes values in the interval [−π, π], a
correction of the AoAs to avoid any possible phase jump is required. Only
after this step it is possible to add the rotation term to the noiseless mea-
surements and again correct this eventual issue.

AoA noisy measurement and sensors measurement

Now, at each time step, the AWGN noise is added to the measurements and to
the the gyroscope and accelerometer data, with different intensity due to the
different values of standard deviation σ. The gyroscope and accelerometer
data are evaluated in agreement with equations (2.6) and (3.12) respectively,
with the only difference that the normalization for ∆t is implicit.

Gyroscope data mapping in terms of position displacement

Since the control vector uk acts directly on the mobility model, in this ap-
proach a mapping of the angular speed to a space displacement in the Carte-
sian coordinates is required. This conversion follows the equation (3.10), in
which dk−1 and ϕk−1 are the distance and AoA noiseless measurement at the
previous time step, while ϕ̇gk is the noisy gyroscope data at the actual time
step. Therefore the randomness is given only by the sensor.

Measurement and mobility models

The implicit normalization cited above affects also the matrix B multiplied
by the control vector uk, therefore B = G. The mobility model is defined
in agreement with equation (3.6) and the process noise covariance matrix
Qe follows the equation (1.5). Due to the non-linearity of the measurement
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noise, the mobility model is not defined in this step, but only its relative noise
covariance matrix R, in agreement with equation (3.14). The linearization
Hk of h(.) must be done inside of the filtering algorithm.

Extended Kalman Filter

The estimation algorithm starts with an initialization phase in which the
a-priori AoA averages vector m0 (using the first noisy measurement of AoAs
and distances) and the corresponding error covariance matrix P0 are defined.
Due to the higher value of the filter standard deviations compared to those
of the measurements, this initial Gaussian distribution is very large, i.e., the
a-priori estimate is affected by huge uncertainty. If the algorithm starts with
a bad estimate of the state or with too high values of σKal and σKal1, it could
not converge.

Then the real iteration starts with the phases of prediction and update.
While the former agrees with equation (3.20), the latter is implemented in
an equivalent but more stable version shown in the Appendix 2. Moreover,
in the update phase, the value of the function h(.) is evaluated in agreement
with equation (3.15) and the linearization Hk of h(.) is performed, as shown
in section (3.3). Due to the use of the function atan2 to evaluate h, a phase
correction is required to avoid any possible 2π-jump that could cause the not
convergence of the algorithm.

For every time step the angle estimate error is finally evaluated as the
difference between the noiseless AoA measurements and the actual estimates
θ̂k (because of the MAP estimator is the averages vector mk), by comparing
this value with the difference between the noiseless and noisy AoA measure-
ments, i.e., without the effect of the filtering. Note that the estimate of the
AoAs are performed with the atan2 giving the positions estimate, therefore
it is necessary again a phase correction before the evaluation of the angle
estimate error.

A similar procedure is followed to evaluate the position estimate error. In
this case the comparison is between the noiseless distances measurements and
the actual distances estimates (given by a Pitagora theorem relation between
the x and y positions estimates), and without the effect of the filtering. It
is important to note that to ensure a fair comparison, the values of the
estimates must be mapped, for every time step, on the non-rotated local
reference system, as shown in the Appendix 2.
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RMSE and outlier rate evaluation

In this last phase the three AoAs and distances RMSE and the outlier rates
are evaluated. The outlier event is detected by comparing the RMSE with a
fixed threshold and removed from the evaluation of the RMSE itself.
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Figure 4.1: Flowchart of the first approach algoritm
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Figure 4.2: Flowchart of the second approach algoritm
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Chapter 5

Simulations and results

In this last chapter the simulations performed to validate the approaches
proposed and verify their goodness are shown. In these tests some parameters
are fixed and others variables, in order to assess the algorithms in various
operative situations, from the considered default condition to more critical
ones.

In particular, the fixed parameters are the following:

� Number of base stations: 1.

� Number of scatterers: 2.

� Number of measurements: 3 for the first approach (AoAs) and 6 for
the second approach (AoAs and distances between the mobile user and
the three objects).

� Number of Monte Carlo iterations: 1000.

� Simulation step ∆t: 10ms.

while the variable parameters are:

� Area of the scenario and simulation time.

� Device rotation speed, acceleration spectral density Wu for the mobile
user and spectral density We for the mobility model.

� Measurements noise standard deviation σ and σ1, i.e., the uncertain-
ties that afflict the AoA and distance measurements (depending on
the antennas), and distance measurements enabler flag for the second
approach.
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� Data fusion enabler flag and sensors noise standard deviations σg and
σa, i.e., the uncertainties that afflict the angular speed and acceleration
measurements of the embedded sensors.

� Standard deviations σKal and σKal1 of the Kalman filter initialization
phase that affect the a-priori distributions, i.e., the uncertainties of the
a-priori state estimate.

� Threshold values for the outliers (AoAs and positions) and percentage
of the simulation time considered in the RMSE evaluation, in order to
verify how the transient behavior affects the RMSE value.

To give a complete view of the proposed approaches, i.e., of their advan-
tages, issues and performances, the tests have been performed in the following
operative conditions:

� Default settings with and without data fusion. With reference to these
settings, the behavior of the approaches changing the duration of the
simulations, the RMSE thresholds and the percentage of simulation in
which evaluate them has been also shown.

� Changing the area of the scenario.

� Changing the rotation speed of the mobile user and its rotation direc-
tion.

� Changing the noise that affect the measurements and the sensors data.

� Changing the process noise spectral density of the mobile user, i.e., its
movement in the space.

� Changing the process noise spectral density associated to the mobility
model.

� Verification that the approaches do not diverge in critical conditions.

� Comparison, in term of RMSE, with the State-Of-the-Art (SOA) ap-
proaches from which the work takes inspiration.

In the following section will be shown only the relevant figures and results.
For a more exhaustive treatment see the Appendix 1.
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5.1 Default scenario

The default scenario is based on the typical human random walk, with an
average speed of 3m/s (corresponding approximately to Wu = 1) in a rect-
angular area of 200× 200m, usual in non-dense urban scenarios. Moreover:

� Data fusion is enabled (and then disabled) and also the distance mea-
surements for the second approach could be present or absent.

� The mobile user rotates 30 degrees per second counter-clockwise and
the simulation time is set to 6s in order to appreciate a total rotation
of 180 degrees and a movement of about ten/twenty meters.

� We of the mobility model is equal to the one of the mobile user Wu for
the second approach, in order to avoid model mismatch, while for the
first approach is fixed empirically to 0.001, in order to provide a good
ratio between the process noise and the system inertia.

� Measurements standard deviations are set empirically to σ = π/8 (ra-
diants) and σ1 = 10 (meters).

� Sensors noise standard deviations are set empirically to σg = 0.1 [5]
and σa = 10.

� Kalman standard deviations are set empirically to σKal = π/6 (radi-
ants) for the first approach and σKal = 20 (meters) for the second
approach, and σKal1 = 0.01 for both.

� Outliers threshold for AoA is set to 10 degrees, while for position is set
to 5 meters. In the RMSE evaluation only the last 10% of the simulation
time is considered in order not to include the transient behavior.

In the following sections the simulation results for the two approaches are
shown in term of:

� AoA and position displacements between measurements and estimates.

� AoA and position estimates error with and without filtering (i.e., raw
AoA measurements).

Finally a comparison in term of AoAs RMSE and outlier rates between
the two approaches is carried out, changing some parameters from the default
setting, like the distance measurement enabler for the second approach, the
duration of the simulation, the percentage of the simulation interval on which
evaluating the RMSE and the values of the thresholds for the AoA and
distance outlier.
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5.1.1 First approach

In this first simulation of the first approach behavior, data fusion is enabled.

The Figure 5.1 shows the movement of the mobile user in the area where
the base station and the scatterers are located. For the default settings, the
mobile user moves randomly, approximately for 20 meters in 6 seconds, i.e.,
at a typical human walk speed of 3m/s. For this reason the objects remain
quite far from the mobile user.

Figure 5.1: Default scenario, first approach. MU random walk and rotation
in the 2D space. The green line evolves from zero to 180 degrees as index of
the device rotation

In Figure (5.2) is reported the trend of the AoA measured with and
without the measurement noise and the trend of the estimate. It is clear that,
despite the noise that afflicts the measurement, the filtering manages to track
the value of the true AoA. The descent trend is due to the counterclockwise
device rotation, that is more relevant compared to the movement.

From it is also possible to deduce the angle correction cited in Chapter 4.
It is clear in the trend of the AoA for scatterer1, where near time step 100
the value exceeds −180 degrees despite the function atan2 provides results
from −π to π.
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Figure 5.2: Default scenario, first approach. AoA measurements and esti-
mates

In Figure 5.3 it is shown how the Kalman filter manages to reduce the
angle estimate error.

Figure 5.3: Default scenario, first approach. AoA estimate error comparison
with and without estimation algorithm

49



Without data fusion

As it will be shown later, the data fusion disabling does not affect the results
of the first approach in term of RMSE and outlier rate.

5.1.2 Second approach

It is simulated the behavior of the second approach with the use of data
fusion. In this case, from the scenario representation is also possible to verify
how the tracking acts. Indeed, for the base station and scatterers, it is clear
how the positions estimates evolve from far locations, due to the high initial
uncertainties, to locations close to the real ones. The movement and rotation
behavior is according to the first approach.

Figure 5.4: Default scenario, second approach. MU random walk and rota-
tion in the 2D space, with position estimates

Therefore it is possible to appreciate the positions estimates evolution
through the simulation steps. What have been said before is even more
evident in Figure 5.5. The base station and the scatterers are fixed for all
the duration of the simulation, but in the mobile user local reference system
they appear to move. For this reason in Figure 5.5 also true positions evolve.
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Figure 5.5: Default scenario, second approach. Positions measurements and
estimates in the local reference system

The trends of the measured and estimate AoAs are the same compared
to the ones of the first approach (Figure 5.6). Moreover, from Figures 5.7
and 5.8 it is possible to verify that both the position and angle estimation
errors are strongly reduced thanks to the filtering.

Figure 5.6: Default scenario, second approach. AoA measurements and esti-
mates
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Figure 5.7: Default scenario, second approach. Positions estimate error com-
parison with and without estimation algorithm

Figure 5.8: Default scenario, second approach. AoA estimate error compar-
ison with and without estimation algorithm
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Without data fusion

Unlike the first approach, in this case the data fusion disabling has a strong
effect on the tracking performance. Just looking at the evolution of the
estimate trajectory in the area (Figure 5.9) it is clear that the position is
wrongly estimated, i.e., the algorithm drifts.

Figure 5.9: Default scenario, second approach, no data fusion. MU random
walk and rotation in the 2D space, with position estimates

What has been said is confirmed by the estimate evolution of the base
station and scatterers x and y coordinates in the local reference system of the
mobile user (Figure 5.10) and by the trends of the AoA estimates compared
to the ones of the measurements, which confirm than also the angle is wrongly
estimated.
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Figure 5.10: Default scenario, second approach, no data fusion. Positions
measurements and estimates in the local reference system

Figure 5.11: Default scenario, second approach, no data fusion. AoA mea-
surements and estimates

A further confirm that estimate error grows compared to the one using
data fusion, is given by Figures 5.12 and 5.13. Indeed, despite the smooth
trends of the estimates, they drifts from the zero value. As will be shown in
subsequent analysis, this problem is solvable with an appropriate increase of
the value of the mobility model spectral density.
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Figure 5.12: Default scenario, second approach, no data fusion. Positions
estimate error comparison with and without estimation algorithm

Figure 5.13: Default scenario, second approach, no data fusion. AoA esti-
mate error comparison with and without estimation algorithm

5.1.3 Comparisons

In the following subsections some data comparisons about the simulations
done in the two approaches will be shown, starting with the considerations
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about data fusion enabling and disabling and then varying some of the pa-
rameters compared to the default setting. The performance is evaluated in
term of AoA and distance RMSE conditioned to the probability that the
estimates do not exceed fixed thresholds.

Data fusion

The Monte Carlo simulations provide the following values, reported in Table
5.1. For both the approaches the evaluated AoA RMSE is always lower
than 3 degrees, that is a typical beamwidth for narrow beams [7], with a
low probability that the evaluated values overcome the fixed threshold of 10
degrees. Moreover, for the second approach the distance estimate is available
with a precision close to the meter despite a measurement noise standard
deviation of 10 meters.

Table 5.1: Default scenario with data fusion. Comparison between the two
approaches in term of RMSE and outlier rate

Table 5.2: Default scenario, no data fusion. Comparison between the two
approaches in term of RMSE and outlier rate

As said before, the data fusion disabling has a strong impact only on the
performance of the second approach (Tables 5.2 and 5.3), making it useless
due to the high outlier rate.
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Table 5.3: Default scenario. Comparison between the two approaches with
and without data fusion in term of RMSE and outlier rate (relatively to the
base station only)

Distance measurement disabled

As it can be appreciated in Table 5.4, disabling the distance measurement in
the second approach leads to a worsening in the corresponding RMSE and
mostly in the corresponding outlier rate. This means that the approach is
still usable, but only for the AoA estimate. The little difference between the
values of AoA RMSE and outlier rates with and without this extra informa-
tion is due to the not perfect accuracy of Monte Carlo simulations.

Table 5.4: Default scenario with data fusion, second approach. Effect of the
disabling of the distance measurement (relatively to the base station only)

Duration of the simulation

The proposed approaches are stable and accurate also for higher simulation
duration, as it can be noticed in Table 5.5.
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Table 5.5: Default scenario with data fusion. No drift of the approaches
trough the time (relatively to the base station only)

Percentage of observation interval

The RMSE has been evaluated by considering an observation interval corre-
sponding to the last 10% of the simulation time so that the initial transient
is not accounted for the computation. In Table 5.6 it can be observed how
enlarging the percentage of considered time steps causes a worsening in the
AoA and distance RMSE for both the approaches.

Table 5.6: Default scenario with data fusion. RMSE variations increasing
the observation interval (in percentage with respect to the simulation time)
taken into account (relatively to the base station only)

AoA and distance thresholds

The RMSE and outlier rates are conditioned also by the threshold values cho-
sen. In particular, for both the approaches and for both the threshold type,
i.e., AoA and distance, an increase value provides a worsening of the corre-
sponding RMSE but an improvement in term of outlier rate. This behavior
is evident in Tables (5.7) and (5.8).
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Table 5.7: Default scenario. Effect of the AoA threshold on the RMSE and
outlier rate (relatively to the base station only)

Table 5.8: Default scenario, second approach. Effect of the distance threshold
on the RMSE and outlier rate (relatively to the base station only)
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In the following section the behavior of the algorithms for displacement
from the default setting is investigated, in particular changing the area of the
scenario, the device speed rotation, the measurements and sensors data noise,
the process noise spectral density of the mobile user and mobility model.

5.2 Area reduction effects

The simulation results show that area decreasing provides a worsening in
term of AoA RMSE and outlier rate for both the approaches. In particular
the second one reacts better to this issue and manages to maintain acceptable
values of the parameters. Moreover, for the second approach, area reduction
provides also a little improvement in term of distance RMSE, which becomes
a large improvement considering the absence of data fusion.

Table 5.9: Effects of the scenario area reduction on the RMSE and outlier
rates (relatively to the base station only)

In Appendix 1 details on position estimates evolution as a function of the
area are reported.
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5.3 Device rotation effects

In real scenarios it is expected that user rotates him/herself or the mobile
device. Therefore it is important to investigate the impact of device rotation
on the performance of the two algorithms proposed. As Table 5.10 explains,
both of the algorithms proposed react well to that type of displacement, in
particular with data fusion, providing a good performance.

Without data fusion instead, the outlier rates of the second approach
drop with at higher rotation speed. The reason why the performances of the
first approach remain stable is because this approach provide good estimates
despite higher values of process noise We, therefore the algorithm has inher-
ently less inertia respect to the second one and can react faster in critical
situations (like the increase rotation speed).

Table 5.10: Effects of the variation of the device rotation speed on the RMSE
and outlier rates (relatively to the base station only)

A further verification of the correct algorithm implementation is done by
inverting the rotation direction of the device. As result, the trend of the AoA
is inverted compared to the default one, i.e., increases with time as visible in
Figure 5.14.
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Figure 5.14: Default scenario. AoA measurements and estimates in condition
of opposite device rotation direction

Table 5.11: Default scenario. Verification of correct behavior also for clock-
wise rotation (relatively to the base station only)

5.4 Measurements and sensor data noise ef-

fects

The estimate processes are noise sensitive, because the increase of measure-
ments and sensors noise, i.e., of their standard deviations σ, σ1, σg and σa,
affects the algorithms performances. The following simulations show that
the setting of Kalman filter standard deviations does not always permit to
reduce the noise effect. In particular, the outlier rates in Table 5.12 are still
too high for a practical adoption of the algorithm.
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Table 5.12: Effects of the measurements noise and sensors data noise increase.
What happen to the RMSE and outlier rates (relatively to the base station
only) with the variation of Kalman filter a-priori variances

However, it is important to specify that the noise values set, in particular
σ = 3π/8, is quite high compared to typical conditions and it could be
considered as a worst case scenario.

5.5 Process noise spectral density of the mo-

bile user effects

The process noise spectral density of the mobile user is strictly related to the
device movement, i.e., an increase value of Wu provides a faster movement
in the 2D scenario.

The algorithms suffer from that displacement between the process noise
spectral density of the mobile user and the one of the mobility model. In
practical scenarios, this displacement corresponds to a model mismatch, i.e.,
the inertia of the filter does not match that actually experienced by the
mobile user. The consequence is again a worsening of the performance in
term of AoA and distance RMSE and outlier rates. To overcome this issue it
is possible, as show in Table 5.13 and in Appendix 1, to increase the process
noise spectral density of the mobility model.
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Table 5.13: Effects of the variation of the process noise spectral density of
the mobile user on the RMSE and outlier rates (relatively to the base station
only)

5.6 Process noise spectral density of the mo-

bility model effects

As said above, the process noise spectral density of the mobility model plays
a very important role in the estimation algorithms. In particular, the sys-
tem inertia depends on it. In other words, an higher We provides a better
reactivity of the process, that could cope with conditions and displacements,
reducing the outlier rate. On the other side an higher We might cause an
higher RMSE.

What has just been said is clear from Table 5.14 and Appendix 1.
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Table 5.14: Effects of the variation of the process noise spectral density of
the mobility model on the RMSE and outlier rates (relatively to the base
station only)

5.7 Stability in critical conditions

To demonstrate the reliability of the proposed algorithms, they are tested
also under critical conditions, i.e., for a reduced area and faster rotation and
movement compared to the default settings. In particular:

� Area: 100× 100m;

� Rotation speed: 90deg/s.

� Wu = 10. For the second approach also We of the mobility model was
set to this value, while for the first approach it is set to 0.005 in order
to appreciate the performance variations.

Simulation results in Table 5.15 confirm that both of the algorithms pro-
vide acceptable performance.
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Table 5.15: Behavior of the approaches in critical conditions of mobile user
speed and rotation

5.8 Comparison with the state-of-the-art ap-

proaches

The last results concern the comparison between the proposed approaches
and those presented in reference papers [4] and [5].

Two different comparisons have been done and, to provide a fair compar-
ison, the following parameters have been set in order to reproduce the same
scenarios as the reference papers ones:

� The first one between one of the simulations performed in [4] and the
second approach, where the mobile user is supposed to be fixed and
rotating at 10deg/s for 10 seconds (Wu = 0.0001), in a 25× 25m area.

� The second one between one of the simulations performed in [5] and
the second approach, where the mobile user is supposed to move for 5
meters at constant speed for 10 seconds (Wu = 0.02), in a 25 × 25m
area.

To ensure these situations the following parameters were also set: σ1 = 3;
σg = 0.1; σa = 1.3 [4] [5].

The results show that, under these conditions, the proposed approach
provides better performance in terms of RMSE position compared to the
ones of the reference papers.
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Table 5.16: Comparison between the second approach and the reference pa-
pers [4] [5] in term of distance RMSE
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Conclusion

This work takes inspiration from existing techniques for multipath tracking,
in order to design innovative algorithms that aim to improve the performance
also by integrating measurements from inertial devices through data fusion
approaches.

In particular, it starts with the idea proposed in [2], that is a state-space
approach for detection and tracking of MIMO propagation path parame-
ters. In order to provide an improved performance, especially in mmWave
communications, sensor fusion results to be a smart opportunity and easy to
integrate in the existing approaches. Works [9] [4] [5] provide state-of-the-art
approaches in the 3D mmWave beam tracking using data fusion strategy.

The idea proposed in this work was to integrate the state-space approach
with the data fusion, to create an efficient algorithm for tracking the param-
eters of the channel paths. Two different strategies have been implemented:
the first one uses AoA measurements between the received multipath and the
user to track the AoA itself and its rate of change, while the second one uses
AoA and distance measurements in order to estimate the relative position
and speed of scatterers present in the scenario from which infer the AoA of
the multipath components.

After a first stage of mathematical modeling of the two approaches, they
have been implemented and tested in MATLAB, by developing a simulator in
which the user can set multiple parameters depending on the desired scenario.
The analysis done showed the robustness of the proposed strategies compared
to the reference ones in different operating conditions. In particular:

� The two approaches provide the same performances in not critical con-
ditions and with data fusion, but the latter can give also a position
estimate. Moreover, the first approach is more stable in absence of
data fusion.

� In general, data fusion provides better performances for both the al-
gorithms, mostly in critical conditions of high mobile user speed and
high device rotation speed.
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� An excessive measurements and sensors noise can cause a divergence of
both the algorithms and a sharp performances degradation. Moreover,
there are some process noise spectral density values that provide the
best compromise between the RMSE and the outlier rates.

� The evaluated performances are better compared to the one of the
reference papers [4] [5] in the same scenarios.

Despite the promising results obtained, there are for sure many issues
that should be tackled to further improve the performance. First of all, the
state vector could be enriched with more parameters, e.g., Time-of-Arrival,
amplitude and phase of the receiving multipath components, in order to
provide a better estimation and knowledge of the CSI.

Moreover, the algorithms proposed can be improved by performing a
chain approach where the estimates of the first one could be used as ”filtered
measurement” of the second one in order to make the latter more robust to
noise. A further improvement could be the implementation of an adaptive
algorithm that sets the best process noise spectral density depending on the
operating condition.

Finally, many of the noise parameters were set empirically, therefore it
could be useful to test the proposed strategies in real devices and environ-
ments, to obtain reliable results.
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Appendix 1: Figures

Effect of the absence of distance measurements

in the second approach

Figure 5.15: Default scenario, second approach. Effect of the disabling of the
distance measurement on the relative base station and scatterers positions
tracking
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Effect of the simulation time

Figure 5.16: Default scenario, second approach. Effect of the simulation time
increase on the position estimate

Figure 5.17: Default scenario, second approach. Effect of the simulation time
increase on the AoA estimate
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Effect of the area reduction

Figure 5.18: Default scenario, second approach. MU random walk and ro-
tation in the 2D space, with position estimates in a 100× 100m rectangular
area

Figure 5.19: Default scenario, second approach. MU random walk and ro-
tation in the 2D space, with position estimates in a 50 × 50m rectangular
area
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Figure 5.20: Default scenario, second approach. MU random walk and ro-
tation in the 2D space, with position estimates in a 25 × 25m rectangular
area

Effect of device speed rotation

Figure 5.21: Default scenario, second approach, MU random walk and non-
rotating in the 2D space. Effect on the AoA estimate
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Figure 5.22: Default scenario, second approach, MU random walk and rotat-
ing at 10 degrees per second in the 2D space. Effect on the AoA estimate

Figure 5.23: Default scenario, second approach, MU random walk and rotat-
ing at 90 degrees per second in the 2D space. Effect on the AoA estimate
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Effect of the process noise spectral density of

the mobile user

Figure 5.24: Default scenario, second approach. MU fixed and rotating in
the 2D space

Figure 5.25: Default scenario, second approach. MU random walk with
Wu = 10 and rotation in the 2D space
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Figure 5.26: Default scenario, second approach. MU random walk with
Wu = 100 and rotation in the 2D space

Figure 5.27: Default scenario, second approach. MU random walk with
Wu = 100 and rotation in the 2D space. Effect of the increase of the process
noise spectral density of the mobility model (We = 100)
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Effect of the process noise spectral density of

the mobility model

Figure 5.28: Default scenario, second approach. MU random walk with
Wu = 10 and rotation in the 2D space. Effect of a low We on the position
estimate
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Figure 5.29: Default scenario, second approach. MU random walk with
Wu = 10 and rotation in the 2D space. Effect of an high We on the position
estimate

Comparison with state-of-the-art approaches

Figure 5.30: Second approach. Positions measurements and estimates in the
local reference system using the settings proposed by the reference paper [4]
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Figure 5.31: Second approach. Positions measurements and estimates in the
local reference system using the settings proposed by the reference paper [5]
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Appendix 2: Matlab code

First approach

% Simulator %

% Purpose: track the position of a mobile user walking with a random
% trajectory in time and 2D−space.
%
% Description: bayesian approach, using Extended Kalman Filter to the state
% estimate (angles) and eventually data fusion to improve the mobility
% model.
% MonteCarlo simulations, with randomness given by the random walk and the
% measurement noise.
%
% Info: Andrea Nicolini & Davide Dardari, February 20, 2019, version 4.0

clear all;
close all;
clc;

% Input parameters
% n scat = input('Set the number of scatter objects (in addition to one ...
% BS): ');
% n meas = input('Set the number of parameters to measure: ');
% df = input('Set 1 to enable data fusion, 0 otherwise: ');
% W0 = input('Set the power spectral density of the process noise (ex. ...
% 0.001): ');
% W0 ms = input('Set the power spectral density of the process noise ...
% for the movement (ex. 1): ');
% sigma = input('Set the std dev for the angle estimate (ex. pi/8): ');
% sigmag = input('Set the std dev for the gyroscope (ex. 0.1): ');
% self rot = input('Set the degree per second of device's self rotation ...
% (ex. 30): ');
% sigmaKal = input('Set the std dev for the Kalman filtering for angle ...
% (ex. pi/6): ');
% sigmaKal1 = input('Set the std dev for the kalman filtering for rate ...
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% of change (ex. 0.01): ');
% frac = input('Set the portion of steps for RMSE evaluation (ex. ...
% 9/10): ');
% dt = input('Set the sampling time[s] (ex. 0.01): ');
% area = input('Set the range of the problem[m] (ex. 80): ');
% time = input('Set the simulation time[s] (ex. 6): ');
% threshold = input('Set the threshold value for the RMSE (ex. 10): ');
% M = input('Set the number of MonteCarlo simulations (ex. 10000): ');
n scat = 2;
n meas = 3;
df = 1;
W0 = 0.001;
W0 ms = 1;
sigma = pi/8;
sigmag = 0.1;
self rot speed deg = 30; % deg/s
self rot speed = deg2rad(self rot speed deg); % rad/s
sigmaKal = pi/6;
sigmaKal1 = 0.01;
frac = 9/10;
dt = 0.01;
area = 80;
time = 6;
sim steps = time/dt; % simulation steps
threshold = deg2rad(10); % 10 deg
M = 10000;
theta size = 2+(n scat*2); % track 2 param (angle & rate) per object

% MonteCarlo simulations %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
rmseBS temp = zeros(1,M);
rmseS1 temp = zeros(1,M);
rmseS2 temp = zeros(1,M);
outlierBS = 0;
outlierS1 = 0;
outlierS2 = 0;
for mc=1:M

rng(mc,'v5normal'); % seed
% Scenario %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Initialization
pos = zeros(1,(n scat+1)*2); % true scatterers (&BS) positions
pos rel = zeros((n scat+1)*2,sim steps); % relative positions
x ms = zeros(4,1); % true MS position (center of the

% reference system) and speed
X ms = zeros(4,sim steps); % true MS position & speed matrix
rot = zeros(1,sim steps); % device self−rotation
w ms = zeros(4,1); % correlated Gaussian RVs
true meas = zeros(n meas,sim steps); % noise free measurements
true meas temp = zeros(n meas,sim steps); % noise free measurements

% (no self−rotation)
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Z = zeros(n meas,sim steps); % measurements (AoA) vector
u = zeros(theta size,sim steps); % gyroscope matrix

% True scatterers (&BS) positions
for i=1:2:2*(n scat+1)

pos(i) = randi([−area area],1,1);
pos(i+1) = randi([−area area],1,1);

end

% Mobility model & Covariance matrix of the MS
PHI ms = [1 0 dt 0; 0 1 0 dt; 0 0 1 0; 0 0 0 1];
Q ms = W0 ms*[dtˆ3/3 0 dtˆ2/2 0; 0 dtˆ3/3 0 dtˆ2/2; dtˆ2/2 0 dt 0; ...

0 dtˆ2/2 0 dt];

% Random walk, self rotation, relative positions & noise−free
% measurement acquisition
for n=1:sim steps

% Random walk
w ms = chol(Q ms)'*randn(size(PHI ms,1),1);
x ms = PHI ms*x ms+w ms;
X ms(:,n) = x ms;
% Self rotation
if n>1

rot(n) = rot(n−1)+self rot speed*dt;
else

rot(n) = self rot speed*dt;
end
% Relative positions & noise−free measurement acquisition
for j=1:n meas

pos rel(2*j−1,n) = pos(2*j−1)−X ms(1,n); % relative position x
pos rel(2*j,n) = pos(2*j)−X ms(2,n); % relative position y
% Angle measurements
true meas temp(j,n) = atan2(pos rel(2*j,n),pos rel(2*j−1,n))';

end
end
true meas temp = unwrap(true meas temp')'; % phase correction
% Noise−free measurement acquisition
for n=1:sim steps

for j=1:n meas
true meas(j,n) = true meas temp(j,n)−rot(n);

end
end
true meas = unwrap(true meas')'; % phase correction

% Noisy Measurement acquisition (angle) & Data fusion
for n=1:sim steps

for j=1:n meas
Z(j,n) = true meas(j,n)+sigma*randn;

end
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% Data fusion
if n>1 && df>0

for j=1:theta size/2
% Gyroscope
u(j,n) = (−self rot speed+sigmag*randn)*dt; % rad every dt

end
end

end

% Mobility model %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
F = [zeros(theta size/2), eye(theta size/2); ...

zeros(theta size/2,theta size)];
PHI = eye(theta size)+dt*F;
% Gyroscope model
G = eye(theta size);
B = G;
% Process noise
L = [zeros(theta size/2,theta size); eye(theta size/2), ...

zeros(theta size/2)];
Q = Q eval(F,L,dt,W0);

% Measurement model %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
H = [eye(n meas), zeros(n meas)];
% Measurement noise
R = sigmaˆ2*eye(n meas); % covariance matrix

% Extended Kalman Filter %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Initialization
phi = zeros(n meas,sim steps); % mapping to polar coordinates
v = zeros(n meas,sim steps); % innovation in EKF
a = zeros(1,n meas); % angle+noise prior
angle est error = zeros(n meas,sim steps); % estimate error

% with tracking
angle est error raw = zeros(n meas,sim steps); % raw estimate error

% Priors −> priors position is known with uncertainty
% (first measurement −> first estimate)
for j=1:n meas

a(j) = true meas(j,1)+sigma*rand;
end
m = [a zeros(1,theta size/2)]';
P = [sigmaKalˆ2*eye(theta size/2), zeros(theta size/2);...

zeros(theta size/2), sigmaKal1ˆ2*eye(theta size/2,theta size/2)];

% Algorithm iteration
for n=1:sim steps

% Prediction
m = PHI*m; % state prediction
if (df==1), m=m+B*u(:,n); end % state prediction (with data fusion)
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P = PHI*P*(PHI')+Q; % state prediction uncertainty
% Update
v(:,n) = Z(:,n)−H*m; % innovation
for j=1:n meas

if v(j,n)<−pi, v(j,n) = v(j,n)+2*pi; end % adjust phase
if v(j,n)>pi, v(j,n) = v(j,n)−2*pi; end % adjust phase

end
% Equivalent but more stable version
PHt = (H*P)'; % Matlab is column−major, so (H*PX)'

% is more efficient than PX*H'
S = H*PHt+R;
S = make symmetric(S); % ensure that the matrix is symmetric

% (see the bottom of the script)
SChol = chol(S);
SCholInv = inv(SChol); % triangular matrix
K1 = PHt*SCholInv;
K = K1*SCholInv';
m = m+K*v(:,n); % a−posteriori state estimate
P = P−K1*K1'; % a−posteriori state estimate uncertainty
% Tracking error of the AoA
for j=1:n meas

angle est error(j,n) = true meas(j,n)−m(j); % with EKF
angle est error raw(j,n) = true meas(j,n)−Z(j,n); % without EKF

end
end

% RMSE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
rmseBS temp(mc) = sqrt(mean(sum(angle est error...

(1,sim steps*frac:sim steps).ˆ2,1)));
if rmseBS temp(mc)>threshold

outlierBS = outlierBS+1;
rmseBS temp(mc) = 0;

end
rmseS1 temp(mc) = sqrt(mean(sum(angle est error...

(2,sim steps*frac:sim steps).ˆ2,1)));
if rmseS1 temp(mc)>threshold

outlierS1 = outlierS1+1;
rmseS1 temp(mc) = 0;

end
rmseS2 temp(mc) = sqrt(mean(sum(angle est error...

(3,sim steps*frac:sim steps).ˆ2,1)));
if rmseS2 temp(mc)>threshold

outlierS2 = outlierS2+1;
rmseS2 temp(mc) = 0;

end
end
rmseBS = rad2deg((sum(rmseBS temp))/(M−outlierBS))
outlierBS rate = outlierBS/M
rmseS1 = rad2deg((sum(rmseS1 temp))/(M−outlierS1))
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outlierS1 rate = outlierS1/M
rmseS2 = rad2deg((sum(rmseS2 temp))/(M−outlierS2))
outlierS2 rate = outlierS2/M

% Functions %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% To ensure that a matrix is symmetric
function P = make symmetric(P)

P = (P+P')*0.5;
end

% State noise covariance matrix
function Q = Q eval(F,L,dt,W0)

Q = W0*(L*L'*dt+1/2*dtˆ2*(F*L*L'+L*L'*F')+1/3*dtˆ3*F*L*L'*F');
% Q = W0*[eye(theta size/2)*(1/3*dtˆ3), eye(theta size/2)*(1/2*dtˆ2); ...
% eye(theta size/2)*(1/2*dtˆ2), eye(theta size/2)*dt];

end

% End

Second approach

% Simulator %

% Purpose: track the position of a mobile user walking with a random
% trajectory in time and 2D−space.
%
% Description: bayesian approach, using Extended Kalman Filter to the state
% estimate (positions) and eventually data fusion to improve the mobility
% model.
% MonteCarlo simulations, with randomness given by the random walk and the
% measurement noise.
%
% Info: Andrea Nicolini & Davide Dardari, February 20, 2019, version 6.0

clear all;
close all;
clc;

% Input parameters
% n scat = input('Set the number of scatter objects (in addition to ...
% one BS): ');
% n meas = input('Set the number of parameters to measure: ');
% df = input('Set 1 to enable data fusion, 0 otherwise: ');
% ranging = input('Set 1 if ranging (distance) measurements are ...
% available, 0 otherwise: ');
% W0 = input('Set the power spectral density of the process noise ...
% (ex. 1): ');
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% W0 ms = input('Set the power spectral density of the process noise ...
% for the movement (ex. 1): ');
% sigma = input('Set the std dev for the angle estimate (ex. pi/8): ');
% sigma1 = input('Set the std dev for the distance estimate (ex. 10): ');
% sigmag = input('Set the std dev for the gyroscope (ex. 0.1): ');
% sigmaa = input('Set the std dev for the accelerometer (ex. 10): ');
% self rot speed deg = input('Set the degree per seconds of device's ...
% self rotation (ex. 30): ');
% sigmaKal = input('Set the std dev for the Kalman filtering for ...
% distance (ex. 20): ');
% sigmaKal1 = input('Set the std dev for the kalman filtering for ...
% speed (ex. 0.01): ');
% frac = input('Set the portion of steps for RMSE evaluation ...
% (ex. 9/10): ');
% dt = input('Set the sampling time[s] (ex. 0.01): ');
% area = input('Set the range of the problem[m] (ex. 80): ');
% time = input('Set the simulation time[s] (ex. 6): ');
% threshold = input('Set the threshold value for the angle RMSE ...
% (ex. 10): ');
% thresholdPos = input('Set the threshold value for the position RMSE ...
% (ex. 5): ');
% M = input('Set the number of MonteCarlo simulations (ex. 10000): ');
n scat = 2;
n meas = 6;
df = 1;
ranging = 1;
W0 = 1;
W0 ms = 1;
sigma = pi/8;
sigma1 = 10;
sigmag = 0.1;
sigmaa = 10;
self rot speed deg = 30; % deg/s
self rot speed = deg2rad(self rot speed deg); % rad/s
sigmaKal = 20;
sigmaKal1 = 0.01;
frac = 9/10;
dt = 0.01;
area = 80;
time = 6;
sim steps = time/dt; % simulation steps
threshold = deg2rad(10); % 10 deg
thresholdPos = 5; % 5 meters
M = 10000;
theta size = 4+(n scat*4); % track 4 param (position & speed) per object

% MonteCarlo simulations %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
rmseBS temp = zeros(1,M);
rmseS1 temp = zeros(1,M);
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rmseS2 temp = zeros(1,M);
rmsePosBS temp = zeros(1,M);
rmsePosS1 temp = zeros(1,M);
rmsePosS2 temp = zeros(1,M);
outlierBS = 0;
outlierS1 = 0;
outlierS2 = 0;
outlierPosBS = 0;
outlierPosS1 = 0;
outlierPosS2 = 0;
for mc=1:M

rng(mc,'v5normal'); % seed
% Scenario %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Initialization
pos = zeros(1,(n scat+1)*2); % true scatterers (&BS) positions
pos rel = zeros((n scat+1)*2,sim steps); % relative positions
x ms = zeros(4,1); % true MS position (center of the reference

% system) and speed
X ms = zeros(4,sim steps); % true MS position & speed matrix
rot = zeros(1,sim steps); % device self−rotation (rad)
rot deg = zeros(1,sim steps); % device self−rotation (deg)
x self = zeros(1,2,sim steps); % self rotation graphic x
y self = zeros(1,2,sim steps); % self rotation graphic y
w ms = zeros(4,1); % correlated Gaussian RVs
true meas = zeros(n meas,sim steps); % noise free measurements
true meas temp = zeros(n meas,sim steps); % noise free measurements

% (no self−rotation)
Z = zeros(n meas,sim steps); % measurements (AoA & distance) vector
Z gyro = zeros(1,sim steps); % gyroscope measurements (rad every dt)
x gyro = zeros(n scat+1,sim steps); % gyroscope x displacement
y gyro = zeros(n scat+1,sim steps); % gyroscope y displacement
u = zeros(theta size,sim steps); % gyroscope+accelerometer matrix

% True scatterers (&BS) positions
for i=1:2:2*(n scat+1)

pos(i) = randi([−area area],1,1);
pos(i+1) = randi([−area area],1,1);

end

% Mobility model & Covariance matrix of the MS
PHI ms = [1 0 dt 0; 0 1 0 dt; 0 0 1 0; 0 0 0 1];
Q ms = W0 ms*[dtˆ3/3 0 dtˆ2/2 0; 0 dtˆ3/3 0 dtˆ2/2; dtˆ2/2 0 dt 0; ...

0 dtˆ2/2 0 dt];

% Random walk, self rotation, relative positions & noise−free
% measurement acquisition
for n=1:sim steps

% Random walk
w ms = chol(Q ms)'*randn(size(PHI ms,1),1);
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x ms = PHI ms*x ms+w ms;
X ms(:,n) = x ms;
% Self rotation
if n>1

rot(n) = rot(n−1)+self rot speed*dt;
else

rot(n) = self rot speed*dt;
end
% rot deg(n) = rad2deg(rot(n));
% Relative positions & noise−free measurement acquisition
for j=1:n meas/2

pos rel(2*j−1,n) = pos(2*j−1)−X ms(1,n); % relative position x
pos rel(2*j,n) = pos(2*j)−X ms(2,n); % relative position y
% Angle measurements (first part)
true meas temp(j,n) = atan2(pos rel(2*j,n),pos rel(2*j−1,n))';
% Ranging/distance measurements (second part)
true meas(j+n meas/2,n) = sqrt(pos rel(2*j,n)ˆ2+...

pos rel(2*j−1,n)ˆ2)';
end

end
true meas temp = unwrap(true meas temp')'; % phase correction
% Noise−free measurement acquisition
for n=1:sim steps

for j=1:n meas/2
true meas(j,n) = true meas temp(j,n)−rot(n);

end
end
true meas = unwrap(true meas')'; % phase correction
% true meas deg = rad2deg(true meas);

% Noisy Measurement acquisition (angle & distance) & Data fusion
for n=1:sim steps

% Measurements
Z gyro(n) = (self rot speed+sigmag*randn)*dt; % gyro: rad every dt
for j=1:n meas/2

Z(j,n) = true meas(j,n)+sigma*randn; % AoA
Z(j+n meas/2,n) = true meas(j+n meas/2,n)+...

sigma1*randn; % ranging
% Gyroscope (x and y variations due to reference system rot)
if n>1 && df>0

x gyro(j,n) = true meas(j+n meas/2,n−1)*(cos...
(true meas(j,n−1)−Z gyro(n))−(cos(true meas(j,n−1)))...
*(cos(Z gyro(n))));

y gyro(j,n) = true meas(j+n meas/2,n−1)*(sin...
(true meas(j,n−1)−Z gyro(n))−(sin(true meas(j,n−1)))...
*(cos(Z gyro(n))));

end
end
% Data fusion
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if n>1 && df>0
for j=1:2:theta size/2−1

% Gyroscope
u(j,n) = x gyro((j+1)/2,n); % every dt
u(j+1,n) = y gyro((j+1)/2,n); % every dt
% Accelerometer
u(theta size/2+j,n) = (X ms(3,n)−X ms(3,n−1))...

+sigmaa*randn*dt; % every dt
u(theta size/2+j+1,n) = (X ms(4,n)−X ms(4,n−1))...

+sigmaa*randn*dt; % every dt
end

end
end

% Mobility model %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
F =[zeros(theta size/2), eye(theta size/2); ...

zeros(theta size/2,theta size)];
PHI = eye(theta size)+dt*F;
% Accelerometer & gyroscope model
G = eye(theta size);
B = G;
% Process noise
L = [zeros(theta size/2,theta size); eye(theta size/2), ...

zeros(theta size/2)];
Q = Q eval(F,L,dt,W0);

% Measurement model %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% NL model −> h: phi i = arctg(x i/y i) i=1,..n meas
H = zeros(n meas,theta size); % linearised model (Jacobian matrix)
% Measurement noise
R = [sigmaˆ2*eye(n meas/2), zeros(n meas/2); zeros(n meas/2), ...

sigma1ˆ2*eye(n meas/2)]; % covariance matrix

% Extended Kalman Filter %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Initialization
phi = zeros(n meas,sim steps); % mapping to polar coordinates
pos est = zeros(1,n meas); % first measurement −> first estimate
v = zeros(n meas,sim steps); % innovation in EKF
mv = zeros(theta size/2,sim steps); % state estimate vector

% (relative coords)
mv real = zeros(theta size/2,sim steps); % state estimate vector

% (absolute coords)
m angle = zeros(n meas/2,sim steps); % AoA estimate vector
angle est error = zeros(n meas/2,sim steps); % estimate error with

% tracking (ang)
angle est error raw = zeros(n meas/2,sim steps); % raw estimate error
pos est error = zeros(n meas/2,sim steps); % estimate error with

% tracking (pos)
pos est error raw = zeros(n meas/2,sim steps); % raw estimate error
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% pos est error x = zeros(n meas/2,sim steps); % estimate error with
% tracking (x)

% pos est error y = zeros(n meas/2,sim steps); % estimate error with
% tracking (y)

% Priors −> priors position is known with uncertainty
% (first measurement −> first estimate)
for j=1:n meas/2

a = true meas(j,1)+sigma*rand; % angle+noise
r = sigma1*rand; % distance noise
if ranging==1

r = r+true meas(j+n meas/2,1); % distance+noise
else

r = r+area/2; % no info −> use average distance
end
r = max(1,r);
pos est(2*j−1) = r*cos(a); % x initial estimate position
pos est(2*j) = r*sin(a); % y initial estimate position

end
m = [pos est zeros(1,theta size/2)]';
P = [sigmaKalˆ2*eye(theta size/2), zeros(theta size/2); ...

zeros(theta size/2), sigmaKal1ˆ2*eye(theta size/2,theta size/2)];

% Algorithm iteration
for n=1:sim steps

% Prediction
m = PHI*m; % state prediction
if (df==1), m=m+B*u(:,n); end % state prediction (with data fusion)
P = PHI*P*(PHI')+Q; % state prediction uncertainty
% Update
for j=1:n meas/2

% Angle measurements
phi(j,n) = atan2(m(2*j),m(2*j−1));
H(j,2*j−1) = −m(2*j)/(m(2*j)ˆ2+m(2*j−1)ˆ2);
H(j,2*j) = m(2*j−1)/(m(2*j)ˆ2+m(2*j−1)ˆ2);
% Ranging measurements
if ranging==1

phi(j+n meas/2,n) = sqrt(m(2*j)ˆ2+m(2*j−1)ˆ2);
H(j+n meas/2,2*(j)−1) = m(2*j−1)/sqrt(m(2*j)ˆ2+m(2*j−1)ˆ2);
H(j+n meas/2,2*(j)) = m(2*j)/sqrt(m(2*j)ˆ2+m(2*j−1)ˆ2);

end
end
phi(1:n meas/2,:) = unwrap(phi(1:n meas/2,:)')'; % phase correction
v(:,n) = Z(:,n)−phi(:,n); % innovation
% Equivalent but more stable version
PHt = (H*P)'; % Matlab is column−major, so (H*PX)'

% is more efficient than PX*H'
S = H*PHt+R;
S = make symmetric(S); % ensure that the matrix is symmetric
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% (see the bottom of the script)
SChol = chol(S);
SCholInv = inv(SChol); % triangular matrix
K1 = PHt*SCholInv;
K = K1*SCholInv';
m = m+K*v(:,n); % a−posteriori state estimate
P = P−K1*K1'; % a−posteriori state estimate uncertainty
% Consistency check: speed and range limits

% for j=1:theta size/2
% if (abs(m(j))>100), m(j) = 100*m(j)/abs(m(j)); ...
% end % maximum range
% if (abs(m(j+theta size/2))>1)
% m(j+theta size/2) = 1*m(j+theta size/2)/abs...
% (m(j+theta size/2)); % maximum speed
% end
% end

% Vectors update
for j=1:2:length(pos)

m angle((j+1)/2,n) = atan2(m(j+1),m(j)); % AoA
end
m angle = unwrap(m angle')'; % phase correction
for j=1:2:length(pos)

mv(j,n) = (m(j)/cos(m angle(((j+1)/2),n)))...

*cos(m angle(((j+1)/2),n)+rot(n)); % relative position x
mv(j+1,n) = (m(j)/cos(m angle(((j+1)/2),n)))...

*sin(m angle(((j+1)/2),n)+rot(n)); % relative position y
end
for j=1:2:length(pos)

mv real(j,n) = mv(j,n)+X ms(1,n); % position x
mv real(j+1,n) = mv(j+1,n)+X ms(2,n); % position y

end
% Tracking error of the AoA & position
for j=1:n meas/2

angle est error(j,n) = true meas(j,n)−m angle(j,n); % with EKF
angle est error raw(j,n) = true meas(j,n)−Z(j,n); % without EKF
pos est error raw(j,n) = true meas(n meas/2+j,n)−...

Z(n meas/2+j,n); % pos without EKF
pos est error(j,n) = true meas(n meas/2+j,n)−...

sqrt(mv(2*j−1,n)ˆ2+mv(2*j,n)ˆ2); % pos with EKF
% pos est error x(j,n) = pos rel(2*j−1,n)−mv(2*j−1,n); % x with EKF
% pos est error y(j,n) = pos rel(2*j,n)−mv(2*j,n); % y with EKF

end
end

% RMSE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% AoA
rmseBS temp(mc) = sqrt(mean(sum(angle est error...

(1,sim steps*frac:sim steps).ˆ2,1)));
if rmseBS temp(mc)>threshold
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outlierBS = outlierBS+1;
rmseBS temp(mc) = 0;

end
rmseS1 temp(mc) = sqrt(mean(sum(angle est error...

(2,sim steps*frac:sim steps).ˆ2,1)));
if rmseS1 temp(mc)>threshold

outlierS1 = outlierS1+1;
rmseS1 temp(mc) = 0;

end
rmseS2 temp(mc) = sqrt(mean(sum(angle est error...

(3,sim steps*frac:sim steps).ˆ2,1)));
if rmseS2 temp(mc)>threshold

outlierS2 = outlierS2+1;
rmseS2 temp(mc) = 0;

end
% Position
rmsePosBS temp(mc) = sqrt(mean(sum(pos est error...

(1,sim steps*frac:sim steps).ˆ2,1)));
if rmsePosBS temp(mc)>thresholdPos

outlierPosBS = outlierPosBS+1;
rmsePosBS temp(mc) = 0;

end
rmsePosS1 temp(mc) = sqrt(mean(sum(pos est error...

(2,sim steps*frac:sim steps).ˆ2,1)));
if rmsePosS1 temp(mc)>thresholdPos

outlierPosS1 = outlierPosS1+1;
rmsePosS1 temp(mc) = 0;

end
rmsePosS2 temp(mc) = sqrt(mean(sum(pos est error...

(3,sim steps*frac:sim steps).ˆ2,1)));
if rmsePosS2 temp(mc)>thresholdPos

outlierPosS2 = outlierPosS2+1;
rmsePosS2 temp(mc) = 0;

end
end
rmseBS = rad2deg((sum(rmseBS temp))/(M−outlierBS))
outlierBS rate = outlierBS/M
rmseS1 = rad2deg((sum(rmseS1 temp))/(M−outlierS1))
outlierS1 rate = outlierS1/M
rmseS2 = rad2deg((sum(rmseS2 temp))/(M−outlierS2))
outlierS2 rate = outlierS2/M

rmsePosBS = (sum(rmsePosBS temp))/(M−outlierPosBS)
outlierPosBS rate = outlierPosBS/M
rmsePosS1 = (sum(rmsePosS1 temp))/(M−outlierPosS1)
outlierPosS1 rate = outlierPosS1/M
rmsePosS2 = (sum(rmsePosS2 temp))/(M−outlierPosS2)
outlierPosS2 rate = outlierPosS2/M
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% Functions %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% To ensure that a matrix is symmetric
function P = make symmetric(P)

P = (P+P')*0.5;
end
% State noise covariance matrix
function Q = Q eval(F,L,dt,W0)

Q = W0*(L*L'*dt+1/2*dtˆ2*(F*L*L'+L*L'*F')+1/3*dtˆ3*F*L*L'*F');
% Q = W0*[eye(theta size/2)*(1/3*dtˆ3), eye(theta size/2)*(1/2*dtˆ2); ...
% eye(theta size/2)*(1/2*dtˆ2), eye(theta size/2)*dt];

end

% End
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