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Abstract

A Wireless Sensor Network (WSN) is an infrastructure comprised of sens-
ing, computing, and communication devices, that obtains and processes data
to understand the behavior of the monitored environment, and to react to
events and phenomena that occur within that. The use of WSN in industry
settings is extremely appealing, nevertheless most industrial environments
are obstile to reliable radio communication, showing pronounced effects of
multipath fading, strong attenuation and radio interference. This motivates
a huge effort in research activities, standardization process and industrial
investments on this field since the last decade. In our work, we propose
mechanisms based on machine learning algorithms that allows us to classify
the channel propagation condition (Line-of-Sight and Non-Line-of-Sight) of
radio links. The investigated methods provide an useful diagnostic tool in
the context of adaptive transmission strategies for improving the quality and
reliability of wireless communication.

In particular, the first mechanism is based on the analysis of I/Q data,
while the second method is based on bit-error pattern distribution in re-
ceived packets. Both the solutions have been implemented on real hardware
and tested in a number of environment with heterogeneous characteristics,
showing promising results.
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Prefazione

Una Wireless Sensor Network (WSN) può essere definita come un’ infras-
truttura composta da sensori/dispositivi in grado di calcolare, comunicare e
effettuare sensing dell’ambiente circostante processando e analizzando i dati
in modo da reagire a eventi e fenomeni che possono occorrere durante la
comunicazione. L’utilizzo delle WSN nel settore industriale è estremamente
allettante, nonostante la maggior parte du questi ambienti risulti ostile alle
comunicazioni radio affidabili, mostrando effetti sensibili di cammini multi-
pli, forte attenuazione e interferenze radio. Questo motiva un enorme effort
nella ricerca, standardizzazione e investimento industriale in questo campo,
nell’ultimo decennio. L’uso delle WSN nell’ambiente industriale è soggetto
a diverse problematiche, dovuto all’ostilità del canale radio in ambito indus-
triale, come rumore, Shadwoing, cammini multipli e interferenze. Nel nostro
progetto, proponiamo meccanismi basati sulle condizioni di propagazione del
canale e algoritmi di machine learning che ci permettono di classificare lo
stato del canale (Line-of-Sight o Non-Line-of-Sight). I metodi analizzati for-
niscono un utile strumento diagnostico nel contesto delle strategie di trasmis-
sione adattiva per migliorare la qualità e l’affidabilità della comunicazione
wireles.

In particolare, il primo meccanimo è basato sull’analisi degli I/Q data,
mentre il secondo metodo è basato sull’analisi della distribuzione del bit-error
pattern nel pacchetto ricevuto. Entrambe le soluzione sono state implemen-
tate su hardware e testate in differenti ambienti con differenti caratteristiche,
mostrando risulati promettenti.
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Acronyms

The following list represents the acronyms used in the thesis.

BEP Bit Error Pattern

BPSK Binary Phase Shift Keying

DSSS Direct Sequence Spread Spectrum

FHSS Frequency Hopping Spread Spectrum

ISM Industry Science Medical

LOS Line-of-Sight

MAC Media Access Control

NLOS Non-Line-of-Sight

NN Neural Network

OQPSK Offset Quadrature Phase Shift Keying

PDF Probability Density Function

PHY Physical Layer

QoS Quality of Service

RF Radio Frequency

RSSI Received Signal Strength Indicator

SDR Software Defined Radio

TSCH Time-slotted Channel Hopping

USRP Universal Software Radio Peripheral

WLAN Wireless Local Area Network

WSN Wireless Sensor Network
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Chapter 1

Introduction

Since the beginning of the third Millennium, Wireless Sensor Networks (WSNs)
have generated an increasing interest from industrial and research perspec-
tives [1]. A wireless sensor network can be generally described as a multi-hop
self-organizing network composed of multiple sensor devices, which commu-
nicate with each other wirelessly. It is composed of many sensor nodes with
the ability to sense and the possibility to control the environment enabling
interaction between persons or computers and the surrounding environment,
collecting and processing information. They have resource constraints, with
low processing power and, in some cases, restrictions in power consumption.

1.1 Motivation

The use of WSN in industrial systems presents some challenges[2]. Wireless
networks use an inherently unreliable communication medium which can be
aggravated due to noise and interference in the spectrum band used for com-
munication. The majority of wireless sensor networks work in the 2.4 GHz
unlicensed frequency band, reserved for Industrial, Scientific and Medical
(ISM) applications. This means that the WSN have to deal with unwanted
RF interference, in addition to the typical adverse effects of multipath fading
and signal attenuation. The WSN can be used in domains such as agri-
culture, energy, industrial automation, medical health care, smart building.
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In the industry environment, the characteristics of the wireless channel are
different in comparison to other WSN environments, such as home and of-
fice environments. The sensors are deployed to monitor critical parameters
such as vibration, temperature, pressure and motor efficiency. In addition,
the wireless channel in many industrial environments is non-stationary on a
long time-scale, which can cause abrupt changes in the characteristics of the
channel over time. These shortcomings can seriously affect the communica-
tion link quality of Wireless Sensor Networks. A set of standards, such as
WirelessHART, ISA100.11a, was developed for industrial WSN to partially
overcome these limitations.

1.2 An Overview on Availaible Approaches

In the related literature, it is possible to find a number of works targeting
the topic of radio-link state estimation in WSN. A common approach for
the physical layer measurement is to rely on the Received Signal Strength
Indicator (RSSI) values provided by the chipset. Because, the measuraments
and calculation involved with RSSI are less complicated, and RSSI values are
easily available [3]. Anyway, the RSSI data analysis present some drawbacks
due to the low-resolution of the RSSI data available on most WSN plat-
tforms. Therefore, as the computation could be more heavy the I/Q data
analysis give us more information about the channel properties and studying
the distribution, by means of theoretical model like Rician and Rayleigh dis-
tribution [4], so that it is possiblie, it is possible to infer the signal properties.
On top of this, machine learning methods are built and trained to classify
the radio link propagation-state both offline and online way, with a variable
level of complexity and performance.

1.3 Problem Statement

In this thesis, we focus on the radio link state. In particular, we want to
distinguish between Line-of-Sight (LOS) and No-line-of-Sight (NLOS)
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conditions. Starting with the analysis of received signals, our goals are an-
alyze, detect and classify the sources of link disruption during the packet
transmission using two approaches: first, based on I/Q data analysis and the
second, based on analyzing the Bit Error Pattern distribution [5].

1.4 Thesis Contribution

Although, as mentioned in Section 1.2, there are independent efforts in the
literature on these topics, we envision the development of a unified frame-
work for channel state detection and classification framework that moves
beyond the existing approaches by incorporating link quality prediction and
link/network adaption in the framework. To this end, we use machine learn-
ing tools along with the spectrum sensing, signal processing and wireless
communication principles to enhance the resilience of industrial WSNs. For
this purpose, we introduce the classification procedure; combining the results
of signals analysis methods [3] and [6] to categorize the radio channel state.
We use a Software Defined Radio as transceiver and receiver. Capturing sig-
nal with SDR gives us possibility to analyze the statistical properties of the
received signal, enabling the use of various machine learning method.

1.5 Thesis Outline

The rest of the thesis is organized as follows. In Chapter 2 we give a de-
scription of wireless sensor networks, in particular industrial wireless sensor
networks and their main challenges. We also provide a brief description of
machine learning solutions with specific interest to supervised learning-based
methods. We then explore other related works about this topic in Chapter
3. Then, we describe in detail the Radio Link Sate in Chapter 4, focusing in
particular on the techniques to model the issue. In Chapter 5 we elaborate
the problem and how we tackle it. The experiments results on real datasets
are discussed in Chapter 6. The thesis is concluded with Chapter 7 where
future work is discussed as well.
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Chapter 2

Background

In this chapter we introduce the fundamental concepts within the scope of
this thesis. We begin by describing the wireless sensor network and the main
techniques to address the problems. We then outline a number of machine
learning techniques commonly used in signal processing.

2.1 Wireless Sensor Network

A WSN is a network formed by a large number of sensor nodes where each
node is equipped with a sensor to detect physical phenomena such as light,
heat, pressure. WSNs are regarded as a revolutionary information gather-
ing method to build the information and communication system which will
greatly improve the reliability and efficiency of infrastructure systems. Com-
pared with the wired solution, WSNs feature easier deployment and better
flexibility of devices. The main features of WSNs are: scalability with respect
to the number of nodes in the network, self-organization, self-healing, energy
efficiency, a sufficient degree of connectivity among nodes, low-complexity,
low cost and size of nodes. With the rapid technological development of
sensors, WSNs will become the key technology for IoT.
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History

Research on WSNs dates back to the early 1980s when the United States
Defense Advanced Research Projects Agency (DARPA) carried out the dis-
tributed sensor networks (DSNs) programme for the US military [7].
At that time, the Advanced Research Projects Agency Network (ARPANET)
had been in operation for a number of years, with about 200 hosts at uni-
versities and research institutes. DSNs were assumed to have many spatially
distributed low-cost sensing nodes, collaborating with each other but oper-
ated autonomously, with information being routed to whichever node not
that can use the Information most effectively. Even though early researchers
on sensor networks had the vision of a DSN in mind, the technology was
not quite ready. The sensors were rather large (i.e. the size of a shoe box
and bigger), and the number of potential applications was thus limited. As
related technologies mature, the cost of WSN equipment has dropped dra-
matically, and their applications are gradually expanding from the military
areas to the industrial and commercial field.

2.1.1 Architecture

Modern WSN usually include sensor nodes, actuator nodes, gateways and
clients. A number of sensor nodes is deployed in the designed area with
the scope of monitoring certain physical properties of the environment. The
nodes can be organized in star or mesh topologies, while the WSN protocols
usually provide self-organizing capabilities by means of multi-hopping com-
munication.
The sensor node is one of the main parts of a WSN. The hardware of a
sensor node generally includes four parts: the power and power management
module, a sensor, a micro-controller, and a wireless transceiver. A sensor is
in charge of collecting and transforming the signals, such as light, vibration
and chemical signals into electrical signals and then transferring them to the
micro-controller. The micro-controller receives the data from the sensor and
processes them accordingly.
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2.1.2 Network Topologies

WSN nodes are typically organized in one of three types of network topolo-
gies:

Figure 2.1: WSN topologies

1. Star: In a star topology, each node connects directly to a gateway.
A single gateway can send messages to as well as receive them from a
number of remote nodes. The nodes are not permitted to send messages
to each other, which allows low-latency communications between the
remote node and the gateway (base station).

2. Cluster Tree: It is also called as cascaded star topology. In cluster
tree topologies, each node connects to a node that is placed higher in
the tree and then to the gateway. The main advantage of the cluster
tree topology is that the expansion of a network can be easily done.

3. Mesh: It allows transmission of data from one node to another, within
its radio transmission range. If a node wants to send a message to a
node located out of its radio communication range, it needs an inter-
mediate node to forward the message to the desired node.
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2.2 Industrial Wireless Sensor Network

The indoor radio channel has active area of research [8]. Due to increasing use
of indoor wireless communications. While wireless communication standards,
such as IEEE 802.11, are already largely adopted in office environments for
non-critical applications, during the last few years many manufacturing com-
panies have been interested to incorporate wireless communication in their
production processes. This implies a certain number of technical challenges
due to the highly dynamic changes of the workplace layout overtime, the
presence of machinery and highly reflective materials. Hence, the use of
WSN in these environments, is subject to typical problems of wireless com-
munications, such as noise, shadowing and multipath fading. The lack of
reliability makes it difficult to provide Quality of Service (QoS) guarantees.
The characterization of the industrial environments with respect to inter-
ference sources and propagation characteristics, is an important step in the
development reliable wireless networks and to improve the current IWSN
standard, namely WirelessHART, ISA100.11a, WISA, ZigBee [9]. All the
aforementioned standards are based on the IEEE 802.15.4 physical layer,
but have defined different mechanisms for the upper layers. In addition, we
also mention IWLAN [9] that is based on the IEEE 802.11.

2.2.1 IWSN Requirements

Simple deployment, significant cost savings in installations, lack of cabling,
high mobility, easy rearrangements related to device configuration and sensor
locations make the wireless network technologies also appealing for industrial
application. The adaption of wireless technologies appealing in industrial
environment possesses additional challenges since the factory environments
are typically harsh for wireless communication in terms of interferences, noise
and physical obstacles. The following list includes some of the common
requirements found in industrial applications:

• Standardized Solutions: In order to provide flexibility and freedom
to choose among a broad set of suppliers with guaranteed interoper-
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ability, standardized and open communication protocols should be used
instead of specific proprietary protocols. Besides facilitating repair-
ment and replacement procedures in case of equipment faults, the use
of standardized solutions usually extends the lifespan of the network,
since there is not a direct dependence on a specific vendor success or
failure.

• Reliable Performance: For most applications, it is desirable to have
network reliability close to 100%. In other words, the sensor data
loss should be minimal. Employing redundant paths, self-healing algo-
rithms, and retransmission schemes are some example of possible ways
through which highly reliable performance can be achieved, even under
the harsh and rapidly changing conditions that characterize industrial
environments.

• Energy efficiency: In wireless systems, the power needed to feed the
devices must come from local sources, normally small batteries. For
this reason, efficient energy consumption is a greatly desired quality and
wireless sensors must be able to provide a battery life of several months
and even years. Considering that self-organizing and self-healing pro-
cedures, as well as the data relay, demand different energy levels, it can
be said that power consumption is a non-deterministic metric. Energy
harvesting from thermal sources, for instance, is one of the most used
options to extend the battery life of nodes.

• Friendly coexistence: Most wireless technologies operate in the 2.4
GHz ISM frequency band. To enable the deployment of IWSN and
Wireless Local Area Networks (WLAN) in the same facilities, which is
a remarkably relevant scenario, the involved technologies must be able
to coexist without degradation in their performances. The implemen-
tation of an opportune frequency channel mapping, channel sensing
techniques and the use of frequency hopping algorithms, are some of
the widely used solutions to avoid or reduce interference.
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• Operation in Harsh Environments: Environmental conditions that
an IWSN may encounter are strongly dependent on the specific location
in which it is deployed. Hence, operational temperatures, humidity,
noise and hazard characteristics will greatly vary from case to case.
Before deploying a network in a plant, strict verification should be
performed to ensure that the equipment used is capable of withstanding
the given conditions and, more importantly, if it complies with the legal
regulations of the country.

2.2.2 IEEE 802.15.4

The Institute of Electrical and Electronics Engineers (IEEE) supports many
working groups to develop and maintain wireless and wired communications
standards. For example, 802.3 is wired Ethernet and 802.11 is for wire-
less LANs (WLANs), also known as Wi-Fi. The 802.15 group of standards
specifies a variety of wireless personal area networks (WPANs) for different
applications. For instance, 802.15.1 is Bluetooth, 802.15.3 is a high-data-rate
category for ultra-wideband (UWB) technologies, and 802.15.6 is for body
area networks (BAN). There are several others [10]. The 802.15.4 standard
defines the physical layer (PHY) and media access control (MAC) layer of
the Open Systems Interconnection (OSI) model of network operation. The
PHY defines frequency, power, modulation, and other wireless conditions of
the link. The MAC defines the format of the data handling. The remaining
layers define other measures for handing the data and related protocol en-
hancements including the final application. The goal of the standard is to
provide a base format to which other protocols and features could be added
by way of the upper layers. While three frequency assignments are available,
the 2.4-GHz band is by far the most widely used 2.1. Most available chips
and modules use this popular ISM band.

14



Several society, such as ISA, have been actively pushing the applications
of wireless technologies in industrial automation [11]. Moreover different
standard are realized like ZigBee, WirelessHart and ISA100 that use the same
physical layer of IEEE 802.15.4, but they differ substantially concerning the
medium access control level (MAC) [10], [9].

ZigBee

ZigBee is a standard containing a suite of protocols using low-power ra-
dio based on the IEEE 802.15.4 standard. Mesh network configuration of
ZigBee[11] is considered to be a cost-effective solution for the use in different
industrial applications. The nodes consume low energy and support different
topologies. The standard uses the 868 MHz band in Europe, 915 MHz in the
United States, and 2.4 GHz globally. Offset Quadrature Phase Shift Keying
(OQPSK) modulation is used at 2.4 GHz, whereas binary phase shift key-
ing (BPSK) modulation is used for the 868 MHz and 915 MHz. Generally,
ZigBee targets applications that require low data rate and long battery life,
making it a good candidate for wireless sensor and control applications. In
order to increase the IEEE 802.15.4 network lifetime, the nodes are usually
required to transmitt at a low power level. This makes them more vulnerable
to noise, interference, and multipath distortion.

WirelessHart

WirelessHart is a sensor network technology based on the highway address-
able remote transducer (HART) protocol. It uses the 802.15.4 standard with
O-QPSK modulation at 2.4 GHz achieving a data rate of up to 250 kb/s. Di-
rect sequence spread spectrum [9] (DSSS) is used together with a time-slotted
channel hopping (TSCH) technique [9] to mitigate the effect on interference
and multipath distortion on packet-by-packet basis. Unlike WirelessHART
[11], ZigBee systems uses the same static channel and are thus more suscep-
tible to noise, interference, and multipath effects.This makes WirelessHart
more robust than ZigBee for deployment in harsh industrial environments.
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In addition to DSSS and TSCH, link-level acknowledgment (ACK) for
package re-transmission, graphic routing for path diversity, and transport
protocol with end-to-end acknowledgments are used to achieve reliable data
transmission.

ISA100

This standard for industrial automation and control applications was devel-
oped by the International Society of Automation (ISA). The ISA100 physical
layer is based on the IEEE 802.15.4 standard at 2.4 GHz with DSSS and
FHSS, providing a data rate of up to 250 kb/s. The main difference be-
tween ISA100 and WirelessHART is the main goals of each standard. While
WirelessHART is designed to address issues such as reliability, security and
interoperability. In general, ISA100 is designed to have broad coverage of in-
dustrial automation networks and aims to converge/assimilate existing net-
works using different communication protocols.

2.2.3 RF Interference

As mentioned previously, industrial applications have higher QoS require-
ments than typically found in homes and offices. More communication de-
vices are involved and their number is variable. It is necessary to meet
specific safety and security requirements, and performance must be deter-
ministic with certain degradation. Coupled with the harsh environment, this
means that the spectrum resources vary over time and space. This situa-
tion may be exacerbated by device mobility and traffic fluctuations. When
different radio signals exist in the same place, at the same time and in a
common frequency range, then Radio Frequnecy Interference (RFI) occurs[9].
This is particularly a problem when using devices that operate in the ISM
and Unlicensed National Information Infrastructure (U-NI) bands, which are
both unlicensed and used for different networks including Wireless Personal
Area Networks (WPANs), such as WSN, and Wireless Local Area Networks
(WLANs). This can be exacerbated by poor frequency planning and a overly
crowded frequency spectrum. WirelessHART, ISA 100.11.a, ZigBee, Wi-Fi,
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Bluetooth device operates in the 2.4 GHz ISM band, as do other devices. The
following table [9] gives a comparison of different industrial wireless platforms
that need to coexist.

IWLAN ZigBee WirelessHart ISA 100.11a WISA
Bandwidth 22 MHz 2 MHz 2 MHz 2 MHz 1 MHz
Channels. Selection 14, static 16, static 15, dynamic 15, dynamic 15, dynamic
Data Rate 11-54 Mps 250 kps 250 kps 250 kps 1 Mps
Frequency Band(s) 2.4 GHz, 5 GHz 2.4 GHz 2.4 GHz 2.4 GHz 2.4 GHz
MAC Layer IEEE 802.11 IEEE 802.15.4 Proprietary Proprietary Proprietary
Radio IEEE 802.11b/g/a IEEE 802.15.4 IEEE 802.15.4 IEEE 802.15.4 IEEE 802.15.1

Table 2.1: Wireless Industrial Standards

The effect of the interference in these coexistence standard could also be seen
in the channel overlapping as shown in the following figure 2.2.

Figure 2.2: Overlapping of IEEE 802.15.4 and IEEE 802.11b and
Bluethooth channel allocation
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IEEE 802.11

IEEE 802.11 is a family of progressively improved wireless local area network
(WLAN) standards [11]. In 1999, the IEEE 802.11b standard was published
to operate in the unlicensed 2.4 GHz band with a maximum transmission rate
of 11 Mb/s. IEEE 802.11a was released later in the same year to support
up to 54 Mb/s in the 5 GHz frequency band. Further enhancements of the
standard, IEEE 802.11g, allowed the same rates (54 Mb/s) to be obtained in
the 2.4 GHz band, while traffic differentiation mechanisms, were introduced
in a subsequent amendment, referred as IEEE 802.11e. Several important
improvements were further introduced in IEEE 802.11n to support multiple-
input multiple-output (MIMO) and channel bonding capabilities to increase
the reliability, coverage, and transmission rate (up to 6000 Mb/s).

The above discussed IEEE 802.11 family of standards have been consid-
ered for the use in various industrial applications. However, one of the main
challenges of these systems is the issue of interference.

In the 2.4 GHz band, three non-overlapping channels are used to create a
micro-cellular architecture, which is not enough to sufficiently isolate micro-
cells on the same channel. A significant amount of system capacity is thus lost
to co-channel interference. IEEE 802.11n reduces the interference by utilizing
more channels in the 5 GHz band, but cannot entirely eliminate the issue.
The use of antenna beamforming in IEEE 802.11n dramatically increases the
range but also leads to increased interference over distance. Although the
IEEE 802.11 family of standards can provide relatively high data rates, the
issue of interference will continue to be a key challenge in designing robust
highly reliable industrial wireless networks. In addition, the reduction in
performance of these systems with regard to the propagation characteristics
of harsh industrial environments could be significant.
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2.2.4 Multipath Fading

Compared to other indoor and outdoor, the industrial radio channel is usually
harsher with respect to radio propagation. In addition, the wireless chan-
nel in many industries is non-stationary in the long term, which can cause
abrupt changes in the characteristics of the channel over time. Common
characteristics of these environments are affecting by large-scale and small-
sale fading causing multipath. Multipath is the propagation phenomenon
that results in radio signals reaching the receiving antenna from two or more
paths. The effects of multipath include constructive and destructive inter-
ference, phase shifting of the signal cause errors and impact of the quality of
the communications.

Fading

The term fading refers to rapid fluctuations of the amplitude, phase of a
radio signal over a short period o short travel distance.

In principle, the following are the main multipath effects:

1. Rapid changes in signal strength over a small travel distance or time
interval.

2. Random frequency modulation due to varying Doppler shifts on differ-
ent multipath signals.

3. Time dispersion or echoes by multipath propagation delays.

In wireless communications, the presence of reflectors in the environment
surrounding a transmitter and receiver create multiple paths that a trans-
mitted signal can traverse. As a result, the receiver sees the superposition
of multiple copies of the transmitted signal, each traversing a different path.
Each signal copy will experienced differences in attenuation, delay and phase
shift while travelling from the source to the receiver. This can result in either
constructive or destructive interference, amplifying or attenuating the signal
power seen at the receiver.
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Thus, in communication it could produce several problems:

• Inter-symbolic Interference

• Large fluctuation of received power

These drawbacks bring errors in receiving symbols.

Figure 2.3: Multi-path fading in Wireless Communication

2.2.5 Slow and Fast Fading

Mathematically, fading is usually modeled as a time-varying random change
in the amplitude and phase of the transmitted signal [4]. The terms slow
and fast fading refer to the rate at which the magnitude and phase change
imposed by the channel on the signal changes. The coherence time is a
measure of the minimum time required for the magnitude change of the
channel to become decorrelated from its previous value.

• Slow Fading: Slow fading arises when the coherence time of the
channel is large relative to the delay constraint of the channel. In this
regime, the amplitude and phase change imposed by the channel can be
considered roughly constant over the period of use. Slow fading can be
caused by events such as shadowing, where a large obstruction such
as a hill or large building obscures the main signal path between the
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transmitter and the receiver. The amplitude change caused by shad-
owing is often modeled using a log-normal distribution with a standard
deviation according to the Log Distance Path Loss Model.

PL = PT +GT +GR − LT − LR − PR (2.1)

In 2.1:

– PT : is de transmitter power in dBm.

– GT and GR: are the Tx and Rx antenna gain in dBi.

– LT and LR: are the antenna cable losses in dB.

– PR: is the local mean received power.

• Fast Fading: : Fast fading occurs when the coherence time of the
channel is small relative to the delay constraint of the channel. In this
regime, the amplitude and phase change imposed by the channel varies
considerably over the period of use.

Temporal Fading

Temporal fading is defined as the variability of the received power over time
at a fixed location in the propagation environment [12]. To determine tem-
poral fading properties of the industrial environment, the measurement cart
was placed at fixed locations in specific areas containing a lot of movement.
These areas exhibit worst-case temporal fading and will limit the performance
of an industrial wireless communication system the most. It was shown the
received signal envelope overt time in a fixed location in the industrial en-
vironment exhibits Ricean fading properties. So, it is clear that temporal
fading behaviour is not determined by stationary physical characteristics of
the environments such as LOS.

Several models have been proposed to explain this phenomenon, but the
most common model is considering fading from a statistical point of view.
The most popular of these models are the Rayleigh and Rician model.
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2.2.6 Rayleigh Distribution

This model is used to describe the NLOS propagation. Let there be two
multipath signals S1 and S2 received at two different time instants due to
the presence of obstacles. Now there can be either constructive or destructive
interference between the two signals. Let En be the electric field and Θn be
the relative phase of the various multipath signals. So we have:

∼
E =

N∑
n=1

Ene
jθn (2.2)

Now if N → ∞ (i.e are sufficiently large number of multipaths) and all the
En are IID distributed, then by Central Limit Theorem we have:

lim
N→∞

∼
E = lim

N→∞

N∑
n=1

Ene
jθn = Zr + jZi = Rejφ (2.3)

where Zr and Zi are the Gaussian Random variables. For the above case:

R =
√
Z2
r + Z2

i (2.4)

and
φ = tan−1Zi

Zr
(2.5)

For all practical purpose, we assume that the relative phase Θn is uniformaly
distributed.

E[ejθn ] = 1
2π

∫ 2π

0
ejθndθ = 0 (2.6)

It can be seen that En and Θn are independent. So,

E[
∼
E] = E[

∑
Ene

jθn ] = 0 (2.7)

E[|
∼
E|2] = E[

∑
Ene

jθn
∑

E∗ne
−jθn ] = E[

∑
m

∑
n

EnEme
j(θn−θm)] =

N∑
n=1

En
2 = P0

(2.8)
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where P0 is the total power obtained. To find the Cumulative Distribution
Function (CDF) of R:

FR(r) = Pr(R ≤ r) =
∫
A

∫
fZi,Zr(zi, zr)dzidzr (2.9)

where A is determined by the values taken by the dummy variable r. Let Zi
and Zr be ze mean Gaussian RVs. Hence, the CDF can be written as

FR(r) =
∫
A

∫ 1√
2πσ2

e
−(Z2

r+Z2
i

)
2σ2 dZidZr (2.10)

Let Zr = p cos(Θ) and Zi = p sin(Θ). So we have:

FR(r) =
∫ 2π

0

∫ 2π

0

1√
2πσ2

e
−p2

2σ2 pdpdθ = 1− e
−r2
2σ2 (2.11)

Above equation is valid for all r ≥ 0. The PDF, 2.4 is known as Rayleigh
distribution, can be written as 2.12 and is shown in following figure 2.4 with
different σ values.:

fR(r) = r

σ2 e
−r2
2σ2 (2.12)

This equation too is valid for all r ≥ 0.

Figure 2.4: Rayleigh distribution
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2.2.7 Rice Distribution

Rician Fading originates from the presence of a direct path. It is described
by the Rice distribution, which is:

fR(r) = r

σ2 e
−(r2+A2)

2σ2 I0(Ar
σ2 ) (2.13)

for all A ≥ 0 and r ≥ 0. Here A is the peak amplitude of the dominant signal
and I0(.) is the modified Bessel function of the first kind and zeroth order.
We can define the K factor for this distribution as

KdB = 10 log A2

2σ2 (2.14)

As A → 0 then KdB → ∞

Figure 2.5: Rice distribution

In conclusion, in the absence of a dominating component the envelope of
the received signal is shown to be Rayleigh-distributed (NLOS), while in the
presence of a dominant, static component, typically a line-of-sight path, the
envelope obeys a Rice distribution. In [12] it is shown how temporal fading
is Ricean distributed.
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2.3 Signal Representation

In order to take advantage of the theoretical-distribution model, and to un-
derstand the statistical properties of the radio channel state, we use the stan-
dard in-phase/quadrature (I/Q) representation for band-pass signal analysis.

2.3.1 I/Q Data

I/Q data shows the changes in magnitude (or amplitude) and phase of a
sine wave. If amplitude and phase changes occur in an orderly, predeter-
mined fashion, since in digital modulations, the information is conveyed by
means of appropriate amplitude and phase changes in the transmitted signal
[12], I/Q provides a convenient representation for the analysis of these sig-
nals [13]. Modulation modifies certain characteristics of a higher frequency
carrier signal according to a lower frequency message, or information, sig-
nal. I/Q representation is therefore is highly prevalent in Radio Frequency
communications systems, and more generally in signal modulation.

Background on Signals

Signal modulation encodes information by changing the parameters of a sine
wave. The equation representing a sine wave is as follows:

Accos(2πfct+ φ) (2.15)

where Ac is the amplitude, fc the frequency and φ is the phase. The equation
of sine wave above, shows that it is limited to making changes to the ampli-
tude, frequency and phase of a sine wave to encode information. Frequency
is simply the change rate of the phase of a sine wave (frequency is the first
derivative of phase), so frequency and phase of the sine wave equation can be
collectively referred to as the phase angle. Therefore, we can represent the
instantaneous state of a sine wave with a vector in the complex plane using
amplitude (magnitude) and phase coordinates in a polar coordinate system.
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We consider now the polar representation of the sine wave in Figure 2.6:

Figure 2.6: Polar representation

It is shown that the distance from the origin to the black point represents
the amplitude (magnitude) of the sine wave and the angle from the horizon-
tal axis to the line represents the phase. Thus, the distance from the origin
to the point remains the same as long as the amplitude of the sine wave is
not changing (modulating). The phase of the point changes according to the
current state of the sine wave. If the amplitude does not change during one
revolution, the dot maps out a circle around the origin with radius equal to
the amplitude along which the point travels at a rate of one cycle per second.
Because phase is a relative measurement, imagine that the phase reference
used is a sine wave of frequency equal to the sine wave represented by the
amplitude and phase points. If the reference sine wave frequency and the
plotted sine wave frequency are the same, the rate of change of the two sig-
nals’ phase is the same, and the rotation of the sine wave around the origin
becomes stationary.

In this case, a single amplitude/phase point can represent a sine wave of
frequency equal to the reference frequency. Any phase rotation around the
origin indicates a frequency difference between the reference sine wave and
the sine wave being plotted.
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In fact, I/Q data is merely a translation of amplitude and phase data
from a polar coordinate system to a Cartesian (X,Y) coordinate system.
Using trigonometry, it is possible to convert the polar coordinate sine wave
information into Cartesian I/Q sine wave data 2.16 and 2.17.

I(t) = M(t) cos(φ(t)) (2.16)

Q(t) = M(t) sin(φ(t)) (2.17)

IQ data in Communication System

To better understand why IQ data are used in communication systems, it is
necessary understand modulation basis. Signal modulation can be divided
into two broad categories: analog modulation and digital modulation. Ana-
log or digital refers the representation (digital or analog) of the source data
to be modulated. Both analog modulation and digital modulation involve
changing the carrier wave amplitude, frequency or phase (or combination of
amplitude and phase simultaneously) according to the message data. Am-
plitude modulation (AM), frequency modulation (FM) or phase modulation
(PM) are all examples of analog modulation. With amplitude modulation,
the carrier sine wave amplitude is modulated according to the message signal.
The same idea holds true for frequency and phase modulation. For AM, the
message signal is the blue sine wave that forms the "envelope" of the higher
frequency carrier sine wave. For FM, the message data is the dashed square
wave.

As the following figure 2.7 illustrates, this would be the resulting carrier
signal changes between two distinct frequency states [12].
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Figure 2.7: Time domain representation of AM, FM, and PM Signals [13]

Each frequency state represents the high and low state of the message
signal. In the case of the message signal being a sine wave, there would be a
more gradual change in frequency, which would be more difficult to see. For
PM, notice the distinct phase change at the edges of the dashed square wave
message signal.

As mentioned earlier, if only the carrier sine wave amplitude changes with
respect to time (proportional to the message signal), as is the case with AM
modulation, the I/Q plane graph changes only with respect to the distance
from the origin to the I/Q points.

The Figure 2.8 shows that the I/Q data points vary in amplitude only
with the phase fixed at 45 degrees. It is not possible to tell much about the
message signal, only that it is amplitude modulated. However, the I/Q data
points vary in magnitude with respect to time, so, essentially, it is possible
see a representation of the message signal.
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Figure 2.8: I/Q Data in the complex plane

Why IQ data?

Using a specific tool like LabVIEW’s 3D graph control, the third axis of time
to illustrate the message signal can be seen [13]. In result the I/Q data rep-
resents the message signal. Because the I/Q data waveforms are Cartesian
translations of the polar amplitude and phase waveforms, it may have trouble
determining the nature of the message signal. Because amplitude and phase
data seem more intuitive, it is better use polar amplitude and phase data
instead of Cartesian I and Q data. However, practical hardware design con-
cerns make I and Q data the better choice. According to the trigonometric
identity [13]:

cos(α + β) = cos(α) cos(β)− sin(α) sin(β) (2.18)

A cos(2πfct+ φ) = A cos(2πfct) cos(φ)− A sin(2πfct) sin(φ) (2.19)

= I cos(2πfct)−Q sin(2πfct) (2.20)

where I = A cos(φ) and Q = A sin(φ) are respectively the amplitude of the
in-phase carrier and amplitude of the quadrature-phase carrier .
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Taking 2.20 and the fact that difference between a sine wave and a cosine
wave of the same frequency is 90◦ phase offset between them into considera-
tion, the amplitude, frequency and phase of a modulating carrier sine wave
can be controlled by simply manipulating the amplitudes of separate I and
Q input signals. With this method, it is not necessary to directly vary the
phase of an RF carrier sine wave, but it is possible to achieve the same effect
by manipulating the amplitudes of I an Q components. Of course, the sec-
ond half of the equation is a sine wave and the first half is a cosine wave,so
the hardware design must ensure a 90-degree phase shift between the carrier
signals used for the I and Q mixers, but this addition is a simpler design
issue than the aforementioned direct phase manipulation.

2.4 Cognitive Radio

We must keep in mind that the radio environment where a typical wireless
sensor network operates in is becoming more and more complex. This is due
to new access to radio technologies and the ongoing densification of network
infrastructure in order to meet exponentially increasing capacity demands.
Spectrum sharing and coexistence issues both in co-channel and adjacent
channel deployments are thus becoming more and more important for ra-
dio resource management, in order to avoid excessing interference between
wireless networks.

Cognitive wireless networking principles have become an increasingly in-
vestigated approach for solving such complex interference management prob-
lems in an automated fashion, in particularly without introducing explicit
signaling protocols for each combination of interacting wireless technologies.
However, using such cognitive approaches requires accurate estimation of
the state of the radio environment, in particular forming an understanding
of which kinds of wireless technologies are deployed and are causing interfer-
ence with the managed network. To improve the quality of wireless commu-
nication in IWSNs we introduce signal analysis methods and a classification
algorithm to identify radio channel disturbances typical for industrial envi-
ronments in the physical layer. Signals analysis methods based on IQ data
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and statistical analysis of the magnitude received signal properties help to
recognize the temporal disturbances affecting the signal propagation in a
radio channel.

2.5 Machine Learning

Machine learning techniques provide powerful tools for signal analysis and
classification [14]-[15].

There are many different types of machine learning algorithms, and they
are typically grouped by either learning style (i.e. supervised learning, un-
supervised learning, semi-supervised learning) or by similarity in form or
function (i.e. classification, regression, decision tree, clustering, deep learn-
ing). After a couple of AI winters and periods of false hope over the past
four decades, rapid advances in data storage and computer processing power
have dramatically changed the game in recent years. Machine learning was
born from pattern recognition and the assumption that computers can learn
without being programmed to perform specific tasks.

Machine learning is the science of getting computers to act without being
explicitly programmed, but instead letting them learn a few tricks on their
own. [17]

The fundamental goal of machine learning algorithms is to generalize be-
yond the training samples i.e. successfully interpret data that it has never
‘seen’ before. From a mathematical point of view, machine learning covers
problems where we want to learn the "best" mapping f between the input
X and output Y by observing a subset Xtrain ⊂ X. The meaning of "best"
depends on the problem to be solved and if the desired output Y is known
or not.
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The following image shows a general view of machine learning algorithms,
in particular based on classification:

Figure 2.9: General view of machine learning algorithms, with specific
interest towards the supervised learning approaches

2.5.1 Unsupervised Learning

Unsupervised machine learning is more closely aligned with what some call
true artificial intelligence — the idea that a computer can learn to identify
complex processes and patterns without a human to provide guidance along
the way. Although unsupervised learning is prohibitively complex for some
simpler enterprise use cases, it opens the doors to solving problems that
humans normally are not able to tackle. It is used in cases where the input
X is known and the output Y is unknown. The aim of unsupervised learning
is to obtain more information on the input and to learn more about it. For
this reason it is difficult to define a correct answer.

2.5.2 Supervised Learning

Supervised learning is the more commonly used learning algorithms. The
term supervised learning derives from the requirement that the algorithm’s
input (X) and possible outputs (Y ) are already known. For example, a clas-
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sification algorithm will learn to identify animals after being trained on a
dataset of images that are properly labeled with the species of the animal
and some identifying characteristics. In that case, the purpose is to minimize
the error between the predicted target ∼y(i) = f(x(i)) {x(i) ∈ X} and the re-
al/desired output y(i) ∈ Y . So, in Supervised learning all the examples must
be labelled, each case by hand, therefore it may not be a feasible approach
for every problem. However, the advantage of labeling the data by hand is
that we can decide on the desired outcome of system. It is an convenient
approach when historical data is very likely to predict future events.

Regression

The goal of the regression problem is to find an approximating function f

from input variables X to a continuous real-valued output variable Y . In
these problems, the quantity like amount, price, size is defined such as pre-
dicted, therefore the model must be evaluated using an error, like the mean
squared error or other metrics. Linear regression is the simplest case of re-
gression with the goal to find a linear function that maps inputs and outputs.
Focusing on the single-variate case linear regression could be qualified in the
following formal way:

wx+ b = y (2.21)

where w and b are respectively weight and bias and they are the parameter
to learn. However, multivariate regression is a more common approach and
the model can be derived from the previous one,

K∑
k=0

wkxk + bk = wTx + b = y (2.22)

where w and x are vectors and b is the sum of all biases.

Classification

In machine learning and statistics, classification is a supervised learning ap-
proach in which the computer program learns from the data input given to
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it and then utilizes this learning in order to classify new observations. This
data set may either be simply bi-class (like identifying whether the person
is male or female or that the mail is spam or non-spam) or it may be multi-
class. Some examples of classification problems are speech recognition or
handwriting recognition. In general, classification models can predict the
class directly or continuous values that are then converted into probabilities.
In the last case, the class with the highest probability is the predicted label.
The labels are commonly represented by one-hot encoding, a sparse binary
vector with a 1 in the i-th position to indicate the actual class; an example
has usually only one class. Since the output is discrete, the classification ac-
curacy can be computed and used as an evaluation measure for the model.
Various classifiers can be found in literature, the most common ones are the
following [18]:

• Naive Bayes Classifier (Generative Learning Model): It is a
classification technique based on Bayes’ Theorem with an assumption
of independence among predictors. In simple terms, a naive Bayes
classifier assumes that the presence of a particular feature in a class is
unrelated to the presence of any other feature. Even if these features
depend on each other or upon the existence of the other features, all of
these properties independently contribute to the probability. The naive
Bayes model is easy to build and particularly useful for very large data
sets. Along with simplicity, naive Bayes is known to outperform even
highly sophisticated classification methods.

• SVM: A Support Vector Machine (SVM) is a discriminative classifier
formally defined by a separating hyperplane. In other words, given
labeled training data (supervised learning), the algorithm outputs an
optimal hyperplane which categorizes new examples. The operation
of the SVM algorithm is based on finding the hyperplane that gives
the largest minimum distance to the training examples. Secondly, this
distance receives the important name of margin within SVM’s theory.
Therefore, the optimal separating hyperplane maximizes the margin of
the training data.
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• Decision Trees: The concept of decision trees is that it builds classi-
fication or regression models in the form of a tree structure. It breaks
down a data set into smaller and smaller subsets while at the same time
an associated decision tree is incrementally developed. The final result
is a tree with decision nodes and leaf nodes. A decision node has two
or more branches and a leaf node represents a classification or decision.
The top-most decision node in a tree which corresponds to the best
predictor called root node. Decision trees can handle both categorical
and numerical data.

• Ensemble Methods: Ensemble methods are meta-algorithms that
combine several machine learning techniques into one predictive model
in order to decrease variance (bagging), bias (boosting), or improve
predictions (stacking).

• Neural Network: A Neural Network (NN) consists of units (neurons),
arranged in layers, which convert an input vector into some output.
Each unit takes an input, applies a (often nonlinear) function to it and
then passes the output on to the next layer. Generally. the networks are
defined to be feed-forward: which means that a unit feeds its output to
all the units on the next layer, but there is no feedback to the previous
layer. Weightings are applied to the signals passing from one unit to
another and it is these weightings which are tuned in the training phase
to adapt a neural network to the particular problem at hand.
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Chapter 3

Related Work

Our focus is on system reliability with specific interest towards classifica-
tion of channel disturbances. Different models have been used for interfer-
ence/disturbance classification in wireless communication literature. Work
such as [14]-[15]-[16] use different techniques to classify disturbance like Sup-
port Vector Machine or Random Forrest or Decision Tree classifier that have
been already successfully employed for improve wireless communication. All
off these, explain how it could possibly include machine learning and wireless
communication in different level of art. For example in [15], by combining
signal bandwidth, envelope information and their slender extraction, with the
intelligently tailored supervised-learning the Authors enable on-board burst-
based interference identification, predominantly in real-time. In [14] the focus
is instead on the impact of interference from modulated signals and the in-
fluence of realistic wireless channel conditions on classification performance.
The paper [3] introduces signal analysis and a classification algorithm to iden-
tify radio channel disturbance, based on probability density function (PDF)
analysis and spectrum analysis. In particular the Authors have arranged
an n-dimensional feature vector exploiting shape parameter coming out of
Histogram analysis, obtained from I/Q data [13], and RF objects from the
spectrum of received signal. Regarding the classification algorithm, they
use a practical and simple approach - Nearest Neighbour Rule: samples that
are close in feature space are likely to belong the same class. Anyway, the
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considered environment it is not for typical industrial environments. In [6]
the detection of channel state is based on the detection of the shape of the
amplitude histogram of received signal, which reveals the nature of inter-
ferences in the radio channel. The Authors classify nominal and disturbed
channel models as well as disturbance schemes and compare the measured
signal against these. The reference channel model classes are acquired by
channel simulations.The real environments tests have also been run promis-
ing results for disturbances identifications were achieved. The idea is that
the most significant has been noticed and that the most significant source of
radio signal distortion can be characterized by the shape of the amplitude
histograms of the received signal. For example, multipath propagation phe-
nomenon result in the broadening of the amplitude of the histogram’s shape,
due to the radio waves destructive and constructive interference in which two
waves superimpose to form a resultant wave of greater or lower amplitude
[6]. In order to compare the histograms of the received signal and predefined
channel models’ histograms, we use the chi-squared measure which is typical
for expressing similarities/difference of histograms, helping to identify the
disturbance.
Our work consists of a mixed approach between [3] and [6]. It means that
when considering a typical industrial environments were there will be both
large-scale and temporal fading, we introduce a novel histogram approach (of
I/Q data) based on PDF analysis and amplitude analysis. Thus, obtaining
all features necessary for our classifier. Moreover, we introduce an alterna-
tive approach to classify the channel disturbances based on idea [5], that is
analyzing the Bit Error Pattern for future improvements of reliability and
coexistence of radio systems in these harsh conditions.
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Chapter 4

Radio Link Characterization

4.1 Intuition

The idea of our work is based on the concept of introducing some intelligence
to each node of the network so that the reliability of the system can be
improved. To this end, the intuition could be defined from the following
steps:

1. Monitoring: Consists of channel sensing, which means that it has
the ability to sense, measure, learn and have an awareness of channel
features, the working environment and other requirements. For this
purpose, it is useful analyze I/Q data.

2. Problem Detection: During the monitoring phase it is possible to
understand that there are problems in the transmission. Thus, it will
be necessary to define some metrics that allows us to understand when
problems occurs.

3. Problem Identification: When the system detects a problem, the
next step is to identify the kind of problem. About that, in our work we
define a classification algorithms to understand the signal disturbance.

4. Improvement: Following the identification of the problem, it has been
identified that one inelligent step is to apply some countermeasures to
improve the reliability and the quality of service and security.
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4.2 Classification of the Radio-Link State

In our implementation we focus only in the problem identification because,
as mentioned before, our goal is to achieve and classify the properties about
the channel propagation.

Figure 4.1: General pattern for classification procedure
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The recognition and identification of the channel properties is based on
the signal magnitude analysis with a classifier. The general pattern for classi-
fication procedure includes the following phases: pre-processing of measured
data, feature extraction from the measured data and classification.

4.2.1 Data Analysis

The data analysis is based on I/Q data of the received packet. In order to
take advantage and information from this data representation we need to
understand which could be the possible features and properties that reflect
an improvement in the classification accuracy.

Amplitude Histogram

A histogram provides a graphical record of the shape of the data distribution.
The x-axis shows all the possible values, while y-axis presents the percentage
of input samples that each had as a corresponding value. The continuous-
valued counterpart of the histogram is the PDF. The histogram is simply an
approximation of a PDF; the count of how many samples each possible value
has in the range. The strength of the received signal changes with time,
due to fluctuations in the gain of the channel caused by multipath fading or
electromagnetic interference [6]. The amplitude values of the received signal
form a probability density function of a specific form, or in discrete case
a specific shape of histogram. By analyzing the features of the histogram
shapes of the received signal and comparing them with characteristics being
predefined for different radio channels with different characteristics, we can
classify histograms into two main categories histograms related to signal;
multipath fading (Ricean and Rayleigh distributed) and histograms related
to radio interference.
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To express the shape of the histogram in a precise way, it useful define
four feature values:

1. Mean: It is the mean value of the data.

x̄ =
∑
xi
N

(4.1)

where xi is the value of data point i and N is the number of data points

2. Spread: It is the average squared deviation of the variable’s values
from the mean

spread =
∑ (xi −

−
x)2

N
(4.2)

where xi is the value of data point i and N is the number of data points
and −x is the mean value.

3. Skewness: The skewness reflects the shape or asymmetry of the dis-
tribution: if the value is negative, the data spreads out more to the left
of the mean, if it is positive, the data spreads out more to the right,
and if it is zero, it is symmetric about the mean

skewness =
∑ (xi −

−
x)3

N
(4.3)

4. Peakedness: A single-peaked histogram with a lot of distributional
weight in the center and in the tails, but not in the shoulders is said to
have “fat tails”; or it is “highly peaked.”

peakedness =
∑ (xi −

−
x)4

N
(4.4)
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PDF Analysis of the Received Signal

The PDF analysis is based on the idea that changes in statistical properties of
the received signal are strongly correlated with the transitions of the channel
states [3].

Thus, matching the PDF of the received signals to the theoretical distri-
butions: Ricean 2.5, Rayleigh 2.4, and deriving the PDF´s shape parameters,
allows us to numerically characterize the effects of environments disturbances
to the channel state.The PDF shape parameters are estimated from sample
data by fitting a probabilistic distribution object to the data. To estimate
the distribution parameters from the sample data the Maximum likelihood
is used. As previously stated, there are two probability models in literature
that are commonly used for the propagation channel:

• Rayleigh PDF:
fρ(ρ|a, σ) = ρ

σ2 exp(− ρ2

2σ2 ) (4.5)

• Rician PDF:

fρ(ρ|a, σ) = ρ

σ2 exp(−ρ
2 + a2

2σ2 )Iu(
aρ

σ2 ) (4.6)

4.2.2 Classification Model

In our work, the received digitized I(n) and Q(n) samples are pre-processed
and analyzed. For each received packet, the PDF of the signal magnitude is
estimated as a signal magnitude histogram and match to the theoretical PDF
4.2. In parallel, the amplitude of the histogram is computed and all features
are created. How the block diagram 4.1 shows. In particular. from a single
received packet: mean, spread, skewness, peakedness can be computed based
on the amplitude of the packet. All of these statistical properties, called also
moments in literature, represent the so-called empirical features because
they are obtained from the empirical data, the histogram. On the other hand,
the theoretical PDF of the packet is generated, using the empirical/histogram
distribution and, from that one, the theoretical distribution is computed by
the Rician model.
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So, considering 4.6 equation we have that:

• ρ =
√
I2(t) +Q2(t) denotes the magnitude value measured at the re-

ceiver.

• σ standard deviation of the real part of the time-harmonic multipath
component.

• a corresponds to the signal amplitude due to the LOS path in the
absence of all other multipath components.

Although, previously, we distinguished between Rician model and Rayleigh
model, the Rician model in our case ensures a better fit to the data[12]. From
the Rician PDF, the fitting parameter: beta, loc, shape 4.6 are estimated.
These are used like features to describe a single packet and in addition from
them the goodness of the distribution is computed using the Kologrov-
Smirnov test.

Figure 4.2: Empirical and Theoretical distribution

In statistics, the Kolmogorov–Smirnov test (K–S) is a nonparametric test
of the equality of continuous, one-dimensional probability distributions that
can be used to compare a sample with a reference probability distribution
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(one-sample K–S test), or to compare two samples (two-sample K–S test).
The Kolmogorov–Smirnov statistic quantifies a distance between the em-
pirical distribution function of the sample and the cumulative distribution
function of the reference distribution, or between the empirical distribution
functions of two samples [19]. Hence, the value of Kolmogorov-Smirnov test
it is also used as a feature. All these properties obtained from the curve
fitting could be called like distribution features, because it gives us more
information about the general data distribution of the packet.

In conclusion, the feature vector is composed by:

• Empirical Features:

Mean Spread Skewness Peakdness

Table 4.1: Empirical Features

• Distribution Features:

Beta Location Scale KS-test

Table 4.2: Distribution Features

When all data are collected with the features that allow us to identify
the different conditions in the channel and a dataset has been created, the
next step is to use it to classify the packet that are affected by disturbances
in supervisioned way. The focus of our work is to classify:

• LOS: Line of sight (LoS) is a type of propagation occurring when
the transmitter and receiver are in sight, meaning that there is no
obstruction of size d such that d » λ, with λ = 1

f
the wavelenght of

considered signals.

• NLOS: Non-line of sight (NLOS) refers to the path of propagation of
a radio frequency (RF) that is obscured (partially or completely) by
obstacles, thus making it difficult for the radio signal to pass through.
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Common obstacles between radio transmitters and radio receivers are
tall buildings, trees, physical landscape and high-voltage power conduc-
tors. While some obstacles absorb and others reflect the radio signal;
they all limit the transmission ability of signals.

It could seem as a perfect case where NN would work very well, but gen-
erally, neural networks show high variance, high complexity while their set
up can be cumbersome. A successful approach to reducing the variance of
neural network models is to train multiple models instead of a single one,
and to combine the predictions from these models.Furthermore the applica-
bility of NN to low-cost WSN hardware is questionable since of the limited
computatoinal resources. This is true, specially, if are thinking of using this
classification in a online way, where the model has to be loaded every time
for each packet. So, it is better to use Ensemble Methods that, according
to Ockham’s razor Simplicity leads to greater accuracy, indeed these assume
that it uses a combination of models to increase the accuracy, and in addition,
they are more soft and easily manageable.
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Chapter 5

Experimental Set-up

In this chapter, we talk about the software and the technologies used, then
we describe the data collection and preparation.

5.1 LabVIEW

Laboratory Virtual Instrument Engineering Workbench (LabVIEW) is a
system-design platform and development environment for visual program-
ming language from National Instruments [20].
LabVIEW is commonly used for data acquisition, instrument control and
industrial automation on a variety operating systems including Windows,
various versions of Unix, Linux and macOS. LabVIEW can create programs
that run on those platforms and a variety of embedded platforms, includ-
ing Field Programmable Gate Arrays (FPGAs), Digital Signal Processors
(DSPs), and microprocessors.

The LabVIEW program development environment is different from stan-
dard C or Java development systems in one important aspect: While other
programming systems use text-based languages to create lines of code, Lab-
VIEW uses a graphical programming language, often called G, to create
programs in a pictorial form called a block diagram. Graphical program-
ming allows you to concentrate on the flow of data within your application,
because its simple syntax doesn’t obscure what the program is doing.
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A LabVIEW program consists of one or more virtual instruments (VIs). Vir-
tual instruments are called as such because of their appearance and operation
often imitate actual physical instruments. A VI has three main parts:

• Front panel: It is the interactive user interface of a VI, so named
because it simulates the front panel of a physical instrument. The
front panel can contain knobs, push buttons, graphs, and many other
controls (which are user inputs) and indicators (which are program
outputs).

• Block diagram: It is the VI’s source code, constructed in LabVIEW’s
graphical programming language, G. The block diagram is the actual
executable program. The components of a block diagram are lower-
level VIs, built-in functions, constants, and program execution control
structures. You draw wires to connect the appropriate objects together
to define the flow of data between them. Front panel objects have
corresponding terminals on the block diagram so data can pass from
the user to the program and back to the user.

• Icon: In order to use a VI as a subroutine in the block diagram of
another VI, it must have an icon. A VI that is used within another VI
is called a subVI and is analogous to a subroutine. The icon is a VI’s
pictorial representation and is used as an object in the block diagram
of another VI.

5.1.1 USRP

Universal Software Radio Peripheral (USRP) is a range of Software-Defined
Radios (SDR) designed and sold by Ettus Research and its parent company,
National Instruments used for RF applications [20]. USRP transceivers can
transmit and receive RF signals in several bands, and you can use them for
applications in communications education and research. It supports Linux,
MacOS, and Windows platforms. Several frameworks including GNU Radio,
LabVIEW, MATLAB and Simulink use UHD. The functionality provided by
UHD can also be accessed directly with the UHD API, which provides native
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support for C++. Any other language that can import C++ functions can
also using UHD. This is accomplished in Python through SWIG, for example.
Paired with the LabVIEW development environment, USRPs provide an
affordable solution that lets you validate wireless algorithms with over-the-
air signals.

Figure 5.1: USRP device

5.2 Development Libraries

The development environment chosen is Python, integrated on LabVIEW,
for its completeness as to libraries and support for data analysis and the use
of tools such as the machine learning. Below are some of the libraries used
for development of our solution.

5.2.1 Scikit-Learn

This library, also called sk-learn, provides development tools for data mining
and data analysis; makinh available almost all the tools for machine learning,
such as classification, regression, clustering and others [21]. This library is
open source. Regarding the classification it makes available the implementa-
tions of simple use of the most famous algorithms such as Neural Networks,
Random Forrest and Gradient Boosting. This library is built and based on
3 other Python libraries: NumPy, SciPy e matplotlib.
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5.2.2 Keras

Keras [22] is a library for neural networks and machine learning methods
written in Python. It can operate above TensorFlow, Microsoft Cognitive
Toolkit, Theano or MXNet. This library in fact does not provide a high
high-level interface to use in a way as simple as the aforementioned libraries.
It focuses precisely on being user-friendly, modular and extensible. Since
2017 Google has decided to support Keras in the main library of TensorFlow.
Keras contains numerous implementations blocks commonly used in neural
networks and in common machine learning algorithms.

5.3 Software Design

The software design was based on the aforementioned libraries and programs.
It is capable of collecting data using USRP devices integrated in LabVIEW.
Moreover using LabView with Python scripts the software can classify real
time the packet thus helping us to improve the reliability and the quality of
the system.

Figure 5.2: Front panel LabView
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5.3.1 Data Collection and Preparation

The data collection operation is performed by placing the transmitter and
receiver at various distances in different industrial and lab environments-

We collected the I/Q data using LabVIEW for each received packet in a
CSV file. The CSV file with the I/Q data is processed using Python functions
to create datasets with all features mentioned in Chapter 4. After creating
the dataset, exploiting Python’s libraries, the classifier has been generated
and the best model is stored for the following step.

Implemented Classification Methods

As mentioned before, the choice of the classifier has been done considering
the simplicity of the Ensemble methods.

The goal of ensemble methods is to combine the predictions of several
base estimators built with a given learning algorithm, in order to improve
generalizability/robustness over a single estimator. Two families of ensemble
methods are usually distinguished:

• Bagging: Building multiple models (typically of the same type) from
different subsamples of the training dataset.

• Boosting: Building multiple models (typically of the same type) each
of which learns to fix the prediction errors of a prior model in the chain.

Random Forest

Random Forests [23] are trained via the bagging method. It consists of ran-
domly sampling subsets of the training data, fitting a model to these smaller
data sets, and aggregating the predictions. This method allows several in-
stances to be used repeatedly for the training stage given that we are sampling
with replacement. Tree bagging consists of sampling subsets of the training
set, fitting a Decision Tree to each, and aggregating their result. The Ran-
dom Forest method introduces more randomness and diversity by applying
the bagging method to the feature space. That is, instead of searching greed-
ily for the best predictors to create branches, it randomly samples elements
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of the predictor space, thus adding more diversity and reducing the variance
of the trees at the cost of equal or higher bias. This process is also known
as “feature bagging” and it is this powerful method what leads to a more
robust model.

Gradient Boosting

Gradient Boosting methods is included in the boosting family. Boosting [24]
is a method of converting weak learners into strong learners. In boosting,
each new tree is a fit on a modified version of the original data set. Gradient
Boosting trains many models in a gradual, additive and sequential manner.
Performs similarly by using gradients in the loss function. The loss function
is a measure indicating how good model’s coefficients are at fitting the un-
derlying data. One of the biggest motivations of using gradient boosting is
that it allows one to optimize a user specified cost function, instead of a loss
function that usually offers less control and does not essentially correspond
with real world applications.
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5.3.2 Real-time Classification

When the classifier was ready with good result in terms of prediction’s accu-
racy, the LabVIEW code has been executed in real-time way to classify the
radio channel state (LOS or NLOS) for each packet calling Python script.
The interaction between Python and LabVIEW is fairly problematic because
not all type of LabVIEW data are supported in Python.

Figure 5.3: LabView front panel Classification LOS packet real-time

The idea is: during the communication of the USRP devices, using the Lab-
View code integrate with Python script, we analyze the transmission. So,
exploiting the I/Q data for a single packet and recall our trained classifier,
it is possible classify in an online way the channel properties. So, we can
define and apply some metrics to improve the system. The countermeasures
could be different: for example, let us to consider in the receiver side and we
have a tool that allow us to calculate how many packets of the last k packets
have been lost. Using this information, after k lost packets, to improve the
system applying some changing:

• LOS packet: if the packet is labelled like LOS the idea could be the
increasing of the transmitting power or change the frequency channel

• NLOS packet: otherwise if the packet is NLOS the countermeasures
could be changing the channel or changing the structure of the network,
that means changing the transmitter (o receiver) device.
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Chapter 6

Experiments

In this chapter we report the experimental results that we obtained testing
our models on datasets collected from different environments. All the results
were obtained by employing 70% of the values in the data set as training set
and the 30% as test set. In the effort to maximize the validity of obtained
results we have tested the proposed method with data collected in environ-
ments with different characteristics: an industrial plant, a semi-industrial
workshop and a lab environment.

6.1 Industrial Environment Dataset - Imerys
Mineral AB

At the beginning, the first classifier was created based on a real industrial
environment where I/Q data was stored in a large binary file with a spe-
cific format. This data was obtained in the Imerys Mineral AB facotry in
Sundsvall. In particular, the I/Q data in consideration was obtained from
channel 26 and placing the transmitter and receiver devices at different dis-
tances: 4, 5, 6, 12 and 15 meters. From the binary files, the I/Q data has
been processed, using a Python script that allows us to extract the features
and create a data set, as mentioned in the previous chapters. The first data
set contains just 1637 packets labeled as LOS and 1474 as NLOS so 3111
examples. This data set is divided in two different sets, training set and
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test set, that contain respectively 2177 and 934 examples.
The following table shown the result of the classifier accuracy.

Random Forest Classifier Gradient Boosting Classifier
Training Set Accuracy 99 % 87.6 %
Test Set Accuracy 81 % 79.1 %

Table 6.1: Training and Test Accuracy from Industrial Dataset

From the table it is very clear that both Random Forest and Gradient
Boosting classifiers were not able to achieve good classification accuracy.y.
In particular, from the difference of the accuracy values it is clear that the
model suffers overfitting problem.

It is also confirmed by analyzing the learning curves [25] shown in the
following picture.

Figure 6.1: Goodness of the model for Industrial Environment

In practice, the learning curves help us understand how our model can
be generalized varying the training set size and comparing the train and
test error curves. The large gap and the low training error also indicates an
overfitting problem.
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Overfitting happens when the model performs well on the training set,
but poorerly on the test set. One more important observation we can make
here is that by adding new training instances it is very likely to lead to better
models. But, unfortunately, it is not possible to add new data because, this
data were collected one year ago.

6.2 Lab Environment Dataset

Due to insufficient data, the next step was to collect a new datasets in a
different environment.

Figure 6.2: Lab Environment

Initially, using LabVIEW, we collected the data and then exploiting
Python as before we extracted the necessary features to build different new
data set by positioning the transmitter and receiver USRPs at variable dis-
tance, i.e., 2, 3, 4, 5, 6 meters.
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From this datasets we obtain very good classifier using the previous pa-
rameter and model and considering a training and test set composed by 6696
and 2870 packets.

Random Forest Classifier Gradient Boosting Classifier
Training Set Accuracy 100 % 100 %
Test Set Accuracy 99.9 % 99.9 %

Table 6.2: Training and Test Accuracy from Lab Dataset

As the table 6.2 shows, the accuracy of the classifiers is almost 100%, and
this is also shown by the learning curve in that case.

Figure 6.3: Goodness of the model for lab Environment

We can see that the training and test error converge almost in a same
line. This effect might be due to the particularly simple environment, while
we expect fairly different results from harsher radio-environments.

58



6.3 Mixed Dataset

An intelligent test to understand better the data collected in IMERYS MIN-
ERAL AB was to mix this data set with the Lab Data set. In that case the
number of packet examples is very high: 8873 for the training set and 3804
for the test set. The following table shows the scarcity and the unreliability
of the data in IMERYS MINERAL AB data set.

Random Forest Classifier Gradient Boosting Classifier
Training Set Accuracy 99.6% 95.2 %
Test Set Accuracy 95 % 94 %

Table 6.3: Training and Test Accuracy from Mixed Dataset

The values of the accuracy are very good in this case and this means that
we can add more data using these training models and these features. As it
is also shown in the learning curve figure 6.4.

Figure 6.4: Goodness of the model for Mixed Environment

This is the common trend for the learning curve when the model can
generalize and classify in a good way. Also in this case we have a gap between
the two error curves but this is due from the irreducible error.
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6.4 Semi-industrial Environment - Mechani-
cal Workshop

In order to understand if the model could be used in a real industrial en-
vironment, we have moved all the system set up in in a work shop inside
Mid Sweden University. The work shop, is used for a Design Course where
student work using expensive machinery that processes materials, mainly
wood, creating high value projects and tools. This environment represent
the typical industrial field where people are moving around and working in
a machinery with reflective surface as shown in the figure.

Figure 6.5: Workshop Environment

As in the previous experiment, the procedure is the same as in the Lab
Environment, collect the data using LabView, exploit Python libraries to
extract features and create the data set, upon which the machine learning
model based on the radio channel properties are classified.
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The data set is created considering different distance: 6, 8, 10 and 12
meters between the transceiver and receiver USRP. It is composed by 6400
examples, where 3200 are labeled as LOS and 3200 as NLOS. As in the
previous environments the data set is separated in 70% training and 30%test
set. So, respectively, we have 4480 examples for the former and 1920 the
latter.
The following table shows the classifier accuracy in this environment.

Random Forest Classifier Gradient Boosting Classifier
Training Set Accuracy 99.7% 98.1%
Test Set Accuracy 97.4% 97.3%

Table 6.4: Training and Test Accuracy from Work shop Dataset

These results show that the classification accuracy is quite good and the
model is able to generalize and classify in excellent way.
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6.5 Discussion

The results obtained in these different environment and using this methodol-
ogy based on I/Q data are very interesting and reliable to classify the radio
link channel properties.

6.5.1 Features Separation

In the following tables we analyze the behaviour of the classifiers in Lab
and Work shop environment separating the two class of features: Empirical
Features 4.1 and Distribution features 4.2.

Random Forest Gradient Boost
Train Test Train Test

All the features 0.999 0.991 0.997 0.991
Empirical features 0.999 0.991 0.997 0.991

Distribution features 0.997 0.962 0.951 0.953

Table 6.5: Accuracy variation and features separation in Lab Environment

Random Forrest Gradient Boost
Train Test Train Test

All the features 0.998 0.974 0.981 0.973
Empirical features 0.979 0.969 0.977 0.971

Distribution features 0.996 0.946 0.949 0.946

Table 6.6: Accuracy variation and features separation in the Work-shop
Environment

The table 6.5 and the table 6.6 show interesting aspect: the main con-
tribute is obtained from the Empirical Features, but, in the other hands,
despite the distributions they do not have a notable informative contribu-
tion, they confirm that the use of the theoretical Rician distribuiton fitting
is a proper model choice for the specific problem..
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6.5.2 Bit Error Pattern Approach

The common lack of I/Q data availability, as well as the low computational
capabilities of common low-cost WSN nodes can limit the applicability of
the previous approach. Therefore, we explore in this Paragraph a more
lightweight classification method. The basic idea of this approach is then
to analyze the bit error pattern of the received packets. To this end, it
is necessary compute the distribution of the errors, it means a distribution
based on the distance between the errors in the bit output stream of the
packet and take advantage from that one to obtain information about the
radio link state (LOS or NLOS) as the block diagram shows 6.6. The bit
error is computed as:

errori = bittx
⊕

bitrx (6.1)

That is, the error is calculated applying the XOR operator between the trans-
mitted bit and received bit for all bits in the data packet. For simplicity, we
consider the errors in the payload of the packet only. Since, the operation it is
very simple, it will reduce considerably the computational effort. Moreover,
it allow us to improve the velocity of the classification.

The histogram of the empirical bit-error distribution is computed for each
packet, and an aggregation of histogram is made, considering 1500 packets.
So, to compute the bit error pattern useful to understand the properties in
the channel the Empirical features of the aggregated histogram are computed.

Based on this approach, a data set that containned just 480 examples was
created in the Work shop Environment, and using the same procedure as
before a classifier is trained. But, since, the data is sparse, just Random
Forest classifier is used.

However, even dividing the data set in training and test set with the
correct proportion, the model suffers of overfitting.
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Random Forest Classifier
Training Set Accuracy 0.964
Test Set Accuracy 0.638

Table 6.7: Training and Test Accuracy from workshop using Bit Error
Pattern

To solve the problem of overfitting in our model we need to increase
flexibility of our model. But too much of his flexibility can also spoil our
model, so flexibility shold such that it is optimal value.
To increase flexibility we can tune some parameters of the Random Forest
algorithm, like:

• Number of estimators

• Max depth of the trees

• Max node on the leaf

Thus, applying some practical tuning in these parameters:

Random Forest Classifier
Training Set Accuracy 0.607
Test Set Accuracy 0.618

Table 6.8: Training and Test Accuracy from workshop using Bit Error
Pattern to overcome overfitting

In the 6.8 table, we show that even tuning the aforementioned parameters
of the classifier, the accuracy of the method remains in the range of 60%.
This, in turn means that, while the approach is appealing since its simplicity,
further efforts are needed in the design of this particular variant of the link-
state classification system.
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Figure 6.6: Block Diagram Bit Error Pattern
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Chapter 7

Conclusion

In this thesis we show how machine learning models can be successfully em-
ployed to identify the channel properties in a radio link system.
In particular, we proposed two different approaches. The first method, based
on I/Q data, show the potential and the gain of this data. The related
classification accuracy obtained with I/Q data source are remarkable, while
the method shows a non negligible computational effort. While we proved
the implementability of the proposed solution in dedicated hardware (such
as software-define radios), the implementation in low-cost WSN nodes ap-
pears problematic, since of the limited computational resources an power
constraints, as well as the lack of I/Q data in many plattforms. With this re-
spect, we proposed a second method based on bit-error distribution, which is
more lightweight and potentially implementable in resource-contrained WSN
nodes, while we leave to future works the effort to experimentally validate
this strategy.

7.1 Future Work

Unfortunately, for the second method, it was not possible to collect more
data because of the thesis timeline. However, the future plan is to continue
the second approach based on Bit Error Pattern analysis and to collect more
dataset to overcome the overfitting problem. In addition, the concept of
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RF interferences will be introduced into the project and it will be shown
if our model is able to distinguish the disturbance in the channel (MFA or
Interferences) using both approaches.
In particular, considering [5] paper model as a classifier able to classify these
properties using the Bit Error Pattern approach.

.
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