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Abstract

The spatial and dynamical properties of the large-scale structures of the Universe provide one of
the most powerful probes to constrain the cosmological framework. In particular, the gravitational
lensing produced by galaxy clusters can be efficiently exploited to constrain the main cosmological
parameters. A crucial ingredient to use clusters as cosmological probes is the accurate calibration
of the relation between the cluster observable properties and their masses. The shear-cluster
correlation is independent of the nature and state of the mass distorting the background signal.
On scales far beyond the cluster virial radius, the lensing signal is dominated by the correlated
distribution of matter in haloes around clusters, described by the so-called 2-halo term. The matter
in correlated haloes provides sensible cosmological information, useful to test cosmological models.

In this thesis work, we present new cosmological constraints inferred from the analysis of weak
lensing shear data, extracted from the KiDS-DR3 photometric survey. The data used for shear
measurements are those in the r-band, being the ones with better seeing properties and with highest
source density. The galaxy catalogue provides shear measurements for about 15 million galaxies
over a total effective area of 360 deg2. The galaxy photometric redshifts, used to weigh the lensing
data, have been extracted from the 4 bands u, g, r, i. Reliable posterior probability distributions for
the photometric redshifts are used in our analysis. We perform a conservative background source
selection, applying both photometric redshift selections and colour selections. The galaxy cluster
sample analysed in this work has been extracted using the Adaptive Matched Identifier of Clustered
Objects (AMICO) algorithm (Bellagamba et al., 2018). This is a state-of-the-art algorithm for the
detection and characterisation of galaxy clusters in photometric surveys, where data are affected
by a noisy background. Indeed, this algorithm has been recently selected as the primary cluster
detection algorithm for the European Space Agency (ESA) Euclid mission. The cluster catalogue
has been constructed by selecting only the objects with signal-to-noise ratio (S/N) larger than 3.5,
in the redshift range 0.1 < z < 0.6. The final sample consists of 6972 galaxy clusters in total
(Maturi et al., 2018). For the statistical lensing analysis, we divide the catalogue in 3 redshift bins,
and in 14 bins of differential surface density profiles, stacking the clusters according to their signal
amplitude A, that we use as a reliable mass proxy. A is a measure of the cluster galaxy abundance
in units of the cluster model, which is built starting from the known data. The covariance matrix
associated with the extraction of the shear signal and its relative stacking are computed with a
bootstrap procedure with replacement: the source catalogue is re-sampled 10000 times.

A full Bayesian analysis is performed to model the shear profiles. The adopted likelihood
function considers both the small-scale 1-halo term, used primarily to constrain the cluster masses,
and the 2-halo term, that is used to constrain the matter density contrast ΩM . Specifically, we
model the cluster main halo and the associated baryonic component, that is the 1-halo term,
through a smoothly truncated Navarro-Frenk-White profile model (Baltz et al., 2009). We also
consider an additional component that parameterises the effect of haloes whose observed centre
has a non-negligible scatter with respect to the centre assumed by the stacking procedure. This
component is necessary not to introduce systematics that would lower the assessed cluster masses.
The miscentring contribution is relevant mainly at the smallest scales (∼ 0.5Mpc/h). To model
the shear profiles up to large scales, we include the 2-halo term built upon the Eisenstein and Hu
(1999) linear matter power spectrum and the Tinker et al. (2010) linear halo bias. The 2-halo
term starts to dominate the signal on scales larger than about 10Mpc/h. The statistical analysis
consists of two steps. Firstly, we collect the stacked shear signal produced by the 14 cluster bins
of the sample, and estimate cluster masses by modelling the small-scale 1-halo signal in the radial
range 0.1 < R < 3.16Mpc/h. Secondly, we re-extract the signal for the same cluster sample, but
on a much larger scale range, 0.1 < R < 35Mpc/h, obtaining cosmological information from the
2-halo term.

We find that the adopted modelling is successful to assess both the cluster masses and the
matter density parameter, when fitting shear profiles up to the largest scales probed. The derived
masses of the cluster samples are in good agreement with those estimated by Bellagamba et al.
(2019). Our work confirms the reliability of AMICO and of the KiDS-DR3 data. Moreover,
our results provide a strong observational evidence of the 2-halo signal in the stacked gravitational
lensing of galaxy clusters, and demonstrate the reliability of this probe for constraining cosmological
parameters. The main result of this thesis work is a new, robust constraint on ΩM , assuming a
flat ΛCDM cosmology. Specifically, we find ΩM = 0.285± 0.023, estimated from the full posterior



probability distribution. This value is consistent and competitive with that estimated by WMAP9,
ΩM,WMAP9 = 0.273 ± 0.049, but slightly in tension with Planck18 constraints, ΩM,Planck18 =
0.317± 0.008.



Sommario

Le proprietà spaziali e dinamiche delle strutture su grande scala dell’Universo forniscono uno
dei più potenti mezzi per testare i modelli cosmologici. In particolare, il segnale di lensing gra-
vitazionale prodotto dagli ammassi di galassie può essere efficientemente sfruttato per vincolare i
principali parametri cosmologici. Un ingrediente cruciale nell’utilizzo degli ammassi come sonde
cosmologiche è un’accurata calibrazione della relazione fra le proprietà osservabili degli ammassi e
le loro masse. La correlazione shear-ammasso è indipendente dalla natura e dallo stato della massa
che distorce il segnale di background. Su scale molto più grandi del raggio viriale degli ammassi, il
segnale di lensing è generato dalla distribuzione degli aloni di materia oscura ospitanti gli ammassi,
descritto dal cosiddetto termine di 2-halo, che fornisce importanti informazioni utili per testare i
modelli cosmologici.

In questo lavoro di tesi, presentiamo nuovi vincoli cosmologici provenienti da un’analisi di dati
di shear in regime di lensing debole, estratti dalla survey fotometrica KiDS-DR3. I dati usati per le
misure di shear provengono dalla banda ottica nel rosso (r), essendo quella con migliori proprietà di
seeing e con la più alta densità di sorgenti. Il catalogo di galassie contiene misure di shear per circa
15 milioni di galassie, in un’area effettiva totale di 360 deg2. I redshfits fotometrici delle galassie,
usati per pesare i dati di lensing, sono stati estratti dalle 4 bande u, g, r, i. Nella nostra analisi
abbiamo fatto uso di distribuzioni di probabilità a posteriori dei redshift fotometrici. Abbiamo
eseguito una selezione conservativa delle galassie di background, applicando sia una selezione in
redshift fotometrico che in colore. Il campione di ammassi di galassie analizzato in questo lavoro
è stato estratto da KiDS utilizzando l’algoritmo Adaptive Matched Identifier of Clustered Objects
(AMICO) (Bellagamba et al., 2018). Quest’algoritmo rappresenta lo stato dell’arte per la dete-
zione e caratterizzazione di ammassi di galassie in surveys fotometriche i cui dati sono affetti da
un background rumoroso. Infatti, è stato recentemente selezionato come principale algoritmo di
detezione di ammassi per la missione Euclid, dell’ European Space Agency (ESA). Il catalogo di
ammassi è stato costruito selezionando solo oggetti il cui rapporto di segnale rumore è superiore
a 3.5, e nel range di redshift 0.1 < z < 0.6. Il nostro catalogo finale è composto da un totale di
6972 ammassi di galassie (Maturi et al., 2018). Per quanto riguarda l’analisi statistica del lensing,
abbiamo diviso il catalogo in 3 intervalli di redshift e in 14 intervalli di profili di densità superficiale
differenziale, sovrapponendo gli ammassi in accordo alla loro ampiezza di segnale A, che rappre-
senta una attendibile proxy della massa. A è una misura dell’abbondanza di galassie nell’ammasso
in unità del modello di ammassi adottato. La matrice di covarianza, associata con l’estrazione del
segnale di shear e relativa sovrapposizione, viene calcolata tramite una procedura di bootstrap: il
catalogo di sorgenti è stato ri-campionato 10000 volte.

Per modellare i profili di shear è stata eseguita un’analisi Bayesiana. La funzione adottata per
la likelihood tiene conto sia del termine di 1-halo, dominante a piccole scale e usato principalmente
per stimare la massa degli ammassi, sia di quello di 2-halo, usato per vincolare il contrasto di
densità di materia cosmologico ΩM . Nello specifico, modelliamo il termine 1-halo del cluster, e la
componente barionica associata, tramite un profilo NFW troncato (Baltz et al., 2009). Abbiamo
anche considerato una componente aggiuntiva, che parametrizza l’effetto degli aloni i cui centri
osservati hanno uno scatter non trascurabile rispetto al centro assunto dalla procedura di sovrap-
posizione. Tale componente è necessaria per non introdurre sistematici che sottostimerebbero le
masse misurate dei cluster. Il contributo del decentramento diventa trascurabile per scale più
grandi di circa ∼ 0.5 Mpc/h. Per modellare i profili di shear fino alle grandi scale includiamo il
temine di 2-halo, costruito assumendo uno spettro di potenza lineare della materia di Eisenstein
and Hu (1999) e un bias lineare di Tinker et al. (2010). Il termine di 2-halo inizia a dominare il
segnale di shear su scale maggiori di circa ∼ 10 Mpc/h. L’analisi statistica è stata suddivisa in due
parti. Per prima cosa abbiamo misurato il segnale di shear, prodotto dai 14 profili sovrapposti del
campione, e abbiamo stimato le masse degli ammassi modellando il segnale prodotto dal 1-halo a
piccole scale (0.1 < R < 3.16 Mpc/h). Successivamente, abbiamo misurato nuovamente il segnale
prodotto dallo stesso campione di ammassi, ma su scale molto più grandi (0.1 < R < 35 Mpc/h),
estraendo informazioni cosmologiche dal termine di 2-halo.

Il modello adottato è risultato efficace per derivare sia le masse degli ammassi che il parametro
di densità di materia, quando modelliamo i profili di shear fino alle più grandi scale da noi sondate.
Le masse derivate per gli ammassi del campione sono in ottimo accordo con quelle stimate da Bel-
lagamba et al. (2019). Il nostro lavoro conferma l’attendibilità di AMICO e dei dati di KIDS-DR3.



Inoltre, i risultati che abbiamo ottenuto forniscono una forte evidenza osservativa del segnale del
2-halo nel lensing gravitazionale prodotto da ammassi di galassie, dimostrando anche l’attendibi-
lità del nostro metodo statistico nel vincolare i parametri del modello cosmologico. Il principale
risultato di questo lavoro è un nuovo e robusto vincolo su ΩM , assumendo un modello di Universo
ΛCDM piatto. Nello specifico, abbiamo ottenuto ΩM = 0.285±0.023, stimato dalla distribuzione di
probabilità a posteriori di tutti i 14 profili di shear sovrapposti e marginalizzando sulle masse. Tale
valore è consistente e competitivo con quello misurato da WMAP9, ΩM,WMAP9 = 0.273 ± 0.049,
ma leggermente in tensione con i vincoli di Planck18, ΩM,Planck18 = 0.317± 0.008.
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Introduction

Cosmology is the branch of Astrophysics that studies the cosmos in its entirety, aiming at under-
standing in which type of Universe we live, how the Universe was born and what its ultimate destiny
will be. Our Universe is not static. Indeed, one of the first pillar of Cosmology was the observation
of the expansion of the Universe by E. Hubble (Hubble, 1929). The subsequent discovery of cosmic
acceleration (Riess et al., 1998), that can be attributed to an unknown form of smooth tension, the
so-called dark energy, represented the major breakthrough in modern Cosmology. The cosmologi-
cal constant Λ provides the simplest possible explanation for dark energy (Einstein, 1915; Carroll
et al., 1992). The cosmological constant can be identified as the vacuum energy, that is a fixed
amount of energy attached to every region of space, constant both in space and time. The standard
Λ-Cold dark matter (ΛCDM) cosmological model provides the best and simplest parameterization
of the so-called Concordance Model. Together with Λ, which contributes to about 68% of the total
mass-energy in the Universe, the standard model assumes that a hypothetical, invisible form of
matter constitutes about ∼ 27% of the mass-energy density (Aghanim et al., 2018). The current
consensus view is that this dark matter component is cold (CDM) for most part, being composed
of particles moving at non-relativistic speeds. Only ∼ 4.9% of the Universe is made up of ordinary
matter (baryons), and even less by radiation (10−5%). From the Big Bang until the present day,
the relative contributions of the four main components of the Universe have undergone drastic
variations. Our Universe is currently dominated by the dark energy but, in the past, its influence
was negligible. Note that the ΛCDM model says nothing about the nature and physical origin of
CDM and dark energy. Nevertheless, it is currently the best cosmological model available to de-
scribe the large-scale structure of the Universe and its evolution. In fact, it is dubbed the Standard
Cosmological Model (SCM). Moreover, the observations shows that the space of our Universe is
approximately flat on large scales, and the SCM is often also-called the flat ΛCDM model.

In such a scenario, clusters of galaxies play an important role both for the study of the formation
and evolution of the galaxies in their environment, and for the determination of cosmological
parameters (Allen et al., 2011). Galaxy clusters are hosted by the most massive CDM haloes, and
their evolution is dominated by the CDM. The shape and evolution of the cluster mass function
(Press and Schechter, 1974) and the mass-to-light ratio (Schechter, 1976) allow to constrain the
mass density parameter, Ωm, and the amplitude of the matter power spectrum, σ8 (Oukbir and
Blanchard, 1992).

There are different methods to detect galaxy clusters, for instance through the X-ray emission
of the intergalactic medium (Merloni et al., 2012; Clerc et al., 2014), from the optical emission of
their galaxy population, or from the Sunyaev-Zel’dovich (SZ) effect (Sunyaev and Zeldovich, 1970,
1972). In fact, the cluster identification and characterisation are improved when using multi-band
observations. By exploiting the optical and near infrared (NIR) bands, in particular, it is possible
to identify the clusters by searching for the cluster-scale overdensities in the galaxy distribution.
This technique enables us to cover large and deep areas of the sky through photometric surveys,
that is required to collect a sufficiently large number of clusters to robustly infer their mass function.
Ongoing and planned photometric surveys will allow us to increase quite a lot the present census
of galaxy clusters, expanding the detection to lower masses and higher redshifts.

It is crucial to derive reliable cluster mass estimates to infer cosmological constraints. In partic-
ular, the measured number of galaxy cluster members, accessible in photometric or spectroscopic
observations, has to be linked to the total mass of the cluster, made primarily by CDM. The
difficulty is that this relation is hidden in complex, and not yet well understood, astrophysical
processes. To estimate cluster masses we can rely on some cluster scaling relations (see, e.g. Gio-
dini et al., 2013), directly derived from X-ray or SZ effect observations. However, such relations
depend on empirical calibrations, that may undermine the reliability of the analysis. Other mass
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proxies have been suggested in literature. The most used are the ones based on the number of
(red) galaxies inside a given cluster radius (Andreon and Hurn, 2010; Rykoff et al., 2012), on
photometric stellar mass estimates (Pereira et al., 2018), or on cluster luminosities (Mulroy et al.,
2014). However, the most reliable method to estimate cluster masses is currently provided by the
gravitational lensing. Gravitational lensing is a phenomenon that consists of the deflection of the
radiation emitted by a source due to the presence of matter interposed between the source itself
and the observer, as predicted by the General Relativity. The weak lensing effect, in particular,
consists of slight distortions of the source shapes (called shear) and the intensification of their
apparent brightness (magnification), generated by the convergence of light rays. In principle, we
may exploit both effects to estimate the projected masses, because the amplitude of the distortion
ensures a direct measure of the lens gravitational tidal field. The weak lensing comes into play
when the source is at high angular distances from the geometric centre of the lens. Hence it is
also very useful to probe the lensing cluster profiles up to large radii. Another helpful property of
lensing is that the gravitational light deflection is independent of the nature and state of deflecting
matter, hence the lensing signal depends only on the lens total mass. All of these properties made
the weak lensing really powerful for characterising galaxies clusters (Bartelmann and Schneider,
2001).

A small number of background galaxies may limit the study of single clusters to virial masses
of the order of a few times 1014M� or larger, for typical current optical surveys. Indeed, it is
practice use to study lower mass systems by averaging, or stacking their signals: the resultant
signal is that of the mass-weighted ensemble. Precisely, the stacked gravitational lensing represents
the cross-correlation between foreground deflector positions and background galaxy shears. If we
have a shallow but broad survey, to compensate for the low number density, stacking the signal
around a large number of lenses is an efficient method. For example, this approach was applied
with great success to the Sloan Digital Sky Survey (SDSS) data to measure the ensemble averaged
lensing signal around groups and clusters (Mandelbaum et al., 2006b; Sheldon et al., 2009). By
splitting the sample of clusters into subsets based on an observable property, such as amplitude
or optical richness, it has been possible to determine the scaling relations between the observable
and the mean mass of the sample (see, e.g., Bellagamba et al., 2019).

Furthermore, gravitational lensing is often one of the primary goals of current and upcoming
photometric surveys, thus enabling the calibration of optical observables of photometrically-selected
clusters within the same data-set. Therefore, altough large samples of clusters were also drawn from
X-ray observations or through the detection of the SZ effect on the CMB, photometric observations
remain the most promising source of discovery of new clusters of galaxies. This applies especially
to the wide ongoing and future photometric surveys, such as the Dark Energy Survey (DES The
Dark Energy Survey Collaboration, 2005) or the photometric Kilo Degree Survey (KiDS, Radovich
et al., 2017; de Jong et al., 2017), that we exploit in this thesis work. Precisely, we use the Third
Data Release of this survey (KiDS-DR3 de Jong et al., 2017), that contains reduced image data,
source lists and a multi-band catalogue, and it is made by 440 survey tiles, with 48736591 sources
in total. Its current total released data-set covers approximately 447deg2 (see Figure 5.1). This
release also includes photometric redshifts with relative probability distribution functions (Kuijken
et al., 2015; de Jong et al., 2017), a global improved photometric calibration, weak lensing shear
catalogues (Kuijken et al., 2015; Hildebrandt et al., 2017) and lensing-optimised image data. Source
detection, positions and shape parameters used for weak lensing measurements are all derived from
the r-band images, since these typically have the best image quality and provide the most reliable
measurements, while magnitudes are measured in all filters using forced photometry (Hildebrandt
et al., 2017). The principal scientific goal of KiDS is to exploit the weak lensing and photometric
redshift measurements to map the matter large-scale distribution in the Universe. This survey
produces images with a high quality and depth and a very precise calibration.

Appropriate algorithms have to be used to identify galaxy clusters in photometric surveys.
In this thesis work we exploit the Adaptive Matched Identifier of Clustered Objects (AMICO)
algorithm, presented and tested in Bellagamba et al. (2018). It was used to extract the first cluster
sample from KiDS-DR3 (Maturi et al., 2018). In this work we use the same cluster data-set for
our analysis. AMICO is an algorithm for the detection of galaxy clusters in photometric surveys
whose data-set is affected by a noisy background. It is build upon a linear optimal matched filter
method (Maturi et al., 2005, 2007; Viola et al., 2010; Bellagamba et al., 2011), which maximises
the S/N and takes advantage of the statistical properties of the field and cluster galaxies.

To build the shear profile of a given lens, through which we can reconstruct the stacked differ-
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ential surface density profile, ∆Σ(R), we select the background galaxies following a conservative
approach (Bellagamba et al., 2019). This approach aims at eliminating foreground and cluster
galaxies from the KiDS catalogue by applying cuts based on photometric redshift distributions
and colours. For every single lens we take into account all the background galaxies selected ac-
cording to the method just mentioned, and then we calculate the shear signal along the tangential
direction with respect to the centre of the considered cluster. We determine the weighted ellip-
ticity of the background sources in radial bins, that is the tangential and cross components of
the shear, though for the subsequent analysis we use only the tangential component. For most of
the clusters in the sample, the S/N in the shear data is too low to constrain the density profile
and, consequently, to measure a reliable mass. So we are obliged to measure the mean mass for
ensembles of objects chosen according to their observables and redshift. In short words, we exploit
the shear-cluster correlation (or stacked lensing), i.e the cross-correlation between the cluster (lens)
density distribution and the shapes of the background source galaxies.

When collecting the stacked shear signal from KiDS-DR3, we split the cluster sample in three
consecutive redshift bins: 0.1 ≤ z < 0.3, 0.3 ≤ z < 0.45 and 0.45 ≤ z < 0.6. The considered sample
is composed of 6972 AMICO-KiDS clusters. We further split each redshift bin in a set of increasing
amplitude bins1, for a total of 14 stacked clustered objects, that covers a range of masses going
from ∼ 1013 to 4.5 × 1014 M�/h, in each of the three redshift bins. This cluster binning is the
same one adopted in Bellagamba et al. (2019). The goal is to reconstruct the stacked differential
(projected) surface density profiles of our cluster sample in two different radial ranges (from the
assumed cluster centre), with the same redshift-amplitude binning. Precisely, we firstly collect the
shear stacked signal from 0.1 to 3.16 M�/h, in 14 radial annuli equally distanced in logarithmic
space, and secondly from 0.1 to 35 M�/h, in 30 radial annuli equally distanced in logarithmic
space. The first spatial range covers the region occupied by the main halo, that is roughly up to
the cluster virial radius, and with these data we perform an analysis aiming at inferring robust
cluster mass estimates (see Table 6.1). When analysing shear data extracted up to 35 M�/h from
the cluster centre, we are on scales where the signal is produced by the 2-halo term. Precisely, its
contribute begins to be dominant on scales larger than ∼ 10 M�/h (see e.g Fig. 6.8). At such
scales the shear signal is produced by correlated matter distribution around the location of the
galaxy cluster and it manifests itself as a 2-halo contribute in the mass density profiles. This 2-halo
analysis is performed to infer estimates of ΩM .

We fit the ∆Σ(R) profiles with a model set up as the sum of the 1-halo and the 2-halo terms,
∆Σ(R) = ∆Σ(R)1h + ∆Σ(R)2h (Fig. 5.6 shows an example of this model). The 1-halo contribute
refers to the virialized main cluster halo, described by a smoothly-truncated NFW density profile
(Baltz et al., 2009) which is able to model cluster profiles far beyond the virial radius profile and
produces less biased mass estimates, with respect to the original NFW. Inside the ∆Σ1h model,
we considered also a ∆Σ(R)off term that takes into account the contribute of individual clusters
whose centre does not coincide with the cluster centre assumed by the stacking procedure. Without
this term, we would get biased low mass estimates. Furthermore, when assuming the truncated
NFW with a given cosmology, we can infer the cluster mass as M200, that represents the profile
normalisation (see e.g Figure 6.3). Finally, the 2-halo term is characterised by the model given
by (Oguri and Takada, 2011), that describes the cumulative effects of the large-scale structures in
which galaxy clusters are located.

The analyses are performed following a Bayesian approach, through the use of Monte Carlo
Markov Chains (MCMC) that allow us to infer the model parameters with a good accuracy (see
Figures 6.11, 6.12, 6.13 and 6.18, that show the posterior distributions we obtained through the
MCMC routine for the analysis results on the second shear profiles collection). The statistical
numerical code (shown in appendix D) has been built entirely with the CosmoBolognaLib C++
libraries (Marulli et al., 2016), that provide all the functions used for the estimation of the various
cosmological components of our fitting model.

This thesis work is organised as follows:

• Chapter 1 provides an overview of the cosmological context on which we build this thesis
work, introducing the theoretical basis of the Standard Cosmological Model.

• Chapter 2 deals with the theory of structure formation and evolution, discussing the pertur-
bative approach, both in the linear and non-linear regimes.

1The amplitude A is a measure of the cluster galaxy abundance, through an optimal filter, in units of the cluster
model. We used it as a reliable mass proxy, as demonstrated by our analysis.
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• Chapter 3 illustrates the main cluster properties, together with the methods to identify
them in the observations. We focus on the cluster detection method in optical photometric
surveys, discussing its applications and advantages. In particular, in Section 3.6 we describe
the AMICO algorithm that allowed us to collect the clusters we use for the analysis.

• Chapter 4 deals with the basics of gravitational lensing, focusing on the properties of the
weak lensing by clusters and how it can be exploited to derive cluster properties.

• Chapter 5 introduces the survey dataset on which this thesis work is based, namely KiDS-
DR3, and how it was handled, through an appropriate shear data extraction. In particular,
Section 5.4 introduces the model used to describe the cluster shear profiles extracted from
the survey.

• Chapter 6 illustrates in detail the method used to constrain model and cosmological param-
eters from the survey dataset, and the results of the data analysis. Furthermore, we discuss
the reliability of the adopted method, and compare our results with the most recent cosmo-
logical estimations. We also briefly deal with the possible systematic uncertainties affecting
the cosmological parameters inference.

• Chapter 7 summarises the main results of this project and discuss possible future perspectives.

In all the analyses presented in this work, we assume a flat ΛCDM model with baryon density
Ωb = 0.05 and scaled Hubble parameter h = 0.7. The matter density parameter is left free except
in the first analysis stage where, to infer the cluster masses modelling the 1-halo term, it is fixed
to ΩM = 0.3. When inferring ΩM from the 2-halo modelling, we assume anyway a flat ΛCDM,
hence ΩΛ = 1− ΩM is a derived parameter.
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Chapter 1

An overview of the cosmological
context

In this Chapter we will present the cosmological framework on which this thesis work is set up.
We will supply the main notions and equations that are the foundation of the theoretical models,
aiming at describing the growth and the dynamical evolution of the Universe and its content; the
so-called Standard Cosmological Model.

1.1 Cosmological principles
Cosmology studies the formation and evolution of the Universe in its entirety, from the Big Bang
(BB) to the present. Observational data pushes towards a model of the Universe that is difficult
to explain and with an estimated composition (see Aghanim et al., 2018) given by:

• 4.9% of baryons

• 26.8% of dark matter

• 68.3% of dark energy

• ∼ 10−5% of radiation.

Nowadays the BB Model is widely accepted and it is founded on three pillars:

• inflation,

• anisotropies of the Cosmic Microwave Background (CMB),

• empirical confirmation of the accelerated expansion of Universe.

On the other hand, the BB Model is affected by three fundamental issues actually unresolved, not
even through inflation: the coincidence problem (Velten et al., 2014), the origin and nature of dark
matter and dark energy and the inevitability of the assumption of an origin of the space-time (i.e
the BB).

The history of Universe is a story of cooling: starting from the BB, passing trough inflation and
coming to the gravitational collapse of matter (baryonic and dark) and to the consequent formation
of the first structures. Another main ingredient of the model is the so-called Cosmological Principle
(CP), that states that the Universe is homogeneous and isotropic on sufficiently large scales 1. A
first confirmation of this is the homogeneous distribution, on large scale, of galaxies together with
the isotropy of CMB. In other words, homogeneity implies that all observers, anywhere in the
Universe, observe the same properties and matter distribution, while isotropy involves that there
are not preferred directions.

1much larger than 10 Mpc, that is much larger than the size of the largest galaxy clusters known to us
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1.2 Basics of General Relativity
On large scale, the main force acting on the matter across the Universe is gravity. It dominates
the dynamics and the evolution of the large cosmic structures, that are expected to be formed
starting from tiny quantum fluctuations. The best description of the spacetime and of this force
that models it, is given by the theory of General Relativity, proposed by Albert Einstein (Einstein,
1915).

Firstly, we have to set a metric for our Universe. In this context, the spacetime geometry is
described by the metric tensor gαβ , that measures the invariant distance between two events in
spacetime, (t, x1, x2, x3) and (t′, x′1, x

′
2, x
′
3) = (t+ δt, x1 + δx1, x2 + δx2, x3 + δx3). This interval in

spacetime is defined by:
ds2 = gαβdxαdxβ , (1.2.1)

which in its explicit form reads:

ds2 = g00dt2 + 2g0idxidt+ gijdxidxj , (1.2.2)

where g00dt2 is the time component, 2g0idxidt is the mixed component and gijdxidxj the spatial
one. While gαβ describes the geometry of spacetime, ds2 tells us if the type of interval is: time
(ds2 > 0), space (ds2 < 0) or light (ds2 = 0).

Now, we define the Riemann tensor as follows:

Rµαβγ ≡
dΓµαγ
dxβ

−
dΓµαβ
dxγ

+ ΓµσβΓσγα + ΓµσγΓσβα, (1.2.3)

where Γ are the affine connection and Rµαβγ is a fourth-order tensor that we can contract to the
Ricci tensor Rµν , or further to the curvature scalar R (the track of Ricci tensor), respectively:

Rαβ ≡ Rµαβµ, R ≡ Rµµ = gµνRµν . (1.2.4)

To describe the energy-matter content of the Universe, we have to introduce the energy-momentum
tensor Tµν , which we can connect with the spacetime metric into the Einstein’s Field Equations:

Rµν −
1

2
gµνR =

8πG

c4
Tµν , (1.2.5)

where G and c that are the gravitational constant and the speed of light, respectively. Considering
the left-hand side of this equation we can define the Einstein Tensor Gµν as:

Gµν ≡ Rµν −
1

2
gµνR, (1.2.6)

that is a tensor with zero covariant divergence, according to the kind of Tµν we want to obtain, by
virtue of the conservation laws of the spacetime. Combining the equations (1.2.5) and (1.2.6) we
get the final Einstein gravitational field equations :

Gµν =
8πG

c4
Tµν . (1.2.7)

Note that the assumption of the CP requires an energy-momentum tensor referred to a perfect fluid
(the mean free path of the fluid particles has to be lower than the physical scales of interaction).
Furthermore the empirical proofs so far known seem to give reason to the original choice of Einstein
to couple matter to the gravitational field through Tµν . The difficulty in solving Eq. (1.2.7) is due
to the fact that they are non-linear equations, and therefore the principle of overlapping effects is
not valid.

1.2.1 The Friedmann-Lemaître-Robertson-Walker metric
To be able to consider a set of homogeneous and isotropic models of the Universe, we must assume
the CP, and find solutions to the Einstein’s Field Equations. In this assumption, we can define
a proper time t such that the spatial metric dl2 = gijdxidxj is identical in every space and time.
Moreover, the isotropy implies that the mixed term g0i in Eq. (1.2.2) is null. Thus we obtain the
following generic form of the metric:

ds2 = c2dt2 − gijdxidxj = (cdt)2 − dl2, (1.2.8)
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that describes the geometrical properties of the spacetime. Now, we consider the time coordi-
nate (the term (cdt)2) on the right-hand side of the equation (1.2.8) and assume spherical polar
coordinates where r, θ and ϕ are dimensionless co-moving coordinates and t is the proper time.
According to the assumption of isotropy, we can derive the most general form of the equation
(1.2.8) that verifies the CP as follows:

ds2 = (cdt)2 − a2(t)
[ dr2

1− kr2
+ r2(sin2 θdϕ+ dθ2)

]
, (1.2.9)

that defines the Friedmann-Lemaître-Robertson-Walker metric (or FLRW metric), which embodies
the CP.

We can note now the appearance of two new elements. The function a(t) is the cosmic scale
factor (also known as expansion parameter), having the dimensions of a length, and the curvature
parameter k. The value of k and a(t) can be derived by the Einstein’s Field Equations, for any
given energy-momentum tensor.

Let us consider a free massive particle at rest located, at a moment in time, at the origin of
the co-moving system: the absence of preferred directions ensures that no velocity variation can
be induced on this particle by gravity so, thanks to the homogeneity, the world lines xi = cost.
coincide with the so-called geodetics.

1.2.2 The spatial curvature
Let us consider the simplified case of an homogeneous and isotropic two-dimensional Universe;
this may have three geometric shapes, because the curvature of the spatial hyper-surfaces of the
Universe can be positive, zero or negative. Indeed, the curvature of the spacetime depends on the
value of the parameter k, which can be scaled in such a way that the only three possible values
are +1, 0 or -1.

Specifically, the three possibilities are the following:

• A spherical surface with radius R (a closed spherical Universe with Gaussian curvature
1/R2 > 0, because k = +1) where, always in spherical coordinates R > 0, 0 ≤ θ ≤ 2π
and 0 ≤ ϕ < 2π, and with spatial metric dl2 = R2(sin2 θdϕ2 + dθ2), setting R = a and
r = sin θ we obtain that dr = cos θdθ, so dθ2 = dr2

cosθ
= dr2

1−sin2 θ
= dr2

1−r2 and, finally, we have
the two-dimensional closed spherical spatial metric:

dl2 = a2
( dr2

1− r2
+ r2dϕ

)
. (1.2.10)

• An hyperbolyc surface (an open hyperbolyc Universe with Gaussian curvature 1/R2 < 0,
because k = −1) where, considering the trigonometrical hyperbolyc function r = sinh θ with
0 ≤ ρ <∞, we have a spatial metric dl2 = R2(sinh2 θdϕ2 +dθ2) that, setting R = a, becomes
the two-dimensional open hyperbolyc spatial metric:

dl2 = a2
( dr2

1 + r2
+ r2dϕ

)
. (1.2.11)

• A Cartesian flat surface (a flat Euclidean Universe with Rcurvature −→ ∞, because k = 0)
which, in polar coordinates 0 ≤ ρ < ∞ and 0 ≤ θ ≤ 2π, gives a spatial flat metric dl2 =
dx2 + dy2 = dρ2 + ρ2dθ2 ; then, introducing the dimensionless parameter r ≡ ρ/a we obtain
the two-dimensional flat spatial metric:

dl2 = a2(dr2 + r2dθ2). (1.2.12)

Now, we are able to write the general form of a two-dimensional spatial metric:

dl2 = a2
( dr2

1− kr2
+ r2dϕ2

)
, (1.2.13)

in polar coordinates and with the dimensionless variable r = ρ/a.
By analogy in three-dimension, dϕ2 −→ dΩ2 = dθ2 + sin2 θdϕ2 and the rest does not change,

so we get back the FLRW metric (1.2.9):
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Figure 1.1: The different spatial geometries corresponding to the density parameter values Ω0 > 1,
Ω0 < 1 and Ω0 = 1, respectively (see Eq. (1.6.5)). Credits: wikipedia

ds2 = (cdt)2 − a2(t)[ dr2

1−kr2 + r2(sin2 θdϕ+ dθ2)].
Resuming, the three values of the curvature parameter k lead to three different geometries of

the Universe:

• if k = 0 , the space has an infinite curvature and an Euclidean (Cartesian) geometry that is,
a flat Universe;

• if k = +1 the space is a hypersphere and has a finite volume but without boundaries, like a
the two-dimensional case of a sphere; it is the case of a closed Universe;

• if k = −1 the space has an hyperbolic geometry; it is the case of an infinite open Universe.

The last two cases are two examples of pseudo-Euclidean spatial geometries: for a closed Uni-
verse the sum of the internal angles of a triangle is < π, for a open Universe this sum is > π (see
Figure 1.1).

1.3 The Hubble-Lemaitre law
Let us integrate the FLRW metric (1.2.9) from the spatial point P (0, 0, 0), system’s origin, to a
generic P (r, 0, 0) and assume dθ = dϕ = 0 (namely θ and ϕ directed along the line of sight) and
dt = 0 (ideal instantaneity of events). In this way we obtain the proper distance:

dpr =

∫ r

0

a(t)dr′√
1− kr′2

, (1.3.1)

but, being a(t) not proportional to r and dependent only on time, it can be carried out from the
integral (moreover, from here it can be seen that the non-static nature of the FLRW metric is due
precisely to this dependence) and we can write:

dpr = a(t)F (r) with F (r) ≡
∫ r

0

dr′√
1− kr′2

. (1.3.2)

F (r) is a function of radius that describes the spatial part of the metric and which, with variation
of the curvature parameter k, gives a space:

Euclidean Flat if k = 0 =⇒ F (r) = r

Closed Spherical if k = +1 =⇒ F (r) =
∫ r

0
dr′√

1−r′2

Open Hyperbolic if k = −1 =⇒ F (r) =
∫ r

0
dr′√

1+r′2
.
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However, because a(t) depends on time, dpr depends on time too; so we are able to define the
proper distance calculated on the present time t0, named co-moving radial distance dc:

dc ≡ dpr(t0) = a0F (r) = a0

∫ r

0

dr′√
1− kr′2

, (1.3.3)

where a0 ≡ a(t = t0) is the present value of the expansion parameter, and that is called co-moving
because it remains the same as the Universe expands.

It exists a direct link between the two kinds of distances just listed, called dc − dpr relation:

dpr = dc
a(t)

a0
, (1.3.4)

where we can note that at present time t0, dpr ≡ dc. Furthermore, because a = a(t), this relation
can change at different instants t of the look-back time of the Universe.

This time dependence implies the existence of a radial velocity vr (between P and P0), as
derivative of dpr with respect to t:

vr =
ddpr
dt

=
d[a(t)F (r)]

dt
=

da(t)

dt
F (r) + a(t)

dF (r)

dt
, (1.3.5)

but dF (r)
dt = 0 because of the time independence of F (r), thus the relation (1.3.5) becomes:

vr = ȧ(t)F (r), (1.3.6)

but for the Eq. (1.3.2) we have: F (r) =
dpr
a(t) , hence we obtain finally the Hubble-Lemaitre Law (or

simply the Hubble law):

vr =
ȧ(t)

a(t)
dpr = H(t)dpr with H(t) ≡ ȧ(t)

a(t)
. (1.3.7)

H(t) is the Hubble’s parameter.
The Hubble’s law (1.3.7) is the linear relation existing between vr and dpr: vr is directly

proportional to dpr thus, the more we look far into the Universe, the faster it expands; H(t) gives
us information about the isotropic local expansion of the Universe, at fixed cosmic time t. The
motion of objects due solely to the expansion of the Universe is called the Hubble flow.

The parameter H is often, and erroneously, called Hubble’s constant, because it has the same
value across the Universe at a given cosmic time but it is time-dependent. At present time t0, the
most recent measures (Aghanim et al., 2018) give:

H0 ≡ H(t = t0) = 67.36± 0.54 kms−1Mpc−1, (1.3.8)

but it is conventional to introduce a dimensionless parameter, h, redefining the Hubble parameter
as:

H0 = 100h km s−1Mpc−1, with h ≈ 0.7. (1.3.9)

Note that H0 is expressed in terms of s−1, thus H−1
0 provides us with a crude estimate of the

current age of the Universe, that is approximately 13.8Gyr. Furthermore the existence of the
Hubble’s law is a natural consequence of the CP for non-relativistic expansion velocities: in fact
this law is identical for every place in Universe, according to CP.

1.3.1 The cosmological redshift
The redshift z is dimensionless and defined as the relative difference between the observed, λoss,
and emitted, λem, wavelengths:

z =
λoss − λem

λem
=

∆λ

λem
, (1.3.10)

or analogously for frequencies, by means of the relation λ = c/ν. From Eq.(1.3.10), we see that
z > 0 when the electromagnetic radiation from an object is increased in wavelength, and so shifted
to the red region of the spectrum, that is the redshift; vice-versa we would have a blueshift for
z < 0, but it is not the case for the Hubble flow. Substantially the redshift is a measure of the
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shift of the electromagnetic spectrum emitted by a light source at λ = λem and t = tem, moving
at a radial velocity vr (1.3.7) with respect to observer, which sees the radiation at λ = λoss and at
toss = t0.

Now, consider a source emitting a photon with wavelength λem at time tem and an observer
located at a distance d which will receive the signal with wavelength λoss at toss. Let us consider
the FLRW metric (1.2.9) for this photon; it moves along null geodesics during the expansion of
Universe thus, the term ds2 of the metric is null and we have:

(cdt)2 − a2(t)
[ dr2

1− kr2
+ r2(sin2 θdϕ+ dθ2)

]
= 0. (1.3.11)

Then, let us assume θ and ϕ constants (dθ = dϕ = 0) for simplicity such that, integrating the
metric along the path, the Eq. (1.3.11) becomes:∫ toss

tem

cdt
a(t)

=

∫ r

0

dr′√
1− kr′2

≡ F (r). (1.3.12)

Now let us suppose that another photon is emitted, by the same source, with a time delay δtem
with respect to the first one and reaches the observer at a time t′oss = toss+δtoss. Since the path of
the two photons is the same, they differ only for the time employed to reach the observer because
F (r) does not change and we can write Eq. (1.3.12) as:∫ toss

tem

dt
a(t)

=

∫ toss+δtoss

tem+δtem

dt
a(t)

= F (r). (1.3.13)

If we consider then the time interval small enough (δt→ 0), we can consider a(t) almost constant
and we obtain:

δt0
a(toss)

=
δtem
a(tem)

. (1.3.14)

Since δ = 1/ν and λ = c/ν we have then:

1 + z =
aoss
aem

(1.3.15)

or, more generally for observers located at present time and for a generic instant t:

1 + z =
a0

a(t)
. (1.3.16)

The redshift is usually used to measure distances of extra-galactic sources; a0 is a measurement of
how much the scaling factor has changed over time from the photon emission to observation.

Note that it would be wrong to assert that the cosmological redshift is due to a pure Doppler
effect, being the space that dilates itself and all structures contained inside it. For the same reason
we have a velocity not because the source is moving but because the space is expanding itself (z > 0
always). Finally we can note that this Universe’s expansion velocity grows up with the look-back
time (vr ∝ a−1).

For completeness we define the deceleration parameter q(t):

q(t) ≡ − ä(t)a(t)

ȧ2(t)
and that today: q0(t) = − ä0(t)a0(t)

ȧ0
2(t)

. (1.3.17)

It represents a way to indicate the second derivative of a(t) but expressed to be dimensionless. q(t)
is defined with a minus sign because, with Friedmann equations (1.5.2) and (1.5.3) which we will
see later, every possible Universe expands itself by decelerating, so that if ä < 0 then q > 0.

1.4 Cosmological distances
In cosmology there is no absolute definition of distance. As we have already seen in Eq. (1.3.4),
the system of co-moving coordinates is linked to the proper distance in spaces described by the
FLRW metric, in the sense that dpr is the distance measured on a hypersurface of constant proper
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time. This kind of distance measure can not however be performed for astronomical objects of
which we can only measure the light emitted, that takes a finite time to get to us.

The link that links the flow of energy l received from a source and its intrinsic luminosity L,
dependent on the distance of the source dL, is:

l =
L

4πd2
L

, (1.4.1)

where dL is called luminosity distance. The concept of standard candle is based on this measure.
Indeed, we have to consider the presence of redshift and time dilation, with the latter coming

into play because we are dealing with L, that is an energy per unit of time (of course, z influences
the measure by reddening the radiation during its path from the source to us). Then the two
factors come into play: 1 + z = a0

a for z and δt0 = (a0

a )δt (because L = L( aa0
)) for the time’s

dilation. Finally we have:

l =
L

4πa2
0d

2
L

(1 + z)−2 (1.4.2)

and from this one we obtain the definition of luminosity distance:

dL = a0r(1 + z) = a(t)r(1 + z)2. (1.4.3)

We have to use this definition when we measure luminosities to estimate cosmological distances.
Another classical measure is the distance in angular diameter or, simply, the angular distance

dA which is defined in such a way as to preserve the geometrical characteristics of a Euclidean space.
Substantially, the angle dθ under which we see an object of known size Dpr (proper diameter of
the object) gives us the distance of that object placed at coordinates r and t in the spacetime. If
this angle dθ represents the vertex of the isosceles triangle with base Dpr and height r and if we
assume Dpr perpendicular to our line of sight, due to the assumption of a Euclidean space, then
this implies that every point of the proper diameter is aligned (dr = dϕ = 0) and the light comes
from every point at the same time (dt = 0). Hence the FLRW metric for flat spaces becomes:
ds2 = a2(t)r2dθ2 ≡ D2

pr, from which we get: Dpr = a(t)rdθ.
For small angular sizes (as it is the case with the typical dimensions of cosmological objects)

we can define the angular distance:

dA =
Dpr

∆θ
. (1.4.4)

This quantity is then connected to dL through the duality relation:

dA = a(t)r =
dL

(1 + z)2
(1.4.5)

which is valid only if the FLRW metric is founded because it implies the validity of the CP, hence
this relation is a good test of the FLRW model.

1.5 The Friedmann equations
As already mentioned, at the base of each relativistic (General Relativity) cosmological model we
have the Einstein equations (1.2.5): Rµν − 1

2gµνR = 8πG
c4 Tµν , which assert that the spacetime

geometry of the Universe, expressed by the metric tensor gµν , is determined by its energetic
content (or equally of matter, because of the famous relation E = mc2), represented by the energy-
momentum tensor Tµν . With only this assumptions we apply now the FLRW metric (1.2.9), that
embodies the CP, to the Einstein equations (1.2.5), in order to obtain Rµν and R (namely the
spatial part of the equation (1.2.5)). As Tµν we assume that of a perfect fluid (that is a fluid with
density ρ = const. and with negligible viscosity):

Tµν = −pgµν + (p+ ρc2)UµUν , (1.5.1)

where p is the pressure, ρc2 is energy density and Uk the four-velocity. The system provides
sixteen equations (µ, ν = 0, 1, 2, 3), of which only two are independent, because of the assumption
of homogeneity and isotropy. They provide the time evolution of a(t) describing the growth of the
Universe.
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The first is the time-time component, or first Friedmann equation:

ä = −4

3
πG
(
ρ+

3p

c2

)
a, (1.5.2)

and the second represents the space-space component, or second Friedmann equation:

ȧ2 + kc2 =
8

3
πGρa2. (1.5.3)

To create realistic cosmological models means solving these two equations.
Then, assuming the Universe as a closed system (reasonably, because there is no outside from

the Universe), unable to lose energy, the two equations above can be linked to each other by the
adiabatic condition, that is called adiabatic expansion of Universe in cosmology and which it can
be expressed by the equations (there are three equivalent form of this):

d = (ρc2a3) = −pda3, ṗa3 =
d
dt

[a3(ρc2 + p)], ρ̇+ 3(ρ+
p

c2
)
ȧ

a
= 0. (1.5.4)

Each constituent of the Universe has its own equation of state, but all of them contribute to the
density term ρ (in fact, the ρ in such equations is the sum of all the Universe components).

1.5.1 The cosmological constant
Looking at the first Friedmann equation (1.5.2) we can notice that to have a static Universe
(ä = ȧ = 0) we need that:

ρ = −3p

c2
, (1.5.5)

i.e the energy density (or pressure) must be negative. Before the discovery of the Hubble flow, the
scientific community supposed a static Universe and, in light of this, Einstein added to his field
equations (1.2.5) a new term that modified the equations as follows:

Rµν −
1

2
gµνR− Λgµν =

8πG

c4
Tµν , (1.5.6)

with Λ that is the so-called cosmological constant with dimension [L−2].
From what we said above we define:

p̃ ≡ p− Λc4

8πG
= p+ pΛ and ρ̃ ≡ ρ+

Λc2

8πG
= ρ+ ρΛ, (1.5.7)

called effective pressure and density with pΛ < 0 and ρΛ > 0, respectively. With these quantities
we ca re-write the Eq. (1.5.6) as:

Rµν −
1

2
gµνR =

8πG

c4
T̃µν , (1.5.8)

with T̃µν called effective energy-momentum tensor:

T̃µν = Tµν +
Λc4

8πG
ρµν = p̃gµν + (p̃+ ρ̃c2)UµUν . (1.5.9)

From the equation (1.5.8) we re-obtain the Friedmann equations but with p̃ and ρ̃ instead of p and
ρ. These equations admit static solutions for:

ρ̃ =
−3p̃

c2
=
−3kc2

8πGa2
. (1.5.10)

When Hubble finally discovered the expansion of the Universe (Hubble, 1929), Einstein judged
the introduction of Λ as ˝one of the biggest error of his life”. Nevertheless, Λ-models have been
reintroduced to describe the accelerated expansion of the Universe, for the first time discovered
thanks to the observations of Supernovae (SNIa) (Riess et al., 1998). The Cosmological Constant
has the effect of a source of repulsive gravitational force. It is a physical constant of the theory,
and provides the simplest possible explanation for dark energy (DE).
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1.6 The Friedmann models
First of all, we assume a perfect fluid with a given ρ and p, without concern for now neither for
the equation of state that links them, nor for the cosmological constant. We have to solve the
Friedmann’s equations, together with the adiabatic condition:

ä = − 4
3πG(ρ+ 3p

c2 )a first Friedmann equation
ȧ2 + kc2 = 8

3πGρa
2 second Friedmann equation

d(ρa3) = −3 p
c2 a

2da adiabatic condition
This system will allow us, in principle, to calculate the time evolution of ρ(t), p(t) and a(t),

once the state equation that links them is known (Friedmann, 1922).
Suppose we are nowadays, at t0, then we know that H0 = ȧ0

a0
and let us define the critical

density:

ρcrit ≡
3H2

8πG
(1.6.1)

and the today’s critical density:

ρcrit,0 ≡
3H2

0

8πG
. (1.6.2)

If we re-write the second Friedmann’s equation above into the form:( ȧ
a0

)2

=
−kc2

a2
0

+ ρ0

( ȧ0

a0

)2 H2
0

ρcrit,0
, (1.6.3)

then we can obtain the following equation:

H2
0

(
1− ρ0

ρcrit,0

)
= −kc

2

a2
0

, (1.6.4)

that is the H0 − ρcrit,0 relation.
Let us introduce the density parameter:

Ω ≡ ρ

ρcrit
and its today value Ω0 ≡

ρ0

ρcrit,0
. (1.6.5)

Equation (1.6.4) implies that for the three values of k we have:

• for k = −1: (1− ρ0

ρcrit,0
) > 0 =⇒ ρ0 < ρcrit,0 =⇒ Ω0 < 1, hence a hyperbolic Universe;

• for k = +1: (1− ρ0

ρcrit,0
) < 0 =⇒ ρ0 > ρcrit,0 =⇒ Ω0 > 1, hence a hyper-spherical Universe;

• for k = 0: (1− ρ0

ρcrit,0
) = 0 =⇒ ρ0 = ρcrit,0 =⇒ Ω0 = 1, hence a flat Universe.

It is clear now that accurately estimating the value of ρcrit,0 will help us discriminate the
geometry of our Universe (via k). However, Eq. (1.6.4) is telling us that to estimate Ω0 we must
know ρcrit,0, and then H0, whose currently accepted value is that of Eq. (1.3.8), which is a fairly
precise value. In other words, to know the geometry of Universe we have to know the current
density ρ0 of all the Universe components. This is done using the definition (1.6.2), from which it
has been estimated a value, dependent on the Universe in which we live, through the value of the
dimensionless parameter h (see (1.3.9)), and that it is estimated to be:

ρcrit,0 = 1.9× 10−29h2[gcm−3] = 2.775× 1011h2[M�Mpc−3]. (1.6.6)

Therefore, we have to accurately estimate the values of ρDM and ρDE to derive k.
Let us now see what happens by reintroducing the cosmological constant Λ, which has been

seen to behave like a fluid with a strange equation of state. The Friedmann equations expressed by
(1.5.2) and (1.5.3) will be changed, by replacing ρ and p with ρ̃ and p̃, and after some manipulations
they can be written as follows:

ä = −4

3
πGa

(
ρ+

3p

c2

)
+

Λc2a

3
first Friedmann equation with Λ, (1.6.7)

ȧ2 + kc2 =
8π

3
Gρa2 +

Λc2a2

3
second Friedmann equation with Λ. (1.6.8)
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Manipulating the second modified Friedmann equation (dividing both members by a2
0 and devel-

oping it and then considering it at t0) and keeping in mind the equation (1.5.8) and the definition
of H0 ≡ ȧ0/a0, we obtain:

H2
0

(
1− Λc2

3
− ρ0

ρcrit,0

)
= −kc

2

a2
0

. (1.6.9)

Then, remembering the contribution of Λ to the total current density ρtot,0:

ρΛ,0 =
Λc2

8πG
(1.6.10)

and defining the contribute of Λ to the current density parameter:

ΩΛ,0 =
ρΛ,0

ρcrit,0
, (1.6.11)

we can re-write equation (1.6.9) as:

H2
0 (1− ΩΛ,0 − Ω0) = −kc

2

a2
0

. (1.6.12)

Finally, defining a total current density parameter, as the sum of the contributions of the various
components of the Universe:

Ωtot,0 ≡
∑
i

Ωi,0, (1.6.13)

the Eq. (1.6.12) becomes the second Friedmann’s equation expressed as a function of H0 and Ωtot,0:

H0(1− Ωtot,0) = −kc
2

a2
0

. (1.6.14)

From Eq. (1.6.14) we understand that we can discriminate the values of the curvature parameter,
k, based on the values of Ωtot,0, regardless of what the components of the Universe are.

1.6.1 Models with a perfect fluid
As we mentioned above in Section 1.2, the perfect fluid approximation for the Universe considered
on a large scale is realistic. In the field equations, the perfect fluid enters through Tµν because it
succeeds in matching these equations with the CP because it does not admit anisotropic pressures.

The equation of state will take the generic form p = p(ρ) which is assumed, as in many realistic
physical situations in adiabatic conditions, in the form of the general form of the equation of state:

p = wρc2 with w = const. (1.6.15)

The w parameter lies in the so-called Zel’dovich interval:

w ∈ [0, 1[ (1.6.16)

the reason why w = 1 is not allowed is clear if we consider the definition of sound velocity:

cS =
(δp
δρ

)1/2

S=const.
= c
√
w. (1.6.17)

The case w = 1 implies cS = c that is not acceptable. However if we had w < 0, then cS
would belong to the set of imaginary numbers but, as we will see, it will be an acceptable value
(precisely for the Λ component). Anyway, w will assume different values depending on the pressure
component we are dealing with.

The ordinary matter fluid can be in two different states: non-relativistic and relativistic. The
first case is represented by baryons and CDM (called dust in this cosmological approach), having
w = 0, i.e with p = 0. While a non-degenerate and ultra-relativistic fluid has an equation of state
with w = 1/3 (hence p = 1

3ρc
2). This is the case for a radiative fluid or, more generally, for photons

and relativistic particles like neutrinos.
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Figure 1.2: Redshift evolution of radiation, matter and dark energy densities. The cyan shaded
band corresponds to w = −1± 0.2. Credits: Frieman

Now, introducing the general form of the equation of state (1.6.15) into the adiabatic condition
(1.5.4), and remembering that 1+z = a0

a(t) , after some simplifications we obtain the general relation
between ρ and a:

ρ = ρ0

( a
a0

)−3(1+w)

= ρ0(1 + z)3(1+w). (1.6.18)

For the matter (w = 0) and for the radiation (w = 1/3) we obtain, respectively:

ρM = ρM,0

( a
a0

)−3

= ρM,0(1 + z)3 and ρR = ρR,0

( a
a0

)−4

= ρR,0(1 + z)4. (1.6.19)

The density evolution depends on the value of w. This can be used to determine which component
dominates over the others at a given redshift. Indeed we can note that ρR decreases with time
more quickly than ρM because only radiation is affected by the redshift caused by the Hubble flow
(the matter is aggregated). With regard to the Λ (which we will assign to DE) we assume w = −1
so its contribution to ρTOT is:

ρΛ = ρΛ,0 = const. (1.6.20)

that means that ρΛ does not evolve with time (in fact, in the past matter and radiation dominated
on the contribute on ρTOT ).

The current density values of the various components are:

• ρR,0 = 10−34[gcm−3] −→ ΩR,0 = 10−5,

• ρM,0 ≈ 0.3ρcrit,0 −→ ΩM,0 ≈ 0.3, where we consider the sum of the contributions of dark
matter and baryons,

• ρΛ,0 ≈ 0.7ρcrit,0 −→ ΩΛ≡DE,0 ≈ 0.7,

• ρtot,0 ≈ ρcrit,0 −→ Ωtot,0 ≈ 1, i.e the data are consistent with a spatially flat Universe.

Plotting the evolution of the various density components as a function of redshift, we obtain the
bheaviours shown in Figure 1.2. Currently, we are dominated by the Λ-component (the dark
energy) and, in the future the energy density of matter and radiation will go further and further
down going to the solution of de Sitter (a flat and empty Universe, hence with k = p = ρ = 0)
while ρΛ, always remaining constant, from negligible that was at the beginning of the BB, it will
dominate more and more in the future.

As a consequence of this, we could simplify the Friedmann equations considering only the
component prevailing over the others, depending on the cosmic epoch we are studying. The
transition from one regime to another is defined by some particular values of equivalent redshift:

• matter-radiation equivalence: ρM = ρR =⇒ ρM,0(1 + zeq)
3 = ρR,0(1 + zeq)

4 =⇒ 1 + zeq =
ρM,0
ρR,0

≈ 104 −→ zeq,M−R ≈ 104
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• matter-Λ equivalence: ρM = ρΛ =⇒ ρM,0(1 + zeq)
3 = ρΛ,0 =⇒ 1 + zeq =

(
ρΛ,0

ρM,0

)1/3

≈
1.7 −→ zeq,Λ−M ≈ 0.3

Let us rearrange now the second Friedmann equation(1.5.3) considering it for t0, and dividing each
member by a2

0, while also considering the definition of H0 (1.3.7), ρcrit,0 (1.6.2) and the ρ − w
relation (1.6.18) to obtain:

( ȧ
a0

)2

= H2
0

(
1− ρ0

ρcrit,0

)
+
ρ0

(
a0

a

)3

(1 + w)

ρcrit,0

a2

a2
0

H2
0 . (1.6.21)

If we apply now the definition of Ω0 of Eq. (1.6.5), we can rewrite the last equation (1.6.21) in the
following two equivalent forms:( ȧ

a0

)2

= H2
0

[
1− Ω0 + Ω0

(a0

a

)(1+3w)]
or H2(t) = H2

0

(a0

a

)2[
(1− Ω0) + Ω0

(a0

a

)(1+3w)]
,

(1.6.22)
which provide us an analytic solution of the temporal evolution of H(t) (through a(t)), in the
case of one-component Universe. In the case of our real Universe with more components, we must
resort to numerical solutions. However, to consider more components, we can just use the definition
(1.6.13) instead of the simple Ω0 for one component, and write it as function of z instead of t:

H2(z) = H2
0 (1 + z)2

[
1−

∑
i

Ω0,wi +
∑
i

Ω0,wi(1 + z)(1+3wi)
]
, (1.6.23)

that is the H-z relation as a function of the wi parameters or, in other words, the evolution of H
with redshift z. Furthermore, it is usual to write it in the form:

H2(z) = h2
0E

2(z) with E2(z) = (1 + z)2
[
1−

∑
i

Ω0,wi +
∑
i

Ω0,wi(1 + z)(1+3wi)
]
. (1.6.24)

Given the three components of the Universe currently known, to make it explicit it would be enough
to replace the summation with the current values of the density parameters with the respective
dependencies on w of (1 + z). Hence (1− Ωtot,0) is a measure of the curvature of the Universe.

1.7 Inevitability of the Big Bang in Friedmann Universes
If we consider the First Friedmann equation (1.5.2) together with the form (1.6.15) of the equation
of state, we can write it as:

ä = −4

3
πGρ(1 + 3w)a. (1.7.1)

Then, from the definition of cS with constant entropy (1.6.17), we have seen that to have cS < c
we need that (1 + 3w) > 0 and then, ultimately, that ä < 0, i.e a decelerating Universe (without
considering Λ). But, all observations show that H > 0 (the Universe is expanding itself) thus,
given its definition, this means that ȧ > 0.

In practice, the equation (1.7.1) is saying us that the function a(t) must have negative concavity
and no flexes: this means that the curve of a(t), sooner or later, has to cross the t-axes when going
back in time. In other words there must exist an initial instant in which the Universe began, i.e
the Big Bang. The following growth of the Universe is not due to some kind of pressure, but rather
it is intrinsically determined by the conditions of homogeneity and isotropy laid down by the CP.
In the past there was a singularity (the BB), that is a point in which a = 0. It ensures us that
the age of Universe t0 < H−1

0 , too, with H−1
0 called Hubble time. We can understand better that,

looking at Figure 1.3.
Furthermore, because ρ ∝ a−3(1+w), when a = 0 (i.e at the BB where the Universe radius, given
by a, was null) the density of Universe tends to infinite (and the temperature too). The Big Bang
model cannot be avoided considering a Universe based on the Friedmann’s equation, unless we
change the definition of w (by adding Λ for example) not to give up the CP. When we are in
proximity of the BB, we need necessarily a new gravitational theory which accounts for quantum
effects on cosmological scale, to be able to study this singularity which seems to be only a limit of
our classical theory of gravity (General Relativity).
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Figure 1.3: The time evolution of the Universe scale factor, a(t), for open (black, Ω < 1) and closed
(red, Ω > 1) geometries. The dashed line is the first derivative of a(t), which intercepts the time
axis at the 0-time (the BB). The vertical black line indicates t0, i.e the present time. The Hubble
time is indicated on the x-axis. Credits: lezione5.pdf

general pure matter (w = 0) pure radiation (w = 1
3 )

a a(t) = a0

(
t
t0

) 2
3(1+w)

a(t) ∝ t2/3 a(t) ∝ t1/2

t t(z) = t0(1 + z)
2

3(1+w) t(z) ∝ (1 + z)−3/2 t(z) ∝ (1 + z)−2

H H(t) = 2
3(1+w) t

−1 H(t) = 2
3t H(t) = 1

2t

t0 t0 = 2
3(1+w)

1
H0

t0 = 2
3H0

t0 = 1
2H0

q q = 1+3w
2 q = 1

2 q = 1
ρ ρ = 1

6πG(1+w)2
1
t2 ρ = 1

6πG
1
t2 ρ = 3

32πG
1
t2

Table 1.1: This Table provides a list of some useful equations in the EdS Universe both for a
generic fluid and for matter-dominated and radiation-dominated models, obtained keeping on mind
the previous definition of the various quantities.

1.8 Flat and curved (open or closed) Universes: general re-
sults

Here we summarise the solutions of the Friedmann equation in the form (1.6.23) for the three
models of possible Universes: flat, open and closed.

Let us start with the simplest model: a flat Universe with only one component (e.g. matter or
radiation), Ω0 = 1, called Einstein-de Sitter model (EdS). Equation (1.6.23), in this case, becomes:

H(z) = H0(1 + z)
3(1+w)

2 . (1.8.1)

It is interesting to note some properties of the EdS Universe for a generic fluid, arising from
the table 1.1:

• the trend of a(t) and t(z), together with the assumption of the Zel’dovich interval (1.6.16)
tells us that the expansion will never change its trend and it will continue to grow to infinite;

• H(t) is a decreasing function of t, hence going into the past, the expansion is getting faster
and faster and for t −→ 0 (i.e going towards the BB moment), H −→∞;
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• from the definition of t0 we can note that, for EdS models, the measure of H0 gives directly
the age of Universe;

• because q = const., in the EdS Universes the expansion decelerates constantly;

• into EdS models, ρ ∝ t−2; indeed this is a reasonable fact because the expansion dilutes its
components.

All these equations are valid at high-redshift, i.e very closely to the BB instant. Indeed, also
curved Universes, approaching the BB, behave as flat. Furthermore, as we mentioned before, each
model gives analytical solutions only for one-component Universes, so far from reality. For this
reason, the EdS model is very useful in certain epochs of the history of the Universe, where only
one component dominates over the others.

Let us now briefly analyse the case of curved Universes, considering models with a single
component, characterised by Ωw 6= 1. Referring to equation (1.6.23), for small values of a or,
equivalently, at high z we have that:

Ω0

(a0

a

)(1+3w)

� (1− Ω0). (1.8.2)

If we introduce a critical value a∗ or, equivalently z∗, such that:

Ω0

(a0

a∗

)(1+3w)

= Ω0(1 + z∗)(1+3w) = |1− Ω0|, (1.8.3)

for z � z∗ (or a � a∗), i.e closer and closer to the BB, the curvature term |1 − Ω0| is negligible
and the equation (1.6.23) simply becomes:

H(z) = H0Ω
1/2
0 (1 + z)

3(1+w)
2 . (1.8.4)

In terms of z we can say that the Universe starts to feel its curvature just for z � z∗, that is,
getting closer and closer to the present day. In other words, it is good practice to ignore the term of
curvature until a young Universe (z > 10) is studied and to consider it with a good approximation
an EdS-like Universe; vice versa to small redshifts. The impossibility to assert the curvature of the
Universe, if we consider t too close to the Big Bang, is quite problematic.

Considering an open Universe with one component (where Ωw < 1 and k = −1) we are talking
about a hyperbolyc Universe. Referring to equation (1.6.23) we can note that ȧ will never be null
and, reasonably supposing that ȧ > 0 at a certain instant t, then ȧ > 0 forever. In practice, a
tends to grow indefinitely over time. For a� a∗ (z � z∗), the equation (1.6.23) becomes:

ȧ = a0H0(1− Ω0)1/2 = const., (1.8.5)

hence a ∝ t, i.e a grows linearly with time in an open Universe. From the definition of the
deceleration parameter (1.3.17) and from the equation (1.8.5) above we can deduce that:

q = − äa
ȧ2
−→ 0 asymptotically. (1.8.6)

Consequently, at a certain moment, the expansion continues indefinitely but with a constant ve-
locity: it is a free and at constant velocity expansion that brings the Universe towards a sort of
thermal death, where the spacetime is literally stretched heterogeneously. That is called Big Rip.

Considering a closed Universe with one component (where Ωw > 1 and k = +1) we are talking
about hyperspherical Universe. In this case there is a moment tmax where ȧ(tmax) = 0. From
Eq.(1.6.23) we can find the value of a which gives us ȧ = 0, i.e the maximum of the function a(t):

amax = a0

( Ω0

Ω0 − 1

) 1
(1+3w)

, (1.8.7)

that is the value of a for which the expansion reaches its maximum before to start to contract itself
(in this maximum point the density has a minimum). In a closed Universe model there will be a
second singularity with a Universe that closes on itself going towards the so-called Big Crunch.

Note that, with the same value of H0, the age of closed Universes with positive curvature (i.e
spherical) is smaller than that of flat Universes and, vice-versa for an open Universe (compared
to a flat one): after all, having more matter (Ω > 1), the expansion is more braked in a closed
Universe.
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Figure 1.4: Four possible time evolution scenarios for the scale factor a(t). The orange curve
represents a one-component ordinary closed Universe (Ωm = 5). The blue one represents a one-
component ordinary open Universe (hence hyperbolic). The green and red lines show a one-
component and two-components flat Universes, respectively. The red one, in particular, refers to a
Universe dominated by the dark energy component (ΩΛ = 0.7), that makes it accelerating at late
times. This case is the closest one to our real Universe. Credits: WMAP − Universe

1.8.1 Time evolution of the density parameter
It is important to underline that the density parameter is a function of time, in each model. For
a Universe with one component this dependence can be analytically expressed through z:

Ω(z) =
Ω0(1 + z)(1+3w)

1− Ω0 + Ω0(1 + z)(1+3w)
. (1.8.8)

Another necessary observation: because for ordinary Universes (0 ≤ w < 1) the exponent of
(1 + z)(1+3w) must be always positive, the geometry of Universe is not able to change from the BB
until now.

1.9 Models with cosmological constant: the Lambda-CDM
model

We have already said that observational data suggest our Universe expands itself accelerating, but
this is incompatible with ordinary Universes, composed only by matter or radiation. Thus we
suppose the existence of a dark energy which dominates over the other components and it causes
an accelerated expansion. The simplest way to describe this effect is by including the cosmo-
logical constant, Λ, in the Einstein equations. We have already demonstrated that an ordinary
Universe must expand decelerating, so a Universe of only matter is incompatible with the observed
accelerated expansion.

Inserting the definition of p̃ and ρ̃ (1.5.7) into the Friedmann’s equations (1.5.2) and (1.5.3),
we obtain the first Friedmann equation with the Λ contribution:

ä = −aH2 Ωm
2

+ aH2ΩΛ with: ΩΛ ≡
Λc2

3H2
. (1.9.1)

From the definition of the deceleration parameter (1.3.17), the equation (1.9.1) brings to:

q = − ä

aH2
=

Ωm
2
− ΩΛ, (1.9.2)

hence, to have an accelerated expansion (q < 0), we must have ä > 0. So we obtain the following
condition for an accelerated expansion:

ΩΛ >
Ωm
2
. (1.9.3)
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At present days t0, data suggest that Ωm,0 ≈ 0.3 and ΩΛ,0 ≈ 0.7, hence the condition is satisfied
and it is estimated that q0 ≈ −0.55. With the same approach of Section 1.6.1, we can estimate
the redshift at the moment at which Λ starts to accelerate the Universe is zΛ ≈ 0.3.

What we have described so far about the properties of a Λ which accelerates the expansion of
the Universe, together with the percentages of the components of the Universe (see Chapter 1.1),
that justify the estimated flat geometry, and together with the CP and the existence of the CMB,
are the main properties of the Standard Cosmological Model. The model of the Universe exposed
in this section is called flat ΛCDM Model, where CDM stands for cold dark matter. To understand
the meaning of the CDM, we should confront it with the Hot dark matter (HDM) and introduce
two scale-times (timed by the expansion factor):

• ad.r. is the de-relativisation era, i.e the instant in which the characteristic velocity dispersion
of dark matter particles becomes non-relativistic (and it depends on the temperature of these
particles): more massive particles become non-relativistic before the less massive ones;

• adx is the era of decoupling from the cosmological fluid (immediately after the Big Bang, there
is only one primordial broth from which, with the passage of time, the various components
of the present day Universe have been detached), i.e the instant after which the dark matter
can interact (only gravitationally) with the other components of the Universe.

We do not yet have a clear idea of how dark matter is done but, through these two time-scales, we
can distinguish two types:

• if adx < ad.r., i.e if the dark matter became non-relativistic after the decoupling, the typical
mass of a dark matter particle must be little enough and in this case we use the definition
HDM, whose best candidate turns out to be the neutrino;

• if adx > ad.r.,i.e the dark matter became non-relativistic before the decoupling, the typical
mass of a dark matter particle must be massive and in this case we speak about CDM, whose
best candidate turns out to be the WIMPs (Weakly Interacting Massive Particles), that are
particles able to interact only through gravity and weak force (for further information about
the WIMPs see Jungman et al., 1996). A large list of dark matter particle candidates have
been suggested so far. Other kind of particles involve both modifications of the theory of
gravitay or exotic fields.

As we will see in Chapter 2, the dimensions of the primordial structures, progenitors of the current
ones, depend on the type of dark matter assumed: the CDM model is the favorite one because it
provides a hierarchical assembly of the matter where the first structures to virialize are the smaller
ones. In fact, it is what we observe. This is the Bottom-Up scenario. The opposite case, is called
Top-Down scenario.

In 1990, Efstathiou et al. (Efstathiou et al., 1990) noted that the CDM model was not able to
explain the observed distribution of cosmological structures on very large scales. So they proposed
that the Universe is now dominated by the Cosmological Constant. Nowadays, the ΛCDM model
is accepted by almost the whole scientific community, though most of its theoretical bases are still
unexplained. In particular, the physical origin of the accelerated expansion is still unknown. In
equation (1.9.1), we have the contribution of Cosmological Constant in the FLRW metric. If we set
Tµν into the equation (1.5.8), only the Λ term remains. It represents the vacuum energy, constant
in time, that provides a repulsive gravitational force, and it is described by an equation of state
with w = −1. Until now the most plausible hypothesis is the association of the vacuum energy
with the DE. However, the ΛCDM model says nothing about the physical origin of dark matter
and dark energy.
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Chapter 2

Theory of structures formation and
evolution

In this Chapter, we will discuss the cosmological context in which the clusters of galaxies formed and
evolved, through the Jeans theory. We will also discuss the aspects of the growth of perturbations
in linear and non-linear regimes (spherical collapse and mass function) and the properties of the
power spectrum, which is one of the main observables that characterise the perturbation growth.

2.1 The Jeans theory
The Jeans theory describes the formation and growth of cosmic structures as a consequence of
gravitational instabilities. Density perturbations are believed to lead this process. They are orig-
inated as small fluctuations in the density of the primordial fluid, observationally detected in the
CMB. Specifically, the density perturbation is a dimensionless quantity defined as:

δ ≡ δρ

ρ̄
=
ρ− ρ̄
ρ̄

, (2.1.1)

where ρ̄ is the mean matter density. We note that −1 ≤ δ < +∞, since ρ > 0. Observationally, the
primordial density perturbations are inferred from the CMB small temperature fluctuations, and
are of the order of δT

T̄
≈ 10−5. In the local Universe, the density fluctuations are of the order of

≈ 102 (nowadays we observe already virialized structures). So the question is how these primordial
perturbations with δ ∼ 10−5 at z ≈ 103 evolved to current values, and how they drove the collapse
and dynamical evolution of baryonic structures.

2.1.1 The Jeans scale
The Jeans scale determines the minimum size that an agglomerate of matter, with certain ther-
modynamical properties (ρ, T , etc.), must possess in order to collapse, and it depends on the
cosmological model. The not-collisional dark matter particles decouple before the baryons. There-
fore, as characteristic velocity of the dark matter component we will assume the velocity dispersion
while, for the baryons, we will use the velocity of the sound in the medium cS , as expressed in Eq.
(1.6.17).

The Jeans theory is based on the idea that the collapse is dominated by two opposite processes:
the gravitational collapse and the pressure inside the collapsing haloes, due to the thermal motions
of the particles, which opposes it. Of course, the latter must be overcame by the gravity to allow the
collapse. For a spherical collapse of a cloud of radius R, there are several approaches to determine
the Jeans scale RJ , which we list here:

• An energetic approach where the gravitational potential energy U = −GM2

R is contrasted by
the kinetic energy associated to the thermal agitation of particles K = 1

2Mv2. Equating
these two forms of energy, we obtain the equilibrium point of the halo, i.e the Jeans radius:

RJ = v

√
1

2Gρ
. (2.1.2)
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• A balance of forces approach where the gravitational force per unit mass Fg = GM
R2 is con-

trasted by the thermal pressure force Fp = pR2

M =
c2S
ρ and, equating these two forces we

obtain a slightly different form of the Jeans radius:

RJ =
cS√
Gρ

. (2.1.3)

• The last approach consists of comparing the free-fall time τff ∝ 1√
Gρ

and the crossing time
τcross = 2R

cS
(the hydrodynamic time-scale necessary for a perturbation to propagate through

the whole cloud under examination); so we obtain the last form of the Jeans radius:

RJ =
cS

2
√
Gρ

. (2.1.4)

The scales obtained with the three methods listed above are not identical for reasons of approxi-
mation, but all depend on the same thermodynamic quantity, i.e they are all expressed in a way
that RJ ∝

√
ρ. In the following discussion, we will use the notation λJ instead of RJ . It is also

convenient to define a Jeans mass:
MJ =

4

3
πρR3

J . (2.1.5)

2.1.2 The Jeans theory in a static Universe
We start assuming a known solution to the problem, to which a small perturbation is added to
study its temporal evolution. We will adopt a Newtonian treatment, considering a perfect fluid
described by five quantities: the density ρ, the pressure p, the velocity ~v, the cloud’s gravitational
potential Φ and the entropy S. The five hydro-dynamic equations that describe our system are the
following:

∂ρ
∂t + ~∇ · (ρ~v) = 0 Mass conservation equation
∂~v
∂t + (~v · ~∇)~v = − 1

ρ
~∇p− ~∇Φ Eulero’s equation (momentum conservation)

∇2Φ = 4πGρ Laplace’s equation
p = p(ρ, S) = p(ρ) Equation of state
dS
dt = 0 Adiabatic condition

(2.1.6)

Assuming an adiabatic collapse, the system reduces to four equations in four unknowns. Now
suppose we know a background solution with constant values:

ρ = ρb = const.

p = pb = const.

Φ = Φb = const.

~v = 0 = const.

(2.1.7)

Then we apply small perturbations to the background, to study how the system evolves:
ρ = ρb + δρ = ρb(1 + δ)

p = pb + δp

Φ = Φb + δΦ

~v = δ~v.

(2.1.8)

Since the perturbations are small, the theory of Jeans is linear and we can neglect all second-order
terms.

Now let us see how the first three equations of the hydrodynamic system (2.1.6) are modified,
once we insert the perturbations (2.1.8) (the equation of state will be used in the form given by
(1.6.17), because of the constant entropy of the collapsing cloud):

∂δρ
∂t + ρb~∇ · δ~v = 0 Perturbed mass conservation equation
∂δ~v
∂t = − c

2
S

ρb
~∇δρ+ ~∇δΦ Perturbed Eulero’s equation

∇2δΦ = 4πGδρ Perturbed Laplace’s equation
(2.1.9)
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The idea is to look for solutions to the system (2.1.9) in the form of plane waves:

f(~r, t) = fk exp[i~k · ~r + iωt], (2.1.10)

with ~r the spatial vector, fk the amplitude of the wave and ~k = 2π
λ k̂ the wave vector. All the

variables will be used in the phase space by means of Fourier transforms, and the new unknowns
to be solved will be the amplitude of the waves. We can find the solution of the perturbed system
in phase space by setting the determinant of the representative matrix of the system to zero. In
this way we get the so-called dispersion’s relation:

ω2 = k2c2S − 4πGρb, (2.1.11)

which links the pulsation of plane waves to the speed of sound and to the wave vector. This
equation has two possible solutions, depending on the sign of ω2, that discriminate between real
and imaginary values. Then, setting ω2 = 0 and resolving this one for |~k|, we find:

kJ =

√
4πGρb
cS

. (2.1.12)

This solution is the Jeans wave number, i.e the Jeans scale in the Fourier space. In the real space,
this scale is:

λJ =
2π

kJ
= cS

√
π

Gρb
, (2.1.13)

that is the same RJ of Eq. (2.1.3), previously found, i.e the Jeans scale. With the equation (2.1.13)
we can write the dispersion relation (2.1.12) as a function of the Jeans scale but always in the phase
space:

ω2 = k2c2S

[
1−

( λ
λJ

)2]
. (2.1.14)

Depending on the values of λ, we will have two kind of solutions:

• If λ < λJ =⇒ ω2 > 0 and the pulsation is real. So, replacing the two real values of ω
into the wave form of Eq. (2.1.10), adapted to each variable, we will have a solution whose
temporal part is imaginary but with a real phase speed and a spatial part unchanged. Hence
these two solutions become progressive plane waves, that propagate themselves in opposite
directions.

• If λ > λJ =⇒ ω2 < 0 and the pulsation is imaginary. Thus we obtain two imaginary
solutions but, this time, with a real temporal part which modifies the wave amplitude; we
obtain stationary waves with amplitude increasing over time whose solutions are:

δ(~r, t) = δk exp(i~k · ~r exp(∓|ω|t). (2.1.15)

These solutions incorporate exactly the phenomenon of the gravitational Jeans instability. The
perturbation growth is exponential. However, all these solutions are valid only if δ � 1.

2.2 The Jeans theory in expanding Universes
Let us see now how the Jeans theory is applicable in the case of our Universe, that is an expanding
Universe (because of the Hubble flow), where the expansion tends to counteract the matter’s
collapse. In this framework, the background density evolves as a function of time, ρb = ρb(t) and
the velocities are not null but obey the Hubble law: ~vb = H(t)~x.

2.2.1 The cosmological horizon
Before proceeding we must define the so-called cosmological horizon RH : this is the radius that
defines the spherical region of the Universe in causal connection with the observers, that is the
space traveled by all the photons emitted at a time less than or equal to Hubble time tH ≈ H−1

0 .
Its formal definition is:

RH(t) = a(t)

∫ t

0

cdt′

a(t′)
. (2.2.1)
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The cosmological horizon is finite and grows over time due to the expansion of the Universe,
hence the causally connected region is finite and grows faster than the speed of light, due to the
expansion caused by the Hubble flow. We can define another length, complementary to RH , called
event horizon RE , which measures that region of the Universe that has not yet entered into causal
connection with us:

RE(t) = a(t)

∫ tmax

t

cdt′

a(t′)
, (2.2.2)

with tmax that is the maximum temporal extension of the Universe.

2.2.2 Applying the Jeans theory in expanding Universes
In the following discussion we must consider three fundamental scales:

• the horizon scale, λH , which is the scale below which there is causal connection, defined as
RH in Eq. (2.2.1). On scales larger than λH the only fundamental interaction is gravity (it
is necessary to use the general relativity), while on smaller scales the other interactions of
the matter also come into play in the collapse process.

• The Jeans scale λJ : perturbations larger than this scale can increase or decrease in time,
while perturbations below this scale propagate like plane waves.

• The dissipation scale λd which is the scale below which every perturbation dissipates because
of the propagation of the waves that carry it (this dissipation occurs however separately for
dark matter and baryons).

We must also consider two fundamental scale times:

• The equivalence time teq, i.e the moment in which the matter started to dominate on the ra-
diative component and where, therefore, the radiation pressure was no longer able to contrast
the gravitational collapse of matter (principally dark matter).

• The decoupling time, which is the instant after which the baryons decoupled from the radi-
ation because the scattering rate between these two components became negligible and the
free mean path of the photons is practically infinite.

As already said, on scales λ > λH the gravity dominates, so it would be necessary to describe
the system with general relativity. The same is also true on scales λJ � λ < λH . Therefore, we
will not make a complete treatment of this situation, but only a qualitative one. Let us consider
the perturbations as small spherical (Ω > 1) and over-dense Universes with respect to a larger,
flat background Universe (EdS), in which they are immersed. With this approach we can use
the Friedmann’s equations to obtain perturbations of density dependent on time (as the Universe
expands over time):

δ(t) =
3c2

8πGa2ρb
∝ a−2(t)ρ−1

b . (2.2.3)

Thanks to the solutions to the Friedmann’s equations for EdS Universes, shown in table 1.1, from
the equation (2.2.3) we obtain that, on scales λJ � λ < λH , for t < teq (when the radiation
dominated) δrad ∝ a2 ∝ t. Instead, for t > teq the matter dominates and δmat ∝ a ∝ t2/3.
Therefore, on scales smaller than the cosmic horizon, but much larger than the Jeans scale, all the
components are decoupled and each one follows its own trend.

Now, we can analyse quantitatively the situation on scales λ < λH and in a post-teq era, i.e our
case of interest. In this treatment we shall use two different notations: the physical coordinates ~r
and the co-moving ones ~x, that are related by: ~r = a(t)~x. The velocity in physical coordinates ~u
is linked to that in co-moving coordinates by the relation:

~u = ṙ = H(t)~r + ~v, (2.2.4)

where the first term accounts for the Hubble flow and the second term ~v is called peculiar velocity
of the fluid:

~v = aẋ. (2.2.5)

The peculiar velocity describes the perturbations of the velocity field with respect to the Hubble
flow, so it is a measure of the velocity component of an object compared to the general component,
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due to the expansion of the Universe. ~v is therefore an inhomogeneity of the overall velocity
field, generated by a gravitational field acting on the matter. The two-velocity enters the hydro-
dynamic equations (2.1.6), seen in the statical approach, that now we re-write into the proper
reference system (i.e in physical coordinates) as:

(
∂ρ
∂t

)
~r

+ ~∇~r · (ρ~u) = 0 Continuity equation(
∂ṙ
∂t

)
~r

+ (~u · ∇~r)~u = − 1
ρ∇~rp−∇~rΦ Eulero’s equation

∇2
~rΦ = 4πGρ Laplace equation.

(2.2.6)

We search for solutions to this system for Universes of matter and with the same approach of
Section 2.1.2, i.e perturbing a known solution of the background:

ρ = ρb + δρ = ρb(1 + δ)

~u = H~r + ~v

Φ = Φb + δΦ

p = pb + δp.

(2.2.7)

The final perturbed system in physical coordinates ~r is:
∂δρ
∂t + ρb~∇ · ~v +H~r~∇δρ+ 3Hδρ = 0 Perturbed Continuity equation in physical coordinates
∂~v
∂t +H~v +H~r · ~∇~v = − 1

ρb
~∇δp− ~∇δΦ Perturbed Eulero’s equation in physical coordinates

∇2δΦ = 4πGδρ Perturbed Laplace equation in physical coordinates.
(2.2.8)

These are the three Hydrodynamic equations (we have assumed the adiabatic condition) that link
the perturbations to the physical space. Some terms are related exclusively to the expansion of the
Universe and will therefore not be present in co-moving coordinates. Using the relation ~r = a~x and
the transformation relations between co-moving and physical operators, we re-write the perturbed
system in co-moving coordinates ~x:
(
∂δρ
∂t

)
~x

+ ρb
a
~∇~x~v + 3Hδρ = 0 Perturbed Continuity equation in co-moving coordinates(

∂~v
∂t

)
~x

+H~v = − c
2
S

a
~∇δρ− 1

a
~∇~xδΦ Perturbed Eulero’s equation in co-moving coordinates

1
a2∇2

~x = 4πGδρ Perturbed Laplace equation in co-moving coordinates.
(2.2.9)

With the equations system (2.2.9), we are able to develop the theory of Jeans for expanding
Universes. As in the case of static Universes, we look for solutions in the form of plane waves
but, this time, assuming the amplitude of fluctuations no longer constant over time: f(~x, t) =

fk(t) exp(i~k · ~x). Then we substitute in the system (2.2.9) the wave forms of the hydrodynamic
quantities involved in order to obtain:

δ̇k +
ikvk,‖
a = 0

v̇k,‖ + ȧ
avk,‖ = − ika (c2Sδk + δΦk)

k2δΦk = −4πGa2ρbδk.

(2.2.10)

The equation system just obtained contains the hydrodynamic equations perturbed in the Fourier
space for expanding Universes on scales smaller than those of the horizon λH and after teq. We
can note that we have used the modules of various vector quantities and, in particular, the parallel
(with respect to ~k) component of the velocity field that is non-rotational. This was done because
the vertical non-divergent component of ~v decays rapidly during the expansion. After some ma-
nipulations of the system (2.2.10) we obtain a second order differential equation that describes the
temporal evolution of the density field within an expanding Universe in physical coordinates, i.e
the dispersion relation in physical coordinates:

δ̈k + 2
ȧ

a
δ̇k + (k2c2S − 4πGρb)δk = 0 (2.2.11)

where the second term takes into account the Hubble flow and depends on the cosmological model
assumed through the Hubble parameter ȧ

a = H(t), while the term k2c2Sδk takes into account the
characteristic velocity field of the fluid under examination. Hence, the relation (2.2.11) is the
general equation, valid for every cosmological model, to describe the growth of the perturbations
of the density field.
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2.3 Evolution of primordial density fluctuations
As described in Section 1.8, every kind of Universe approaching to the Big Bang behaves as flat,
one-component EdS Universe. Therefore, to be able to analyse the evolution of the primordial
density fluctuations, we have to solve the dispersion relation (2.2.11) for EdS Universes of dust.
Moreover, the theory we are going to develop will be completely linear, as the initial perturbations
start very small (we see it from the anisotropies of the CMB). In Section 2.4, we will discuss the
non-linear evolution of the fluctuations at low redshits, where the linearity breaks down.

We are under the following conditions: on scales λ < λH , at an epoch t > teq and in a flat
Universe (Ω = Ωm = 1). Referring to the solutions of the Friedmann’s equations in table 1.1, we
know that for a flat dusty Universe: ρb = 1

6πG t
−2 and H(t) = 2/3t−1 hence, replacing these values

of ρb and H(t) into the equation (2.2.11), we obtain the equation of the temporal evolution of δk:

δ̈k +
4

3

δ̇k
t

+ δk

(
k2c2S −

2

3t2

)
= 0. (2.3.1)

Furthermore, we will look for solutions in the form of a power law:

δk ∝ tα, (2.3.2)

thus, replacing the solution (2.3.2) into equation (2.3.1), we obtain the dispersion relation for EdS
Universes:

3α2 + α+
k2c2S

2πGρb
− 2 = 0, (2.3.3)

which is a second degree equation in α that admits two solutions. The only variable able to
discriminate between real and imaginary values is kJ , that is the Jeans scale in the Fourier space
or, similarly, the respective scale in real space:

kJ =
5

cS

√
πGρb

6
from which: λJ ≡

2π

kJ
=
cS
5

√
24π

Gρb
. (2.3.4)

The solutions to equation (2.3.3) are:

α1,2 =
−1± 5

√
1−

(
λJ
λ

)2

6
, (2.3.5)

from which we see that the perturbations will not grow exactly as a power law, since the scale λJ
appears in their exponent. The solutions to the equation of temporal evolution of δ (2.3.1) will be
found replacing α1,2 into the general power law form (2.3.2).

• For λ < λJ , α1 and α2 are imaginary, hence δk,± ∝ tiα1,2 . Under the Jeans scale, the
perturbations propagate while remaining sound waves.

• For λ > λJ , α1 and α2 are real, hence δk,± ∝ tα1,2 and the wave form solutions to the
dispersion relation are: δ±(~x, t) = δk,± exp(i~k ·~x) with amplitude varying in time. If we have
λ� λJ , as in Universes EdS t ∝ a3/2, we will have the two solutions:{

δ−(~x, t) ∝ t−1 ∝ a−3/2 decreasing solution
δ+(~x, t) ∝ t2/3 ∝ a growing solution.

(2.3.6)

The first solution decays and does not give rise to the formation of structures, while the second
one leads to gravitational instability. So the latter is the only cosmologically relevant solution (i.e.
δ+(~x, t)).

In the case of EdS Universes, when perturbations can grow, they do it growing proportional to
the expansion factor a. In comparison to the static Universes, where the perturbations grow with
an exponential law, in expanding Universes the growth is slower because perturbations are affected
by a negative feedback due to the Hubble flow. At a first approximation, the solution (2.3.6) is
valid for every type of matter. However, the dark matter decouples from the radiation before the
baryons, hence from the moment of decoupling, the various δ+,DM will evolve following the trend

27



Figure 2.1: The time evolution of the density contrast of baryonic (solid line) and dark (dashed line)
matter. The growth of baryon perturbations after decoupling tends asymptotically to that of dark
matter. Credits: A. Cimatti, slides of "Formation and Evolution of Galaxies", A.A. 2016/2017,
Alma Mater Studiorum - Università di Bologna

seen so far. When also the baryons are decoupled from the primordial fluid, the δDM will have
already grown a bit and the result will be that the baryons perturbations δb will not evolve freely,
but it will evolve following the gravitational potential wells of the already formed dark matter
haloes. Consequently, the growth of the baryon’s overdensities will be more rapid than δ+ ∝ a. To
be precise: δb ∝ δDM

(
1− adec

a

)
. This phenomenon is called baryon catch up (see Figure 2.1). The

baryon fluctuations measured to the present day are more pronounced than what we would have
predicted without the existence of dark matter: they should have been of the order of 10−2, while
in galaxy clusters they reach the order of 103. As the look-back time grows (going back in cosmic
time) we expect, in general, a trend of the Universe with overdensities of minor amplitude, that is
we must observe less galaxies and galaxy clusters.

For a flat Universe with a cosmological constant, the growing instability solution to the differ-
ential equation (2.2.11) can be written in integral form (as a function of redshift through H(z)):

δ+(z) = H(z)

∫ ∞
z

(1 + z′)dz′

a0H3(z′)
. (2.3.7)

For other equations of state of DE, or for more components (curvature, radiation), no general
integral expression exists, and the differential equation must be solved directly. We can provide
an approximate formula to parametrize the previous findings, the so-called growth factor f , as a
function of the density parameter evaluated at z = 0:

f(Ω0) ≡ d log δ+
d log a

≈ Ω0.55
m,0 +

ΩΛ

70

(
1 +

1

2
Ωm,0

)
. (2.3.8)

This formula shows that Λ does not play a crucial role for the growth of the fluctuations. The value
of the exponent γ depends on the gravity theory. In particular, γ ≈ 0.55 in General Relativity.
Constraining the value of γ is key to test the gravity theory on cosmological scales (for further
information about this method, see: Coles and Lucchin, 2002). In this context, we did not analyse
the solutions of the growth of the perturbations of non-flat Universes (for an analysis of these
models we refer to Peebles, 1980).

2.4 The evolution theory in the linear regime
It is thought that the seeds of density perturbations are produced at the end of the inflationary
period1. In the final oscillatory stages of the inflation, the density fluctuations δ are generated with

1The inflation theory describes the early Universe during its exponential expansion just after the Big Bang (as
theorized by A. Guth in Guth, 1981)
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a stochastic and quasi-Gaussian (it is a truncated Gaussian distribution because −1 � δ < ∞)
distribution. The density perturbations are defined as follows: δ(~x) = ρ(~x)−ρb

ρb
. If we measured

their value in different positions of the Universe, we would have that the probability to have a
perturbation with δ value at a certain point, P (δ), is a Gaussian distribution. Note that this
argument is currently valid on very large scales while, on galactic or cluster scales, we would not
observe a Gaussian distribution. Furthermore, the P (δ) field grows spontaneously thanks to the
homogeneity and isotropy of the Universe. Being P (δ) Gaussian, it is defined only by its average
< δ(~x) > and variance < δ2(~x) >. However, by definition, the average of a stochastic fluctuation
is null, hence the only value that defines this field is the variance.

To have a good statisticF, we would need a sufficiently large sample (i.e we would like to observe
the phenomenon many times): it is not the case of our Universe, because the sample consists of only
one element (our Universe itself) and we are not able to reproduce another Universe empirically, of
course. To solve the problem we may invoke the ergodic hypothesis: the average between multiple
volumes is equivalent to the spatial average between sufficiently large, and not overlapping, sub-
volumes of a single volume. This hypothesis means that, thanks to the existence of the CP, we can
consider our Universe as a group of many sub-Universes. It is based on the fact that sufficiently
large regions of the Universe, and sufficiently separated, are statistically independent from each
other2.

Nevertheless, these sub-volumes will not stay independent long, because of the gravity action.
So, it is convenient to describe a generic fluctuation as a superposition of plane waves in Fourier
space, that have the advantage to be independent during the evolution. This approach requires a
statistical treatment of the initial perturbations. The spatial Fourier transform of the δ(~x) is:

δ(~k) ≡ 1

(2π)3

∫
δ(~x) exp(−i~k · ~x)d3~x, (2.4.1)

which has the dimensions of a volume (instead δ(~x) is dimensionless).

2.4.1 The correlation function and the power spectrum
In statistical mechanics, the correlation function is a measure of the order level of a system that
describes how the microscopic variables of a system are connected to each other. In cosmology, it
measures how the fluctuations δ co-vary on average across the spacetime. Specifically, the two-point
correlation function (2PCF) is defined as follows:

ξ(~r) =< δ(~x)δ(~x+ ~r) >, (2.4.2)

that is the average of the product between two values of the field of fluctuations, taken between
two points at co-moving distance |~r| = r. This function quantifies the spatial clustering of the
objects. If we define ξ(~r) as the Fourier anti-transform of the function:

< δ(~k)δ∗(~k′) >= (2π)3P (k)δ3
D(~k − ~k′), (2.4.3)

with P (k) called the power spectrum, and δD(~k + ~k′) the delta of Dirac (we use −k′ because
δ∗(k) = δ(−k)), we can rewrite it in the form:

ξ(~r) =
1

(2π)3

∫
P (k) exp(i~k · ~r)d3~k. (2.4.4)

Equation (2.4.4) expresses the Wiener-Khintchine theorem: the power spectrum P (k) is the equiv-
alent, in the Fourier space, of the correlation function ξ(~r) in the real space3.

We note that P (k) ∝< δ(k)δ(k′) >∝< δ2(~k) >, hence the power spectrum tells us what is
the mean quadratic measure (or variance), through a normalisation factor, of the amplitude of a
perturbation with wave number ~k, in the Fourier space.

2In this sense, the ergodic hypothesis, together with the CP, is called the Fair Simple hypothesis.
3The power spectrum has the dimension of the inverse of a volume, instead the correlation function is dimen-

sionless. The field δ(~x) is a real quantity, while its Fourier transform δ(~k) is imaginary.
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2.4.2 Punctual variance of the field and mass variance
The variance of a Gaussian field in three dimensions is defined as the mean quadratic value of
the field itself and, in the case of the real density field δ(~x), this variance is given by σ2 =<
|δ(~x)|2 >=< δ2(~x) >. Applying the ergodic hypothesis, we can divide the Universe into a large
number of independent V∞ volumes4 and compute σ2 as a quadratic spatial mean of δ, within each
volume and averaged across all volumes. So, the definition of power spectrum (2.4.3) helps us to
define the punctual variance of the field:

σ2 =
1

(2π)3

∫ +∞

−∞
P (k)d3~k or σ2 =

1

(2π)3

∫ +∞

−∞
k2P (k)d~k (in spherical coordinates). (2.4.5)

It can be noted that σ2 does not depend on spatial position but only on time. The variance is the
integral of the power spectrum over the whole Fourier space (while it is called punctual because
it is such in real space), save for a factor (2π)−3. Thus, the variance is an integral information on
the power spectrum.

However, measuring the density field of the Universe is not trivial because, from an observational
point of view, we can only get information on over-dense regions that emit radiation. So the idea
will be to count the galaxies (or clusters of galaxies) filling a given volume of the Universe. Anyway,
this will introduce uncertainties mainly due to the fact that density is a continuous and punctually
defined function while the distribution of objects in the Universe is a discrete quantity. Let us
define the fluctuations on the average number of galaxies within a given volume V :

δg =
Ng(V )− < Ng(V ) >

< Ng(V ) >
. (2.4.6)

Since we want information about the mass distribution, and since nothing assures us that galaxies
are the ideal tracers of matter distribution, we suppose for simplicity to have a distribution of
identical galaxies, and correct δg for a bias parameter b:

δg =
Ng(V )− < Ng(V ) >

< Ng(V ) >
=
Mg(V )− < Mg(V ) >

< Mg(V ) >
= bδM . (2.4.7)

The bias b contains all our ignorance about the formation and evolution of the galaxies used as
tracers (that is the uncertainty about the percentage of dark matter associated with the different
tracers). We will assume b = const and the existence of a linear relationship between the number
of galaxies and the total mass, contained in a volume (it is an approximation to the first order).

We can move from δM to the usual δ, carrying out a convolution that filters the field using
a suitable window function. Usually, a top-hat filter is preferred, defined as a function constant
inside a sphere with radius RTH and null out of this radius. It is defined as:

W (~x,RTH) =
3

4πR3
TH

θ(1− |x− x
′|

RTH
), (2.4.8)

with θ(1− |x−x
′|

RTH
) representing the Heavyside function.

The following function (2.4.9) links δM with δ:

δM (~x) = δ(~x)⊗W (~x,RTH). (2.4.9)

We can note that the top-hat filter is a low-pass filter hence, with this approach, we lose every
information on scales below RTH . Also, δM will have a Gaussian distribution described only
by variance, as it measures stochastic fluctuations, therefore with zero mean. To determine the
Gaussian form of δM we define the mass variance:

σ2
M ∝< δ2

M >=<
(δM
M̄

)2

>, (2.4.10)

where we deliberately omit the bias. Applying the Parseval theorem along with that on the
convolution, and remembering that < |δ2(~k)| >= P (k)V∞, we obtain the complete form of the
mass variance:

σ2
M = (2π)−3

∫ ∞
0

< P (k) > Ŵ 2(~k,R)d3~k (2.4.11)

4From equation (2.4.3) we can note that < δ(~k)δ∗(~k′) >= (2π)3P (k)δ3
D(~k − ~k′) = P (~k)V∞ hence the power

spectrum is proportional to the mean quadratic value of the amplitudes of the fluctuations into the Fourier space.
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that, in spherical coordinates, is:

σ2
M =

1

2π2

∫ ∞
0

k2 < P (k) > Ŵ 2(~k,R)d~k, (2.4.12)

where Ŵ is the Fourier-trasform of the window function, which is a function of R, and therefore of
M . Note that σ2

M ≤ σ2. The main contribution to σ2
M is given by perturbations with λ ≈ k−1 > R,

because those with higher frequencies tend to be averaged out within the window volume. The
Zel’dovich spectrum that we will introduce in Eq. (2.4.13) is a growing function of k, so waves
with much larger λ contribute only a small amount. Furthermore, σM grows over time.

2.4.3 The primordial Zel’dovich spectrum
The shape of the initial spectrum is assumed to be imprinted in the Universe at some arbitrarily
early time. Since the accepted inflation scenario states that the seeds of today’s structures are
generated by stochastic quantum fluctuations in a scalar field (i.e the inflaton), the initial P (k)
should produce a power-law form5:

P (k) = Akn, (2.4.13)

with A is the amplitude, and the spectral index n is generally assumed to be close to unity,
n ≈ 1, if we assume that the inflation is the moment in which the fluctuations in the metric of
the gravitational potential, which lead to the perturbations of the density field, were born (for a
complete explanation, see Zeldovich, 1972). While the shape of the power spectrum may be fixed
by these considerations, the amplitude is not and the gap should be plugged with observations.
Nowadays the most reliable measure of A is obtained from the temperature fluctuations in the
CMB.

Considering fluctuations in the gravitational potential φ on the scaleR, we have φR ∝ GδM/R ∝
δR2 ∝ σMR

2 ∝ σMM
2/3, because of the equation (2.4.10). Considering the non-linear scaling

relation (in a δ ≥ 1 regime), observed and deduced by virialized and collapsed structures (i.e the
galaxy clusters) assuming that gravity is the only responsible of collapse, one derives that if at
some time ti there is a density fluctuation δ(~x, ti), its variation in linear regime does not depend on
the scale and grows as a, or rather δ(~x, t) = δ(~x, ti)a(t) (For further information consult Giodini
et al., 2013). So for the power spectrum we will have that:

P (k, t) = P (~x, ti)a
2(t). (2.4.14)

This means that whatever the power spectrum is, it grows in time in the same way, proportionally
to a2(t). This is valid in an EdS Universe. Generalising, one has:

P (k, t) = P (~x, ti)δ
2
+(t). (2.4.15)

So, regarding the mass variance, we have that: σ2
M ∝ δ2

+(t)kn+3. When δ → 1, σ2
M → 1 whereby

when the structures collapse, the mass variance tends to unity. Because k ∝ R−1 ∝ M−1/3 we
have:

σ2
m ∝ δ2

+(t)M−(n+3)/3. (2.4.16)

An object of a given mass will form when δ2
+(t)M−(n+3)/3 ∝ 1 that is, a mass collapses when

reaches the value:
M? ∝ δ6/(n+3)

+ . (2.4.17)

From the last relation (2.4.17) it emerges that the collapsing mass of the structures grows with
time. The fact that small mass structures form before those of larger mass depends on the slope
−(n+ 3)/3. For an EdS Universe we will have:

M? ∝ a6/(n+3) ∝ (1 + z)−6/(n+3). (2.4.18)

Finally, from these relationships we obtain:

φR ∝M (1−n)/6 , (2.4.19)
5At the time of inflation there are no preferred scales (because the gravity, which is the only dominant force field

at that time, does not hold preferred scales) and a functional form that respects this property is precisely the power
law.
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from which it can be deduced that, in order to have the fluctuations of the gravity potential with
no scale dependence, it is necessary that n = 1 (Zel’dovich spectrum). As already mentioned, these
relationships are valid in the case of the formation of structures is governed solely by gravity: this
assumption is valid for very large structures such as clusters, but not for galaxies, for which, due
to all non-gravitational processes connected to the physics of the gas, the assumption is no longer
valid. In order to have a bottom-up hierarchical structure formation scenario it is necessary that
the formation time is an increasing function of the mass and that the binding energy of the system
(proportional to the average quadratic velocity) is an increasing function of the mass, because we
want the thermal contribution to be due exclusively to the adiabatic response to the growth of the
structure.

Another fundamental property of the Zeldovich spectrum is the fact that it corresponds to the
spectrum for which the perturbations have the same height when they enter the event horizon aH ;
in fact, the mass variance in this moment is:

σM (aH) ∝M (1−n)/6
H . (2.4.20)

In other words, if the primordial spectrum is that of Zel’dovich, the density perturbations enter
the event horizon at different times but all with the same amplitude, because σM = const., as
consequence of the stagnation phenomenon. The perturbations can not grow before the equivalence
between radiation and matter, due to the so-called Meszaros effect or stagnation: the radiation,
due to its high pressure, does not allow the growth of the matter perturbations, that are frozen
(for a detailed description of this phenomeon, consult Coles and Lucchin, 2002). However, if
−3 < n < 1 we will have hierarchical clustering (in agreement with the bottom-up scenario of the
ΛCDM model).

2.5 The evolution theory in the non-linear regime
After the matter-radiation equivalence, the δ matter density fluctuations on scales larger than the
Jeans mass in this era MJ(aeq) can grow because the stagnation effects disappear. So far we have
used linear approximation (valid as long as δ � 1) but, in the present Universe, there are densities
of matter, in particular the clusters, where δ ≈ 102−3. In order to study the evolution of structures
we must develop an adequate non-linear theory, much more complex than the linear one (which
provides analytical solutions) and that, excluding the analytical and ideal solution of spherical
collapse, requires a numerical treatment.

2.5.1 The spherical collapse
The simplest approach to non-linear evolution is to study fluctuations with a simple geometric
symmetry. There is an analytical solution (called spherical collapse Tolmann’s solution) in the
theory of non-linear perturbations that assumes a perfectly spherical perturbation and with null
initial co-moving speed vi = 0. For simplicity, we will assume an EdS background Universe (but
the solutions can be obtained in any type of Universe). From equation (2.3.6) we have that the
evolution of the perturbations in a linear regime follows the equation:

δ = δ+(ti)
( t
ti

)2/3

+ δ−(ti)
( t
ti

)−1

. (2.5.1)

The co-moving collapse velocity, in the EdS Universes, is: vcom = iδ̇

iki

(
t
ti

)−2/3 , thus the relation

between the proper velocity and δ̇, v = iδ̇
k , provides us the evolution of the speed of collapse in

linear regime:

v =
i

kiti

[2

3
δ+(ti)

( t
ti

)1/3

− δ−(ti)
( t
ti

)−4/3]
. (2.5.2)

We have imposed the condition that vi = v(ti) = 0, assuming the initial instant ti = 0, thus,
replacing those two values into equation (2.5.1), we obtain that: δ−(ti) = 2

3δ+(ti) and we can
rewrite equation (2.5.1) as:

δ(ti) =
5

3
δ+(ti). (2.5.3)
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In other words, of all the initial perturbation δ(ti) only three fifths of it will grow and the other
two fifths will decrease, so that the perturbation will grow over time according to the equation:

δ(t) =
3

5
δ+(ti)

( t
ti

)2/3

. (2.5.4)

The perturbation is assumed to be spherical, so that it can be treated as a Universe that is
described by Friedmann’s laws. Since that Friedmann’s models predict that only closed Universes
can collapse, we impose on the perturbation that Ωp(ti) = Ωbkg(ti)(1 + δ) > 1, thus obtaining the
threshold condition for collapse:

δ+ >
3

5

1− Ωbkg(ti)

Ω(ti)(1 + zi)
. (2.5.5)

From this report we find that, in closed and flat background Universes, any overdensity can collapse;
instead, in the case of open Universes, the perturbation must exceed a certain threshold in order
to collapse. The density of the perturbation will reach its maximum at the turn-around time tmax
after which the collapse begins

tmax =

√
3π

32G
ρ−1
p (tmax) (2.5.6)

and with:
ρp(tmax) =

3π

32G
t−2
max , (2.5.7)

at this moment the perturbation is detached from the Hubble flow of the background Universe to
reverse trend and collapse. It can be estimated that, at the turn-around time, the perturbation is
already non linear: δ(tmax) ≈ 4.6. Note that, if we had used a linear approach we have obtained
that δlin(tmax) ≈ 1.07, because the linear theory gives solutions poorly dependent on the assumed
cosmology.

The simulations show that the perturbation ceases to collapse, reaching a physical dimension of
equilibrium Re, at the time te ≈ 2tmax. After this last moment, the overdensity begins to stabilize,
oscillating around its own Re, until it is virialized to tvir ≈ 3tmax. Between te and tvir the value
of the perturbation δ remains unchanged and it is the background that instead expands in this
period of time, decreasing its density as a−3. For this reason, the density contrast between the
overdensity and the background universe reaches up to about 400, to virialization. It should be
noted that, despite the sphericity of the collapse being very far from reality, similar results are
obtained assuming an ellipsoidal symmetry collapse. Moreover, further into the non-linear regime,
bound structures form. In this stage, the baryonic content in these objects becomes important and
the simple treatment presented in the previous Sections is no longer correct.

2.5.2 The mass and luminosity functions
In order to be able to test models of the evolution of cosmic structures, we must link these to
observables: this can be done e.g. with the mass function of cosmic structures n(M)dM , which
gives us the number of objects with a mass between M and M + dM at a given time t per unit
of volume. Let us see now how to get to define this observable. We have said that the Universe is
born with a quasi-Gaussian distribution of density fluctuations but, while such fluctuations evolve,
the peak of the original Gaussian distribution will be lowered as it increases the variance (over
time) σM . Reasoning in terms of mass rather than density (we use the function W (~x,R)), for our
Universe the Gaussian distribution is:

P (δM )dδM =
1√

2πσ2
M

exp
(
− δ2

M

2σ2
M

)
dδM , (2.5.8)

which represents the probability of having a mass fluctuation between δM and δM + dδM . Over
time the δM (t) and σM (t) values vary along with the increasing mode:{

δ(t) = δiδ+(t)

σ2
M (t) = σ2

M (ti)δ
2
+(t)

(2.5.9)

and their distribution remains Gaussian as long as we are in the linear regime. We expect structures
to be formed where there will be overdensities. We therefore find the probability that a fluctuation
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Figure 2.2: The dark matter halo mass function at different redshifts. Credits: caltech

δM exceeds a threshold value δc: P>δc(M) =
∫∞
δc
P (δM )dδM . This quantity is a function of mass,

which in turn depends on the W filter used to change from δ to δM (see equation (2.4.9)). The
idea of Press and Schechter (Press and Schechter, 1974) was to take as a threshold value the one
found in the spherical collapse model at the equilibrium time of the structure te (expressed by Eq.
(2.5.1)) but into a linear approach (found for an EdS background Universe but still valid for every
cosmological model, depending poorly on the model adopted):

δ+(te) = δc = 1.686 (2.5.10)

We can suppose that all the fluctuations of the Gaussian distribution, now evolved quite a bit, at
a certain moment have values δM > 1.686 and can collapse and form the structures. The following
is the Press and Schecter mass function:

n(M, z)dM =

√
2

π

δcρ̄M (z)

σM (z)M2

∣∣∣dlnσM
dlnM

∣∣∣ exp
(
− δc

2σ2
M (z)

)
(2.5.11)

which contains all the necessary cosmological information. The form of this distribution function
will be that of a power-law, with an exponential cut from a certain value of the mass.

Assuming a power-law form for the power spectrum as in Eq. (2.4.13), where now the spectral

index is a function of k (n=n(k)), and the variance is in the form σM =
(
M
M0

)−α
, with α = n+3

6

(as in (2.4.17)), we can simplify the term in the equation (2.5.11) as: dlnσM
dlnM = Mdσm

σMdM = α, so that
the Press and Schecter mass function becomes:

n(M)dM =

√
2

π

αρ̄M
M2
∗

( M
M∗

)α−2

exp
[
−
( M
M∗

)2α]
dM, (2.5.12)

where we use the characteristic mass (made entirely of constants but increasing over time together
with σM because dependent on n, through α):

M∗ = M0

( 2

δ2
c

)1/2α

, (2.5.13)

with M0 the normalisation mass value. In Figure 2.2 we can note the cut-off of the function
(2.5.12) for M ≈ M∗ (also-called knee), where the primordial power-law power spectrum, with
spectral index n ≈ 1, evolves assuming an exponential form. It is simple to understand the reason
of this passage looking at the two factors (the left power-law and the right exponential) of the mass
function (2.5.12). At the present time, it is found that M∗ ≈ 1015 ,M�/h, which is the mass of a
typical cluster of galaxies. Hence counting the number of clusters in the local Universe is equivalent
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Figure 2.3: Measured number density of massive galaxy clusters, at three different redshifts, com-
pared to Press-Schechter predictions for different values of the matter density contrast, as indicated
by the labels. Credits: A lightweight universe?, Bahcall, Neta A.; Fan, Xiaohui, Proceedings of
the National Academy of Sciences of the United States of America, Vol. 95, No. 11, 26.05.1998,
p. 5956-5959.

to counting how much mass is contained in the exponential tail of the mass function and, finally,
to placing constraints on two degenerate cosmological parameters: ρM (and then ΩM ) and the
amplitude of perturbations A (see equation (2.4.13)). We focus on the objects of the exponential
tail (i.e on the most massive objects) because they are objects with a higher and easily detectable
emission and, above all, because they are extremely sensitive objects to cosmology, even if they
are affected by very large errors due to the low statistics. Furthermore, this counting, made at
different redshifts, allows to make speculations on the ΛCDM model assumed because as we grow
up z we will have less and less objects of large mass (n(M) drastically decreases after the cut off
at M∗). For local clusters one has: σ8 ≈ (A = 0.5, 0.6) ∗ Ω−0.5,−0.8

0,M (Mandelbaum et al., 2013).
In Figure 2.3 the trend of the Press-Schechter mass function is shown as a function of redshift

when the density parameter changes. Operationally, the position of the knee, and therefore of the
exponential tail, will depend on the variance that we will write as:

σ2
8 = (2π)−2

∫ ∞
0

P (k)k2W (k,R8)dk = A(2π)−2

∫ ∞
0

kn+2T 2(k)W (k,R8)dk (2.5.14)

with:
P (k) = AknT 2(k). (2.5.15)

The term that heavily influences the variance is the normalisation A of the spectrum (the amplitude
of the fluctuations) that assumes constant values in various periods of the Universe.

The mass function is analogous to the Schechter luminosity function:

Φ(L) = ALβ exp
(
− L

L∗

)
, (2.5.16)

with A the normalisation, β = α − 2 the slope and L∗ the knee luminosity (i.e the luminosity
associated with objects with a characteristic massM∗). For further information see the Subsection
3.2.1. The luminosity (Eq.(2.5.16)) and the mass (Eq.(2.5.12)) functions have exactly the same
shape, so L∗ marks the transition from the power-law to the exponential form. The Schechter
luminosity function finds its theoretical justification, in fact, in the Press and Schechter mass
function but is the one that actually is used in a first analysis, because L is a direct observable,
contrary to the mass that must be inferred. Assuming a constant mass-luminosity ratio M

L = const.,
we can link the mass function n(M) to the luminosity one Φ(L) according to the relation:

Φ(L) = n(M)
dM
dL

. (2.5.17)
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With reference to Figure 2.3, the galaxy clusters describe the part of the mass function corre-
sponding to the high masses (the exponential tail). Smaller masses correspond to haloes hosting
single galaxies, characterised by β ≈ 1(=⇒ α = β + 2 ≈ −1). Because α = (n+ 3)/6, for galaxies
we have n ≈ 3, but to have hierarchical clustering it must be valid that −3 < n < 1. The fact
that the matter has a Press-Schechter distribution which does not match the Schechter function
of luminosity, means that there is an excess of dark matter haloes that are not bright. The basic
issue is that the baryons are collisional and therefore it is not correct to assume M/L = const. for
galaxies while, for clusters, it is a valid assumption because their potential wells are so deep that
they suffer much less from the energy of baryons.
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Chapter 3

Clusters of galaxies

Galaxies are not evenly distributed in the Universe, but tend to cluster in groups or clusters of
galaxies. In this thesis work we will use galaxy clusters as cosmological probes, in a way that will
be clear later when we will analyse our data. In this Chapter and in the following one we will
introduce the physical bases of our analysis. Specifically, this section will be focused on the main
properties of galaxy clusters which, although not all of them necessary for our thesis work, will be
quoted for completeness.

Galaxy clusters represent the largest gravitationally and virialised bound systems in the Uni-
verse: this makes them important in cosmology as they trace the highest density peaks of large-scale
structures (see for instance Subsection 2.5.2). Clusters extend for about 1− 4 Mpc. Nevertheless,
our final goal will be to study their extension far beyond the viral radius, thanks to the lensing
distortion that they cause on the background galaxies, by means of the so-called 2-halo term. They
have brightness in the optical (400 − 700 nm) and X-ray (1 − 100 keV) bands of 1046erg/s and
1043−45erg/s, respectively. Clusters with masses of the order of 1013M� contain a small number
of galaxies and are called groups. Instead, the biggest clusters reach masses of the order of 1015M�
and contain up to about 1000 galaxies. Note that we are talking about the total mass: baryons plus
dark matter. Although clusters are made up of a large number of galaxies, these ones contribute
only to 5% to the total mass, which is composed of dark matter as dominant component (80%),
and intracluster medium (ICM, 15%), as evidenced by the gravitational lensing and by the X-ray
emission of the ICM gas, respectively.

In this Chapter, we will present an overall description of the main cluster properties, including
the various classification methods, the physical properties (luminosity function, spatial distribution
and mass), the aspects related to X-ray observations and the main scaling relations that characterise
the clusters. Finally, we will talk about various methods for identification of galaxy clusters from
optical surveys. We will focus mainly on a powerful algorithm for cluster detection in optical
surveys, called AMICO Bellagamba et al. (2018), explaining its main properties and detecting
method, and how it was used by Maturi et al. (2018) to collect the cluster sample used in the
analysis performed in this thesis work.

3.1 Classification of galaxy clusters
George Ogden Abell built a catalogue of galaxy clusters identifying areas of sky with overdensities
of galaxies. He counted all the galaxies within a fixed projected radius and within a range of
magnitudes m3 ≤ m ≤ m3 − 2, being m3 the apparent magnitude of the third most bright galaxy
of the cluster. These galaxies are placed within a circumference of angular radius θA ≈ 1.7′/z
(0.02 ≤ z ≤ 0.2). The redshift z is estimated from the assumption that the brightness of the tenth
most brilliant galaxy in a cluster is the same for all the clusters (for a complete explanation see
Abell, 1958; Abell and Seligman, 1965). Subsequently, an extension of this catalogue was made
by Abell, Corwin and Olowin (ACO catalogue: Abell et al., 1989). However, cluster selection
by galaxy overdensities presents problems related to projection effects since clusters are three-
dimensional objects, while galaxy counts are based on the projection of galaxies in the sky. The
random overdensities produced by projection along the line of sight can be erroneously considered
as clusters of galaxies. On the contrary, due to the fluctuations in density of galaxies, a cluster
at high redshift can be interpreted as a non-significant fluctuation. Despite these problems, the
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Figure 3.1: Measured composite cluster galaxy luminosity distribution compared to the Schechter
(1976) model. Filled circles show the luminosity function including cD galaxies. Credits: Schechter

spectroscopic analysis performed for many clusters in the Abell catalogue did reveal that the
redshift estimates were accurate, so the Abell and ACO catalogues are still widely used. Based
on these catalogues, the clusters are divided into six classes of richness (i.e the excess of galaxies
brighter than the limiting magnitude used to define the cluster), listed from 0 to 5 according to
the number of galaxies belonging to the cluster. The class 5 corresponds to the clusters containing
more than 300 galaxies brighter than the limiting magnitude, while the class 0 refers to groups
containing from 30 to 49 galaxies.

Another type of cluster classification was made by Fritz Zwicky (Zwicky, 1933, 1937), who,
taking into account the morphology, divided the clusters into regular (compact) and irregular
(open). This classification gives an indication of the physical differences between the clusters, such
as the correlation between the morphology and the properties of the clusters. For example, regular
clusters are dominated by early-type galaxies, often present a central dominant (cD) galaxy in
the centre, have a very high central density of galaxies and are characterised by a high richness.
Instead, irregular clusters are less rich, contain a quantity of spirals similar to the distribution of
field galaxies and are less dense at the centre.

3.2 Physical properties

3.2.1 The luminosity function
The Schechter luminosity function gives the numerical spatial density of galaxies having a certain
luminosity. Looking at any galaxy cluster, we see a wide range of galaxy luminosities. The
respective luminosity function specifies the relative number of galaxies at each luminosity. If we
are interested in knowing the numerical density of galaxies with luminosity in the range between
L and L+ dL, it is necessary to consider the quantity N(L) = n(L)dL, with N(L) the number of
galaxies with luminosity L, and n(L) the numerical density of galaxies with luminosity L. We did
talk about its origin into the Subsection 2.5.2. The most used form is the one expressed by the
Schechter luminosity function model (see Figure 3.1): (Schechter, 1976):

n(L)dL = N∗

( L
L∗

)−α
exp−

L
L∗ d

( L
L∗

)
, (3.2.1)
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with α ≈ −0.8,−1.3 (from flat to steep), while N∗ is the normalisation and L∗ is a characteristic
luminosity that discriminates between the power law regime and the exponential one. This is
analogous to the mass function expressed by Eq. (2.5.16)1. The luminosity function contains
information about the following phenomena:

• primordial density fluctuations,

• processes that form or destroy galaxies,

• processes that change one type of galaxy into another (e.g. mergers, stripping),

• processes that transform mass into light.

The luminosity function is thus a fundamental observational quantity, that any theory of galaxy
formation and evolution must reproduce.

3.2.2 Spatial distribution of galaxies in clusters
The density of galaxies in most of the clusters shows a strong increase towards the centre. It can be
safely assumed that the density of galaxies in clusters, and of ICM gas, follows a radially-spherical
symmetry. Observing the distribution of the positions of the galaxies we go back to the projected
two-dimensional density distribution Σ(R), which is linked to the three-dimensional density ρ(r)
by the relation:

Σ(R) =

∫ ∞
R

rρ(r)√
r2 +R2

dr, (3.2.2)

where R is the projected radius and r the three-dimensional one. Inverting this relationship we
yield the three-dimensional density. For example, the singular isothermal sphere (SIS) profile
represents the simplest parameterization of the volumetric distribution of matter in a cluster and,
furthermore, it assumes a Maxwellian distribution of the velocities of the galaxies within the cluster.
The SIS profile is not properly physical because of the singularity that manifests itself at zero radius
and of the fact that the total mass, estimated by integrating the function out to infinite, does not
converge (Keeton, 2001). One of the most used isothermal models is the King profile (King, 1962,
1966) which is characterised by the following two equations, exploiting the further assumption that
the speed of the galaxies does not depend on the distance from the centre:

ρ(r) = ρ0

[
1 +

( r
rc

)2]−3/2

, (3.2.3)

Σ(R) = Σ0

[
1 +

( r
rc

)2]−1

, (3.2.4)

with Σ0 ≡ 2ρ0rc, where rc called core radius. This model describes accurately only the central
regions of the clusters. Another model that can describe the total density distribution of clusters
is the Navarro-Frenk-White (NFW) one (Navarro et al., 1997), that will be discussed in Chapter
4.

3.2.3 Estimation of the mass
There are various methods, more or less precise according to the observational conditions, to
estimate the cluster masses. The most used exploits the following probes: the SZ effect, cluster
scaling relations, ICM X-ray emission, gravitational lensing (that we will exploit later in this thesis
work to derive the clusters density profiles) and the virial theorem. In this Subsection we will
present the last one.

Clusters of galaxies typically contain galaxies with velocity dispersion along the line of sight of
σv ≈ 103 km/s, therefore the crossing time (which is the average time that a galaxy takes to cross
once all the cluster) is of the order of:

tcross ≈
( r

1Mpc

)( σv
103km/s

)−1

Gyr ≈ 109yr. (3.2.5)

1In 1974 Press and Schechter calculated the mass distribution of clumps emerging from the young Universe, and
in 1976 Paul Schechter applied this function to fit the luminosity distribution of galaxies in Abell clusters.
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Figure 3.2: This image of the galaxy cluster MACS J0416 combines data from three telescopes
– Hubble (showing the galaxies and stars), Chandra (diffuse X-ray emission, in blue), and the
Jansky Very Large Array (diffuse radio emission, in pink). MACS J0416 acts as a powerful natural
lens, bending and magnifying the light of distant background objects. This giant cluster has a
total mass of about 160 trillion times the mass of the Sun. As all galaxy clusters, MACS J0416
contains a significant amount of dark matter, which leaves a detectable imprint in visible light by
distorting the images of background galaxies. In this image, dark matter appears to align well
with the blue-hued hot gas. The cluster contains many other features, such as a compact core of
hot gas. Credits: HFF Team

The crossing time is an estimate of the time taken by the cluster to relax dynamically. Comparing
it with the Hubble’s time (which quantifies the age of the Universe) tH ≈ 1010h−1yr, with h ≈ 0.7,
we can infer that the clusters are dynamically stable. Therefore, the validity of the virial theorem
can be assumed, from which an estimate of the mass of the clusters is obtained:

Mvir ≈
Rσ2

v

G
≈ 1015

( σv
103km/s

)2( RG
Mpc

)
M�, (3.2.6)

with G the gravitational constant and RG = 2GMc2 the gravitational radius. With this method we
obtain a value of the order of 1015M� which, compared to the corresponding bolometric luminosity
of the cluster Lbol ≈ 1013L�, gives an M/L ratio:

M

Ltot
≈ 300h

(M�
L�

)
(3.2.7)

As said in Subsection 2.5.2, this ratio is likely constant and reliable in the case of clusters, and it
clearly indicates that clusters contain much more mass than that visible through galaxies and gas
in emission, confirming the fact that they are dominated by dark matter.

3.3 X-ray emission from clusters
Clusters of galaxies are very bright X-ray sources: Lx ∼ 1043−45erg/s. This is an emission of an
extended (i.e non-point-like) type, so it is not produced by single galaxies. A typical example of
cluster diffuse emission, including that in X-ray, is shown in Figure 3.2. From the Spectral Energy
Distribution (SED) it is deduced that the main process of thermal emission is the bremsstrahlung
(or free-free emission) from collisionally ionized hot ICM gas (at a temperature of 107−8K)2. This

2Indeed, in the centre of the almost all the relaxed clusters, where the Bright Central Galaxies (BCG) are
present, there is also a strong synchrotron non-thermal X-ray emission produced by the central AGN (Active
Galactic Nucleus).
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hot gas is characterised by a bolometric emissivity:

ε ∝ T 1/2Z2n2
eḡ ∝ n2

eΛc(T ), (3.3.1)

where Z is the atomic number, ḡ is the average Gaunt factor (which represents a correction term
for the effects related to quantum mechanics and for distant collisions), ne the number density of
the electrons (that are the main actor in the free-free emission) and Λc ∝ T 1/2 it is the cooling
function for free-free emission of a ionized gas (see Cavaliere and Fusco-Femiano, 1976). The
cooling time of this gas (the time-scale that quantifies the average time necessary to a gas, in
hydrostatic equilibrium, to cool) is tcool = kBT

nΛc(T ) ∝ T 1/2n−1. This last equation shows that in
the inner regions, hotter and more dense, the cooling time decreases so as to pass part of the
ICM in the cold phase, which does not emit more X-ray radiation. This is the so-called cool-core
(Raymond and Smith, 1977). In the case of regular clusters, it is found that the X-ray brightness
and the temperature increase with the mass of the cluster. Irregular clusters of a given mass, on
the other hand, may be hotter or colder than regular ones because, being the result of a recent
merger process, their temperature depends on the stage of this process.

The observation of the X-ray radiation allows to derive information on the characteristics of
the ICM. Assuming that the gas in the clusters is in hydrostatic equilibrium is like saying that the
condition:

dp
dr

= ρ
GM(r)

r2
(3.3.2)

is valid. Then, taking advantage of the equation of state of perfect gases, we obtain that the mass
within r is given by:

M(r) =
kBTr

2

Gµmp

(d ln ρg
dr

+
d lnT

dr

)
, (3.3.3)

where p, ρg, T are, respectively, the pressure, the density and the temperature of gas, mp is the
proton mass and µ the average molecular mass. This relationship links the mass to the temperature
and the density of the gas. However, it is not easy to measure the profiles. To derive the temper-
ature and the density, one must consider the X-brightness, through the volumetric emissivity of
bremsstrahlung: εff ∝ T−1/2n2

e. This, however, can only be observed as a projection on the sky,
i.e we observe its superficial brightness:

Iν(R) = 2

∫ ∞
R

εν(r)r√
r2 −R2

dr. (3.3.4)

Therefore, in order to obtain the profiles it is necessary to carry out a deprojection. Usually
the profiles are obtained by making data fit with the so-called β-model. This model exploits the
assumption that the density of the total matter in the cluster follows an isothermal distribution (i.e
the temperature does not depend on the radius), so that the density profile of the ICM becomes:

d ln ρ

dr
= −GM(r)

σ2
vr

2
. (3.3.5)

From Eq. (3.3.2) and from the perfect gas equation p = nkBT , we obtain the total radial density
profile:

d ln ρg
dr

= −µmp

kBT
GM(R)r2. (3.3.6)

Comparing the equations (3.3.5) and (3.3.6) we obtain that:

ρg ∝ [ρ(r)]β with: β =
µmpσ

2
v

KBTg
. (3.3.7)

Using the King model (Eq. (3.2.3) and (3.2.4)) for an isotherm mass distribution, it is found that
the density and emission profiles of the ICM are respectively given by:

ρg(r) = ρg,0

[
1 +

( r
rc

)2]−3β/2

, (3.3.8)

I(R) ∝
[
1 +

(R
rc

)2]−3β+1/2

. (3.3.9)

Both relations describe well the central areas of galaxy clusters.
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3.4 Scale relations of clusters
We have already mentioned and briefly introduced the scale relationships in Chapter 2, recalling
the work of Giodini et al. (2013). Now, with referement to Mandelbaum et al. (2013), we summarily
present the most used cluster scale relationships.

Mass-temperature relationship

One of the most solid scaling relation is that between mass and temperature. For a virialized mass,
one has T ∝ M

rvir
(see Neumann and Arnaud, 1999). It is generally assumed that rvir = r200

3, for
which the mass included within this radius is

M200 =
4π

3
200ρcritr

3
200. (3.4.1)

Thus we obtain the mass-temperature scale-relation:

T ∝M2/3
200 . (3.4.2)

The haloes are parameterised by the mass M200 which depends on the cosmological model and
redshift z, because ρ200 = ρ̄(z)

Ω(z) = 3H2

8πG , where ρ̄(z) and Ω(z) are the average density of the Universe
and the density parameter at a given redshift, respectively.

Mass-luminosity relation

Assuming that the ICM temperature is determined only by gravitational processes, it is obtained
that:

Lx ∝ ρgM200T
1/2. (3.4.3)

Combining this result with the scaling relation between mass and temperature (3.4.2), we obtain
the mass-luminosity scale-relation for the bolometric luminosity (see Maughan, 2007):

Lx ∝M4/3
200 . (3.4.4)

Y-mass relation

The Y Compton parameter is associated to the inverse Compton (IC) effect, which is related to the
interaction between electrons and photons. In the IC effect the photons, being less energetic than
the electrons with which they interact, gain energy in the collisions (with the photons of the CMB
in this case) and their spectral distribution is distorted, allowing to identify clusters (for further
information see Sunyaev and Zeldovich, 1980). Since this parameter is such that: Y ∝ TM , we
obtain (see Maughan, 2007) the Y-mass scale-relation:

Y ∝M5/3. (3.4.5)

3.5 Detection of clusters in optical surveys: methods, appli-
cations and advantages

Clusters of galaxies can not only be characterised but also identified using multi-band observations.
By exploiting observational data in the Optical and Near Infrared bands, it is possible to identify
clusters of galaxies by looking for overdensities of galaxies. Indeed, galaxy clusters were historically
acknowledged as overdensities of galaxies in optical images (e.g Abell, 1958). This technique allows
to cover large areas of the sky. However, more precise measurements are necessary on the individual
galaxies. It is important to discriminate between proper physical clustered objects and clumps
originated from random alignments and non-collapsed overdensities due to the matter large-scale
distributions. Furthermore, during the observation of a specific area of the sky, we receive a
signal from both galaxies that compose the cluster and from the galaxies of the field. In order to
understand what are the cluster galaxies, one of the best ways is to derive the galaxy redshifts

3r200 is the radius within which there is a density contrast equal to 200 times the critical density of the Universe
ρcrit (see Eq. (1.6.1))
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from their emission spectrum or, where there are no spectra, from photometric data, which are
however less precise than spectroscopic ones.

Clusters of galaxies play an important role both in the study of the formation and evolution
of the galaxies in their environment and in the determination of cosmological parameters. In
the latter, the evolution of the mass spectrum of clusters and the mass-to-light ratio allow us to
constrain the mass density contrast, Ωm, and the amplitude of the perturbation spectrum, σ8 (as
done in Oukbir and Blanchard, 1992). So, the advantage offered by having a sample with a large
redshift coverage is clear. Anyway, as noted by Yee and Gladders (2002): searching clusters using
optical images is generally affected from one major deficiency. The projection of galaxies along the
line of sight produces contaminating signals in the search for over-dense regions in 3-D space. This
projection effect becomes increasingly more severe at higher and higher redshift, as the column
of accumulated foreground galaxies renders the overdensity produced by a galaxy cluster almost
impossible to detect, except for the richest clusters. The problem of projection contamination
has caused optical searches to be considered as unreliable, and their selection functions difficult
to quantify. This considerations were made in 2002. Instead, in 2019, Bellagamba et al. (2019)
replied that ongoing and upcoming photometric surveys will increase the current census of clusters
of galaxies by orders of magnitude, pushing the limits of detection towards lower masses and higher
redshifts.

In order to make the most of this amount of photometric information useful for astrophysics
and cosmology, it is essential to understand how to link the measured properties of a galaxies to
the total mass of clusters, made almost entirely by dark matter. Unluckily, the relation between
the total mass of a cluster and the properties of its galaxies is unseen in complex, and not yet
well understood, astrophysical processes. The details of these processes are difficult to model both
theoretically and through simulations. Because of this, there is not a clear mass proxy in the galaxy
distribution and, furthermore, scaling relations between the mass and any galaxy observable can
only be calibrated empirically. Various different mass proxies have been suggested in the literature,
of which the most used the ones are based on the number of (red) galaxies inside a given radius
(Andreon and Hurn, 2010; Rykoff et al., 2012), on photometric stellar mass estimates (Pereira
et al., 2018) and on their luminosities (Mulroy et al., 2014).

One of the best ways to achieve well-founded cluster mass estimates, is to benefit from weak
gravitational lensing, the mark on background galaxies observed shapes of the light deflection due
to the intervening cluster gravitational potential. We will discuss about weak lensing in Chapter
4. Gravitational lensing is dependent only on the total matter distribution in the cluster and
it supplies mass estimates which are not based on any assumption on the physical state of the
clusters, contrarily to methods which depend on the gas properties (such as X-ray observations or
the Sunyaev-Zel’dovich effect on the CMB). Furthermore, gravitational lensing is often one of the
primary goals of current and future photometric surveys, thus enabling the calibration of optical
observables of photometrically-selected clusters within the same data-set. Consequently, although
large samples of clusters was also drawn from X-ray observations or through the detection of the
Sunyaev-Zel’dovich (SZ) effect on the CMB, the photometric observations remain the most promis-
ing source of discovery and characterisation of new clusters of galaxies. This applies especially to
the wide ongoing and planned photometric surveys such as the Dark Energy Survey (DES The
Dark Energy Survey Collaboration, 2005), the Kilo Degree Survey (KiDS, Radovich et al., 2017;
de Jong et al., 2017) and the European Space Agency Cosmic Vision mission Euclid (see Laureijs
et al., 2011).

Galaxy clusters are detected, in photometric data, by running algorithms which search for not-
negligible cluster-scale overdensities in the galaxy distribution. Usually one or more observables,
related to the properties and abundance of galaxies, are estimated and employed in selecting the
clusters, during this procedure. So the mass proxies, and the derived mass-scaling relations, are
often estimated directly by the cluster finders (e.g. Parroni et al., 2017; Simet et al., 2017). In the
next Section 3.6 we will present an algorithm which is able to efficiently perform this task.

3.6 The AMICO detection algorithm
AMICO, which stands for Adaptive Matched Identifier of Clustered Objects, is an algorithm for
the detection of galaxy clusters in photometric surveys. AMICO is built on the Optimal Filtering
technique, which maximizes the S/N of the clusters and takes advantage of the statistical properties
of both field galaxies and galaxy clusters. The Optimal Filtering formalism enables to reliably
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combine optical data with other observables such as weak lensing, SZ and X-ray observations. A
more detailed description of AMICO can be found in Bellagamba et al. (2018), while for a further
application of the algorithm to real data see Maturi et al. (2018). This algorithm adopts an updated
iterative approach for the extraction of cluster candidates from the map produced by the filter.
Moreover, AMICO can use an arbitrary number of physical quantities which are able to describe
various galaxy cluster properties. In this section we will present its main properties and concepts,
as well as the features recently implemented and the statistical assumptions on which it is based.

3.6.1 Linear optimal matched filtering
AMICO is built upon a linear optimal matched filter method (for information about the optimal
filtering general technique, see e.g. Maturi et al., 2005, 2007; Viola et al., 2010; Bellagamba et al.,
2011). A recent application of the method to photometric data is presented in Radovich et al.
(2017). Within this context, the data, d(~x) = s(~x) + n(~x), are written as the superimposition of
the signal we are interested in, i.e the galaxy clusters signal s( ~X−ray) = Ac( ~X−ray), and a noise
component, n( ~X − ray), characterising the contamination originated by the field galaxies. The
filter itself is a kernel used to convolve the data, and it is obtained with a constrained minimisation
procedure to ensure that the measured signal amplitude A is unbiased and with minimum variance.
The amplitude A is a measure of cluster galaxy abundance in units of the cluster model. The
Optimal Filtering allows to either consider or neglect an arbitrary number of galaxy properties
in the model, such as magnitudes or colours, the presence of a BCG, or even photometric and
morphological classifications. It is the algorithm itself that chooses the most suitable properties
of the cluster detection in the available data-set, thus providing opportune weights to the galaxies
in the catalogue. Despite this capability of AMICO, Maturi et al. (2018) limited their analysis to
the case where the data points ~xi = (~θi,mi, pi(z)) represent individual galaxies (marked with i)
featured by sky coordinates, ~θi, an r-band magnitude, mi, and a photometric redshift distribution,
pi(z). As we will make use of their cluster catalogue in our analysis, in the following we will
describe the application of AMICO to the same data-set and with the same settings. The previously
mentioned convolution, returning an evaluation for A, is estimated on a three-dimensional grid,
(~θc, zc), with resolution of 0.3′ through the sky and 0.01 in redshift, and is discretized as a sum
over galaxies:

A(~θc, zc) = α−1(zc)

Ngal∑
i=1

C(zc; ~θi − ~θc,mi)p(zc)

N(mi, zc)
−B(zc). (3.6.1)

In the previous equation, N and C describe the properties of the field and cluster galaxy distribu-
tions (at redshift zc), respectively, as will be detailed in Subsection 3.6.4. The factor α deals with
the filter normalisation, making sure that the amplitude A is a measure of the cluster signal in
units of the cluster model Mc (see Eq. (3.6.9)). B is a background subtraction term quantifying
the average contribution of the field galaxies to the total signal amplitude. The definition of B is
given as B(zc) = α−1(zc)β(zc), where β(zc) is the total number of galaxies in the cluster model
at redshift zc. In fact, the subtraction of B(zc) in Eq. (3.6.1) ensure that A = 0 if the galaxy
distribution around a given position corresponds to the field one. The expected r.m.s. (root mean
square) of the amplitude is given by:

σA(~θc, zc) = α−1(zc) +A(~θc, zc)
γ(zc)

α2(zc)
, (3.6.2)

where the first term refers to the stochastic fluctuations of the background and the second one is
related to the Poissonian fluctuations caused by the galaxies of a cluster with amplitude A. The
factors B, α, and γ are properties of the filter, and only depend on the cluster4 and field galaxy
models. The definitions of α and γ are provided in Subsection 3.6.2.

Once the amplitude A has been computed for all angular and redshift positions, the first cluster
candidate is then picked out as the location with positive amplitude and the largest likelihood (look
at Appendix A for the definition of likelihood):

L(~θc, zc) = L0 +A2(~θc, zc)α(zc) ∆L(~θc, zc) = A2(~θc, zc)α(zc). (3.6.3)
4The redshift distribution of the model is based on the average p(z) of the input galaxies as detailed in Bellagamba

et al. (2018).
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In this context, L0 is a constant of no relevance which is no further discussed. Given a cluster
detection marked by j, the probability of all galaxies in that region to be its members is estimated
as:

Pi(j) = Pf,i
AjCj(~θi − ~θj ,mi)pi(zj)

AjC(~θi − ~θj ,mi)pi(zj) +N(Mi, zj)
, (3.6.4)

with Pf,i ≡ 1−
∑
j Pi(j) that is the probability of the i-th galaxy to belong to the field. A galaxy

could be associated to more than one detection because detections can partially overlap. To go
ahead with the search of clusters, AMICO removes from the amplitude map the contribute of the
last found detection and re-evaluates the likelihood and variance before identifying a new candidate.
The elimination of a detection is done by exploiting the membership probabilistic association of
the galaxies to a detection, Pi(j), in this way:

Anew(~θj , zk) = A(~θj , zk)−
Ngal∑
i=1

Cj(~θi − ~θc,mi)p(zk)

N(mi, zk)
. (3.6.5)

This signal subtraction enables a better identification of objects which might be confused with
those with larger amplitudes. We refer to this process as cleaning. This iterative process proceeds
until a chosen minimum S/N is reached, S/N := A/σA.

3.6.2 Features of the algorithm
To be able to exactly normalise the amplitude A and evaluate its uncertainty σA, AMICO cal-
culates the quantities α(zc) and γ(zc), which depend on the properties of the redshift probability
distributions of the galaxy sample. In Bellagamba et al. (2018), this was done by using q(zc, z),
the typical redshift probability distribution for a galaxy which lies at redshift zc , computed as:

q(zc, z) =
(Ngal∑
i=1

pi(zc)
)−1

Ngal∑
i=1

pi(z − zc + zpeak,i)pi(zc), (3.6.6)

where zpeak.i is the most probable redshift for the i-th galaxy. In Maturi et al. (2018), this treatment
has been improved in two ways. Firstly, AMICO computes the photo-z properties as a function
of the r-band magnitude, to catch the different precision of photo-zs that depends on the quality
of the galaxy photometry. Secondly, it substitute q with two different statistics q1 and q2 defined,
respectively, by:

q1(m, zp, zc) =
( ∑
zpeak,i=zp

pi(zp)
)−1 ∑

zpeak,i=zp

pi(zp)pi(zc) (3.6.7)

and

q2(m, zp, zc) =
(Ngal∑
i=1

pi(zc)
)−1 ∑

zpeak,i=zp

pi(zc)pi(zp), (3.6.8)

where zpeak,i = zp means that the sum is done only on the galaxies whose photo-z probability
peak corresponds to zp. In other words, q1 describes the typical photometric redshift (photo-z)
distribution p(z) that peaks at zp, while q2 describes the probability distribution for the peak,
zp, of a galaxy that is located at redshift zc. They enable to measure the typical precision of the
redshift probability distribution as a function of z, but also the small-scale features of the p(z)-
peaks distribution, removing the smoothing that was implicit in equation (3.6.6). With these two
new quantities, the constants α(zc) and γ(zc) can be now defined as:

α(zc) =

∫
M2
c (~θ − ~θc,m)q1(m, zp, zc)q2(m, zc, zp)

N(m, zc)
d2θdmdzp (3.6.9)

and

γ(zc) =

∫
M3
c (~θ − ~θc,m)q2

1(m, zp, zc)q2(m, zc, zp)

N2(m, zc)
d2θdmdzp. (3.6.10)
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3.6.3 Mass proxies and cluster richness
As introduced in Subsection 3.6.1, the main output of the linear optimal matched filter is the
amplitude, A, expressed by the equation (3.6.5). In this subsection, we will show that AMICO
gets two other mass proxies based on the probabilistic membership association of the galaxies (Eq.
(3.6.4)). The first one is the apparent richness that is defined as the sum of the probabilities of all
galaxies associated to the j− th detection,

λj =

Ngal∑
i=1

Pi(j). (3.6.11)

The apparent richness represents the number of visible galaxies belonging to a detection. Of course,
this number depends upon the cosmic distance at which a cluster is situated so that λ depends on
the redshift. Indeed, the farther is the cluster, the smaller the number of visible members. The
convenience of this quantity with respect to the amplitude A is that it is connected to a direct
observable, that is the number of visible galaxies.

Another proxy is the intrinsic richness, defined in an alike way but by summing over the
galaxies brighter than m∗ + 1.5 and within the virial radius, R200:

λ∗,j =

Ngal∑
i=1

Pi(j) with

{
mi < m∗(zj) + 1.5

ri(j) < R200(zj)
. (3.6.12)

The radial truncation R200 and m∗ are free parameters of the model used for the construction of
the filter (see Subsection 3.6.4), that are adopted for internal consistency. Clearly each detection
has its own R200. We could scale the radial cut-off with the detection amplitude A or the apparent
richness λ, but this would introduce an additional stochastic scatter given by the uncertainty of
these quantities5. Nevertheless, λ∗ is an almost redshift independent quantity which can better
characterise the clusters mass. As in the work by Maturi et al. (2018), m∗ + 1.5 should be well
below the magnitude limit for the galaxy sample in the entire redshift range considered.

Summarising, AMICO delivers three mass proxy:

• The amplitude A, the natural output of the filter that is a measure of galaxy abundance
through an optimal filter;

• The apparent richness λ, that indicates the number of visible galaxies;

• The intrinsic richness λ∗, the sum of membership probabilities in a consistent radial and
magnitude range across redshift (as λ but for r < R200 and m < m∗ + 1.5).

3.6.4 Model description: cluster and field galaxies
In this section we will discuss specifically the model adopted in Maturi et al. (2018) since our thesis
work is based on the galaxy cluster catalogue that they extracted.

The cluster model, C(zc; r,m), characterises the expected galaxy distribution as a function of
the distance of the i-th galaxy from the cluster centre, r = |~θi − ~θc|, and r-band magnitude m for
a cluster at redshift zc. The cluster model is built from a luminosity function Φ(m) and a radial
profile Ψ(r) as:

C(r,m) = Φ(m)Ψ(r), (3.6.13)

where we assume an implicit zc redshift dependence. The parameters for these distributions are
taken from Hennig et al. (2017), that analyse a cluster sample, detected through the SZ effect,
from Dark Energy Survey (DES) data. These clusters cover a redshift range which is roughly
comparable to the one of Maturi et al. (2018), and the detection via the SZ effect prevents any
selection bias linked to the optical properties of the galaxies in clusters, which could introduce
systematics in the detection process. Precisely, the luminosity function Φ(m) obeys a Schechter
function (Schechter, 1976):

Φ(m) = 10−0.4(m−m∗)(β+1) exp[−10−0.4(m−m∗)]. (3.6.14)
5Note that these definitions depend on the conversion from angular to physical distances and therefore imply the

assumption of a specific cosmological model.
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Figure 3.3: Top panel: the luminosity function of field galaxies, i.e the noise component (blue)
and the one of the cluster model (red), at z = 0.35 (solid lines) and z = 0.45 (dashed lines) in the
KiDS-DR3 cluster search with AMICO. Bottom panel: the magnitude distribution of the resulting
filters. Credits: Maturi et al. (2018)

Note that in the previous equation we ignore the normalisation, as it will be fixed by the constants
during the filter construction. We adopted a mean faint-end slope β ≈ −1, in agreement with
Hennig et al. (2017). A Navarro-Frenk-White radial profile (NFW Navarro et al., 1997) is exploited:

Ψ(r) =
C0

r
rs

(
1 + r

rs

)2 , (3.6.15)

where the scale radius rs depends on the concentration parameter c via rs ≡ R200/c200. For this
cluster model it is considered a value of c = 3.59 and an R200 corresponding to a mass M200 =
1014M�/h, typical for the cluster sample at the redshift range we aim at. The normalisation
parameter C0 is such that the total number of galaxies N200 inside R200 and below m∗ + 2 is
coherent with what was found by Hennig et al. (2017). For a mass M200 = 1014M�/h, this
corresponds to N200 = 22.9.

The field galaxies distribution N(m, zc) can be approximated by the total distribution in the
galaxy sample, as the cluster component is small. For each redshift zc , N(m, zc) is built weighing
each galaxy with its redshift probability distribution p(zc). For illustration purposes, it is showed
in the top panel of Figure 3.3 the luminosity function of field galaxies and of the cluster model at
redshift z = 0.35 (solid lines) and z = 0.45 (dashed lines) in the KiDS-DR3 cluster search with
AMICO (Maturi et al., 2018). The magnitude dependence of the algorithm filter, arising from the
usage of the luminosity functions, is presented in the bottom panel of the same figure. Such filter
turns out to be a band-pass filter which gives more weight to the galaxies with a certain luminosity
on the bright end side: the higher the redshift, the larger the magnitude which the filter peaks at.
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Chapter 4

Gravitational lensing

Gravitational lensing is a phenomenon that consists in the deflection of the radiation emitted by
a source due to the presence of a very massive object interposed between the source itself and the
observer, as predicted by General Relativity. Concretely, the curvature of spacetime is modified
because of this mass, which behaves in a similar way to an optical lens, with refractive effects and
an apparent time-delay. The resulting effect can consist in the production of multiple images (in
case of strong lensing) or pure distortions of the source shape (almost always in presence of weak
lensing) and in the intensification of the apparent brightness of this, generated by the convergence
of light rays (as example, see Figure 4.1). In principle, we can measure and use both effects to
estimate the projected masses, because the amplitude of the distortion ensures a direct measure
of the lens gravitational tidal field. This is because the latter is independent of the nature of the
dark matter or the dynamical state of the system of interest. In particular, this is really helpful
for galaxy clusters, which are dynamically young and often in a state of merging.

When the source is at large angular distances from the geometric centre of the lens, its emitted
radiation will be affected very weakly by the presence of the lens: in this case the effect is called
weak lensing. In the opposite case of a source at an angular distance close to lens geometric centre,
we talk about strong lensing. This Chapter will explain the fundamental notions of gravitational
lensing, focusing mainly on weak lensing, as this is the main observational tool of the background
source signal to probe the large-scale structures. In particular, the phenomenon of gravitational
lensing produced by galaxy clusters will be described. Precisely, the effects of distortion (shear
and amplification) that are induced on the light rays coming from the galaxies located behind the
lenses will be highlighted. Weak lensing by clusters and also some of the techniques for obtaining
the mass of the lens cluster through gravitational lensing will be discussed.

Most of the topics we will discuss up to the Section 4.4 are taken from the review that forms the:
Weak Lensing part of the Saas-Fee Advanced Course on Gravitational Lensing, by Peter Schneider
(Schneider, 2006) and, partly, from the lectures of Massimo Meneghetti (visit the the site: lectures
to see the full document). The last part, which will deal with the specifics of weak lensing from
clusters, draws the main notions from Bartelmann and Schneider (2001).

4.1 Basics of gravitational lensing
The gravitational light deflection:

• is independent of nature and state of deflecting matter causing the gravitational field, and
depends only on the total mass of the lens,

• causes changes of apparent position of the light source or multiple imaging of this one,

• causes magnification and shape distortion of the source (differential light deflection).

For these reasons the gravitational lens effect can be used to estimate the mass distribution of the
lens and the brightness distribution of the source. It can also be used to probe the geometry of the
space between source, lens and observer and then, ultimately, the geometry of the Universe and its
history of expansion through the so-called cosmic shear. The theory of cosmic shear was elaborated
around the ’90s, based on the concept that the Universe behaves like a huge gravitational lens:
that is, because of massive structures along the line of sight, the shape of distant galaxies changes.
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Figure 4.1: Subaru image of SDSS J1050+0017, one of the galaxy clusters used for the gravitational
lensing analysis. The arrows indicate background galaxies whose appearance has been distorted
by strong gravitational lensing, forming arcs and multiple images. Credits: subaru

Observing wide fields and averaging on a vast sample of galaxies, we can see how the cosmic
shear (i.e the distortions of the shape of the galaxies) is correlated on different scales, obtaining
information on the distribution of matter in the Universe, on the power spectrum and on the
growth of structures.

Gravitational lensing describes phenomena of gravitational light deflection in the weak-field,
small deflection limit. We define weak lens a massive object whose Newtonian gravitational po-
tential Φ is such that: Φ

c2 � 1. This is a virtually valid approximation for almost all cases of
astrophysical interest (for a normal cluster Φ

c2 ≈ 10−4). Strong-field light deflection (important for
light propagation near black holes and neutron stars) usually is not covered by the gravitational
lensing theory. The basic theory of gravity, and of light propagation in a gravitational field is Gen-
eral Relativity: photons travel along null geodesics of the space-time metric that are described by
a second-order differential equation. In gravitational lensing, several simplifications apply, owing
to restriction to weak fields, and thus small deflections.

4.2 Deflection angle and lens equation
Deflection by a point mass M Let us consider the deflection of a light ray by a spherically

symmetric mass M. From the Schwarzschild metric (see Schwarzschild, 1916) one finds the Einstein
deflection angle:

α̂ =
4GM

c2ξ
=

2Rs
ξ
, (4.2.1)

with ξ the impact parameter of a light ray and Rs = 2GM
c2 the Schwarzschild radius that indicates

the ideal event horizon radius for an object with mass M. Eq. (4.2.1) is valid for ξ � Rs (or α̂� 1
i.e the small deflection angle limit) and in the weak-field regime Φ

c2 � 1.

4.2.1 Deflection by a mass distribution
In the weak field regime, the General Relativity can be linearised as the deflection angle depends
linearly on the mass. Thus, the deflection angle of a mass distribution can be considered as a
superposition of deflections of mass elements: dm = ρ(~r)dV .

Let us indicate (ξ1(λ), ξ2(λ), r3(λ)) as the light ray trajectory, with the incoming ray propa-
gating along r3. If the deflection is small then ξ(λ) ≈ const. near the mass concentration, and we
can apply the Born approximation of a geometrically thin lens. Generally, the scale within which
the deflection occurs (which corresponds to the size of the lens) is much smaller than the overall
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Figure 4.2: Scheme of the geometric system source-lens-observer in geometrically-thin lens approx-
imation. Credits: Bartelmann and Schneider (2001)

dimensions of the observer, lens and source system, so the mass distribution of the lens can be
projected along the line of sight and can be considered planar.

Considering more realistic lens models, three-dimensional distributions should be considered.
However, in the case of clusters, this thin-screen approximation is justified by the fact that the
lenses are much smaller than the overall distances of the system. Hence, with the assumption that
the lens has a planar distribution, we get the deflection angle for a planar lens:

~̂α(ξ) =
4G

c2

∑
dm(ξ′1, ξ

′
2, r
′
3)

~ξ − ~ξ′

|~ξ − ~ξ′|2
=

4G

c2

∫
d2ξ′

~ξ − ~ξ′

|~ξ − ~ξ′|2

∫
dr′3ρ(ξ′1, ξ

′
2, r
′
3). (4.2.2)

Then, the r′3-integration can be carried out, defining the surface mass density of the lens:

Σ(~ξ) ≡
∫

dr′3ρ(ξ′1, ξ
′
2, r
′
3) (4.2.3)

and, therefore, we can rewrite the Eq. (4.2.2) in a more compact form:

~̂α(~ξ) =
4G

c2

∫
d2ξ′Σ(~ξ′)

~ξ − ~ξ′

|~ξ − ~ξ′|2
. (4.2.4)

Eq. (4.2.4) is valid if the impact parameter near the lens is much smaller than the characteristic
scale of the mass distribution and if every kind of lens (galaxies, clusters, etc.) is localized1 and
all relevant angles are small (e.g. for galactic lenses α̂ ≤ 1” and for cluster lenses α̂ ≤ 30”). So,
the properties of a gravitational lens depend only on its surface-mass density Σ.

The lens equation

With reference to Figure 4.2, we can write the equation which relates the true position of the
source to its observed position2:

~η =
Ds

Dd

~ξ −Dds~̂α(~ξ) with: ~η = Ds
~β and ~ξ = Ddθ. (4.2.5)

1Eq. (4.2.4) is not valid for large-scale structures, i.e for the cosmic shear.
2In a first approach with a regular geometrical approximation, we can study this phenomenon with classical

Newtonian gravity, without the necessity of the General Relativity.
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Now, we can write the lens equation in its compact form:

~β = ~θ − Dds

Ds
~̂α(Dd

~θ) ≡ ~θ − ~α(~θ), (4.2.6)

with ~α(~θ) = Dds
Dd

~̂α called scaled deflection angle. Note that Dd +Dds 6= Ds because of the Hubble
flow. However, this purely geometrical derivation is valid in a cosmological setting.

We can define the dimensionless surface mass density (or convergence):

κ(~θ) :=
Σ(Dd

~θ)

Σcrit
, (4.2.7)

with Σcrit called critical surface mass density:

Σcrit ≡
c2

4πG

Ds

DdDds
, (4.2.8)

that depends only on the distances. Then, we can rewrite the scaled deflection angle as a function
of the convergence κ:

~α(~θ) = (π)−1

∫
R2

d2θ′κ(~θ′)
~θ − ~θ′

|~θ − ~θ′|2
. (4.2.9)

Now, using the convergence, we can redefine the method to distinguish the regime of a lens: lenses
with κ ∼ 1 are called strong lenses while, those with κ� 1 everywhere are weak lenses. The lens
equation ~β = ~θ− ~α (4.2.6) maps ~θ → ~β from the lens plane to the source plane but, in general, this
mapping cannot be inverted: for a given source position ~β, the lens equation can have multiple
solutions ~θ, i.e multiple images.

Deflection and Fermat potentials

Since ~∇ ln |~θ| = ~θ/|~θ|2, the deflection angle can be written as:

~α = ∇ψ with: ψ(~θ) = (π)−1

∫
R2

d2θ′κ(~θ′) ln |~θ − ~θ′|, (4.2.10)

with ψ(~θ) called deflection potential. So mapping ~θ → ~β is a gradient mapping.
From ∇2 ln |~θ| = 2πδD(~θ), with δD the Dirac-delta, we finds the two-dimensional Poisson

equation:
∇2ψ = 2κ. (4.2.11)

Then, defining the Fermat potential τ :

τ(~θ, ~β) =
1

2
(~θ − ~β)2 − ψ(~θ), (4.2.12)

where ~β enters as a parameter, one sees that the lens equation can be written as:

~∇τ(~θ, ~β) = ~0. (4.2.13)

4.3 Magnification and shape distortions

4.3.1 Magnification
The gravitational light deflection conserves surface brightness. There are no emission or absorption
processes, thus the number of photons is conserved (it follows the Liouville’s theorem3), so that:

I(~θ) = I(s)[~β(~θ)], (4.3.1)
3Liouville’s theorem is an important physical theorem of the Hamiltonian mechanics and classical statistics. It

asserts that, along the trajectories of the system, the phase-space distribution function is constant. In other words,
the density of system points near a given system point moving across the phase-space is constant with time. This
density is independent of time and it is known as the classical a priori probability, in statistical mechanics.
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Figure 4.3: Representative scheme of the geometrical shape distortion of a circular light source
into an ellipse, causing the lensing shear. Credits: Bartelmann and Schneider (2001)

with I(~θ) and I(s)(~β) the surface brightness in the image and source plane, respectively.
The differential light bending implies that the beams of light are distorted. For very small light

bundles, the distortion is described by the Jacobian matrix:

A(~θ) =
∂~β

∂~θ
=
(
δij −

∂2ψ(~θ)

∂θi∂θj

)
=
(1− κ− γ1 −γ2

−γ2 1− κ+ γ1

)
, (4.3.2)

where we introduced the shear components:

γ1 =
1

2
(ψ11 − ψ22) and γ2 = ψ12. (4.3.3)

With this expression the meaning of convergence and shear clearly emerges. Eq. (4.3.2) shows
that the convergence acts isotropically on the source, dilating it of the same factor in all directions,
while the shear induces a deformation along a privileged direction.

For a small source centred on ~β0 = ~θ0 − ~α(~θ0), Eq. (4.3.1) becomes:

I(~θ = I(s)[~β0 +A(~θ0) · (~θ − ~θ0)]. (4.3.4)

Then, the image of a small circular source with radius r appears as an ellipse with semi-axes λ1r
and λ2r, where λ1 and λ2 are the eigenvalues of A. The orientation of the ellipse is determined by
the shear components γ1 and γ2 (see Figure 4.3).

If we define S and S0 as the magnified flux and the intrinsic flux of the source, respectively,
the area distortion produced by the differential deflection yields to define the scalar magnification:

µ =
S

S0
=

1

detA
=

1

(1− κ)2 − |γ|2
with: |γ| =

√
γ2

1 + γ2
2 . (4.3.5)

Thus, the intensity of γ determines the magnitude of the distortion of the source image. Through
this distortion the lens induces an amplification of the source, which is different depending on the
position of the source with respect to the lens.

Then, since A is different for different multiple images, image fluxes are different. The observed
flux ratios yield image magnification ratios. For this reason, the flux ratios can be used to constrain
lens models but the micro-lensing made by stellar-mass compact object in lens galaxy (or cluster)
or other small-scale mass structures (substructures) can affect flux ratios, rendering them less
useful.

4.3.2 Shape distortions
A typical shape distortion of background galaxies, by a massive extended lens (a cluster in this
case) is shown in Figure 4.1, where the distortion produces arcs. Of course, this effect is visible
only if the lensed source is extended. Because of lensing, the shape of extended (resolved) sources
changes, since the two eigenvalues of A are, in general, different from each other. So, we rewrite
the Jacobian matrix (4.3.2) in the form:

A(~θ) = (1− κ)
(

1− g1 −g2

−g2 1 + g1

)
, (4.3.6)
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with
gi ≡

γi
(1− κ)

(4.3.7)

the so-called reduced shear. Hence the shape distortion is determined by the reduced shear. More-
over, the reduced shear is the real direct observable that we estimate. Since the lens changes
significantly on scales larger than those of the source, we can use A because the relationship be-
tween the position of the source and that of the image is linear. This represents the basis of the
weak lensing, that works very well in a linear approach. Note that giant arcs cannot be described
by linearised lens equations, as they are too big, that is they are observed in cases of quasi-strong
lensing. In other words, the shear represents the projected tidal gravitational field of the deflector.
However, the shear (and the reduced one) is a 2-component quantity, written as a complex number:

γ = γ1 + iγ2 = |γ|e2iϕ ; g = g1 + ig2 = |g|e2iϕ. (4.3.8)

Its amplitude describes the degree of distortion, while its phase ϕ the direction. The reason for the
factor 2 in phase factor is that an ellipse transforms into itself after a rotation of 180◦. Note that
the shear is not a vector but it is a 2× 2 tensor. Vectors are defined trough their transformation
behavior under rotations. The shear is the traceless part of a symmetric tensor, which determines its
transformation behavior through e2iϕ (the transformation in a different reference frame manifests
itself in changing on the phase).

Referring to Figure 4.3, we consider a circular source with radius R. The lens distortion is
mapped by the local Jacobi matrix A and the resulting source distorted image is an ellipse with
axes:

R

1− κ− |γ|
=

R

(1− κ)(1− |g|)
and

R

1− κ+ |γ|
=

R

(1− κ)(1 + |g|)
. (4.3.9)

To first order, a circular background source is distorted into an elliptical image, with axis ratio:

r =
1− |g|
1 + |g|

, valid for: |g| < 1. (4.3.10)

This shape distortion presents the primary weak lensing observable. Such shape distortion is
very small (typically, 1% < |g| < 10%), much smaller than the intrinsic ellipticity distribution of
galaxies, so a statistical approach is required. When some galaxy images are distorted as heavily
to form arcs (see Figure 4.1) there will be many more galaxy images around the cluster that are
deformed much less. Here the distortion signal can be extracted only by statistical means. Hence, if
circular sources could be distinguished, the measured image ellipticity would straightaway furnish
the reduced shear, through the axis ratio, |g| = 1−b/a

1+b/a ⇔
b
a = 1−|g|

1+|g| , and the orientation ϕ of the
major axis. Anyway, faint galaxies are not intrinsically round, thus the observed image ellipticity
is a combination of intrinsic ellipticity and shear. To solve this problem, the strategy is to locally
average over many galaxy images, assuming the intrinsic ellipticities as randomly oriented, so that
we can calculate the local shear. Another problem is how to define the ellipticity for a source with
arbitrary isophotes or, in addition, the effect of seeing by atmospheric turbulence that will blur,
and thus circularize, the observed images. We will see how to solve this drawbacks in the next
section.

4.4 Measurements of shapes and shear
The galaxies are not elliptical (their isophotes are in general not ellipses). Thus, to define an
ellipticity for an arbitrary image shape, we will do it in terms of brightness moments. Let I(~θ) be
the brightness distribution of an image, assumed to be isolated on the sky. We define the centre
of the image:

~̄θ ≡
∫
d2θqI [I(~θ)]I(~θ)~θ∫
d2θqI [I(~θ)]I(~θ)

, (4.4.1)

where qI is a suitably chosen weight function. We define now the tensor of second-order brightness
moments:

Qij =

∫
d2θqI [I(~θ)]I(~θ)(θi − θ̄i)(θj − θ̄j)∫

d2θqI [I(~θ)]I(~θ)
, i, j ∈ {1, 2}. (4.4.2)
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Note that, for an image with circular isophotes, Q11 = Q22 and Q12 = 0. Thus, the trace of
the tensor Q characterises the image size while, the traceless part of Qij includes the ellipticity
information. From Eq. (4.4.2), we can define twocomplex ellipticities:

χ ≡ Q11 −Q22 + 2iQ12

Q11 +Q22
and ε ≡ Q11 −Q22 + 2iQ12

Q11 +Q22 + 2(Q11Q22 −Q2
12)1/2

, (4.4.3)

and both have the same phase (since they have the same numerator), but different absolute value.
Note that, in both cases, the denominator is given by the invariants of Qij , i.e invariant against
rotations. Then, for an image with elliptical isophotes of axis ratio r ≤ 1, we have:

|χ| = 1− r2

1 + r2
and |ε| = 1− r

1 + r
. (4.4.4)

Which of these two definitions is more convenient depends on the context but, anyway, one can be
transformed into the other:

ε =
χ

1 + (1− |χ|2)1/2
and χ =

2ε

1 + |ε|2
. (4.4.5)

In total analogy, one can defines the second brightness tensor Q(s)
ij , and the complex ellipticities

χ(s) and ε(s) for the unlensed source.

From source to image ellipticities With referring to the the lens equation (4.2.6), from the
equation:

Q
(s)
ij =

∫
d2βqI [I

(s)(~β)]I(βi − β̄i)(βj − β̄j)∫
d2βqI [I(s)(~β)]I

, i, j ∈ {1, 2}, (4.4.6)

one finds, with d2β = detAd2θ and ~β − ~̄β = A(~θ − ~̄θ), that:

Q(s) = AQAT = AQA, (4.4.7)

where A ≡ A(~̄θ) is the Jacobian matrix of the lens equation at the position ~̄θ. The brightness
moments of second-order transformation between source and image are provided exclusively in
terms of the Jacobian matrix A, i. e. the locally linearised lens equation. Now, using the def-
initions of complex ellipticities (4.4.3), (4.4.4) and (4.4.5), and the reduced shear g, we find the
transformations:

χ(s) =
χ− 2g + g2χ∗

1 + |g|2 − 2Re(gχ∗)
and ε(s) =

{
ε−g

1−g∗ε , if |g| ≤ 1
1−gε∗
ε∗−g∗ , if |g| > 1.

. (4.4.8)

The inverse transformations can be obtained interchanging source and image ellipticities, and
g → −g:

χ =
χ(s) + 2g + g2χ(s)∗

1 + |g|2 + 2Re(gχ(s)∗)
and ε =

{
ε(s)+g

1+g∗ε(s)
, if |g| ≤ 1

1+gε(s)∗

ε(s)∗+g∗
, if |g| > 1

. (4.4.9)

4.4.1 Estimating the reduced shear
Keeping in mind the definition of reduced shear (4.3.7) and using the assumption that the intrin-
sic orientation of galaxies is random (i.e no direction in the Universe is singled out), E(χ(s)) =
E(ε(s)) = 0 with E the expectation value, we can note that the expectation value of ε is:

E(ε) =

{
g if |g| ≤ 1

1/g∗ if |g| > 1
. (4.4.10)

So each image ellipticity provides an unbiased estimate of the local shear, though a very noisy one.
The noise is determined by the intrinsic ellipticity dispersion: σε =

√〈
ε(s)ε(s)∗

〉
. The noise can be

beaten down by averaging on many galaxy images: we live in a Universe where the sky is full of
faint galaxies. The accuracy of the shear estimate depends then on the local number density of
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galaxies for which the shape can be measured: it requires deep imaging observations. Note that in
the weak lensing regime (κ� 1, |γ| � 1) we find that:

γ ≈ g ≈ 〈ε〉 ≈ 〈χ〉
2
. (4.4.11)

This regime is of primary interest in most weak lensing applications. Only close to strong lenses
(like clusters) this weak lensing regime no longer olds. Note that the expectation value of χ depends
on the intrinsic ellipticity probability distribution function.

Tangential and cross components of shear The shear components γ1 and γ2 are defined
relative to a reference Cartesian coordinate frame but, often, it is useful to measure them with
respect to a different direction (e.g. the arcs in clusters are tangentially aligned with them). One
then wants to measure shear with respect to a given direction (here, the centre of cluster), i.e
measuring the vector components in rotated reference frames. If Φ specifies a direction, we can
define the tangential and cross components of the shear relative to this direction, respectively, as:

γt = −Re[γe−2iφ] and γ× = −Im[γe−2iφ]. (4.4.12)

For example, in case of a circularly-symmetric matter distribution, the shear at any point will be
oriented tangentially to the direction towards the centre of symmetry. Thus in this case, choosing
φ as the polar angle of a point (the centre of the cluster here), then γ× = 0. The null value of γ×
is used as a test about the reliability of a weak lensing observation by clusters: if this value differs
appreciably from 0, something went wrong during the interpretation of the lensed signal. This
check is called E-B mode, in total analogy with electric and magnetic fields, where the E-mode
field is curl-free and the B-mode field is divergence-free. Because gravitational lensing can only
produce an E-mode field, the B-mode provides another test for systematic errors.

4.4.2 Magnification effects
Magnification changes apparent brightness of sources. There are two effects:

• the flux S from a source changes according to: S = µS0 and, if µ > 1, the sources appear
brighter;

• a population of sources in the unlensed solid angle ω0 is spread over the solid angle ω = µω0

due to magnification.

These two effects affect the number counts of sources differently. Which one wins depends on the
slope of the number counts:

n(> S, z) =
1

µ(~θ, z)
n0

(
>

S

µ(~θ, z)
, z
)
, (4.4.13)

with n(> S, z) and n0(> S, z) the lensed and unlensed cumulative number counts of sources,
respectively. We report now an illustrative example of this notion: if source counts follow a power-
law, n0(> S) = aS−α, we find, for the lensed counts in a region of the sky with magnification
µ, that: n(>s)

n0(>S) = µα−1. Hence, if α > 1(< 1), the source counts are enhanced (depleted); the
steeper the counts, the stronger the effect. E.g. the Quasi Stellar Object (QSO) number counts
are steep at the bright end and flat at the faint end, thus in regions with µ > 1, bright QSO should
be over-dense and the faint ones underdense. This magnification bias is the reason why fraction of
the lensed sources is much higher in bright QSO sample than in the fainter ones.

Magnification in the weak lensing regime

Provided that κ� 1 and |γ| � 1, then:

µ ≈ 1 + 2κ and
n(> S)

n0(> S)
≈ 1 + 2(α− 1)κ. (4.4.14)

Thus, from measurement of the local number density N(> S), the convergence κ can be inferred
directly. For galaxies in B-band, α ∼ 1, but in redder bands α < 1, so a depletion is expected for
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these last ones. A further effect is that µ > 1 causes galaxies with the same surface brightness to
be larger than unlensed galaxies. In addition, the surface brightness of galaxies is a strong function
of redshift (Tolman effect: I ∝ (1 + z)−4). However, the magnification effect in weak lensing is
difficult to measure, due to the required calibration accuracy.

4.5 Lensing by clusters
Hints of strong lensing. If the deflection of the light rays is huge enough, multiple images of
the same source can be observed: these strong lensing events provide precise constraints on the
mass on scales enclosed by these images (centred on the lens centre). The appearance of strong
lensing effects by a cluster of galaxies is now seen very frequently, in particular in deep observations.
Among the various applications of strong lensing one of the most effective is the determination of
masses of galaxies or clusters. Unluckily, the effect is restricted to the inner regions, and a compari-
son with other mass proxies requires extrapolation to larger radii. Consequently, this phenomenon
can be handled to obtain very precise constraints on the mass distribution but, only in cluster
cores (for further information about strong lensing by clusters see Section 2.1 of Bartelmann and
Schneider, 2001).

Weak lensing from clusters. Anyway, the lensing effect itself is not confined to small scales.
At large radii the tidal field produces a tenuous change in the shapes of galaxies, resulting in a
coherent alignment of the sources and that can be inferred statistically. The signal is proportional
to the lens system mass so, for this reason, galaxy clusters were the first objects to be examined by
means of the weak gravitational lensing technique. The alterations in the observable properties of
galaxies, in presence of weak gravitational lensing, are smaller. So the measurement of the lensing
signal asks for an ensemble of sources (e.g. the stacked lensing shear signal) to be appreciable.
Respect to strong lensing studies, the statistical nature (because of the necessity of many different
sources) of weak lensing restricts the precision with which the masses can be estimated. The
resulting signal can then be measured, under the condition that the surface density of the sources
is high enough.

Whenever κ and γ are small, the effect of gravitational lensing is to modify the unlensed
ellipticity of a galaxy εorig (defined as the ratio (a − b)/(a + b), with a and b the lengths of the
major and minor semi-axis, respectively) to an observed value:

εobs =
εorig + g

1 + g∗εorig
≈ εorig + γ, (4.5.1)

where g is the reduced shear (see Eq. (4.3.7)) and the asterisk denotes the complex conjugate.
Hence only if γ > εorig the observed ellipticity of a single galaxy does supply a useful estimate
of the shear. A population of intrinsically round sources would thence be ideal but, in practice,
galaxies have an average intrinsic ellipticity of∼ 0.25 per component, where the exact value depends
somehow on the galaxy type.In practice, clusters of galaxies generate systematic deformations on
distant galaxies due to the high numerical density of the latter. Being on a much lower scale than
the scale on which the gravitational potential of the entire cluster varies appreciably, the signals
can be averaged using statistical techniques to determine the mass distribution of the cluster.
Assuming that galaxies are randomly oriented, the average on their forms would tend to become
circular. If the lensing is weak, the image of a circular source should appear elliptical. Under the
assumption that the original angular positions of the galaxies are distributed randomly, the shear
can be deduced by averaging over an ensemble of sources (see, e.g Mandelbaum et al., 2006a).
The measurement of the shear component γi has a statistical uncertainty given by:

σγ,i =

√
〈ε2i 〉
N
≈ 0.25√

N
, (4.5.2)

where N is the number of galaxies that is averaged to obtain the lensing signal.
Considering an isolated (cluster) lens, the effect of the weak lensing is a systematic tangential

alignment of the background galaxies images with respect to the lens. The average tangential
distortion or, simply, tangential shear, defined as:

γT = −(γ1 cos 2φ+ γ2 sin 2φ), (4.5.3)
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Figure 4.4: Example of stacked profiles of the differential surface density ∆Σ(R), in different bins
of amplitude A and redshift (see Section 3.6.1 for the definition of A). The cluster halo density
profiles are modelled with a truncated NFW profile (Eq. (5.4.1)). Redshift increases from top to
bottom, amplitude increases from left to right. In each box, the curve represents the model with
mean posterior parameters. Empty squares represent data at scales below 0.2Mpc/h, that have
not been included in the fitting procedure. Credits: Bellagamba et al. (2019)

it can therefore be used to quantify the lensing signal, where φ is the azimuthal angle with
respect to the lensing galaxy. This is a suitable quantity because, for any mass distribution, the
azimuthally averaged tangential shear 〈γT 〉, being function of the radius from the cluster centre,
can be interpreted as a mass contrast (Miralda-Escude, 1991):

〈γT 〉 (r) =
Σ̄(< r)− Σ̄(r)

Σcrit
= κ̄(< r)− κ̄(r), (4.5.4)

where Σ̄(< r) is the mean surface density within an aperture of radius r and Σ̄(r) is the azimuthally
averaged surface density at distance r. It is also common to present the lensing signal as ∆Σ(r) =
ΣcritγT (r), which is a convenient quantity when the source and lense redshifts are measurable
(see e.g Figure 4.4), as it enables a direct comparison between samples of a given lensing signal
amplitude. Anyway, note that the observed signal coincides with the reduced shear g = γ/1 − κ.
This is not a problem when considering fitting parametric models to the data, as the reduced shear
can be computed.

4.5.1 Lensing cluster models
An important consideration for weak lensing studies is that not all clusters (if any) are well de-
scribed by simple models (a complete list of cluster models is provided in Keeton, 2001). One of
the most used lens models to characterise the phenomenon of gravitational lensing, is the axial
symmetry lens. The latter have the advantage that the optical axis is chosen so that it intercepts
the plane of the lens in the centre of the lens.

A simple and useful model to compare to the data is the Singular Isothermal Sphere (SIS), as it
is obtained assuming that the lens is composed of a gas, in thermal and hydrostatic equilibrium, and
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confined by a spherical symmetry gravitational potential, with density distribution ρ(r) =
σ2
v

(2πGr2)

(σv is the velocity dispersion along the line of sight). This density radial profile can be compared
to results from redshift surveys of cluster members, which provide a dynamical mass estimation.
For this mass distribution, the tangential shear is expressed as γT (r) = κ(r) = rE/2r. rE is
the Einstein radius, which can be expressed as rE = 28.9”(σv/1000km/s)2β, where β = Dls/Ds

is the ratio of the angular diameter distance between the lens and the source and the angular
diameter distance between the observer and the source, and which quantifies the dependence of
the lensing signal amplitude on the source redshift. The slope ∂β/∂z quantifies the sensitivity to
the source redshift distribution, which is also larger at high redshifts. This adds a noise in the mass
measurements unless redshift information for the individual sources is obtained. However, note
that this profile is mostly used to describe the distribution of matter in galaxies, as it reproduces
to a flat rotation curve.

NFW profile in weak lensing

Another widely used profile is the Navarro-Frenk-White (NFW) profile, as it well characterise the
radial density trend followed by the CDM haloes. Through numerical simulations it has been
shown that haloes, over a wide range in mass, can be described by a simple fitting function
(Navarro et al., 1997). The density profile is characterised by two parameters, usually the halo
mass and the concentration c, which can be related to a characteristic scale (for its definition, see
the Eq. (4.5.5) and its description). From strong or weak lensing alone, the concentration cannot
be constrained well for individual clusters, on an observational level. The lensing is sensitive to the
total density profile, therefore we should include the baryon contribute, though their effect should
be most significant in the cluster cores, which are often excluded from the fit (e.g., as in the work
of Bellagamba et al., 2019). How much the profiles are changed depends on the baryon physics.
However the current knowledge about the baryons physics is weak. The uncertainty in the mass
estimate is widened further by the presence structures along the line of sight. The NFW density
profile itself is given by:

ρNFW (r) =
Mvir

4πf(c)

1

r(r + rs)2
, (4.5.5)

where Mvir is the mass enclosed within the virial radius rvir. Note that for r << rs, the density
goes as r−1; for r >> rs it goes as r−3. The concentration parameter c is defined as the ratio
between the rvir and the scale radius rs, c = rvir/rs and it can be expressed as argument of the
function f(c), in the form: f(c) = ln(1 + c) − c/(1 + c). Analytic expressions for the projected
cluster halo surface density and shear have been derived by Bartelmann (1996). The virial mass is
defined with respect to the mean density of the Universe at the redshift of the cluster, where the
virial overdensity is given by ∆vir ≈ 18π2 + 82ξ − 39ξ2, with ξ = Ω(z) − 1 (Bryan and Norman,
1998). For example for a standard ΛCDM cosmology, ∆vir(z = 0) = 337. Other definitions are also
used in the literature, with over densities defined with respect to the critical density ρc (defined in
Eq. (1.6.1)) at the cluster redshift:

M∆ =
4π

3
∆ρc(z)r

3
∆, (4.5.6)

where r∆ refers to the radius where the mean density is ∆ρc(z), and M∆ is the corresponding
enclosed mass. M200 is often used as a proxy of the virial mass. Albeit similar in value, its
definition is in effect different. As one must choose a definition of the mass, it is important that
this is clearly defined when listing results.

Note that compared to the singular isothermal sphere, in the case of the NFW model, the radial
profile of the lensing potential is flatter near the centre.

4.5.2 Choice of cluster centre
The choice of the cluster centre is very important to derive the lensing mass. When the adopted
centre is offset from the right position, the contrast is lowered, with the result that one has a
reduction in the observed signal and consequently in the lensing mass, as shown in Figure 4.5.
The width of the bias depends on the range of scales used to deduce the lensing mass: if the
lensing signal is measured at relatively large radii, the bias is decreased. Massive virialised (i.e
relaxed) clusters typically have well defined central galaxies, whose locations coincide with the
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Figure 4.5: The ratio of the inferred lensing mass and true mass as a function of centroid offset
roff . The lensing mass is obtained by fitting an NFW model to the shear at 200 − 750h−1

70 Kpc
(solid black curve) and 0.5− 1.5h−1

70 Mpc (dashed red curve). The blue dotted line corresponds to
the bias if all data within 750h−1

70 Kpc are used. The distribution of offsets observed for massive
clusters is indicated by the histogram. Credits: Hoekstra et al. (2011)

X-ray emission peak.4 The projected mass distribution reconstruction can, in principle, be used
to choose the cluster centre. Anyway, even for the most massive clusters, the S/N is only of order
10, and this means that using the peak position itself, might introduce a bias that produces higher
mass estimates. In case, it is possible to consider this when studying an ensemble of clusters,
but it is more convenient to use external constraints. In fact, weak lensing cluster studies usually
exploit the location of the brightest cluster galaxy, or the peak in the X-ray emission, as the centre.
The situation is further complicated when considering huge samples of clusters, since high quality
X-ray observations may not be available or cannot be reached because the masses of the targets
are low. Analysing these large samples of clusters, it is noticed that the centre “handpicking”
is therefore not functional, nor preferable. Indeed the effects of mis-centring can be considered
statistically (Johnston et al., 2007). The existence of substructure in the central regions not only
makes the choice of centre complicated, but it also leads to biases in the mass estimates when
parametric models are fitted to the signal. In confront to a unimodal density distribution, this
happens because of the substructure which also lowers the mean density contrast, as well as the
shear.

Cosmic noise. Clusters are parts of the cosmic web and are located at the intersections of fil-
aments. Hence some of this large-scale structure is physically associated with the clusters, which
makes more difficult the interpretation of the lensing results, especially when one wants to com-
pare with other mass indicators, or measure the density profiles (Hoekstra et al., 2013). This does
introduce a bias which depends on how the mass is inferred from the lensing signal. For instance,
if we restrict the model fit to R200, we can reduce the bias, compared to fits to the signal, because
the NFW model is not a good model for the description of the signal at larger radii, e.g. because
substructures are present and due to the fact that clusters themselves are clustered. Gravitational
lensing is affected by all structures along the line of sight. The large-scale structures bring excess
correlations in the shapes of the galaxies, also known as cosmic shear. Furthermore, for weak
lensing cluster studies, such excess variance behaves as a further source of noise. It is a conse-
quence of the fact that we cannot differentiate the cluster signal from the large-scale structures
contributions. However, the latter contribution disappears on average, and so it does not bias the
mass measurements. In fact, the main contributes to the cosmic noise signal come from clusters
and groups of galaxies that, in principle, we are able to identify.

4Note, however, that in merging clusters of galaxies the peak of the X-ray emission may not coincide with the
main cluster haloes.
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4.5.3 Cluster-mass cross-correlation function
A restricted number of background galaxies limits the study of single clusters to virial masses of
the order of a few times 1014M� or larger. However, it is practice use to study lower mass systems
by averaging, or stacking their signals: the resultant signal is that of the mass-weighted ensemble.
Precisely, the stacked gravitational lensing represents the cross-correlation between foreground
deflector positions and background galaxy shears. If we have a shallow but broad survey, to
compensate for the low number density, stacking the signal around a large number of lenses is an
efficacious method.

This approach was applied with great success to the Sloan Digital Sky Survey (SDSS) data
to measure the ensemble averaged lensing signal around groups and clusters (Mandelbaum et al.,
2006b; Sheldon et al., 2009). By splitting the sample of clusters into subsets based on an observable
property, such as amplitude or optical richness (as in Figure 4.4, where a clear lensing signal is
detected in all amplitude bins), we are able to determine scaling relations between the observable
and the mean mass of the sample (see, e.g., Bellagamba et al., 2019). Anyway, note here that
the interpretation of the result requires the knowledge of the intrinsic scatter between the mass
and the quantity of interest. Only for high masses the latter can be observationally ascertained;
for low masses we can rely on numerical simulations to supply a guide. The ensemble averaged
signal corresponds to the cluster-mass cross-correlation function. This reflects the fact that only
on small scales the signal coming from the main cluster halo dominates, while at large radii it is
sensitive to the clustering of clusters, which in fact provides additional cosmological information.
We are able to compute the combined signal through a (semi-)analytical approach (as suggested
by Seljak, 2000): the halo-model. It uses the fact that the NFW profile well describes individual
dark matter haloes and that we are able to estimate the halo mass function and the clustering of
haloes for a given cosmology.

As already mentioned, on small scales the lensing signal is calculated from the NFW model,
which is convolved with a probability of density distribution of offsets from the adopted centre.
This can be deduced quite directly for massive clusters but, for large samples of (optically selected)
clusters, a distribution of offsets needs to be adopted, e.g. via simulations. This first contribution
to the signal gives information about the cluster dark matter halo (and implicitly assumes that the
ICM comes behind a like distribution). The signal of the Brightest Central Galaxy (BCG) should
also be added, and can be approximated by a point mass.

On large scales the fact that clusters themselves are part of the cosmic web, and therefore that
are clustered, causes an additional signal. This can be seen clearly in Figure 4.4 for the lower mass
clusters (top-left corner): the lensing signal shows a slight excess around the 2-3 Mpc (the solid
line), compared to the NFW standard model. The signal from these adjacent haloes is described
by the 2-halo term (its usage can be seen, e.g., in Seljak, 2000), which requires the calculation of
the correlation function in the linear perturbation theory and a prescription for the linear bias as
a function of mass and redshift. A confrontation of the predicted amplitude with the observed
value can be helpful to test models of structure formation or to constrain the normalisation of the
matter power spectrum.

4.6 Cluster halo properties from weak lensing
To analyse the clusters density profiles at large radii, the weak lensing is well suited, especially when
combined with strong lensing studies. As already mentioned, this is because the weak lensing signal
can be measured up to large radii (from the cluster centre), thus investigating the gravitational
potential on large scales. Even if the outskirts were measurable, the results from most dynamic
techniques would be difficult to interpret because the most external areas of the clusters are not
fully virialised.

4.6.1 Density profiles
One of the principal quantities that can be inferred from weak lensing is the density profile of
clusters. Although this can be extrapolated for individual clusters, the allusion to a radial profile
implicitly presumes a high degree of spherical symmetry, which may not be realistic. Moreover, the
cosmic noise decreases the precision when considering only weak lensing measurements. Therefore
a right question to ask is how the average density profile of clusters looks like. If the cluster
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sample selection is not (too) sensitive to cluster orientation, the ensemble averaged cluster should
be rather spherical. These results could be directly compared to the predictions of N-body dark
matter simulations.

The studies of the density profile, through weak lensing, begins with the tangential shear profile
gt(r), which then can be converted into a projected density profile Σ(r). Instead, strong lensing
and combined methods usually yield the profile via the lensing potential. Otherwise, one can fit a
parametrized model to the tangential shear (as done, by means of stacking, by Bellagamba et al.,
2019, ,see Figure 4.4).

Results from stacking

To average out the effects of the large-scale structures on the cluster identification, stacking is
comprehensibly convenient. It also enables us to extend the range of analysis to much lower
cluster masses and study their statistical properties. The stacking process must be executed in a
sensible way that is, for example, taking into account the redshift scaling of the signals from clusters
within a (redshift) bin. Johnston et al. (2007) performed the extraction of the 3D density and mass
profiles from stacked clusters and developed numerical simulations to test the performance.

As it is easily understood, stacking methods are even more sensitive to mis-centring errors than
weak lensing studies of individual clusters. Anyway, this can be modelled (see Subsection 4.5.2)
and the drawback is exceeded by the cancellation of unrelated large-scale structures contaminants.
Moreover, the analysis aims at diminishing additive errors in the shape analysis, because they do
not contribute coherently, unless the clusters are targeted and always come into view on the same
position in the field of view.

The SDSS did provide important contributes to the lenses statistical studies, ranging from
galaxies to clusters of galaxies. For instance, Mandelbaum et al. (2006b) used the Luminous Red
Galaxy (LRG) sample to define a sample of clusters of galaxies and galaxy groups and then fitted
NFW models to the lensing signal ∆Σ(r). They found that the resulting concentrations agree well
with ΛCDMmodel predictions and, furthermore, also review extensively possible systematic effects.
Then, in a later work (Mandelbaum et al., 2008), the mass range was expanded to lower masses so
as to provide constraints on the concentration parameter over more than two orders of magnitude in
mass (1012− 5× 1014M�). Another important contribute to these studies comes from the analysis
presented in Sheldon et al. (2009), where it was studied the MaxBCG cluster catalogue and reported
meaningful ∆Σ profiles in all tested richness and (total i-band) luminosity bins, spanning a scale
between small galaxy groups and clusters. These measurements were analysed further in Johnston
et al. (2007) who fitted a halo model (in a way similar to the one of Bellagamba et al. (2019)
shown in Figure 4.4, but in luminosity bins). The optimal precision of the measurements enabled
Johnston et al. (2007) to fix the concentration as a function of halo mass, finding good agreement
with previous estimates.

About results and study cases and for individual clusters (that is not our case of interest) one
can consult Section 5.1.2 of Bartelmann and Schneider (2001).

Shapes of dark matter haloes. Numerical simulations provide important predictions about
the structure formation: dark matter haloes are tri-axial but this complicates the comparison of
weak lensing masses to other methods. This prediction, however, can be investigated through
gravitational lensing. Strong lensing studies are useful to analyse the inner regions, tough the
presence of baryons may complicate the results interpretation. Instead, the dark matter halo
shape at larger radii can be investigated through weak lensing. Although one could use mass
reconstructions for this purpose, it is better to examine the effect of an elliptical mass distribution
on the shear field.

4.6.2 Cluster masses from weak lensing
There have been and there are various successful effort to utilize the observed number density of
clusters of galaxies as a precision probe of cosmological parameters. An accurate comprehension
and interpretation of the observations relies upon the capability to correctly relate the observables
to the mass. Such scaling relations (reviewed in detail by Giodini et al., 2013) need a calibration
which is still an influential limiting factor for the precision of recent cluster surveys. Anyway,
masses estimations from weak gravitational lensing are playing an increasingly important role, so
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we highlight a few results in this subsection. One of the reasons why the weak lensing is so pop-
ular is that the method is becoming sufficiently mature, thanks to improved shear measurements.
Furthermore, also important is the fact that the cluster lensing signal can be inferred out to large
radii.

Last but not least, there is growing evidence on non-gravitational processes, like AGN feedback,
which are crucial in cluster formation. For instance, the pressure support carried by turbulent mo-
tion of the ICM, introduces biases in the hydrostatic masses, which necessarily must be calibrated
observationally. Being the weak lensing masses indifferent to the dynamical state of the cluster,
the related results can be readily compared to cosmological numerical simulations. Note that this
does not imply that weak lensing masses themselves are unbiased, only that the biases can be
reliably quantified using numerical simulations. The main obstacle arising from comparing lensing
masses with other tracers is the fact that clusters are complicated three-dimensional structures.
Even if the lensing signal measurement itself does not require assumptions about the elaborated
geometry of the cluster, comparison with other observations or predictions does rely on the as-
sumed geometry. It is nowadays clear that the bias in the (de-projected) weak lensing mass relies
on the methodology and the adopted radial range.

Results from stacking analyses

As already discussed, the signal-to-noise might be too low for clusters at high redshifts or for low
mass systems. By stacking the lensing signal from an ensemble of objects we are able nevertheless
to provide constraints on their (average) mass. For the first time, this process was performed for a
sample of 50 galaxy groups from the CNOC2 field galaxy redshift survey by Hoekstra et al. (2011),
finding that there was fairly good agreement between the lensing and dynamical mass. Although
extended to a little larger sample of galaxies groups, by various researchers, these studies were
limited by the relatively small number of systems.

Nowadays, the situation in the field of observations from stacked weak lensing is really im-
proved, and photometric data are becoming more and more accurate, thanks to the improvement
of observational tools and lensing signal extraction algorithms, as well as the quality and depth of
current optical surveys. We can see these improvements in Chapter 5, when we will discuss about
our data, on which our statistical analysis will be based.
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Chapter 5

Cluster surface density profiles from
shear stacked data

In this Chapter we will describe the survey dataset on which this thesis work is based and how
it was handled for our purposes, together with the details of the models used to subsequently
(in Chapter 6) infer cluster and cosmological parameters. With all the notions of the previous
Sections in mind, we will present our data extraction of the weak lensing signal (the shear) of a
galaxy sample of the KiDS survey, useful to reconstruct the surface density profiles of the galaxy
clusters producing such signal. Clusters have been identified and extracted from the survey using
the AMICO algorithm, described in Section 3.6, by Maturi et al. (2018). We have collected the
background galaxy signal lensed by clustered structures, from the cluster centre up to their extreme
outskirts, where the cluster halos tend to become filamentary and to connect with other clusters
to form the so-called "cosmic web". The weak lensing S/N for each detected cluster is typically
very low, so we followed a stacking approach for the signal measurement. This procedure allows
to estimate various average profiles and masses of ensembles of clusters, but this last analysis step
will be discussed in Chapter 6.

5.1 The KiDS survey
The Kilo-Degree Survey (KiDS, de Jong et al., 2013) is an optical wide-field imaging survey aiming
at mapping 1550 square degrees of extra-galactic sky in two stripes (an equatorial one, KiDS-N,
and one centred around the South Galactic Pole, KiDS-S) in four broad-band filters (u, g, r, i).
The observations are performed with the 268 Megapixels OmegaCAM wide-field imager (Kuijken,
2011), owning a mosaic of 32 science CCDs and positioned on the VLT Survey Telescope (VST).
This is an ESO telescope of 2.6 meters in diameter, located at the Paranal Observatory (for further
technical information about VST see Capaccioli and Schipani, 2011). The principal scientific goal
of KiDS is to exploit weak lensing and photometric redshift measurements to map the large-scale
matter distribution in the Universe. To this end, it is essential to have unbiased and accurate
measurements of weak lensing shear and photometric redshifts. This requires images with a high
quality and depth and a very precise calibration. The VST-OmegaCAM is the best choice for
such a survey, as it was expressly created to give excellent and uniform image quality over a large
(1 deg2) field of view with a resolution of 0.21 arcsec/pixel. Note that a field of view 1 deg wide
corresponds to ∼ 12.5Mpc/h at the median redshift of our lens sample, z ∼ 0.35. Anyway, the
huge data set provided by KiDS has many more possible applications (see for instance de Jong
et al., 2013).

The current KiDS catalogue is composed of about 100,000 sources per square degree, for a total
of almost 150 million sources over the full survey area, and the quantity of information of the whole
survey final images reaches 15TB of memory. These data are attentively and uniformly calibrated
and made usable in an easily accessible archive.

5.1.1 KiDS-DR3
DR3 stands for third Data Release. The KiDS-DR3 survey (de Jong et al., 2017) has been obtained
with the same instrumental settings of the other two previous releases (de Jong et al., 2015) that
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Figure 5.1: Sky distribution of the survey tiles released in KiDS-DR3 (green) and in the previous
releases KiDS-DR1 and KiDS-DR2 (blue). Top panel: KiDS-North. Bottom panel: KiDS- South.
The multi-band source catalogue covers the combined area (blue + green), while the full KiDS
area is shown in grey. Black dashed lines delineate the locations of the GAMA fields; the single
pointing at RA = 150 deg is centred at the COSMOS/CFHTLS D2 field. Credits: de Jong et al.
(2017)

was made public in 2013 (DR1) and 2015 (DR2). The latter contains reduced image data, source
lists and a multi-band catalogue, made by 148 survey tiles obtained with an automated masking
observation process, for a total covering of about 160 deg2. KiDS-DR3 extends the total released
data set coverage to approximately 447 deg2 with 440 survey tiles (48 736 591 sources), therefore,
with respect to the other previous releases, it has produced a considerable survey area extension
(see Figure 5.1). This release also includes photometric redshifts with the corresponding probability
distribution functions, a global improved photometric calibration, weak lensing shear catalogues
and lensing-optimized image data. Source detection, positions and shape parameters used for weak
lensing measurements are all derived from the r-band images, since these typically have the best
image quality and therefore they provide the most reliable measurements, while magnitudes are
measured in all filters using forced photometry.

One of the main improvements of KiDS-DR3, compared to DR1 and DR2, is the enhanced
photometric calibration and the inclusion of photometric redshift distribution probabilities (e.g.,
see Radovich et al., 2017; Maturi et al., 2018). Furthermore, the released DR1 and DR2 tiles formed
a very patchy on-sky distribution, while the combined set of the 440 survey tiles of DR3 mostly
comprises a small number of large contiguous areas. This enables a refinement of the photometric
calibration that exploits both the overlap between observations within a filter as well as the stellar
colours across filters (de Jong et al., 2017).

The data products that constitute the main DR3 release (stacked images, weight and flag
maps, and single-band source lists for 292 survey tiles, as well as a multi-band catalogue for the
combined DR1, DR2 and DR3 survey area of 440 survey tiles), are released via the ESO Science
Archive, and they are also accessible via the Astro-WISE system (link) and the KiDS website
http://kids.strw.leidenuniv.nl/DR3.

5.2 Our dataset
In this section, we will describe how the weak lensing measures of the KiDS-DR3 catalogue are
collected, through an appropriate stacking algorithm, to fix the shear profiles of the used galaxy
catalogue. We will also present the KiDS-AMICO clusters catalogue (Maturi et al., 2018) on
which we build these shear profiles. The AMICO algorithm (presented and tested on simulations
in Bellagamba et al., 2018) takes advantage of the known statistical properties of the field galaxies
and of galaxy clusters. Moreover, we will discuss how this algorithm could ensure a good confidence
level about the reliability of the clusters extraction. In fact, during the detection, AMICO has
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estimated the probability for each KiDS-DR3 galaxy to be a member of the clustered structures
detected by this extraction algorithm (see how in Section 3.6.1). The KiDS-DR3 shear data will
be our tools, necessary to reconstruct excess surface density profiles for clusters detected by the
algorithm, and to which we are interested in. Compared to the previous studies on the second
data release (Radovich et al., 2017), the cluster catalogue collected through AMICO by Maturi
et al. (2018), that we will exploit, takes advantage of a larger survey area, better data quality, and
significant improvements in the cluster detection algorithm. Furthermore, the data processing and
the galaxy catalogue extraction come from a KiDS-optimized pipeline running in the Astro-WISE
environment (Verdoes Kleijn et al., 2012) .

We underline the fact that the KiDS-DR3-AMICO sample of galaxy clusters on which we have
worked, has been entirely elaborated by Maturi et al. (2018). So, this step of the work is not our
original work. We did simply exploit this sample for our purposes. Every information about the
analysis coming from these data will be detailed into Chapter 6. For now, we will focus on the
KiDS galaxies and on the clusters extracted by AMICO.

5.2.1 Galaxy catalogue
We have discussed the weak lensing distortions of the background sources signal by clusters in Sec-
tion 4.5. The sources situated behind galaxy clusters look distorted by the gravitational potential
of the intervening matter. We are interested in the distorted shapes of this background sources
because they enclose the information about the matter lens distribution. We are also interested
in the source redshifts which weigh the lensing information (the distortion). Here, we will simply
review the main properties of the galaxies selected from the survey.

The KiDS galaxy catalogue provides the spatial coordinates, the 2 arcsec aperture photometry
in four bands (u, g, r, i) and photometric redshifts for all galaxies down to the 5σ limiting magni-
tudes of 24.3, 25.1, 24.9 and 23.8 in the four bands, respectively, plus other quantities describing
galaxies that we did not use. We chose to avoid the use of galaxy colors to reach a selection function
that is as little as possible sensitive to the presence (or absence) of the red-sequence of clusters
(see Maturi et al., 2018). For more precise information about the shear and redshift properties of
the entire galaxy catalogue see de Jong et al. (2017) and Hildebrandt et al. (2017).

Galaxy shape measurements

The original KiDS data shear analysis was described in Kuijken et al. (2015) and Hildebrandt et al.
(2017). The shape measurements was performed with an algorithm based on likelihood model-
fitting called LENSFIT (Miller et al., 2007, 2013) and successfully used with KiDS in Fenech Conti
et al. (2017), and in the analysis of other datasets such as CFHTLenS (Canada-France-Hawaii
Telescope Lensing Survey Miller et al., 2013), for example. In this work, the data used for shape
measurements are those in the r-band, being the ones with better seeing properties and with highest
source density. The error on the multiplicative shear calibration, estimated from simulations with
LENSFIT and benefiting from a self-calibration, is estimated on the order of 1% (Hildebrandt
et al., 2017). The final catalogue gives shear measurements for ∼ 15 million of galaxies, with an
effective number density of galaxies of neff = 8.53 galaxies arcmin−2 (following the definition by
Heymans et al., 2012), over a total effective area of 360 deg2.

Galaxies photometric redshifts

The original properties of photometric redshifts (photo-z) of KiDS galaxies are described in Kuijken
et al. (2015) and de Jong et al. (2017). The photo-zs was extracted with BPZ (Benìtez, 2000;
Hildebrandt et al., 2012), a bayesian photo-z estimator based upon template fitting, from the 4-
band (u, g, r, i). Furthermore, BPZ returns a photo-z posterior probability distribution function
which AMICO has fully exploited. When compared with spectroscopic redshifts from the GAMA
(Galaxy And Mass Assembly, Liske et al., 2015) spectroscopic survey of low redshift galaxies, the
resultant accuracy is σz ∼ 0.04(1 + z), as shown in de Jong et al. (2017).

5.2.2 Cluster catalogue
As already mentioned, the galaxy cluster catalogue we use was extracted from KiDS-DR3 with
AMICO (which is described in Section 3.6). In particular, we use the same identical cluster
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Figure 5.2: Redshift distribution of the cluster sample used in this work. The clusters have been
detected by AMICO from KiDS-DR3 data. The striped bins referred to clusters not used in the
analysis of this thesis. Credits: Bellagamba et al. (2019)

catalogue utilised by Bellagamba et al. (2019) and, consequently, its full description and validation
can be found in Maturi et al. (2018). Here, we present the main characteristics and properties
of the extracted cluster catalogue. Let us premise that the cluster detection through AMICO on
KiDS-DR3 is an enhancement of the work by Radovich et al. (2017) on DR2, both in terms of total
covered area (438 deg2 against 114 deg2) and of detection algorithm with respect to the previous
matched filter method (Bellagamba et al., 2011). From the initial covered 438 deg2, all clusters
belonging to those regions heavily affected by satellite tracks, haloes created by bright stars, and
image artefacts in general are rejected (Maturi et al., 2018). Furthermore, we select only signals
with S/N > 3.5, for the final catalogue of clusters1. Finally, we narrowed the redshift range, where
the objects fall, at 0.1 < z < 0.6 for a final sample of 6972 galaxy clusters. Objects at z < 0.1 are
discarded because of the reduced lensing power, while those at z > 0.6 because the background
galaxies density in KiDS data is too small to consent a robust weak lensing analysis. Furthermore,
collecting clusters with z < 0.6 we can robustly separate the clustered objects from the population
of background galaxies.

AMICO searches for cluster candidates by convolving the 3D galaxy distribution with a redshift-
dependent filter, produced as the ratio between a cluster model and a noise one. Such a convolution
is able to create a 3D amplitude map, where every peak constitutes a detection. Then, for each
identification, AMICO returns angular position, redshift, S/N and the signal amplitude A. We
remind that A is a measure, through an optimal filter, of the cluster galaxy abundance in units of
the cluster model, which is built starting from the known data. In Bellagamba et al. (2018) it has
been demonstrated, using simulations, that the amplitude is a well-founded mass proxy, provided
that the model calibration is correct. Its definition is given in Eq. 3.6.1. We rewrite such definition
of the signal amplitude as:

A(θc, zc) ≡ α−1(zc)

Ngal∑
i=1

Mc(θi − θc,mi)pi(zc)

N(mi, zc)
−B(zc), (5.2.1)

where Mc is the cluster model (i.e the expected density of galaxies per unit magnitude and solid
angle) at the cluster redshift zc, N is the noise distribution, pi(z), θi and mi are the photomet-
ric redshift distribution, the sky coordinates and the magnitude of the i-th galaxy, respectively.
Instead, α (Eq. (3.6.9)) and B (detailed in Subsection 3.6.1) are redshift dependent functions
providing the exact normalisation and the background subtraction, respectively.

1This choice of minimum S/N is indispensable for realising well-founded mock catalogues and derive solid sta-
tistical properties for this kind of cluster samples. The method used to assess the quality of the detections is totally
described in Section 6.1 of the Maturi et al. (2018) work, where is described the method used to produce realistic
mock catalogues, constructed from the real data themselves. This mock catalogue production method is used to
estimate the uncertainties on the quantities characterising the detections, as well as the purity and completeness of
the entire sample.
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Figure 5.3: Amplitude distribution of the cluster sample, detected by AMICO from KiDS-DR3
data. The selection is carried out with a S/N threshold, hence the amplitude threshold is not
constant in redshift. This produces the increase in cluster counts from the first to the second bin
in amplitude.

Note that the cluster model Mc is described by a luminosity function and a radial profile,
obeying to the formalism exposed in Bellagamba et al. (2018). The Mc parameter was derived
from the observed galaxy population of clusters detected through the SZ-effect (Hennig et al.,
2017), as described in detail in Maturi et al. (2018). Furthermore, AMICO attributes to each
galaxy in a sky region a probability to be part of a given detection, defined as (see also Eq. 3.6.4):

P (i ∈ j) ≡ Pf,i
AjMj(θi − θg,mi)pi(zj)

AjMj(θi − θj ,mi)pi(zj) +N(mi, zj)
, (5.2.2)

where Aj , θj and zj are the amplitude, the sky coordinates and the redshift of the j-th detection,
respectively. Pf,i is the field probability of the i-th galaxy before the j-th detection is defined.
Indeed, in this application to KiDS-DR3 data, AMICO has considered only galaxy coordinates,
r-band magnitude and the full photometric redshift distribution p(z).

The distributions in redshift and amplitude of this sample of 6972 clusters are shown in Figure
5.2 and 5.3 , respectively. In the following analysis on shear data (see Chapter 6) we will divide
this sample in three redshift bins:

• 0.1 ≤ z ≤ 0.3,

• 0.3 ≤ z ≤ 0.45,

• 0.45 ≤ z ≤ 0.6.

5.3 Weak lensing profiles
Before proceeding, we refer the reader to Chapter 4 for a general overview of gravitational lensing
and, in particular, of weak lensing by clusters (Section 4.5 and 4.6).

5.3.1 Background sources selection
To be able to collect the shear profile of a given lens (related to the density profile of the lens
that, with its gravitational potential, perturbs the background signal distribution), first of all it
is necessary to select the background galaxies, i.e sources positioned behind the lens and whose
observed shape is distorted by the intervening mass distribution. If some galaxies belonging to
the cluster, or positioned in the cluster foreground, are erroneously considered as background
galaxies, the measured lensing signal can be crucially diluted (see, e.g Broadhurst et al., 2005;
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Medezinski et al., 2007). A natural intuitive approach would be to consider all galaxies as accettable
background sources, weigh them in accordance with their redshift probability distribution, and
then deal with them individually to avoid the inclusion of some cluster members (Gruen et al.,
2014; Melchior et al., 2017). However, following Sereno et al. (2017), we choose to apply a more
conservative approach, aiming at eliminating foreground and cluster galaxies from the catalogue
by executing cuts based on photometric redshift distributions and colours. To this purpose, a first
selection is carried out to exclude the galaxies whose most likely redshift is not considerably higher
than the lens one. Precisely, galaxies with photometric redshift zs pass this cut if:

zs > zl + ∆z, (5.3.1)

where zl is the lens redshift and ∆z is conservatively set to 0.05, as this uncertainty is similar
to the typical ones on photometric redshifts in the galaxy catalogue and, moreover, satisfactorily
larger than the uncertainty on the cluster redshifts (Bellagamba et al., 2019).

A galaxy gains access to the background galaxy catalogue if it exceeds this preliminary selection
and satisfies at least one of the two following criteria, based on photo-zs and on colours respectively.

Photo-z selection

This selection criterion is based on the photometric redshift distribution p(z) and aims at selecting
and maintaining only galaxies with a plausible p(z) and which have a negligible probability of lying
at redshift equal to or lower than that of the cluster. So the following selections are performed:

1. zs,min > zl + ∆z

2. ODDS≥ 0.8

3. 0.2 ≤ zs ≤ 1.0 .

The zs,min value is the lower boundary of the region that includes the 2σ (94.5%) of the probability
density distribution. Requiring this value to be bigger than zl+∆z, galaxies with nominal redshift
higher than the lens one, but with a non-negligible probability of being at a redshift lower than
or equal to the one of the lensing cluster, are automatically excluded. The ODDS parameter
instead quantifies which fraction of the p(z) is concentrated around the peak value, exploiting this
threshold to exclude distributions with significant secondary solutions or wide tails (Coe et al.,
2006; Bellagamba et al., 2012).2 The third selection includes the range for which we expect the
most reliable source photometric redshift estimations, given the available set of bands (u g r i),
and which therefore excludes galaxies whose redshift estimation is less robust.

Colour selection

The main disadvantage of the photo-z selection just explained is the exclusion of a considerable
fraction of galaxies situated behind the cluster, since they would be helpful to enhance the shear
signal. This drawback is due to the stringent requests on the properties of the p(z) distribution.
Some part of these excluded galaxies are recovered, while maintaining a very low contaminants
fraction, by exploiting a selection based on galaxy colours (as done by Medezinski et al., 2010,
2018).

To be precise, the cut performed is:

(g − r < 0.3) OR (r − i > 1.3) OR (r − i > g − r),
2The measure of the integral of the p(z) of a galaxy, in the close proximity of the most prominent peak, is able

to provide an indication of the reliability of the redshift estimation. This can be done via the ODDS parameter,
calculated by the BPZ estimator, which is defined as

ODDS =

∫ z′+2∆z

z′−2∆z

p(z),

where z′ is the most probable redshift value, and ∆z is a free parameter, set by default in BPZ to 0.067(1+z′). This
0.067 factor represents the typical weight of the systematic uncertainties of this kind of measures. Thus an ODDS
parameter is a measure of how much the distribution is concentrated around the principal peak, i.e it quantifies the
relative importance of the most likely redshift (Hildebrandt et al., 2012). This is indeed a powerful way to assess
the goodness of the estimate. Furthermore, the fraction of galaxies with a very bad redshift estimation decreases
rapidly as ODDS increases.
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Figure 5.4: Effective number density of galaxies as a function of redshift of the total shear catalogue
(black) and of the selected background sources (filled grey). The red and blue histograms referred
to the samples selected according to the two considered criteria, based on photo-zs and colours,
respectively. Credits: Bellagamba et al. (2019)

because these criteria efficiently select galaxies at zs > 0.7. This cut was firstly proposed by
Oguri et al. (2012) for the properties of the galaxies belonging to the COSMOS catalogue (Ilbert
et al., 2009) and selecting galaxies at z ≥ 0.7. It was afterward tested and utilized by Covone
et al. (2014) and Sereno et al. (2017). In particular, the latter showed that the galaxies with
high quality spectroscopic redshifts, detected with this cut in the CFHTLS-W1 and W4 fields
with zspec > 0.63, amount to 97%. This selection delivered an effective number density of ∼ 3.15
arcmin−2 of useful background galaxies. The distribution of the selected sources as function of zs
is shown in Figure 5.4, where we can see how many background galaxies, excluded by the photo-z
selection, are recovered by the colour selection.

5.3.2 Measuring the shear profile
In Subsection 4.2.1 we discussed how to compute, from the lensing distortion angle, the surface
mass density of the lens (see Eq. (4.2.3)).

In the weak lensing regime, the shear tangential distortion of background galaxies (see sections
4.3 and 4.4 for a complete definition and derivation of the shear) is related to the lens differential
(projected) surface density profile (see e.g. Sheldon et al., 2004) via:

∆Σ(R) = Σ̄(< R)− Σ(R) = ΣcritγT , (5.3.2)

where γT denotes the tangential component of the shear (see Eq. 4.4.12), Σ(R) is the mass surface
density at radius R (Eq. 4.2.3), and Σ̄(< R) is its mean inside radius R. The tangential shear
distortion γT is the main observable quantity for weak lensing studies. Σcrit is the critical surface
density for lensing (already seen in Eq. 4.2.8):

Σcrit ≡
c2

4πG

Ds

DlDls
, (5.3.3)

that encodes, for each single source redshift, the geometry of the lens-source system because it
depends on the relative angular diameter distances between observer and source (Ds), observer
and lens (Dl), and lens and source (Dls).

For every single lens, we take account of all the background galaxies selected according to the
method described in Subsection 5.3.1, and then we compute the shear signal along the tangential
direction with respect to the centre of the considered cluster. In other words, we determine, in
each radial bin, the weighted ellipticity of the background sources, i.e the tangential and cross
component of the shear. We put in evidence the fact that the shear γ is actually inaccessible to
observations. Concretely, in fact, we measure and estimate the reduced shear g = γ/(1−κ), where
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κ = Σ/Σcrit (see Subsections 4.3.2 and 4.4.1). However, in the weak lensing regime, we know that
κ � 1 hence we can approximate γ ≈ g. This allows us to build the observed ∆Σ profile by
computing:

∆Σ(Rj) =
(∑

i∈j(wiΣ
−2
crit,i)γT,iΣcrit,i∑

i∈j(wiΣ
−2
crit,i)

) 1

K(Rj)
, (5.3.4)

where j is the considered radial annulus with mean radius Rj and wi is the weight assigned to the
measurement of the source ellipticity (Sheldon et al., 2004). The function K(Rj) is the average
correction due to the multiplicative noise bias in the shear estimate and is computed as:

K(Rj) =

∑
i∈j(wiΣ

−2
crit,i)mi∑

i∈j(wiΣ
−2
crit,i)

, (5.3.5)

where mi represents the multiplicative noise bias for the i-th galaxy (for more detalis, see Fenech
Conti et al., 2017).

We utilize the most probable redshift of the source, extracted with the BPZ, to calculate the
critical density for the i-th galaxy Σcrit,i. To evaluate and estimate the systematic uncertainty
related to the source redshift, we use the full p(z) (the systematic uncertainties of this method
are listed and described in the Section 6.2). On the contrary, instead, we ignore the uncertainty
in the lens redshift because is tipically of the order of ∼ 0.02(1 + z) (Maturi et al., 2018) and,
furthermore, its impact on Σcrit is negligible with respect to the source one.

For our purposes, the excess surface density of clusters will be collected and estimated in two
complementary and consecutive steps. Firstly, we estimate the stacked ∆Σ for 14 logarithmically
spaced radial bins in physical units from 0.1 to 3.16 Mpc/h, for every cluster redshift-amplitude
bin. This range corresponds to the main cluster halo profile, whose radial density profile is well
described (but only up to its virial radius of ∼ 1 Mpc/h) by a NFW profile (see Subsection 4.5.1).
This step follows the analysis by Bellagamba et al. (2019) and it was executed to estimate the
parameters of the model describing the excess surface density profiles of our clusters. Secondly, we
extend our measurement up to 35 Mpc/h using 30 logarithmically spaced radial bins, to analyse
the weak shear signal coming from the so-called 2-halo term of clusters (depicted by the cosmic
web filaments), to estimate cosmological parameters. In both steps, the cluster stacking is obtained
by subdividing the first two redshift bin into five increasing amplitude bins and the third one into
four. Note that every amplitude bin corresponds to a different cluster model on which the stacking
was performed and, ultimately, to a different mass bin of the cluster. We will describe in detail
the surface density modelling in Section 5.4.

5.3.3 Stacking the shear signal
For most of the clusters in the extracted sample, the S/N in the shear data is too low to con-
strain the density profile and, consequently, to measure a reliable mass or, however, the other
model parameters. Consequently, we exploit the shear-cluster correlation (or stacked lensing), i.e
the cross-correlation between the cluster (lens) density distribution and the shapes of the source
galaxies. The results coming from the stacked shear profiles, and the shear profiles themselves,
will be shown in Chapter 6 where, furthermore, we will see that exists an evident correlation be-
tween the excess surface density and the amplitude, in each redshift range. In practice, we obtain
radial profiles as a function of the physical length scale by stacking the signal of clusters grouped
according to their amplitude A. For this purpose, we have to define a weighted sum of the lensing
signal for classes of objects as we are going to show.

The differential density profile for the K-th cluster bin is evaluated as:

∆ΣK(Rj) =

∑
k∈KWk,j∆Σk(Rj)∑

k∈KWk,j
, (5.3.6)

where k runs over the clusters in the A bin, and Wk,j is the total weight for the j-th radial bin of
the k-th cluster,

Wk,j =
∑
i

wiΣ
−2
crit,i (5.3.7)

and i runs over the background galaxies in the j-th radial bin.
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The covariance matrix (that estimates variance and covariance, see appendix B) associated with
the extraction of the shear signal and its relative stacking are computed with a bootstrap procedure
with replacement (described in appendix C): the source catalogue was re-sampled 10000 times.
Covariance also considers the residual contribution from large-scale projections but, however, it is
negligible thanks to the large number of line of sight we stacked over. So every error associated
with each stacked surface density profile point is a bootstrap error.

5.4 Modelling the shear profile
Our modelling of the lens shear profiles, through which we will constrain cluster and cosmological
parameters, is splitted in two steps. The first one is performed on the central halo radial range,
i.e up to ∼ 3× the radius of the virialized matter halo, whose density profile is described by
the NFW model seen in Subsection 4.5.5, modified to be a truncated NFW profile. The NFW
profile, in lensing studies, gives analytical expression for the radial profile of the deflection angle,
convergence and shear (Bartelmann, 1996), but has the drawback that the enclosed mass diverges
logarithmically. Therefore we choose the truncated version. In this step, we will constrain values
for four model parameters describing the main physical properties of the lens cluster.

The second step of this work, instead, is focused on the outskirts of the same clusters (far beyond
the virial radius rvir ≈ r200, up to ∼ ×30 this radius), to estimate the cosmological parameters.
Here, the signal is produced by the matter in correlated cluster haloes which forms the so-called
2-halo term. Therefore our analytic model assembles the main halo model, described by a NFW
truncated model, with that for the correlated matter around the main halo (2-halo term).

In the first step, we infer the parameters of the truncated NFW model describing the main
halo which we keep fixed in the second step, as we will detail in Chapter 6, to infer cosmological
parameters thanks to the 2-halo contribute. In both steps, the analysed lensing signal is in the
weak lensing regime (described in Sections 4.5 and 4.6) and all the statistical analysis, described
in Chapter 6, follows a Bayesian approach (consult appendix A). In this section we will describe
the models we will use to analyse the signal.

5.4.1 Main halo lens model
The stacked radial density profile of all our clusters is modelled by a smoothly-truncated NFW
density profile (an analytical hybrid model, tested in Baltz et al., 2009):

ρ(r) =
ρs

r/rs(1 + r/rs)2

( r2
t

r2 + r2
t

)2

, (5.4.1)

where ρs is the typical matter density (whose distribution, in a cluster halo, follows that generated
by the potential well of the dark matter), rs is the scale radius and rt the truncation one, defined as
rt = t× rs, with t the truncation factor. The scale radius is commonly parametrized as rs = r200

c200
,

with c200 that represents the concentration parameter (which is correlated with the halo mass
and redshift). As already mentioned, the normalisation of this model can be expressed in terms
of M200. Note that the density parameter ρs is connected to the virial mass Mvir ≈ M200 (see
Subsection 4.5.1) defined such that the average density within the virial radius becomes equal to
the non-linear overdensity ∆vir ≈ ∆200 (computed using the spherical collapse model described
in Subsection 2.5.1), multiplied by the mean matter density of the Universe. In the strict sense,
however, Mvir differs from a true virial mass defined from non-linear overdensities but, choosing it
as normalisation, the "virial mass" of this model becomes rather close to the effective total mass
(Oguri and Hamana, 2011).

This truncated version of the NFW model (see Eq. (4.5.5) for the "normal" NFW model) was
well tested in simulations by Oguri and Hamana (2011), estabilishing that it better describes the
cluster profiles very far beyond the virial radius (precisely ∼ ×10 this radius) with respect to the
original NFW profile. In effect, at large radii ρ(r) ∝ r−7 and therefore the enclosed mass converges
immediately. Indeed, one of the main advantages of this model is the truncation, as it removes the
unphysical divergence of the total mass for large radii. Moreover, the truncation better describes
the transition between the cluster main halo and the 2-halo contribute. Thus, the truncated NFW
model produces less biased estimates of mass and concentration from shear profiles. Without the
truncation, the mass would be underestimated and the concentration overestimated. Moreover,
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Figure 5.5: Differential projected density profiles for models with cluster parameters M200 =
1.9 · 1013M�/h, c = 6.8, foff = 0.27 and σoff = 0.23Mpc/h, at redshift z = 0.19, for our assumed
cosmology. We can note the slight influence of a different truncation factor both on the 1-halo
model and on the total (1+2)-halo model. The models with truncation radius rt = 3rs (green
and black lines) are representative of the ones used in our analysis. As an illustrative example, we
also plot the models with unrealistic rt = 15rs (red and blue lines) to illustrate the effect of this
parameter on the 1-halo and (1+2)-halo models.

note that we are studying stacked shear profiles, hence the NFW model is a powerful fitting
model as it is based on the assumption of spherical symmetry. When stacking various individual
shear profiles the intrinsic ellipticity of each cluster tends to assume a spherical radial symmetry
on the stacked profile, for pure statistical reasons. This is the reason why the weak lensing cross-
correlation provides a direct estimate of the mean mass for clusters with some observable properties.
We reasonably set rt = 3rs for every amplitude bin as done by Bellagamba et al. (2019), following
the results by Oguri and Hamana (2011). In Figure 5.5 we can see the effect of the truncation
radius on the modelling.

As seen in Subsection 4.5.2, when analysing the weak lensing by clusters, an important source
of bias is the wrong identification of the lens centre. In this analysis, we assume as the centre of
the clusters those determined by AMICO in the detection procedure. However, the detection is
performed through a grid which induces an intrinsic uncertainty due to the pixel size, that is <0.1
Mpc/h (Bellagamba et al., 2018). Furthermore, it must be taken into account that the galaxy
distribution centre may appreciably deviate from the mass centre of the system, e.g. because of
ongoing merging. For example, in Johnston et al. (2007) it was found that the Brightest Central
Galaxy (BCG), defining the cluster centre, might be misidentified and, in that case, the value
of ∆Σ at small scales is underestimated, biasing low the measurement of the concentration c by
∼ 15% and consequently undersestimating the mass by ∼ 10%. Moreover, George et al. (2012)
found that the halo mass estimates from stacked weak lensing can be biased low by 5%-30% if
inaccurate centers are considered and the issue of off-centring is not addressed.

We decide to parametrize this uncertainty by considering a second additional component to
our model, which is the one produced by haloes whose observed centre has a non-negligible scatter
with respect to the centre assumed by the stacking procedure, following the method adopted by
Johnston et al. (2007) and Viola et al. (2015). We first define the rms of the misplacement on
the sky plane distribution of the haloes σoff , and we assume an azimuthally symmetric Gaussian
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distribution. Thereby, the probability of a lens being at distance Rs from the assumed centre, or
briefly the probability distribution of the offsets, can be defined as:

P (Rs) =
Rs
σoff

exp
[
−1

2

( Rs
σoff

)2]
, (5.4.2)

where σoff can be seen as a scale length, whose typical values are of the order of σoff ∼ 0.4
Mpc/h (Johnston et al., 2007). During the modelling of the halo profile, we will assume that a
fraction foff of the lenses is miscentred. Now, we can introduce the azimuthally averaged profile
of a population misplaced by a distance Rs in the lens plane (Yang et al., 2006):

Σ(R|Rs) =
1

2π

∫ 2π

0

Σcen(R)
(√

R2 +R2
s + 2RRs cos θ

)
dθ, (5.4.3)

where Σcen(R) refers to the centred surface brightness distribution (or briefly the centred profile)
derived by integrating ρ(r) along the line of sight. Finally, integrating Eq. (5.4.3) along Rs and
weighing each offset distance according to Eq. (5.4.2), we can obtain the mean surface density
distribution of a miscentred haloes population:

Σoff (R) =

∫
P (Rs)Σ(R|Rs)dRs. (5.4.4)

From now on, we refer ourselves to the cluster main halo term as 1-halo term. Our final model for
the small scales, where the shear profiles are dominated by the dark haloes contribute associated
with the clusters, can be written as the sum of a centred population and an off-centred one:

Σ1h(R) = (1− foff )Σcen(R) + foffΣoff (R). (5.4.5)

Generally, this 1-halo model depends on nine parameters but, when analysing the 1-halo radial
range, we fix the cosmology to a flat Λ-CDM withH0 = 70km/s/Mpc , Ωm = 0.3 and ΩΛ = 0.7, the
truncation factor to 3 and the redshift to the effective redshift estimated by the stacking procedure
for every cluster bin. Therefore our analysis on the 1-halo radial range uses a model that depends
on four free parameters (M200, c, σoff and foff ).

Moreover, even if we did extract a shear signal starting from a radial distance of 0.1 Mpc/h
from the cluster effective centre, in the following analysis we will neglect the first three radial bins,
choosing to consider only the shear data in the range 0.2 ≤ R ≤ 3.16 Mpc/h. There are three
reasons for this choice. Firstly, from an observational point of view, the measure of photo-zs and
shear close to the cluster centre is made very complex by the contamination of a high cluster galaxy
concentration. Secondly, the shear signal analysis in close proximity to the cluster centre is very
sensitive to the BCG contribute to the matter distribution, and to deviations from the weak lensing
approximation used in the above derivation. Lastly, this choice mitigates the miscentring effects,
too. Thus this choice principally reflects on the accuracy of the estimation of the concentration c,
which would otherwise be overestimated.

5.4.2 2-halo lens model
Here, we introduce the 2-halo model we will use to describe the surface density profile beyond the
cluster virial radius: we have collected the shear stacked signal from 0.1 to 35 Mpc/h, in 30 radial
annuli equally distanced in logarithmic space. At such scales the shear signal is produced by the
correlated matter distribution around the location of galaxy clusters and it manifests itself as a
2-halo term in the mass density profiles. In practice, the 2-halo term characterises the cumula-
tive effects of the large-scale structures in which galaxy clusters are situated. The uncorrelated
matter distribution along the line of sight does not give contibution to the stacked shear signal,
consequently the 2-halo term is a function of the correlated matter distribution at the same cluster
redshift (Oguri and Takada, 2011).

Anyway, its contribution on the 1-halo radial range is expected to be not very influential on
the lensing profile because, at these scales, is really small, as it begins to manifest itself at scales
& 9Mpc/h. We add to the halo profile described by the Eq. (5.4.5) the contribution due to the
matter in correlated haloes, i.e. the already mentioned 2-halo term, that we model following Oguri
and Takada (2011) which have elaborated it, as done by Oguri and Hamana (2011) and Sereno
et al. (2017):

∆Σ2h(θ;M200, z) =

∫
ldl
2π
J2(lθ)

ρ̄m(z)bh(M200; z)

(1 + z)3D2
l (z)

Pm(kl; z), (5.4.6)
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where z is the cluster redshift (a photometric one for our measures). Every quantity is in physical
units and was computed using the CosmoBolognaLib (CBL), a large set of Open Source C++
numerical libraries for cosmological calculations described in Marulli et al. (2016). Furthermore:

• θ is the angular radius, in radians. It is computed as the ratio between the projected radius,
at which the shear signal is measured, and the corresponding lens angular diameter distance
Dl(z) [Mpc/h], evaluated at the halo redshift and assuming our flat ΛCDM cosmology.

• J2 is the Bessel function of second type that gives solutions of the Bessel differential equation
that have a singularity at the origin. It is function of lθ, where l is the integration variable
and the momentum of the wave vector kl foe the linear power spectrum of matter fluctuations
Pm.

• The wave vector module is evaluated as kl = l/((1 + z)Dl(z)) .

• ρ̄m(z) is the mean cosmic background density, at the redshift lens, in M�Mpc−3h2.

• Pm(kl; z) is the linear power spectrum of matter (see setion 2.4) and it is computed according
to the Eisenstein and Hu (1999) transfer function, normalised with σ8(z = 0) = 0.8, and
assuming Ωbaryon = 0.046. This model is constructed from approximated transfer functions
and does not consider the Baryonic Acoustic Oscillations (BAO). Since the observational
errors on the shear measurements are quite high, a more accurate calculation of Pm, with
more sophisticated models, would have had a negligible impact on the final result. For
instance, we compared it with the power spectrum form of a CAMB (Code for Anisotropies
in the Microwave Background, consulted at the website) model, that considers the BAO, not
finding remarkable differences. Furthermore, the dependence of this power spectrum model
on redshift is negligible.

• bh(M ; z) is the halo bias, for which we followed the prescription of Tinker et al. (2010), which
successfully tested and calibrated numerically this model. It is expected to be constant at
large scales and to evolve very weakly with redshift. It represents the bias of dark matter
haloes, defined as the ratio of the halo power spectrum and the dark matter linear power
spectrum. The bias amplitude decreases at small scales, i.e when the input parameter ∆(z)
(the background cosmic overdensity at given redshift) increases or, in other words, it increases
with the halo mass. However, we use the virial overdensity given a critical overdensity
∆vir(z) = ∆crit

vir (z)/ΩM (z), as bias input parameter. For our redshift range, this overdensity
ranges between ∼ 300 and ∼ 400, so that the details of the truncation near the virial radius
do not affect the conversion of the masses so much (Oguri and Hamana, 2011). Of course,
the halo bias function is computed using the same Eisenstein and Hu power spectrum Pm of
Eq. (5.4.6).

Note that the 2-halo shear term around a single lens of massM at redshift z, for a single source
redshift, is the real signal that we measure, and it is modelled as:

γT,2h(θ;M, z) =

∫
ldl
2π
J2(lθ)

ρ̄m(z)bh(M ; z)

Σcrit(1 + z)3D2
l (z)

Pm(kl; z), (5.4.7)

where we can see that our excess surface density profile of Eq. (5.4.6) is simply obtained by
multiplying the shear in Eq. (5.4.7) by the relative Σcrit , defined in Eq.(5.3.3).

Finally, to be able to correctly compare data and model, we will add the 2-halo term contribute
of Eq. (5.4.6) to the model describing the total halo surface density profile of Eq. (5.4.5) obtaining:

∆Σmodel(R) = ∆Σ1h(R) + ∆Σ2h(R). (5.4.8)

In Figure 5.6 an example of the different contributes to the total profile model is shown. Anyway
when modelling exclusively the 1-halo, as we limit our analysis to the central 3.16 Mpc/h, the 2-
halo term affects to a small degree only the few last radial bins in this radial range and principally
in the smallest amplitude bins (which contain preferentially low-mass clusters). This makes our
inference on the four 1-halo (NFW) model parameters much less dependent on the uncertain details
of the halo bias model. In Figure 5.7 we can see how the chosen cosmological model affects the
∆Σ1h profiles, when modelling them with the truncated NFW model. Anyway, we conservatively
choose to consider the 2-halo contribute on this first modelling step but it did result negligible.
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Figure 5.6: Differential projected density profile for a model with cluster parameters M200 =
1.72 · 1014M�/h, c = 3.25, foff = 0.28 and σoff = 0.29Mpc/h, rtrunc = 3rs, at redshift z = 0.23,
for our assumed cosmology. The 1-halo contribute dominates at r . 10Mpc/h. The dash-dotted
blue curve refers to a 1-halo model with foff = σoff=0: the miscentring causes a slight flattening
of the profile at small scales (r < 1Mpc/h).

Figure 5.7: Truncated NFW profile models, for a cluster at z = 0.5, with c = 2.7, M200 ≈
3 · 1014M�/h, fmis = 0.2 and σoff = 0.2, for different cosmological models, as indicated by the
labels.
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When we will pass to the second analysis step, we will extend the shear stacked data analysis
performed on the 1-halo radial range to the larger radial range for the same amplitude and redshift
bins. The first analysis step will be done to obtain a robust inference of the 1-halo four model
parameters, to be able to fix them in the second analysis step, on the total halo surface density
profile. There, we will infer the cosmological parameter ΩM , as the 2-halo term is made principally
by dark matter and contains much cosmological information. Among other things, cosmological
interpretation of clusters relies on good estimations of their masses. We remind that gravitational
lensing studies provide direct reliable measurements of the halo mass without assuming a scaling
relation. So the estimate of M200 can be safely used to constrain cosmological parameters. Fur-
thermore, to be able to compare the goodness of our inference of ∆Σ1h model parameters, we have
chosen the same analysis setting of Bellagamba et al. (2019), both in the splitting in amplitude
A and in redshift, as we will see in Chapter 6, obtaining a perfect agreement. The results we are
confronting with can be consulted in detail in Figure 8 (or, in this thesis work, in Figure 4.4) and
table 2 of the work of Bellagamba et al. (2019). Also in the second step the analysis of the shear
stacked data, extracted up to a 35 Mpc/h radius, will be executed on the model described by Eq.
(5.4.8). Here, we will free the ΩM parameter and study the correlation between ΩM and M200

and c, to see how the halo terms of Eq. (5.4.8) affect each other and to test the reliability of the
cosmological parameter inference. Having seen how the contribution of foff becomes negligible
already on scales >0.4-0.5 Mpc/h, in this second modelling we will fix the miscentring to the values
obtained on the first analysis on the 1-halo.

Note that the highest S/N comes from small-scale lensing in this kind of measures, but it may be
affected by systematic uncertainties, both in terms of theoretical interpretation and observational
uncertainties (Mandelbaum et al., 2013). Anyway, we do not aim at connecting directly this
small scale lensing to the cosmological background. We will just model it in terms of a physically
motivated model, i.e the truncated NFW profile. So, in the context of the second step analysis,
the four parameters inferred from the 1-halo can be considered as nuisance parameters, that we
marginalize over to estimate the amplitude of the 2-halo term, as done by Sereno et al. (2015), for
example.
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Chapter 6

Estimates of the cosmological
parameters

In this Chapter we will present the method used to infer the model parameters from the survey
shear data and the resulting cosmological constraints. This is done through the model fitting of the
KiDS-weak lensing data, as discussed in Section 5.4. Precisely, a Bayesian approach (see appendix
A) is applied to obtain the statistics of interest. We will split this discussion following the two
steps of the shear signal extraction and of the consequent modelling. Firstly we model the stacked
shear profiles collected in the 0.1 < R < 3.16 Mpc/h radial range, and then we model the profiles
measured up to 35 Mpc/h (where the 2-halo term contribute dominates). Both steps of the analysis
are based on a set of 14 stacked excess (differential) surface density profiles of clusters, obtained
dividing the whole AMICO-KiDS cluster catalogue as follows:

• first redshift bin (z = [0.1−0.3]), split in 5 amplitude bins: A = [0−1], [1−1.55], [1.55−2.05],
[2.05− 2.75], [2.75− 6.5];

• second redshift bin (z[0.3 − 0.45]), split in 5 amplitude bins: A = [0 − 1.15], [1.15 − 1.65],
[1.65− 2.3], [2.3− 3], [3− 6.5];

• third redshift bin (z = [0.45 − 0.6]), split in 4 amplitude bins: A = [0 − 1.3], [1.3 − 1.8],
[1.8− 2.3], [2.3− 6.5].

This is the same division used in Bellagamba et al. (2019), and the cluster masses, estimated from
the smoothly truncated NFW model, we obtain are in excellent agreement with the just mentioned
work. Of course, every amplitude bin refers to a typical mass and/or richness of the cluster model.
For increasing A, the typical mass and richness of the clusters grow, and as a consequence a smaller
number of clusters is needed to obtain a significant shear signal. For this reason, the error on the
shear profile data decreases with A and slightly grows with redshift (due to the decrease in the
signal strength, as evident from Figures 5.2 and 5.4). For example, in the first redshift bin we stack
1066 clusters in the lower amplitude bin and only 41 clusters in the higher amplitude bin. Both
measurements have been performed assuming a flat ΛCDM cosmology with H0 = 70km/s/Mpc
and ΩΛ = 1 − ΩM . Halo masses are given as M200, i.e the halo mass, for a given cosmology,
enclosed in a sphere of radius r200, where the mean density is 200 times the critical density of
Universe at the corresponding redshift (see Section 3.4). We will see that this M200 determines
the normalisation of the density profile. Furthermore, during all the analyses we do not consider
the error on the mean value of each radial point of the shear profiles.

This Section is organized as follows:

• In Section 6.1 we present and discuss the method used to infer the 1-halo model parameters,
with a focus on the cluster mass, from the shear profiles stacked up to 3.16 Mpc/h from the
cluster centres. This stage is necessary to fix the quantities describing the clusters, useful to
extract cosmological information from the following study of the stacked shear signal collected
at larger radii and modelled by the 2-halo term.

• In Section 6.2 we discuss the systematic uncertainties arising when inferring the mass-
observable relation from weak lensing shear data, quantifying in detail each individual con-
tribution affecting the mass estimate.
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• In Section 6.3 we deal with the mass-amplitude relation, showing the narrow scaling relation
between the two quantities which allows us to confirm the reliability of our mass measures.

• In Section 6.4 we present method and results of the analysis, performed on the stacked shear
data collected up to 35 Mpc/h from the cluster centres, when the modelling is applied to
infer exclusively the matter density parameter. This stage of the analysis aims at testing the
reliability of our method, fixing the cluster parameters values to those measured in Section
6.1.

• In Section 6.5 we deal with the final results obtained with the same analysis performed
as in Section 6.4, but in this case the modelling is used to constrain the matter density
parameter together with mass and concentration of clusters. We show the final marginalized
estimation of ΩM , confronting it with the most recent cosmological measures and we discuss
the reliability of our results.

• Finally, in Section 6.6 we discuss the possible systematic uncertainties arising when inferring
ΩM from weak lensing analysis on the scales corresponding to the 2-halo term.

6.1 Inference of model parameters from 1-halo radial range
We have a dataset D of stacked differential surface density profiles Σobs(R) (from the collected
shear measurements), derived as in Section 5.3, and a model Σmod(R), described in Section 5.4,
aiming at describing these data. Here, our goal is to infer the parameters of the model describing
stacked shear data extracted in the 1-halo radial range, i.e 0.1 ≤ R < 3.16 Mpc/h in 14 equally
spaced logarithmic bins.

In the context of our Bayesian approach, the posterior probability distribution of the set of our
1-halo model parameters θ = (M200, c, foff , σoff ) comes from the Bayes theorem:

P (θ|D) =
L(D|θ)P (θ)

E(D)
, (6.1.1)

where L(D|θ) refers to the likelihood of the data given the model, P (θ) is the prior probability
of the parameters and E(D) is the evidence, which is independent of the parameters and that we
therefore ignore in this framework. The likelihood in this context is expressed as (see Hartlap
et al., 2007):

L ∝ exp(−χ2/2), (6.1.2)

with

χ2 =

Nbin∑
i=1

Nbin∑
j=1

[∆Σobs(Ri)−∆Σmod(Ri)]C
−1
ij [∆Σobs(Rj)−∆Σmod(Rj)], (6.1.3)

where C is the likelihood covariance matrix (see appendix B), while Nbin is the number of radial
bins in the considered profile. Moreover, for the likelihood distribution we have chosen a Gaussian
error, given the statistical nature of the shear-cluster cross correlation observations. The data used
in the likelihood estimation of each cluster bin are 11, instead of 14, because we exclude from the
analysis the first three radial points, i.e data at a distance less than 0.2 Mpc/h, for the reasons
discussed in Subsection 5.4.1. We verified that the choice on the number of radial bins does not
significantly affect the likelihood magnitude and the subsequent accuracy of our final posterior
parameter estimation. We tried to perform our Bayesian analysis using different radial bins in the
shear extraction noticing that there is not an appreciable difference on the posterior distribution
of the model parameters, as shown in Figure 6.1.

Concretely, the main contributors to the off-diagonal terms in the covariance matrix are cosmic
variance and correlated shape noise caused by the fact that same background galaxies can enter
in more than one radial bin in the different shear profiles used in the stacking (Mandelbaum
et al., 2013; Sereno et al., 2015; Viola et al., 2015). Being this analysis on the 1-halo radial range
performed as in Bellagamba et al. (2019), we expect both term to be small enough in our case,
too (see Section 6.2). The cosmic variance has been minimised as much as possible by sampling
numerous different line of sight, so that its average would nullify itself. We can ignore correlated
shape noise because the mean radial distance between cluster centres is significantly larger than the
limiting radius (∼ 3 Mpc/h) for the 1-halo shear profile (we can not say the same when we extend
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Figure 6.1: Stacked shear profile of the clusters in ranges z = 0.1 − 0.3 and A = 2.75 − 6.5, for
two different radial binning extractions, as indicated by the labels. The measurements (points) are
compared to best-fit posterior models (lines) with 1− σ estimated uncertainties (shaded regions).
We can see that the radial binning does not affect neither the best-fit model, nor its error.

the analysis up to very large radii). Indeed, the off-diagonal terms Cij of the resulting covariance
matrix are mostly compatible with a random noise over a null signal. Consequently, we decided to
consider only the diagonal terms in this analysis, thus avoiding complications due to the inversion
of a noisy estimate (we need C−1

ij in Eq. (6.1.3)) of the covariance matrix (Hartlap et al., 2007).
Furthermore, the values of the diagonal terms Cii scale with radius as R−2 as expected for shape
noise variance in logarithmically spaced bins.

To derive the posterior distribution of the parameters from each stacked profile, we use a
Monte Carlo Markov Chain (MCMC) sampling method using the Metropolis-Hasting algorithm
(see appendix A), whose computing code has been built entirely from the CBL (Marulli et al.,
2016). Precisely, this algorithm exploits a code to perform a Bayesian fit to our set of data points
with the model of Eq. (5.4.8). It is a code assembled starting from a simple CBL script called fit.cpp
and built similarly to the MCMC Hammer algorithm (Foreman-Mackey et al., 2013), opportunely
modified for our goals. The modified C++ code we are talking about is presented in appendix D.
When the MCMC of each posterior sampling reaches the convergence we acquire our parameters
distribution and build the model for the parameters.

Following Bellagamba et al. (2019), in our analysis we assume the following prior for the pa-
rameters:

• log(M200/(M�/h) uniform between 12.5 and 15.5

• c uniform between 1 and 20

• foff uniform between 0 and 0.5

• σoff uniform between 0 and 0.5 Mpc/h.

These priors values intervals aim to be conservative, assuming no a priori information about our
cluster sample. The main results of our MCMC code is a sample of the 4-dimensional (one dimen-
sion for each parameter) posterior distributions, from which we can compute different estimators
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and statistics. To be precise our code gives an output where, for every parameter posterior dis-
tribution, we obtain the mean with the relative standard error (variance), and the median with
relative percentiles at 1σ (68.27%). Furthermore, this output contains the posterior surface density
halo model as estimated from the inferred parameters, plus its error within 1σ. In the following,
for each parameter, we quote the median with relative percentiles of the marginalized posterior
distribution as the resulting typical value and its uncertainty. We choose to show the median,
instead of the mean, because it is more stable in case of a skewed distribution of the posterior
probability, even if in all the performed chains the mean and the median are in agreement with a
relative difference ranging from less than 1% to a maximum of 6-7%.

In this phase of the Bayesian fitting on the 1-halo radial range, the modelling is performed on
MCMC running with a set of 10 parallel chains constituted by 3000 chain steps each. These chains
are sequences in the parameter space that represent a fair sampling of the full posterior probability
distribution. Anyway, for exposing and calculation timing purposes, we choose a thin of 6 (the
thin is the number with which we divide the final chain steps number to collect) and a burn-in
of 20 (see the burn-in definition in Appendix A). We make this choice because we maximize the
posterior starting chain value on that of the maximized likelihood, so as not to force the natural
path of the chain (we do not have any a priori information about the cluster mass of every A bin).
Therefore each posterior distribution, extracted through the MCMCs for our 14 bins in amplitude
and redshift, is composed of 4980 statistical samples. In addition, we have performed various
trials with different chains lengths, noticing that the convergence was reached even with shorter
chains the one chosen. Hence about the convergence of the posterior distributions we have been
conservative.

The results of this analysis are shown in Figure 6.3 and Table 6.1. From the figure we can clearly
note that the signal grows with A, for each redshift bin. Consequently, M200, which describes the
normalisation of the profile, also grows with the amplitude, showing that A well correlates with
the mass. To ascertain this, in addition to observing the ∆Σ values for each of the bins in A
of a given bin in z, just note that as A increases, the quantity of background galaxies to stack
(represented by cluster number to stack Ncl), necessary to have the desired S/N, decreases. Less
background galaxies to stack means we have a stronger shear signal, and hence a deeper potential
well that generates it. Furthermore, the reduced χ2 values, reported in legends of Fig. 6.3, show
that the model well fit the data. Anyway the percentiles represented by the filled contours are more
satisfactory than a simple χ2 because they are evaluated and showed for every radial point. Finally,
from Table 6.1 we see that the inferred masses correlate with A and are affected by reasonable
relative error (∼ 15%).

There is an intrinsic degeneracy between the truncated NFW model parameters (M200 and c)
and the miscentring represented by foff and σoff . So these two parameters remain unconstrained
by the data (especially σoff ), as shown in Figure 6.2. Always in this figure we can note indeed
the good constraints between mass and concentration. Anyway, in all the 14 bins the posterior
distribution of c gives median values that range between ∼ 1.5 and ∼ 10.5, while between ∼ 0.2 and
∼ 0.3 for what concerns foff and σoff . Thence the only model parameter with a reliable posterior
distribution is M200 (often a quasi-Gaussian distribution) and, accordingly, we concentrate on the
results about it in the following (in table 6.1 we only show the results on the M200 posterior, in
fact). The fine modelling discussed in Section 5.4 is unavoidable if we want to parameterize our
ignorance about the other parameters and marginalize over their possible values. By doing so we
can minimise the risk of biasing our results on M200, and obtain realistic errors, i.e that take into
account the uncertainties related to modeling and miscentring.

6.2 Systematic uncertainties
We can assert that the error on the parameter inference, as well as on the fitting model, comes
directly from the error on the data, principally. Indeed, because of the stacking, shear observations
at different radii are correlated and this effect is more significant at radii larger than the typical
lens angular separation (Mandelbaum et al., 2013). The uncertainties deriving from the posterior
distribution ofM200 are the dominant error of our kind of measures but they are not the only ones.
There are other error sources to consider when inferring the mass-observable relation from weak
lensing data. In principle, by combining the signal from many lenses, the error on the mean shear
profile and on the inferred median mass can be reduced to very low level. In that limit, systematic
errors can start to overcome the statistical errors.

80



Figure 6.2: Posterior distributions of the four free parameters of the 1-halo lensing model (M200,
c, foff , σoff ) for one of the 14 cluster samples of our analysis, in the smaller radial range, shown
as an illustrative example of the reliability of the inferred constraints. Specifically, the contour
plots shown refer to the fourth box of the first redshift bin of Figure 6.3, i.e the profiles built with
2.05 < A < 2.75 in 0.1 < z < 0.3. The dashed vertical lines represent the posterior medians, and
the 18-th and 82-th percentiles. The values of these quantities are reported on top of each panel.
The contour lines refer to 1− σ and 2− σ.
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Figure 6.3: Stacked profiles for cluster samples in 14 bins of amplitude and redshift. The redshift
increases from top to bottom, while the amplitude (hence M200) from left to right. The error bars
are the diagonal values of the bootstrap covariance matrix, estimated as described in Section 5.3.3.
The effective redshifts zeff and amplitudes Aeff (evaluated with Eq. (6.3.2)) and the numbers of lens
Ncl are reported on top of each box. The coloured curves show the best-fit posterior 1-halo models
derived from the MCMC statistical analysis, while the shaded regions indicate the estimated 1−σ
uncertainties. The χ2 values are also reported in the labels. The measurements at r < 0.2Mpc/h
(the first three data points) have been excluded from the MCMC analysis (see the discussion in
Section 5.4.1). Thus the number of degrees of freedom is 7 (11 data points - 4 free parameters).
The median values of the M200 posterior distributions of each bin are reported in Table 6.1.
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M200(1014M�/h)
A1 A2 A3 A4 A5

0.1 ≤ z < 0.3 0.16+0.03
−0.03 0.35+0.05

−0.06 1.17+0.14
−0.17 1.72+0.22

−0.24 3.69+0.40
−0.43

0.3 ≤ z < 0.45 0.41+0.05
−0.07 0.74+0.10

−0.13 1.60+0.20
−0.22 2.19+0.38

−0.41 4.44+0.57
−0.64

0.45 ≤ z < 0.6 0.53+0.09
−0.10 0.78+0.11

−0.12 1.01+0.20
−0.25 3.03+0.36

−0.39

Table 6.1: Table showing the posterior distribution values of the median of M200, with relative
1σ-percentiles (18-th and 82-th percentiles of the posterior), of each of the 14 redshift-amplitude
bins of Figure 6.3. The table structure is equal to the disposition of the panels in Figure 6.3. We
call every bin in amplitude with An, with n = 1, 2, 3, 4, 5, to indicate the ordered A bin splitting
we have set and that is listed at the beginning of Chapter 6. Note that every An varies from one
redshift bin to another, and here it is only useful to enumerate the growing amplitude bins. We
do not list the posterior values of the other three model parameters because they are degenerate
and they are not of our concern.

Three aspects of the weak lensing analysis are particularly critical for the reliability of the mass
estimation: the background galaxies selection, the photo-z estimates and the shear measurements.
The uncertainties in the results of the just mentioned selection criteria directly impact on the
derivation of ∆Σ from the data. Furthermore, consider that as the cross-correlation lensing method
(i.e the stacking procedure) represents a statistical measurement of the lens-mass cross correlation
function, the inferred median masses are not affected, on average, by uncorrelated matter to the
source galaxies along the line of sight. Instead, on the cluster scales considered in this first analysis
phase, the mean effects of the correlated mass along the line of sight, like in neighboring clusters
or filaments, are negligible out to scales comparable with the cluster virial radius.

However, we can note that all the conservative performed data extraction, described in Sections
5.2 and 5.3, should let us predict that possible systematic uncertainties will not affect remarkably
the mass-observable relation. Our selection of background galaxies implies that we should not
expect significant contamination from foreground galaxies and that our selected galaxies have a
robust photo-z estimate. Indeed, when estimating the shear profiles it is known that the biggest
source of error is related to the source redshift estimate, that enters in Σcrit. Finally, the shear
estimates of KiDS-DR3 are by their nature very reliable thanks to the accuracy of the survey
(Hildebrandt et al., 2017).

Anyway we model their effects to take into account these possible sources of uncertainty. Thus,
in order to understand how much they affect the mass estimation we should take into account the
relation between the lens mass and its excess surface density profile. Obeying to the formalism in
Melchior et al. (2017), one can define the logarithmic dependence of ∆Σ on M200 as:

Γ =
d log ∆Σ(M200)

d logM200
. (6.2.1)

In Bellagamba et al. (2019) in the range of radii, redshifts and amplitude considered in the analysis,
assuming a realistic concentration c = 4, they found that Γ ∼ 0.75 is a good approximation. Thus,
assuming this value, we can connect the uncertainties on the mass with those on ∆Σ as:

δM200

M200
∼ Γ−1 δ∆Σ

∆Σ
. (6.2.2)

A detailed study of the uncertainties deriving from background galaxies selection, photo-z estimates
and shear measurements, as well as checks for residual systematics, can be found in Section 6 of
Bellagamba et al. (2019). We report the main results of this systematic error analysis:

• the foreground contamination is of the order of ∼ 2% which, according to Eq. (6.2.2),
becomes a 2.7% uncertainty on mass;

• the uncertainty related to the redshift distribution of background sources is estimated of
4.2% and it becomes of 5.6% on mass;

• the one relative to the shear measures instead is of the order of 1% (Hildebrandt et al., 2017),
translated in 1.3% uncertainty on mass.
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We take these results as also valid for our work because so far we follow the same methodology
of Bellagamba et al. (2019), apart from having quoted the medians and not the averages. And,
as expected, we have re-obtained similar results, as it can be confirmed comparing Table 6.1 and
Fig. 6.3 with the table 2 and Fig.8 in Bellagamba et al. (2019). Even if our posterior values of
M200 slightly differ, the difference is always well inside the errors, hence we could associate this
minimum disagreement (our M200 posterior values are systematically slightly higher) to a different
code used to perform the MCMC routines to extract the parameters. One can see Figure 6.4 to
confirm as already said.

6.3 Mass-Amplitude relation
So far, we have not yet discussed the reliability of A estimates, evaluated by AMICO, for inferring
mass estimates. Looking at Figure 6.3 and Table 6.1 we could already confirm the reliability of the
method used. Moreover, the reduced-χ2 values shown in Figure 6.3 confirm that the most likely
model well describes the data in radial range 0.2<R<3.16 Mpc/h, for almost all the 14 redshift-
amplitude bins. There is a clear correlation between the excess surface density (mass) and the
amplitude, but we want to analyse more in detail the relationship between A and M200.

The relation between the observable A and the weak lensing mass is modelled as:

log
M200

1014M�/h
= α+ β log

A

Apiv
+ γ log

E(z)

E(zpiv)
, (6.3.1)

where E(z) = H(z)/H0 takes into account the cosmology through the Hubble parameter evolution
and Apiv and zpiv represent typical values of the observable amplitude and redshift of the total
sample, respectively. The factor γ logE(z) instead considers a redshift evolution of the relation.
We rely on this factor because the scaling of observable properties of galaxy clusters with mass
evolves with time. Assessing the role of the evolution is crucial to study the formation and evolution
of massive haloes and to avoid biases in the calibration (Sereno and Ettori, 2015). For each cluster
bin, the typical value of an observable Ok is calculated by means of a lensing-weighted average
(Umetsu et al., 2014):

Ok =

∑
k∈KWkOk∑
k∈KWk

, (6.3.2)

where Wk represents the total weight for the k-th cluster of the bin, computed as:

Wk =
∑
i

wiΣ
−2
crit, (6.3.3)

where i runs over all the background galaxies of the k-th cluster, regardless of the radial bin.
The covariance matrix for the mass estimates of the cluster bins is constructed as:

CM,ij = δijE
2
i + S2M200,iM200,j , (6.3.4)

where Ei corresponds to the statistical error derived from the M200 posterior distribution and
S represents the systematic uncertainty, estimated as described in Section 6.2. Furthermore, we
underline that the systematic errors are considered as correlated here, because they affect almost
homogeneously all cluster bins. Practically, we sum in quadrature the uncertainties for background
selection, photo-redshifts and shear measurements and in this way we get S = 0.064 (Bellagamba
et al., 2019). Anyway, this systematic error is much lower than the one derived from the M200

posterior for all the bins, so it can be assumed to be sub-dominant. The parameters α, β, γ of
Eq. (6.3.1) can be computed with a Bayesian analysis of the same type as done in Section 6.1.
Consequently, the likelihood is once more given by Eq. (6.1.2), where χ2 becomes now:

χ2 =

Nbin∑
i=1

Nbin∑
j=1

[Mobs,i −Mmod,i]C
−1
M,ij [Mobs,j −Mmod,j ]. (6.3.5)

In this equation, the sums run over the Nbin cluster bins, Mobs refers to the computed M200 while
Mmod is the value of M200 derived from the scaling relation (6.3.1), and CM,ij is that derived in
Eq. (6.3.4).
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Figure 6.4: The mass-amplitude (logM200 − logAeff ) relation of the analysed 14 cluster bins,
evaluated at three representative redshifts (z = {0.20, 0.37, 0.50}). The solid lines show the best-fit
linear relations for each redshift. The error bars show the estimated 1 − σ uncertainties on M200

(computed as the difference between the posterior 18-th and 82-th percentiles), plus the systematic
uncertainty S. The mass-amplitude relations estimated by Bellagamba et al. (2019) (dotted lines)
are reported for comparison.

Now, we can estimate the linear regression in Eq. (6.3.1) assuming the Aeff value of each
cluster bin listed upon each box of Fig. 6.3. We use the median of the masses computed for each
amplitude-redshift cluster bin (table 6.1) to constrain the logM200-logA relation, setting zpiv=0.35
and Apiv=2, because these are central values in the ranges covered by the whole sample. In Figure
6.4 we plot the 14 mass-amplitude data points, evaluated separately for the three typical redshifts
of each z-bin (z = 0.20, 0.37, 0.50, computed through Eq. (6.3.2)), and their maximum-likelihood
estimation curve, namely a simple linear regression optimized (i.e with optimal values for the
parameters so that the sum of the squared residuals of Eq. (6.3.1) is minimised), to have an idea
of the degree of the correlation.

From this linear regression we computed the common values of the parameters α (intercept),
β (slope) and γ (redshift evolution) of the mass-amplitude relation. Precisely we get:

• α=0.13±0.04,

• β=1.95±0.11,

• γ=0.71±0.66.

The mass-amplitude relation is linear for the amplitude and redshift range covered by the sample
and, moreover, this relation fits the data well for a mass range of more than one order of magnitude
in all our redshift range. Since less massive objects are more abundant in the Universe, the cross-
correlation lensing can be used over a huge range of lens masses. Therefore we can say that
clusters in different amplitude regimes do not follow different relations, as there are no evidence of
contamination by fake detections (even in the low-A samples where such contamination would be
more influential). We can corroborate the close scaling relation between the amplitude of galaxy
clusters and their mass.
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6.4 Inference of cosmological parameters from the (1+2)-halo
terms

In the second phase of our analysis, we re-extracted the stacked shear signal produced by the same
clusters of Section 6.1, i.e with the same amplitude-redshift binning (listed into the introduction
of this Chapter 6), but in this case the extraction was pushed up to very large radii. Precisely,
the extraction was performed in the radial range 0.1 ≤ R ≤ 35 Mpc/h on 30 radial annuli equally
distanced in logarithmic space. At the mean redshift of the sample (z ≈ 0.35) we make note
that 35Mpc/h corresponds to about 1.9 deg on the sky. The total number of clustered objects is
always 6972 and the same is true for the number of clusters stacked in each individual bin, as well
as the total sample of stacked clusters that remains split in 14 amplitude bins. In each of these
cluster bins is clearly evident the 2-halo term contribute (see Fig. 6.8), confirming the necessity of
considering it when studying the shear signal on large scale.

The Bayesian approach used in the analysis of cluster shear profiles at large radii follows the
same prescription used in the analysis described in Section 6.1 but, now, we aim at inferring
posterior distributions of the cosmological value ΩM . To fit the measured differential surface
density profiles with our model ∆Σ1h+2h(R) (Eq. (5.4.8)) we use again a Monte Carlo Markov
Chain routine exploiting the Metropolis-Hasting algorithm. MCMCs are very useful for efficiently
computing likelihoods in multi-dimensional parameter spaces but they work well even for inferring
a single parameter, as in the case of this analysis where only ΩM is free. When analysing the shear
signal on large scales, we have set the length of the MCMC sampling with 10 chains of 5000 steps
each running in parallel, and without assuming a burn-in period, thus every posterior distribution
is constituted by 50000 points. Even here the convergence was reached with less chain steps but we
choose to be conservative. Furthermore, here we did not assume a burn-in because every chain was
initialized to the parameter values of maximized likelihood. We graphically check the convergence
every time as shown in the example of Figure 6.5.

Figure 6.5: A typical MCMC chain output: on the x-axis are enumerated the consecutive chain
steps, on the y-axes the ΩM parameter values at each step. Specifically, the chain refers to the
cluster sample with 0.1 ≤ z < 0.3 and 2.05 ≤ A < 2.75. We can appreciate the convergence of the
chain. The posterior distribution is reported on the right panel, where the dashed vertical lines
indicate the median value (central line) and the 1− σ percentiles.

When setting the prior on the MCMC routine we choose for ΩM a uniform prior ranging between
0.06 and 0.6. The minimum prior aims at not excluding the almost total absence of dark matter
(into the contribute to the total matter in Universe, the percentage of baryons is always present
with a ∼ 5% contribute). Instead, the maximum prior is far beyond typical values measured until
now for ΩM . Hence this prior setting is abundantly conservative. The remaining parameters were
fixed to the posterior median values computed in the first phase of the analysis on the shorter
radial range. In this way, we make sure that we are considering robust values of concentration
and miscentring and, in particular, the cluster mass, to well fix a correct halo bias bh value in
the 2-halo term model of Eq. (5.4.6) that we are using to infer the cosmological parameter. The
lens redshift was fixed to the one estimated by AMICO when extracting the shear profiles for the
1-halo region. In fact, the lens redshift associated to this extended extraction is more uncertain
and overestimated because, into such large regions, in Eq. (6.3.2) the total weight of the various
clusters changes, and this depends on the weights of the background galaxies.

Furthermore the signal coming from the cluster outskirts is very weak, sometimes it shows neg-
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ative values too, because here the S/N is lower. Nevertheless, in each cluster bin, the contribution
of the 2-halo term is clearly visible for radii larger than 10 Mpc/h (see Fig. 6.8). The truncation
factor remains fixed to 3rs and the cosmology to a ΛCDM flat model, therefore every posterior
value of the matter parameter density is such that ΩΛ = 1 − ΩM . For the same reasons assumed
when modelling the first extraction on the 1-halo range, we avoid to consider shear radial points
at distances lower than 0.2 Mpc/h, i.e we exclude the first four radial points.

In Figures 6.8 and 6.7 the individual results of this analysis are shown. In Fig. 6.8 we can
appreciate a good modelling coming from the posterior distribution of our Bayesian analysis as well
as a small error on the model, considering the very large error on shear data in correlated matter
region. Furthermore, from Fig. 6.7 we can note the purely statistical behavior of the 14 samples:
there is no clear pattern in the posterior distributions as a function of redshift or amplitude, except a
slight one in the first redshift bin. This is a confirmation of the "indipendence" of the data coming
from the different cluster bins, and it allow us to combine all the 14 posterior probabilities as
discussed in appendix A. In practice, to be able to obtain a single posterior distribution of ΩM
from all the cluster shear profiles, we simply multiply the 14 individual posterior distributions
of Fig. 6.7. The result can be seen in Fig. 6.9: we are in excellent agreement with WMAP9
(black lines) but there is a tension with Planck18 (red lines). Furthermore the posterior product
distribution tends to a Gaussian distribution, confirming the statistical behaviour of our measures.
In Fig. 6.10 we show the posterior product evaluated for each redshift bin, where we see that there
is not an appreciable trend with z and where, moreover, we can see that the lower redshift bin is
the dominant one in determining the final product distribution.

Figure 6.6: The inferred median ΩM -Amplitude relations estimated from the modelling of the
lensing profiles in three redshift ranges, as indicated by the labels. The amplitude, Aeff , has been
estimated with Eq. (6.3.2). The solid lines are the best-fit linear relations in each redshift bin.

In Fig. 6.6 we plot and fit the relation between the median ΩM and the amplitude for each
redshift bin. The points are described by the following linear best-fit models:

• ΩM=0.18Aeff+0.04, for 0.1<z<0.3 (black line)

• ΩM=0.11Aeff+0.06, for 0.3<z<0.45 (red line)

• ΩM=0.26Aeff+0.04, for 0.45<z<0.6 (blue line).

From the figure we can confirm that there is not a correlation with redshift for ΩM but it seems to
be present with amplitude. Anyway, we can not confirm this statement because of the large error
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on the matter density parameter values, that produces a very large error on the inferred slopes.
Therefore, the correlation is not significant.

Indeed, this analysis with free ΩM aimed at being a test on the reliability of the method, i.e
to see if we can infer reasonable cosmological parameter values from the 2-halo signal, but the
strength of the method relies on a modelling that infer both M200 and ΩM (see Sect. 6.5).

Figure 6.7: The MCMC marginalised posterior distributions of ΩM , in 14 bins of amplitude and
redshift, as indicated on top of each box (as in Fig. 6.8). The median values, with 1-σ uncertainties,
are reported in the labels.
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Figure 6.8: Stacked profiles for cluster samples in 14 bins of amplitude and redshift. The redshift
increases from left to right, while the amplitude (hence M200) from top to bottom. The error
bars are the diagonal values of the bootstrap covariance matrix, estimated as described in Section
5.3.3. The coloured curves show the best-fit posterior (one+two)-halo models assessed with the
MCMC statistical analysis, while the shaded regions indicate the estimated 1 − σ uncertainties.
The measurements at r < 0.2Mpc/h (the first four data points) have been excluded from the
MCMC analysis.
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Figure 6.9: Combined ΩM posterior distribution, estimated as the product of the 14 posterior
distributions of each cluster sample shown in Fig. 6.7 (green histogram). The Planck18 (solid blue
lines) and WMAP9 (solid black lines) constraints are shown for comparison, with the dot-dashed
lines showing the respective errors (1σ), as indicated by the labels.

Figure 6.10: Combined ΩM posterior distribution, estimated as the product of the posterior dis-
tributions in the three redshift range separately, that is 0.1 < z < 0.3 (red), 0.3 < z < 0.45 (blue)
and 0.45 < z < 0.6 (green). The mean and variance are indicated by the solid and dotted lines,
respectively. The mean and variance of the product distribution of each redshift bin are shown in
the legend.
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6.5 Inferring ΩM and M200 together
The spatial and dynamical properties of dark matter halos are a robust function of the cosmological
parameters but to exploit clusters as cosmological probes we have to know the relation between
their observable properties and their masses. From this, we understand the importance to have a
close correlation between mass and amplitude (the amplitude can be seen as a parameterization of
that observable that is the cluster richness), found in Section 6.3, to confirm the reliability of the
cosmological parameter estimates from clusters. This is true especially in our situation, since our
shear measurements come from weak lensing observations, that can map mass profiles up to large
radii, and are therefore not influenced by the dynamics and the state of the baryons.

In this section we present the final task of our thesis work: a method to infer both cosmological
parameters and cluster masses from a stacked shear data analysis, modelling together the 1-halo
contribute and the 2-halo one. Here we simply introduce our analysis method with its theoretical
bases and data modelling procedure and we also discuss the reliability of the measure of shear
profiles from photometric signals on large scales in the KiDS-DR3 survey.

The shear data analysis was developed exactly as the one discussed in Section 6.4, both for the
Bayesian analysis performed and for the used shear data. The fundamental difference now is that
we are fitting the shear profiles, shown in Figure 6.8, leaving free mass and concentration together
with ΩM . M200 and c are parameters estimated exclusively from the 1-halo model. The priors
range is the same assumed for ΩM in Section 6.4, and forM200 and c in Section 6.1. In this way we
allow to the MCMC runs to be free to model the total shear profiles extracted up to the extreme
outskirts of the AMICO clusters.

We remind that M200 is computed as:

M200 ≡M(r200) = 200ρc(z)
4

3
πr3

200, (6.5.1)

where ρc(z) = 3H2(z)/(8πG) is the critical density at epoch z and the Hubble parameter satisfies
H2(z) = H2

0 [ΩM (1 + z)3 + (1 − ΩM )] for a flat ΛCDM Universe. Hence, when inferring the ΩM
value on the extended radial range, we expect some correlation between M200 and ΩM . ΩM will
affect the estimation of halo mass, being this composed principally by dark matter.

The values obtained for M200 fitting the profiles up to large radii around the cluster itself
are very similar to those inferred when modelling the 1-halo cluster profile only (Section 6.1),
confirming both the reliability of the truncated NFW model and the negligibility of the 2-halo
term contribute to the 1-halo profile. It is important to obtain a reliable estimation of the one
halo mass because it determines the right value of the halo bias bh, that grows exponentially with
mass, and that is the term that more than all configures the surface density profile of the 2-halo
term of Eq. (5.4.6). We do not care about the concentration because it is a degenerate parameter,
but we underline that was necessary to leave it free in this analysis to make sure it did not bias the
mass estimation. The miscentring parameters foff and σoff were fixed to the values inferred in
the first step of the analysis on the 1-halo radial range because their contribute decreases rapidly
beyond 0.5-0.6 Mpc/h and, consequently, they can not affect the 2-halo term. However, we could
not ignore their contribute to the mass estimate.

In Figures 6.11, 6.12 and 6.13 the individual fitting models derived from the analysis through
MCMC runs are shown for the first, the second and the third redshift bin, respectively. With
the same splitting, the posterior distributions for model parameters are shown in Figures 6.14,
6.15 and 6.16. We can confirm the reliability of the used method by looking at the figures just
mentioned. First of all, from Figures 6.11, 6.12 and 6.13, we can see the necessity of the 2-halo
term to describe the stacked surface density profile on large scales: between 7 and 10 Mpc/h the
2-halo term starts to dominate over the 1-halo term, which is unable to fit the data far beyond the
cluster virial radius. We separately put in these plots the 1 and 2-halo profile models (dot-dashed
red curves) to show the scales where they fit the data and to check the good conjunction they
reach on radii where they cross. We underline that they match with each other thanks to the
flexibility introduced by the truncation in the NFW profile. Always from the profiles we can see
how our posterior models are often in good agreement with the ΩM values estimated by Planck18
(solid blue curves) and WMAP9 (black solid curves), representing the state of the art regarding
the estimation of cosmological parameters. Furthermore, the error on the fitting models of Eq.
5.4.8 is much smaller with respect to the prior range of the free parameters: we plot the model
for the minimum ΩM -prior (violet dashed curve) and for the maximum one (dashed green) to
show that our Bayesian analysis was able to narrow down the range of possible values that ΩM
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can take. Moreover, from the curves for the extreme values, we can see how the matter density
parameter affects the shape of the 2-halo profile, since this value determines directly the power
spectrum shape and the normalisation of the bias halo, in the ∆Σ2h(R) profile (see Eq. 5.4.6). An
interesting thing that emerges from the violet curves is that, when considering the minimum ΩM
prior, that assumes negligible dark matter contribute, the fitting model always shows an inflection
point beyond which the model profile grows quickly, as if at those scales the related matter started
to be more concentrated. If there is any physical reason behind this, we intend to further investigate
after this thesis work.

In Fig. 6.17 we plot and fit the relation between the inferred median ΩM and the M200, for
each redshift bin. The points are described by the following linear best-fit models:

• ΩM=0.27M200+0.03, for 0.1<z<0.3 (black line)

• ΩM=0.17M200+0.05, for 0.3<z<0.45 (red line)

• ΩM=0.36M200+0.04, for 0.45<z<0.6 (lue line)

We can see that there is some form of correlation betweenM200 and ΩM . This would be somewhat
worrying because the estimation of the cosmological parameter would depend on the derived values
of the cluster mass. Anyway the errors on the different ΩM values are so large that we can reach no
definite conclusion about this possible dependence. In fact, the error on the slope of these relations
is of the order of the fit parameters themselves. From the figure we can suppose there is not a
correlation with redshift despite the magnitude of the errors does not allow a clear confirmation.

Finally, as done in Section 6.4, we show the product of the 14 individual cluster bin distributions
to get our final posterior distribution of ΩM . We did so considering the single ΩM distributions of
the three-dimensional posterior distributions of Figures 6.14, 6.15 and 6.16. In this case we obtain
< ΩM >= 0.285 ± 0.023 that is consistent and competitive with the one estimated by WMAP9
(95% confidence level). Instead, it is consistent at the limit of the agreement with Planck18 (68%
level confidence), as shown in Figure 6.18. Our measures are in tension with the estimations
inferred from the CMB by Planck18. Furthermore, the error on the posteriors is less than a half
of that from WMAP9 and, unexpectedly, it has not grown compared to that resulting from the
"test" discussed in Section 6.4 (we suggest to compare Figures 6.18 and 6.9). Indeed, the error
deriving from the analysis with free M200, c and ΩM has grown as expected but on mass and
concentration estimates, especially on the latter. Moreover, the estimates of the median mass have
grown slightly and systematically with respect to those estimated from the extraction of the 1-halo
profile only (Section 6.1). However, we believe that the latter are more reliable, since they suffer
from negligible systematic uncertainties and are estimated mainly with the truncated NFW, which
in literature has proved to be very reliable on the 1-halo radial ranges.

We find that the modelling approach through the sum of models of equations (5.4.1) and (5.4.6)
was successful to compute both the lensing cluster mass and the matter density parameter. It is not
trivial that the cosmological information contained into the 2-halo term (described by an analytical
function taking into account the matter power spectrum and the halo bias) can help us to constrain
the cluster halo mass together with a cosmological parameter, which enters in the 1-halo modelling
simply to set the cosmological model adopted by the truncated NFW fitting function.

6.6 Possible systematics affecting the ΩM estimate
There are still several tests to perform on this new method and on these data. For instance, we
have to check the systematic uncertainties and how much they affect the measures. The shot noise
is not the only source of uncertainties at large radii: if we consider clusters whose mean separation
is smaller than the range over which we measure the shear profiles, we cannot simply rescale the
lensing S/N as S/N ∝

√
Ncl (Sereno et al., 2017). The uncertainty derived from cosmological

parameters is reasonably underestimated in our analysis. This is because we have ignored the
correlation between data at large scales and because we have fixed all the other cosmological
parameters to those of Planck18, for example.

Now, we will discuss some advancements that might improve the results (see Figures 6.11, 6.12,
6.13 and 6.18) of our kind of lensing analysis.

A first source of uncertainty is based on the fact that the inference of cosmological densities
requires that the measured signal is independent of the reference cosmological conditions. Instead,
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when stacking in physical lengths and estimating the shear signal we needed to assume a cosmo-
logical model. We had to compute angular diameter distances to convert angular separations to
physical lengths, to convert tangential shear to differential surface density contrasts and to weigh
the lensing signal for sources at different redshifts. Also the masses were inferred assuming a
cosmological model in this thesis work. A solution could be to assume a cosmology to pass from
the ra, dec, z coordinates (observed) to the cartesians (co-moving) ones and model the possible
geometrical distortion when we estimate the likelihood for the fitting model. Anyway, in literature
these effects are considered small and negligible hence we did not measure and consider this bias
in our work. In other word, we considered negligible the possible geometrical distortions induced
by the assumption of a wrong cosmological model. However, stacked shear signal drawn in a fixed
cosmology has been previously used to constrain the ΩM parameter (Cacciato et al., 2013; Mandel-
baum et al., 2013). A useful solution to get results without an unbiased procedure like this could be
to stack the signal in angular radii for lenses in small redshift bins, adopting a unique population
of background sources for the lensing analysis (Oguri and Takada, 2011). This approach will be
available for wider and deeper surveys, like Euclid.

In this thesis work we did not carry out a detailed analysis of the possible systematic uncer-
tainties arising when inferring ΩM from shear profiles measured up to very large radii. In Section
6.2 we quantified the influence of systematic uncertainties on the mass estimate when fitting shear
profiles on 1-halo radial scales. We concluded that our mass inference is robust and the main
source of error that affects the mass estimates is principally of a statistical nature. This is due to
our conservative approach in the background galaxies selection (see Section 5.2).

The 2-halo term signal is proportional to the halo bias times the normalisation of the amplitude
of the matter power spectrum, ∝ bhσ8. The halo bias is determined principally by the 1-halo mass.
Hence we can suppose that the cosmological densities, estimated from the 2-halo term modelling,
are reliable in our case. Moreover, we estimated the uncertainty covariance matrix with a boot-
strap procedure with resampling (precisely, 10000 resampling of the clusters on mock catalogues),
neglecting the non-diagonal terms that are at the level of a noise. While this method is valid for
the masses inferred from shear profiles collected in the 1-halo radial range, it can be improved for
what concerns the 2-halo scales, from which we infer the matter density parameter. Because of the
stacking, shear observations at different radii are correlated and the effect increases at radii larger
than the typical lens angular separation (Mandelbaum et al., 2013). Hence, the posterior error on
ΩM might be slightly underestimated, as we did not consider all possible systematic uncertainties
that might affect our analysis. We defer this analysis to future work.

Anyway, a brief overview of how the error on ΩM could affect these types of measures can
already be thought. A first solution to reduce systematic uncertainties can be to restrict the
number of radial bins when deriving the shear profiles. If the number of lenses to stack in each
redshift-amplitude bin is considerably larger than the number of radial bins we can neglect a
possible bias induced by the noisy estimator of the inverse covariance matrix (Hartlap et al.,
2007). We know that having less radial bins would reduce the error on the shear profiles but it
would enhance that on the modelling. Until we will have more numerous cluster samples, this road
can not be undertaken. An alternative approach would require to create a noiseless covariance
matrix (Mandelbaum et al., 2013). The shape noise is the first source of error at small radii
but it scales as R−2 for logarithmically spaces bins. However, the total noise flattens at larger
radii, mainly for two reasons. Primarily, when R is appreciably larger than the typical separation
between lenses, the annular bins enclose many of the same sources lensed by neighboring clusters.
So the shape noise is not able to decrease by stacking more lenses. Secondly, when R is of the same
order of the field of view, an incomplete correction of the optical distortion can induce a coherent
anisotropy of the point spread function ellipticities in the edge of the field of view, causing a
residual systematic error. Like in our case, where we collect data on scales that are about twice
the camera coverage. Considering these two systematic uncertainties sources, the diagonal terms
of the uncertainty covariance matrix C can be modelled (Mandelbaum et al., 2013) as:

C(Ri, Ri) = AR−2[1− (R/Rt)
2],

where Rt is the turn-around radius above which the shape noise is subdominant (roughly 9 −
10 Mpc/h) and A is the amplitude of the noise variance. The smoothing of the non-diagonal terms
is difficult to model and probably the usage of a noisy version of the covariance matrix is a safer
choice. Furthermore, the uncertainty covariance matrix can be established only when the number
of clusters to stack is large enough. This is not the case for the less populated bins in amplitude,
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i.e for more massive clusters.
A limited field of view in weak lensing observations would not allow to constrain cosmological

parameters that are not ∝ bhσ8 (Sereno et al., 2017). We strongly believe that the reasonable
statistical uncertainties, obtained from KiDS data with our analysis on the ΩM inference, coun-
terbalanced the uncertainties due to the limited OmegaCAM field of view with respect to our
observation scales. For these reasons, the increased spectroscopic sample associated with the Eu-
clid survey will greatly improve the cosmological estimates of our kind of analysis.
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Figure 6.11
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Figure 6.11: The stacked profiles of galaxy clusters in all bins of amplitudes and redshifts, for
the first redshift bin (0.1 < z < 0.3). The amplitude increases from left to right and from top
to bottom. The error bars show the diagonal values of the bootstrap covariance matrix (continue
to the next page). The measurements at r < 0.2Mpc/h (the first four data points) have been
excluded from the MCMC analysis (see the discussion in Section 5.4.1). The red solid curves are
the best-fit posterior models, while the shaded red regions show the estimated 1− σ uncertainties.
The MCMC is performed with three free parameters, M200, c and ΩM . The blue and black curves
show the models with ΩM,Planck = 0.32 and ΩM,WMAP = 0.27, respectively. The dashed violet
and green curves show the models with ΩM = 0.06 and ΩM = 0.6), corresponding to the minimum
and maximum limits of the assumed ΩM prior, respectively. The dot-dashed red curves are the
models for 1-halo and 2-halo, separately.
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Figure 6.12: As Fig. 6.11, but for the second redshift bin analysed (0.3 < z < 0.45).
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Figure 6.13: As Fig. 6.11, but for the third redshift bin analysed (0.45 < z < 0.6).
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Figure 6.14: Posterior distributions of the three free parameters of the assumed (one+two)-halo
lensing model (ΩM , c, M200) for the first redshift bin analysed (0.1 < z < 0.3). The dashed
vertical lines represent the posterior medians, and the 18-th and 82-th percentiles. The values of
these quantities are reported on top of each panel. The contour lines refer to 1− σ and 2− σ.
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Figure 6.15: As Fig. 6.14, but for the second redshift bin analysed (0.3 < z < 0.45).
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Figure 6.16: As Fig. 6.14, but for the third redshift bin analysed (0.45 < z < 0.6).
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Figure 6.17: The ΩM -M200 relation inferred from the modelling of the lensing profiles, marginalising
over c. The error bars show the 1 − σ uncertainties. The latter refer to the median values of the
posteriors reported on top of the histograms in Figures 6.14, 6.15 and 6.16 for the first, the second
and the third redshift bin, respectively. The solid lines are the best-fit linear relations in each
redshift bin.

Figure 6.18: Combined ΩM posterior distribution, estimated as the product of the 14 posterior
distributions of each cluster sample shown in Fig. 6.14, 6.15 and 6.16. The symbols are the same
as in Fig. 6.10. The difference is that here we marginalised over M200 and c.
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Chapter 7

Conclusions and perspectives

In the era of precision cosmology, the progress in the establishment of independent methods to infer
cosmological parameters is fundamental to test possible failures of the standard ΛCDM model, or
hidden systematics. Galaxy clusters are biased tracers of the underlying mass distribution (Tinker
et al., 2010). Gravitational lensing offers a unique probe into the total matter distributions in
clusters. Indeed, the stacked lensing method has increasingly grown more and more successful in
measuring the average masses of clusters, down to the less massive ones (Johnston et al., 2007;
Mandelbaum et al., 2008; Covone et al., 2014; Bellagamba et al., 2019).

In this thesis work, we presented new cosmological results from the analysis of weak lensing
signal produced by a galaxy cluster sample detected from the third data release of the KiDS
survey (KiDS-DR3, de Jong et al., 2017; Hildebrandt et al., 2017). Specifically, we exploited
photometric redshifts with relative probability distribution functions (Kuijken et al., 2015; de Jong
et al., 2017), a global improved photometric calibration, weak lensing shear catalogues (Kuijken
et al., 2015; Hildebrandt et al., 2017) and lensing-optimised image data. Our cluster sample, used
to build the stacked shear profiles for the cosmological analysis, was obtained using the AMICO
algorithm (Bellagamba et al., 2018) in Maturi et al. (2018). The redshift-amplitude binning of the
cluster sample was set as in Bellagamba et al. (2019).

Using the CFHTLenS public shear catalogue, Covone et al. (2014) obtained stacked weak
lensing signal of Ncl = 1176 galaxy clusters, in the redshift range 0.1 < z < 0.6, with a number
density of backgound galaxies ngal ∼ 6 per square arcminute. They built high S/N 1+2-halo
shear profiles in six bins in optical richness, whith average masses spanning the range from 0.5
to ∼ 3 × 1014M�/h. In the same range of redshifts and, roughly, of masses, the cluster sample
collected in Maturi et al. (2018) from KiDS-DR3, that we used in this work, is composed of 6972
objects. We exploited a survey area of ∼ 360 deg2, to be compared to the one analysed by Covone
et al. (2014) of ∼ 154 deg2. This allowed us to collect shear profiles for 14 redshift-amplitude
bins with ngal ∼ 8.53 per square arcminute. Moreover, the shear data and photometric redshift
estimates of KiDS are better than those of its sister survey CFHTLenS.

Our studies support the use of the stacking method in weak lensing to calibrate galaxy cluster
scaling relations (e.g Oguri and Takada, 2011). Furthermore, we corroborated the reliability of
AMICO (Bellagamba et al., 2018) in detecting galaxy cluster samples. This algorithm was used
to construct the first and only cluster sample from KiDS-DR3 data by Maturi et al. (2018). This
cluster data-set successfully enabled us to infer cosmological parameters from shear measurements.

Modelling the shear profiles of these clusters up to large scales, we inferred robust cosmological
constraints on ΩM (see Figure 6.18). X-ray studies (Henry et al., 2009), together with CMB
and cosmic shear measurements, highlighted the importance of understanding systematic effects
associated with the use of directly observable quantities as proxies for mass. Our results show that
AMICO detected structures down to few 1013M�/h in the KiDS data, and provided a reliable mass
proxy for each of them (see Table 6.1). Its application to planned KiDS Data Releases will provide
one of the largest and deepest cluster samples with mass calibration available to date (Bellagamba
et al., 2019).

We confirmed also the goodness of the modelling used in Bellagamba et al. (2019) to fit shear
profiles (see Figures 6.11, 6.12 and 6.13). We considered a minimum radius of 0.2Mpc/h in the
modelling, properly taking into account the contribution of clusters miscentred with respect to the
effective cluster centre. Anyway, since we exploited mainly the cosmological information in the
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2-halo term, dominant at very large radii, our final constraints on ΩM are negligibly affected by
the choice of the lower fitting radius.

Note that the lensing signal, expected to arise in the 2-halo term, is generally too low to be
carefully detected in the outskirts of individual clusters (but see Sereno et al., 2018). Stacking the
lensing signal of a significant number of clusters enabled us to detect the 2-halo term at relatively
high S/N. Hence we further confirmed the presence of the 2-halo contribute in the lensing signal
produced by the large-scale structures of the Universe. Furthermore, we assessed the efficiency
of the model given by Eq. (5.4.7) (Oguri and Hamana, 2011) to describe the weak lensing signal
produced by the 2-halo term.

In our thesis work, we constrained simultaneously the cluster masses,M200, and ΩM (see Figures
6.14, 6.15, 6.16), assuming a robust scaling relation between the cluster masses and the observed
amplitudes (see Figure 6.4), and using a 1+2-halo model. The masses were also inferred from the
1-halo model at small scales, assuming the truncated NFW model given by Eq. (5.4.1), finding
consistent results. The results presented in this work are fully consistent with the theoretical
predictions of the ΛCDM model. Marginalising over the cluster masses and concentrations, we get
ΩM = 0.285 ± 0.023, from the full MCMC posterior distribution, assuming a flat geometry. This
value is competitive and consistent with that estimated by WMPA9 (ΩM,WMAP9 = 0.273±0.049),
but slightly in tension with the Planck18 constraints (ΩM,Planck18 = 0.317 ± 0.008). However, in
this thesis work we did not carry out a detailed analysis on the possible systematic uncertainties
arising when inferring ΩM from shear profiles measured up to very large radii (we discussed it in
Sect 6.6), so our assessed uncertainties might be slightly underestimated.

Surely, enhancing the number of clusters to stack, the uncertaintiy on the stacked shear data
points decreases because of the nature of the cluster-shear cross-correlation. Hence we await the
progress of KiDS to improve our stacked shear measurements, and subsequently the Euclid mission
launch. In fact, upcoming deeper galaxy surveys will let us detect and stack lensing clusters in
small redshift bins at z . 1.5, enabling us to break parameter degeneracies and limit systematics
(Oguri and Takada, 2011). The accuracy in the estimate of ΩM will significantly benefit from the
advancement planned for KiDS when it will reach its final coverage of 1500 deg2 of sky, with a
median redshift of ∼ 0.8. The same is true for the upcoming optical galaxy surveys. As test bed,
we can consider the large area survey conceived for the Euclid mission, whose launch is planned
for 20221. The lensing signal can be incremented by considering a larger number of clusters (which
can be attained with either deeper or wider surveys), background sources (deeper surveys) and a
wider survey area (in order to collect the 2-halo term lensing signal up to 50 Mpc/h). These three
aspects will be reached by Euclid which will represent a significant improvement compared to the
data-set used in this work. Euclid will cover an area of ∼ 15000 deg2 (×10 that planned for KiDS)
and it will detect ng ∼ 30 galaxies per square arcminutes, with a median redshift larger than 0.9.
Therefore, it will be conveniently exploited for weak lensing analyses (Laureijs et al., 2011). These
primary properties are sufficient to predict the expected improvement in the lensing signal, as well
as the corresponding accuracy expected in the determination of ΩM from lensing analysis. Due to
the improved photometry, a larger number of clusters will be detected to higher redshifts. In this
context, AMICO, that has been recently selected as the primary cluster detection algorithm for the
Euclid mission, is expected to provide excellent results. Anyway, most of the clusters are expected
to be detected in low-mass haloes, that produce small lensing signal. Morever, the photometric
redshift determination for small groups might be significantly uncertain, getting in the way of the
weak lensing analysis. This drawback will be balanced by the significant redshift range extension of
the background galaxies of the survey, because their lensing signal is maximised at high redshifts.
Excluding measures of shear profiles at very large radii (2-halo region), the lensing S/N rescales
with the number of clusters as S/N ∝

√
Ncl, hence we can consider a significant improvement of

the lensing signal detected by Euclid with respect to the present analysis, due to the larger density
of detected clusters. The same consideration is valid for the enhancing of the lensing signal due to a
higher number of background galaxies in Euclid (ngal ∼ 30 galaxies per arcminute) with respect to
KiDS (ngal ∼ 22). Finally, the broad coverage of the Euclid survey will allow us to detect the 2-halo
lensing signal up to its full radial extent (50Mpc/h), decreasing the error in the lensing estimate
of cosmological parameters (Sereno et al., 2017). Anyway, this effect would be counterbalanced by
the increased overlap in the lensing area of near clusters. The ΩM estimate might benefit from
enhanced spectroscopic sample associated to the Euclid survey because spectroscopic redshifts are
more precise than the photometric ones, drastically diminishing the main source of uncertainty

1https://www.Euclid-ec.org/
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in our kind of analysis (see Section 6.2). The increased spectroscopic sample associated with the
Euclid survey will greatly improve the cosmological estimates of our kind of analysis.

Another efficient approach to drastically improve the constraints on cosmological parameter
estimates is to use the same cluster population used for the lensing analysis togheter with a joint
halo clustering analysis, i.e inferring the correlation function of galaxy clusters. Furthermore, this
method minimises the modelling by keeping only the information far beyond the cluster virial
radius. The simultaneous analysis of stacked lensing and clustering proved to be particularly
efficient to constrain the halo bias together with the matter linear power spectrum amplitude
(Sereno et al., 2017). We aim at completing and improving our analysis for the inference on
ΩM with the same approach. The features of a joint analysis of clustering and weak lensing
will determine the matter density parameter to a very good accuracy and, when considering the
opportunities offered by Euclid, we expect even better results.

105



Appendix A

Bayesian statistics

This appendix is based on the review notes of the course: "Practical Statistics for Physics and
Astrophysics” held by Prof. R. B. Metcalf at the Department of Physics and Astronomy of the
University of Bologna. The notes can be downloaded at the following link: notes.pdf.

In the Bayesian approach, the probability is a measure of the degree of credibility of a proposi-
tion. So this is a "subjective" approach, in the sense that the probability of an event is estimated
taking into account also the prior knowledge we might have on that event. This definition is ap-
plicable to any event. Through statistical Bayesian inference we can constrain models for physical
processes, that describe the probabilistic distribution of the data. In particular, the Bayesian ap-
proach provides us the possibility to calculate the probability of a model, or of model parameters,
given the data and any prior knowledge. The Bayesian probability is an inverse probability, that
is, it consists in ascending from the data observed to a model probability. The probabilities are not
interpreted as frequencies, but rather as levels of confidence in the occurrence of a given event. One
of the advantages of the Bayesian interpretation of probability is that it enables us to assign the
probability that a model is the best one in describing the data, with respect to the other models
considered. On the other side, through the so-called frequentist approach, it is not possible to
assign a probability to a model, as only the data are probabilistic. Nevertheless it can be shown
that when a frequentist result exists, and in the limit of a very large sampling, the Bayesian and
frequentist results coincide. The Bayesian statistics is based on the Bayes theorem:

P (A|B) =
P (A)P (B|A)

P (B)
. (A.0.1)

This theorem comes from the logical requirement that P (A,B) is the same as P (B,A), and from
the product rule P (A,B) = P (A)P (B|A)1, where P (A,B) is the joint probability of events A and
B, while P (B|A) is the conditional probability of B given that A is true.

The Bayes theorem allows to convert the a priori probability into the a posteriori probability:
an estimate of the degree of credibility of a given hypothesis is used before data observation to
associate a numerical value with the degree of credibility of that hypothesis, after the observation
of the data.

Posterior, likelihood, prior and evidence
Let D be some amount of data and Mi a model that should describe it, being a member of the set
{M1,M2, ...}. The latter might be totally different from each other, e.g. with different parameters,
or they might differ by only the values of the model parameters. Let I represents everything else
in the Universe, that we will take to be fixed or irrelevant to our experiment. Applying Eq. (A.0.1)
we get:

P (Mi|D, I) =
P (D|Mi, I)P (Mi|I)

P (D|I)
=

P (D|Mi, I)P (Mi|I)∑
i P (D|Mi, I)P (Mi|I)

, (A.0.2)

where the second equality follows from P (D|I) =
∑
i P (D,Mi|I) =

∑
i P (D|Mi, I)P (Mi|I), which

is the probability that the data will occur assuming the correct model is one of the Mi’s. Here, I
1The product rule and the sum rule (P (A) +P (Ā) = 1 (where Ā means “not A”), represent the two fundamental

axioms of probability theory; from these ones we can derive all the necessary properties of probability.
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is included only to emphasize the fact that every probability has some implicit assumptions which
could be incorporated into the model but, if they have no effect on the outcome of the experiment or
they were never changed when the experiments were conducted, they can be considered conditionals
for all the probabilities. In the following, I will be considered implicit and not included.

Each factor in Eq.(A.0.2) has a special name:

• P (Mi|D) is called the posterior probability for the model Mi, given the data. Estimating the
full posterior probability distribution is the final goal of the Bayesian inference, though it is
often sufficient to estimate the posterior median (or mode) and confidence regions.

• P (D|Mi) is called the likelihood and it is the probability of getting the observed data given
the model Mi. It is often denoted as L(D|Mi). Note that this is the probability used
in frequentist methods. Often the likelihood function can be assumed to be Gaussian. It
includes the model used to describe the data, and the covariance matrix which describes the
noise. The one-dimensional Gaussian likelihood can be written as follows:

L(θ) = p(x|θ) =

√
1

2πσ2
exp
(
− (x− µ(θ))2

2σ2

)
, (A.0.3)

where µ is the mean of the model parameter θ and σ2 is the variance.

• P (Mi) is called the prior and it is the probability of the model prior to the data, D, being
considered. This might take into account some previous experiment with data D′, in which
case it would be the posterior of that experiment, P (Mi|D′). It might also take into account
that some models, or range of parameters, is not possible, in which case P (Mi) = 0 for some
i.

• P (D|I) =
∑
i P (D|Mi, I)P (Mi|I) is called the evidence (or marginal likelihood) and it is

not a function of Mi although it is implicitly dependent on the set of all models considered.
Since the data do not change, the evidence will be a constant for a fixed set of models. For
the estimation of the model parameters (which is done by fixing a model), the evidence is
simply a constant that normalises the posterior probability, and it can be ignored. Instead,
it becomes crucial when you want to compare different models. The evidence is sometimes
denoted as ε(D).

P (Mi|D, I) can be considered as the prior conditional probability of a new experiment. This
is referred as Bayesian’s rule. The proceedings can be viewed as updating our knowledge of the
model after we take into account new data or information and it can be thought of as a kind of
chain where every bit of new information, data, updates our knowledge progressively.

Parameter estimation
The Bayesian inference can be effectively exploited to assess model parameters and their uncertain-
ties. Let us assume to have a model written as a function of the parameters {θ1, θ2, ...}. We will
assume that these parameters take on a continuous range of values, although this is not necessary.
The sum in the evidence then becomes an integral and the posterior is:

P (θ1, θ2, ...|D) =
L(D|θ1, θ2, ...)p(θ1, θ2, ...)

[
∫
dnθL(D|θ1, θ2, ...)p(θ1, θ2, ...)]

. (A.0.4)

Eq.(A.0.4) provides the probability distribution for the set of parameter values, given that the
model is the correct one.

Note that the Bayesian analysis is always relative. Almost always we compare one model to
another or many others. A corollary to this is that we will always get an answer even when the
model is completely wrong. The posterior for a model that fits the data very badly will often look
just fine: there will usually be a set of parameters that fit the data best, but that does not meant
they fit the data well. A Bayesian model selection is required to address this issue (see Section A).
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Marginalization
Some model parameters might be not of interest for a particular statistical analysis. In the Bayesian
context these parameters are called nuisance parameters. We can marginalize over them by inte-
grating over the posterior distribution. Let us say parameters α1, α2, ... are the parameters we are
interested in, and parameters β1, β2, ... are the nuisance parameters. We can write the likelihood
as:

P (α1, α2, ...|D) =

∫ ∞
−∞

dβ1

∫ ∞
−∞

dβ2...P (α1, α2, ..., β1, β2, ...|D)

=

∫∞
−∞ dβ1

∫∞
−∞ dβ2...P (D|α1, α2, ..., β1, β2, ...)P (α1, α2, ..., β1, β2, ...)

ε(D)
.

(A.0.5)

Choice of priors
In the Bayesian approach, prior information is properly used to assign the probability to a given
event. As its name hints, the prior represents the information we had about the parameters before
using the current data to constrain them. This information might come from a previous experiment
or observation, in which case the prior would be the posterior of that experiment. The prior can
also express the theoretically permissible values range of a parameter. In fact there is often some
boundaries we can set on parameter values, at least on a theoretical level. The parameter priors
may be not important if the likelihood is small at the boundaries of parameter space that they will
not affect the integral in the evidence, Therefore the posterior will be zero at these points

In the case of complete prior ignorance, the use of a uniform prior is the safest choice. This is
the prior that is constant over a region of parameter space and zero outside of it. Of course, it is
superfluous to specify the limits when likelihood is null at the boundaries, since the normalisation,
that appears both in the prior and in the evidence, cancels out. The prior imposes a metric on
the parameter space. The prior probability for a parameter α being in an infinitesimal region is
p(α)dα. What is a uniform prior for one set of parameters will not be a uniform prior for another
set, even though they might describe the same model.

Note that the normalisation of the uniform prior is formally zero if the parameter range −∞ <
α < +∞. These ranges are routinely used when the posterior (likelihood times prior) has a well
defined integral. These are examples of improper prior distributions that are not valid distributions
by themselves, but make sense in a posterior. Having a general way of including prior information
is an important advantage to the Bayesian method; the frequentist approach does not have this
advantage. In general, if the data strongly constrain the parameters beyond what was previously
known, the choice of prior should not strongly affect the resulting posterior.

Model selection
Now we will address a more general problem than just parameter estimation. Let us assume
there are different competing models that might describe the data, but that these models do not
just differ from each other by having different parameter values. Specifically, the models might
be described by different functions, with possibly different number of parameters. We can ask
ourselves which model is more strongly supported by the data, or if it is justified to add the extra
parameters: this is called model selection.

Let us consider a set of all possible models {M1,M2, ...} that should describe the data. We can
write down the posterior for model Mi using Bayes’ theorem as in the parameter estimation case:

P (Mi|D) =
P (D|Mi)P (Mi)

P (D)
=

P (D|Mi)P (Mi)∑
i P (D|Mi)P (Mi)

(A.0.6)

Model selection is often restricted to comparing the relative probability of two models, M1 and
M2. This can be done by taking the ratio of their posteriors:

O1,2 =
P (M1|D)

P (M2|D)
=
P (D|M1)P (M1)

P (D|M2)P (M2)
= B1,2

P (M1)

P (M2)
. (A.0.7)

O1,2 is called the odds of model 1 relative to model 2 and B1,2, the ratio of the model likelihoods, is
known as the Bayes’s factor. If the prior probabilities are equal, as they often are, then the odds is
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equal to Bayes’ factor. Note that P (D) cancels out so we can avoid needing to know the probability
of the data over all possible models. If the odds is large then model 1 is favored, vice-versa if it is
small.

Now, we can ask ourselves how we can calculate the likelihood P (D|M). In the parameter
estimation problem we stayed within one model, and for this reason all the probabilities were
conditional to this model being true, although that was not explicitly shown. Let us consider
a generic parameter θ. We can write the Bayes’ theorem again with the model conditionality
explicitly shown:

P (θ|D,M) =
P (D|θ,M)P (θ|M)

P (D|M)
. (A.0.8)

We can now see that P (D|M) is actually the evidence:

P (D|Mi) =

∫ +∞

−∞
dθP (D|θ,Mi)P (θ|Mi) = ε(D|Mi), (A.0.9)

where the integral is over all of parameter space within model Mi. In conclusion, Bayes’ factor is
the ratio of evidences for two models.

Calculating the evidence
It is often difficult, if not impossible, to achieve an analytic expression for the evidence, that is the
normalisation of the posterior. In practice, it is usually calculated numerically by integrating the
likelihood times the prior over the parameter space. This is usually a simple task if there are only
one, two or three parameters because, in this case, we can simply grid the parameter space or use
a standard integration routine.

Note that if we are estimating the parameters we only needs the posterior, because any factors
in the likelihood and prior, that do not depend on the parameters, will cancel out. For this reason
it is not necessary to normalise these probabilities individually, but just the product of them.
This can save a lot of time and calculations, especially when the likelihood or prior are something
strange of which we do not know the normalisation. On the other hand, the likelihood and prior
need to be properly normalised to get the evidence. When the dimension of the parameter space
is larger (≥ 3), numerical integration can be much more difficult.

Monte Carlo Markov Chain
In the ideal case, we should be able to construct an analytic expression for the likelihood, prior and
posterior, and execute integrals over them, either analytically or by standard numerical integration
methods, to find expectation statistical values or the integrated probability for a variable being
in a certain region. However, sometimes these integrals are very difficult to carry out because the
dimension of parameter(data)-space is high, and sometimes there is not an analytic expression for
these probability distributions (for example when a simulation is used to go from model parameters
to predictions).

To integrate over an analytic function, the best thing is having a large sample of deviates drawn
from the distribution. With a sufficiently large sample drawn from a distribution, we can exploit
the law of large numbers to estimate any expectation value:

E[g(x)] =

∫ +∞

−∞
dnxp(x)g(x) ≈ 1

n

∑
i

g(xi) , (A.0.10)

where xi’s are drawn from the distribution p(x). In one dimension, it is often possible to efficiently
sample from a standard distribution function. There are several methods used to find these deviates
such as rejection and transformation methods, but we will not describe them in this appendix,
because they are not used in our analysis.

The Monte Carlo integration is a way of exploiting the law of large numbers (A.0.10). It consists
of extracting random numbers to estimate a multidimensional integral that cannot be computed
analytically or by using a standard one-dimensional methods, such as for example the trapezoids.
It is typically used when the number of dimensions is high and/or the boundaries to the region of
integration are complicated.
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The frequentist approach can be summarised as follows: determining a Maximum Likelihood
Estimator MLE (which is a function of the data and therefore a random variable) and its distribu-
tion, that is a function of the data. In most cases this step is performed numerically by generating
mock datasets and determining for each of them the MLE. The likelihood and the Monte-Carlo
method are therefore the basis of the frequentist approach.

Markov chain
The Monte Carlo Markov Chain (MCMCs) method allows to numerically map the posterior, even
in very complicated cases where, for example, the likelihood is obtained through numerical sim-
ulations, the parameter space has a large number of dimensions and the posterior has a complex
structure with many peaks. Through MCMC we sample the posterior the most efficiently by
concentrating in the regions where it is larger. In this way the number of points to be calcu-
lated increases approximately linearly rather than exponentially, with N. The term Monte Carlo
refers to the fact that for the computation we resort to a repeated random sampling (through the
generations of sequences of random numbers).

In statistics, a chain is an ordered series of random numbers x1, ..., xn, ... where the conditional
probability of each element, given the other elements, is specified: p(xn|x1, ...). It is possible to
think of the whole chain as being a single random object. The theory on chains is extensive. In
fact, chains can be used to model almost everything. There are many different types of chains with
different properties. Here we will concentrate only on the Markov chains, that is commonly used
in scientific inference problems, and on the properties that are important to our application.

A MCMC is a chain where the conditional probability of any element xn depends only on the
previous element xn−1 and not from how we came to this state (from the history). The probability
p(xn+1|xn) is known as the Markov chain’s transition kernel. If the transition kernel is independent
of n it is said to be time-homogeneous. The chains we are interested in are ergodic chains. To be
ergodic the chain must be:

• irreducible, i.e a chain starting at any state x0 can reach any other state after a finite number
of steps, not necessarily one step;

• aperiodic, i.e the chain will not return to the same state after some fixed number of steps;

• positive recurrent, i.e the expectation value for the number of steps between any two states
is finite.

It is also true that a Markov chain is ergodic if there is a number N such that any state can be
reached from any other state in N steps. The most important consequence of ergodicity is that
the chain has a unique stationary distribution f(x) such that∫ +∞

−∞
dxnf(xn)p(xn+1|xn) = f(xn+1) , (A.0.11)

which means that we are able to realize chains whose states are distributed according to f(x), if
we can find a transition kernel that satisfies this requirement, and the law of large numbers:

E[g(x)] = lim
N→∞

1

N

N∑
n=0

g(xn) (A.0.12)

will be applicable. Note that the transition kernel is not unique for a particular f(x). We can
also select one or two parameters and make a histogram which should be a representation of the
stationary distribution. Also note that having a stationary distribution does not mean that each
element in the chain is independent, i.e f(xn+1,xn) 6= f(xn+1)f(xn). In fact, states that are
very far separated in the chain are not always independent, but as the separation increases they
will in case become independent. Normally, an MCMC algorithm generates Markov chains of
samples, each of which is autocorrelated to those generated immediately before and after him.
Consequently, successive samples are not independent but form a Markov chain with a certain
degree of correlation.
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Metropolis-Hastings algorithm
Like other MCMC methods, the aim of the Metropolis-Hastings (MH) algorithm (Hastings, 1970)
is to generate a collection of states that follow a given distribution (in the Bayesian case, the
posterior). The MH algorithm is based on finding a transition kernel that will have any desired
stationary distribution. The kernel has to satisfy the detailed balance equation:

p(xn+1|xn)f(xn) = p(xn|xn+1)f(xn+1) (A.0.13)

for all n. It can be easily seen that if p(xn+1) satisfies the detailed balance it will also satisfy Eq.
(A.0.11). We can think of this as if there were a flow of points out of state xn into xn+1 and a
counter flow out of xn+1 into xn. The flow is proportional to the probability of being in the first
state times the probability of transitioning. Detailed balance requires that the flow and counter
flow between every pair of states to be equal. The stationary state will then be the steady state
and the time the chain spends in a given state will be proportional to f(x). The MH algorithm
runs, starting at state xn, as follows:

1. Choose a trial point xt from a proposal distribution q(xt|xn): this is the initialization.

2. Calculate the probability of acceptance of the chosen point:

α(xt,xn) = min
{

1,
q(xn|xt)f(xt)

q(xt|xn)f(xn)

}
(A.0.14)

3. At each iteration i, if α < 1 we draw a uniform random number between 0 and 1. If α is larger
than this number we accept the trial state and set xn+1 = xt. Otherwise set xn+1 = xn. In
other words, we accept the trial state with probability α(xt,xn).

4. Go to step 1.

We can easily see that the detailed balance is satisfied by this algorithm.

Choosing a proposal distribution
Even if the MCMC is guaranteed to converge under the conditions mentioned above, it might take
a very long time. The chain moves across the parameter space in a random walk and, if it does not
reach every region of significant probability many times, it will not be a good approximation of an
independent sampling from the stationary distribution. To reach a good mixing, the rejection rate
of the proposed moves must not be too high or too low. If it is too high, the chain will have many
duplicated points that will not fill the parameter space in an even way. If the rejection rate is too
low the chain will move, but not fast enough to get around the space. There is a great deal of
freedom in choosing a proposal function, and finding the right one for a particular problem requires
much experience. There is nothing stopping one from making steps in one dimension at a time as
long as all dimensions are possibly explored. One can for example cycle through the parameters
or pick a parameter at random each step. Sometimes this can improve the convergence.

To initialize the chain we must guess a point in the parameter space. This will usually not
ensure high probability unless you are a good guesser. The chain will be attracted by the high
probability regions, but it might take a lot of time to get there. During this burn-in period, the
chain is not close to the maximum of the distribution. For this reason one usually discards the
first part of the chain. It is often useful to use a proposal distribution that jumps longer during
this burn-in stage, while the chain is searching for the peak(s), and then reduce the jumps later
on to get an acceptable rejection rate during the rest of the chain. On the other hand, if the chain
starts near a maximum of the posterior distribution, it might not be necessary to discard a burn-in
period.

The largest difficulties with MCMC arise in the following cases.

• When the initial guess is so far from any peaks and the probability is so flat out there that
the chain never finds a peak. Sometimes this situation happens in low probability regions,
where the calculation of f(x) has numerical underflow errors, or it is dominated by numerical
noise, in which case the f(x) chain may wander around without getting anywhere.
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• When the parameters are degenerate. Imagine a f(x) that has a narrow ridge. If the proposal
distribution is isotropic, it will be either too wide in one direction so that the rejection rate is
too high, or it will be too small and creeps along the ridge very slowly. In the case of a linear
degeneracy, you might be able to learn something about the distribution and then make
your proposal distribution anisotropic in a way that improves convergence. A non-linear
degeneracy may cause a much harder issue. In this case a proposal distribution that works
well in one point of the parameter space might not work well in another. When possible, one
should try to eliminate known non-linear degeneracies by changing the variables.

• When the distribution has multiple modes. This is probably the hardest problem to deal
with. If there are multiple peaks in the distribution that are separated by regions of low
probability, the chain can easily get caught in one peak where its probability of transitioning
to the other is very small. We might adjust the proposal distribution to get a good rejection
rate for one peak, but that might make the probability of jumping between peaks effectively
zero. This problem is exacerbated in large dimensional space because peaks that might not
seem to be far away by their Euclidean distance d are in a volume that goes up like dD, where
D is the dimension of space. An effective strategy to get rid of this issue is to run multiple
chains with different random initial states and see if they find different modes.

Convergence
It might be difficult in general to assess when the chain has converged. Unfortunately, there are
no trivial proof ways to determine that. One thing we can do is to calculate the auto-correlation
for each of the parameters as a function of the lag m, that is the separation in the chain. The
cross-correlation can be defined as follows:

Cα,β(m) =

∑N−m
i=1 (αi − ᾱ)(βi+m − β̄)√∑N−m

i=1 (αi − ᾱ)2
∑N
i=1(βi − β̄)2

, (A.0.15)

where α and β are the parameter values, and Cα,β(0) = 1. In the case of the auto-correlation
α = β. Distant points along the chain should not be correlated: in this case this function should
oscillate around zero for large lag. The first time this function drops to zero, or close enough to
zero, is an estimate of the correlation length, that we call Ncorr. Points separated by a length
less than the correlation length will not be independent. We can define an effective number of
independent samples in the chain as:

Neff =
Nchain
Ncorr

. (A.0.16)

We want this number to be large. We also want any statistics we are interested in to depend on
a number of points that is much larger than Ncorr. For example, the difference between the 95%
and 99% contour levels depends on only 4% of the points. This might be smaller than Ncorr. To
be conservative, Ncorr ∼ 200 − 600 but, in practice, this criterion can be fooling. For example,
a chain that is caught in one mode of a multi-modal distribution might appear to be converging
nicely.

Combining posterior probabilities of independent data
Here we will discuss how to combine the posterior probabilities estimated from an ensemble of
independent data, when every data is used to estimate the same parameters. This discussion is
taken from Bailer-Jones and Smith (2011).

As explained in Sec. A, Eq. (A.0.2) is the general equation to be used for updating probabilities.
For the purposes of this discussion, we rewrite it in a different form, expressing the Bayes’ theorem
(Eq. (A.0.1)) adding the explicit dependence on a third parameter, E, that might be another
measurement, or a theoretical assumption:

P (A|B,E) =
P (B|A,E)P (A|E)

P (B|E)
. (A.0.17)
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The meaning of Eq. (A.0.17) is the following: if we have an initial estimate of the probability of
A given exclusively by the information E, i.e P (A|E), and then we measure a new data B, Bayes’
theorem gives us a way of updating our inference to assess the probability of A based on both B
and E, P (A|B,E). The posterior from the first inference, P(A|E), becomes the prior of the next
one. In fact, it might be convenient to think in terms of just independent pieces of information
expressed as conditional probabilities, rather than in terms of priors and posteriors (Bailer-Jones
and Smith, 2011).

Let us consider now to have two sets of information, DA and DB , and that we have used each of
them to independently infer some parameter C of a model describing these datasets. For instance,
DA and DB might be two unrelated shear datasets coming from two different lenses. Suppose we
have a model (in this example case, a unique model describing the surface density distribution
of the lenses) with which we can estimate the P (C|DA) and P (C|DB) probabilities. We want to
combine them to obtain the P (C|DA, DB) probability, that is we can in case exploite them to
assess our best estimation of the C parameter. To obtain this combination we resort to the Bayes
theorem:

P (C|DA, DB) =
P (DA, DB |C)P (C)

P (DA, DB)
. (A.0.18)

If we can assume that DA and DB are independent measurements, then this usually means that
they are conditionally independent given a model2, that is:

P (DA, DB |C) = P (DA|C)× P (DB |C). (A.0.19)

Consequently, Eq. (A.0.18) can be written as:

P (C|DA, DB) =
P (DA|C)P (DB |C)P (C)

P (DA, DB)
. (A.0.20)

Now, using the Bayes theorem to rewrite P (DA|C) as (P (C|DA)P (DA))/P (C) and the same for
P (DB |C) in Eq. (A.0.20), we obtain:

P (C|DA, DB) =
P (DA)P (DB)

P (DA, DB)
× P (C|DA)P (C|DB)

P (C)
= a

P (C|DA)P (C|DB)

P (C)
, (A.0.21)

which defines a, that is a probability class-independent term, as it depends only on the data. As
we have already measured these data, its value does not concern us in this context (we are not
doing model comparison), thus we consider it as a normalisation constant which only ensures that∑
k P (Ck|DA, DB) = 1. The equation (A.0.21) is our final achievement regarding the combination

of results coming from two independent estimators (where independent here means in the sense of
equation (A.0.18)).

We can safely extend this result to N independent classifiers (estimators), each using indepen-
dent information (data) Dn, combining them as:

P (C|D1, ..., DN ) = a

∏N
n=1 P (C|Dn)

P (C)N−1
. (A.0.22)

This is the equation to use to combine multiple conditionally independent posterior probability
distributions. Note that all of the classifiers (the usual posterior probability), P (C|Dn), as well
as the prior P (C), are implicitly assumed to be conditioned on the same background information.
Conversely, if the Dn data are not independent (conditioned on C), we need to know their joint
probability distribution.

2On the contrary, they are generally not unconditionally independent, i.e P (DA, DB) 6= P (DA)× P (DB).
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Appendix B

Covariance matrix

The covariance is a measure of the joint variability of two random variables. Thus, it generalizes
the notion of variance to multiple dimensions. Specifically, the covariance matrix represents the
variation of each variable with respect to the others (including itself, in which case it is the variance).
It is a symmetric matrix and is positive semi-definite. Let us consider a set of n elements on which
k variables Xi are detected. Hence every Xi is a vector with n elements indicated with xh,i, where
i = 1, ..., n. The covariance matrix has dimensions k × k, and each element is defined as:

σij =
1

n

n∑
h=1

(xh,i − µi)(xh,j − µj) ,

where µi is the mean of the Xi variable. Each diagonal element, σii, is the variance of the variable
Xi and it is therefore always a non-negative value. Each element σij (with i 6= j) is the covariance
between the variables Xi and Xj . The sign of a covariance element indicates the trend of the
relationship between the variables. Specifically, when σij is positive, if the i variable grows then
also the j variable grows. While if σij is negative, the opposite happens. If the variables are
statistically independent, the covariance is 0. On the other hand, while the inverse implication is
not necessarily verified.

The units of the covariance elements are those of Xi times those of XJ , and the overall matrix
is often indicated with cov(Xi, Xj). The correlation matrix is defined as the normalised version of
the covariance matrix.
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Appendix C

Bootstrap procedure

We provide here a brief explanation of the bootstrap sampling method. A more complete and
detailed description can be found in Efron and Tibshirani (1993).

The bootstrap method is a statistical technique that exploits a dataset re-sampling with re-
placement. It is used to approximate the sample distribution of a statistics, without requiring
any a-priori assumption on the distribution. Its main goal is to estimate the standard errors with
random sampling methods. In fact, the bootstrap technique is often used as an alternative method
when parametric inference is difficult to perform, or if it requires complicated mathematical pro-
cedures for the computation of standard errors.

The need to re-sample is the following. If possible, we would like to extract large, non-repeated,
samples from a population in order to generate a sampling distribution for some statistics. Un-
fortunately, as often happens, the available sample is only one. Nevertheless, this single sample
can be exploited as a fraction of the entire population, from which to repeatedly extract small
samples with replacement. As well as saving us a lot of time, bootstrapped samples can reliably
approximate the population parameters.

A bootstrap sample is a smaller sample that is bootstrapped from a larger sample. In this kind
of re-sampling, sizable numbers of smaller samples of the same size are recurrently extracted, with
replacement, from a single original sample (see figure C.1). After a large number of iterations, the
bootstrap statistics are drawn up into a bootstrap distribution. The large numbers law asserts
that if we sample again and again, our dataset should approximate the true population dataset.

We have to distinguish two kinds of bootstrap samples: the empirical bootstrap sample that
is derived from observations, and the parametric one that comes from a parameterised distribu-
tion (e.g. a normal distribution). In practice, the bootstrap procedure is generally performed
numerically following these three steps:

1. the dataset is re-sampled n time;

2. then a summary statistic (the so-called bootstrap statistic) is measured for each of the n
samples;

3. finally, the standard error for these bootstrap statistics is assessed through the standard
deviation of the bootstrap distribution.

Figure C.1: Schematized procedure of the execution of a sampling useful to build a bootstrap
sample.
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In conclusion, starting from a sub-population of a large sample of data, the bootstrap method
allows us to accurately estimate the errors associated to any statistics of sample.
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Appendix D

The C++ code used for statistical
inference

Here we present the specific C++ code used in this Thesis work to perform the Bayesian statistical
analysis of our stacked shear profiles, exploiting the halo model (Eq. 5.4.8). The code imports
several CBL classes to handle catalogues of extra-galactic sources, model all measured quantities
and derive cosmological constraints. The C++ classes for the NFW truncated model used to
describe the 1-halo term are the same ones used in Bellagamba et al. (2019), while the 2-halo
model has been originally implemented for this Thesis work, making use of the CBL cosmological
functions. We exploit principally the class cbl::cosmology that contains all the functions useful
to the estimation of the various cosmological components of our fitting model. cbl is the global
namespace of the cosmological libraries.

The CBL provide methods to perform the MCMC posterior sampling (see appendix A). The
latter consists in sampling a target distribution using a correlated random walk: every step is
extracted after a trial that depends only on the previous one (Markov process). The steps are
collected in chains, that define the marginalised posterior probability of the model parameters
(Marulli et al., 2016). Specifically, the CBL algorithms implements the Metropolis-Hastings algo-
rithm (see appendix A) that consists in a single-particle sampling of the parameter space. At each
step, t , the proposed parameter vector, θ′, is extracted from the distribution q(~θ′|~θ(t)), centred
on ~θ(t) (Marulli et al., 2016). The C++ code, accompanied by explanatory comments, is reported
below:

1 // import the CBL c l a s s used to perform a l l the co smo log i ca l c a l c u l a t i o n s
2 #inc lude "Cosmology . h"
3

4 // import the CBL c l a s s e s to handle input data
5 #inc lude "Data1D . h"
6

7 // import the CBL c l a s s e s to perform Bayesian s t a t i s t i c a l i n f e r e n c e s
8 #inc lude " Po s t e r i o r . h"
9

10 // import the c l a s s to cons t ruc t the model f o r the 1−halo term
11 #inc lude "nfwModel . h"
12

13 us ing namespace std ;
14

15 s t r i n g cb l : : par : : DirCosmo = DIRCOSMO, cb l : : par : : DirLoc = DIRL ;
16

17 // func t i on to eva luate the angular coo rd ina t e s ( rad ians ) o f l e n s dens i ty p r o f i l e
18 double Theta ( const double rad , const double z , const cb l : : cosmology : : Cosmology

cosmology )
19 {
20 r e turn ( rad/cosmology .D_A( z ) ) ;
21 }
22

23 // vec to r conta in ing the model
24 vector<double> model_function ( const vector<double> x , const shared_ptr<void>

modelInput , std : : vector<double> &parameter )
25 {
26 cb l : : cosmology : : Cosmology cosm = ∗ s tat i c_po inte r_cast<cb l : : cosmology : : Cosmology>(
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modelInput ) ;
27 cosm . set_OmegaM( parameter [ 0 ] ) ;
28 cosm . set_OmegaDE( parameter [ 1 ] ) ;
29 ( void ) modelInput ;
30

31 vector<double> model ( x . s i z e ( ) , 0 . ) ;
32

33 // d e f i n e the cosmology adopted in the mode l l ing
34 cosmology my_cos( parameter [ 0 ] , parameter [ 1 ] , parameter [ 2 ] ) ;
35 nfwModel my_nfw(&my_cos , parameter [ 3 ] , pow ( 1 0 . , parameter [ 4 ] ) , parameter [ 5 ] , 3 . ,

parameter [ 6 ] , parameter [ 7 ] , f a l s e ) ;
36

37 // d e f i n e the dens i ty p r o f i l e model NFW truncated
38

39 // nfw parameters
40 // 1) cosmology
41 // 2) r e d s h i f t
42 // 3) M_200( log (M200) ∗10^14)
43 // 4) concent ra t i on=r_200/r_s
44 // 5) t runcat i on f a c t o r ( r_trunc = trunc_fact ∗ r200 )
45 // 6) f r a c t i o n o f misa l i gned ha loe s
46 // 7) rms o f misplacement
47 // 8) i f true , reads 2−halo term from tab l e s ; i f Fa l se use our 2−halo model
48

49 // func t i on s u s e f u l to bu i ld the 2−halo dens i ty p r o f i l e
50 double delta_bkg = cosm . Delta_vir (200 , parameter [ 3 ] ) ;
51 double Bias = cosm . bias_halo (pow ( 1 0 . , parameter [ 4 ] ) , parameter [ 3 ] , "Tinker " , "

Eisenste inHu " , " t e s t " , " Linear " , delta_bkg ) ;
52 double Rho_m = cosm . rho_m( parameter [ 3 ] ) ; // [Msun∗Mpc^−3(∗h^2) ]
53 double Dl = cosm .D_A( parameter [ 3 ] ) ; // Mpc/h
54

55 f o r ( s i z e_t i =0; i<x . s i z e ( ) ; ++i ) {
56 double theta = Theta (x [ i ] , parameter [ 3 ] , cosm) ;
57

58 // integrand func t i on o f the i n t e g r a l d e f i n i n g the 2−halo dens i ty p r o f i l e : i t ’ s
a Lambda−f unc t i on

59 std : : funct ion<double ( double )> Func = [&] ( const double l )
60 {
61 double Dl = cosm .D_A( parameter [ 3 ] ) ; // Mpc/h
62 double X−ray = theta ∗ l ;
63 double k l = l /((1+ parameter [ 3 ] ) ∗Dl ) ; // h/Mpc
64 double P_k = cosm .Pk( kl , "Eisenste inHu " , f a l s e , parameter [ 3 ] ) ; // Mpc^3 h^−3
65 double J2 = cb l : : j 2 (X) ;
66 r e turn ( l ∗J2 ) ∗(P_k) ;
67 } ;
68

69 // i n t e g r a l o f the 2−halo term
70 const double integrand = cb l : : g s l : : GSL_integrate_qag (Func , 1 . 0 e−6 ,1000000.) ;
71 const double twohalo= 1 . e−12∗(( Bias ∗Rho_m) /(2 .∗ cb l : : par : : p i ) ) ∗(pow(Dl ,−2)∗pow

(1+parameter [3 ] , −3) ) ∗ in tegrand ;
72

73 model [ i ] = my_nfw . get_deltas igma (x [ i ] ) + twohalo ; // t o t a l 1 halo+2halo model
74 }
75

76 parameter [ 8 ] = pow ( 1 0 . , parameter [ 4 ] ) ∗1 . e−14; // parameter [ 8 ] i s a der ived
parameter

77

78 r e turn model ;
79 }
80

81

82 //
===============================================================================================================

83

84

85 i n t main ( ) {
86

87 t ry {
88

89 // −−− s e t the input /output f i l e / d i r e c t o r i e s −−−
90

91 const s t r i n g dir_output = cb l : : par : : DirLoc+" . . / output /CHAIN_2−HALO/" ;
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92 const s t r i n g f i l e_output_star t = "1+2h_model__z=0.1−0.3__A=2.05−2.75. dat" ;
93

94

95 // −−− cons t ruc t the datase t by read ing the stacked_shear2HALO input f i l e −−−
96

97 const s t r i n g f i l e_ inpu t = cb l : : par : : DirLoc+" . . / input / r i s u l t a t i s h e a r −2HALO/
stacked_shear_AMPLITUDE_2−HALO__35Mpc−−30bin . dat" ;

98 i f s t r e am f i n ( f i l e_ inpu t . c_str ( ) ) ; cb l : : checkIO ( f in , f i l e_ inpu t ) ;
99

100 s t r i n g l i n e ;
101 i n t l ines_to_skip = 24 ;
102 f o r ( i n t i =0; i<l ines_to_skip ; ++i )
103 g e t l i n e ( f i n , l i n e ) ;
104

105 vector<double> rad , DSigma , e r ro r , z_two ;
106

107 whi le ( g e t l i n e ( f i n , l i n e ) ) {
108 s t r i ng s t r eam ss ( l i n e ) ;
109 vector<double> num; double NUM;
110 whi le ( ss>>NUM) num. emplace_back (NUM) ;
111

112 i f (num[0]==0 && num[1]==3) {
113 i f (num[6 ] >0 .2 ) { // exc lude the f i r s t 3 r a d i a l b ins
114 z_two . emplace_back (num [ 2 ] ) ;
115 rad . emplace_back (num [ 6 ] ) ;
116 DSigma . emplace_back (num [ 8 ] ) ;
117 e r r o r . emplace_back ( (num[14] >0) ? num[ 1 4 ] : num [ 8 ] ) ;
118 }
119 }
120 }
121 f i n . c l e a r ( ) ; f i n . c l o s e ( ) ;
122

123

124 // −−− read the input datase t used to s e t the p r i o r s −−−
125

126 const s t r i n g f i l e_ i npu t s = cb l : : par : : DirLoc+" . . / output /CHAIN/ chains_testI_0
.1−0.3_AMPL__2.05−2.75_parameters . dat" ;

127 i f s t r e am FIN( f i l e_ i npu t s . c_str ( ) ) ; cb l : : checkIO (FIN , f i l e_ i npu t s ) ;
128

129 s t r i n g Line ;
130 i n t Lines_to_skip = 15 ;
131 f o r ( i n t k=0; k<Lines_to_skip ; ++k)
132 g e t l i n e (FIN , Line ) ;
133

134 vec to r <double> MEAN, MEDIAN;
135

136 whi le ( g e t l i n e (FIN , Line ) ) {
137 s t r i ng s t r eam SS( Line ) ;
138 vector<double> numb ; double NUMB;
139

140 whi le (SS>>NUMB) numb . emplace_back (NUMB) ;
141

142 i f (numb . s i z e ( ) >0)
143 MEAN. emplace_back (numb [ 0 ] ) ;
144 e l s e cb l : : Error ( "ERROR! " ) ;
145

146 i f (numb . s i z e ( ) >2)
147 MEDIAN. emplace_back (numb [ 2 ] ) ;
148 e l s e cb l : : Error ( "ERROR! " ) ;
149 }
150

151 FIN . c l e a r ( ) ; FIN . c l o s e ( ) ;
152

153

154 // −−− cons t ruc t the datase t −−−
155

156 const cb l : : data : : Data1D data ( rad , DSigma , e r r o r ) ;
157 auto ptr_data = make_shared<cb l : : data : : Data1D>(data ) ;
158

159

160 // −−− s e t the model to cons t ruc t the l i k e l i h o o d −−−
161

162 // number o f model parameters
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163 const i n t nparameters = 9 ;
164

165 // names o f the model parameters
166 const vector<s t r i ng> parNames = {"OmegaM" , "OmegaL" , "h" , " r e d s h i f t " , "LogM200"

, " conc" , " f_mis" , "sigma_mis" , "M200 [ e+14 M_sun ] " } ;
167

168 // s t a r t i n g va lue s parameters
169 const double OmegaM = 0 . 3 ;
170 const double OmegaL = 1.−OmegaM;
171 const double h = 1 . ;
172

173 const double r e d s h i f t = MEAN[ 0 ] ;
174 const double LogM200 = MEDIAN[ 1 ] ;
175 const double conc = MEDIAN[ 2 ] ;
176 const double f_mis = MEDIAN[ 3 ] ;
177 const double sigma_mis = MEDIAN[ 4 ] ;
178

179 // vec to r conta in ing the 9 model parameters
180 vector<cb l : : s t a t i s t i c s : : ParameterType> parType ( nparameters −1, cb l : : s t a t i s t i c s : :

ParameterType : : _Base_) ;
181 parType . emplace_back ( cb l : : s t a t i s t i c s : : ParameterType : : _Derived_) ;
182

183 // s e t the s t u f f used to cons t ruc t the model : here an ob j e c t o f c l a s s cosmology
184 const double Omegab = 0 . 0 4 6 ;
185 const double Omeganu = 0 . ;
186 const double mass l e s s_neutr inos = 3 . 0 4 ;
187 const i n t mass ive_neutr inos = 0 ;
188 const double Omega_radiation = 0 . ;
189 const double scalar_amp = 1.92 e−9;
190 const double sca la r_p ivot = 0 . 0 5 ;
191 const double n_s = 1 ;
192 const double wa = 0 . ;
193 const double w0 = −1.;
194 cb l : : cosmology : : Cosmology cosmology {OmegaM, Omegab , Omeganu ,

mass less_neutr inos , massive_neutrinos , OmegaL , Omega_radiation , h , scalar_amp ,
sca lar_pivot , n_s , wa , w0} ;

195

196 auto ptr_modelInput = make_shared<cb l : : cosmology : : Cosmology>(cosmology ) ;
197

198 // cons t ruc t the model
199 const cb l : : s t a t i s t i c s : : Model1D model(&model_function , nparameters , parType ,

parNames , ptr_modelInput ) ;
200 auto ptr_model = make_shared<cb l : : s t a t i s t i c s : : Model1D>(model ) ;
201

202

203 // −−− cons t ruc t the l i k e l i h o o d −−−
204

205 // d e f i n e a Gaussian l i k e l i h o o d
206 cb l : : s t a t i s t i c s : : L ike l i hood l i k e l i h o o d ( ptr_data , ptr_model , cb l : : s t a t i s t i c s : :

Likel ihoodType : : _Gaussian_Error_ ) ;
207

208 // wr i t e the model used to cons t ruc t the l i k e l i h o od , at the s t a r t i n g parameter
va lue s

209 const vector<double> s t a r t = {OmegaM, OmegaL , h , r e d sh i f t , LogM200 , conc , f_mis
, sigma_mis } ;

210

211 l i k e l i h o o d . write_model ( dir_output , f i l e_output_star t , s t a r t ) ;
212

213 // s e t the parameter space where p r i o r s can move
214 double minomegaM = 0.06 , maxomegaM = 0 . 6 ;
215

216

217 // −−− cons t ruc t the p r i o r s −−−
218

219 auto priorOmegaM = make_shared<cb l : : s t a t i s t i c s : : P r i o rD i s t r i bu t i on >(cb l : :
s t a t i s t i c s : : P r i o rD i s t r i bu t i on ( cb l : : g lob : : Dist r ibut ionType : : _Uniform_ , minomegaM
, maxomegaM, 351) ) ;

220 auto priorOmegaL = make_shared<cb l : : s t a t i s t i c s : : P r i o rD i s t r i bu t i on >(cb l : :
s t a t i s t i c s : : P r i o rD i s t r i bu t i on ( cb l : : g lob : : Dist r ibut ionType : : _Constant_ , OmegaL) )
;

221 auto priorH = make_shared<cb l : : s t a t i s t i c s : : P r i o rD i s t r i bu t i on >(cb l : : s t a t i s t i c s : :
P r i o rD i s t r i bu t i on ( cb l : : g lob : : Dis t r ibut ionType : : _Constant_ , h) ) ;

222 auto prior_z = make_shared<cb l : : s t a t i s t i c s : : P r i o rD i s t r i bu t i on >(cb l : : s t a t i s t i c s
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: : P r i o rD i s t r i bu t i on ( cb l : : g lob : : Dis t r ibut ionType : : _Constant_ , r e d s h i f t ) ) ;
223 auto priorLogM200 = make_shared<cb l : : s t a t i s t i c s : : P r i o rD i s t r i bu t i on >(cb l : :

s t a t i s t i c s : : P r i o rD i s t r i bu t i on ( cb l : : g lob : : Dist r ibut ionType : : _Constant_ , LogM200)
) ;

224 auto priorConc = make_shared<cb l : : s t a t i s t i c s : : P r i o rD i s t r i bu t i on >(cb l : :
s t a t i s t i c s : : P r i o rD i s t r i bu t i on ( cb l : : g lob : : Dist r ibut ionType : : _Constant_ , conc ) ) ;

225 auto priorFMis = make_shared<cb l : : s t a t i s t i c s : : P r i o rD i s t r i bu t i on >(cb l : :
s t a t i s t i c s : : P r i o rD i s t r i bu t i on ( cb l : : g lob : : Dist r ibut ionType : : _Constant_ , f_mis ) ) ;

226 auto priorSigmaMis = make_shared<cb l : : s t a t i s t i c s : : P r i o rD i s t r i bu t i on >(cb l : :
s t a t i s t i c s : : P r i o rD i s t r i bu t i on ( cb l : : g lob : : Dist r ibut ionType : : _Constant_ ,
sigma_mis ) ) ;

227

228 const vector<shared_ptr<cb l : : s t a t i s t i c s : : P r i o rD i s t r i bu t i on>>
pr i o r_d i s t r i b u t i o n s = {priorOmegaM , priorOmegaL , priorH , prior_z , priorLogM200 ,
priorConc , priorFMis , priorSigmaMis } ;

229

230

231 // −−− cons t ruc t and sample the p o s t e r i o r −−−
232

233 cb l : : s t a t i s t i c s : : Po s t e r i o r p o s t e r i o r ( p r i o r_d i s t r i bu t i on s , l i k e l i h o od , 796) ;
234

235 // sample the p o s t e r i o r
236 const i n t nwalkers = 2 ;
237 const i n t cha in_s ize = 400 ;
238 const vector<double> POSTERIOR_start = { OmegaM } ;
239 po s t e r i o r . i n i t i a l i z e_ c h a i n s ( chain_size , nwalkers , 1 . e−5, POSTERIOR_start) ;
240 po s t e r i o r . sample_stretch_move (2 , t rue ) ;
241

242 // show the r e s u l t s on sc r e en
243 const i n t burn_in = 0 ;
244 const i n t th in = 1 ;
245 po s t e r i o r . show_results ( burn_in , th in ) ;
246

247 // wr i t e the chain ouput
248 po s t e r i o r . w r i t e_re su l t s ( cb l : : par : : DirLoc+" . . / output /CHAIN_2−HALO/" , "

chains_linear_relat ion__30bin_z=0.1−0.3__A=0−1" , burn_in , th in ) ;
249

250 // wr i t e the best− f i t model
251 po s t e r i o r . write_model_from_chain ( cb l : : par : : DirLoc+" . . / output /FIT_2−HALO/" , "

model_from_chain_−30bin_z=0.3−0.45__A=1.65−2.3" , {} , {} , burn_in , th in ) ;
252

253 }
254

255 catch ( cb l : : g lob : : Exception &exc ) { c e r r << exc . what ( ) << endl ; e x i t (1 ) ; }
256 r e turn 0 ;
257 }
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