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Acronyms

BPSK binary phase-shift keying

BSC binary symmetric channel

CCDM constant composition distribution matcher

CC convolutional code

DM distribution matcher

FEC forward error correction

FIR finite impulse response

IID independent and identically distributed

IUD independent and uniformly distributed

LBC linear block code

LDD low density diagonal

LUT look-up table

ML maximum likelihood

MNS maximum number of states

NRFO number of rows with flexible ones

PAS probabilistic amplitude shaping
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Acronyms ii

PMF probability mass function

PS probabilistic shaping

RV random variable

SDM syndrome distribution matcher

SR systematic random

VDM Viterbi distribution matcher



Introduction

In the last years, probabilistic shaping (PS) has become a topic of interest

from both academia and industry perspective [1]. When bits are modulated

and sent through the channel as symbols, we have to take into account that

the latter is often characterized by non-uniform capacity-achieving distribu-

tions. Therefore, PS is necessary, in order to use the maximum achievable

rate of the channel during the transmission, operating closer to Shannon

limit in the bandwidth-limited regime where higher order modulation is re-

quired. One of the most famous PS architectures is probabilistic amplitude

shaping (PAS) [2], which concatenates a distribution matcher (DM) and a

systematic forward error correction (FEC) encoder. We can therefore iden-

tify the DM as an enabling device for PS; in the specific PAS structure, DM

and FEC encoder are separated and the transmission rate can be adapted

by changing the distribution while using one single FEC engine [2].

Several distribution matching schemes have been proposed in the lit-

erature. Some of the most important ones are the constant composition

distribution matcher (CCDM), discussed in detail in [3], which can be im-

plemented by arithmetic coding of m-out-of-n codes [4], shell mapping, in-

troduced in [1, 5], where the transmitter selects a low energy set of input

sequences, called shell, and next one of them is chosen for transmission; in

addiction, we may talk about trellis shaping, proposed in [6], where a se-

quence with minimum energy for transmission is usually selected within an

ensemble. In this Thesis, a different approach based on trellis shaping is

proposed, in order to decrease the DM complexity under certain conditions.
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Moreover, in specific scenarios the results obtained with the proposed scheme

are better or at least in line with CCDM used as benchmark.

In Chapter 1, an overview of a generic digital communication system is

provided, some key quantities are introduced and some aspects of specific

channel codes are shown. In Chapter 2 the DM is discussed and CCDM

is presented. Chapter 3 presents trellis-based syndrome distribution match-

ing. Results are shown in Chapter 4 and Chapter 5, where two scenarios

are discussed and possible applications of the proposed DM algorithm are

outlined. To conclude, final observations and possible further developments

are presented.
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Chapter 1

Digital Communication System

1.1 Communication System Model

This chapter introduces the communication system model, an example

of which is shown in Figure 1.1. A data source generates bits according to

a certain distribution and a source encoder is used to compress the stream

of generated bits in a lossless way. We assume ideal data compression, thus

we have independent and uniformly distributed (IUD) bits at the source

encoder output. Then, a FEC encoder processes the compressed data to

protect it against impairments caused by the noisy channel. After the FEC

encoder, data are processed by a modulator and transmitted over the chan-

nel. As matter of fact, from modulator output to demodulator input we

have a continuous-time system, with signals depending on the channel char-

acteristics; the remaining portions of the system work in the discrete-time

domain.

On the receiver side, we can observe the reverse chain compared to the

transmitter side. The data sink must receive the information generated by

the data source, according to some fidelity criterion. As an example, we can

describe the passage from the discrete-time domain to the continuous one by

a modulator performing the binary phase-shift keying (BPSK) modulation

as shown in Figure 1.2.

1
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Figure 1.1: TX-RX system.

Figure 1.2: BPSK modulation scheme.

1.2 Preliminary Definitions

In this section, we describe some key quantities used in the Thesis, refer-

ring to [7]; they are necessary to introduce the distribution matching algo-

rithms.

1.2.1 Entropy

Considering a discrete random variable (RV) X, with probability mass

function (PMF) PX(x) = Pr{X = x}, for all x ∈ X . In case PX(x) = 0, let

0 · log2 0 = 0. The entropy of X is defined as:

H(X) = −
∑
x∈X

PX(x) log2 PX(x) (1.1)
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where this value is expressed in bits [7]. This quantity is intrinsically linked

to the measure of information; indeed, it corresponds to the uncertainty

associated with the RV. Next, the conditional entropy is given by

H(Y |X) =
∑
x∈X

PX(x) H(Y |X = x). (1.2)

1.2.2 Mutual Information

Another fundamental quantity is the mutual information defined by

I(X;Y ) =
∑
x∈X

∑
y∈Y

PX,Y (x, y) log2

PX,Y (x, y)

PX(x)PY (y)
. (1.3)

The mutual information can also be expressed as

I(X;Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X). (1.4)

1.2.3 Transmission Rate

Since source coding is assumed to be ideal, each binary digit after the

source encoding provides 1 bit of information. We therefore refer to the bits

after the source encoder as information bits. Let us first focus the channel

coding rate. Let k be the number of input bits to the channel encoder and

n the corresponding output code word length. Then, the code rate can be

defined as follows:

RC =
number of information bits

number of coded bits
=

k

n
. (1.5)

Next, we can also consider that the mapper turns FEC bits into channel

symbols; another rate can be defined, called symbol rate, that is described

by:

RS =
n

number of symbols
. (1.6)

Consequently, the transmission rate can be identified as we can see below:

RT = RCRS =
k

number of symbols
. (1.7)
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1.2.4 Capacity

For the transmission on a noisy channel, we define the capacity as the

largest transmission rate that a system can achieve with an error probability

that is arbitrarily small (Shannon channel capacity). If we consider X and

Y as two random variables representing the input and output of a memory-

less channel, we may characterize the channel in terms of the conditional

distribution PY |X . By setting an input distribution PX , the joint distribution

can be obtained as PY,X = PY |XPX . Furthermore, the capacity is defined

based on the mutual information as

C = argmax
PX

I(X;Y ). (1.8)

There may be one or multiple distributions PX yielding the maximum; these

distributions are called capacity-achieving.

1.3 Linear Block Codes

Hereafter we focus on linear block codes (LBCs) defined over the Galois

field F2. For any LBC we have

c = xG (1.9)

where x ∈ Fk
2 is the information word, c ∈ Fn

2 is the code word and

G ∈ Fk×n
2 is the generator matrix. We can also define the parity-check matrix

H ∈ F(n−k)×n
2 through the fundamental relation

cHT = 0. (1.10)

If the information word is composed by k bits, a total of 2k code words

exist. Due to the bijective mapping performed by the encoder, if the code

has dimension k, then the matrix G must have k linearly independent rows;

indeed, code words come in the same number of possible input sequences.

The two relations (1.9) and (1.10) must be fulfilled by each of the 2k output



1.4 Coset and Syndrome 5

sequences c. The code book C is represented by

C = {c ∈ Fn
2 : cHT = 0} (1.11)

with the cardinality

|C| = 2k (1.12)

and the rate of the FEC code is equivalent to (1.5). To sum up, the code

book is formed by 2k n-tuples, thus C is a subspace of the vector space Fn
2 .

In this discussion, the parity-check matrix H is of major importance; further

details on LBCs are provided in Chapter 3, where this type of code takes a

main role.

1.4 Coset and Syndrome

Let A be a group and S ⊆ A be a subgroup of A; the cosets of S in A
can be defined by {a + S : a ∈ A}. We next state some properties of the

cosets:

• the number of cosets is given by

nc =
|A|
|S|

; (1.13)

• considering C as an (n, k) LBC, defined over F2, we may affirm that C
is a subgroup of Fn

2 ; for each r ∈ Fn
2 , the coset {r + C} has cardinality

2k and the number of cosets is

|Fn
2 |
|C|

=
2n

2k
= 2n−k. (1.14)

Proofs of the above properties and further details on coset theory may be

found in [8, Chap. 2]. To summarize, the n dimensional Fn
2 vector space is

partitioned into 2n−k cosets and each of these has size 2k; furthermore, one

of these cosets is the code C. We may link each coset to an (n − k)-tuple s
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called syndrome, the length of which is determined by the number of cosets

2n−k. Given a syndrome, the following relation must be fulfilled

s = rHT. (1.15)

We can affirm that for each syndrome an ensemble of 2k sequences r which

fulfil (1.15) exists and this corresponds to the coset size; this aspect is anal-

ysed in detail in Chapter 3.

1.5 Convolutional Codes

We introduce now convolutional codes (CCs) as linear codes with a partic-

ular algebraic structure; they are stream-oriented rather than block-oriented

since the convolutional encoder is able to take a stream of bits as input and

to generate output bits continuously; memory is introduced by the encoding

process, as opposed to LBCs. The CCs may also be represented by states

machines or trellis diagrams. In this section we want to introduce the de-

sign of a CC, analysing some of its key parameters, basing our description

on [9, Chap. 4]. To describe, an example is exploited, using a representation

via the schematic in Figure 1.3; the rate is 1
2
, due to the generation of two

output bits for each data input bit and the states, corresponding to combi-

nations of bits contained in the system memory implemented with the shift

registers S1 and S2, are in this case four. Since the CC is constructed over

F2, the adders are modulo-2 and we may identify the two discrete-time finite

impulse response (FIR) filters related to the top and bottom branches of the

encoder; two generators in F2 may be associated to these FIR filters, using

the octal representation with the most significant bit on the left of the gen-

erator binary vector according to [10, Chap. 12] and described in Table 1.1.

For example in the considered case study, even if we cannot appreciate the

octal representation because it coincides with the decimal, we can represent



1.5 Convolutional Codes 7

Decimal Octal Binary

0 0 000

1 1 001

2 2 010

3 3 011

4 4 100

5 5 101

6 6 110

7 7 111

Table 1.1: Octal Table.

the generators as

g1 = [g1
0 g1

1 g1
2] = [1 0 1];

g2 = [g2
0 g2

1 g2
2] = [1 1 1].

(1.16)

Owing to them, the outputs may be represented by the convolution between

the input and generators:

c1 = u ∗ g1;

c2 = u ∗ g2.
(1.17)

Hence, using the example generators, we may represent the generic i-th out-

put elements c1
i and c2

i by

c1
i = ui + ui−2;

c2
i = ui + ui−1 + ui−2.

(1.18)

Hereafter, we deal with the semi-infinite representation of the CCs. Let

u = (u0 u1 . . .) be the input data sequence and let c = (c0 c1 . . .) be the

corresponding output code sequence. Hence, a generator matrix G may be

defined as for LBCs, in fact, a similar encoder description is provided by

c = uG. (1.19)
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Figure 1.3: Rate 1
2

convolutional code, generators [3,5].
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The only difference is that the generator matrix for CCs has a semi-

infinite structure, depending on how many data have to be encoded. Thus,

the matrix G may be written as

G =



G0 G1 G2 . . . Gm 0 0 . . .

G0 G1 . . . Gm−1 Gm 0 . . .

G0 . . . Gm−2 Gm−1 Gm . . .
. . .

...
...

...

G0 G1 G2 . . .

G0 G1 . . .

G0 . . .
. . .


(1.20)

where

Gl =


g1
l1 g2

l1 . . . gnl1

g1
l2 g2

l2 . . . gnl2
...

...
...

g1
lk g2

lk . . . gnlk

 , with l = 0, 1, . . . ,m. (1.21)

Considering the case with input bits block size k = 1, number of output bits

n = 2 (which corresponds to the number of generators), and the number of

shift registers m = 2, we can recast (1.21) as

Gl = [g1
l g2

l ], with l = 0, 1, 2. (1.22)

In this specific case study, due to all the considerations done so far, the

generator matrix assumes the following form:

G =


1 1 0 1 1 1

1 1 0 1 1 1

1 1 0 1 1 1
. . . . . . . . .

 . (1.23)

Furthermore, the parity-check matrix can be obtained through (1.10) that,

although introduced for LBCs, remains valid also for CC. Knowing that due
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to the m value only 3 input bits are useful to obtain a certain output element

as we shown in (1.18), we can represent the input vector of interest as

ui = [ui ui−1 ui−2]. (1.24)

Then, we can provide the generic two output bits at step i of the CC encoder

by

[c1
i c2

i ] = [uigT
1 uigT

2 ]. (1.25)

Considering the specific case with m = 3, the HT can be expressed as

HT =



h1
1,1 h1

1,2 h1
1,3 0 . . .

h1
2,1 h1

2,2 h1
2,3 0 . . .

0 h2
1,2 h2

1,3 h2
1,4 0 . . .

0 h2
2,2 h2

2,3 h2
2,4 0 . . .

. . .

. . . 0 hi
1,i hi

1,i+1 hi
1,i+2 0 . . .

. . . 0 hi
2,i hi

2,i+1 hi
2,i+2 0 . . .

. . .


(1.26)

that is, we can define

hi
1 = [hi

1,i h
i
1,i+1 hi

1,i+2];

hi
2 = [hi

2,i h
i
2,i+1 hi

2,i+2].
(1.27)

We can therefore define HT
i by

Hi
T =

[
hi

1

hi
2.

]
(1.28)

In order to fulfil (1.10), we can assure the modulo-2 sum equal to 0 between

each of the consecutive two i-th elements of the code word c1
i and c2

i ; hence,

we may determine the rows of the transposed parity-check matrix as

[c1
i c2

i ]H
T
i = [uigT

1 uigT
2 ]Hi

T = [uigT
1 uigT

2 ]

[
hi

1

hi
2.

]
=

[
uigT

1 h
i
1

uigT
2 h

i
2

]
= 0 (1.29)
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that is, using
!

= to emphasise that the left-hand side must be equal to the

right-hand side, [
hi

1

hi
2

]
!

=

[
g2

g1

]
. (1.30)

Then, we can provide the representation of the transposed parity-check ma-

trix

HT =



1 1 1

1 0 1

1 1 1

1 0 1

1 1 1

1 0 1
. . .


(1.31)

and infer the parity-check matrix

H =



1 1

1 0 1 1

1 1 1 0 1 1

1 1 1 0 1 1

1 1 1 0 1 1
. . . . . . . . .


. (1.32)

To conclude, we want to emphasise the possibility to exploit the sliding nature

of the CCs, which permits to decode information after the channel in a very

efficient way with an acceptable complexity.



Chapter 2

Distribution Matching

To enable PS, there are different distribution matching approaches, based

on a common structure, in attempting to provide precise PMFs and in this

section after explaining the idea behind the DM we want to introduce one

of the most famous methods called CCDM [3], analysing several important

aspects of it. For a deeper analysis we refer the reader to [11, Chap. 9].

2.1 Distribution Matching Structure

Considering the system scheme proposed in Section 1.1, we can recast

Figure 1.1 by the following representation in Figure 2.1, where the DM block

is added in an end-to-end system and we neglect the source encoder (the

same at the decoding side) to simplify the system. If we consider the PAS

architecture, we can identify the PS system in the concatenation of DM and

FEC encoder because they are decoupled [2]. We can therefore emphasise

the role of the DM cutting it from the general chain and analysing it in

detail, with regard to Figure 2.2. Given an input sequence of length k, the

binary DM generates an output sequence of length n named x which follows

the particular averaged binary distribution PX . This latter can be identified,

along all the possible output sequences related by the one-to-one relation

12
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Figure 2.1: TX-RX system with DM.

Figure 2.2: DM block.

with the 2k input sequences, as

PX(1) =

∑2k

i=1 wH(xi)

2k · n
, (2.1)

PX(0) = 1− PX(1) (2.2)

and the rate of this block has the same expression of (1.5), so

RDM =
k

n
. (2.3)

Remark. Given a DM, we can evaluate the entropy of the averaged proba-

bility distribution PX . Considering a receiver that assumes each element of

X as independent and identically distributed (IID) with PMF PX , evaluating
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the entropy as H(PX) is worthwhile, keeping in mind that we can also use

this particular DM suitable for short sequences on a stream of frames derived

from a long sequence as well. Hence, in this specific scenario, we can compare

the DM rate and the H(PX).

2.2 Types

To provide an exhaustive introduction to CCDM, we have to define the

types [12, Sec. II] and their properties. Let xn = x1x2 . . . xn be a sequence

with entries in a finite alphabet X . If we define the number of times that

letter a ∈ X occurs in the sequence xn with

N(a|xn) = |{i ∈ {1, 2, . . . , n} : xi = a}|, a ∈ X ; (2.4)

then we may affirm that the sequence xn has empirical (or sample) distribu-

tion defined by

Pxn(a) =
N(a|xn)

n
, a ∈ X . (2.5)

It can be observed that each permutation of xn has the same empirical dis-

tribution, so we may also define na = N(a|xn) and modify (2.5) writing

PX(a) =
na

n
, a ∈ X . (2.6)

Since every PX(a), a ∈ X , is an integer multiple of 1
n
, the distribution PX

is called an n-type. Let T n(PX) be the type class of the n-type PX , corre-

sponding to the set of all the n sequences with empirical distribution PX .

2.3 CCDM

Having defined the types, we are now in a position to introduce the con-

stant composition code C ⊆ T n(PX); the latter is necessary to define CCDM,

which is able to encode a k elements input sequence into n elements output
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sequence, implementing a fixed-to-fixed length mapping into T n(PX). Fol-

lowing the classical definition (1.5), we can define the rate of CCDM by

RCCDM =
k

n
. (2.7)

Thinking about an end-to-end chain, we are typically interested in having the

rate as large as possible to avoid large overhead; then, being xi the generic

i-th element of the alphabet X with |X | = M , we choose an input length

equal to

k = blog2 |T n(PX)|c =

⌊
log2

(
n

nx1 , . . . , nxM

)⌋
(2.8)

picking the maximum value which guarantees the mapping; the proof that

the class cardinality is equal to the multinomial coefficient presented above

is provided in [11, Sec. 9.2]. Furthermore, we may show two fundamental

relations; the first, which gives an upper bound to the rate by the entropy, is

RCCDM(PX , n) ≤ H(PX); (2.9)

the second describes the rate loss as

Rloss = H(PX)−RCCDM(PX , n). (2.10)

Due to the proofs shown in [11, Chap. 9], we may affirm that, if the output

length tends to infinity, the CCDM rate converges to the entropy, while the

rate loss approaches to zero; so, we may write

RCCDM(PX , n)
n→∞−−−→ H(PX). (2.11)

Example 2.3.1. To proceed, an example of non-binary CCDM is provided;

let the alphabet be X = {1, 5} and output length n = 4. Given the following

desired distribution

PX(1) =
1

4
, PX(5) =

3

4
(2.12)
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where the probabilities are a multiple of 1
4
, PX must be a 4-type because of

the n value. If we want to represent the 4-type class we can use the following

description

T 4(PX) =
{

(1, 5, 5, 5), (5, 1, 5, 5), (5, 5, 1, 5), (5, 5, 5, 1)
}

; (2.13)

from the latter expression we may say that n1 = 1 and n5 = 3. From (2.8),

having n = 4, we can evaluate the input length k by

k = blog2 |T 4(PX)|c = 2 (2.14)

that is, we can create the following look-up table (LUT) that defines CCDM

as an invertible one-to-one mapping:

00 7→ (1, 5, 5, 5), (2.15)

01 7→ (5, 1, 5, 5), (2.16)

10 7→ (5, 5, 1, 5), (2.17)

11 7→ (5, 5, 5, 1). (2.18)

We can even evaluate the CCDM rate from (2.7) as

RCCDM =
log2 4

4
=

1

2
(2.19)

and the entropy from (1.1) as

H(PX) = 0.8113. (2.20)

Therefore, we can estimate the rate loss from (2.10) by

Rloss = 0.3113. (2.21)

To see empirically that for large n the rate loss vanishes and the CCDM rate

approaches the entropy, we can set n = 10000, using

n1 =
10000

4
= 2500, (2.22)

n5 = 3
10000

4
= 7500; (2.23)
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in this case k becomes

k = blog2 |T 10000(PX)|c = 8106 (2.24)

so that the CCDM rate becomes

RCCDM =
8106

10000
= 0.8106 (2.25)

a value which is much closer to the entropy H(PX).

To conclude, a brief introduction to CCDM was provided, showing its

rate and other characteristics, also providing an example. In real systems,

we might be interested in using CCDM with a distribution which is not an

n-type; then, approximation via distribution quantization exists [11, Sec 9.3].

2.4 CCDM Algorithm

In this brief section, we want to point out a particular algorithm which

implements binary CCDM encoding-decoding system, deeply analysed in [4].

Binary constant composition codes correspond to m-out-of-n codes, which are

in general a special binary case of non-binary CCDM codes [3]. Furthermore,

a necessary inequality in order to find the minimum m value that guarantees

the one-to-one correspondence between input and output is represented by

mmin = min

{
m :

⌊
log2

(
n

m

)⌋
≥ k

}
. (2.26)

This algorithm is useful to realize comparison between binary CCDM and

binary syndrome distribution matching algorithm which is provided in the

next chapter, to understand which are the limits of this type of distribution

matching i.e., on short sequences.



Chapter 3

Syndrome Distribution

Matcher

In this chapter, a description of the main algorithm is provided; the idea is

inspired by [13], where a trellis decoder for LBCs was presented. The purpose

is to implement a trellis-based algorithm acting as an efficient syndrome

distribution matcher (SDM); to pursue this goal we first introduce the trellis

representation of the parity-check matrix, and then we give a brief description

of minimum distance and syndrome decoding. To conclude, we introduce

the syndrome distribution matching and formalize the main algorithm of the

Thesis, providing a deep description of it.

3.1 Trellis Representation of the LBC Cosets

Consider a LBC defined by its parity-check matrix H of size (n− k)×n.

Referring to (1.4), we can identify 2n−k length n−k vectors called syndromes,

along with their corresponding 2n−k cosets, each formed by 2k length n vec-

tors. The fundamental connection between syndrome and noisy received word

is

s = rHT = (c + e)HT = eHT (3.1)

18
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where s is the length n − k syndrome and r is the length n noisy received

word, which is the sum of the code word c and the noise pattern e added by

the channel. Our goal is to represent the 2n−k cosets by a trellis based on the

matrix H . To this aim, we write the parity-check matrix as a concatenation

of n column vectors of length n− k, i.e.,

H = [h1 h2 h3 . . .hn]. (3.2)

We define the partial noisy received word r(t) as

r(t) = [r1 r2 . . . rt] (3.3)

which consists of the first t entries of the noisy received word r. Next, we

define the partial syndrome s(t) by

s(t) =
t∑

i=1

rih
T
i =

t−1∑
i=1

rih
T
i + rth

T
t = s(t− 1) + rth

T
t . (3.4)

Note that

s(n) =
n∑

i=1

rih
T
i = rHT = s (3.5)

that is, we can calculate the syndrome s recursively via (3.4). Now we define

the trellis, considering its evolution along the dimension of n-tuples thought

as time T ; we can identify each step with t, which takes values t = 1, 2, . . . n.

Let s(t) be the generic state; this can take 2n−k values due to the length

of each ht column. Transitions are defined by rth
T
t , which take two values

according to rt = 0, 1; so, in the binary case, from each active state at step t,

two edges start and reach two distinct states at step t+ 1. For completeness,

we say that at step t = 0 we have only one state, corresponding to the all-

zeros (n − k)-tuple. Along the algorithm, all the steps except the last have

states which represent partial syndromes s(t), as follow from (3.4), while at

step n we can identify all final syndromes s(n), by (3.5). The paths ending

in the same state form a coset and for each final state there are 2k distinct

paths reaching it, by Section 1.4. Moreover, if we are interested only in the
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LBC code book, we can remove all paths that do not end in the all-zeros

state, corresponding to reach the all-zeros syndrome; this particular choice

reflects (1.10).

Example 3.1.1. Consider the binary (5, 3) LBC from [13] with parity-check

matrix:

H =

[
1 1 0 1 0

1 0 1 0 1

]
= [h1 h2 h3 h4 h5]. (3.6)

Observing the matrix, we know that the number of steps is equal to n = 5 and

the number of states at each step is 2n−k = 22 = 4. So we can immediately

draw all states. We know that up to step n, each state represents a partial

syndrome and we can connect the states by the recursive formula (3.4). In

step 5, each final syndrome s(n) is reached by 2k paths r, which fulfil (3.1)

i.e.,

rHT = s(n); (3.7)

the total number of paths considering all the cosets is equal to

2k × 2n−k = 2n = 25 = 32, which is in line with the previous description. In

Figure 3.1 we provide the complete trellis, considering all the cosets paths

where red arrows identify ri = 1, while blue arrows ri = 0; Furthermore,

in Figure 3.2 we provide its expurgated version, representing the LBC code

book with parity-check matrix H .

3.2 Minimum Distance and Syndrome Decod-

ing

Consider a code word c sent through a noisy channel; its noisy version r is

received at the decoder. Consider a binary symmetric channel (BSC), where

all the elements of r are binary. The goal is to make a decision ĉ equal to c by

minimum distance decoding, which minimizes the Hamming distance between

the noisy vector r at the decoder and the code words c ∈ C. We assume that
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Figure 3.1: Complete trellis, representing the LBC cosets.

the BSC crossover probability p, which is the error probability through the

channel, is strictly less than 1
2
. The objective is to minimize the probability of

decision error after the channel; we can do this by maximum likelihood (ML)

decoding [8, Sec. 1.4.3], which in this specific case
(
with p < 1

2

)
is equivalent

to minimum distance decoding as shown next. Let us define the input X,

output Y and noise Z, where Y = X + Z; the channel is described by the

likelihood

PY |X(y|x) = PZ(y − x) (3.8)

with PZ(0) = 1− p and PZ(1) = p. Therefore, defined the Hamming weight

wH(x) as the number of 1s of a generic tuple x, the Hamming distance

dH(c, r) between c and r is described by

dH(c, r) = wH (c− r) =
n∑

i=1

1 (ci − ri 6= 0) . (3.9)

Over a memory-less channel, we define the likelihood P n
Y |X(r|c) by

P n
Y |X(r|c) =

n∏
i=1

PY |X(ri|ci) =
n∏

i=1

PZ(ri − ci). (3.10)
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Figure 3.2: Code book trellis, representing the linear (5,3) code by H .

In this specific case of a BSC (p) with p < 1
2
, ML decision ĉ at the decoder

consists of

ĉ = argmax
c∈C

P n
Y |X(r|c) = argmax

c∈C
(1− p)n−dH(c,r)pdH(c,r)

= argmax
c∈C

(1− p)n
(

p

1− p

)dH(c,r)

= argmax
c∈C

(
p

1− p

)dH(c,r)

.

(3.11)

Hence, we can see that, with p < 1
2
, maximizing the likelihood is equivalent to

minimizing the Hamming distance dH. Then, we can represent the minimum

distance decoding by

ĉ = argmin
c∈C

dH(c, r) = argmin
c∈C

wH(r − c). (3.12)

To proceed, we exploit syndromes to make ML decisions of the transmitted

code word c. In fact, we can adopt syndrome decoding, which exploits (3.1).

Given a parity-check matrix, for each syndrome s, 2k sequences r′ fulfil

r′HT = s and within this ensemble we can always identify the minimum

Hamming weight error pattern e, called coset leader, by

e(s) = argmin
r′ : r′HT=s

wH(r′). (3.13)
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Then, we are able to construct a LUT with the 2n−k syndromes and each

corresponding coset leader e. Next, knowledge of the syndrome s associated

with received r, leads us to the decoding rule

ĉ = r + e
(
rHT

)
(3.14)

that is, the LUT has memory a number of (n− k)-tuples equal to 2n−k.

3.3 Syndrome Distribution Matching

Consider the syndrome decoding scheme in Figure 3.3. If we isolate the

system formed by the LUT, which accepts the syndrome as input and pro-

duces an error pattern as output, this could be regarded as an SDM. In

syndrome decoding, the output e is always the minimum Hamming weight

sequence linked to the specific syndrome coset as shown in (3.13); neverthe-

less, a generalization based on a cost function is possible, which changes the

one-to-one relation between syndromes and cosets leaders, keeping the LUT

structure unaltered.

Performing distribution matching with a LUT works in principle for any

binary code, but the table with 2n−k entries may be too large depending on

the case, leading to complexity issues. Moreover, we can affirm that SDM

on trellis described in Section 3.2 is not much less complex than the LUT

implementation since it has 2n−k states at each step. We therefore consider

a different approach, which allows us achieving a gain in specific scenarios.

3.4 SDM Algorithm

The purpose of SDM is to map the input bits onto a sequence that min-

imizes a cost function. Considering the syndrome s ∈ Fn−k
2 and the parity-

check matrix H ∈ F(n−k)×n
2 , let the shaped sequence be r ∈ Fn

2 . We can

create the trellis by successively accounting for the row constraints of the

parity-check matrix, which is a complementary approach compared to [13];
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Figure 3.3: Syndrome decoding system with emphasis on DM.

the generic row constraint imposed by H may be named hi. The mathe-

matical model of the problem is provided below for H , s and a generic cost

function f(·):

r = argmin
r′∈Fn

2

f(r′);

Subject to si = r′hT
i , i = 1, 2, . . . , n− k.

The number of steps is n−k because of the syndrome length, and the number

of states at each step is 2n. However, we can reduce the actual number of

states significantly by observing that a row hi of H only constrains the entries

of r where hi is non-zero. Importantly, each state reached at a certain step

is a pre-shaped sequence, fulfilling only the constraints considered up to that

step. Let the initial state t = 0 be the all-zeros sequence; the main idea is

going through the trellis exploiting the non-zeros entries in the rows of the

parity-check matrix at the respective step of the algorithm, until all n − k
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entries of the syndrome have been accounted for. Let flexible ones n1(t) be

the number of 1s in the t-th row of H that have not yet been visited by one

of the previous iterations. During each step, we define a matrix X(t) of size

2n1(t) × n

X(t) =


x1(t)

x2(t)
...

x2n1(t)(t)

 (3.15)

formed by all the possible n-tuples as row vectors, which have all-zero el-

ements except in the positions corresponding to the current flexible ones,

where we can observe in each row of X(t) one of the 2n1(t) binary n1(t)-

tuples. Let the generic state at step t − 1 be called r(t − 1). Let st be the

value that the input syndrome assumes at the step t; in order to find all valid

subsequent states, we can exploit the following check relation on any xi(t),

i = 1, 2, . . . , 2n1(t),

Xvalid(t) =
{
xi(t)| [r(t− 1) + xi(t)]h

T
t = st, i = 1, 2, . . . , 2n1(t)

}
. (3.16)

We can create the branches between the state at step t − 1 and all the

following 2n1(t)−1 states at step t. In fact, named the elements corresponding

to the n1(t) positions by flexible bits, if we want to fulfil a constraint with

the modulo-2 sum of binary elements, we have always half of the possible

combinations of the considered number of flexible bits. Hence, the number

of states at step t reached by the previous one is always 2n1(t)

2
= 2n1(t)−1; then

the successors can be evaluated by

r(t) = {r(t− 1) + xi(t)|xi(t) ∈Xvalid(t)} . (3.17)

Let the flexible ones of the previous constraint respecting the current

(t-th) constraint be named fixed ones and the corresponding elements be

fixed bits. After a certain number of iterations, depending on how the parity-

check matrix is formed, the number of flexible ones becomes equal to zero
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(n1(t) = 0), and the new step of the algorithm starts with all elements

being fixed bits. Then two phases can be identified: in the first phase the

iterative rule (3.16) is used, while in the second phase, states r(t − 1) that

fulfil constraint t are copied as states of the following step. The transition

from the first phase to the second phase occurs according to the considered

parity-check matrix. Between the two phases, the maximum number of states

(MNS) can be evaluated; let the number of row constraints considered so far

be called number of rows with flexible ones (NRFO). We define

MNS =
NRFO∏
i=1

2n1(i)−1 =
1

2NRFO

NRFO∏
i=1

2n1(i) (3.18)

which gives us the number of states that fulfil the first NRFO constraints;

from that, we use all the remaining rows that have not yet been considered

in order to expurgate the paths. At each further step t, we keep only the

previous states r(t− 1) with respect to (3.16), considering, due to n1(t) = 0,

the only x1(t) as the all-zeros sequence; in the end, the algorithm always

gives us 2k paths, which is consistent with Section 1.4. In order to exploit

the real gain of this algorithm, we can construct the parity-check matrix H

introducing flexible 1s until its last row, then, we can end the SDM without

any need to expurgate paths, avoiding the second phase; this is the only way

to have MNS equal to 2k; an example is provided below.

Example 3.4.1. Consider k = 3 and n = 9, let the parity-check matrix be

H =



0 0 1 0 1 0 0 0 0

0 0 1 0 0 0 0 1 1

0 1 0 0 1 1 0 0 0

0 0 0 0 1 0 1 0 0

1 1 0 0 1 0 0 1 1

0 1 1 1 0 1 0 1 0


(3.19)

that is, we want to show that in this case we can obtain an SDM with a trellis

formed by 2k = 8 states at each of the n−k steps compared to the canonical
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trellis shaping with 2n−k = 64 states at each of the n steps. Nevertheless, this

represents a gain since k < n− k. Without analysing the exact expression of

the states, it is straightforward to evaluate the number of states involved in

each iteration, counting the number of flexible ones introduced by each row.

Let g be the vector containing the n− k values n1(t), for all 1 ≤ t ≤ 6 i.e.,

g = [n1(1) n1(2) n1(3) n1(4) n1(5) n1(6)] = [2 2 2 1 1 1]. (3.20)

Following (3.16) and (3.17) and since at each step the number of reached

states by a previous one is equal to 2n1(t)−1, we can evaluate the number of

states, named ns(t) at each step t, starting from the first single state at t = 0

with ns(0) = 1:

t = 1 : ns(1) = ns(0)2n1(1)−1 = 2; (3.21)

t = 2 : ns(2) = ns(1)2n1(2)−1 = 4; (3.22)

t = 3 : ns(3) = ns(2)2n1(3)−1 = 8; (3.23)

t = 4 : ns(4) = ns(3)2n1(4)−1 = 8; (3.24)

t = 5 : ns(5) = ns(4)2n1(5)−1 = 8; (3.25)

t = 6 : ns(6) = ns(5)2n1(6)−1 = 8. (3.26)

Then, we proved that the MNS involved along the algorithm steps is exactly

2k = 23 = 8.

An important issue is that the solution of a certain step is composed of

the sequences that fulfil all the constraints up to that step; this gives us the

successive estimations idea of the algorithm. Next, an additional example is

provided to clarify the states structure.

Example 3.4.2. Considering the parity-check matrix with k = 3 and n = 8

provided in Figure 3.4, we can represent the partial evolution of the trellis

ending in one of the possible shaped sequences, considering only one branch

at each step. This is useful to understand how the algorithm affects the

states and the transitions along the graph. To pursue the goal, we use the
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Figure 3.4: Parity-check matrix, k = 3, n = 8.

syndrome

s = [1 0 0 1 1]. (3.27)

Following the SDM description provided in this section, we can evaluate

branches and states analysing sequentially the row constraints of the parity-

check matrix. First, we identify the flexible ones in each row by blue circles;

these 1s become fixed ones as from the consecutive row constraint and they

are underlined with a red line below each of them. This representation is

reflected directly on the structure of the trellis; as it is shown in Figure 3.5,

at each step we use all possible combinations of bits corresponding to the

positions of the blue circles in the current constraint of H , keeping fixed

all bits corresponding to the positions already analysed due to the flexible

ones of the previous constraints, identified by the red line below them. Let

the generic state be represented by r′; to emphasise the difference between

flexible and fixed bits in each state, we use a line below each binary element,

blue for flexible bits and red for fixed bits. Hence, the trellis representation is

provided below. Starting from the all-zeros state, if we analyse the first row

constraint we can observe that the flexible ones are the second and fourth
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Figure 3.5: Trellis evolution.

elements; the only combinations of these two bits that provides states r′

which fulfil

s1 = r′hT
1 (3.28)

are the two states shown in Figure 3.5 at step t = 1. Following this idea, we

can derive all the other sections of the trellis reaching all the final states. In

the end, we must choose 1 out of 8 sequences; in fact, the preferred sequence

is then selected among the 8 candidates following a specific cost function and

in this case we try to minimize the number of 1s. We can identify between

the two final candidates with minimum Hamming weight equal to 3 (fifth and

eight states at step t = 5) the sequence obtained following the red arrows

path represented by

r′ = [0 0 0 1 0 0 1 1] (3.29)

which fulfils all the H constraints, solving the DM problem. In this specific

example, the maximum number of states at each step is equal to

23 = 2k < 2n−k = 25; (3.30)
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hence, if k < n− k, we have a gain in terms of number of states, due to the

particular structure of the parity-check matrix which introduces flexible ones

until the last row.

A flow chart of the SDM is provided in Figure 3.6. It explains the main

steps emphasising the two phases of the algorithm. Next, another example

is discussed, showing a worse situation with respect to the previous one. In

the new example, the number of states that are involved along operation is

larger than 2k because the matrix does not introduce flexible ones until the

(n− k)-th constraint.

Example 3.4.3. Given k = 5 and n = 10, a further example is introduced.

Let the following H and s be possible inputs of the SDM:

H =



1 0 1 1 1 0 1 0 1 1

0 0 1 0 0 0 0 0 1 0

0 1 1 0 0 1 0 1 0 0

0 1 1 1 0 0 1 0 1 1

1 1 1 0 0 1 0 0 0 1


; (3.31)

s = [1 0 1 0 1]. (3.32)

If we start with the first row, permutations of seven 1s can be observed; then,

we can find the first 2n1(1) = 27 pre-shaped n-tuples. Within this, only half

of the ensemble fulfils the current row constraint in the binary case, because

the sum of elements of a state must be equal to the corresponding bit of

the syndrome. Following the idea of the flexible ones at each iteration, after

3 rows we can observe that a 1 has already been analysed in all possible n

positions; in this case, being NRFO = 3, we have

MNS =
1

23

3∏
i=1

2n1(i) =
27 · 20 · 23

23
= 27 = 128. (3.33)

With regard to the paths, we have to consider that only the first NRFO

rows have already been fulfilled; indeed, the analysis of the remaining rows
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is needed. It can be shown that with the following rows a certain number

of paths is expurgated to respect all the parity-check matrix constraints. In

the end, the number of possible output sequences (paths), which correspond

to states that are involved in the last iteration, is always equal to 2k.

3.5 Considerations

To sum up, we can compare the SDMs based on the LUT reviewed in

Section 3.3 with the algorithm described in Section 3.4. The first one is

memory expensive due to the memory storage of all the possible output

sequences, in particular 2n−k length n-tuples; but, owing to the use of a LUT,

the SDM is very time efficient. On the other hand, the second approach is less

memory expensive, because we store only 2k length n pre-shaped sequences

at each step overwriting the previous, but much more time expensive because

we need to evaluate runtime at each SDM use the output sequence given a

specific input.

To conclude, we can say that through the trellis-based SDM algorithm, a

certain number of shaped sequences can be obtained as outputs; the choice

of the suitable path depends on the cost function which gives the desired

distribution. Under certain conditions, we can obtain a relevant gain in

terms of memory reduction, decreasing the number of states involved along

the algorithm.
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Figure 3.6: SDM algorithm flow-chart.



Chapter 4

SDM based on Systematic

Random Matrix

In this chapter, an analysis of the SDM algorithm based on a systematic

random (SR) matrix is provided. First of all, we have to explain the choice of

the matrix used to implement the SDM and then move on to the resolution

and results of the problem, using the algorithm described in Section 3.4.

4.1 SR Matrix

In order to realize the matrix H , which is necessary to implement the

SDM, we analyse the parity-check matrices recovered by a particular crite-

rion explained hereafter. It is possible to create a matrix type which reduces

the maximum number of states of the algorithm to the fixed value 2k, re-

gardless of the matrix and equal to the number of total paths related to the

coset. As emphasised in Section 3.4, this gain is reachable only if we intro-

duce flexible ones until the last row constraint. What we realized is creating

a k dimensional identity matrix on the right and other k columns on the

left by random generation with IUD bits. Hence, given for example k = 4

and n = 8, a possible parity-check matrix in systematic form is shown below.

33



4.2 SR-based SDM Results with Rate 1
2

34

Figure 4.1: SR parity-check matrix, k = 4, n = 8.

Remark. We point out the analysis and results of a particular SDM which

tries to reach entropy equal to 1
2
; then, n − k = k due to the chosen rate.

Therefore, we do not focus on the number of states, as in Section 3.4 (because

2n−k = 2k). Rather, we emphasise an advantage in particular scenarios in

term of reachable output sequence entropy.

4.2 SR-based SDM Results with Rate 1
2

To provide results, the analysis has been done using SR matrices with rate
1
2
; we consider different matrix sizes, constructing in each case an appropriate

parity-check matrix in the way described in the previous section. The choice

of the matrix is not trivial, because the results are related to the constraints

used along the rows. What we have done is, until input length is lower

than or equal to 13, choosing the best in terms of output sequence entropy

within an ensemble of 10 parity-check matrices; in all the other cases, we

used the first generated matrix which follows the criterion above, without

a specific research within an ensemble because of the higher cost in terms
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of time. Indeed, from an operative point of view, given the matrix H , the

algorithm performs the distribution matching on all possible sequences with

a number of elements equal to the input length k; then, the cardinality of this

ensemble is equal to 2k. Comparing the results of this new approach using

as benchmark the best obtainable CCDM entropy, both shown in Table 4.1,

is relevant. Let mCCDM be the number of 1s contained in the CCDM output

sequence, referring to the empirical distribution. In our case, as we are

interested in entropy that tends to 1
2
, we obtain the CCDM results using the

lowest value of mCCDM which fulfil the inequality(2.26), assuring the one-to-

one correspondence between the DM input and output. We can observe from

the tables that in these cases the SDM values are always better or at least

comparable with respect to the CCDM. This means that, for very short

output length, SR-based SDM is in line with or even better than CCDM.

Plots containing the comparison between the table results (Figure 4.2) and

the weighted spectra of the worst and best treated cases (Figure 4.3 and

Figure 4.4) are provided below. From the first plot, we can observe the results

represented by two entropy curves, which point out the good behaviour of

the SR-based SDM on short sequences compared to CCDM. Besides, the

weight spectra remark the shift to the left of the occurrences distribution

with the increase of the sequences length; this means the decrease of the

entropy on averaged PMF. To sum up, whenever there was interest in short

sequences of length for which SDM gives a better result compared to CCDM,

SR approach would be a reasonable choice. It is important to remind that

the results are values obtained on an average PMF while CCDM gives an

entropy based on a fixed empirical distribution. At the same time with the

latter we have to take into account the distribution quantization problem

of real systems [11, Sec. 9.3]; this aspect occurs when we are interested in

an empirical distribution which is not n-type, hence we have to make an

approximation to use the CCDM. A last observation is that with CCDM,

we do not have an observable dependence between input/output length and

entropy; with regard to SDM, the increase of the sequence length causes a
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kSDM nSDM H(PX) mCCDM H
4 8 0.6873 2 0.8113

5 10 0.6525 2 0.7219

6 12 0.6313 2 0.6500

7 14 0.6269 3 0.7496

8 16 0.6202 3 0.6962

9 18 0.6145 3 0.6500

10 20 0.6026 3 0.6098

11 22 0.5988 4 0.6840

12 24 0.5949 4 0.6500

13 26 0.5911 3 0.6194

14 28 0.5883 4 0.5917

15 30 0.5865 5 0.6500

16 32 0.5846 5 0.6253

Table 4.1: SR-based results, rate 1
2
.

decrease of the entropy evaluated on the averaged PMF.

To conclude, SDM based on SR matrices is useful if we deal with short

length sequences. For long ones, we encounter severe complexity issues that

prevent us from obtaining results due to the prohibitive computation time

and memory expense.
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Chapter 5

SDM based on Low Density

Diagonal Matrix

In this chapter, we try to tackle the distribution matching problem using

the SDM based on a low density diagonal (LDD) matrix. After having clar-

ified the matrix choice, a brief introduction to the modified version of the

SDM described in Chapter 3 is provided; whereupon, we show several results,

obtained using the best CCs generators shown in [10, Sec. 12.3] as base for

the syndrome distribution matching, in order to create a precise parity-check

matrix. Along this chapter the analysis and results are provided by 1
2
-rate

SDM, having an output sequence entropy that tends to the rate.

5.1 LDD Matrix

We tried to find out the best matrix in term of output entropy using dif-

ferent approaches. By exhaustive search we recovered the best construction

of H by following the same structure of CCs described in Section 1.5, being

the one that gives the best results. To pursue the goal, we take two gen-

erators expressed by octal representation, for example [g1, g2] = [5, 7], and

we use these to construct the parity-check matrix such as (1.32). The only

difference is that in this case we use a short CC to recover the H , which
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has finite dimension, while the one of CC in Section 1.5 has a semi-infinite

dimension; this is necessary to treat the syndrome problem as in Chapter 4.

We then have

H =



1 1

1 0 1 1

1 1 1 0 1 1

1 1 1 0

1 1
. . .

1 1

1 0 1 1

1 1 1 0 1 1



. (5.1)

Let the order of a generator be the position of the rightmost 1 in its binary

vector representation. That is, let n1 be the order of g1 and let n2 be the

order of g2. Considering a specific index equal to

I = max (n1, n2) (5.2)

that is, given

g1 = [1 0 1], g2 = [1 1 1] (5.3)

so that n1 = 3 and n2 = 3, we have

I = 3; (5.4)

we can define a vector called rule of length Rl equal to

Rl = 2I = 6 (5.5)

provided by the I-th row of the parity-check matrix; in this case we can affirm

that

R = [1 1 1 0 1 1]. (5.6)
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This rule permits us to optimize the algorithm of Section 3.4 on this diagonal

matrix, obtaining a reasonable complexity during the resolution of the prob-

lem; furthermore, the rule length is directly related to the number of trellis

states at each iteration, maximised by 2Rl−1. To conclude, we call this type

of H LDD matrix, low density because we have the majority of the elements

equal to 0 and diagonal due to the structure described above.

5.2 LDD-based SDM Algorithm

Building on the algorithm described in 3.4, a new version of SDM has

been realized, trying to exploit the LDD structure of the matrix used for

syndrome distribution matching. First of all, as we emphasised in the previ-

ous section, a rule that occurs cyclically shifted at each row may be found;

hence, it is possible to predict all the transitions between two following steps

of the SDM, which are always the same along the entire the algorithm de-

pending on the binary value of the syndrome element. Therefore, storing

all the possible transitions in a LUT may be feasible under a practical com-

plexity limit provided below, avoiding the estimation of the entire branches

ensemble at each new step of the SDM. Furthermore, the LDD structure is

fundamental because each step of the trellis, due to the short Rl, involves only

a limited number of the output sequence elements. Otherwise, this problem

with parity-check matrix size used below would be infeasible due to the huge

number of states involved at each step of the trellis.

In this precise type of optimization, we may affirm that the SDM is con-

siderable a Viterbi distribution matcher (VDM), since we store weight infor-

mation in metric functions associated with each state and the survivor idea

is needed to reduce the complexity of the algorithm [14]. Referring to the

latter, if two or more starting points at number of steps t reach the same

final state at step t + 1 (representation of Section 3.1), following a specific

cost function we can be able to maintain only one of them; in the analysed

case, the only survivor of each state is always the one with the minimum
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associated weight, due to the fact that we are still interested in sequences

of which entropy tends to 1
2
. Passing through the algorithm, two different

phases may be recovered, given by the fact that a duplication of the number

of states occurs at each iteration. We start from the all-zeros state, having a

maximum number of states at a certain step equal to 2Rl−1, due to the same

reason provided in Chapter 3 that only half of the possible combinations fulfil

the constraint in the binary algebra. Along the first 2I steps we deal with the

transient phase, without reaching the upper bound of the number of states;

after that, the steady phase is reached and assured until the end, using the

survivor idea, dealing with 2Rl−1 states at each iteration.

To sum up, we can represent all the stored trellis information by the

following analysis. Looking at the matrix construction in (5.1), an important

observation is that the first two elements of the first row must be 1s, to ensure

a correct determination of the first two output sequence bits; in fact, to assure

a CC rate equal to 1
2
, in each row we introduce two flexible bits on the right

part of the rule, as we can see in (5.6), identified by nflex. Hence, given a

matrix Y (at the t-th step), the rows of which are nflex-tuples coinciding with

all the possible combinations of nflex = 2 bits as

Y (t) =


y1(t)

y2(t)

y3(t)

y4(t)

 , (5.7)

defined the generic states at step t − 1 by xt−1 and at step t by xt, we can

evaluate for each possible state at step t − 1 the nflex parts of the LUT, in

this case 2, fulfilling, according to the t-th value of the syndrome st (1 or 0),

Yvalid(t) =
{
yi(t)|[x(3:end)(t− 1); yi(t)]R = st, i = 1, 2, 3, 4

}
. (5.8)

In fact, each possible state, due to diagonal form of the matrix, is composed

of the last Rl−nflex = 4 bits of the previous state concatenated to one within

the nflex = 2 possible combinations. So, to define the reachable states based
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on the current syndrome value, the following expression can be used

x(t) =
{

[x(3:end)(t− 1); yi(t)]|yi(t) ∈ Yvalid(t)
}
. (5.9)

As already discussed, the shifted rule along the diagonal always guarantees

the same possible branches between two steps and we can recast (5.8) and

(5.9) using the generic 4-tuple f within the ensemble of 2Rl−nflex = 24 possi-

bilities instead of the generic x(3:end)(t− 1) by

Yvalid(t) = {yi(t)|[f ; yi(t)]R = st, i = 1, 2, . . . , 2nflex} . (5.10)

and obtaining the state as

x(t) = {[f ; yi(t)]|yi(t) ∈ Yvalid(t)} . (5.11)

To proceed, stored the trellis branches, to perform distribution matching we

have to exploit each element of the syndrome choosing the right connections

between the states, using the survivor idea after the transient phase. The

latter means that the expensive part of this algorithm is saving the trellis a

priori, not the output sequence evaluation along the pre-stored graph. To

conclude, after the resolution of the problem, we obtain as result 2Rl−1 paths

with minimum weights within the ensemble formed by all 2n possibilities.

5.3 LDD-based SDM Results with Rate 1
2

In this section, all the results of the LDD-based SDM algorithm are pro-

vided, trying also in this case to reach an entropy as close as possible to 1
2
.

First of all, a table with all the entropy values related to each pair of gener-

ators (in octal representation described in 1.1) of all the best CCs, with rate

equal to 1
2

is summed up [10, Section 12.3]. Successively, a plot representing

a trade-off between number of states (memory) and entropy (performance)

is shown in Figure 5.1; to conclude, the weight spectra of the worst case with

[g1, g2] = [3,1], the case study of Section 5.1 with [g1, g2] = [5,7] and the

best case with [g1, g2] = [10627, 16765] are observable in Figure 5.2, Figure

5.3 and Figure 5.4.
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Generators Rl H(PX)

[g1, g2] = [3,1] 4 0.649664

[g1, g2] = [5,7] 6 0.581192

[g1, g2] = [13,17] 8 0.569718

[g1, g2] = [27,31] 10 0.557369

[g1, g2] = [53,75] 12 0.549736

[g1, g2] = [117,155] 14 0.543494

[g1, g2] = [247,371] 16 0.537001

[g1, g2] = [561,753] 18 0.532301

[g1, g2] = [1131,1537] 20 0.526552

[g1, g2] = [2473,3217] 22 0.524961

[g1, g2] = [4325,6747] 24 0.520311

[g1, g2] = [10627,16765] 26 0.519873

Table 5.1: LDD-based results, rate 1
2
.

After these results, we may say that, increasing the generators length

used to create H , the entropy gets closer to the desired value of 1
2

with-

out never reaching it, as we can observe in the trade-off plot and weight

spectra. We must say that the approach described in Section 5.2 is fea-

sible until the Rl is lower than or equal to 18, due to the fact that after

this value the number of states become unmanageable by the simulator, in

terms of both the memory and the time expenses. We used another imple-

mentation, not described in this Thesis, to obtain the results of the other

four CCs generators couples provided in the table above reaching Rl = 26,

but the last one provided in [10, Sec. 12.3] remains untreatable even with

this optimized version of the algorithm because of the huge number of states

which is required by each SDM iteration. All these results are recovered by

multiple proofs; more specifically we have done an average of 200 different

input sequences up to [g1, g2] = [53, 75], passing after to an amount of 20

iterations until the last case [g1, g2] = [10627, 16765]; nevertheless, being the
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Figure 5.1: Memory-Performance trade-off.

syndrome length equal to 1000, the stability of the results is observed dur-

ing the practical analysis. From Table 5.1, the best choice of generators is

[g1, g2] = [10627, 16765], which gives H(PX) = 0.519873; the intuition is that

this particular H exploits at best the memory given by the states, guaran-

teeing the lowest entropy value presented. To conclude, the LDD-based SDM

may be a good alternative to other DM; it cannot reach the entropy values

of CCDM, which as we know from (2.11), with high input length, goes to a

the rate; in fact, being the rate fixed, the entropy goes to this latter value.

On the other hand, SDM exhibits the remarkable advantage to be decodable

in a very easy way by syndrome coset; only a vector-matrix multiplication

has to be done following (1.15). Hence, depending on the application, SDM

can be more suitable compared to the others and this choice is a designer

responsibility.
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Figure 5.2: LDD-based SDM, generators [3,1].
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Figure 5.3: LDD-based SDM, generators [5,7].
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Figure 5.4: LDD-based SDM, generators [10627, 16765].



Conclusions

To sum up, in the Thesis an alternative distribution matching algorithm

was provided, trying to analyse and explain its usefulness in certain types

of problems. Only the binary case was treated; hence, a possible extension

to the non-binary case would be reasonable and interesting. We found out

that SR-based SDM is suitable to solve syndrome distribution matching on

short input sequences, obtaining results in line or better compared to one

of the most important competitor, the CCDM. Moreover, also LDD-based

SDM gives interesting results, in particular an acceptable entropy, higher that

CCDM, but with the possible implementation of a simpler decoder after due

to the decoding property of SDM. Furthermore, put this DM in an end-to-

end chain with a particular structure would be relevant.
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