

Alma Mater Studiorum

Università degli Studi di Bologna

Tesi di Laurea

Laurea Magistrale in Ingegneria Informatica

PRISM
Code transplantation for adversarial malware

Anno Accademico 2017/2018

Relatore

Chiar.ma Prof.ssa Rebecca Montanari
Università degli Studi di Bologna

Correlatore

Chiar.mo Prof. Lorenzo Cavallaro

King’s College London

Candidato

Jacopo Cortellazzi

2

PRISM

3

Index

1. Abstract ... 5

2. Background .. 7

2.1. Mobile malware .. 8

2.2. Malware static analysis ... 11

2.2.1. Graphs .. 13

2.2.2. Program slicing ... 15

2.2.3 Drebin Model ... 17

2.2.4 Soot framework .. 19

2.3 Machine Learning in malware analysis .. 24

2.4 Android mobile framework ... 32

3 PRISM framework overview .. 38

3.1 From feature space to problem space ... 39

3.2 Infrastructure graph ... 43

3.2.1 Classifier ... 46

3.2.2 Extractor ... 50

3.2.3 Injector ... 53

3.2.4 Slices evaluation ... 59

4 PRISM realization .. 61

4.1 Classification and Dataset .. 62

4.1.1 PoC ... 65

4.2 Extraction ... 66

4.2.1 PoC ... 69

4.3 Slice evaluation ... 72

4.3.1 PoC ... 73

4.4 Injection .. 75

4.4.1 PoC ... 77

5 Conclusions .. 84

5.1 Resource consumption .. 85

5.2 Working application .. 87

5.3 Evasion ratio ... 89

5.4 Dead code elimination ... 90

5.5 Future works ... 92

4

5.6 Tools tried but not adopted ... 93

Bibliography: ... 96

5

1. Abstract

t the beginning of the Information Age, malware has been a

problem only for a very restricted circle of people who had the

possibility and the knowledge to access computers. Nowadays,

however, due to the large adoption of mobile devices, the Digital

Revolution re-shaped everyone’s life; more and more people have been

brought into the cyberspace and, at the very same time, malware reached

its widest attack surface: the world.

In the nefarious fight against attackers, a wide range of smart algorithms

have been introduced, in order to block and even prevent new families of

malware before their appearance. Machine learning, for instance, recently

gained a lot of attention thanks to its ability to use generalization to possibly

detect never-before-seen attacks or variants of a known one. During the

past years, a lot of works have tested the strength of machine learning in

the cybersecurity field, exploring its potentialities and weaknesses. In

particular, various studies highlighted its robustness against adversarial

attacks, proposing strategies to mitigate them [1].

Unfortunately, all these findings have focused in testing their own

discoveries just operating on the dataset at feature layer space, which is the

virtual data representation space, without testing the current feasibility of

the attack at the problem space level, modifying the current adversarial

sample [2] .

For this reason, in this dissertation, we will introduce PRISM, a framework

for executing an adversarial attack operating at the problem space level.

Even if this framework focuses only on Android applications, the whole

methodology can be generalized on other platforms, like Windows, Mac

or Linux executable files.

The main idea is to successfully evade a classifier by transplanting chunks

of code, taken from a set of goodware to a given malware. Exactly as in

medicine, we have a donor who donates organs and receivers who receive

A

6

them, in this case, goodware applications are our donors, the organs are

the needed code and the receiver is the targeted malware.

In the following work we will discuss about concepts related to a wide

variety of topics, ranging from machine learning, due to the target classifier,

to static analysis, due to the possible countermeasures considered, to

program analysis, due to the extraction techniques adopter, ending in

mobile application, because the target operating system is Android.

The whole work idea was born thanks to constructive confrontations with

the members of Systems Security Research Lab (S2LAB) [3] and the whole

framework has been developed into their laboratories. All of this has been

possible thank to them, for their resources and smart ideas.

The whole dissertation has been developed in five main sections. The next

Section, which is Section 2, contains all the background knowledge needed

for correctly understand this work, without getting in deep into PRISM.

Instead, in Section 3 and 4, the whole framework will be presented. Section

3 presents the high-level ideas and strategies behind it, while Section 4

contains information on the current implementation, examples included.

The last Section contains the conclusions, final reflections regarding its

effectiveness and future works plus the experiments done.

7

2. Background

n this first paragraph we will introduce the basic concepts needed for

understand PRISM, starting from what a malware is, followed by a

brief introduction on basics static analysis concepts and the different

possible usages of machine learning in malware analysis. At last, we will

introduce the Android mobile framework, which is the mobile framework

that this dissertation focuses on.

Indeed, this work can be summarized as an advanced Android code

injector which is going to be used to successfully evade a target classifier,

supposing a white-box scenario, in which the attacker has full knowledge of

the target classifier to be evaded. This can be successfully accomplished by

extracting benign features from goodware and transplant all the features

environment (dependencies, invocation, variables, etc.) into the malware

application in order to bypass the target classifier check.

One of the main ideas is translating the whole attack from a feature-space

attack, which consist in creating a perturbation in the feature space layer,

to a problem-space attack, instrumenting the adversarial application at

bytecode level. This kind of contribution totally lacks in the current

academic literature, bringing an interesting opportunity in proposing a new

approach to the adversarial attack scenario. The whole framework focuses

on the Android platform, allowing to successfully extract and inject chunks

of code from different source and destination applications and successfully

evading a target classifier. Of course, this has also several limitations for

now and needs future development, but the same approach could be

generalised an applied on different kind of binaries, suggesting an

alternative way for look at adversarial attacks.

I

8

2.1. Mobile malware

irst and foremost: what is a malware? Shortly, malware is malicious

software created with the only purpose to harm or manipulate a

target device in some ways.

Malware does the damage after it is implanted or introduced in some way

into a target’s computer and can take the form of executable code, scripts,

active content, and other software. The “executable code” we are referring

to is often labelled as computer viruses, worms, Trojan horses,

ransomware, spyware, adware, and scareware, among other terms. Malware

has a malicious intent, acting against the interest of the end-user; so it does

not include any software that causes unintentional harm due to some

deficiency, which is typically described as a software bug.

The number of these malicious programs is rising over and over during the

years, reaching alarming peaks: a noteworthy example is WannaCry, which

F

Figure 2.1

https://en.wikipedia.org/wiki/Executable_code
https://en.wikipedia.org/wiki/Script_(computing)
https://en.wikipedia.org/wiki/Computer_virus
https://en.wikipedia.org/wiki/Computer_worm
https://en.wikipedia.org/wiki/Trojan_horse_(computing)
https://en.wikipedia.org/wiki/Ransomware
https://en.wikipedia.org/wiki/Spyware
https://en.wikipedia.org/wiki/Adware
https://en.wikipedia.org/wiki/Scareware
https://en.wikipedia.org/wiki/Software_bug

9

outbreak is reported as one of the most concerning episodes of malware

infection during the last years [4].

The only way to protect from these kind of threats is using proper antivirus

software, which try to cope with the constant virus evolution by leveraging

novel analysis techniques: machine learning algorithms, for instance, can

spot malware by analysing their behaviour, without solely relying on known

fingerprints. Even if this kind of protection has been consolidated for

standard devices, like laptop and computers, there is substantial lack of

protection in the mobile world, thus leading virus creators and hackers to

focus on deploying mobile malware. This also depends on the role that

these mobile devices have in our lives and how they are integrated in the

all-day routine.

The mobile OS which count the highest number of malicious application

is Android, reaching almost the 3.5 million during the last year [5]. Indeed,

it is more exposed to malicious application than iOS because it is possible

to download and install applications from unofficial stores, which usually

offers paid applications for free or applications which are not listed on

Google Play, and also because the security checks done by Google Play

Store are lighter if compared with the ones done by the Apple Store. The

latter uses different dynamic and static analysis techniques in order to

deeply understand the application execution and evaluate its compatibility

with their policies. Moreover, Apple devices do not allow to install

applications which are not approved by the Apple Store, further limiting

the final user freedom, protecting him at the same time.

For all those reasons, Android OS is targeted by malicious applications.

So, what specifically is a mobile malware? There are different forms of

mobile malware, not all of which are the same as those affecting desktop

operating systems, even if sharing one common goal: taking control of the

target device.

As following, some examples of malware categories:

 Trojans: provide a backdoor, enabling an attacker to remotely

execute code or control a device.

 Keyloggers: which also sometimes include screenscrapers, sit on

a user's device, logging all keystrokes in an attempt to capture

valuable information.

10

 Bank trojans: this type of malware is particularly attractive to

mobile attackers, as it combines a trojan with a keylogger.

Attackers either intercept a user's legitimate banking app

information or trick users into downloading fraudulent banking

apps.

 Ransomware: a type of malware that will encrypt a user's data and

hold it for "ransom" until a payment is sent to the attacker.

 Ghost push: a malware form that can target Android devices,

getting root access and then pushing software updates or

malicious ads onto a user device.

 Adware: even if not always defined or identified as malware, ads

can sometimes be laced with tracking components (sometimes

called spyware) that will collect information on user activity.

There are currently some vendors that propose antivirus applications for

mobile, but their effectiveness is very limited since they are less robust than

the standard ones on desktop pc.

11

2.2. Malware static analysis

asic static analysis consists of examining the executable file without

running the executable code. Basic static analysis can confirm

whether a file is malicious, providing information about its

functionalities. Static analysis may be represented by alternative

abstractions built atop of a program, which could lead to different kind of

resource consumption and complexity, allowing to analyse distinct

characteristics of a program from different point of views, as deeply

explained later.

On the other side dynamic analysis is the evaluation of a program or

technology using real-time data. This method of analysis can be done on a

virtual processor or on a real processor. Instead of taking code offline,

vulnerabilities and program behaviour can be monitored while the program

is running, providing visibility into its real-world behaviour. A dynamic test

will monitor system memory, functional behaviour, response time, and

overall performance of the system. Further details are not covered since

dynamic analysis is out of the scope of this dissertation.

One of the major benefits of static-based detection is that it can be performed

before the file is executed (also referred as pre-execution). This is obviously

useful because it is much easier to remediate malware if it is never allowed to

execute. An ounce of prevention is worth a pound of cure. A corollary of this

benefit is that even corrupt and malformed executables which will not execute

can still be detected statically. An example of basic static analysis indeed relies

on the pipeline showed in Figure 1.8: given a program to analyse, the first

thing is trying to extract strings and to compare the signatures of the file,

searching for some malicious entry.

As for disadvantages of static detection, it is more difficult to detect completely

new and novel threats that are sufficiently unlike any previously analysed

sample. One reason for this is that it is much easier to manipulate the structure

of an executable than it is to alter its behaviour. Consider the behaviour of

ransomware: a legitimate app can be modified in such a way that it does not

appear to be malicious, yet it acts like a ransomware. Looking just at the file

structure, it is possible to figure out which functions it imports, but there is no

way to know if and when they are called or in what order. Since most of the

B

https://www.offensive-security.com/metasploit-unleashed/backdooring-exe-files/
https://github.com/rapid7/metasploit-framework/blob/master/modules/encoders/x86/shikata_ga_nai.rb

12

app’s code and structure is legitimate, it may be hard to detect a particular file

depending on the sophistication of the static analysis technique that is been

used. On the other hand, a trivial dynamic analysis tool can raise suspicion on

a program opening many files, calling cryptography functions, writing new

files, and deleting existing ones soon after starting. This behaviour looks

highly suspicious and is mostly endemic to ransomware.

13

2.2.1. Graphs

Static analysis strongly relies on the evaluation of the following

representational trees:

o Abstract Syntax Tree: is a tree representation of the abstract syntactic

structure of source code written in a programming language. Each

node of the tree denotes a construct occurring in the source code. The

syntax is "abstract" in the sense that it does not represent every detail

appearing in the real syntax, but rather just the structural, content-

related details. For instance, grouping parentheses are implicit in the

tree structure, and a syntactic construct like an if-condition-then

expression may be denoted by means of a single node with three

branches.

o Control Flow Graph: is the graphical representation of the execution

flow of a program, i.e. the order in which instructions and functions are

executed. They are mostly used either in static analysis or in compiler

applications.

o Call Graph: is an artefact produced by program analysis tools to record

the relationships between a function and the functions it calls. A static

call graph is a call graph intended to represent every possible run of the

program. The exact static call graph is an undecidable problem, so

static call graph algorithms are generally over-approximations. That is,

Figure 2. 2

https://en.wikipedia.org/wiki/Directed_tree
https://en.wikipedia.org/wiki/Abstract_syntax
https://en.wikipedia.org/wiki/Source_code
https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Bracket#Parentheses
https://en.wikipedia.org/wiki/Undecidable_problem

14

every call relationship that occurs is represented in the graph, and

possibly also some call relationships that would never occur in actual

runs of the program.

A basic static analysis is shown in Figure 2.2. Anyway, by static analysis it is

also possible to classify each reference to a variable in a program as a

definition or a use, focusing then on Data Flow Information. Indeed, by

inspecting each statement in a program, we can identify the definitions and

uses in that statement. This identification is called local data flow analysis.

Although local data flow information can be useful for activities such as local

optimization, many important compiler and software engineering tasks

require information about the flow of data across statements. Data flow

analysis that computes information across statements is called global data flow

analysis, or equivalently, intraprocedural data flow analysis. Another kind of

static analysis is the one that focus on program dependencies, extracting which

are the set of dependencies for a specific program or more specifically a code

part. A first example is the Control Dependence Graph, which encodes

control dependencies and assumes that nodes do not postdominate [6, p. 3]

themselves. Into this kind of graph the nodes represent statements, or regions

of code that have common control dependencies. Another important

program representation is the Program Dependence Graph, which represents

both control dependencies and data dependencies for a program. A PDG

consists of a control dependence, to which data dependence edges have been

added.

15

2.2.2. Program slicing

The concept of a program slice was originally developed by Weiser [7] for

debugging purposes. Based on his original definition, informally, a static

program slice 𝑆 consists of all statements in program 𝑃 that may affect the

value of variable 𝑣 in a statement 𝑥. The slice is defined for a slicing criterion

𝐶 = (𝑥, 𝑣), where x is a statement in program 𝑃 and 𝑣 is variable in 𝑥.

A static slice includes all the statements that can affect the value of variable 𝑣

at statement 𝑥 for any possible input. Static slices are computed by

backtracking dependencies between statements. More specifically, to

compute the static slice for (𝑥, 𝑣), we first have to find all the statements that

can directly affect the value of 𝑣 before statement 𝑥 is encountered.

Recursively, for each statement 𝑦 which can affect the value of 𝑣 in statement

𝑥, we compute the slices for all variables 𝑧 in 𝑦 that affect the value of 𝑣. The

union of all those slices is the static slice for (𝑥, 𝑣).

This is called backward slice and it is represented in the Figure 2.3 as example.

There have been several useful extensions to slicing algorithms. One problem

with the static backward slice that was developed by Weiser is that it contains

all the statements that may affect a given statement during any program

Figure 2.3

16

execution. A refinement of this static slice that eliminates the problem of

additional statements is a dynamic slice [8]. Whereas a static slice is computed

for all possible executions of the program, a dynamic slice contains only those

statements that affect a given statement during one execution of the program.

Thus, a dynamic slice is associated with each test case for the program.

Another useful type is the forward slice [9]. A forward slice for a program

point 𝑃 and a variable 𝑣 consists of all those statements and predicates in the

program that might be affected by the value of 𝑣 at 𝑃. A forward slice is

computed by taking the transitive closure of the statements directly affected

by the value of 𝑣 at 𝑃.

17

2.2.3 Drebin Model

This approach can be successfully adopted also for the Android platform.

The model that we have adopted for PRISM is Drebin [10]. As the first step,

Drebin performs a lightweight static analysis of a given Android application.

Accordingly, it becomes essential to select features which can be extracted

efficiently. It indeed focuses on the manifest and the disassembled dex code

of the application, which both can be obtained by a linear sweep over the

application’s content. To allow for a generic and extensible analysis, we

represent all extracted features as sets of strings, such as permissions, intents

and API calls. In particular it distinguishes between features extracted from

the Manifest and the ones extracted from the dex.

Every application developed for Android must include a manifest file called

AndroidManifest.xml which provides data supporting the installation and later

execution of the application. The information stored in this file can be

efficiently retrieved on the device using the Android Asset Packaging Tool,

which enables us to extract the following sets:

o S1 Hardware components: This first feature set contains requested

hardware components. If an application requests access to the camera,

touchscreen or the GPS module of the smartphone, these features

need to be declared in the manifest file. Requesting access to specific

hardware has clearly security implications, as the use of certain

combinations of hardware often reflects harmful behaviour.

o S2 Requested permissions: One of the most important security

mechanisms introduced in Android is the permission system.

Permissions are actively granted by the user at installation time – and

from Android 6.0 also at runtime - and allow an application to access

security-relevant resources. For example, malicious software tends to

request certain permissions more often than innocuous applications.

o S3 App components: There exist four different types of components

in an application, each defining different interfaces to the system:

activities, services, content providers and broadcast receivers. Every

application can declare several components of each type in the

manifest. The names of these components are also collected in a

18

feature set, as the names may help to identify well-known components

of malware.

o S4 Filtered intents: Inter-process and intra-process communication on

Android is mainly performed through intents: passive data structures

exchanged as asynchronous messages and allowing information about

events to be shared between different components and applications.

We collect all intents listed in the manifest as another feature set, as

malware often listens to specific intents.

Another set of features can be extracted from the disassembled code of

Android applications: the bytecode can be efficiently disassembled and

provides Drebin with information about API calls and data used in an

application. The framework uses this information to construct the following

feature sets:

o S5 Restricted API calls: The Android permission system restricts

access to a series of critical API calls. Our method searches for the

occurrence of these calls in the disassembled code in order to gain a

deeper understanding of the functionality of an application.

o S6 Used permissions: The complete set of calls extracted in S5 is used

as a foundation to determine the subset of permissions that are both

requested and actually used.

o S7 Suspicious API calls: Certain API calls allow access to sensitive data

or resources of the smartphone and are frequently found in malware

samples. As these calls can specially lead to malicious behaviour, they

are extracted and gathered in a separated feature set.

o S8 Network addresses: Malware regularly establishes network

connections to retrieve commands or exfiltrate data collected from the

device. Therefore, all IP addresses, hostnames and URLs found in the

disassembled code are included in the last set of features.

19

2.2.4 Soot framework

In order to understand all the operations done in this dissertation, we will

introduce Soot, which is the main framework on which all the modules are

based on.

Soot is the core framework of both the Extractor and Injector module. Soot

is a product of the Sable research group from McGill University, whose

objective is to provide tools leading to the better understanding and faster

execution of Java programs [11]. One of the main benefits of Soot is that it

provides four different Intermediate Representations (IR) for analysis

purposes. Each of the IRs has different levels of abstraction that give

different benefits when analysing, they are: Baf, Grimp, Jimple and

Shimple. During this thesis work we have mostly used the Jimple IR which

is going to be deeply explained later. Soot builds data structures to

represent:

 Scene. The Scene class represents the complete environment the

analysis takes place in. Through it, it is possible to set e.g., the

application classes (the ones supplied to Soot for analysis), the main

class (the one that contains the main method) and access information

regarding interprocedural analysis (e.g., points-to information and

call graphs).

 SootClass. Represents a single class loaded into Soot or created using

Soot.

 SootMethod. Represents a single method of a class.

 SootField. Represents a member field of a class. Body. Represents a

method body and comes in different flavours, corresponding to

different IRs (e.g., JimpleBody).

These data structures are implemented using Object-Oriented techniques

and designed to be easy to use and generic where possible. A statement in

Soot is represented by the interface Unit, which there are different

implementations of, one for each IR (e.g. Jimple uses Stmt). Through a

Unit we can retrieve values used, values defined or both.

20

Additionally, we can get at the units jumping to a specific unit and units a units

is jumping to, by jumping we mean control flow other than falling through.

Unit also provides various methods of querying about branching behaviour.

A single datum is represented as a Value. Examples of values are: locals

(Local), constants (in Jimple Constant), expressions (in Jimple Expr), and many

more. An expression has various implementations, e.g. BinopExpr and

InvokeExpr, but in general can be thought of as carrying out some action on

one or more Values and returns another Value.

References in Soot are called boxes, which can be distinguished in ValueBox

and UnitBox. UnitBoxes refer to Units. Used when a single unit can have

multiple successors, i.e. when branching. ValueBoxes refer to Values. As

previously described, each unit has a notion of values used and defined in

it, this can be very useful for replacing use or def boxes in units, for instance

when performing constant folding. All these elements are summarized in

Figure 2.4.

As we already mentioned, the Soot framework provides four intermediate

representations for code: Baf, Jimple, Shimple and Grimp. The

representations provide different levels of abstraction on the represented

code and are targeted at different uses. Because this work has focused only

on the Jimple IR, we will explain only this one with further details.

Figure 2.4

21

Jimple is the principal representation in Soot. The Jimple representation

is a typed, 3-address, statement based intermediate representation. Jimple

representations can be created directly in Soot or based on Java source

code and Java bytecode/Java class files. The translation from bytecode to

Jimple is performed using a naïve translation from bytecode to untyped

Jimple, by introducing new local variables for implicit stack locations and

using subroutine elimination to remove jump-to-subroutine instructions.

Types are inferred for the local variables in the untyped Jimple and added.

The Jimple code is cleaned for redundant code, like unused variables or

assignments. An important step in the transformation to Jimple is the

linearization (and naming) of expressions: this makes statements only

reference at most 3 local variables or constants, resulting in a more regular

and very convenient representation for performing optimizations. In

Jimple an analysis only has to handle the 15 statements in the Jimple

representation compared to the more than 200 possible instructions in Java

bytecode.

An example of Jimple transformation is the following, shown in Figure 2.5.

Figure 2.5

22

Soot also provides several different control flow graphs (CFG), defining

methods to get:

 entry and exit points to the graph;

 successors and predecessors of a given node;

 an iterator to iterate over the graph in some undefined order and

the graphs size (number of nodes).

The following implementations are those that represent a CFG in which

the nodes are Soot Units. Furthermore, we will only describe those that

represent an intraprocedural flow. The base class for these kinds of graphs

is UnitGraph, an abstract class that provides facilities to build CFGs. There

are three different implementations of it: BriefUnitGraph, ExceptionalUnitGraph

and TrapUnitGraph. The one adopted in PRISM is the ExceptionalUnitGraph

which includes all the basic blocks and also edges from throw clauses to

their handler (catch block, referred to in Soot as Trap), that is if the trap is

local to the method body. Additionally, this graph takes into account

exceptions that might be implicitly thrown by the VM (e.g.

ArrayIndexOutOfBoundsException). For every unit that might throw an implicit

exception, there will be an edge from each of that unit predecessors to the

respective trap handler’s first unit. Furthermore, in case the excepting unit

would contain side effectsm an edge will also be added from it to the trap

handler.

Over the Control Flow Graph, Soot allows to build a Call Graph, which is

crucial for interprocedural analysis. A call graph in Soot is a collection of

edges representing all known method invocations. This includes:

 explicit method invocations

 implicit invocations of static initializers

 implicit calls of Thread.run()

 implicit calls of finalizers

 implicit calls by AccessController

23

 and many more

Each edge in the call graph contains four elements: source method, source

statement (if applicable), target method and the kind of edge. The different

kinds of edges are e.g. for static invocation, virtual invocation and interface

invocation. The call graph has methods to query for the edges coming into

a method, edges coming out of method and edges coming from a particular

statement. Each of these methods return an Iterator over Edge constructs.

Soot provides three so-called adapters for iterating over specific parts of an

edge:

 Sources iterates over source methods of edges;

 Units iterates over source statements of edges;

 Targets iterates over target methods of edges.

24

2.3 Machine Learning in malware analysis

achine learning is a set of methods that gives “computers the ability

to learn without being explicitly programmed1”.

In other words, a machine learning algorithm discovers and

formalises the principles that underlie the data it sees. With this knowledge,

the algorithm can reason about the properties of previously unseen samples.

In malware detection, a previously unseen sample could be a new file. Its

hidden property could be either a malicious or a benign one. A

mathematically formalised set of principles underlying data properties is

called the model. Machine learning has a broad variety of approaches that it

takes to a solution rather than a single method. These approaches have

different capacities and different tasks that they suit best. We have two

possible approaches to this, unsupervised learning and supervised learning.

In the first setting scenario, we are given only a dataset without the right

answers for the task: the goal is to discover the structure of the data or the law

of data generation. One important example is clustering. Clustering is a task

that includes splitting a data set into groups of similar objects. Another task is

representation learning –this includes building an informative feature set for

objects based on their low-level description. Large unlabelled datasets are

available to cybersecurity vendors and the cost of their manual labelling by

experts is high – this makes unsupervised learning valuable for threat

detection. Clustering can help with optimizing efforts for the manual labelling

of new samples. With informative embedding, we can decrease the number

of labelled objects needed for the usage of the next machine learning

approach in our pipeline: supervised learning.

This other kid of setting is used when both the data and the right answers for

each object are available. The goal is to fit the model that will produce the

right answers for new objects. Supervised learning consists of two stages:

1 Arthur Samuel, 1959

M

25

o Training a model and fitting a model to available training data. This

mainly consists on using some amount of data to teach a method on

how to estimate 𝐹, which is a function that roughly fits the data. Our

goal is to apply a statistical learning method to the training data in

order to estimate the unknown function 𝑓. In other words, we want

to find a function 𝐹 such that 𝑌 ≈ 𝐹(𝑋) for any observation (𝑋, 𝑌).

o Applying the trained model to new samples and obtaining

predictions.

The task is that, given a set of objects, in such a way that each one is

represented with feature set X and mapped to right answer or labelled as Y,

we want to create the best possible model that will produce the correct label

Y’ for previously unseen objects given the feature set X’. In the case of

malware detection, X could be some features of file content or behaviour, for

instance, file statistics and a list of used API functions. Labels Y could be

“malware” or “benign”, or even a more fine-grained classification, such as a

virus, Trojan-Downloader or adware.

In the “training” phase, we need to select some family of models, for example,

neural networks or decision trees. Usually each model in a family is

determined by its parameters. Training means that we search for the model

from the selected family with a particular set of parameters that gives the most

accurate answers for train objects according to some metric. In other words,

we “learn” the optimal parameters that define valid mapping from X to Y.

After we have trained a model and verified its soundness, we are ready for the

next phase – applying the model to new objects. In this phase, the type of the

model and its parameters do not change: the model only produces

predictions. In the case of malware detection, this is the protection phase.

Vendors often deliver a trained model to users where the product makes

decisions based on model predictions autonomously. Mistakes can cause

devastating consequences for a user – for example, removing an OS driver. It

is crucial for the vendor to select a model family properly. The vendor must

use an efficient training procedure to find the model with a high detection rate

and a low false positive rate.

It is important to emphasise the data-driven nature of this approach. A

created model depends heavily on the data it has seen during the training

26

phase to determine which features are statistically relevant to predict the

correct label.

We will explain why making a representative data set is so important. Imagine

we collect a training set, and we overlook the fact that occasionally all files

larger than 15 MB are all malware and not benign, which is certainly not true

for real world files. While training, the model will exploit this property of the

dataset, and will learn that any files larger than 15 MB are malware. It will use

this property for detection. When this model is applied to real world data, it

will produce many false positives.

To prevent this outcome, we needed to add benign files with larger sizes to

the training set. Then, the model would not rely on an erroneous data set

property. Generalising this, we must train our models on a dataset that

correctly represents the conditions where the model will be working in the

real world. This makes the task of collecting a representative dataset crucial

for machine learning to be successful.

Figure 2. 6

27

False positives happen when an algorithm mistakes a malicious label for a

benign file. Our aim is to make the false positive rate as low as possible, or

“zero”. This is untypical for machine learning application. It is important,

because even one false positive in a million benign files can create serious

consequences for users. This is complicated because there are lots of clean

files in the world, and they keep appearing. To address this problem, it is

important to impose high requirements for both machine learning models

and metrics that will be optimized during training, with the clear focus on low

false positive rate (FPR) models. This is still not enough, because new benign

files that go unseen earlier may occasionally be falsely-detected. We take this

into account and implement a flexible design of a model that allows us to fix

false-positives on the fly, without completely retraining the model. Examples

of this are implemented in our pre- and post-execution models, which are

described in following sections.

Of course, this approach has also its own limits and can be tricked by different

kind of adversarial examples. In order to make it understandable, we will start

to explain the issue from the images.

Indeed, several machine learning models consistently misclassify inputs

formed by applying small but intentionally worst-case perturbations to

examples from the dataset, such that the perturbed input results in the model

outputting an incorrect answer with high confidence.

Figure 2. 7

28

For example, starting with an image of a panda Fig 2,7, the attacker adds a

small perturbation that has been calculated to make the image be recognised

as a gibbon with high confidence. The challenge for the adversary is figuring

out how to generate an input with the desired output, as in the source-target-

misclassification attack. In such an attack, the adversary starts with a sample

that is legitimate (such as a Panda) and modifies it through a perturbation

process to attempt to cause the model to classify it in a chosen target class

(which in our case is a gibbon).

For an attack to be worth studying, from a machine learning point of view,

it is necessary to impose constraints that ensure that the adversary is not

able to truly change the class of the input. For example, if the adversary

could physically replace a stop sign with a yield sign or physically paint a

yield symbol onto a stop sign, a machine learning algorithm must be able

to still recognize it as a yield sign [12]. In the context of computer vision,

we generally consider only modifications of an object's appearance that do

not interfere with a human observer's ability to recognize the object. The

search for misclassified inputs is thus done with the constraint that these

inputs should be visually very similar to a legitimate input. Consider the

images in Fig 2.8 , potentially consumed by an autonomous vehicle. To the

human eye, they appear to be the same, and our biological classifiers

(vision) identify each one as a stop sign. The image on the left is indeed an

ordinary image of a stop sign. We produced the image on the right by

adding a small, precise perturbation that forces a particular image

classification deep neural network to classify it as a yield sign. Here, the

adversary could potentially use the altered image to cause the car to behave

dangerously, especially if the car lacks of fail-safes (such as maps of known

stop-sign locations). In other application domains, the constraint differs.

When targeting machine learning models used for malware detection, the

constraint becomes that the input—or malware software—misclassified by

the model must still be in a legitimate executable format and execute its

malicious logic when executed.

29

The same approach could exactly be adopted for malwares: if we apply a

string perturbation to a malware we could achieve the misclassification of

it for a single classifier, evading it. This is a challenging problem and we

can suppose two different scenarios: the white-box one and the black-box

one. One way to characterise an adversary's strength is the amount of access

the adversary has to the model. In a white-box scenario, the adversary has full

access to the model whereby the adversary knows what machine learning

algorithm is being used and the values of the model's parameters. In this case,

we show in the following paragraphs that constructing an adversarial example

can be formulated as a straightforward optimization problem. In a black-box

scenario, the attacker must rely on guesswork, because the machine learning

algorithm used by the defender and the parameters of the defender's model

are not known. Even in this scenario, where the attacker's strength is limited

by incomplete knowledge, the attacker might still succeed. We now describe

the white-box techniques first because they form the basis for the more

difficult black-box attacks.

We will keep clarifying a bit more on the white-box case because it is the

one on which we have focused on during the PRISM implementation.

An adversarial example x* is found by perturbing an originally correctly

classified input x. To find x*, one solves a constrained optimization

problem. One very generic approach, applicable to essentially all machine

learning paradigms, is to solve for the x* that causes the most expected loss

(a metric reflecting the model's error), subject to a constraint on the

maximum allowable deviation from the original input x; in the case of

Figure 2.8

30

machine learning models solving classification tasks, the loss of a model

can be understood as its prediction error. Another approach, specialised

to classifiers, is to impose a constraint that the perturbation must cause a

misclassification and solve for the smallest possible perturbation

 𝑥′ = 𝑥 + 𝑎𝑟𝑔𝑚𝑖𝑛{||𝑧|| ∶ 𝑓(𝑥 + 𝑧) = 𝑡}

where x is an input originally correctly classified, || • || a norm that

appropriately quantifies the similarity constraints discussed earlier, and t is the

target class chosen by the adversary. In the case of "untargeted attacks," t can

be any class different from the correct class f (x). For example, for a malware

the adversary might use the ℓ0 "norm" to force the attack to modify very few

pixels, or the ℓ∞ norm to force the attack to make only very small changes to

each pixel. All of these different ways of formulating the optimization problem

search for an x* that should be classified the same as x (because it is very

similar to x) yet is classified differently by the model. These optimization

problems are typically intractable, so most adversarial example-generation

algorithms are based on tractable approximations.

The limitations of existing defences point to the lack of theory and practice of

verification and testing of machine learning models. To design reliable

systems, engineers engage in both testing and verification. By “testing”, we

mean evaluating the system under various conditions and observing its

behaviour, watching for defects. By “verification”, we mean producing a

compelling argument that the system will not misbehave under a broad range

of circumstances.

Machine learning practitioners have traditionally relied primarily on testing.

A classifier is usually evaluated by applying the classifier to several examples

drawn from a test set and measuring its accuracy on these examples.

To provide security guarantees, it is necessary to ensure properties of the

model besides its accuracy on naturally occurring test-set examples. One well-

studied property is robustness to adversarial examples. The natural way to test

robustness to adversarial examples is simply to evaluate the accuracy of the

model on a test set that has been adversarial perturbed to create adversarial

examples.

Unfortunately, testing is insufficient to provide security guarantees, as an

attacker can send inputs that differ from the inputs used for the testing

31

process. In general, testing is insufficient because it provides a "lower bound"

on the failure rate of the system when an "upper bound" is necessary to provide

security guarantees. Testing identifies n inputs that cause failure, so the

engineer can conclude that at least n inputs cause failure; the engineer would

prefer to have a means of becoming reasonably confident that at most n inputs

cause failure.

Putting this in terms of security, a defence should provide a measurable

guarantee that characterises the space of inputs that cause failures. Conversely,

the common practice of testing can only provide instances that cause error

and is thus of limited value in understanding the robustness of a machine

learning system. Development of an input-characterizing guarantee is central

to the future of machine learning in adversarial settings and will almost

certainly be grounded in formal verification.

Adversarial machine learning is at a turning point. In the context of adversarial

inputs at test time, we have several effective attack algorithms but few strong

countermeasures. Can we expect this situation to continue indefinitely? Can

we expect an arms race with attackers and defenders repeatedly seizing the

upper hand in turn? Or can we expect the defender to eventually gain a

fundamental advantage?

We can explain adversarial examples in current machine learning models as

the result of unreasonably linear extrapolation but do not know what will

happen when we fix this particular problem; it may simply be replaced by

another equally vexing category of vulnerabilities. The vastness of the set of

all possible inputs to a machine learning model seems to be cause for

pessimism. Even for a relatively small binary vector, there are far more

possible input vectors than there are atoms in the universe, and it seems highly

improbable that a machine learning algorithm would be able to process all of

them acceptably. On the other hand, one may hope that as classifiers become

more robust, it could become impractical for an attacker to find input points

that are reliably misclassified by the target model, particularly in the black-box

setting.

These questions may be addressed empirically, by actually playing out the

arms race as new attacks and new countermeasures are developed. We may

also be able to address these questions theoretically, by proving the arms race

must converge to some asymptote. All these endeavours are difficult, and we

hope many will be inspired to join the effort.

32

2.4 Android mobile framework

he mobile OS on which we are focusing on is Android. The whole

Android stack is show in the Figure 2.9, and can be divided in the

following sections:

 Linux kernel: At the bottom of the layers is Linux - Linux 3.6 with

approximately 115 patches. This provides a level of abstraction

between the device hardware and it contains all the essential

hardware drivers like camera, keypad, display etc. Also, the

kernel handles all the things that Linux is really good at such as

networking and a vast array of device drivers, which take the pain

out of interfacing to peripheral hardware.

 Libraries: On top of Linux kernel there is a set of libraries

including open-source Web browser engine WebKit, well known

library libc, SQLite database which is a useful repository for

storage and sharing of application data, libraries to play and

record audio and video, SSL libraries responsible for Internet

security etc.

 Android libraries: This category encompasses those Java-based

libraries that are specific to Android development. Examples of

libraries in this category include the application framework

libraries in addition to those that facilitate user interface building,

graphics drawing and database access.

 Android Runtime: This is the third section of the architecture and

available on the second layer from the bottom. This section

provides a key component called Dalvik Virtual Machine which

is a kind of Java Virtual Machine specially designed and

optimized for Android. The Dalvik VM makes use of Linux core

features like memory management and multi-threading, which is

intrinsic in the Java language. The Dalvik VM enables every

Android application to run in its own process, with its own

instance of the Dalvik virtual machine. The Android runtime also

provides a set of core libraries which enable Android application

developers to write Android applications using standard Java

programming language.

T

33

 Application Framework: The Application Framework layer

provides many higher-level services to applications in the form of

Java classes. Application developers are allowed to make use of

these services in their applications.

 Applications: You will find all the Android application at the top

layer. You will write your application to be installed on this layer

only. Examples of such applications are Contacts Books,

Browser, Games etc.

It is a complex architecture as we could notice, including different modules

and components.

The main Android components are the following four:

 Activity which is the component associated to the UI. Almost all

activities interact with the user, so the Activity class takes care of

creating a window for you in which you can place your UI. The

lifecycle of this component is shown in Fig 2.10.

Figure 2.9

34

 Broadcast Receivers, components that Android apps can use for

send or receive broadcast messages from the Android system and

other Android apps, similar to the publish-subscribe design

pattern. Generally speaking, broadcasts can be used as a

messaging system across apps and outside of the normal user

flow.

 Content Provider, which can help an application manage access

to data stored by itself, stored by other apps, and provide a way

to share data with other apps. They encapsulate data and provide

mechanisms for defining data security.

 Services, application components that can perform long-running

operations in the background, and that do not provide a user

interface. Another application component can start a service, and

it continues to run in the background even if the user switches to

another application.

Another important entity of the Android framework are Intents. An Intent

is a messaging object you can use to request an action from another app

Figure 2. 10

https://developer.android.com/reference/android/content/Intent.html

35

component. Although intents facilitate communication between

components in several ways, there are three fundamental use cases:

 Starting an activity: one can start a new instance of an Activity by

passing an Intent to startActivity(). The Intent describes the

activity to start and carries any necessary data.

 Starting a service: to start a service and perform a one-time

operation (such as downloading a file) by passing an Intent to

startService(). The Intent describes the service to start and carries

any necessary data. If the service is designed with a client-server

interface, you can bind to the service from another component

by passing an Intent to bindService(). For more information, see

the Services guide.

 Delivering a broadcast: i.e. a message that any app can receive.

The system delivers various broadcasts for system events, such

as when the system boots up or the device starts charging. It is

possible to deliver a broadcast to other apps by passing an Intent

to sendBroadcast() or sendOrderedBroadcast().

We will deal with Intents during the Extraction phase, when we will search

for eligible Activity invocations, which consist into a startActivity() call.

Android is nowadays the most spread and adopted mobile OS in the world,

counting now over 2 billion monthly active devices all over the globe.

Android and iOS have created a duopoly in the smartphone market,

accounting for more than 95% of the 3.1 billion active smartphone devices

in the world. In terms of the sheer volume of devices in use, Android

dominates iOS by a large margin with a 75.9% market share in November

of 2017 or 2.3 billion smartphones in use. [13]

This gap keep increasing over and over the years, rising also the attentions

of virus creator. Indeed, due to this mass adoption and its openness to

unofficial applications, Android owns the largest number of malicious

applications in the mobile world, counting, in the first half of 2018,

2,040,293 new malware samples recorded.

https://developer.android.com/reference/android/app/Activity.html
https://developer.android.com/reference/android/content/Intent.html
https://developer.android.com/reference/android/content/Context.html#startActivity(android.content.Intent)
https://developer.android.com/reference/android/content/Intent.html
https://developer.android.com/reference/android/content/Intent.html
https://developer.android.com/reference/android/content/Context.html#startService(android.content.Intent)
https://developer.android.com/reference/android/content/Intent.html
https://developer.android.com/reference/android/content/Intent.html
https://developer.android.com/reference/android/content/Context.html#bindService(android.content.Intent,%20android.content.ServiceConnection,%20int)
https://developer.android.com/guide/components/services.html
https://developer.android.com/reference/android/content/Intent.html
https://developer.android.com/reference/android/content/Context.html#sendBroadcast(android.content.Intent)
https://developer.android.com/reference/android/content/Context.html#sendOrderedBroadcast(android.content.Intent,%20java.lang.String)

36

The forecasts are not even better: Android malware on the march, with

ransomware an ever-increasing threat [14]. According to a SophosLabs

analysis, the number of attacks on Sophos customers using Android

devices increased almost every month in 2017 as shown in the Fig 2.12.

Creating a malicious apk is not even hard, there are several ways to

accomplish that. On the web it is possible to find various tutorial that

Figure 2.11

Figure 2. 12

37

explain how to create a simple malicious application by just injecting a

malicious reverse shell into an arbitrary application. 2 This can be

accomplished by just decompiling the apk in smali code and choose the

best injection point for being sure that the malicious code is always

executed; then Metasploit framework will handle the rest.

2 Null-Byte, “How to do a persistent backdoor into an Android apk,” [Online]. Available: https://null-

byte.wonderhowto.com/how-to/create-persistent-back-door-android-using-kali-linux-0161280/

38

3 PRISM framework overview

s previously introduced, PRISM is a program synthesis framework

which allows to successfully inject chunks of code accurately

picked from a set of benign application into a desired malware, in

order to successfully misclassify it against a specific classifier.

We decide to transpose the feature layer attacks to the problem space,

operating directly on the bytecode instrumentation of the desired

application to verify the feasibility of these kind of attacks.

The core characteristics that must be provided are:

 Successfully extract and transplant the whole dependency chain of

the desired feature

 Being the more realistic as possible, in order to adapt to real world

scenario

 Being stealthy

 Being flexible and robust for support different kind of applications

The whole deployment strategies focus on the satisfaction of all these

requirements, in order to create a tool suitable for real-world usage

scenarios. During the development we took advantage of various

techniques from different computer science fields, like program analysis

instruments for extract the dependencies, inject realistic invocation and use

opaque predicates for shield our injected code. This grants this framework

a high degree of robustness to static analysis tool, leaving the dynamic part

for future expansion.

During this chapter we will discuss in detail which is the intuition behind

the proposed work, starting from the need of operating at problem space

level. Then we will explain the components of the overall framework and

how they interoperate.

A

39

3.1 From feature space to problem space

n the current literature the almost entire set of proposed adversarial

attacks work on feature layer level. It means that these attacks verify

their effectiveness only operating on modifying the features in the data

domain, without reflecting those changes also on the analysed object. They

just focus on altering the value or the presence of a specific feature at

dataset level, without testing the feasibility of this action.

A clear example of this is the SecSVM evasion algorithm [1]. It mainly

consists in ordering by absolute weight the features of a specific classifier

and decide to remove or add some to a given malicious application in order

to misclassify it, operating only at feature layer space. The limitation of this

study lies on the fact that they have not tested its feasibility in real world

scenarios, but they limited the scope of the tests at the feature layer space,

modifying the chosen features only in the dataset.

In the proposed work, we adopt the same assumptions: PRISM uses a

LinearSVM classifier, due to the simple need to classify a goodware from a

malware, which is represented simply as a linear space, as true or false. We

worked into a Perfect Knowledge scenario, which is the worst-case setting

because also the targeted classifier is known to the attacker. Indeed, this

setting is particularly interesting as it provides an upper bound on the

performance degradation incurred by the system under attack and can be

used as reference to evaluate the effectiveness of the system under the other

simulated attack scenarios.

Taken the inspiration from the previous evasion attack proposed, we

slightly modified it, adding some basic constraint to preserve the semantic

equivalence of the malware. The adopted attack can be explained as

follows: first, we extract the estimated weights [𝑊1, 𝑊2, 𝑊3, … 𝑊𝑛] from

the classifier and sort them in descending order of their absolute values.

Since we are only interested in adding features for maintaining the program

semantic equivalence from the original malware to the instrumented one,

we discard any positive weight (which are malicious features) and hold all

the negative ones (which are benign). Then, for all the extracted features,

I

40

we verify the current presence in the target malware and, if not, we add it.

After every injection, we check the current entity of the perturbation

created and so, given 𝑤𝑖 one of the weights of the feature considered, 𝜑𝑚𝑖𝑛

the minimum perturbation needed for the misclassification and 𝛼 an ad

hoc constant:

∑ 𝑤𝑛
𝑖=1 𝑖

 > 𝜑𝑚𝑖𝑛 + 𝛼

If the condition is satisfied we stop the process and we verify that effectively

the malware is now misclassified from the SVM.

This way we are able to obtain the minimum set of features needed in order

to misclassify the target malware, but we only have the list of the needed

features at features space. We do not obtain the real set of features to inject,

but only the seeds of them. Indeed we want to consider the whole set of

dependencies of a single component containing the searched feature.

Simply adding a single feature to a program implies considering all its

dependency chain and not doing that would be deeply inconsistent and

easy to detect.

Getting from this feature-layer attack to its corresponding problem space is

not immediate as one could imagine and, most of the times, a single feature

drags a large set of other entities in order to work correctly. For this reason,

we need to understand if considering all this set of dependencies the gadget

to be injected preserve its benign properties, which is not an assumed

property.

Indeed it is possible to include by dependency also malicious feature whose

weight could totally overwhelm the initial benign one and turn the all

injection into a malicious injection instead of a benign one, increasing the

malicious property of the final malware, which is absolutely what we want

to avoid.

41

This is real for both kind of features we are considering in this project,

which are Activities and URL-like features, which include URL or API

calls. So, for example, in the case that a feature to inject is an Activity,

PRISM will extract recursively all the classes referenced from the initial

class, looking deeply inside the various class fields and variables and

method invocation, gathering everything. On the other hand, if it is a URL-

like feature, like an API invocation, internet call, etc., the invocation

method is found and all the relative dependencies of the class containing it

are extracted recursively.

Considering a relative simple goodware application, with few activities and

classes the whole set of dependencies would consist of a total amount of

10-15 entities, while if the application is a huge one with a complex

architecture scheme the final extracted gadget could easily reach 100 extra

classes. For this reason, this evaluation part is critical for the correct

operation of the framework, avoiding the chance to inject malicious code

into a malware.

Figure 3.1

42

In order to evaluate the single gadgets and understanding their complex

nature, we adopt a simple strategy which will be explained in detail in

Section 3.2.5: the main idea is to create an empty apk, as template

containing the minimum set of features possible, and using it for gadget

evaluation. Every time we want to inject a gadget, we first try to inject it in

the template; then evaluate the final result. This way we are sure that the

final result will be in line with our goal, discarding all the malicious gadgets.

Another challenge by operating at problem space layer is how to correctly

inject pieces of code without altering the correct operation of the original

malware. It is necessary to identify a reasonable method for choosing the

class in which injecting the code, otherwise we would risk to leave an

evident trace of instrumentation, that could easily be detected by an

analyser, either human or automatic. For this reason, we chose to adopt

the Cyclomatic Complexity [15], which is used to indicate the logic

complexity of a program. In PRISM we use it to retrieve a suitable list of

classes, calculating the average CC of them and choosing one that fits our

need. All this procedure will be explained in detail later in Section 3.2.3.

All these issues are not only limited at the feature layer, but they become a

real problem when this kind of attack faces the reality at a problem space

level. With this work we coped with all these issues and found an

acceptable solution to them, in order to guarantee a deep correctness of all

the actions taken for reaching a successful instrumentation.

Moreover, this changes the reference system of the attack, modifying also

the constraints. For example, in usual adversarial attacks there is a

constraint on the amount of perturbation applied at feature space level, but

in our situation this limit cannot be applied, because we are in a total

different reference space. Our main constraint is the size of the final

application: we do not want to exceed a specific percentage of increase, in

order to produce all the time a reasonable application

The main goal of this project is to create a successful framework which is

able to correctly solve problem-space adversarial attacks on Android

application, facing all the problems discussed before.

43

3.2 Infrastructure graph

he whole framework is composed by different modules that

combine their own capabilities for reach the final goal. Due to the

likely future use of this framework in S2LAB researches, we have

decided to separate the roles in order to achieve better code modularity.

The infrastructure process is shown in Figure 3.2, containing all the

different operational phases. The two main modules have been developed

in the Java language, totally based on Soot framework, which has been

already introduced in Section 2.2.4. We have mainly used its

instrumentation capabilities, in order to detect, extract and reinject the

needed code parts.

Moreover, before choosing Soot, we tried different other static analysis

frameworks, like WALA and SAAF, but in the end they had not the

expected characteristics (explained later in Section 5.6).

The two jar file modules are:

 The Extractor, which handles the extraction of the needed classes

and dependencies from the benign applications, including also

components, like Broadcast Receivers, Content Provider, etc.

 The Injector, which on the other hand handles the injection of all

the set of dependencies inside the malware. A modified version of

the injector is used also for the gadget evaluation part, in order to

inject a specific gadget into the template apk, for verify if the whole

set of features is benign or malicious

Another core module is the Drebin feature extractor, which is a faithful

implementation of the Drebin extraction model written in Python. It

basically is able to correctly extract all the features from a specific Android

application following the Drebin model. This is possible by decompil ing

the target application and analysing the files contained in it. It makes also

use of both smali/baksmali, which have been discussed before, and of

AAPT (Android Asset Packaging Tool). AAPT takes an application

T

44

resource files, such as the AndroidManifest.xml file and the XML files for the

Activities, and compiles them. This is a great tool which helps to view,

create, and update your APKs (as well as zip and jar files). It can also

compile resources into binary assets. It is the base builder for Android

applications. Using both tools, it can correctly match the presence of a

certain features and the respective permission, by using an ad hoc file

containing all the mappings between a specific call and the relative

permission. It saves all the results into a JSON file, which contains all the

features extracted. It has been extensively used into the PRISM framework

in order to extract the features from a specific application during all the

needed phases.

All these components are successfully coordinated by a Python program

which contains the full logic of the framework: it includes the creation of

the data model, the setup of the classifier and the invocation of the various

modules described before. This orchestration script verifies that every step

concludes correctly, making all the necessary checks on the single

operations. It includes also the final application signature and the final

evaluation to check whether the attack has ended successfully.

We tested this script on a huge dataset for the experiment part, so in order

to achieve this we have coordinated the whole set of invocation by a

multiprocessing strategy, also full implemented in python and run over the

S2LAB cluster.

45

Figure 3.2

46

3.2.1 Classifier

s already mentioned before, the classifier we have adopted is a

Linear SVM. Generally speaking, a Support Vector Machine

(SVM) is a discriminative classifier formally defined by a

separating hyperplane. In other words, given labelled training data

(supervised learning), the algorithm outputs an optimal hyperplane which

categorizes new examples. In a two-dimensional space this hyperplane is a

line dividing a plane in two parts where in each class lay in either side.

An example is represented by Figure 3.3. It fairly separates the two classes.

Any point that is under the line falls into blue square class and everything

above falls into red square class. The decision function is fully specified

by a subset of training samples, the support vectors.

A

Figure 3.3

47

So mainly for a SVM:

 Input: set of (input, output) training pair samples; call the input

sample features 𝑥1, 𝑥2, … , 𝑥𝑛 and the output result y. Typically, there

can be lots of input features x i .

 Output: set of weights w (or w i), one for each feature, whose linear

combination predicts the value of y.

Moreover, each SVM classifier has tuning parameters, like

the regularization parameter, gamma or kernel, which defines whether we

want a linear of linear separation.

The learning of the hyperplane in linear SVM is done by transforming the

problem using some linear algebra. This is where the kernel plays role.

For linear kernel the equation for prediction for a new input using the dot

product between the input (x) and each support vector (xi) is calculated as

follows:

f(x) = B(0) + sum(a i * (x,xi))

This is an equation that involves calculating the inner products of a new

input vector (x) with all support vectors in training data. The coefficients

B0 and ai (for each input) must be estimated from the training data by the

learning algorithm.

The Regularization parameter (often termed as C parameter in Python’s

sklearn library) tells the SVM optimization how much you want to avoid

misclassifying each training example. For large values of C, the

optimization will choose a smaller-margin hyperplane if that hyperplane

does a better job of getting all the training points classified correctly.

Conversely, a very small value of C will cause the optimizer to look for a

larger-margin separating hyperplane, even if that hyperplane misclassifies

more points. The gamma parameter defines how far the influence of a

single training example reaches, with low values meaning ‘far’ and high

values meaning ‘close’. In other words, with low gamma, points far away

from plausible separation line are considered in calculation for the

48

separation line. Whereas high gamma means the points close to plausible

line are considered in calculation.

And finally, the last but very important characteristic of SVM classifier is

the margin. SVM to core tries to achieve a good margin, which is a

separation of line to the closest class points. A good margin is one where

this separation is larger for both the classes. The image below, Fig. 3.4,

gives a visual example of good and bad margin. A good margin allows the

points to be in their respective classes without crossing to other class.

The advantages of the SVM technique can be summarised as follows:

 SVMs provide a good out-of-sample generalization, if the parameter

C is appropriately chosen. This means that, by choosing an

appropriate generalization grade, SVMs can be robust, even when

the training sample has some bias.

Figure 3.4

49

 SVMs deliver a unique solution, since the optimality problem is

convex. This is an advantage compared to Neural Networks, which

have multiple solutions associated with local minima and for this

reason may not be robust over different samples.

 With the choice of an appropriate kernel one can put more stress

on the similarity between elements, because the more similar the

element structure of two data is, the higher is the value of the kernel.

On the other hand, the disadvantages are that the theory only really covers

the determination of the parameters for a given value of the regularisation

and kernel parameters and choice of kernel. In a way the SVM moves the

problem of over-fitting from optimising the parameters to model selection.

Sadly, kernel models can be quite sensitive to over-fitting the model

selection criterion. Please note, however, that this problem is not unique to

kernel methods, most machine learning methods have similar problems.

The hinge loss used in the SVM results in sparsity. However, often the

optimal choice of kernel and regularisation parameters means you end up

with all data being support vectors.

The Linear SVM classifier is suitable for what we need because we only

need to classify a target application as malware or goodware, which is

represented as a binary problem. We do not have any multiclass

classification need, so the Linear SVM fits perfectly. Due to the risk of

overfitting we have trained the classifier on a large-scale dataset, already

used into other previous experiment done by the S2LAB team during other

researches on malware classification with machine learning.

50

3.2.2 Extractor

he Extractor module focuses on extracting all the set of necessaries

dependencies from a specific goodware. This represents the first

step after the identification of the set of the needed features to

transplant and the correspondence hash of the application that contains it.

The whole module has been built on top of Flowdroid [16], which is built

on Soot framework. The module has been designed in order to being able

to successfully extract Activity features and URL-like ones, like URLs and

T

Figure 3.5

51

API calls. Of course, the two extraction methods are slightly different. The

process graph is represented in Figure 3.5. Getting into the details on how

the extraction process works:

 For the Activity features, the Extractor module at first searches if the

searched feature is inside the target application. Indeed, there are

cases in which the activities are imported from some C/C++ libraries

[17] and unfortunately our analysis tool is not able to catch them.

After having identified the target Activity, it analyses the whole target

body class and extract all the dependencies needed using a PDG.

These include field types, interfaces and other external classes

needed for the correct operation of the target class.

The next step consists in trying to extract a slice containing the

invocation of the current focused Activity. This is particularly

complicated for complex applications. Our approach can be

compared to a greedy algorithm: we analyse the body of all the

methods of all the classes in the current Scene, see Section 2.2,

searching for the presence of the startActivity method invocation

and of the declaration of our target Activity. If the module finds a

match, then the Extractor tries to extract the Activity invocation

leveraging on the CFG, getting the set of basic blocks that contain

the invocation. Of course, we need to be sure that the extracted set

is independent and for this reason we double check if it contains all

the needed dependencies to correctly work. In case it doesn’t, we try

to extract also the set of missing dependencies and add them to the

final Scene. In case we do not find any match, the extraction part

stops just after having found all the set of dependencies of the target

activity.

 On the other hand, for the URL-like features, we decided to change

the last part of the extraction process: if an Activity is a pure Android

component and the extraction is a pretty straightforward operation,

for a generic URL-like string the whole operation gets more

articulated. In order to make it robust enough to be generalised we

decided to focusing on extracting the callee method that invokes the

method containing the feature we are searching for. For example, if

we have a method M0 which contains the feature F0 in class C0, we

52

are searching for a method M1 of another class C1 which calls M0,

emulating the same goodware operation.

In order to make this approach successful, we adopted the following

methodology: at first we search in the current application for the

presence of the searched feature, identifying the class which contains

it. That will represent our extraction seed, from which the whole

extraction procedure starts, identifying also the method of that class

that contains the searched feature. From that point, we will add all

the set of dependencies recursively, guaranteeing the correct

operation of the extracted class, with the same methodology adopted

for Activities features type, using the modified PDG.

After this first phase, we scan the Call Graph of the whole

application, searching for an invocation to the method containing the

searched feature recursively. In order to not introduce too much

overhead during the whole process we have decided to set a custom

threshold which indicates the maximum level of recusivity of the

greedy search algorithm, otherwise it could have brought to a

timeless execution. If everything works fine, the module has been

able to identify the method and the class that in the benign

application are used to invoke the feature we are searching for and

we are then able to replicate the same mechanism into the malware.

After that we try to extract the method invocation in a pretty similar

way to the Activity features: we use the CFG to identify the necessary

basic blocks for build an independent slice of code containing the

needed invocation. During the whole process all the dependencies

are recursively found and added to the final output, in order to

guarantee an independent set of entities. If the slice extraction ends

successfully, the whole process is terminated, returning a positive

result, and the module execution ends. Otherwise, it retries on other

eligible classes if during the identification process more than a class

has been matched, otherwise just return an error and exit.

During both processes the module creates some basic metadata files which

are necessary for the correct execution of the Injector module.

53

3.2.3 Injector

he Injector module handles all the injection part, importing all the

needed entities to inject and injecting those into the target T

Figure 3.6

54

malware. As the Extractor module this is also fully implemented on top of

FlowDroid [16], granting a huge instrumentation flexibility. The whole

operation process is represented in Figure 3.6, showing the various entities

and operation that are part of the whole module.

Due to being robust to a larger case set, we decided to implement the

injection using the opaque predicates, specifically implementing the 3SAT

type of them. Generally speaking, an opaque predicate is a predicate—an

expression that evaluates to either "true" or "false"—for which the outcome

is known by the programmer a priori, but which, for a variety of reasons,

still needs to be evaluated at run time. Opaque predicates have been used

as watermarks, as it will be identifiable in a program's executable.

For this reason, we use the opaque predicates to protect our injection

operation against static dead code elimination techniques. Indeed, our

main goal is not to change the semantic equivalence of the malware and in

order to obtain it we need to be sure that the code we are going to inject

won’t be executed in any case. And here is where the opaque predicates

play their role: using this kind of construct is possible to obfuscate the CFG

of that instruction statically speaking, forcing an hypothetic analyser to

dynamically analyse the application to figure out if that specific branch is

going to be executed or not.

Since we do not need any complex obfuscation, we adopted the 3SAT

construction strategy deeply explained in this paper [18]. In a nutshell, the

idea of the following opaque constant is that we encode the instance of an

NP-hard problem into a code sequence that calculates our desired

constant. That is, we create an opaque constant such that the generation of

an algorithm to precisely determine the result of the code sequence would

be equivalent to finding an algorithm to solve an NP-hard problem. For

our primitive, we have chosen the 3-satisfiability problem, explained as

here [19] as a problem that is known to be hard to solve. The 3SAT

problem is a decision problem where a formula in Boolean logic is given

in the following form:

∧𝑖=1
𝑛

(Vi1 ∨ Vi2 ∨ Vi3)

https://en.wikipedia.org/wiki/Predicate_(mathematical_logic)
https://en.wikipedia.org/wiki/Run_time_(program_lifecycle_phase)
https://en.wikipedia.org/wiki/Watermark

55

where Vij ∈ {v1, ..., vm} and v1, ..., vm are Boolean variables whose value can

be either true or false. The task is now to determine if there exists an

assignment for the variables vk such that the given formula is satisfied (i.e.,

the formula evaluates to true). This problem in NP-Hard to solve,

guaranteeing overhead for a generic static solver. Moreover, we though that

having an invocation for the feature searched is fundamental for bypassing

by construction dead code elimination features.

We have also implemented the functionality that adapts extracted code

sliced to different features, in order to use features from which was not

possible to find an eligible slice. For this reason, we created then a slice

database folder in which are contained all the benign invocation that could

be reused for future iterations. This situation could occur for example in

the case in which the feature to inject is a Main Activity and for this reason

there is no explicit invocation inside the Android application, because it is

automatically launched by the intent filters in the manifest. We made the

module also robust to this kind of situation, loading some external

invocation slices and modifying the referenced class, by instrumenting it

with Soot.

Getting back to the general module operation, the first thing this module

does is to collect all the necessary entities to inject into the malware,

analysing them and, if necessary, adding the Android components to the

AndroidManifest of the target malware. This step is crucial to correctly

misclassify the malware, because the Manifest file is the biggest source of

metadata of any Android application and it is the first file analysed to

understand the current application structure. The whole injection must be

clean and the final Manifest must not include any duplicate or malformed

tag, in order to not seem instrumented. It is able to inject all the Android

components and their relative tags, which we want to import as well due to

a matter of correctness.

Then the module proceeds identifying the needed invocation slice to inject,

searching if it is possible to extract it directly from the original goodware. In

case it is not possible, as already mentioned, it randomly choose one of the

available ‘mined slices’ in order to shape it and adapt it to the current

invocation we need.

56

The last and crucial step is selecting in which malware class inject the

invocations of the various features. In order not to introduce any

instrumentation evidence, we decided to adopt the Cyclomatic Complexity

(CC) score as meter in order to select a set of eligible classes. The CC of a

section of source code is the number of linearly independent paths within

it. For instance, if the source code contains no control flow

statements (conditionals or decision points), the complexity would be 1,

since there would be only a single path through the code. If the code has

one single-condition IF statement, there would be two paths through the

code: one where the IF statement evaluates to TRUE and another one where

it evaluates to FALSE, so the complexity would be 2. Two nested single-

condition IFs, or one IF with two conditions, would produce a complexity

of 3.

Mathematically, the CC of a structured program is defined with reference

to the CFG of the program, a directed graph containing the basic blocks of

the program, with an edge between two basic blocks if control may pass

from the first to the second. For a single program (or subroutine or

method), P is always equal to 1. So, a simpler formula for a single

subroutine is:

M = E – N + 2

where:

 E = the number of edges of the graph.

 N = the number of nodes of the graph.

An example of different ways to calculate CC is shown in Figure 3.7, and,

as it is clear, all of them bring to the same result. We adopted the above

formula because we have access to the CFG, so we are free to iterate

between Nodes and Edges.

https://en.wikipedia.org/wiki/Source_code
https://en.wikipedia.org/wiki/Control_flow
https://en.wikipedia.org/wiki/Control_flow
https://en.wikipedia.org/wiki/Control_flow
https://en.wikipedia.org/wiki/Structured_programming
https://en.wikipedia.org/wiki/Directed_graph
https://en.wikipedia.org/wiki/Basic_block

57

Figure 3.7

After having identified all the malware classes, we calculate the average CC

of the whole malware program, and we find those classes that have a CC

score that satisfies the following equation:

c + δ = Α ± Δ

where c is the CC of the injected class, ∂ is the whole slice CC, A is the CC

average of the malware and ∆ is the current adaptation level, allowing some

kind of flexibility. This is done in order not to create any CC score spike

in certain classes, which could lead to a strong signal of instrumentation

from a hypothetic analyser.

The module then tries to inject the invocation in all the eligible classes,

until it can successfully inject in one. We decided to randomly select the

starting point inside the method body in which we are going to inject the

slice, in order not to introduce any constant mechanism in our injection

58

mechanism, with the goal to make it even harder for an analyser to

understand some kind of pattern. As already mentioned, the final injected

slice is composed by the extracted invocation shielded into one of the

available opaque predicates, shielding it.

59

3.2.4 Slices evaluation

s introduced before, during the experiments we noticed that each

feature extraction inevitably drags with itself some other side-effect

features because of all the dependencies identified and extracted.

For this reason, we need to evaluate them, in order to weight their

contribution to the whole gadget score. The whole process is described in

Figure 3.8.

A

Figure 3.8

60

This demonstrates that injecting a feature at problem space level is not

trivial as it seems because it is necessary to consider also all the set of

external entities from which a specific feature depends on. Indeed, a single

entity could rely on a huge number of external resources, building a large

dependency chain and adding a large set of side effect classes. From the

final score point of view there are two possible scenarios: the external

dependencies strengthen the whole benign score or it reduces it.

For this reason we created a separated module which is a modified version

of the Injector one that simply focuses on injecting a particular gadget set

into an ad-hoc Android application, without using any mined slice.

For this set of operations, we created a specific basic Android application

that we used as template. This template application consist into an empty

Android app that does not contains any particular component, just

including the basic elements for make an application suitable for

instrumentation.

Indeed, it has no role except that verifying the nature of the gadgets we are

going to work with. The first important thing is verifying that no particular

feature is removed during the injection, which could compromise the initial

malware workflow and operation.

After this, we verify which are the added features and which is the final

gadget score. During this operation we also check if the permissions

required by the gadget are already included in the malware. Indeed, we

have decided to put a custom threshold T in order to avoid the injection

of an excessive number of permissions. Even if we need to extend the

feature injection also to them due to attack secrecy, application permissions

are one of the core points of Android malware analysis, so we need to be

discrete. For this we decided to hold goodware gadgets only if we are not

forced to add more than T further permissions, letting that malware part

slightly modified.

This phase is crucial in order to understand the effective and real impact

that a single feature has on the target malware, considering the whole gadget

set.

61

4 PRISM realization

n this section we will present the technical details and the choices

made for implementing PRISM. Indeed, after having provided the

general idea of the behaviour of each component during the previous

section, in this one we will discuss the implementation strategies

adopted and the reasoning behind them, due to the problem faced.

In this section we will explain the transition between the theoretical attacks

explained in Section 3 to their concrete implementation, using also a

Minimum Working Example (MWE) in order to show clearly how each

single module operates. We will use a complete example, composed by a

single malware and a set of features needed to being injected in order to

misclassify it.

We will cover in details all the modules of the framework, starting with the

classifier used, in particular focusing on the dataset adopted and the scores

obtained. Then we will present in details the Extractor java module, starting

from the implementation overview, followed by an example both for

Activity and URL-like feature. As following then the Injector module and

how the whole injection is computed, with particular focus on how we

achieve the safeguard of the semantic equivalence of the instrumented

malware. The whole explanations will be integrated with parts of the final

orchestrator script, in order to give to every module the right context in the

whole execution flow.

Moreover, due to the will to test its robustness in large scale scenario we

tested the current framework on a large dataset of Android applications,

thanks to the resources of S2LAB. Due to this, the whole framework has

been built with the purpose of correctly handle also multiprocessing

scenarios, avoiding anomalies. An example of this prevention measure is

that the framework creates for each malware run a temporary environment,

avoiding in this way to have shared resources.

I

62

4.1 Classification and Dataset

he classifier used is a Linear SVM and in order to train and test

it we have used the Python language. In particular we have

adopted the Scikit-lean library set, which is a simple and efficient

set of tools for machine learning and data analysis [20].

The whole classifier has been trained on the same dataset used for

Tesseract [21], which is composed by a temporal slice extracted from the

AndroZoo [22] dataset. Indeed, this dataset contains more than 5.8 million

application between 2010 and 2018, including a timestamp and, until the

apps of 2016, also a VirusTotal metadata results. The dataset is constantly

updated by crawling from different markets (e.g., more than 4 million apps

from Google Play Store, and the remaining from markets such as Anzhi

and AppChina). In order to select malware and goodware from this dataset

we rely on the VirusTotal metadata entry, considering a specific application

a malware if there are at least 4 entries into the relative metadata section,

indicating the number of anti-virus report that classify that app as malicious.

The number 4 has been adopted due to past researches by Miller [23]. The

opposite is valid for the goodware: we classify as benign all the apps with

less than 4 positive anti-virus reports.

We choose to use a slice of the available dataset, precisely only the three

years between the 2014 and the 2016. Getting more into the details, we

subdivided this temporal slice dataset in a way that the applications between

2014 and 2015 compose the training dataset, while the ones belonging to

2016 year represent the test dataset. This way we could also observe also

the time decay effect on the whole attack. Training the classifier with these

settings we are able to obtain the following scores:

F1 score 0.91749

Precision 0.90756

Recall 0.92764

Fig 4.1

Precision is the fraction of relevant instances among the retrieved instances,

while recall is the fraction of relevant instances that have been retrieved

T

63

over the total amount of relevant instances. On the other hand, the F1 score

indicates the accuracy of a specific test, considering both precision and

recall and can be expressed as following:

2 ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

The classifier is then able to recognize if a specific Android application is

a malware or not depending on the features contained in it. Indeed, the

whole dataset can be represented as a huge matrix containing as rows the

whole set of considered features and as columns the application analysed,

as in Figure 4,2

 App i+1 App i+2 App i+3 App i+5 App +6i App n

Feat i 0 1 1 0 1 1

Feat i+1 1 1 0 0 1 0

Feat i+2

...

0 1 1 1 0 0

Feat n 1 1 1 0 1 0

Figure 4.2

In order to correctly classify a malware with the classifier, we need the

feature extractor module in order to extract the features contained in a

single application. The final output, which is a JSON file, can be then

loaded in memory and formatted to create a similar vector to the one

showed in Figure 4.2. This way we can represent an arbitrary application

by its own feature vector, which is understandable for the classifier, which

will output the supposed classification category.

If the classification is then successful and the application is identified as a

malware we will start the feature layer attack introduced in Section 3.1.

Specifically, the attack can be explained with the following algorithm:

64

{w1
’, wi

’, … , wn
’ } = sort({w1, wi, … , wn })

For wj in {wi
’, wi+1

’, … , wk
’ }:

 If wj < 0:

 M.add(wj)

 If | ∑ 𝑤𝑘
𝑙
𝑘 | > β:

 Stop

Algorithm 1

where {w1, wi, … , wn } are the weights of the features of the classifier, sort()

is a function that sorts by absolute value the given input vector, and then

we add to a malware M all the benign features (weight less than 0) of the

considered feature vector. | ∑ 𝑤𝑘
𝑙
𝑘 | represents the sum in absolute value

of the weights considered until now, while β is the minimum perturbation

needed for the misclassification. This way we are adding to the initial

malware the minimum feature set that generates enough perturbation for

crossing the hyperplane boundary. An example is shown in Figure 4.3, in

which se red square become a green one, crossing the boundary. We

transfer the injected malware from the malicious hyperplane to the benign

one, operating the misclassification. When the boundary has been crossed,

the attack is considered successful and ends, returning a set containing the

features added, which represents the minimum set to inject in order to

misclassify M.

After this step, the whole pipeline will continue searching for the best

candidate apps for each feature contained in the extracted vector, trying to

extract the necessaries entities from the selected goodware. In case that

there are multiple donors, the framework tries to extract the best option

between them. This whole phase can be looped in case during the

evaluation phase the benign score of the organs is reduced, do the other

side-effect features.

65

4.1.1 PoC

We will now introduce a malware application as example during the whole

current Section. We will indicate this malicious application as MT. So,

taking the example of MT it has been successfully identified as malware

from the classifier C, which gave as output the malware class as prediction

with a correspondent total weight of 2.69, which correspond to𝛽. This

means that the minimum perturbation needed for misclassify MT is β.

After this step, we launch the described attack on MT, which identifies two

features to add in order to evade C, more being precise two activities,

cxim.qngg.Tehr.sFiQa and .guessidiom. At feature space level, injecting

those two features is enough in order to evade the target classifier, so the

framework use both of them as seed in order to extract the whole

dependency set from the goodware containing them. The whole gadget has

then to be evaluated in order to weight also the contribution of the side-

effect features.

Figure 4.3

66

4.2 Extraction

fter having identified the set of goodware that we need for the

attack, the next phase is extracting the needed features from

them. As already underlined previously, the core operation is the

extraction of the full dependency chain of the interested code part,

including static fields, superclasses, methods, variables, etc.

In order to avoid any kind of conflict directly at design level, every single

process, starting from this phase, creates a temporary environment in which

it operates, preventing any type of file-sharing issue. Indeed, we create a

temporary folder and copy all the needed files for the current run, making

a dedicated file for each single malware we operate on, even if it means a

higher consumption of resources.

The whole extraction phase consists in calling the Extractor module,

already presented at high level at Section 3.2.2. After the necessary

arguments are computed by the whole orchestration script, this module

handles the entire extraction of the needed entities, including the

invocation code slice. Moreover, it is also robust to the lack of an

invocation section for the Activity features, thanks to the ‘mined slice’

functionality of PRISM. This allows to increase the eligibility of the tool in

different kind of scenario.

The main extraction strategy is the following, despite the difference

between the URL-like and Activity: using a PDG, introduced in Section 2.2,

we are able to gather all the needed dependencies, which is a functionality

provided by Soot. Because its PDG implementation had some limits, we

integrated the functionalities provided. Our implementation of PDG is

indeed able to inspect interface dependencies, superclasses, static fields

and other classes called, retrieved by inspecting the value of the variables

passed. This way in the final malware is possible to guarantee that there are

no dead references to other ghost components. If the feature is an Activity,

the whole dependency extraction can be summarized in this way. Due to

the inclusion inside an Android device of the Android library classes, this

analysis automatically excludes from the scope all the native libraries, such

as Android ones or Java.

A

67

On the other hand, if the feature is a URL-like features, like an API call or

a general URL, the whole process is different, as explained in Section 3.2.2.

Indeed, as first we need to identify which is the class containing the feature

searched and which kind of entity it is. In order to achieve this, we use a

parser that inspect the whole body of all the classes in the current Scene

searching for that specific String. Once it identifies the class containing the

it, the same process using the PDG explain previously is invoked, extracting

the whole chain of needed java entities.

While for an Activity feature the next step would have been the exclusion of

all the entities not needed from the Scene to export, for a URL-like feature

there are still few more steps. Indeed, after having identified the class

containing the URL feature, we need to figure out in which method M it is

currently used, in order to extract that invocation. In order to do this, we

use again a parser, which scans all the class static fields and methods

searching for the target feature. For the matter of robustness, we decide to

extract all the possible methods and iterate between them until we can find

the right seed.

Indeed a method represent the initial node from which start the backward

search into the Call Graph of the current goodware. As a matter of fact, the

module tries to find the method M’ calling our target method M, in order

to identify a subset of eligible entities for extract the code slice containing

the invocation of M. The whole research needs to be recursive because it

could happen that some operations are called from the class itself or during

the creation phase (constructor), so we want to understand which entity

triggers the whole set of operations.

Moreover some features could be declared as static fields, so the whole

module needs to be robust even for that kind of declaration. In that case

the smali bytecote representation provides the code with a <clinit> method,

which is a static constructor in case the class has some static fields and it is

called every time that there is a class initialization. So basically, it is invoked

during every method invocation that uses any of the declared static

variables.

After these phases, we are able to define our set of target entities to extract,

so we proceed by excluding all the classes that do not belong to the output

dependency set from the current Scene. From this set the only missing

68

entity that we miss in order to have a complete extraction is the invocation

slice, which is a startActivity() method invocation for the Activity feature

and a general method invocation for the URL-like features.

The whole slicing process can be seen as an execution of a backward slice

of the target method. Indeed after we have discovered the class containing

the searched feature, the slicer is able to identify the statement that contains

the target invocation. It tries then to gather all the needed previous

statements in order to create an autonomous code section that can be freely

exported: a slice. In order to achieve this, we have mainly used the CFG

representation of the method, considering also the set of data dependencies

that they need. The CFG representation that we used is the most reliable

block one that Soot provides in term of control flow analysis: the

ExceptionalBlockGrap [24]. This class includes edges from throw clauses to

their handler (catch block, referred to in Soot as Trap) and also takes into

account exceptions that might be implicitly thrown by the VM. For every

Unit that might throw an implicit exception, there will be an edge from each

of that units predecessors to the respective trap handler’s first unit.

Furthermore, should the excepting unit contain side effects an edge will

also be added from it to the trap handler.

Then we deeply inspect the Jimple IR of the seed block, which is the one

containing the invocation and tries to reconstruct the chain of needed

blocks in terms of dependencies. We focus on literally select all the needed

statements in order to make the target autonomous and exportable,

extracting all the variables needed, even the static ones. In the end we create

a subset of the CFG composed by the minimum set of basic blocks that

contains the entire set of dependencies of the method invocation. During

this process we need to make sure not to include any kind of ghost

reference, so after the initial export we double check the output for

removing those.

In case there are multiple slices available, we choose the less complex in

term of dependencies and procedures. Indeed, we estimate the current

complexity of a slice with the following formula :

𝛾 + 𝛿 + 𝐶𝐶

69

in which 𝛾 is the number of complex objects contained into the slice, 𝛿 is

the number of variables and CC is the Cyclomatic Complexity of the slice

considered.

The extracted slice is then stored into an ad-hoc Java object, which defines

some basic utilities for operate on the slice. Indeed, in order to export the

slice as a Jimple file, which is the format in which we store the gadgets, we

need to create a temporary class due to Soot conformity. In this class we

store all the statements composing the slice, which is stored as body of the

only method of the class. It will be then loaded back from the Injector

module in the next phase, which is going to be discussed in Section 4.4.

In case of success, the extracted slice is moved into the folder containing

the mined slices, which are used in case it is not possible to extract any slice

from certain goodware. Indeed, in the case these pre-made slices are used,

the Injector tries to modify the needed statements to adapt the slice for the

current feature. This is going to be deeply explained in Section 4.4.

4.2.1 PoC

Getting back to our example MT , both of the features selected are Activity

and the Extractor module will be called twice. Due to the fact that both of

them are the same component, We will just take as example the iteration

Dependency

Dependency

Dependency

Dependency

Figure 4.4

70

of the feature cxim.qngg.Tehr.sFiQa. For example, considering the

method onCreate() of the target class we can extract the dependencies

shown in Fig 4.3. As we can notice in this little piece of code we can identify

four dependencies, two from the declared variables $r2, $r4 and two more

from the string declaration of $r5. The whole identification process

proceeds along all the others methods of the class. In the end we will obtain

a set D = { d0, di, di+1, … , dn } , which includes all the dependencies extracted

recursively. Then ∀ 𝑑𝑖 ∉ 𝐷 is going to be removed from the current Soot

Scene, which represents the whole gadget.

The last step is the slice identification. Unfortunately both these goodware

have no slice available, so we will report the example of another feature

from another example goodware, com.revmob.FullscreenActivity. After having

inspected all the classes for an invocation and having identified the class

from which extract the slice, which in this case is com.revmob.internal.e, the

Extractor tries to define the statements belonging to the slice and the relative

dependencies:

final class com.revmob.internal.e extends java.lang.Object implements java.lang.Runnable

{

 private java.lang.String a;

 private com.revmob.internal.d b;

 public final void run() {

 com.revmob.internal.e $r0;

 android.content.Intent $r1;

 com.revmob.internal.d $r2;

 android.app.Activity $r3;

 java.lang.String $r4;

 $r0 := @this: com.revmob.internal.e;

 $r1 = new android.content.Intent;

 $r2 = $r0.<com.revmob.internal.e: com.revmob.internal.d b>;

 $r3 = staticinvoke <com.revmob.internal.d: android.app.Activity a(com.revmob.internal.d)>($r2);

 specialinvoke $r1.<android.content.Intent: void <init>(android.content.Context,java.lang.Class)>($r3, class "Lcom/revmob/FullscreenActivity;");

 $r4 = $r0.<com.revmob.internal.e: java.lang.String a>;

 virtualinvoke $r1.<android.content.Intent: android.content.Intent putExtra(java.lang.String,java.lang.String)>("marketURL", $r4);

 $r2 = $r0.<com.revmob.internal.e: com.revmob.internal.d b>;

 $r3 = staticinvoke <com.revmob.internal.d: android.app.Activity a(com.revmob.internal.d)>($r2);

 virtualinvoke $r3.<android.app.Activity: void startActivityForResult(android.content.Intent,int)>($r1, 0);

 return;

 }

}

Figure 4.5

S
lice fo

u
n
d

F

ie
ld

 d
ep

en
d
en

ci
es

71

By looking the CFG of the method run(), which contains exactly what we

are searching, it is possible to observe that it is composed by one single

basic block containing the whole body. This is the luckiest scenario, in

which in the same basic block we find both the feature declaration and also

the startActivity() invocation. After having identified the needed

statements of the slice, this module analyses each statement searching for

unresolved dependencies and adding the needed variables to the final slice.

Automatically the module adds all this set of dependencies to the final

output, classifying those as ‘slice dependencies’. This information is going

to be used during the slice gathering, in which we collect single slices for

the ‘mining’ feature.

72

4.3 Slice evaluation

fter the extraction of the gadgets we need to evaluate them, in

order to weight the whole set of dependencies. The problem is

already deep introduced in Section 3.2.5 and here we are looking

at it in details.

Because this problem could lead to very different scenarios, due to the fact

that it is possible to discover features with a real small dependency chain

or with an enormous one, we need to make our solution is general enough

to adapt to every situation. In a nutshell, our strategy consists in creating a

mock basic app T in which inject the target gadget g i and extract the feature

by the feature extractor. More formally:

𝑓𝑜𝑟 𝑔𝑖 𝑖𝑛 { 𝐺 }:

 𝐸(𝐼(𝑔𝑖))

Where {G} is the whole set of gadgets to evaluate, I is the injection function

that inject the input gadget in T and E is the evaluation function, which

extract the new gadgets from the injected T. During the evaluation we

double check that the injection adds only features, without removing any

of them. This is crucial due to the Sematic Equivalence that we want to

preserve, as explained in Section 3.1. The implementation of I is a

simplified version of the Injector module, which does not include the

mining slice feature, because in this phase we want to evaluate the pure

gadget, without adding any extra component to it.

The template application T is the most basic application, containing only a

MainActivity to allow the correct launch of the app, without any extra

features. This way we use this set of features as base to subtract from the

final feature set detected from the instrumented T and the difference

represents the whole set of the features of the gadget.

During the Evaluation phase, we check which kind of features are added

for two main reasons:

 Firstly, we do not want to insert too many permissions into the

manifest. Indeed, for each attack, we set a maximum threshold of

the total amount of permissions that can be added to the

A

73

instrumented malware. Moreover, we do not want to add any extra

dangerous permission in order to not increase the risk of

identification [25].

 Secondly, we do not want to count any feature that is already

included in the initial malware. For this reason, we extract all the

initial features from the starting malware and store them in memory,

ready for the match.

Last, our algorithm automatically excludes gadgets with a superficial

contribute, in order to limit the total number of injected features.

4.3.1 PoC

Once we extract the two needed features from the previous phase, we need

to evaluate them. Because cxim.qngg.Tehr.sFiQa gadget is really little, I will

explain in detail .guessidiom.

This single feature implies the following set of features:

 "api_permissions::android_permission_INTERNET": 1,

 "interesting_calls::getCellLocation": 1,

 "activities::org_cocos2dx_lib_Cocos2dxActivity": 1,

 "api_permissions::android_permission_READ_LOGS": 1,

 "interesting_calls::getSystemService": 1,

 "interesting_calls::Read/Write External Storage": 1,

 "api_calls::java/net/HttpURLConnection": 1,

 "api_permissions::android_permission_ACCESS_WIFI_STATE": 1,

 "activities::template_template_TemplateMainActivity": 1,

 "interesting_calls::printStackTrace": 1,

 "api_calls::android/net/wifi/WifiManager;->getConnectionInfo": 1,

 "interesting_calls::Cipher(r0)": 1,

 "activities::_TemplateMainActivity": 1,

 "interesting_calls::Cipher(DES)": 1,

 "api_permissions::android_permission_READ_PHONE_STATE": 1,

 "api_permissions::android_permission_ACCESS_FINE_LOCATION": 1,

 "api_calls::android/telephony/TelephonyManager;->getDeviceId": 1,

74

 "api_calls::android/telephony/TelephonyManager;->getCellLocation": 1,

 "interesting_calls::getDeviceId": 1,

 "api_calls::android/content/Context;->startActivity": 1,

 "activities::_guessidiom": 1,

 "api_calls::java/lang/Runtime;->exec": 1

Figure 4.6

As we can notice, from a single feature we have extracted a complex set of

other extra n features. So we search for the weight w i of the feature f i into

the classifier weight set and we calculate S = ∑ 𝑤𝑖
𝑛
𝑖 . Then, if S > T, where

T is the minimum contribute, we add the whole gadget to the final malware.

Initial seed

75

4.4 Injection

fter having collected the whole set of entities needed for the

misclassification and evaluated them, the next step is to inject all

of them into the target malware. As already introduced, this

whole phase is handled by the Injector module, previously

discussed in Section 3.2.3.

The first operation done by this module is loading into the current Scene

all the classes needed for the injection. This includes also the opaque

predicates, already deeply explained in Section 3.2.3, and all the mined

slices, which could be used during the application. In order to make it

work, all the dependencies are loaded as ad-hoc Jimple classes, that the

module knows how to handle for extract only the needed code parts (more

in the Example part of this section). Secondly the module inspects all the

current gadgets in order to understand where to use the ‘mined slices’.

Indeed, it probes all the classes contained into a gadget searching for the

Slice class and if it does not find it, it just marks the current gadget as

‘sliceless’. This is going to be used to decide which injection strategy use.

Then, for each gadget it also checks which are the Android components

and Permission to add to the final Manifest. In order to achieve it, the

module is provided by a recursive function that checks if the ancestor of

the current class hierarchy matches with one of the Android components,

as Activity, Broadcast Receivers, Service or ContentProvider. If one of

these components is detected the module provides to add the relative tag

to the manifest. In order not to dramatically warp the behaviour of the

application, we have decided not to add any extra intent-filter tag to the

malware manifest because it would be sensible to implicit intents.

For example, in case the module discovers a Broadcast Receiver if we inject

the relative intent-filters, for example reading a file, our instrumented

application will answer to any ‘read file’ intent that passes through the

Android system. This could bring to an unwanted behaviour, in particular

in case the instrumented malware has absolutely no relation with the intent

caught. E.g. the instrumented malware is a mobile game and the intent-

filter injected is a READ_FILE one. Moreover, we have chosen not to import

A

76

multiple MAIN_ACTIVITY intent filters, in order to not deeply compromise

the application flow, compromising the first launched activity

In the case of some extra permissions are needed, the module proceeds by

adding them to the final malware. As already mentioned, during each

injection, the number of permissions added is limited and it cannot exceed

a custom threshold, due to the importance of this kind of feature.

Then, the module needs to identify the malware classes and which of them

are eligible for the injection process. The identification of the malware

classes is done by exclusion: indeed, it is known a-priori the whole set of

classes composing all the gadgets and the default android libraries. From

this knowledge base it is possible to automatically identify the classes that

belong to the original malware class-set. Subsequently it calculates the

average Cyclomatic Complexity of the whole malware set, which is going to

be used as our classification meter as already explained in Section 3.2.3. In

this way we obtain a set of eligible classes { C } = { c 0 , ci , ci+1 , … , cn }.

After this phase the module focuses on the injection of the feature

invocation. Here two different scenarios are possible: in the first one the

selected gadget contains the slice, while in the second one it does not and

the module need to use a mined slice. This feature is applicable only to

Activity features, due to the slice structure. The slices are represented using

the same Java Object adopted in the Extractor.

In the first case scenario, the Injector extracts the actual slice from the Jimple

class, crafted by the Extractor. Then it will try to inject the slice into the

selected class c i ∈ C. For each method contained into c i , the module tries

to implant the slice starting from a random statement. This randomness

has been introduced in order not to introduce any logical artefact in term

of instrumentation, so for a hypothetical analyser it would be harder to

identify an instrumentation because it operates randomly. The slice is then

shielded into one of the available OP i , which is also chosen randomly for

the same reason. After that the whole slice has been successfully build, it is

then injected into the chosen method of c i .

On the other hand, in the second case scenario, there is no slice available

for the feature invocation and the only possibility is to use a mined slice. A

mined slice is a slice extracted from a different goodware which can be

adapted for the invocation of a different feature. This is done by identifying

77

which is the variable containing the invocation target and by changing the

reference class, as showed in the Example part of this Section. These slices

contain only the necessary dependencies needed from the current

invocation and need to be added to the final Scene of the instrumented

malware as well, otherwise the invocation will fail and it would create dead

references into the final code. Once a random mined slice is chosen

between the whole set, the injection process is the same as before.

In the end, we double check that all the necessary classes are contained

into the final Soot Scene and extract them as Android application. The

instrumented malware is going to include new components into the

manifest, new classes and some modified ones, in which it has injected the

feature invocation.

4.4.1 PoC

Getting back our example MT , once we have extracted the two features ,

cxim.qngg.Tehr.sFiQa and .guessidiom, and evaluated them, they will feed

the Injector.

After it loads into the current Scene all the necessary entities, it inspects the

current entities to inject, searching for Android Components to inject into

the final AndroidManifest.xml. Taking the example of

cxim.qngg.Tehr.sFiQa , the whole dependency set is composed by other 5

classes :

 cxim.qngg.TEhr.c, which is a simple Java Class

 cxim.qngg.TEhr.d, which is a simple Java Class

 cxim.qngg.sFiQs, which is a Service

 cxim.qngg.sFiQr, which is a Boradcast Receiver

 cxim.qngg.sFiQa, which is an Activity

When the Injector understands that they are Android Components, it

create the ad-hoc xml tag to add to the final Manifest.

78

Figure 4.7 shows the final manifest file of M’T, which is the instrumented

version of MT . As we can notice all the needed features has been added

correctly. This way they will be recognized from the Drebin Extractor and

considered in the final evaluation.

In order to simplify the entire operation we have stored all these

information into a Set iterable by CC value, like : CC i { c0 , ci , … , cn }. We

obtain a set {C} containing all the eligible malware classes, depending on

the current average value that we want to obtain. The module starts then

iterating between all the classes belonging to {C} trying to inject the selected

slice.

In our case the feature does not have any slice. So, we need to use a mined

slice. The module selects randomly one between the available slice, we are

supposing that during this iteration the slice S. This is composed by:

0. this := @this: Slice00ADBDEE7ED68BB4C243F30EA0BABD56C034574303783924DC9654F2916A43E8;

1. $r0 = virtualinvoke this.<android.content.Context: android.content.Context getApplicationContext()>();

2. $r2 = new android.content.Intent;

3. $r3 = staticinvoke <com.yteu.hfdh.c.h: java.lang.Class a(android.content.Context,java.lang.Class)>($r0, class

"Lcom/yteu/hfdh/Bona;");

 4. specialinvoke $r2.<android.content.Intent: void <init>(android.content.Context,java.lang.Class)>($r0, $r3);

5. $i3 = staticinvoke <com.yteu.hfdh.c.h: int p(android.content.Context)>($r0);

6. virtualinvoke $r2.<android.content.Intent: android.content.Intent putExtra(java.lang.String,int)>("l", $i3);

7. virtualinvoke $r2.<android.content.Intent: android.content.Intent addFlags (int)>(268435456);

8. virtualinvoke $r0.<android.content.Context: void startActivity(android.content.Intent)>($r2);

Figure 4.7

79

9. staticinvoke <com.yteu.hfdh.c.h: void x(android.content.Context)>($r0);

10. return;

Figure 4.8

The Figure 4.8 shows the Jimple representation of S, which is a mined slice

gathered from the extraction of the feature com.yteu.hdh.Bona. All the

dependencies are circled, in black the ones that are already included in the

standard libraries and will not be extracted, while in red the only

dependency which is going to be considered. The next step is to adapt this

mined slice, which in this case consists in a single modification. Indeed we

need to modify only the line 3, replacing the string "Lcom/yteu/hfdh/Bona;"

in "Lcxim/qngg/sFiQa;", which is possible through Soot.

The last step is the injection of the adapted slice into a selected class ci. As

already mentioned the entire slice will be injected inside an opaque

predicate, which will shield it from static analysis tool. In Fig 4.9 is indeed

shown the final injected code, divided in three main regions: the blue

section identifies the code already present into the method, the black

section represents the Opaque predicate part, while the red one is the Slice.

80

.method public handleMessage(Landroid/os/Message;)V

 .locals 24

 .param p1, "msg" # Landroid/os/Message;

 .line 295

 move-object/from16 v0, p0

 .line 295

 move-object/from16 v1, p1

 .line 295

 invoke-super {v0, v1}, Landroid/os/Handler;->handleMessage(Landroid/os/Message;)V

 .line 296

 move-object/from16 v0, p1

 .line 296

 .local v3, "$i0":I, ""

 iget v3, v0, Landroid/os/Message;->what:I

 .line 296

 sparse-switch v3, :sswitch_data_0

 .line 296

 goto :goto_0

 .line 296

 :goto_0

 return-void

 .line 298

 :sswitch_0

 move-object/from16 v0, p0

 .line 298

 .local v4, "$r2":Ljava/lang/String;, ""

 iget-object v4, v0, Lcn/domob/android/a/a/d$c;->b:Ljava/lang/String;

 .line 298

 const/4 v5, 0x0

 .line 298

 move-object/from16 v0, p0

 .line 298

 invoke-direct {v0, v4, v5}, Lcn/domob/android/a/a/d$c;->a(Ljava/lang/String;Z)V

 .line 299

 invoke-static {}, Lcn/domob/android/a/a/d;->b()Lcn/domob/android/m/i;

 move-result-object v6

 .line 299

 .local v6, "$r3":Lcn/domob/android/m/i;, ""

 const-string v7, "upload picture failed"

 .line 299

 invoke-virtual {v6, v7}, Lcn/domob/android/m/i;->b(Ljava/lang/String;)V

 new-instance v8, Ljava/util/Random;

 .local v8, "$r2":Ljava/util/Random;, ""

 invoke-direct {v8}, Ljava/util/Random;-><init>()V

 const/16 v5, 0x32

 invoke-virtual {v8, v5}, Ljava/util/Random;->nextInt(I)I

 move-result v9

 .local v9, "$i0":I, ""

 if-gez v9, :cond_0

 const/4 v10, 0x0

 .local v10, "$z7":Z, ""

R

e

g

u

l

a

r

C

l

a

s

s

c

o

d

e

O

p

a

q

u

e

p

r

e

d

i

81

 goto :goto_1

 :cond_0

 const/4 v10, 0x1

 :goto_1

 move v11, v10

 .local v11, "z0":Z, ""

 const/16 v5, 0x14

 invoke-virtual {v8, v5}, Ljava/util/Random;->nextInt(I)I

 move-result v12

 .local v12, "$i1":I, ""

 if-gez v12, :cond_1

 const/4 v13, 0x0

 .local v13, "$z8":Z, ""

 goto :goto_2

 :cond_1

 const/4 v13, 0x1

 :goto_2

 move v14, v13

 .local v14, "z1":Z, ""

 invoke-virtual {v8}, Ljava/util/Random;->nextBoolean()Z

 move-result v15

 .local v15, "z3":Z, ""

 invoke-virtual {v8}, Ljava/util/Random;->nextBoolean()Z

 move-result v16

 .local v16, "z4":Z, ""

 invoke-virtual {v8}, Ljava/util/Random;->nextBoolean()Z

 move-result v17

 .local v17, "z5":Z, ""

 invoke-virtual {v8}, Ljava/util/Random;->nextBoolean()Z

 move-result v18

 .local v18, "z6":Z, ""

 if-nez v15, :cond_2

 if-nez v16, :cond_2

 if-nez v17, :cond_a

 :cond_2

 if-eqz v16, :cond_3

 if-nez v15, :cond_3

 if-eqz v17, :cond_a

 :cond_3

 if-nez v17, :cond_4

 if-nez v14, :cond_4

 if-nez v15, :cond_a

 :cond_4

 if-eqz v16, :cond_5

 if-nez v18, :cond_a

 :cond_5

O

p

a

q

u

e

p

r

e

d

i

c

a

t

e

82

 if-nez v17, :cond_6

 if-eqz v16, :cond_6

 if-nez v18, :cond_a

 :cond_6

 if-eqz v16, :cond_7

 if-nez v17, :cond_a

 :cond_7

 if-nez v11, :cond_8

 if-nez v14, :cond_8

 goto :goto_3

 :cond_8

 if-nez v11, :cond_9

 if-nez v14, :cond_9

 goto :goto_3

 :cond_9

 new-instance v19, Landroid/content/Intent;

 .local v19, "$r2":Landroid/content/Intent;, ""

 const-class v22, Lcxim/qngg/TEhr/sFiQa;

 move-object/from16 v0, v21

 move-object/from16 v1, v22

 invoke-static {v0, v1}, Lcom/yteu/hfdh/c/h;->a(Landroid/content/Context;Ljava/lang/Class;)Ljava/lang/Class;

 move-result-object v20

 .local v20, "$r3":Ljava/lang/Class;, ""

 move-object/from16 v0, v19

 move-object/from16 v1, v21

 move-object/from16 v2, v20

 invoke-direct {v0, v1, v2}, Landroid/content/Intent;-><init>(Landroid/content/Context;Ljava/lang/Class;)V

 move-object/from16 v0, v21

 invoke-static {v0}, Lcom/yteu/hfdh/c/h;->p(Landroid/content/Context;)I

 move-result v23

 .local v23, "$i3":I, ""

 const-string v7, "l"

 move-object/from16 v0, v19

 move/from16 v1, v23

 invoke-virtual {v0, v7, v1}, Landroid/content/Intent;->putExtra(Ljava/lang/String;I)Landroid/content/Intent;

 const v5, 0x10000000

 move-object/from16 v0, v19

 invoke-virtual {v0, v5}, Landroid/content/Intent;->addFlags(I)Landroid/content/Intent;

 move-object/from16 v0, v21

 move-object/from16 v1, v19

 invoke-virtual {v0, v1}, Landroid/content/Context;->startActivity(Landroid/content/Intent;)V

 move-object/from16 v0, v21

s

l

i

c

e

O

p

a

q

u

e

p

r

e

d

i

c

a

t

e

83

 invoke-static {v0}, Lcom/yteu/hfdh/c/h;->x(Landroid/content/Context;)V

 return-void

 :cond_a

 :goto_3

 return-void

 .line 299

 return-void

 .line 302

 :sswitch_1

 move-object/from16 v0, p0

 .line 302

 iget-object v4, v0, Lcn/domob/android/a/a/d$c;->b:Ljava/lang/String;

 .line 302

 const/4 v5, 0x1

 .line 302

 move-object/from16 v0, p0

 .line 302

 invoke-direct {v0, v4, v5}, Lcn/domob/android/a/a/d$c;->a(Ljava/lang/String;Z)V

 .line 303

 invoke-static {}, Lcn/domob/android/a/a/d;->b()Lcn/domob/android/m/i;

 move-result-object v6

 .line 303

 const-string v7, "upload picture successful"

Figure 4.9

Each slice is injected in a different class in order to avoid any kind of

conflict during the execution of the instrumented application.

After the injection it is verified that the target feature has been correctly

injected and that the final malware is able to correctly evade the target

classifier.

R

e

g

u

l

a

r

C

l

a

s

s

c

o

d

e

84

5 Conclusions

In this section we will present the results obtained with the developed

framework. We will consider different aspects of injection success:

indeed we can consider an implant successful if the current

application keep works correctly, preserve its malicious behaviour

after the injection, if it is able to correctly evade the classifier and if it

is resistant to dead code elimination. All these aspects are

fundamental for the final evaluation because the combination of these

characteristic guarantees a stealth and efficient injection strategy. For

the evaluation phase we have used different tools that we are going to

present in the following sections.

This phase has been performed in part on my local computer and in

part on the cluster computer provided by S2LAB. Indeed, while the

experiments were focused on a reduced size sample set they could be

handled in local, while if they focus on large scale experiment it could

not have been performed on a single computer, due to the high

resource consumption of the whole pipeline. Indeed, due to the huge

number of operation needed and the number of objects to save in

memory, the whole pipeline needs high resource availability, which is

going to be discussed in the following sections.

85

5.1 Resource consumption

he whole PRISM pipeline, which includes all the steps

described, is a heavy and expensive process. Figures 5.1, 5.2,

5.3 and 5.4 show the actual load on the RAM, one of the CPU

cores, the total system load and the fork activity during a full pipeline

operation. As it is possible to notice, it consumes a high amount of

resources, particularly in terms of memory consumption: for a single

run on a target malware it requires an average of 5 GB of memory. The

whole process starts around the 17:17 and terminates at 17:23, for an

average time of 6 minutes. The graphs have been extracted by Collectd

[26].

For this reason, a lot of data that are reused iteration after iteration are

stored into persistent folders in order to reduce the amount of

computational resources, in particular on large scale experiments. An

example are the current features contained into a gadget: once they are

extracted once, they are saved into a JSON file and all the times they

are needed they are directly loaded from there, without re-extracting

and re-evaluating the whole gadget. This strategy works pretty fine;

indeed, for example considering the same execution shown in the

T

Figure 5.1

86

Figures, with this approach takes an average of 3min, instead of the

initial 6 minutes.

Figure 5.2

Figure 5.3

87

5.2 Working application

n order to verify the correct behaviour of the final instrumented

malware, we have and analysed it with Android Studio. Indeed, it is

the official integrated development environment (IDE)

for Google's Android operating system, built on JetBrains' IntelliJ

IDEA software and designed specifically for Android development. It is a

replacement for the Eclipse Android Development Tools (ADT) as the

primary IDE for native Android application development.

Included in Android studio we can find a huge set of tools, like for example

ProGuard, which is a Java class file shrinker, optimizer, obfuscator, and

preverifier. The shrinking step detects and removes unused classes, fields,

methods and attributes. The optimization step analyses and optimizes the

bytecode of the methods. The obfuscation step renames the remaining

classes, fields, and methods using short meaningless names. These first

steps make the code base smaller, more efficient, and harder to reverse-

engineer.

Another interesting built-in-tool is Lint, which provides a similar ProGuard

feature set as:

I

Figure 5.4

https://en.wikipedia.org/wiki/Integrated_development_environment
https://en.wikipedia.org/wiki/Google
https://en.wikipedia.org/wiki/Android_(operating_system)
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/JetBrains
https://en.wikipedia.org/wiki/IntelliJ_IDEA
https://en.wikipedia.org/wiki/IntelliJ_IDEA
https://en.wikipedia.org/wiki/Android_software_development
https://en.wikipedia.org/wiki/Eclipse_(software)#Android_Development_Tools

88

 Missing translations (and unused translations)

 Layout performance problems (all the issues the old layout tool used

to find, and more)

 Unused resources

 Unused code

 Accessibility and internationalization problems (hardcoded strings,

missing contentDescription, etc.)

Moreover, it includes the whole SDK platform tools, which is needed to

Soot in order to correctly instrument Android applications. In order to

being robust to every Android application, we decided to include the whole

set of Android platforms starting from Android 10 until the last one, which

is Android 28.

The last set of components that was essential for our tests were the

emulators, that simulates Android devices on your computer so that you

can test your application on a variety of devices and Android API levels

without needing to have each physical device. The emulator provides

almost all of the capabilities of a real Android device allowing to simulate

incoming phone calls and text messages, specify the location of the device,

simulate different network speeds, simulate rotation and other hardware

sensors, access the Google Play Store, and much more. For testing the

instrumented malware we used emulators with the lasts Android versions,

as API 26,27 and 28.

Unfortunately, this kind of evaluation requires a large set of resources,

because each instrumented application should be installed on an emulator

and verify the current run. Moreover, it is almost impossible to automate

the verification of the correct behaviour of the app: we would need a smart

Android app tester that remembers how the non-instrumented malware

work in order to compare with the instrumented one, which is not an easy

problem and even more absolutely not cheap from the resources point of

view.

89

For these reasons we decided not to include this feature in the whole

pipeline, testing it only on a limited set of 15 malware. We have successfully

verified that all these malware successfully work after the injection,

preserving their natural behaviour, confirming that the gadgets have been

correctly instrumented and the code is never executed. Each application

has been deeply tested and none of them crashes in any tested actions.

5.3 Evasion ratio

e have currently tested the framework against 512 malwares

and we have successfully verified that it works in all the

situation tested. Unfortunately, due to Soot limits, for some

application some exceptions are thrown, making impossible to correctly

ending the attack. As far we have tested we have encountered two main

errors that we have already issued on the Soot Github: the first error derives

from Android Manifest parsing, while the second one derives from an error

thrown from the Jimple parser, which apparently is only thrown during the

multiprocessing, never during single-core execution.

Fortunately, these application are a limited number, on the current

experiment set. As shown in Figure 5.5 we have recorded 467 (91.2%)

malware successfully instrumented, 21 (4.1%) which are not recognised as

malware from our classifier and 24 (4.7%) which are affected by the Soot

errors I have mentioned before. Indeed even if our model has a high score

set, as shown in Figure 4.1 – Section 4.1, some malware are misclassified

as goodware even before the attack takes place, which are automatically

skipped from the framework. The whole attack on 512 malware on 40 cores

has taken 2h 4m and has been run on the S2LAB computer cluster. We run

a different malware attack on each core, using multiprocessing for speed the

whole process.

These results demonstrate that PRISM is able to correctly instrument and

misclassify a large set of real-world application and that Linear SVM

classifier are currently vulnerable to this kind of attack, even at problem

space level.

W

90

5.4 Dead code elimination

In order to verify the robustness of our injection to static analysis

techniques, we tried to use static analysis tools and strategies on out final

results. For the same reason of the high resource consumption and the

difficulty of automate the whole process, we decided to test this robustness

on the same sample set of Section 5.2.

As first we have used Android Studio tools for dead code elimination,

which uses ProGuard and Lint, using two different approaches. In the first

approach we directly load the final Android app into Android Studio, make

it decompile the .dex files and analyse them. The result has been always

positive and no unused code has been detected by it. Secondly, we tried to

extract the java code from the instrumented apk and directly run the dead

code elimination feature on it. It has been possible by using dex2jar [27],

which is a tool able to convert a .dex file into a .jar . This way it was possible

to successfully extract the whole injected invocation in java code and copy

it into Android Studio and evaluate it directly as source code. Also, in this

Experiments

Attack successfull Not recognized as malware Error

Figure 5.5

91

case the static analysers failed to identify our invocation as dead code,

thanks to the effectiveness of our opaque predicates.

We have also tried to run Soot for dead code elimination. Indeed, Soot is

also a Java Optimizer and during the transformation to its IR it

automatically eliminates any dead code discovered. We have then

extracted the slice from the converted jar and created a new Java class

containing only the injected code slice, as showed in Figure 5.5. Then we

replaced the inner code with a simple System.out.println(“DEAD”) because the

goal is just to verify that the inner part of the loop survives the conversion.

In the Figure 5.6 it is shown the Jimple representation of this example class

and as we can notice the body of the inner loop is still present, confirming

the robustness of our strategy.

Figure 5.6

92

5.5 Future works

e are now working for attacking the SecSVM classifier

proposed in [1], which bases its robustness assumption on

the fact that distribute the weights of a classifier between a

larger feature set. Indeed, in this way the attacker should

modify a higher number of features in order to bypass the classifier, and

they suppose that if a large number of features has to be manipulated to

evade detection, it may not even be possible to construct the corresponding

malware sample without compromising its malicious functionality. We

want to demonstrate that the SecSVM assumption is wrong and that the

real perturbation threshold regards the application size, not the number of

feature modified.

Indeed, PRISM focuses only on the addition of extra features, exactly for

preserve the malicious behaviour of the initial malware. The whole

framework focuses on being able to extract and transplant autonomous

W

Figure 5.7

93

gadgets with all the needed dependencies without interfering with the

malicious functionality of the initial malware or between them. This way

the number of features to modify does not represent an constraint, except

they imply a huge size increase.

While this modification is going to happen soon, there are also long-term

future works. Indeed, while currently it is resistant only against static

analysers, we would like to extend the whole robustness also against

dynamic malware analysis providing stealth also during the app execution,

which represents a huge challenge.

Moreover, we would like to create a module for the automatic generation

of opaque predicates. For the current state of work, we are using a limited

set of opaque predicates, which potentially bring to the creation of artefacts

into the final malware. Indeed, if we are going to inject a huge number of

features, as we normally do, it is just a matter of probabilities that the same

opaque predicate appear multiple times. But we decided to have this limit

because at least it is robust to static dead code pruning.

At last, we would like to extend the attack also for removing features from

a target Android app, maintaining the correct malicious behaviour. This

issue is really complex because the semantic equivalence of the program is

not preserved by design. It is necessary to find a successful strategy for

achieve it.

5.6 Tools tried but not adopted

uring the development of PRISM we tried different solutions in

order to find the most suitable tool for instrumenting the target

application and extract the code slices.

The two other main projects that we have tried but that we could not adopt

for our purposes have been:

 SAAF

 WALA

SAAF (Static Android Analysis Framework) is a static analyser Proof of

Concept of the following paper [28] [29]. It supports Program Slicing on

D

94

smali code. It offers several quick-checks to check if some given app makes

uses of certain features (e.g., uses classloaders, calls a method of interest,

contains likely patched code, etc.). It has a GUI where the APK contents

can be viewed and bytecode can be searched. CFGs can be created for

(selected) methods. Analysis results can be persisted to a MySQL DB or

to XML files. The main feature is the ability to calculate program slices for

arbitrary method invocations and their corresponding parameters. SAAF

will then calculate a slice for this so called slicing criterion and search for

all constants which are part of that slice. In other words, SAAF will create

def-use chains with the def information being the result and the use

information being the slicing criterion.

For example, the slicing criterion could describe the method

android/telephony/SmsManager->sendTextMessage(...) and the first

parameter of that method (the telephone number). SAAF will then search

for all invocations of that method in the smali code and will search for all

constants which could be used as input for that parameter.

But unfortunately, it has a huge limit, because currently does not backtrack

into methods found this way while backtracking a register. This would be

fundamental to PRISM to correctly work, because if for example the

searched feature is a URL-like feature we need to being able to

backtracking until we find a suitable method invocation. For this reason, it

has been discarded.

Then we tried WALA [30], which is an awesome framework for static

analysis in general and it also support mobile application, as Android ones.

It is indeed a set of Java libraries for static and dynamic program analysis,

initially developed at IBM T.J. Watson Research Center.

It provides:

 Pointer analysis / call graph construction

 Interprocedural dataflow analysis framework

 Context-sensitive slicing framework, with customizable dependency

tracking

 Multiple language compatibility

95

 Generic analysis utilities and data structures

 Limited code transformation

Indeed, it was the last point that prevented to use this framework for

PRISM. Even if the static analysis part was excellent and it was possible to

retrieve the needed slice, we have not found any way to export it for inject

it in the target application. Moreover, it was declared into the WALA

Intermediate Representation, that was difficult to translate into smali or java

bytecode in order to export it and injecting it with Soot.

After these tries we have decided to adopt Soot for the whole

Instrumentation part of the malware, which allows a higher grade of

flexibility.

96

Bibliography:

[1] S. M. I. M. M. S. M. I. B. B. S. Ambra Demontis, “Yes, Machine Learning Can Be

More Secure! A Case Study on Android Malware Detection,” in IEEE Transactions on

Dependable and Secure Computing, 2017.

[2] K. P. N. M. P. B. M. A. M. P. GROSSE, “Adversarial perturbations against deep neural

networks,” in arXiv preprint arXiv:1606.04435 , 2016.

[3] S2LAB, “MainPage,” [Online]. Available: https://s2lab.kcl.ac.uk/.

[4] “WannaCry,” [Online]. Available: https://it.wikipedia.org/wiki/WannaCry.

[5] “2018 Malware Forecast,” 2017. [Online]. Available:

https://nakedsecurity.sophos.com/2017/11/07/2018-malware-forecast-the-onward-

march-of-android-malware/.

[6] S. D. university. [Online]. Available:

https://cseweb.ucsd.edu/classes/fa03/cse231/lec6seq.pdf.

[7] M. Weiser, “Program Slicing,” in IEEE Transactions on Software Engineering, 1984.

[8] B. K. a. J. Laski, “Dynamic program slicing,” in Information Processing Letters, 1998.

[9] T. R. a. D. B. S. Horwitz, “Interprocedural slicing using dependence graphs,” 1990.

[10] M. S. M. H. G. K. R. Daniel Arp, “DREBIN: Effective and Explainable Detection,” in

Proc. of the 21st NDSS, 2014.

[11] Soot, “Soot framework,” [Online]. Available: http://www.sable.mcgill. ca/soot/.

[12] I. E. E. F. B. L. A. R. C. X. A. P. T. K. D. S. Kevin Eykholt, “Robust Physical-World

Attacks on Deep Learning Models,” in CVPR 2018, 2017.

[13] A. growth, “newzoo.com,” [Online]. Available:

https://newzoo.com/insights/articles/insights-into-the-2-3-billion-android-

smartphones-in-use-around-the-world/.

97

[14] Sophos, “malware Forcasts 2018,” [Online]. Available: https://www.sophos.com/en-

us/medialibrary/PDFs/technical-papers/malware-forecast-2018.pdf.

[15] Wikipedia. [Online]. Available: https://en.wikipedia.org/wiki/Cyclomatic_complexity.

[16] FlowDroid, “FlowDroid GitHub,” [Online]. Available: https://github.com/secure-

software-engineering/FlowDroid.

[17] “Android C/C++ Activity,” [Online]. Available: https://expertise.jetruby.com/android-

ndk-using-c-c-native-libraries-to-write-android-apps-21550cdd86a.

[18] C. K. a. E. K. Andreas Moser, “Limits of Static Analysis for Malware Detection,” in

Twenty-Third Annual Computer Security Applications Conference , 2007.

[19] Wikipedia, “3SAT Boolean problem,” [Online]. Available:

https://en.wikipedia.org/wiki/Boolean_satisfiability_problem.

[20] Scikit-learn. [Online]. Available: https://scikit-learn.org/stable/index.html.

[21] F. P. R. J. J. K. L. C. Feargus Pendlebury, “TESSERACT: Eliminating Experimental

Bias in Malware Classification across Space and Time,” 2018.

[22] T. F. B. J. K. a. Y. L. T. K. Allix, “Androzoo: Collecting Millions of Android Apps for

the Research Community,” in ACM Mining Software Repositories, 2016.

[23] A. K. M. C. T. S. A. R. B. R. F. B. Miller, “Measurement for Malware Detection,” in

DIMVA, 2016.

[24] Soot, “ExceptionalBlockGraph API,” [Online]. Available:

https://www.sable.mcgill.ca/soot/doc/soot/toolkits/graph/ExceptionalBlockGraph.html.

[25] Android, “Permissions,” [Online]. Available:

https://developer.android.com/guide/topics/permissions/overview#permission-groups.

[26] Collectd, “MainPage,” [Online]. Available: https://collectd.org/.

[27] Dex2Jar, “Dex2Jar GitHub,” [Online]. Available: https://github.com/pxb1988/dex2jar.

[28] M. U. H. ,. M. S. Johannes Hoffmann, “Slicing Droids: Program Slicing for Smali

Code,” in Proceedings of the 28th Annual ACM Symposium on Applied Computing,

2013.

98

[29] SAAF. [Online]. Available: https://github.com/SAAF-Developers/saaf.

[30] WALA, “WALA GitHub,” [Online]. Available: https://github.com/wala/WALA.

[31] Smali/Baksmali. [Online]. Available: https://github.com/JesusFreke/smali/wiki.

[32] Apktool. [Online]. Available: https://ibotpeaches.github.io/Apktool/.

