
Alma Mater Studiorum · Università di Bologna

SCUOLA DI SCIENZE

Corso di Laurea in Informatica

Deep Learning Text Classi�cation

for Medical Diagnosis

Relatore:

Chiar.mo Prof.

Danilo Montesi

Correlatore:

PhD.

Stefano Giovanni Rizzo

Presentata da:

Alberto Drusiani

II Sessione

2017/2018

Al nonno Nino, compagno di giochi e maestro silente

Sommario

La codi�ca ICD è lo standard internazionale per la classi�cazione di malattie e disturbi
correlati, stilata dall'Organizzazione Mondiale della Sanità, e introdotta per sempli�care
lo scambio di dati medici, velocizzare le analisi statistiche e rendere e�cienti i rimborsi
assicurativi. La classi�cazione manuale dei codici ICD-9-CM richiede tuttora uno sforzo
umano che implica uno spreco di risorse non indi�erente e per questo nel corso degli anni
sono stati presentati diversi metodi per automatizzare il processo. In questa tesi viene
proposto un approccio per la classi�cazione automatica di diagnosi mediche in codici ICD-
9-CM utilizzando le Reti Neurali Ricorrenti, in particolare il modulo LSTM, e sfruttando
il word embedding. I risultati sono stati soddisfacenti in quanto siamo riusciti ad ottenere
un accuratezza migliore rispetto alle Support Vector Machines, il metodo tradizionale più
utilizzato. Oltretutto abbiamo mostrato l'e�cacia dei modelli di embedding di dominio
speci�co rispetto a quelli generali.

Abstract

The ICD coding is the international standard for the classi�cation of diseases and related
disorders, drawn up by the World Health Organization. It was introduced to simplify the
exchange of medical data, to speed up statistical analyzes and to make insurance reim-
bursements e�cient. The manual classi�cation of ICD-9-CM codes still requires a human
e�ort that implies a considerable waste of resources and for this reason several methods
have been presented over the years to automate the process. In this thesis an approach
is proposed for the automatic classi�cation of medical diagnoses in ICD-9-CM codes us-
ing the Recurrent Neural Networks, in particular the LSTM module, and exploiting the
word embedding. The results were satisfactory as we were able to obtain better accuracy
than Support Vector Machines, the most used traditional method. Furthermore, we have
shown the e�ectiveness of speci�c domain embedding models compared to general ones.

v

vi

Contents

1 Introduction 1

2 Related Works 3

2.1 ICD-9-CM Coding . 3

2.2 Machine learning ICD classi�cation . 4

3 Text Classi�cation 7

3.1 Text classi�cation in ICD-9-CM . 8

3.2 Representation of text . 9

3.2.1 Traditional representation . 9

3.2.2 Distributional representation . 11

3.3 Supervised classi�cation . 13

3.3.1 Binary classi�cation . 13

3.3.2 Cross validation . 17

3.3.3 Over�tting . 18

3.3.4 Multi-class and multi-label classi�cation 19

4 Neural networks 23

4.1 Architecture . 24

4.2 Layers . 28

4.2.1 LSTM . 28

5 Deep learning for ICD-9-CM classi�cation 31

5.1 Dataset and preprocessing . 31

vii

5.2 Feature extraction and label representation 32

5.3 Neural network model . 32

5.4 Optimization . 35

6 Results 37

6.1 Evaluation . 40

7 Conclusion 45

Bibliography 47

A Code 51

A.1 Loss . 51

A.2 Model . 52

viii

Chapter 1

Introduction

The International Classi�cation of Diseases (ICD) was created by WHO for the purpose

of assigning universally recognized and unique codes to diseases, symptoms and signs.

It is used for insurance reimbursements, sharing of statistical data and several versions

have been released over the years. The ninth version (ICD-9-CM) was presented in 1978

and consists of more than 16 thousand codes, while the tenth version (ICD-10-CM) in

more than 68 thousand. The classi�cation is made by quali�ed personnel starting from a

textual diagnosis written by a doctor, which may contain typing errors and abbreviations,

especially in departments where they are diagnosed in a short time, such as emergency

rooms. Considering the fact that a diagnosis can contain more than one pathology or

symptom, each of these can be labeled with an arbitrary number of codes, which makes

the classi�cation even more complex. Given the amount of existing codes, manual classi�-

cation work requires a lot of e�ort from quali�ed personnel, in terms of time and expense,

and using an automatic classi�cation system would make this process faster and cheaper,

limiting human e�ort and waste of resources. However, automatic classi�cation must be

able to handle factors that can be easily resolved by a human, such as typing errors and

word semantics.

There are several studies that investigate di�erent approaches to the problem of ICD

classi�cation, including the classi�cation of the text through machine learning. To take

advantage of machine learning in classi�cation problems, a supervised learning approach

is used, which consists in training an automatic classi�er starting from already labeled

1

examples, and therefore in our case, of medical diagnosis with the corresponding associ-

ated codes.

In this thesis an automatic ICD-9-CM classi�er was developed using the deep learning, the

state of the art of machine learning that exploits neural networks, and more particularly

the LSTM model, a type of recurrent neural network widely used for its e�ectiveness.

We were given a dataset of about 15,000 Italian diagnoses labeled by the Forlì emergency

room and used for the training of the classi�er. We have chosen to study and test the

ICD-9-CM classi�cation as it is o�cially used in Italy at the time of writing this paper.

During the classi�cation it is necessary to code the text in the most appropriate way and

for this purpose we have used word embedding, considered the state of the art in the

representation of the text. Word embedding consists in representing the text with dense

vectors of real numbers, through which it is possible to capture semantic relations between

words and allows a substantial reduction of the encoding dimensions compared to tradi-

tional methods. Word embedding models are trained on large general text corpora, such

as Wikipedia, or on speci�c domain corpora. We have tested the ICD-9-CM classi�cation

using general and speci�c word embedding models provided by a relative thesis, in order

to show a possible increase in performance due to the di�erent approaches.

2

Chapter 2

Related Works

The goal of automatically assigning an ICD code to a textual diagnosis is di�cult given

the size of all the possible codes.

The classic approach has taken SVM for a long time as a state of the art but in recent

years the e�ciency of neural networks has been con�rmed also in NLP problems.

The most recent approaches use the Convolutional Neural Networks (CNN) and the Long

Short Term Memory (LSTM) model, which proved to be particularly e�ective for this

type of classi�cation.

Unfortunately, the most recent studies use datasets labeled with ICD-10-CM codes, as this

is the most recent encoding. In this paper we will propose an approach that uses neural

networks to classify ICD-9-CM codes, as in Italy it is the o�cial codi�cation currently

used.

2.1 ICD-9-CM Coding

The International Classi�cation of Diseases, Ninth Revision, Clinical Modi�cation (ICD-

9-CM) is used in assigning codes to clinical diagnosis.

It has been drawn up by the World Health Association to facilitate international compa-

rability of diagnosis and speed up the reimbursement process of medical insurance.

It contains more than 16,000 di�erent codes and each code consists of a maximum of 5

characters and a minimum of 3, where the �rst character is alphanumeric and the remain-

3

ing ones are numeric.

The structure of a code is as follows:

Y XX.XX

The structure is hierarchical: the three-character codes are the root codes and conse-

quently two levels of nesting are possible that indicate an expansion of the parent code.

For example, the code 410 corresponds to the diagnosis acute myocardial infarction and

its child code 410.2 corresponds to acute myocardial infarction of the inferolateral wall,

which is precisely an expansion of the �rst.

2.2 Machine learning ICD classi�cation

Several studies have been made to try to solve the problem of automatic classi�cation of

ICD-9-CM diagnoses using machine learning techniques, each with di�erent methods and

characteristics.

Larkey et al. 1995 [1] implemented three multilabel classi�ers for medical discharge sum-

maries labeled with ICD9 codes, using KNN, relevance feedback and Bayesian indepen-

dence. They noted that a combination of di�erent classi�ers produced better results

than any single type of classi�er. Lita et al. 2008 [2] focused on correct classi�cation of

high-frequency diagnosis codes with a large dataset of about 90000 diagnosis and about

2700 distinct ICD9 codes associated, using Support Vector Machine (SVM) and Bayesian

Ridge Regression with promising results. Zhang et al. 2008 [3] presented a hierarchical

classi�er that exploited the taxonomy of the ICD-9-CM coding, using the Support Vector

Machine method. The corpus they used is the o�cial dataset of the 2007 Computational

Medicine Challenge. This challenge corpus consists of 1,954 radiology reports from the

Cincinnati Children's Hospital Medical Center, and contains only 45 distinct ICD-9-CM

codes. This hierarchical approach has also been studied and evaluated by Perotte et al.

2013 [4], using the MIMIC public dataset consisting of about 21,000 documents. They

con�rmed that the hierarchical SVM classi�er performed better than non-hierarchical,

with an F-score of 39.5% and 27.6%, respectively, with an improved recall at the expense

of precision. Several studies have shown that one of the main obstacles of the ICD classi-

4

�cation is the imbalance of the classes in the datasets, which can signi�cantly worsen the

performances of the classi�ers. For example, Kavuluru et al. 2015 [5] found that 874 of

1,231 ICD-9-CM codes in UKLarge dataset have less than 350 supporting data, whereas

only 92 codes have more than 1,430 supporting data. The former group has macro F1

value of 51.3%, but the latter group only has 16.1%. To resolve data imbalance prob-

lem, they used optimal training set (OTS) selection approach to sample negative instance

subset that provides best performance on validation set. However, OTS did not work on

UKLarge dataset because several codes have so few training examples that even carefully

selecting negative instances could not help. More modern approaches have been used

for the ICD-10-CM classi�cation, for example from Lin at al. 2017 [6]. They compared

the performance of traditional pipelines (NLP plus supervised machine learning models)

with that of word embedding combined with a Convolutional Neural Network (CNN).

They used these methods to identify the chapter-level ICD-10-CM diagnosis codes in a

set of discharge notes, using a dataset of about 104000 documents, and obtaining very

promising results. However, it must be considered that the classi�cation at chapter level

reduces the problem to 21 classes and signi�cantly increases performance. The case study

of Baumel et al. 2017 [7] is similar to that described in this paper. They compared 4

models for multi-label classi�cation, proposing a model that exploited a type of recurrent

neural network (GRU) similar to LSTM and using the MIMIC dataset described above.

5

6

Chapter 3

Text Classi�cation

Text classi�cation is a text mining related task. It consists in assigning one or more classes

to a text document, in order to classify it according to certain rules.

Formally we want to �nd a function that maps a set of properties of a document, let's

call them features (x), in a set of classes, let's call them labels (y).

Mathematically:

(x1, x2, x3, ..., xn)→ (y1, y2, y3, ..., ym)

For example, we might want to assign the corresponding ICD-9-CM code to the textual

diagnosis myocardial infarction, that would be 410. It is therefore necessary to extract

some features from the diagnosis text in order to use them for classi�cation.

There are two main approaches to extract information from text automatically:

• Linguistic: text is considered as a sequence of sentences and the grammatical

structure must be maintained and considered. To use this approach, it is necessary to

have complex structures such as trees, built by experts, that indicate the relationship

and hierarchy among all the words in the vocabulary of a language.

• Machine Learning: the set of words belonging to a document is used as a set of

features, without maintaining either the syntactic structure or the order. By using

this approach are therefore considered features, for example, the only frequency or

presence of a word in a document.

Machine learning approach uses large amounts of textual data (called corpus) and tries

7

to infer the right class for each document.

In general, machine learning techniques can be divided into two categories:

• Supervised: to reach the goal it is necessary to have a labeled dataset, where for

each input there is an associated label that indicates the correct output (ground

truth). This type of approach is used for automatic classi�cation and will be shown

in more detail in this chapter.

• Unsupervised: the input data does not have an associated output, so there is no

ground truth. Techniques belonging to this category can not be used directly for

classi�cation due to the lack of ground truth, which is necessary for classi�cation.

Unsupervised learning is used for problems such as clustering and anomaly detection.

In this chapter I will analyze the approach that uses the supervised machine learning

technique, focusing also on the representation of text and in particular on the meaning of

word embedding.

The following section brie�y shows why the automatic ID9-CM classi�cation is considered

a complicated type of classi�cation.

3.1 Text classi�cation in ICD-9-CM

As mentioned in the second chapter, ICD-9-CM classi�cation contains more than 16000

codes, and this fact makes the ICD-9-CM classi�cation a multi-class problem. Further-

more, if we consider that hospital diagnoses can contain multiple pathologies and symp-

toms, the classi�cation also becomes multi-label. Given the multilabel nature and the

large amount of classes, the ICD-9-CM automatic classi�cation is considered a complex

problem in terms of accuracy.

For example, the diagnosis "obstructive sleep apnea syndrome" may have associated the

following codes1:

• 327.23: obstructive sleep apnea (adult) (pediatric).

• 470: deviated nasal septum.

1The diagnosis and associated codes were provided by the Forlì hospital.

8

• 478.0: hypertrophy of nasal turbinates.

• 474.00: chronic tonsillitis.

• 528.9: other and unspeci�ed diseases of the oral soft tissues.

• 529.8: other speci�ed conditions of the tongue

In this case the �rst code is the one that best describes the textual diagnosis, but all the

others may be symptoms that the doctor has associated with the main diagnosis.

It is evident that automating classi�cation starting from textual diagnoses only as a

ground truth is complex and requires a large amount of data.

3.2 Representation of text

Machine learning algorithms are not able to use text as it is and for this reason it is

necessary to represent it numerically. The most natural way to manage text collections

are the vectors and, as shown below, the most used encodings exploit this data structure.

There are several ways to encode text so that it can be manipulated by a computer and

in this section the two most relevant to understand this elaborate will be shown.

3.2.1 Traditional representation

The bag-of-words model consists in counting the occurrences of the words contained in

a document in order to create a dictionary that indicates the frequency of each word.

In this way any information about the structure of the document is lost and only the

multiplicity of each word is maintained, which is used as a training feature for a machine

learning model. In spite of this de-structuring, the bag-of-words model has been found to

be su�cient in some contexts, but takes too much account of the most frequent words.

For example the following sentence:

the dog jumps on the cat that is on the table

would be encoded as shown in Figure 3.1.

9

Figure 3.1: Bag-of-words encoding.

It is evident that the less relevant words (such as articles and propositions) are the ones

with the greatest occurrences while making little information useful for understanding the

sentence.

To avoid this problem it is possible to use the tf-idf approach, abbreviation for "term

frequency-inverse document frequency". This method makes it possible to calculate the

relevance of each word to a set of documents and is often used as a weighting factor by

classi�cation algorithms.

A further defect of this type of encoding is the dimension of the vectors: each document

is encoded with a dimension vector dependent on the total number of words present in

the corpus, which generates a sparse matrix of enormous size and not very e�cient to

manipulate. For this reasons these methods are considered sparse representations, where

sparse means that the most frequent value in the data structure is zero. Let's see a slightly

more complex example.

Consider having a corpus containing the following documents (sentences, in this case):

• Document 1: Bob is a friend of Alice

• Document 2: Alice is the sister of Carla

• Document 3: Carla is eight years old

The bag of words representation would be like the one shown in Figure 3.2.

It is evident that the concept of sparse is emphasized exponentially with large datasets.

10

Figure 3.2: Bag-of-words representation of three documents: the �rst row contains the set of
words in the documents, the following are associated with the corresponding document.

.

3.2.2 Distributional representation

While the bag-of-words model is one of the simplest, word embedding is considered the

state of the art in terms of text representation.

Word embedding, known also as distributional representation of words, allows to cap-

ture the semantics of words starting from a corpus of textual data, and to construct a

multi-dimensional vector of real numbers for each word. The vectors are constructed in

such a way that every semantically similar word has a similar vector. Conceptually it

involves a mathematical embedding from a space with one dimension per word to a con-

tinuous vector space with a much lower dimension. Every single word is encoded in a

vector with a �xed size and it can be assumed that every dimension is associated with

some semantic concept, as shown in Figure 3.3. Word embedding is based on the simple

idea that the semantics of a word depend on the context, i.e. the words that precede it

and that follow it [9]. The context is therefore a window of neighboring words and this

window has a size that is a con�gurable parameter of the model. Modern approaches

use neural networks to create the embedding layer: this layer is obtained by giving the

starting text (corpus) encoded with a sparse representation as input to a neural network

that encodes them to a dense representation. Details about the general functioning of

neural networks will be discussed in the next chapter. It is worth to underlining that the

term word embedding does not refer to a precise implementation but to the whole set of

11

Figure 3.3: Relationships between words are captured with similar distances between the
arguments of the relationship [8].

techniques used to reach the goal. One of the most famous technique today is Word2Vec

and it was developed by Tomas Mikolov, et al. at Google in 2013 [10].

Word embedding can therefore be used as a representation of the input to a textual clas-

si�er.

There are two main ways to take advantage of word embedding:

• Pre-trained models: as the title suggests, it consists in using models that are

already trained, usually on large public dataset like Wikipedia or Google News.

These models are available on the web and do not require a word embedding training.

• Train new model: it consists in training a new model using a custom text corpus

as input. This method can be used to create speci�c domain embedding models.

In this paper both pre-trained models available on the web and speci�c domain models

developed in a related thesis will be used.

12

3.3 Supervised classi�cation

Supervised training, as mentioned above, requires a labeled dataset from which to deter-

mine a function that classi�es a document based on certain features. Dataset is usually

divided into training set and test set: the �rst is used to infer the function and the second

to determine the accuracy.

Classi�cation can be de�ned as the general task of predicting a categorical variable's

value to assign to a set of features given as input.

This task can be divided into two other sub-categories:

• Binary classi�cation: there are two possible classes in output.

• Multi-class classi�cation: the possible classes in output are minimum three.

• Multi-label classi�cation: a generalization of the multi-class where the output

can be composed of more than one class at the same time.

In the following subsections these types of classi�cation will be shown in more detail.

3.3.1 Binary classi�cation

The classic example of binary classi�cation concerns the automatic distinction between

spam and non-spam emails. For simplicity it is possible to consider spam as a 0 label

and no spam as 1. It is therefore necessary to �nd a function (i.e. learning a model) that

maps, for example, the body text of a mail in 0 or 1.

Formally a function f from n real values xi to one categorical value y (0 or 1 in this case):

y = f(x1, ..., xn)

When f is a linear function on the input variables xi, it can be used the logistic regres-

sion classi�cation method, that will be shown in the next steps.

A linear function is a function in the form:

y = f(x1, ..., xn) = w1x1 + ...+ wnxn + b

13

where xi are the inputs, the coe�cients wi are weights and b is the bias.

Conceptually this function generalizes the function of the line f(x) = mx+q for n inputs.

It is evident that all xi are known a priori so the unknowns remain the weights and the

bias.

Using logistic regression method, the hypothesis function is given by the following

formula:

hlogistic(x1, ..., xn) = sig(f(x1, ..., xn))

where f is linear and sig(t) is a special case of the logistic function.

The sigmoid function has a domain of all real numbers with return value in the [0, 1]

interval, as shown in Figure 3.4. It is described as:

sig(t) =
1

1 + e−t

Figure 3.4: The sigmoid function behaves like a straight line for values close to 0 and converges
on 0 and 1 for large values (in absolute terms).

The hypothesis function estimates the probability of a certain class given certain in-

puts. Since the probability of an event is always between 0 and 1, it is reasonable to

14

consider these two numbers as the output classes, as mentioned above. Since the binary

classi�cation can have only two possible output classes, if the hypothesis function returns

a number greater than or equal to 0.5 then the output is rounded to 1, otherwise to 0. As

shown above, the guarantee that the output of hlogisitc is between 0 and 1 is given by the

application of the sigmoid to f . A schematic diagram for binary classi�cation is shown

in Figure 3.5

Figure 3.5: Binary classi�cation diagram: features are given as input to a probability estimator
that compute an output between 0 and 1.

Loss function

A loss functionmeasures how bad a classi�er is, comparing the real output value (ground

truth) and the predicted one. As mentioned before, the hlogistic can be considered as a

probability estimator for the output class.

Given a training input x there are two possible cases:

• True y = 0: the hlogistic should returns 0 and every value above it is considered an

error. For this reason hlogistic output can be used as the loss.

• True y = 1: the hlogistic should returns 1. In this case a reasonable loss can be

1− hlogisitic.

15

In both cases the loss value depends on the hypothesis function which in turn depends on

weights and bias. It has already been shown that the hlogistic(x1, ..., xn) = sig(w1x1+ ...+

wnxn+ b) and each wi measure how important the variable xi is in predicting the positive

class (for example "1"). This is given by the fact that if a weight is high, the associated

variable will strongly contribute to the sum, which is proportional to the probability score.

If otherwise a weight is close to 0, the associated variable will not be signi�cant to the sum.

Optimization

The minimization of the loss function requires the tuning of the weights and the bias. For

this purpose it is used an optimization algorithm and the most popular one in machine

learning is called gradient descent.

Gradient descent algorithm is described in the following way:

1. Compute the gradient of the loss function. The gradient is described as a general-

ization of derivative for multiple variables.

2. If the gradient is positive it means that the loss is increasing, otherwise it is decreas-

ing. Because the goal is to �nd the minimum, it is necessary to decrease the weight,

if the gradient is positive, and increase the weight, if the gradient is negative.

3. Update the hypothesis with the new weights.

4. Compute again the loss.

These steps are repeated until the loss is smaller than a given tolerance.

Fitting the model

Given this learning model, it is necessary to �t it with training inputs. As mentioned at

the beginning of this section, the starting dataset must be divided into a training set

and test set.

The former is used for training and consequently for the minimization of the loss function.

16

The latter is used for estimating accuracy, once the model has completed training.

Usually the two sub-sets are obtained following the Pareto's principle [11]:

• 80% training set.

• 20% testing set.

In fact, the Pareto's principle states that, for many events, roughly 80% of the e�ects

come from 20% of the causes, and therefore a test set of this size is su�cient for a good

approximation of accuracy.

3.3.2 Cross validation

K-fold cross validation technique consists in rotating over training and test split, so

that each sample is used both for training and testing. The goal of cross-validation is to

test the model's ability to predict new data that was not used in estimating it, in order

to �ag problems like over�tting or selection bias [12].

One rotation is called "fold" and the total number of folds is based on the fraction size

of the test set.

Figure 3.6: 5-fold cross validation: each fold is used both for training and for the test. In this
case 5 iterations are necessary.

17

By using the Pareto's principle the testing set would be of size 20%. Then the number

of folds would be 5 as shown in Figure 3.6.

The �nal accuracy by using the cross validation method is the mean of every fold's accu-

racy.

The procedure can be summarized in the following steps:

1. Shu�e the initial dataset randomly.

2. Split the dataset into k groups.

3. For each unique group:

(a) Take the group as test dataset.

(b) Take the remaining groups as a training dataset.

(c) Fit the model on the training set and evaluate it on the test set.

(d) Retain the evaluation score and discard the model.

4. Summarize the skill of the model by using the sample of model evaluation scores.

In summary, cross validation allows to obtain more precise estimates regarding the per-

formance of the model [13].

3.3.3 Over�tting

Over�tting is the phenomenon that exists when a model is very accurate in classifying

the data of the training set but not in the test set. For example, after the training of a

model it can happen that the value of the loss function is very close to zero for the training

data but considerably higher for test values. This means that the model is extremely good

on training data but it is not able to generalize on new data, as shown in Figure 3.7 [14].

18

Figure 3.7: The green line represents the over�tted model, while the black line represents the
normalized model [15].

Intuitively it means that the model has found a naive way to �t the training set data

instead of learning a pattern that can be used on any data.

The use of regularization techniques allows avoiding over�tting. These techniques

consists in a modi�cation of the loss function adding an additional value that increases

as the value of weights increase. In this way weights are prevented from being too large.

3.3.4 Multi-class and multi-label classi�cation

As I mentioned at the beginning of this section, multi-class classi�cation allows multi-

ple output classes, only one of which is output for each input data. An example of multi-

class classi�cation concerning �owers, extracted from the famous Fisher's Iris dataset

[16], is shown in Table 3.1.

Sepal length Sepal width Petal length Petal width Class

6,3 2,3 4,4 1,3 Versicolor

6,2 3,4 5,4 2,3 Virginica

5,2 3,4 1,4 0,2 Setosa

6,9 3,1 5,4 2,1 ?

Table 3.1: Fragment extracted by the multi-class Iris dataset.

19

In this case the inputs are the measurements of the petals and the sepals, the output

is the class (ground truth) and the unknown is the class of Iris in the last row.

As already shown, a binary classi�er can be considered as a probability estimator between

only two classes (0 and 1), but this concept can be generalized for an arbitrary number of

possible classes. There are two ways to adapt binary classi�ers to a K-classes classi�cation

problem [17]:

• One vs One (OVO): this strategy consists in training a single classi�er per class

where the samples of the corresponding class are considered as positive and all the

others as negatives. This approach needs to train K classi�ers.

• One vs Rest (OVR): each possible pair of classes is taken in consideration in order
to train a di�erent classi�er. This approach needs to train K*(K-1)/2 classi�ers.

Multi-class classi�cation can still have only one output for every set of features and this

does not solve classi�cation problems that intrinsically require more output, like ICD

classi�cation.

For this type of problems it is therefore necessary to use the multi-label classi�cation

that generalizes the multi-class classi�cation allowing more than one classes for each

instance.

Intuitively a multi-label classi�er maps inputs x inputs into binary vectors y, assigning

0 or 1 for each label if it is associated with that input or not. In Figure 3.8 it is shown

an example of multi-label classi�cation with �ve samples and four classes: when a class

is associated with a certain sample, the corresponding row-column intersection is marked

with 1, 0 otherwise. There are several ways to generalize multi-class classi�cation to

multi-label, below are shown the most used [18]:

• Binary Relevance: as many classi�ers are trained as the number of classes where

each single binary classi�er is associated with a class. Then, given an unseen sample,

the �nal classi�er will return as positive only the positive classes returned by the

corresponding binary classi�ers.

• Label Powerset: the multi-label problem is reduced to a multi-class using only

one multi-class classi�er that is trained on all the unique combinations present in

the training set.

20

Figure 3.8: Multi-label example diagram. Every di diagnosis is associated with with more than
one ICD-9-CM code at the same time.

• Classi�er Chain: the �rst classi�er is trained on the input data and then each

next classi�er is trained on the input space and all the previous classi�er in the

chain.

It is possible to implement a multi-label classi�er also by using a neural network with

an output neuron for each class, and this will be shown in this paper in the following

chapters.

21

22

Chapter 4

Neural networks

Arti�cial neural networks (ANN) are brain-inspired systems, that is, they try to replicate

the mechanisms of human reasoning [19]. The neural network itself isn't an algorithm,

but rather a framework for many di�erent machine learning algorithms to work together

and process complex data inputs. Neural networks are not speci�cally programmed about

the problem to be solved, but they tend to learn using a large number of labeled examples

(supervised learning).

They are widely used to date in the �elds of computer vision, sentiment analysis and

speech recognition. Intuitively, an ANN consists of two or more layers, each of which

consists of an arbitrary number of neurons. The neurons that make up a layer are

"combined" and connected with the neurons of the next layer through edges. The analogy

with the human brain is evident, where the neurons are connected by the synapses. The

more examples and new inputs the program sees, the more accurate the results become

because the program learns with experience; this is especially true when the program

receives feedback on whether its predictions or outputs are correct.

This concept can best be understood with an example. Imagine the "simple" problem of

trying to determine whether or not an image contains a cat. While this is rather easy for

a human to �gure out, it is much more di�cult to train a computer to identify a cat in

an image using classical methods. Considering the diverse possibilities of how a cat may

look in a picture, writing code to account for every scenario is almost impossible. But

using machine learning, and more speci�cally neural networks, the program can exploit

23

a generalized approach to understanding the content in an image. Using several layers of

functions to decompose the image into data points and information that a computer can

use, the neural network can start to identify trends that exist across the many examples

that it processes and classify images by their similarities [20].

4.1 Architecture

An arti�cial neuron is a mathematical function that maps n inputs x1, ..., xn in an output

y. Each inputs xi is multiplied by a weight wi and then all weighted inputs are summed

together. This computation, as mentioned in the previous chapter, can be written as:

w1x1 + ...+ wnxn + b

or compacted in:

l = b+
n∑

i=0

wixi

where l is the logit. Then it is applied an activation function that takes the logit as

input and returns an output:

y = f(l)

This computation can be visualized in Figure 4.1.

Figure 4.1: Neuron takes n weighted inputs and returns an output.

Di�erent activation functions are used, including the sigmoid that I showed above.

24

Therefore, using the sigmoid it is clear that the output of each neuron must be a real

number between 0 and 1.

The neurons are connected in such a way as to form a network. Arti�cial neural networks

are composed of layers, each of which is formed by an arbitrary number of neurons. It

is possible to line up many layers and connect them so that every neuron in a layer is

connected to all the neurons in the next layer through edges. Each edge has an associated

weight which, as shown above, contributes to the function calculated by each neuron. The

�rst layer is the input layer, the last is the output layer and each layer between is a

hidden layer.

Neural networks can be used to solve classi�cation problems.

As already mentioned, to do supervised learning it is necessary a labeled dataset, where

features are inputs and labels are outputs. Intuitively, the features are given as input

to the �rst layer of the neural network and the output is expected in the last layer. In

classi�cation problems, the number of possible outputs is the number of classes, so it is

reasonable to think of having in the output layer a number of neurons corresponding to

the number of classes of the problem. Using the same reasoning, the input layer must be

made up of a number of neurons equal to the number of features contained in the dataset.

Imagine you have to classify mail as spam or not spam: in this case a binary classi�er

is needed and then it could consist in a neural network whose output layer contains two

neurons, one associated with class "not spam" and one associated with class "spam".

The input layer could reasonably have as many neurons as the words contained in the

mail set. The hidden layer(s) may instead contain an arbitrary number of neurons. A

diagram of this con�guration is shown in Figure 4.2. As mentioned above, if it is used the

sigmoid as an activation function, then every neuron outputs a number between 0 and

1;it is therefore considered a "turned on" neuron if its output is close to 1 and "o�" if it

is close to 0. This means that in the output layer the class predicted by the network will

be the one associated with the highest value neuron. Taking the example of the binary

mail classi�er, an email will be considered spam if the output neuron associated with the

"spam" class is the one with the highest value.

The main computation is made by hidden layers.

Taking, for example, face images as input, it can be assumed that each hidden layer de-

25

Figure 4.2: The input layer contains as many neurons as the words contained in the mail set.
The hidden layer with four neurons is marked in red.

composes the image into a pattern that is gradually more complex. For example, the �rst

hidden layer could detect edges, the second could detect face parts (mouth, eyes, nose)

and so no. This is not necessarily true but makes the behavior of the neural network

comprehensible.

As shown above, once given an input, the variables of a neural network are the weights

associated with the edges; this means that it is necessary to �nd the value of the weights

in order to have a good classi�cation. So, �rst of all, the weights are randomized due to

the lack of information necessary to set them correctly. Then the �rst input is inserted

into the �rst layer of the neural network. For simplicity it is considered the input codi�ed

as bag-of-words. The values of the neurons are calculated from the function seen above,

where the inputs are the results of all the neurons of the previous layer, up to the �nal

layer. At this point the neurons of the output layer will contain values in the interval [0, 1]

and the class predicted by the network for that input will be the one associated with the

neuron with the highest value.

Once the output is obtained, it is necessary to compare it with the real value obtained

from the starting dataset: the two values (the predicted and the real) are given as input

26

Figure 4.3: Diagram of neural network training [21]. Every complete loop is considered ad an
iteration.

to a loss function which, as seen in the previous chapter, calculates the error committed

by the classi�er. Now we can use an optimization algorithm (like gradient descent) that

calculates the derivative of the last layer and decides whether weights should be increased

or decreased.

In order to update all the weights of the network it is used a procedure called backprop-

gation: we start to compute the derivative for the last layer, and then move backwards,

back-propagating the error to the previous layer. This is the core of the e�ciency of

neural networks as it allows the updating of the weights in feasible time even for neural

networks with hundreds of thousands of edges.

Passing an input forward and then updating the back weights consists of an iteration.

After the �rst iteration the procedure is repeated for each data in the training set. Once

each input of the training set has been passed into the neural network, an epoch is con-

cluded.

The training of a neural network usually consists of several epochs in order to update the

weights several times and improve the accuracy of the classi�cation.

27

4.2 Layers

Arti�cial neural networks can be implemented in di�erent ways, changing the number of

layers (depth), the number of neurons for each layer (width) and the type of each layer.

Depending on the nature of the classi�cation, there are layers that are more e�cient than

others in certain problems.

In this section I will illustrate the three types of layers that were used to create the classi�er

shown in the next chapter. In the list below I will brie�y describe the simplest layers and

then focus in the next sub-section on the most interesting and complex recursive layer.

• Dense Layer: the standard layer where each neuron is connected with each neuron

of the previous layer. For this reason it is also called fully connected layer, as shown

in Figure 4.2. In this type of layer all neurons contribute in the output function in

the way mentioned at the beginning of this chapter.

• Embedding Layer: as shown in the chapter on text classi�cation, there are several
ways to encode input data, some of which are more e�ective than others. As already

mentioned, word embedding is able to capture semantic information and can be

combined with a neural network using an embedding layer. This type of layer is

used as an input layer in combination with the embedding matrix obtained from

the word embedding model and the training dataset. Intuitively this layer will

contain a number of neurons equal to the words of the dataset contained in the

trained word embedding model. Implementation details will be shown in the next

chapter.

4.2.1 LSTM

Long Short Term Memory networks are a special kind of RNN (Recurrent Neural

Network).

Intuitively, a RNN is a neural network capable of "remember" information. Imagine you

have to write a diagnosis: your brain would allow you to write a meaningful sentence,

so that each word in some way depends on the context given by the previous ones. In

fact, the human brain is able to reason using the memory of past events, so that we can

28

understand and interact with what surrounds us. Unfortunately, the "classical" neural

networks, as shown in this chapter, do not have any mechanism to store information that

can be used in the future because they are based only on the current input.

Recurrent neural networks address this issue. They are networks with loops in them,

allowing information to persist, a shown in Figure 4.4.

Figure 4.4: A piece of a RNN. The loop allows information to be passed from one step to
another.

Therefore, a recurrent neural network can be thought of as multiple copies of the same

network, each passing a message to a successor.

In this way, during the training, a RNN will be able to use information collected during

the training of the previous diagnoses. It is therefore crucial to understand how far the

classical RNNs can memorize. Theoretically, they should be able to manage "long-term

dependencies". Unfortunately, it has been observed that classical RNNs are not able to

use information stored long before and for this reason they can not capture links between

distant elements [22].

LSTMs avoid this problem because it is capable of learning long-term dependencies.

A LSTM neural network is a RNN: in fact it inherits the loop concept from recursive

networks.

The di�erence lies in the architecture of each internal module that in the Figure 4.4 is

called N.

It consists in four layers:

• Cell: remembers values over arbitrary time intervals.

29

• Forget gate: "decides" which information (belonging to previous inputs) must be

thrown away or kept from the cell.

• Input gate: "decides" which new information is going to be stored in the cell state.

• Output gate: "decides" which part of the cell state should be output.

These units are interconnected as shown in Figure 4.5.

Figure 4.5: LSTM network with view of an internal module [23]. Every σ is a sigmoid gate
and tanh is the abbreviation for hyperbolic tangent.

Let's call the inputs xt and the outputs ht. This model passes through the following

steps:

1. xt and ht−1 are combined and pass through the forget layer (sigmoid). In this way

it forgets unnecessary information for each number in the previous cell state.

2. xt and ht−1 are combined and pass �rst through the input gate (sigmoid) that

computes which values to update. Then they pass trough a tanh, that create new

candidate values for the cell state.

3. The results in the previous step are combined on order to update the cell state with

new useful information.

4. The cell state pass through the output layer (sigmoid), then trough a tanh and these

results are combined in order to output a �ltered version of the cell state values.

30

Chapter 5

Deep learning for ICD-9-CM

classi�cation

This chapter shows an approach to the ICD-9-CM classi�cation that exploits neural net-

works and word embedding, applied to textual diagnoses written in Italian.

5.1 Dataset and preprocessing

The dataset we used is composed of medical diagnoses extracted from hospital discharge

cards provided by the emergency room from G.B.Morgagni-L.Pierantoni hospital, Forlì.

The diagnoses are written in Italian and labeled by quali�ed personnel with the corre-

sponding ICD-9-CM codes. To perform the preprocessing I used scikit-learn [24], an open

source python library suitable for these purposes. The text has been preprocessed in order

to minimize any noise and keep only the signi�cant parts, following the steps below:

• Removal of any empty diagnoses.

• Removal of punctuation and numbers and transformation of all characters into lower

cases.

• Tokenization.

• Removal of Italian stop words.

31

• Removal of insigni�cant characters (+,-,=,!..).

• Replacement of abbreviations with the corresponding whole word (i.e. "rx" replaced

with "right").

• Each diagnosis sequence has been truncated to a maximum of 30 words or, if con-

tained less, by 0-padding up to 30.

5.2 Feature extraction and label representation

To represent the labels associated with each diagnosis, we have created a sparse binary

matrix of dimension [diagnosis, classes], where each element is 1 if the diagnosis corre-

sponding to the row has associated the label corresponding to the column, 0 otherwise.

Once we obtained the list of diagnoses in the form of tokens and the label matrix, we

divided them randomly into training set and test set, respectively 80% and 20% of the

original dataset. Unfortunately, the existence of classes present only once in the whole

dataset did not allow us to use the cross validation technique. For implementation reasons

it is in fact necessary for a class to appear at least twice.

We subsequently created an embedding matrix using a word2vec model trained in a

related thesis. I have been provided with di�erent word2vec models, each trained on a

di�erent corpus. In this way we were able to evaluate any performance boost due to the

speci�c word embedding domain for this particular problem.

Test results with the di�erent word embedding models will be shown in the next chapter.

Each element of the embedding matrix contains the dense vector representation of a word

present in the diagnostic dataset, provided by the word embedding model.

5.3 Neural network model

For the classi�cation task we have exploited a neural network, implemented using keras

[25], an open source python library. Keras makes it easy to create a deep learning model

by choosing the hyper-parameters, the input and output dimensions of the layers and

the type of layer, using a few methods. The �nal con�guration of the neural network

32

was chosen after numerous trials with di�erent combinations and di�erent types of layers,

including Convolutional Neural Networks (CNN). It has been noted in other studies that

the latter, although created for the recognition of images, are quite e�cient even in the

context of medical text classi�cation [6], but in our case they have not proved satisfactory.

We have also tried to exploit LSTM and CNN together, without achieving good results.

The best con�guration among those tested is composed of the following three layers, as

shown in Figure 5.1:

1. Embedding layer: this layer acts as an input layer and does nothing more than

point to the embedding matrix created earlier to obtain the vector representations

of each word contained in the input diagnosis.

The vector values contained in the table are potentially trainable, but we decided

not to train them because we used a model of word embedding speci�cally trained

for this domain. As mentioned above, we have chosen 30 as the input dimension.

The output size of this layer depends on the size of embedding, in our case 200 or

300 depending on the model.

2. LSTM layer: the LSTM layer is the core of the neural network. After several tests

with di�erent dimensions (20, 50, 100, 200, 300, 500), the best output size was found

to be 300. We added a dropout coe�cient of 0.5 as the network tended to over�t

very quickly. In this way, half of the output neurons of this layer are "switched o�"

at each iteration, in order to avoid over�tting phenomena. The dropout coe�cient

has been tested for various values, starting from 0.1 up to 0.8.

The activation function used is the hyperbolic tangent, as shown in the previous

chapter in the LSTM section.

3. Dense layer: the output layer is fully connected and has a size equal to the number

of classes in the dataset. We have chosen the sigmoid as an activation function, as

it allows a multi-label classi�cation where the choice of each class is independent

from the others. In fact, the codes associated with a diagnosis are considered all

with the same weight and without an order of relevance.

33

Figure 5.1: A simple example of LSTM architecture combined with word embedding and
multi-label output. It must be speci�ed that there is a sigmoid gate for each output class.

34

5.4 Optimization

The search for the best loss function was one of the most di�cult obstacles. Initially we

did not take into account the imbalance of the dataset and consequently the classi�er

learned to always predict the most frequent class in order to minimize the error. Later we

tested di�erent loss functions that considered the imbalance of the dataset and we used

the one that allowed better accuracy.

The loss function we used is taken from tensor�ow [26], a python library for machine

learning used for research and production at Google. This speci�c function allows to

manage the imbalance of the classes by modifying the weights of each prediction based

on the frequency in the dataset of the aforementioned class. This function computes

the sigmoid cross entropy and, by tuning a parameter, allows one to trade o� recall and

precision by up- or down-weighting the cost of a positive error relative to a negative error.

For brevity, let x = predicted label, z = true label, q = weight parameter.

Formally the loss is:

qz(−log(sigmoid(x)) + (1− z))(−log(1− sigmoid(x)))

= qz(−log
(

1

1 + e−x

)
) + (1− z)(−log

(
e−x

1 + e−x

)
)

= qz(log(1 + e−x)) + (1− z)(−log(e−x) + log(1 + e−x))

= qz(log(1 + e−x)) + (1− z)(x+ log(1 + e−x)

= (1− z)x+ (qz + 1− z)(log(1 + e−x))

= (1− z)x+ (1 + (q − 1)z)(log(1 + e−x))

The trend of the loss value of the network using one of the embedding models is shown in

Figure 5.2. The tuning of the hyper-parameters was done quite exhaustively, testing sev-

eral tens of combinations to achieve better accuracy than the baseline with SVM. Several

optimization algorithms have been tested and we have chosen to use Adam [27], with a

learning rate of 0.0001. Learning rate is a hyper-parameter that controls how much we

are adjusting the weights of our network with respect the loss gradient. The default Adam

35

Figure 5.2: The chart shows the progress of the training and test loss using LSTM and JoinData.

model provided by Keras uses a learning rate of 0.001 that was too fast for our purposes,

reaching very quickly the nearest local minima and consequently oscillating considerably.

We chose 300 training periods after testing di�erent sizes (10, 50, 100, 200, 300, 500, 1000)

and noting that with less epochs we did not reach convergence and with more epochs we

risked over�tting.

We chose a batches size of 32, because by increasing it, the accuracy was reduced, and

decreasing it resulted only in an increase in training time. We set the network in such a

way that it stopped the training in case the loss did not decrease from one epoch to the

other, still allowing a patience of 200 epochs in order to overcome any stalls. No increase

in performance was noted by adding depth to the network, for example with multiple

LSTM layers. The values returned in output from the network (therefore between 0 and

1) have been approximate to the nearest integer: in this way the values lower than 0.5

are interpreted as 0 and the greater ones as 1. We noticed that, by adding a considerable

patience, the loss value increased slightly, still obtaining a better F1 score.

36

Chapter 6

Results

In this chapter the results obtained with the classi�er illustrated in the previous chapter

are shown as opposed to a traditional machine learning method. As already mentioned,

we used word embedding for text classi�cation, testing di�erent models provided by a

relative thesis.

Dataset details

As mentioned in the previous chapter, we used a dataset composed of 14305 diagnosis.

Despite preprocessing, many typos remain that can not be deleted or corrected. After

preprocessing, there are 11,076 di�erent words left and each diagnosis contains from 1 to

172 words, with an average of 13.7 words each. Each diagnosis has 1 to 15 associated

ICD-9-CM codes, with an average of 3.4 codes and a total of 3248 di�erent classes. The

distribution of the classes is extremely unbalanced, as certain codes appear much more

frequently than others. This fact is reasonable as there are more frequent conditions

than others in real cases, as shown in Figure 6.1. The most frequent code is 401.1 which

corresponds to benign essential hypertension and consists of 3.6% of all the total labels

in the dataset. On the other hand, there are 1067 codes that appear once on all labels

and each accounts for 0.002%, for example the code associated with atresia and stenosis

of large intestine, rectum, and anal canal. The Figure 6.2 shows the 10 most frequent

classes.

37

Figure 6.1: The curve shows the percentage of coverage of the total labels with respect to the
number of classes in increasing order of occurrences.

Figure 6.2: The diagram shows the 10 most frequent classes in our dataset. These classes make
up 17% of the total labels in the dataset.

38

Baseline

As a baseline we used a classi�er that uses Support Vector Machine (SVM) combined

with word embedding, trained and tested on the same datasets used for the neural network.

Given a set of training examples, each marked as belonging to one or the other of two

categories, an SVM training algorithm builds a model that assigns new examples to one

category or the other, making it a non-probabilistic binary linear classi�er. Given the

multi-label nature of the ICD-9-CM classi�cation, we used the One vs Rest approach,

thus building 3284 binary SVM classi�ers.

Word embedding models

As already mentioned, several models of word embedding have been provided, trained on

di�erent domains:

• General purpose

� General Wikipedia: all pages of Italian Wikipedia.

� TED: a corpus created starting from the translations of conferences held world-

wide.

• Domain speci�c

� ICD-9-CM manual: the descriptions of the diagnoses contained in the o�cial

manual.

� SDO: a set of about 700.000 emergency room discharge records provided by

Forlì Emergency Room Hospital.

� Medical Wikipedia: all the Wikipedia pages in Italian concerning medical

topics.

� JoinData: all domain speci�c corpus mentioned above trained together.

In this way it was possible to evaluate a possible increase in the performance of the clas-

si�er due to the di�erent domains and embedding models, as shown in the next sections.

All embedding models and datasets are publicly available 1.

1https://drive.google.com/drive/folders/1_7xUVJQbHyDR5cP4dz1uQG9LGDunLYds

39

Evaluation metrics

To evaluate the accuracy of the classi�er we used the F1-score, which is de�ned as follows:

2 · precision · recall
precision+ recall

where precision is the fraction of relevant instances among the retrieved instances, while

recall is the fraction of relevant instances that have been retrieved over the total amount

of relevant instances. We measured three types of F1-score:

• F1-micro: calculate metrics globally by counting the total true positives, false

negatives and false positives.

• F1-macro: calculate metrics for each label, and �nd their unweighted mean. This

does not take label imbalance into account.

• F1-weighted: calculate metrics for each label, and �nd their average weighted by

support (the number of true instances for each label).

6.1 Evaluation

We performed the tests on the baseline always using the same architecture and changing

the embedding models, so as to understand which model would increase the performances

more. Due to time constraints, we only tested three embedding templates with the SVM

baseline.

The scores of SVM for the tested embedding models ar shown in Table 6.1.

Model F1-micro F1-macro F1-weighted

SDO 0.37936 0.08545 0.36578

Medical Wikipedia 0.23026 0.06832 0.27729

JoinData 0.38625 0.08495 0.36919

Table 6.1: Scores with SVM using di�erent embedding models.

40

Model F1-micro F1-macro F1-weighted

General Wikipedia 0.36012 0.06345 0.31400
TED corpus 0.31676 0.05080 0.27442

ICD-9-CM manual 0.26799 0.03937 0.21829
SDO 0.42574 0.08832 0.38910

Medical Wikipedia 0.38766 0.07462 0.34543
JoinData 0.42796 0.08665 0.39355

Table 6.2: Scores with LSTM using di�erent embedding models.

The highest score was obtained using the JoinData embedding model, which, as men-

tioned above, was trained by joining all the medical domain corpora. Even training using

the SDO dataset has achieved high scores, probably due to the fact that it also includes

the diagnoses used for training the classi�er, allowing the word embedding to capture

semantic information even from typos.

The score of the F1-macro is considerably low compared to the other two, re�ecting the

fact that it does not take into account the imbalance of the dataset and con�rms that the

management of the imbalance is necessary to achieve an acceptable performance.

We used the same method for the neural network too, testing all the embedding models

and maintaining the same hyper parameters. The scores of the LSTM neural network for

each embedding model are shown in Table 6.2. Also our model con�rms the e�ectiveness

of word embedding with speci�c domain, reaching the best score with word embedding

trained on JoinData. The LSTM model is more accurate than the baseline, with an in-

crease in performance of 10.7% for F1-micro, 2% for F1-macro and 6.6% for F1-weighted.

The di�erences between the SVM model and the LSTM neural network are shown in

Figure 6.3, Figure 6.4 and Figure 6.5, one for each evaluation metric. As already shown

in the table, we have tested the LSTM network with all the embedding models at our

disposal, concluding that the best performances are achieved using the medical domain

models. Results are summarized in Figure 6.6

41

Figure 6.3: F1-micro di�erences between the two classi�ers, grouped by word embedding model.

Figure 6.4: F1-macro di�erences between the two classi�ers, grouped by word embedding
model.

42

Figure 6.5: F1-weighted di�erences between the two classi�ers, grouped by word embedding
model.

Figure 6.6: LSTM for F1-micro tested on each embedding model.

43

It is noted, however, that the model trained in the ICD-9-CM manual does not achieve

satisfactory results, given that it contains very technical and medium-short textual de-

scriptions. It should also be considered that the medical Wikipedia model achieved an

accuracy improvement of 7.6% compared to general Wikipedia model, con�rming that,

although the former is a subset of the latter, the speci�city of the domain in�uences the

�nal performance.

We also observed an advantage in terms of prediction time of the neural network with

respect to SVM, a fundamental parameter in case we want to use the classi�er for real-

time services. For example, the prediction on the same computer of the test set output,

represented by a vector of 2861 elements, took about 1.5 seconds for the LSTM classi�er

and 392 seconds for SVM, showing a SVM execution time 261% higher than the neural

network.

44

Chapter 7

Conclusion

The ICD classi�cation based on textual data requires a great human e�ort and a waste of

resources, and studies have been carried out for years on the automation of the classi�ca-

tion. In this thesis, a classi�cation model based on LSTM neural networks was presented

and trained on a small diagnosis dataset labeled with one or more codes, provided by

the Forlì emergency room. Our main goal was to overcome the accuracy of a traditional

classi�er using a deep learning approach combined with word embedding. Our LSTM

classi�er achieved a 10.7% improvement in F1 compared to SVM, despite the small size of

the dataset and the excellent e�ciency of the Support Vector Machine. We also compared

di�erent models of word embedding provided by a related work, trained both on corpora

of general domain and medical domain, showing how the latter contribute signi�cantly to

an increase in performance. We observed that the embedding model trained on medical

Wikipedia obtained better performances than the one trained on full Wikipedia, showing

that the size of the embedding corpus is not necessarily the best choice in cases of clas-

si�cation with speci�c domains. We have noticed that even by changing the embedding

models, the best accuracy was always achieved by the neural network. Moreover, we

also noticed a drastic reduction in the prediction time of our model with respect to the

baseline, achieving an improvement of 261%, given that, to make the classi�cation with

SVM multi-label, we need as many classi�ers as the classes in the dataset, inexorably

slowing down the process. Another advantage of our model is the possibility of being able

to learn incrementally without having to re-train on the whole dataset, as opposed to a

45

model based on SVM. In this way it is possible to continue to give new inputs to the

neural network maintaining the calculated weights up to that moment.

Despite these promising results, the accuracy value does not allow to use this model as

a hard classi�er, but rather as a means of classi�cation aid, for example by building an

ordered list of probable codes to choose from. This soft classi�cation model will be tested

in some Italian hospitals, using the codes chosen as new inputs for the neural network,

allowing a continuous training and a probable consequent increase in performance.

46

Bibliography

[1] Leah S Larkey and W Bruce Croft. Automatic assignment of icd9 codes to dis-

charge summaries. Technical report, Technical report, University of Massachusetts

at Amherst, Amherst, MA, 1995.

[2] Lucian Vlad Lita, Shipeng Yu, Stefan Niculescu, and Jinbo Bi. Large scale diag-

nostic code classi�cation for medical patient records. In Proceedings of the Third

International Joint Conference on Natural Language Processing: Volume-II, 2008.

[3] Yitao Zhang. A hierarchical approach to encoding medical concepts for clinical notes.

In Proceedings of the 46th Annual Meeting of the Association for Computational

Linguistics on Human Language Technologies: Student Research Workshop, pages

67�72. Association for Computational Linguistics, 2008.

[4] Adler Perotte, Rimma Pivovarov, Karthik Natarajan, Nicole Weiskopf, Frank Wood,

and Noémie Elhadad. Diagnosis code assignment: models and evaluation metrics.

Journal of the American Medical Informatics Association, 21(2):231�237, 2013.

[5] Ramakanth Kavuluru, Anthony Rios, and Yuan Lu. An empirical evaluation of

supervised learning approaches in assigning diagnosis codes to electronic medical

records. Arti�cial intelligence in medicine, 65(2):155�166, 2015.

[6] Chin Lin, Chia-Jung Hsu, Yu-Sheng Lou, Shih-Jen Yeh, Chia-Cheng Lee, Sui-Lung

Su, and Hsiang-Cheng Chen. Arti�cial intelligence learning semantics via external re-

sources for classifying diagnosis codes in discharge notes. Journal of medical Internet

research, 19(11), 2017.

47

[7] Tal Baumel, Jumana Nassour-Kassis, Raphael Cohen, Michael Elhadad, and Noemie

Elhadad. Multi-label classi�cation of patient notes a case study on icd code assign-

ment. arXiv preprint arXiv:1709.09587, 2017.

[8] The skip-gram model. Available at https://www.tensorflow.org/tutorials/

representation/word2vec.

[9] J. R. Firth. A synopsis of linguistic theory 1930-55. 1952-59:1�32, 1957.

[10] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Je� Dean. Dis-

tributed representations of words and phrases and their compositionality. In C. J. C.

Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q. Weinberger, editors,

Advances in Neural Information Processing Systems 26, pages 3111�3119. Curran

Associates, Inc., 2013.

[11] Jürgen Backhaus. The pareto principle. Analyse & Kritik, 2(2):146�171, 1980.

[12] Gavin C Cawley and Nicola LC Talbot. On over-�tting in model selection and

subsequent selection bias in performance evaluation. Journal of Machine Learning

Research, 11(Jul):2079�2107, 2010.

[13] Giovanni Seni and John F Elder. Ensemble methods in data mining: improving

accuracy through combining predictions. Synthesis Lectures on Data Mining and

Knowledge Discovery, 2(1):1�126, 2010.

[14] Chabacano. Over�tting diagram, 2008. [Online; accessed 24-February-2008].

[15] Over�tting diagram. Available at https://upload.wikimedia.org/wikipedia/

commons/thumb/1/19/Overfitting.svg/1920px-Overfitting.svg.

[16] Ronald A Fisher. The use of multiple measurements in taxonomic problems. Annals

of eugenics, 7(2):179�188, 1936.

[17] Christopher M Bishop. Pattern recognition and machine learning (information sci-

ence and statistics) springer-verlag new york. Inc. Secaucus, NJ, USA, 2006.

48

[18] Grigorios Tsoumakas and Ioannis Katakis. Multi-label classi�cation: An overview.

International Journal of Data Warehousing and Mining (IJDWM), 3(3):1�13, 2007.

[19] Marcel van Gerven and Sander Bohte. Arti�cial neural networks as models of neural

information processing. Frontiers Media SA, 2018.

[20] Build with ai | deepai. Available at https://deepai.org/

machine-learning-glossary-and-terms/neural-network.

[21] Neural network training diagram. Available at https://cdn-images-1.medium.

com/max/1600/1*mi-10dMgdMLQbIHkrG6-jQ.png.

[22] Sepp Hochreiter. Untersuchungen zu dynamischen neuronalen netzen. Diploma,

Technische Universität München, 91(1), 1991.

[23] lstm diagram. Available at http://colah.github.io/posts/

2015-08-Understanding-LSTMs/img/LSTM3-chain.png.

[24] Scikit-learn, a set of python modules for machine learning and data mining. Available

at http://scikit-learn.org.

[25] Keras: Deep learning for humans. Available at https://github.com/keras-team/

keras.

[26] Tensor�ow, an open source machine learning framework for everyone. Available at

https://www.tensorflow.org/.

[27] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.

arXiv preprint arXiv:1412.6980, 2014.

49

50

Appendix A

Code

Classi�er training and all tests were performed with an Intel 6700HQ 2.60GHz quad-

core CPU and 16GB of DDR4 RAM. As a development environment we used Jupyter

Notebook with Python 3.6.7, installed on Ubuntu 18.04 operating system

The following libraries for machine learning were used for the implementation of the

classi�er: Keras 2.2.2, TensorFlow 1.10.1, scikit-learn 0.19.1.

In this appendix only the most relevant code has been reported.

A.1 Loss

def weighted_binary_crossentropy (y_true , y_pred) :

e p s i l o n = t fb . _to_tensor (t f b . e p s i l o n () , y_pred . dtype . base_dtype)

y_pred = t f . cl ip_by_value (y_pred , ep s i l on , 1 − ep s i l o n)

y_pred = t f . l og (y_pred / (1 − y_pred))

l o s s = t f . nn . weighted_cross_entropy_with_logits (

t a r g e t s=y_true ,

l o g i t s=y_pred ,

pos_weight=4)

return t f . reduce_mean (l o s s , ax i s=−1)

51

A.2 Model

def build_model () :

ea r lyStopp ing = EarlyStopping (monitor=' va l_los s ' , pa t i ence =200)

model = Sequent i a l ()

model . add (Embedding (vocabulary_size , 200 , input_length=30,

weights=[embedding_matrix] ,

t r a i n ab l e=False))

model . add (LSTM(300 , dropout =0.5))

model . add (Dense (3248 , a c t i v a t i o n=' s igmoid '))

model . compile (l o s s=weighted_binary_crossentropy ,

opt imize r=adam , +

metr i c s =[' accuracy '])

52

List of Figures

3.1 Bag-of-words encoding. 10

3.2 Bag-of-words representation of three documents: the �rst row contains

the set of words in the documents, the following are associated with the

corresponding document. 11

3.3 Relationships between words are captured with similar distances between

the arguments of the relationship [8]. 12

3.4 The sigmoid function behaves like a straight line for values close to 0 and

converges on 0 and 1 for large values (in absolute terms). 14

3.5 Binary classi�cation diagram: features are given as input to a probability

estimator that compute an output between 0 and 1. 15

3.6 5-fold cross validation: each fold is used both for training and for the test.

In this case 5 iterations are necessary. 17

3.7 The green line represents the over�tted model, while the black line repre-

sents the normalized model [15]. 19

3.8 Multi-label example diagram. Every di diagnosis is associated with with

more than one ICD-9-CM code at the same time. 21

4.1 Neuron takes n weighted inputs and returns an output. 24

4.2 The input layer contains as many neurons as the words contained in the

mail set. The hidden layer with four neurons is marked in red. 26

4.3 Diagram of neural network training [21]. Every complete loop is considered

ad an iteration. 27

4.4 A piece of a RNN. The loop allows information to be passed from one step

to another. 29

53

4.5 LSTM network with view of an internal module [23]. Every σ is a sigmoid

gate and tanh is the abbreviation for hyperbolic tangent. 30

5.1 A simple example of LSTM architecture combined with word embedding

and multi-label output. It must be speci�ed that there is a sigmoid gate

for each output class. 34

5.2 The chart shows the progress of the training and test loss using LSTM and

JoinData. 36

6.1 The curve shows the percentage of coverage of the total labels with respect

to the number of classes in increasing order of occurrences. 38

6.2 The diagram shows the 10 most frequent classes in our dataset. These

classes make up 17% of the total labels in the dataset. 38

6.3 F1-micro di�erences between the two classi�ers, grouped by word embed-

ding model. 42

6.4 F1-macro di�erences between the two classi�ers, grouped by word embed-

ding model. 42

6.5 F1-weighted di�erences between the two classi�ers, grouped by word em-

bedding model. 43

6.6 LSTM for F1-micro tested on each embedding model. 43

54

List of Tables

3.1 Fragment extracted by the multi-class Iris dataset. 19

6.1 Scores with SVM using di�erent embedding models. 40

6.2 Scores with LSTM using di�erent embedding models. 41

55

Ringraziamenti

Ringrazio il mio relatore Danilo Montesi per avermi dato la possibilità di lavorare ad un
progetto importante e stimolante come questo.

Ringrazio Stefano per la sua immensa disponibilità e pazienza che mi hanno permesso di
imparare e mettermi in gioco.

Ringrazio i miei nonni, colonne portanti di una famiglia che si vuole bene.

Ringrazio i miei genitori che mi hanno sempre supportato con entusiasmo in ogni mia
scelta.

Ringrazio le mie sorelle per l'a�etto e la �ducia dimostrati ogni giorno. So che posso
sempre contare su di voi.

Ringrazio i miei zii, i cugini e tutta la famiglia allargata.

Ringrazio Eleonora, compagna di vita e migliore amica. Grazie per essermi stata a
�anco in ogni momento ed avermi concesso uno spazio nella tua vita.

Ringrazio gli amici del liceo per continuare a portare avanti un'amicizia importante e
non scontata.

Ringrazio Osso, Moros e Cala per le in�nite risate e le sessioni di studio migliori di
sempre.

In�ne ringrazio tutti gli amici e le persone con cui ho condiviso anche un piccolo
momento felice.

