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Abstract

In this work we apply the stochastic inflation formalism to backgrounds that deviate
from standard slow-roll in a way that can lead to the production of primordial black
holes. We analyse the effects of sudden transitions on the stochastic noise amplitude and
its potential impact on the production of primordial black holes in single field inflation.
We justify the claim that primordial black holes can be responsible for a significant
fraction of the dark matter abundance today and estimate the required enhancement in
the power spectrum. We introduce the Hamiltonian formalism and the coarse-graining
of the quantum field and its momentum, allowing us to obtain a quantitative measure
of the role of quantum diffusion in the production of primordial black holes. We mainly
focus our analysis on a Starobinsky potential given that it is rich enough to allow for the
dynamics of the scalar field during inflation to include an ultra slow-roll phase induced
by a transition from a relatively large slow-roll parameter to a hierarchically smaller one.
This has the effect of making the field perturbations undergo sudden transitions and rise
from its ground state to an excited state.

We present two procedures that we employed when calculating the power spectrum: a
numerical and an analytical one. Both methods show that stochastic effects are negligible
at small scales where their amplitude is time dependent and vanishes at late times, and
that for scales leaving the horizon after the ultra slow-roll phase the de Sitter estimate
of H2/(4π2) is approximately correct. We therefore demonstrate that the estimates in
the literature are incomplete and that a revaluation of the role of stochastic effects on
primordial black hole production is in order.





Sommario

In questo lavoro applicheremo il formalismo dell’inflazione stocastica a background
che si discostano dallo slow-roll standard in un modo che puó portare alla produzione di
buchi neri primordiali. Analizzeremo gli effetti di transizioni improvvise sull’ampiezza
del rumore stocastico e il loro potenziale impatto nella produzione di buchi neri primor-
diali in modelli di inflazione con un singolo campo. Giustificheremo l’affermazione che i
buchi neri primordiali possono essere responsabili di una frazione significativa dell’abbon-
danza della materia oscura oggi e stimeremo il necessario potenziamento nello spettro di
potenza. Introdurremo il formalismo hamiltoniano e il ‘coarse-graining’ del campo quan-
tistico e del suo momento, i quali ci permettono di ottenere una misura quantitativa del
ruolo della diffusione quantistica nella produzione di buchi neri primordiali. Concentre-
remo principalmente la nostra analisi su un potenziale di tipo Starobinsky, dato che è
abbastanza ricco da consentire alla dinamica del campo scalare durante l’inflazione di
includere una fase di ultra slow-roll indotta da una transizione da un parametro relativa-
mente grande ad uno gerarchicamente piú piccolo. Questo fa s̀ı che le perturbazioni del
campo subiscano improvvise transizioni e si elevino dal loro stato fondamentale a uno
stato eccitato.

Presenteremo due procedure che abbiamo utilizzato per il calcolo dello spettro di po-
tenza: una numerica e una analitica. Entrambi i metodi mostrano che gli effetti stocastici
sono trascurabili a piccole scale, alle quali la loro ampiezza mostra una dipendenza dal
tempo e si annulla a tempi elevati, e che per scale che lasciano l’orizzonte dopo la fase
di ultra slow-roll la stima de Sitter di H2/(4π2) è approssimativamente corretta. Di-
mostreremo quindi che le stime nella letteratura sono incomplete e che è necessaria una
rivalutazione del ruolo degli effetti stocastici sulla produzione di buchi neri primordiali.
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Chapter 1

An overview of modern cosmology

Cosmology [1, 2, 3] is possibly one of the oldest and most ambitious branches of science.
Its quest is that of explaining the dynamics of the entire Universe. To complicate matters
even further, cosmologists only have one sample since the Universe is, by definition,
unique. We cannot observe a big number of Universes and formulate laws based on their
statistical behaviour. This means that any theory we might articulate has to be tested on
the very object we used to derive them in the first place. This is a very subtle point that
leads any cosmological theory to be driven by observation rather than experimentation.

Given its nature, it is not unusual to make decisions in cosmology based on personal
preference, cultural background or even aesthetics, which often guide its practitioners
away from Nature’s plan. We should therefore approach its study with an open mind.

The real turning point for cosmology was the 20th century when, in 1915, Einstein
developed his theory of general relativity, which became the foundation of any modern
cosmological theory. In an example of personal bias influencing the interpretation of a
physical theory, Einstein later added in his equations a cosmological constant contribu-
tion in order to accommodate a static Universe, which was the main idea at the time.
However in 1929, when Hubble measured the expansion of the Universe, he promptly
discarded it, referring to it as his greatest blunder, although today the concept of a
cosmological constant is reformulated as a possible dark energy contribution.

The definitive proof of the expansion of the Universe was the discovery of the cos-
mic microwave background radiation (CMB) in 1965, which many argue marked the
beginning of modern cosmology. Although CMB shows the Universe was extremely ho-
mogeneous in the deep past/on large scales, today we observe huge jumps in density
on galactic and smaller scales. These two very different behaviours are reconciled by
combining observational CMB data with general relativity: in a mostly flat Universe
and with the current observational constraints, we estimate an abundance of 68% dark
energy [4] and 5% ordinary matter. The remaining 27% is a form of matter which solely
interacts gravitationally, later dubbed dark matter. To this day, the debate on the nature
of such a mysterious substance is still an open one.
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One amongst the many possible candidates for (cold) dark matter is primordial black
holes. These extremely small black holes are created at a very early stage in the evolution
of the Universe and behave as pressureless dust afterwards. If they are produced in
sufficient numbers they can account for a large fraction of dark matter.

The second concept in modern cosmology that is fundamental for our understanding
of the Universe and its evolution is inflation, a period before the initial ‘singularity’ in the
Hot Big Bang model in which the Universe underwent a phase of accelerated expansion.
Such an unimaginably fast increase in size causes any inhomogeneity to be stretched out
and washed away.

In this thesis we will connect the physics of inflation to that of dark matter through
the study of formation of primordial black holes during inflation. This chapter will
introduce the main ideas of modern cosmology and its many achievements, along with
its limitations. We will discuss the problems that the vanilla Hot Big Bang model leaves
unsolved, and the possible explanation that inflation gives for them.

1.1 First principles

Exactly like any other science, cosmology has a set of fundamental laws to draw upon
when developing new theories. One of these is the cosmological principle. The name
‘principle’ stems from the fact that there was no data to support it when it was formulated
in the early 20th century, but it was so fundamental and reasonable that it was hard to
disprove it. Today, it serves as the starting point of all cosmology.

It describes a particular symmetry enjoyed by the Universe as a whole. It states
that, on sufficiently large scales (beyond the large scale of galaxies), the Universe is both
isotropic and homogeneous. This is a very strong assertion, as it links every patch of the
Universe into a uniform structure.

One of the experimental confirmations of the cosmological principle is the high de-
gree of homogeneity and isotropy found in the large scales of the cosmic microwave
background. However, it is important to point out that this principle only applies to
extremely large scales. Galactic scales definitely do not comply since, for instance, the
Milky Way appears as a band across the sky, which clearly is neither homogeneous nor
isotropic.

As we shall see in the following sections, the cosmological principle is strong enough
to generate very simple but adequate models.

1.1.1 General relativity

The second fundamental idea every modern theory of the Universe is based on is Ein-
stein’s General Theory of Relativity. This theory of gravity is a natural generalisation
of special relativity. Here we will briefly summarise some of its concepts.
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The interval between two infinitesimally distanced events is given by

ds2 = gµν dxµ dxν , (1.1.1)

where repeated indices imply summation, µ and ν run from 0 to 3, x0 = ct is the time
coordinate, xi with i = 1, 2, 3 are space coordinates and the tensor gµν describes the
geometry of space-time. Any particle moves in the background generated by gµν on a
path γ such that

δ

∫
γ

ds = 0. (1.1.2)

From this equation, it can be shown that we obtain the equations of motion

d2xµ

ds2
+ Γµαβ

dxα

ds

dxβ

ds
, (1.1.3)

called a geodesic. Here, Γµαβ are the Christoffel symbols

Γµαβ =
1

2
gµλ
(
∂gλα
∂xβ

+
∂gλβ
∂xα

− ∂gαβ
∂xλ

)
. (1.1.4)

Equation (1.1.3) is extremely important, because it brings the idea that free particles
move in a background determined by gµν , which in turn is determined by the distribution
of matter.

We can find generalised expression for the laws of conservation of energy and momen-
tum. The energy-momentum tensor for a perfect fluid of pressure p and energy density
ρ reads

Tµν = (p+ ρc2)uµuν − pgµν , (1.1.5)

where uµ is the 4-velocity

uµ = gµα
dxα

ds
. (1.1.6)

The conservation law mentioned above is given by

Tµ
ν

;ν = 0, (1.1.7)

where ; indicates covariant derivation.
Einstein wanted to find a fundamental equation that involved the energy-momentum

tensor Tµν and the metric gµν . This equation is given by

Rµν −
1

2
gµνR =

8πG

c4
Tµν , (1.1.8)

where the tensor Rµν = Rα
µαν can be obtained from the Riemann-Christoffel tensor

Rα
βγδ =

∂Γαβδ
∂xγ

−
∂Γαβγ
∂xδ

+ ΓακγΓ
κ
βδ − ΓακδΓ

κ
βγ, (1.1.9)

R = Rα
α is the Ricci scalar and Gµν = Rµν − gµνR/2 is the Einstein tensor satisfying

Gµ
ν

;ν = 0.
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1.1.2 The Friedmann-Robertson-Walker metric

Assuming that the cosmological principle holds, we need to find a metric which correctly
reproduces a homogeneous and isotropic space-time. At large scales, the Universe can
be treated as a continuous fluid. For now we choose as time variable the proper time t.
In such general hypotheses, the metric of the Universe in polar coordinates (r, θ, ϕ) is
given by

ds2 = c2 dt2 − a(t)2

(
dr2

1− kr2
+ r2 dΩ2

)
, (1.1.10)

where a(t) is the scale factor, dΩ2 = dθ2+sin2 θ dϕ2 is the solid angle element and k is the
curvature parameter. A metric such as (1.1.10) is called a Friedmann-Robertson-Walker
(FRW) metric.

The curvature parameter k can take three different values. When k = −1 the ge-
ometry described by (1.1.10) is of the hyperbolic type, when k = 0 it is flat and when
k = 1 it is spherical. The particular geometry of our Universe was long debated by
cosmologists of the previous century. Einstein’s equations and the cosmological principle
are compatible with a spherical Universe, while observations preferred a flat one. Today,
the idea of inflation strongly suggests an extremely flat Universe. This is because, as we
will explain later, a sudden expansion tends to pull the geometry towards flatness.

1.1.3 The Hubble law

As we mentioned, the cosmological principle alone gives rise to many fundamental prop-
erties of our Universe. We already introduced the FRW metric. Let us now consider a
triangle defined by three points O, O′ and P , as depicted in figure 1.1. The velocity of
P with respect to O′ is given by

~v ′(~r ′) = ~v(~r )− ~v(~d ). (1.1.11)

The homogeneity of the Universe as suggested by the cosmological principle forces
the functions ~v and ~v ′ to be the same. Thus

~v(~r − ~d ) = ~v(~r ′) = ~v ′(~r ′) = ~v(~r )− ~v(~d ). (1.1.12)

This implies that the relationship between the function ~v and its argument ~r is linear,
meaning that there must be constants Hi

j for i, j = 1, 2, 3 such that

vi = Hi
jxj. (1.1.13)

If we now utilise the isotropy hypothesis in the cosmological principle, we can say that
the velocity field ~v must be irrotational, i.e.

~∇× ~v = ~0. (1.1.14)
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Figure 1.1: Graphic representation of the Hubble law.

This means that the matrix formed by Hi
j is symmetric and it can be diagonalised.

Therefore
vi = Hxi, (1.1.15)

where H is a function of time only. Equation (1.1.15) is called the Hubble law. It can
be shown using the FRW metric that

H(t) =
ȧ

a
, (1.1.16)

where a dot represents derivation with respect to proper time t. This law implies that
we can treat any spatial position as the origin of a coordinate system. The expansion
of the Universe will look the same and will not depend neither on the position of the
observer in the Universe nor the direction in which they point their instruments.

1.2 The Friedmann equations

We will make extensive use of the Friedmann equations throughout this work. In this
section we will briefly sketch how to derive them starting from the basic ideas developed
in section 1.1. They can be obtained from Einstein’s field equations (1.1.8) assuming the
Universe to be a perfect fluid whose energy-momentum tensor is given by (1.1.5) and
whose metric is of the FRW type (1.1.10). The time-time component yields

ä = −4πG

3

(
ρ+

3p

c2

)
a2, (1.2.1)
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whereas the space-space component yields

aä+ 2ȧ2 + 2kc2 = 4πG
(
ρ− p

c2

)
a2. (1.2.2)

Using (1.2.1) to eliminate ä from (1.2.2) leads to

H2 +
kc2

a2
=

8πG

3
ρ. (1.2.3)

Equations (1.2.3) and (1.2.1) are called the Friedmann equations.
The Friedmann equations are not independent. Instead they are linked by the adia-

batic expansion condition
d(ρc2a3) = −p da3 (1.2.4)

(compare this equation with dE = −p dV ).
Usually, we consider Universes whose state equation can be cast in the form

p = wρc2, (1.2.5)

where 0 ≤ w ≤ 1. Notable examples of choice for the parameter w include the dust
Universe (w = 0), the ultra-relativistic Universe (w = 1/3) and the stiff matter Universe
(w = 1). We will not go over the evolution of said Universes. However, we will briefly
mention a few general properties of Friedmannian Universes.

1.2.1 Friedmann models

From the Friedmann equations we can determine the time evolution of many quantities,
such as the scale factor. It is useful to introduce the density parameter Ω = ρ/ρc, where

ρc =
3H2

8πG
(1.2.6)

is the critical density. When evaluated at a = a0 (the suffix 0 stands for any time t = t0
we wish to calculate our expression at), the adiabatic condition (1.2.4) can be rewritten
as (

ȧ

a0

)2

− 8πGρ

3

(
a

a0

)2

= H2
0 (1− Ω0) = −kc

2

a2
0

. (1.2.7)

From this expression we can find the physical interpretation of the density parameter
Ω0: when k = −1, 0, 1, we can see that Ω0 < 1, Ω0 = 1, Ω0 > 1 respectively. Thus, in
order for the geometry of the Universe to be of the flat type, the energy density today
ρ0 must match precisely the critical density ρ0,c. Any slight variation would lead to a
curved Universe. The flat scenario therefore seems impossible to achieve. Amongst all
possible energy density, our Universe has to obtain one exact value. This is one of the
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problems that the Hot Big Bang theory cannot explain by itself. We will later illustrate
the solution widely accepted today by cosmologists, which is based on inflation.

Starting from (1.2.7), it can be shown that the time evolution of the density parameter
Ωw for a Universe dominated by energy with state equation p = wρc2 at a time with
scale factor a is given by

Ω−1
w (a)− 1 =

(
a

a0

)1+3w (
Ω−1

0,w − 1
)
. (1.2.8)

This expression will be analysed further in section 1.3.3 when we discuss the flatness
problem.

1.2.2 The particle horizon

Consider the set of points which could potentially be in causal connection with an ob-
server at time t. Let us place the observer at the origin of a coordinate system. Since
information does not travel faster than light, this set is clearly finite if t is finite. It is
made up of all the light signals that reached the observer before t and therefore were
emitted at a time t′ such that 0 < t′ < t. Such a point has to be contained in a sphere
centred at the origin of the coordinate system and whose radius is given by

RH(t) = a(t)

∫ t

0

c dt′

a(t′)
, (1.2.9)

called the particle horizon at time t. Any light signal coming from a point distant
d > RH(t) cannot influence the observer before t. The integral in (1.2.9) can be easily
solved if we approximate Ωw ' 1 during early times. We obtain

RH(t) ' 2c

H0Ω
1/2
0,w(3w + 1)

(
a

a0

)3(1+w)/2

, (1.2.10)

which, if we turn to proper time, becomes

RH(t) ' 3(1 + w)

1 + 3w
ct. (1.2.11)

1.3 The Hot Big Bang theory and its problems

Running the time evolution of the scale factor backwards through (1.2.7) we can see that,
for any value of Ω, the function a(t) is monotonous. Thus there must have been a moment
in time when a = 0, which means that all matter in the entire Universe must have been
compressed into a singularity. This is unavoidable in all models where −1/3 < w ≤ 1.
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There is no reason to believe that general relativity still holds in such extreme densities
and temperatures. Therefore, if we want to fully describe the earliest moments in the
life of our Universe we have to develop new physics. Quantum gravity is still very much
in its infancy, and we are far from a unified theory of everything. However, we can safely
assume that the singularity is only a sign of the incompleteness of modern cosmology,
rather than a true physical phenomenon.

There are some tricks that we can employ if we want to circumvent the singularity.
Firstly, it is possible to generalise the condition −1/3 < w ≤ 1 to include Universes in
which the parameter w lies in the range −1 ≤ w ≤ −1/3. If we look at the Friedmann
equation (1.2.1) it can be seen that, in such a situation, we can have ä > 0. This means
that the monotony of a(t) is broken and the singularity is avoided. Fluids which do not
satisfy −1/3 < w ≤ 1 are said to violate strong energy condition. An example of this
behaviour can be found if one adds a cosmological constant Λ > 0 to Einstein’s equations
(1.1.8):

Rµν −
1

2
gµνR =

8πG

c4
Tµν + gµνΛ. (1.3.1)

The effects of a term similar to this supposedly dominated the dynamics in the very early
stages of the Universe. Its accepted physical interpretation today is that it is a quantity
related to the vacuum energy density of a scalar field.

1.3.1 The monopole problem

Generally speaking, ‘hot’ Big Bang models predict that the temperature increases as
we go back in time. Various high energy extensions of known physics predict the exis-
tence of topological defects. The types of defects in the theory are categorised by their
dimensionality: there are magnetic monopoles (zero-dimensional), cosmic strings (one-
dimensional), domain walls (two-dimensional) and finally textures (three-dimensional).

Defects are predicted to be created in great number in the early Universe. However
not a single piece of evidence of their existence has been collected yet. In this section we
shall discuss why monopoles should be abundant.

It can be shown that we expect a density parameter for magnetic monopoles today

Ω0,MM >
mMM

mp

Ωb ' 1016, (1.3.2)

which is absurdly large. As we shall see, inflation gives a very elegant solution to this
problem.

We also point out that domain walls and cosmic strings should be very abundant as
well. This claim can be verified through a discussion similar to the above.
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1.3.2 The horizon problem

In section 1.2.2 we introduced the idea of a particle horizon, which is ultimately caused
by the finiteness of the speed at which information travels. This means that there is no
reason to expect that large patches of the Universe be in causal connection unless they are
contained inside each others particle horizons. Consider for instance the CMB. The time
of last scattering tls ' 350 kyrs represents the time beyond which the Universe stopped
being opaque. The maximum distance between two particles in causal connection at
CMB time is then given by

Rls '
c(t0 − tls)

1 + zls

' ct0
zls

, (1.3.3)

where zls ' 1000 is the redshift of last scattering. Since at that epoch the Universe was
already dominated by matter (w = 0), the particle horizon is

RH(tls) ' 3ct0z
−3/2
ls ' Rls

10
. (1.3.4)

This is not possible, since RH(tls) < Rls would mean that two patches of the Universe
were in causal connection beyond their particle horizons!

Many solutions were proposed but ultimately, this problem was definitively solved by
an inflationary solution, as we will show in section 1.4.

1.3.3 The flatness problem

As we mentioned, the Friedmann Universe has three possible geometries: closed, open or
flat. From the Friedmann equations, one can derive the time evolution of temperature
in these three cases.

When the Universe is closed, it undergoes a period of expansion in which a maximum
value for the scale factor is achieved, then it rapidly collapses reaching a singularity again
after about tPl ' 10−43 s.

If instead we assume an open geometry, it can be shown that today’s temperature
T0 ' 3 K would have been reached after

t0 ' tPl
TPl

T0

' 10−11 s. (1.3.5)

This value is unrealistic since we know our Universe is about 1010 yrs old. This is referred
to as the age problem, since there is apparently no explanation as to why the Universe
managed lo last this long.

Another way to phrase this is by analysing the density parameter of such a long-
lasting Universe. Since neither closed nor open geometry yield realistic results, our
Universe must be of the flat type. However, as we stressed before, flat Universes require
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severe fine-tuning since the energy density today ρ0 must be very close the critical density
today ρ0,c = 3H2

0/(8πG). From (1.2.8), it can be shown that

Ω(tPl) ' 1 + (Ω0 − 1)10−60, (1.3.6)

meaning that the density parameter at Planck time must have been equal to 1 within at
least 60 digit precision! This is the flatness problem, the question of how the Universe
was so flat.

1.4 The inflationary paradigm

Most (but not all) problems of the Hot Big Bang model can be solved by assuming
that the Universe underwent a period of accelerated expansion before the Big Bang
itself [5]. Such a phase would elegantly solve the flatness and horizon problems, while
it could also provide a possible explanation for the lack of defects observed today, since
they would be diluted during the expansion as long as they are created before inflation.
Any fluctuation in the background gravitational field and energy density is suppressed
because of the stretching of space-time due to the exponentially accelerated expansion.
The smoking gun of this mechanism is represented by the extreme homogeneity observed
in the cosmic microwave background radiation, whose tiny anisotropies would then go
on to form the large scale structure of our Universe.

This feature of inflation is extremely appealing from a theoretical point of view be-
cause of its strong independence on initial conditions. Indeed, inflation predicts there
must be a phase, called slow-roll, in which the motion of the field driving inflation is
mostly dominated by a friction term. This means that the field is ‘slowly rolling’ towards
the minimum of the potential. If one plots the phase-space of the inflaton during infla-
tion, one clearly sees that slow-roll is a dynamical attractor, meaning that for a huge
range of initial conditions (i.e. values of the inflaton field and its velocity at the be-
ginning of observable inflation) the motion is inevitably attracted towards this slow-roll
phase. We will expand more on slow-roll in the next chapter.

How can such a phase be achieved? In this section we will work in natural units, i.e.
we take ~ = c = 1. During inflation, the energy density of vacuum dominates over all
other forms of energy, meaning ρΛ ' V (φ), where φ is the field driving inflation. When
V ' const., the expansion is exponential a ∝ et.

The term ‘inflation’ is generic: in practice, there are many ways in which one can
achieve an accelerated expansion. Historically, the first person to formulate such a phase
was Guth [6] in 1981 with old inflation, then Linde proposed an updated model later
dubbed new inflation. There are many more models that have been developed by cos-
mologists over the years. In what follows we are interested in the main features of the
inflationary framework rather than in particular models.
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The inflaton’s dynamics is determined by the classical Lagrangian density

Lφ =
1

2
φ̇2 − V (φ). (1.4.1)

The field φ has an effective energy density ρφ and an effective pressure pφ given by

ρφ =
1

2
φ̇2 + V (φ), (1.4.2)

pφ =
1

2
φ̇2 − V (φ). (1.4.3)

The time evolution of the field φ can be obtained as the Euler-Lagrange equation of the
Lagrangian density (1.4.1), which in cosmic time reads

d

dt

∂(Lφa3)

∂φ̇
− ∂(Lφa3)

∂φ
= 0. (1.4.4)

Recall that Lφa3 is the true Lagrangian. Using (1.4.1) yields

φ̈+ 3
ȧ

a
φ̇+

∂V (φ)

∂φ
= 0. (1.4.5)

This equation describes the motion of the field φ while it rolls towards its minimum.
When the field is in the slow-roll phase of inflation, we can approximate the Friedmann
equation (1.2.3) by imposing k = 0, because the fast expansion causes ρφ to dominate
over ρ and kc2/a2, meaning that(

ȧ

a

)2

' 8πG

3
ρφ '

8πG

3
V (φ), (1.4.6)

using φ̇2/2� V (φ) during slow-roll. Equation (1.4.6) has the de Sitter solution

a ∝ exp

(
t

τ

)
, (1.4.7)

where

τ =

[
3

8πGV (φ)

]1/2

. (1.4.8)

Using typical values for V (φ), we get τ ' 10−34 s. This gives us an idea of the charac-
teristic time scales of inflation. As we will justify later, in order for inflation to solve the
Big Bang problems, there must be an expansion of about e70. This means that the scale
factor a (which essentially measures how big the Universe is) during inflation increases of
about 30 orders of magnitude in only 10−34 s! This explains why homogeneity is achieved
regardless of the initial state.
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Figure 1.2: The inflationary solution to the horizon problem. Taken from [1]

1.4.1 Inflationary solution to the horizon problem

Let us now discuss how inflation solves the horizon problem. Consider a scale L. It
can enter causal connection only after a time tL has passed since the singularity such
that RH(tL) = L. It is convenient to work with the Hubble sphere R(t) = c/H rather
the particle horizon RH(t). There is a subtle difference in the definition of the two
quantities, but they are about equal during early times, so we will refer to one or the
other indistinctly. In addition, we will work with comoving quantities, therefore we need
the comoving particle horizon

r = R
a0

a
=
ca0

ȧ
. (1.4.9)

This quantity always increases in non-inflation times, since ȧ is a monotonous decreasing
function. This means that more and more points enter causal connection as time passes.

Imagine now that there is a period between ti and tf where a comoving scale l0 escapes
the horizon r(t). We stress that escaping this horizon does not violate causality in any
way. After all, we are talking about comoving scales, so really what is happening here
is that the points in space are moving apart faster than the speed of light due to the
sudden expansion, and it does not imply superluminal speed for any physical object.

The scale l0 can escape the horizon if l0 > r(t). In order for r(t) ∝ ȧ−1 to decrease,
we must have an accelerated expansion ä > 0. After tf , the usual decelerated expansion
is restored. We depicted in figure 1.2 the behaviour of r(t). This picture allows us to
understand why CMB scales appear to be in causal connection. Imagine that l0 is such
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a scale. It enters the horizon at t1, before inflation. Between t1 and t2 this scale has
plenty of time to reach homogeneity. An observer at t3 however would be surprised to see
that the scale l0 is already in causal connection, provided he does not know of inflation.
He would think l0 should be inhomogeneous because it is the first time it enters causal
connection.

Therefore, the horizon problem is solved if

r(t0) ≤ r(ti). (1.4.10)

This condition can be ultimately used to impose a lower limit on the duration of inflation.
Indeed, if the beginning of inflation ti were too close to its end tf , the scale l0 from
figure 1.2 would have no time to move out of the comoving horizon. In order to find
this condition, let us divide the age of the Universe in three intervals: (ti, tf), (tf , teq)
and (teq, t0), where teq is the equivalence time, the moment in which the radiation and
matter density parameters where equal. Let us call wi,j the constant in the state equation
between two phases i and j. Another way we can write (1.2.7) is(

ȧ

a0

)2

= H2
0

[
Ω0,wi,j

(a0

a

)1+3wi,j
+
(
1− Ω0,wi,j

)]
. (1.4.11)

From this equation, assuming Ωi,j ' 1, we get

Hiai
Hjaj

'
(
ai
aj

)−(1+3wi,j)/2

. (1.4.12)

Let us set wi,f = w < −1/3, wf,eq = 1/3 and weq,0 = 0. The requirement that inflation
lasts long enough for the Big Bang problems to be solved reads

r(ti) =
ca0

ȧi

> r(t0) =
c

H0

. (1.4.13)

Using (1.4.12) twice to link the three phases together we obtain(
af

ai

)−(1+3w)

> 1060z−1
eq

(
Tf

TPl

)2

. (1.4.14)

Therefore the number of e-foldings Ne = ln(af/ai) of inflation should be

Ne > 60

[
2.3 + 1

30
ln(Tf/TPl)− 1

60
ln zeq

|1 + 3w|

]
' 60. (1.4.15)
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Figure 1.3: Inflationary solution to the flatness problem. When ti < t < tf the accelerated
expansion drives the evolution parameter Ω(t) towards 1. Then it diverges again, but
if inflation lasts long enough, the divergence is very small and delayed until much later
than t0. Taken from [1]

1.4.2 Inflationary solution to the flatness problem

Let us consider (1.2.8). It can be cast in the form

(Ω−1 − 1)ρa2 = (Ω−1
0 − 1)ρ0a

2
0. (1.4.16)

Dividing the history of the Universe in the three intervals (ti, tf), (tf , teq) and (teq, t0) in
the same manner as section 1.4.1, we obtain with some manipulation(

af

ai

)−(1+3w)

=
1− Ω−1

i

1− Ω−1
0

1060z−1
eq

(
Tf

TPl

)2

. (1.4.17)

It can be shown that the flatness problem is solved when the density parameter Ωi at
the beginning of inflation is closer to unity than today or, in other words, when

1− Ω−1
i

1− Ω−1
0

≥ 1. (1.4.18)

This condition leads to an expression similar to (1.4.15), meaning that the require-
ment inflation solves the Hot Big Bang problems is that Ne > 60.
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Chapter 2

Stochastic inflation

In chapter 1 we motivated the need for a phase of accelerated expansion at times before
the usual Big Bang theory, mainly motivated by the search of a solution to the flatness
and horizon problems. Inflation is a very promising idea, since it also gives an explanation
to other problems (such as the monopole problem) and provides the seeds for structure
formation.

In this chapter we will introduce the main formalism of slow-roll and ultra slow-
roll (USR) during inflation. Slow-roll is achieved when the kinetic term is small when
compared to the potential term, whereas during ultra slow-roll the potential becomes
extremely flat so that acceleration is no longer negligible. The first ideas of slow-roll in-
flation were introduced around 1982 by Linde [7], Albrecht and Steinhardt [8], Starobin-
sky [9] and it is able to solve the usual Hot Big Bang problems and explain the CMB
spectrum.

In this chapter we will introduce the PBH formation mechanism in section 2.1 that
leads us to the study of stochastic effects during inflation. Then we will develop the
main formalism of stochastic inflation in section 2.2, following the discussion of [10]. We
will then present the different approaches to the problem of stochastic effects in PBH
production. We will report the main results of [11] in section 2.3.1, of [12] in section
2.3.2 and of [13] in section 2.3.3. Finally, we will comment on them in section 2.3.4.

2.1 Primordial black holes

PBHs are created in the early Universe and can make up between 10% and 100% of
the total dark matter abundance according to the latest observational constraints. The
allowed mass range lies around 10−17M� and 10−14M�, with an extra open window
around 10−12M�. These masses are extremely tiny when compared to the masses of
astrophysical black holes, which are typically between 102M� and 109M�, and correspond
to atomic size black holes. The mechanism to generate PBHs which will be analysed
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throughout this article is the amplification of the density perturbations during inflation.
Amplification has to be strong enough and take place at the correct scales to gen-

erate PBHs while being insignificant enough at cosmological background (CMB) scales
not to interfere with CMB observations. However, it cannot be arbitrarily big, since
it has to be small enough for perturbation theory to still hold. We will employ a sin-
gle field inflationary model, which is the simplest and most natural model. The PBH
formation is thought to happen during an ultra slow-roll regime placed in between two
slow-roll phases. This particular structure is extremely difficult to find through a top-
down approach: the potential of the single field needs to be rich enough to allow for
PBH formation. However, there are many examples of simple potentials which manage
to reproduce most of the features that the power spectrum should have in order to seed
PBH formation. A detailed description of the potentials utilised in this work is given in
section 3.1.

The fraction of the total energy density of PBHs with mass M at PBH formation
(denoted by f) is given by [14, 15]

βf(M) =
ρPBH(M)

ρtot

∣∣∣∣
f

. (2.1.1)

We shall neglect any non-Gaussianity effects in the curvature perturbation distribution.
Therefore they are described by Gaussian statistics with width σM = σ(M). Let us
assume there exists a critical value ζc for PBH formation: any energy density higher
than this value will collapse into a primordial black hole after its respective scale re-
enters the horizon. Therefore, the probability of large fluctuations collapsing is given by

βf(M) =

∫ ∞
ζc

1√
2πσM

e
− ζ2

2σ2
M dζ. (2.1.2)

The critical value ζc is usually taken to be close to unity. It can be shown that σM � ζc.
This amounts to stating that the Gaussian distribution describing curvature perturba-
tions is extremely peaked. With this approximation, we can write the PBH density as

βf(M) ' σM√
2πζc

e
− ζ2c

2σ2
M . (2.1.3)

The horizon mass is the mass of the black hole according to an observer sitting just
outside the event horizon. At the classical level, it can be interpreted as the mass that
can never escape the black hole’s event horizon. It is defined as

M =
4πρtot

3H3

∣∣∣∣
f

=
1

2GHf

, (2.1.4)

where f indicates that the quantity needs to be evaluated at horizon re-entry. The last
step was achieved through Friedmann equation (1.2.3).

21



We assume that the mass of primordial black holes is proportional to its horizon mass
(2.1.4), so that their mass is [16]

MPBH =
γ

2GHf

, (2.1.5)

where the constant γ depends on the efficiency of the gravitational collapse (typically γ '
0.5). Now, since primordial black holes are assumed to be dark matter, it is reasonable
that the PBH density ρPBH behaves as matter (w = 0), therefore its evolution looks like
ρPBH = ρ0

PBH(a0/a)3. Thus

βf(M) =
ρPBH(M)

∣∣
f

ρtot

∣∣
f

=
ρ0,PBH(M)

ρtot

∣∣
f

(
a0

af

)3

=
ρ0,PBH(M)

ρ0,DM

(
a0

af

)3
ρ0,DM

ρtot

∣∣
f

,

(2.1.6)

where af is the scale factor evaluated at formation time. Let us name fPBH(M) =
ρ0,PBH(M)/ρ0,DM the fraction of the total dark matter energy density in PBHs with mass
M today. For simplicity, we can shift the scale factor so that today a0 = 1. Additionally,
the total energy density ρtot time evolution for a mostly flat Universe can be expressed
in terms of the critical energy density today ρ0,c = 3H2

0/(8πG) as

ρtot = ρ0,c

(
H

H0

)2

. (2.1.7)

These considerations allow us to write the fraction of the total energy density of PBHs
with mass M at PBH formation as

βf(M) = fPBH(M)

(
1

af

)3
ρ0,DM

ρ0,c

ρ0,c

ρtot

∣∣
f

= fPBH(M)
Ω0,DM

a3
f

(
H0

Hf

)2

.

(2.1.8)

Using current constraints on cosmological parameters and setting fPBH(M) ' 1, it
can be shown that (2.1.8) leads to

βf(M) ' 10−8

√
M

M�
. (2.1.9)

If we consider a mass distribution sharply peaked at M = 10−15M� we find βf(M) '
3×10−16. Comparing this result to (2.1.3) for ζc = 1 shows σM ' 0.12. Recalling that the
power spectrum is proportional to σ2

M and that at CMB scales the scalar power spectrum
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is O(10−9), this means that an enhancement of about 7 orders of magnitude must be
achieved in order to comply with current observational constraints. This enhancement
can indeed be achieved in the framework of single field inflation by inducing an extremely
flat region in the scalar potential. This leads to an ultra slow-roll phase that must last
long enough for its effects to be meaningful.

2.2 Coarse-graining in stochastic inflation

In standard inflation, the background expands in a homogeneous and isotropic manner,
with negligible back-reaction. In the following sections we will analyse what happens
if we introduce quantum perturbations in this background. These scalar perturbations
undergo a quantum-to-classical transition, meaning on super-Hubble scales they can be
treated as classical fields. This behaviour is well treated in a stochastic formalism, which
effectively separates the field in its long-wavelength and small-wavelength parts, each
obeying different sets of equations. The scale where the quantum-to-classical transition
is achieved has to be chosen arbitrarily by selecting a cut-off wavelength. The quantum
part of the field and its momentum start playing a significant role above this wavelength.
This procedure is often referred to as the ‘coarse-graining’ of the inflaton.

The purpose of this chapter is to study these quantum fluctuations in a stochastic
formalism, and to understand to which extent these modify the dynamics of the classical
coarse-grained field. If significant enough, they might cause the inflaton to deviate from
its regular slow-roll dynamics.

Deviations from the classical background trajectory can be extremely important when
calculating PBH abundance, since they affect it exponentially, as per (2.1.3).

2.2.1 Stochastic inflation in the Hamiltonian formalism

In slow-roll, the Hubble factor H = ȧ/a is almost constant. This can be expressed by
requiring that the Hubble parameters

εn+1 =
d ln |εn|

dNe

(2.2.1)

are small. We can set ε0 = Hin/H. The slow-roll condition is then

|εn| � 1, (2.2.2)

for all n > 0. Alternatively, the Hubble slow-roll parameters εi are usually renamed as
follows: ε1 = ε, ε2 = η and finally ε3 = κ.

The dynamics of a scalar field φ minimally coupled to gravity in a 4-dimensional
curved space-time with metric gµν is described by the action

S =

∫
d4x
√
−g
[
M2

Pl

2
R− 1

2
gµν∂µφ∂νφ− V (φ)

]
. (2.2.3)
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Here R is the scalar curvature and V (φ) is the potential of the scalar field. The Hamil-
tonian formulation is obtained by foliating 4-dimensional space-time into a set of 3-
dimensional space-like hyper-surfaces. The foliation is determined by the lapse function
N(τ, xi) and the shift vector N i(τ, xi). The line element is then given by

ds2 = −N2dτ 2 + γij(N
idτ + dxi)(N jdτ + dxj), (2.2.4)

where γij is the induced metric on the 3-dimensional space-like hyper-surfaces.
The scalar sector has canonical variables φ and πφ = δS/δφ̇ with Poisson brackets

{φ(~x), πφ(~y)} = δ(3)(~x−~y). Similarly, for the gravitational sector, the canonical variables
are γij and πij = δS/δγ̇ij with Poisson brackets {γij(~x), πkl(~y)} = (δki δ

l
j + δliδ

k
j )δ(3)(~x −

~y)/2.
The total Hamiltonian reads

C =

∫
d3x

[
N(CG + Cφ) +N i(CG

i + Cφi )
]
. (2.2.5)

Here φ and G stand for the scalar and the gravitational sectors respectively. C = CG +Cφ
and Ci = CG

i + Cφi are the scalar and the gravitational constraint respectively. The scalar
constraints read

Cφ =
1

2
√
γ
π2
φ +

√
γ

2
γij∂iφ∂jφ+

√
γV (φ),

Cφi = πφ∂iφ,

(2.2.6)

where γ denotes the determinant of γij. The constraints in the gravitational sector have
similar forms.

The time evolution of any function F of the phase-space variables is given by

Ḟ (γij, π
kl, φ, πφ) = {F,C}. (2.2.7)

The Hamilton equations φ̇ = {φ,C} and π̇φ = {πφ, C} then read

φ̇(~x) =

∫
d3y

[
N(~y){φ(~x), Cφ(~y)}+N i(~y){φ(~x), Cφi (~y)}

]
, (2.2.8)

π̇φ(~x) =

∫
d3y

[
N(~y){πφ(~x), Cφ(~y)}+N i(~y){πφ(~x), Cφi (~y)}

]
. (2.2.9)

Using (2.2.6) allows us to find

φ̇ =
N
√
γ
πφ +N i∂iφ, (2.2.10)

π̇φ = −N√γV,φ + ∂i(N
√
γγij∂jφ) +N i∂iπφ + πφ∂iN

i, (2.2.11)
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where V,φ = ∂V/∂φ.
Let us now assume that φ is sufficiently decoupled from the metric that perturbations

can be ignored (we will work out the coupled case in appendix A). In flat space-time,
the line element (2.2.4) then simply becomes

ds2 = −N(τ)2dτ 2 + a2δijdx
idxj. (2.2.12)

Notice the lapse function only depends on time and the shift vector is null. Choosing
a lapse function amounts to choosing a clock. Indeed, N = 1 corresponds to working
with cosmic time, N = a with conformal time and N = 1/H with number of e-folds.
The metric reads γij = pδij. This gives rise to a particularly simple expression for the
Hamilton equations (2.2.10) and (2.2.11), which now become

φ̇ =
N

a3
πφ, (2.2.13)

π̇φ = −Na3V,φ +Na∆φ, (2.2.14)

where ∆ = δij∂i∂j is the 3-dimensional Laplace operator.

2.2.2 Langevin equation in phase space

In order to study the stochastic behaviour of the inflaton it is necessary to split the
scalar field φ into its small and long wavelength parts. This is achieved through the
introduction of a cut-off wavelength in Fourier space

kσ = σaH, (2.2.15)

where σ is the ratio between the Hubble radius and the cut-off wavelength. It can be
thought of as a time variable. Its effects disappear from all physical quantities in the limit
σ � 1. The expansion of some physical quantities about this limit will be investigated
further in 2.2.4.

The cut-off allows us to decompose the scalar field as φ = φ̄+φQ and its momentum
as πφ = π̄ + πQ, where

φQ =

∫
R3

d3k

(2π)3/2
W

(
k

kσ

)[
a~kφ~k(τ)e−i

~k·~x + a†~kφ
?
~k
(τ)ei

~k·~x
]
, (2.2.16)

πQ =

∫
R3

d3k

(2π)3/2
W

(
k

kσ

)[
a~kπ~k(τ)e−i

~k·~x + a†~kπ
?
~k
(τ)ei

~k·~x
]
. (2.2.17)

These are the small-wavelength parts of φ and π. The window function W turns off
(W ' 0) for big wavelengths (k � kσ) and turns on (W ' 1) for small wavelengths
(k � kσ). On the other hand, φ̄ and π̄ are the long-wavelength (or coarse-grained) parts
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of φ and πφ. The operators a~k and a†~k are the usual annihilation and creation operators,

satisfying the commutation relations [a~k, a
†
~k′

] = δ(3)(~k − ~k′) and [a~k, a~k′ ] = [a†~k, a
†
~k′

] = 0.

From now on, we shall only specify the norm k of the wave-number ~k because we will
only be interested in isotropic initial states.

In Fourier space, equations (2.2.13) and (2.2.14) read

φ̇k =
N

a3
πk, (2.2.18)

π̇k = −Na3V,φφφk − k2Naφk. (2.2.19)

These expressions make up the full field and momentum operators in physical space

given by Φ~k = φk(τ)e−i
~k·~x and Π~k = πk(τ)e−i

~k·~x. They are normalized through the
Klein-Gordon inner product like

i

∫
Στ

d3x(Φ~kΠ
?
~k′
− Π~kΦ

?
~k′

) = δ(3)(~k − ~k′), (2.2.20)

where Στ is a space-like hyper-surface of fixed time τ .
It is possible to obtain the Langevin equations for the long-wavelength parts φ̄ and π̄

by plugging the decompositions φ = φ̄ + φQ and πφ = π̄ + πQ into (2.2.13) and (2.2.14)
and linearising the result, i.e. keeping terms up to order 1 in quantum fluctuation. Doing
this yields

˙̄φ+ φ̇Q =
N

a3
(π̄ + πQ) , (2.2.21)

˙̄π + π̇Q = Na∆φQ −Na3 [V,φ + V,φφφQ] . (2.2.22)

In order to obtain this expression, the potential V,φ(φ) has been expanded about the
coarse-grained value φ̄, so that V,φ(φ) = V,φ(φ̄ + φQ) ' V,φ(φ̄) + V,φφ(φ̄)φQ at leading
order in φQ. Additionally, ∆φ̄ has vanished since φ̄ is defined as a background value,
meaning we do not expect a dependence on the point in space ~x.

At this point we can plug in the definitions (2.2.16) and (2.2.17) of the quantum parts
to obtain the Hamilton equations for the coarse-grained fields, which read

˙̄φ =
N

a3
π̄ + ξφ(τ), (2.2.23)

˙̄π = −Na3V,φ + ξπ(τ), (2.2.24)

where short-wavelength modes appear only through the quantum noises ξφ and ξπ given
by

ξφ = −
∫
R3

d3k

(2π)3/2
Ẇ

(
k

kσ

)[
a~kφ~k(τ)e−i

~k·~x + a†~kφ
?
~k
(τ)ei

~k·~x
]
, (2.2.25)

ξπ = −
∫
R3

d3k

(2π)3/2
Ẇ

(
k

kσ

)[
a~kπ~k(τ)e−i

~k·~x + a†~kπ
?
~k
(τ)ei

~k·~x
]
. (2.2.26)
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Notice that the quantum noises are proportional to the time derivative of the window
function. This means that quantum effects are stronger in proximity of the quantum-to-
classical transition.

2.2.3 Power spectrum

We shall work at linear order in perturbation theory and place both φk and πk in their
vacuum state. With these assumptions, the noises obey Gaussian statistics with van-
ishing mean. Their properties are fully specified by their two-points correlation matrix

Ξ(τ1, ~x1; τ2, ~x2) =

(
〈0|ξφ(τ1, ~x1)ξφ(τ2, ~x2)|0〉 〈0|ξφ(τ1, ~x1)ξπ(τ2, ~x2)|0〉
〈0|ξπ(τ1, ~x1)ξφ(τ2, ~x2)|0〉 〈0|ξπ(τ1, ~x1)ξπ(τ2, ~x2)|0〉

)
. (2.2.27)

Inserting (2.2.25) and (2.2.26) into this expression leads to the matrix element

Ξf1g2 =

∫
R3

d3k

(2π)3/2
Ẇ

(
k

kσ(τ1)

)
Ẇ

(
k

kσ(τ2)

)
fk(τ1)g?k(τ2)ei

~k·(~x2−~x1), (2.2.28)

where we have introduced the notation Ξf1g2 = 〈0|ξf (τ1, ~x1)ξg(τ2, ~x2)|0〉, with f and g
being either φ or π.

Since we are only interested in isotropic states, we can turn to 3-dimensional polar
coordinates and integrate over the angular variables, obtaining

Ξf1g2 =

∫
R+

k2dk

2π2
Ẇ

(
k

kσ(τ1)

)
Ẇ

(
k

kσ(τ2)

)
fk(τ1)g?k(τ2)

sin(k|~x2 − ~x1|)
k|~x2 − ~x1|

. (2.2.29)

At this point one needs to specify the window function W . The simplest and most
natural choice is the Heaviside theta function θ(k/kσ− 1). Its derivative is a Dirac delta
distribution, so that Ẇ [k/kσ(τ1)]Ẇ [k/kσ(τ2)] = δ[k − kσ(τ1)]δ[k − kσ(τ2)] = δ(τ2 − τ1).
Therefore we can solve the integral in (2.2.29) to obtain

Ξf1g2 =
1

6π2

dk3
σ(τ)

dτ

∣∣∣∣
τ=τ1

fkg
?
k

∣∣
k=kσ(τ1)

sin[kσ(τ1)|~x2 − ~x1|]
kσ(τ1)|~x2 − ~x1|

δ(τ2 − τ1). (2.2.30)

We will only consider the autocorrelation of the noises, which is given by the approx-
imation ~x2 ' ~x1, which means that sin[kσ(τ1)|~x2 − ~x1|]/[kσ(τ1)|~x2 − ~x1|] ' 1. It is useful
to write elements in the correlation matrix as Ξf1g2(τ1) = Ξfg(τ1)δ(τ2 − τ1). On top of
this, the power spectrum can be expressed in terms of the quantum fluctuations (recall
f and g are ξφ and ξπ) as

Pfg(τ, k) =
k3

2π2
fk(τ)g?k(τ). (2.2.31)
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With this definition, the correlator matrix becomes

Ξfg(τ) =
d ln[kσ(τ)]

dτ
Pfg [τ, kσ(τ)] . (2.2.32)

Often times, it is convenient to work with the symmetric part of Ξ, which will be
defined as the diffusion matrix D, given by

D =
Ξφφ + Ξππ

2
I +

Ξφπ + Ξπφ

2
Jx +

Ξφφ − Ξππ

2
Jz, (2.2.33)

where I is the 2-dimensional identity matrix and {Jx, Jy, Jz} are the 2-dimensional Pauli
matrices.

2.2.4 Solution for a free scalar field

In this section we will assume that the inflaton is driven by a quadratic potential V (φ) =
Λ4+m2φ2/2. This assumption may seem too strong and rule out more realistic potentials.
However, regardless of the model, we can expand the potential about an arbitrary point
and stop at second order (first order can often be neglected due to shift symmetry). Since
this potential only features a constant term and a mass term, the field φ is a free scalar
field. Let us assume the noises ξφ and ξπ do not depend on the phase-space variables
φ̄ and π̄ of the coarse-grained field. Then equations (2.2.23) and (2.2.24) form a linear
differential system, which can be analytically solved.

Since the system formed by (2.2.23) and (2.2.24) is linear, it is useful to introduce
the vector notation

Φ =

(
φ̄
π̄

)
, ξ =

(
ξφ
ξπ

)
. (2.2.34)

This means that the system formed by (2.2.23) and (2.2.24) can be compactly written
as

Φ̇ = A(τ)Φ + ξ(τ), (2.2.35)

where

A(τ) =

(
0 N/a3

−m2Na3 0

)
. (2.2.36)

A standard result of the stochastic formalism is the Fokker-Planck equation. It allows
us to find a probability density function (PDF) P (τ,Φ) in phase space starting from the
Langevin equations (2.2.35). It is a differential equation in P (τ,Φ) and reads

∂P (τ,Φ)

∂τ
= −

2∑
i,j=1

∂

∂Φi

[AijΦjP (τ,Φ)] +
1

2

2∑
i,j=1

∂2

∂Φi∂Φj

[Ξij(τ)P (τ,Φ)] . (2.2.37)
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In this expression the first term is called the drift term and it is responsible for the
deterministic part of dynamics. On the other hand, the second term, called the diffusive
term, traces the stochastic part.

Expression (2.2.37) can be further simplified because of the simplicity of our initial
assumptions, reaching the final result

∂P (τ,Φ)

∂τ
= −

2∑
i,j=1

∂

∂Φi

[AijΦjP (τ,Φ)] +
1

2

2∑
i,j=1

Dij(τ)
∂2P (τ,Φ)

∂Φi∂Φj

, (2.2.38)

where D(τ) is the symmetric part of Ξ as defined in (2.2.33). This equation tells us
that in order to fully determine the stochastic properties of our system, all we need to
evaluate is the matrix D.

Explicit solution in a de-Sitter background

Let us now find an explicit solution to the Hamiltonian system formed by (2.2.18) and
(2.2.19). We will choose to work with number of e-folding, so that N = 1/H. The
Hamiltonian system mentioned above leads to the equation of motion

φk,NeNe + (3− ε)φk,Ne +

[(
k

aH

)2

+
V,φφ
H2

]
φk = 0, (2.2.39)

where , Ne indicates derivation with respect to number of e-foldings.
Let us work out the case of a massless scalar field evolving in a perfect de-Sitter

background V (φ) = Λ4. This means V,φφ = 0 and ε = 0, since the potential is simply a
cosmological constant and the Hubble constant is strictly constant. The solution reads

φx = x3/2
[
αH

(1)
3/2 (x) + βH

(2)
3/2 (x)

]
, (2.2.40)

where we have set x = k/(aH) for convenience; H
(1,2)
n are Hankel functions of the first

and second kind respectively; α and β are integration constants. Their value can be found
by imposing suitable initial conditions. We will assume Bunch-Davies initial conditions,
which means that

lim
x→∞

φx =
e−ix

a
√

2xaH
. (2.2.41)

In order to compare this limit to our solution (2.2.40), we need to evaluate (2.2.40) when
x� 1. A quick calculation shows that

lim
x→∞

φx = −
√

2

π
αxeix −

√
2

π
βxe−ix. (2.2.42)
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In order for this expansion to agree with the Bunch-Davies condition (2.2.41), the nega-
tive frequency coefficient must vanish α = 0, and the positive frequency coefficient must
satisfy

β = −H
√
π

2k3/2
. (2.2.43)

This leaves us with the fully determined solution

φk = − H
√
π

2(aH)3/2
H

(2)
3/2

(
k

aH

)
=

1

a
√

2k

(
1− iaH

k

)
e−ik/(aH),

(2.2.44)

where the last step was obtained by using Hankel function identities. Using (2.2.18) one
can find the conjugated momentum

πk = Ha3φ̇k

= ia

√
k

2
e−ik/(aH).

(2.2.45)

It is now convenient to introduce the cut-off wavelength kσ = σaH by substitut-
ing k 7→ kσ. Recalling definition (2.2.33), the diffusion matrix in de-Sitter space with
wavelength cut-off is given by

D =

(
H2(1+σ2)

4π2 −a3H3σ2

4π2

−a3H3σ2

4π2
a6H4σ4

4π2

)
. (2.2.46)

Notice that, in the physical limit σ � 1, the scalar field direction in the diffusion matrix
correctly reproduces the familiar result Dφφ ' DSR

φφ = H2/4π2.

Explicit solution in a slow-roll background

Let us now generalise the results of the previous calculation to a slow-roll inflationary
background. The potential is no longer constant, therefore V,φφ is now a function of
φ. However, as previously pointed out, an expansion of the potential V (φ) about for
example the coarse-grained field φ̄ will make the coefficient V,φφ a simple constant. Let
us define the index

ν =
3

2

√
1− 4V,φφ

9H2
. (2.2.47)

Equation (2.2.39) is solved by

φx = x3/2
[
αH(1)

ν (x) + βH(2)
ν (x)

]
, (2.2.48)
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which generalises (2.2.40). Again, α and β are found by imposing initial Bunch-Davies
conditions and comparing the condition to the expansion for the solution (2.2.48) about
x � 1. While α is found to vanish even in this more general case, this time β is given
by

β = i
H
√
π

2k3/2
e−i

π
4

(2ν+3). (2.2.49)

Bear in mind the phase factor is completely irrelevant, because all physical quantities de-
pend on |φ|2. Nevertheless, it will be kept throughout the calculations for completeness’
sake. The solution then is given by

φk = i
H
√
π

2(aH)3/2
e−i

π
4

(2ν+3)H(2)
ν

(
k

aH

)
, (2.2.50)

whose conjugated momentum is

πk =
a
√
aH
√
π

4
e−i

π
4

(2ν−3)

[
2k

aH
H

(2)
ν−1

(
k

aH

)
+ (3− 2ν)H(2)

ν

(
k

aH

)]
. (2.2.51)

As usual, we will utilise the cut-off kσ 7→ σaH. This time the matrix elements of the
symmetric part D of the correlator matrix involve more complicated terms. They are
given by 1

Dφφ =
H2Γ(ν)2

π3

(σ
2

)3−2ν
{

1 +
2

ν − 1

(σ
2

)2

− 2πν2 cot(πν)

Γ(ν)Γ(ν + 1)

(σ
2

)2ν

+
2ν − 3

(ν − 2)(ν − 1)2

(σ
2

)4

+O
(
σ5
)}
, (2.2.52)

Dππ =
a6H4Γ(ν)2

4π3

(σ
2

)3−2ν
{

(2ν − 3)2 +
2(2ν − 3)(2ν − 7)

ν − 1

(σ
2

)2

+
2π cot(πν)(2ν − 3)(2ν + 3)

Γ(ν)Γ(ν + 1)

(σ
2

)2ν

+
8ν3 − 68ν2 + 166ν − 131

(ν − 2)(ν − 1)2

(σ
2

)4

+O
(
σ5
)}
, (2.2.53)

Dφπ = Dπφ =
a3H3Γ(ν)2

π3

(σ
2

)3−2ν
{

2ν − 3 +
2(2ν − 5)

ν − 1

(σ
2

)2

+
6π cot(πν)

Γ(ν)Γ(ν + 1)

(σ
2

)2ν

+
(2ν − 3)(2ν − 7)

(ν − 2)(ν − 1)2

(σ
2

)4

+O
(
σ5
)}
. (2.2.54)

This expansion was obtained and ordered assuming 1 < ν < 2. One can easily com-
pare these expressions with (2.2.46) and see that (2.2.46) is precisely reproduced when

1Some of the coefficients multiplying (σ/2)2ν terms are in disagreement with what was found by [10].
However, they are sub-leading terms in slow-roll and they are not expected to affect dynamics greatly.
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we plug ν = 3/2 into (2.2.52), (2.2.53) and (2.2.54). In order for this correspondence to
be evident, we have shown terms up to σ4 even though this is not necessary in practice
given that only leading terms in σ are required to be kept in the stochastic classical
approximation.

Additionally, the limit σ → 0 again correctly reproduces the de Sitter approximation
Dφφ ' DSR

φφ = H2/4π2. While the other entries in the matrix vanish in the massless
case, this is no longer true in the general case. Indeed, Dππ and Dφπ feature sub-leading
terms in σ.

2.3 Overview of the literature

In the present section we summarise three articles that make use of the stochastic for-
malism introduced in section 2.2 and that have conflicting assumptions and conclusions
regarding the role of stochastic effects in ultra slow-roll and primordial black hole for-
mation.

2.3.1 De Sitter noise

In this section we will report the steps taken by [11] to justify their claim that quantum
diffusion does play a significant role in determining the abundance of PBHs today.

Let us expand the scalar potential around the value φ0 at which the scalar field enters
USR, such that

V (φ) ' V0

(
1 +
√

2εV (φ− φ0)
)

+ · · · , (2.3.1)

where
√

2εV = V,φ/V0. This expansion is valid in the range φ? < φ < φ0, where φ? is the
value of the inflaton field at the end of the USR phase. We arbitrarily define Ne = 0 the
beginning of the USR phase with initial conditions φ(0) = φ0 and dφ/ dNe

∣∣
Ne=0

= Π0.
In this simple scenario, the equation of motion reads

φ,NeNe + 3φ,Ne +
V,φ
H2

= 0, (2.3.2)

approximating 3− ε ' 3. Using H2 ' V/3, the solution reads

φ(Ne) = φ0 +
1

3
[Π0 − Π(Ne)]−

√
2εVNe, (2.3.3)

Π(Ne) = Π0e
−3Ne +

√
2εV (e−3Ne − 1), (2.3.4)

where Π(N) = dφ(Ne)/ dNe.
Equation (2.3.4) tells us that the inflaton’s velocity exponentially decays after enter-

ing the USR phase. Indicating by Π? the value of the velocity at the end of this phase,

32



the curvature perturbation is given by

ζ? = −φk
Π

∣∣∣∣
Ne=N?

e

, (2.3.5)

where φk = H/
√

2k3. Even though the slow-roll condition is strongly violated, this still
results in a flat power spectrum, since

Pζ? =
k3

2π2
|ζ?|2 =

H2

4π2Π2
?

. (2.3.6)

This is due to a particular dual symmetry enjoyed by the system in question.
So far we have discussed modes that cross the horizon towards the end of the USR

phase. Let us now discuss what happens to those modes that leave the Hubble radius
during the sudden transition from slow-roll to USR. It can be shown that, for those
modes, the power spectrum looks like [11]

Pζk = g(−kτ0)Pζ? , (2.3.7)

g(x) =
1

2x6

[
9 + 18x2 + 9x4 + 2x6 + 3

(
−3 + 7x4

)
cos(2x)

− 6x
(
3 + 4x2 − x4

)
sin(2x)

]
,

(2.3.8)

where we have turned to cosmic time and τ0 represents the moment when the USR phase
begins. Since figure 2.1 shows a peak for g(x) of about 2.5, we can say that

Pζpeak ' 2.5Pζ? = 2.5

(
H?

2πΠ?

)2

. (2.3.9)

An example: Starobinsky model

Let us now introduce a potential first described by Starobinsky [17]. It features two
distinct slow-roll phases, linked by a very short phase in which |η| ∼ O(1). In the
following, we will use the parametrization used by [11]:

V (φ) = V0

[
1 +

1

2

(√
2ε+ −

√
2ε−

)
(φ− φc) tanh

(
φ− φc

δ

)
+

1

2

(√
2ε+ +

√
2ε−

)
(φ− φc)

]
,

(2.3.10)

where δ is proportional to the duration of the transition and ε− � 1, ε+ � 1 are the
slow-roll parameters before and after the transition respectively. A detailed discussion
on the form of this potential is delayed until section 3.1.
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Figure 2.1: Function used to write Pζk for those modes that leave the Hubble radius
during the sudden transition from slow-roll to USR in terms of Pζ? .

Probability density functions

Recall that the power spectrum depends on the inverse of the inflaton velocity. When
we take quantum diffusion into account, we need to consider that the inflaton velocity
cannot deviate too much from its classical value, since it would not give rise to a correct
power spectrum enhancement, failing to reproduce the desired PBH abundance. This
means that the spread in inflaton velocity cannot be too large and needs to be carefully
scrutinised. For this reason, let us turn our attention to solving the stochastic equation
of motion for the scalar field φ given by

φ,NeNe + 3φ,Ne +
V,φ
H2

= ξ, (2.3.11)

which is (2.3.2) with its inhomogeneous part given by the random Gaussian noise ξ(τ).
This problem can be reformulated as an Ornstein-Uhlenbeck process where

φ,Ne = Π,

Π,Ne + 3Π +
V,φ
H2

= ξ,

〈ξ(Ne)ξ(N
′
e)〉 = Dδ(Ne −N ′e),

D =
9H2

4π2
.

(2.3.12)
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Note that the two-point function of the random Gaussian noise is nothing but (2.2.27)
where we take the exact de Sitter approximation for the noise correlator matrix. The
Kramers-Moyal (KM) equation that generalises the Focker-Planck equation (2.2.37) for
the corresponding probability density function P = P (φ,Π, Ne) is

∂P

∂Ne

= − ∂

∂φ
(ΠP ) +

∂

∂Π

(
V,ΠP +

V,φ
H2

P

)
+
D

2

∂2

∂Π2
P, (2.3.13)

where V = 3Π2/2. The initial condition for the probability is

P (φ,Π, 0) = δ(φ− φc)δ(Π− Πc). (2.3.14)

This is because it has been assumed that quantum diffusion has a negligible effect be-
fore the transition phase. At number of e-foldings Ne & 1, the solution to (2.3.13) is
approximately given by

P (φ,Π, Ne) '
1

Π

(
27

2D2Ne

)1/2

exp

[
− 9

2DNe

(∆φ)2

]
exp

[
3

DNe

∆φ∆Π

]
exp

[
− 3

D
(∆Π)2

]
.

(2.3.15)

We can now integrate over Π to obtain

Pφ(Ne) =
3√

2πDNe

exp

[
− 9

2DNe

(φ− φ(Ne))
2

]
. (2.3.16)

The variance in the scalar field therefore is〈
∆φ2

〉
=

∫
dφ(φ− φ(Ne))

2Pφ(Ne) =
D

9
Ne. (2.3.17)

On the other hand, integrating over φ yields

PΠ(Ne) =

√
3

πD
exp

[
− 3

D
(Π− Π(Ne))

2

]
, (2.3.18)

with variance 〈
∆Π2

〉
=

∫
dΠ(Π− Π(Ne))

2PΠ(Ne) =
D

6
. (2.3.19)

This means that when the inflaton field decays, its velocity quickly reaches an asymptotic
value.
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Gauging the effects on the PBH abundance

At this point, the authors of [11] run a numerical simulation that involves generating a
large number of Universes with different values for the inflaton field velocity in USR. It is
considered a quantum field with Gaussian distribution centred around its classical value
Π? with variance 〈∆Π2〉. They test a linear and a Starobinsky potential and confirm
that what they find is in agreement with the theoretical result (2.3.19). More realistic
potentials, such as the one described in [14], are in agreement with a more precise version
(see [11] for more details) of (2.3.19) that involves the slow-roll parameter η.

The spread in inflaton field velocity is of the utmost importance when trying to

calculate PBH abundance. If the variance 〈∆Π2〉1/2 is smaller than the size δΠ? of the

region over which the curvature perturbation is of order P1/2
ζpeak

, the wave packet is tightly
compacted about this region and most trajectories will display the same power spectrum.
This means one needs to impose the condition

〈∆Π2〉1/2

H
� δΠ?

H
(2.3.20)

if we want all curvature perturbations ζk at a scale k to generate a power spectrum Pζk
such that Pζk ∼ Pζpeak .

Let us test condition (2.3.20) for a linear potential. Since Pζpeak ∼ 2.5Pζ? , definition
(2.3.6) tells us that

δΠ? ' 1.6
H?

2πP1/2
ζpeak

. (2.3.21)

Therefore, criterion (2.3.20) means that

P1/2
ζpeak
� 1.6

H?

2π 〈∆Π2〉1/2
, (2.3.22)

Now, making use of (2.3.19) leads to

P1/2
ζpeak
� 1.6

√
2

3
' 1.3. (2.3.23)

This condition is used to gauge the role of quantum diffusion on the enhancement of
the power spectrum. The peak in the power spectrum required to generate the correct
abundance of PBHs is ∼ O(10−2). This means that (2.3.23) is satisfied. However, as we
will show shortly, this does not seem enough to imply that quantum effects are expected
to be negligible in the determination of the PBH abundance.

In the more realistic case, the same analysis can be carried out. This time, it was
estimated numerically by [11] that P1/2

ζpeak
∼ 7H?/(2πΠ?). They find

δΠ?

H
' 1.4, (2.3.24)
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while
〈∆Π2〉1/2

H
' 0.4. (2.3.25)

Criterion (2.3.20) is still comfortably satisfied even in this case.
A stronger criterion than (2.3.20) directly involving the PBH abundance βf(M) in-

troduced in section 2.1 can be derived. Recall that βf(M) is the fraction of total energy
in PBHs and it is given by

βf(M) ' σM√
2πζc

e
− ζ2c

2σ2
M . (2.3.26)

Quantum diffusion needs to be precisely fine-tuned, because any slight variation from
the correct spread in inflaton velocities will result in a huge change in PBH abundance.
We will then consider the spread in the PBH energy fraction itself.

Let us promote βf(M) to a quantum variable and consider the case of a linear poten-
tial. Its average value is given by

〈βf(M)〉 =

∫
dΠPΠ(Ne)βf(M)

=
σM√

2π(1 + θ)3/2ζc

e
− ζ2c

2(1+θ)σ2
M ,

(2.3.27)

where θ = 4π2ζ2
c 〈∆Π2〉 /H2. Recall that the probability distribution PΠ(Ne) is defined

in (2.3.18). Let us introduce the quantity ∆qd such that

〈βf〉
βf

= e∆qd . (2.3.28)

This quantity tells us how far that abundance of PBH calculated in the classical frame-
work differs from the quantum one. Using equation (2.3.27) takes us to

∆qd ' −
ζ2

c

2σ2
M

(
θ

θ − 1

)
. (2.3.29)

It is reasonable to assume that the classical calculation does not stray too far from the
full quantum one when ∆qd . 1. This means that

〈∆Π2〉1/2

H
.

σM√
2πζ2

c

' 10−2
(σM

0.1

)(1.3

ζc

)2

. (2.3.30)

This condition is badly violated by a spread
√
D/6/H ' 0.2. One can alternatively

fix the required PBH abundance βf ' 10−16 and find a lower bound on the variance

σM & 2

(
ζc

1.3

)2

. (2.3.31)

This condition, in contrast to (2.3.23), is not easy to satisfy, indicating the difficulty of
ignoring the impact of quantum diffusion on power spectrum enhancement.
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2.3.2 Enhanced noise

In the following sections we will take on the point of view of [12]. We will first review
their formalism, then report on their findings. Finally, we will comment on a few of their
results.

The authors of [12] work with a toy potential whose general shape closely resembles
that of [14]. Their analysis begins with solving the evolution equation for quantum
fluctuations ζk, given by the Mukhanov-Sasaki equation. This will allow us to calculate
the primordial power spectrum. Let us briefly remind the definition

ζ =
u

z
=
aδφ

z
, (2.3.32)

where u is the Mukhanov-Sasaki variable and z = aφ̇. In Fourier space, the evolution
equation is

ζk,NeNe + (3− ε+ η)ζk,Ne +

(
k

aH

)2

ζk = 0, (2.3.33)

where ζk = uk/z. This equation is easily obtained from the Mukhanov-Sasaki equation
u′′k(η) + (k2 − z′′/z)uk = 0 expressed in number of e-foldings rather than conformal
time. Notice this equation has two regimes delimited by k/(aH). At sub-horizon scales
k/(aH)� 1, the friction term becomes negligible and the field behaves as a free field in
Minkowski space. At super-horizon scales k/(aH)� 1 the friction term dominates over
all other terms, and the solution can be found by considering

dζk
dNe

∣∣∣∣
k/(aH)�1

= C̃2 exp

[
−
∫

dNe(3− ε+ η)

]
= C2 exp[−3Ne + lnH − ln ε], (2.3.34)

which implies

ζk
∣∣
k/(aH)�1

= C1 + C2

∫
dNee

−3Ne+lnH−ln ε. (2.3.35)

This tells us that there is one constant mode and one evolving mode. The second one is
either growing or decaying depending on the sign of the exponent −3Ne + lnH − ln ε.

These modes allow us to calculate the power spectrum

PMS
ζ =

k3

2π2
|ζk|2

∣∣∣∣
k/(aH)�1

. (2.3.36)

Now, the time-dependent mode in (2.3.35) is usually negligible since for small ε and η
it corresponds to a decaying solution. This means that the curvature perturbation ζk
can be considered constant after horizon crossing. Therefore, the power spectrum can
be safely evaluated at horizon crossing k = aH. This brings us to

PSR
ζ '

1

8π2M2
Pl

V (φ)

ε(3− ε)
, (2.3.37)
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Figure 2.2: Enhancement of the stochastic correlator noise Ξφφ for modes that leave the
horizon during USR. The slow-roll approximation is still valid for those that leave well
before or well after the USR phase. This picture was taken from [12].

where the approximation is valid as long as slow-roll holds. This result gives us an
intuition as to what needs to be done in order to achieve power spectrum enhancement:
slow down the inflaton so that ε takes small values.

However, beyond slow-roll, the friction term might flip sign. This happens when
η < −3 + ε, and the mode which was decaying will now grow, inducing a growth in the
curvature perturbation, as seen in figure 2.2. This, in turn, causes the power spectrum
to rapidly grow. This is the main mechanism leading to power spectrum enhancement
in single field inflation models.

This behaviour is confirmed by our analysis in chapter 3 as well: modes that leave
the horizon around the time when |η| ∼ O(1) enjoy a rapid growth. Those that leave
the horizon well after this transition though, are mostly unaffected and behave as if the
transition never occurred.

At this point, the authors of [12] make use of the very same stochastic formalism
already presented in section 2.2: they split the field and its momentum in their coarse-
grained and quantum parts, then solve the Langevin equations. However they take
a different approach when they calculate the power spectrum. A general correlation
function is defined as

〈δφnδπm〉 (Ne) =

∫
dπ̄φ

∫
dφ̄(φ̄− φcl(Ne))

n(π̄φ − πcl(Ne))
mP (Ne,Φ), (2.3.38)
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where the quantum solution to the Langevin equation was expanded about its classical
trajectory such that

δφ = φ̄− φcl, (2.3.39)

δπ = π̄φ − πcl. (2.3.40)

It can be checked that the probability density function P (Ne,Φ) satisfies the Focker-
Planck equation

∂P (Ne,Φ)

∂Ne

= − ∂

∂Φf

(
DfP (Ne,Φ)− Ξfg

2

∂P (Ne,Φ)

∂Φg

)
, (2.3.41)

which is equivalent to (2.2.38). Here, the indices f and g refer to φ̄ and π̄φ, repeated
indices indicate summation and D is the drift vector with components

Dφ = π̄φ,

Dπ = −(3− ε)
[
π̄φ +M2

Pl(lnV ),φ
]
.

(2.3.42)

Taking the Ne derivative of (2.3.38) and using the Focker-Planck equation (2.2.38)
yields

d

dNe

〈δφnδπm〉 = n
(〈
δφn−1δπmDφ

〉
−
〈
δφn−1δπm

〉
Dcl
φ

)
+m

(〈
δφnδπm−1Dπ

〉
−
〈
δφnδπm−1

〉
Dcl
π

)
+

1

2
n(n− 1)Ξφφ

〈
δφn−2δπm

〉
+

1

2
m(m− 1)Ξππ

〈
δφnδπm−2

〉
+

1

2
nm(Ξφπ + Ξπφ)

〈
δφn−1δπm−1

〉
,

(2.3.43)

where Dcl
φ and Dcl

π are the drift terms (2.3.42) evaluated at classical trajectory. In theory,
one has to solve the infinite differential system formed by (2.3.43) in order to find the
full time evolution of each correlation function. In practice, one can truncate the system
at a certain point and consider higher moments negligible.

The power spectrum is closely related to the 2-point correlation functions. At leading
order, the evolution equations (2.3.43) for n and m up to 1 can be organised as follows

d

dNe

 〈δφ2〉
〈δφδπ〉
〈δπ2〉

 =

 0 −2 0
g(εn) −f(εn) −1

0 2g(εn) −2f(εn)

 〈δφ2〉
〈δφδπ〉
〈δπ2〉

+

 Ξφφ

Ξsymm
φπ

Ξππ

, (2.3.44)

where Ξsymm
φπ = (Ξφπ + Ξπφ)/2 and

f(εn) = 3− ε1
(

1− ε2
3− ε1

)
,

g(εn) = −ε2
2

(
f(εn) +

1

2
ε2 + ε3

)
.

(2.3.45)
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In their gauge choice, from the two-point function

〈
ζ2
〉

=
1

2M2
Pl

〈δφ2〉
ε1

, (2.3.46)

we can compute the power spectrum as

Pζ =
d 〈ζ2〉
d ln k

=
1

1− ε1
d 〈ζ2〉
dNe

=
1

1− ε1
1

2M2
Plε1

(
d 〈δφ2〉

dNe

− ε2
〈
δφ2
〉)

.

(2.3.47)

We can now use (2.3.44) to write the power spectrum as

Pζ =
1

1− ε1
1

2M2
Plε1

(
Ξφφ − 2 〈δφδπ〉 − ε2

〈
δφ2
〉)
, (2.3.48)

where

〈δφδπ〉 =
fg

f 2 + g
+

1

2(f 2 + g)

[
d 〈δπ2〉

dNe

− Ξππ − 2f

(
d 〈δφδπ〉

dNe

− Ξφπ

)]
. (2.3.49)

The function f and g were defined in (2.3.45).
We can check that this expression yields the usual result when we expand it in slow-

roll parameters at leading order. In this limit we have f ' 3 and g ' −3ε2/2, which in
turn means that 〈δφδπ〉 ' −ε2/2. Plugging these values in we recover the usual power
spectrum

Pζ '
1

2M2
Plε1

Ξφφ. (2.3.50)

This value can also be obtained if the quantum fluctuations 〈δφ2〉 and 〈δφδπ〉 are small,
meaning the contribution of the −2 〈δφδπ〉 − ε2 〈δφ2〉 term is negligible when compared
to Ξφφ in (2.3.48). However, short wavelength fluctuations may cause a peak in the
noise amplitude. Taking this into account, they predict the power spectrum should
approximately be given by

Pζ '
1

2M2
Plε1

(Ξφφ − cε2), (2.3.51)

where c ' 〈δφ2〉 is a constant. The second term causes a spike in the power spectrum of
about 3 orders of magnitude as depicted in figure 2.3.
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Figure 2.3: Power spectrum Pζ for the curvature perturbations computed from quantum
diffusion (green), from the Mukhanov-Sasaki equation (red) and from slow-roll (blue).
This picture was taken from [12].

2.3.3 Ultra slow-roll noise

In the following section we will review the final paper [13]. This paper reaches a con-
clusion at odds with both [11] and [12]. Here we will follow their analysis to better
understand their claim.

They begin by considering small quantum fluctuations from classical trajectories in
the framework of stochastic single field inflation. We will use the spatially flat gauge,
where the scalar field φ is split into a background value φ0(τ) and a fluctuation δφ(τ, ~x),
while scalar metric fluctuations vanish. The action describing such a system is

S =

∫
Ldτd3x =

1

2

∫ (
v′2 + v∆v +

z′′

z
v2

)
dτd2x, (2.3.52)

where ′ denotes derivation with respect to conformal time τ , ∆ =
∑

i ∂
2
i and

v = aδφ, z =
aφ′0
H
, H = aH. (2.3.53)

Let us remind the definitions of the slow-roll parameters in conformal time

ε1 = − H ′

aH2
, ε2 =

ε′1
Hε1

, ε3 =
ε′2
Hε2

. (2.3.54)
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Taking the conformal time derivative of the Friedmann equation (1.2.3) yields the con-
straint

H ′

a
= − φ′20

2M2
Pla

2
. (2.3.55)

Using (2.3.54) and (2.3.55) we find

ε1 =
φ′20

2H2M2
Pl

, (2.3.56)

which in turn leads us to
z = a

√
2ε1MPl. (2.3.57)

At this point, we can find an expression for the term z′′/z in (2.3.52) in terms of the
slow-roll parameters, which reads

z′′

z
= H2

(
2− ε1 +

3

2
ε2 −

1

2
ε1ε2 +

1

4
ε22 +

1

2
ε2ε3

)
. (2.3.58)

Let us now approximate this expression in a slow-roll background. In slow-roll one
has εi+1 � εi � 1, therefore

z′′SR

zSR

= H2(2− ε1 +O
(
ε21
)
). (2.3.59)

On the other hand, in ultra slow-roll, the equation of motion (2.3.2) reads

φ0,NeNe + (3− ε1)φ0,Ne ' 0, (2.3.60)

solved by φ0,Ne ∝ e−3Ne/H. Therefore, since ε1 = φ2
0,Ne

/(2M2
Pl) (recall dNe = H dt =

H dτ), we have

εUSR
1 ∝ e−6Ne

2M2
PlH

2
. (2.3.61)

We can express higher order slow-roll parameters in terms of the first two. Indeed, we
have

εUSR
2 =

d

dNe

ln εUSR
1 = −6 + 2εUSR

1 ,

εUSR
3 =

d

dNe

ln εUSR
2 = 2εUSR

1 ,

εUSR
4 =

d

dNe

ln εUSR
3 = εUSR

2 ,

(2.3.62)
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and so on. These equations tell us that εUSR
n = −6 + 2εUSR

1 when n is even, and εUSR
n =

2εUSR
1 when n is odd. Finally, this means that the z′′/z term in ultra slow-roll is given

by
z′′USR

zUSR

= H2
[
2− 7εUSR

1 +O
((
εUSR

1

)2
)]
. (2.3.63)

We immediately notice that z′′SR/zSR and z′′USR/zUSR already differ at first order in ε1.
We can now turn our attention to solving the Mukhanov-Sasaki equation

τ 2∂
2s(τ, k)

∂τ 2
+ τ

∂s(τ, k)

∂τ
+
(
k2τ 2 − ν2

)
s(τ, k) = 0, (2.3.64)

obtained from the action (2.3.52), where

ν2 =
1

4
+
z′′

z
τ 2. (2.3.65)

This equation is exactly (2.2.39) written in cosmic time, which is solved by (2.2.48) for
constant ν. The authors of [13] fix Bunch-Davies conditions, and find a solution

φk(τ) =

√
−τ
a

√
π

4
H(2)
ν (−kτ), (2.3.66)

which is similar to (2.2.50).
At this point, we simply need to apply the formalism of section 2.2, splitting the

field and its momentum in a coarse-grained part and a quantum part. In their analysis,
they find that the two-point function of the noises is similar to that of the de Sitter
approximation (2.2.46), and are given by

〈ξ1(N1)ξ1(N2)〉 '
(
H

2π

)2

δ(N1 −N2), (2.3.67)

〈ξ2(N1)ξ1(N2)〉 ' 0, (2.3.68)

〈ξ2(N1)ξ2(N2)〉 ' 0. (2.3.69)

If we take the noise amplitudes to be ξ1 = [H/(2π)]ξ and ξ2 = 0, then

〈ξ(N)ξ(N ′)〉 = δ(N −N ′), (2.3.70)

where the equation of motion for the quantum part φQ in real space is given by

φQ,NeNe + 3φQ,Ne =
3H

2π
ξ(N). (2.3.71)

We can now integrate this equation and find that, with suitable initial conditions, the
curvature perturbations in real space is given by

δφQ(N) = φQ(N)− 〈φQ(N)〉 =

∫ N

0

dN2 e
−3N2

∫ N2

0

dN1
3H

2π
e3N1ξ(N1). (2.3.72)
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Since we are interested in the noise auto-correlation, using (2.3.70) we find that

〈δφQ(N)δφQ(N)〉 =
H2

4π2

(
N − 1

2
− e−6N

6
+

2e−3N

3

)
' H2

4π2

(
N − 1

2

)
.

(2.3.73)

We have neglected the decaying modes since we are only interested in the behaviour at
leading order. The linear growth in N is motivated by the fact that we are carrying out
our calculations in real space. We can find the power spectrum by turning to Fourier
space:

Pδφ '
d

dN
〈δφQ(N)δφQ(N)〉 =

H2

4π2

(
1 +O

(
εUSR

1

))
. (2.3.74)

2.3.4 Summary

In this section we will comment on the results found by the three papers summarised in
the sections above. A conclusive view on the role of quantum stochastic effects on ultra
slow-roll backgrounds and its impact on the production of primordial black holes is still
a subject of active research, to which we present our contribution in section 3.

The authors of the paper [11] conclude that quantum diffusion should play a central
role in the quantitative analysis of PBH formation in single field inflation. They assumed
the diffusion coefficient to be of zero-th order in slow-roll parameters. Indeed, they
defined D = 9H2/(4π2).

This quantity is directly related to the matrix (2.2.46). As one can easily see, the
physical limit σ → 0 does lead to the simple definition employed by [11] when the back-
ground field evolves in a perfectly de Sitter space (ν = 3/2). However, any slight variation
from this value will cause the matrix (2.2.46) to show an unavoidable dependence on the
time variable σ, as seen in (2.2.52), (2.2.53) and (2.2.54).

This means that the diffusion matrix D features more than one degree of freedom,
forcing the introduction of more than one random Gaussian noise with potentially time-
dependent amplitudes. For example, even in de Sitter space, keeping terms up to order
two in (2.2.46) will modify the diffusion coefficient Dφφ and introduce quantum noise
in the field-momentum direction. For this reason, choosing a more precise diffusion
coefficient might be necessary.

The authors of [12] reach the conclusion that, in agreement with [11], quantum dif-
fusion effects do play a significant role in the production of PBHs during USR. However
unlike [11] they claim that the power spectrum during this phase receives a huge en-
hancement due to the two-point correlation function 〈δφ2〉.

This enhancement is achieved by evaluating the curvature perturbations at different
times for different modes to construct the power spectrum (2.3.51). Scales that leave
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the horizon deep in USR have their slow-roll parameters ε and η evaluated after the
transition took place, in apparent violation of causality.

The authors of [13] follow an analysis which is similar to that of [12], in the sense that
they evaluate the power spectrum through a two-point correlation function. However, the
respective results are in disagreement with each other, since [13] finds no enhancement
of quantum diffusion. They claim the reason why [12] found an incorrect result lies in
the assumption that, at super-horizon scales, the growing and decaying modes are to
be discarded (see the discussion leading to (2.3.36)). They instead claim that curvature
perturbations at such scales cannot be considered constant during an ultra slow-roll
phase, being dominated by the growing mode.

Furthermore, they mention their disagreement with [11] about the role of quantum
diffusion effects in PBH abundance stems from their different views on the nature of the
power spectrum. They claim [11] had no right to promote it to a stochastic variable,
since it is already a mediated quantity, being an expectation value.

In their estimates of the noise two-point function, the authors of [13] neglect the fact
that the background is undergoing a rapid transition which, as we will show, leads to a
different noise amplitude.
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Chapter 3

The effects of sudden transitions on
the stochastic noise amplitude

In this chapter we will mainly focus on the determination of the properties of the Gaussian
random noise, in particular its two-point function given that the aim of this work is to
clarify the role of quantum diffusion effects on the abundance of primordial black holes,
since there is no general agreement in the literature as to whether or not these effects
should play a significant role.

We will primarily do our calculations with the Starobinsky potential, while occasion-
ally switching to a simpler de Sitter model or to a more realistic potential described in
appendix B. We have made this choice due to the fact that Starobinsky potential remains
simple enough while still capturing the main qualitative features required to induce an
USR phase: two slow-roll flat regions with hierarchical slopes.

The vast majority of calculations are carried out using Wolfram Mathematica, often
shortened to Mathematica. This extremely versatile computing system based on the
Wolfram Language programming language was first released on June 23, 1988 by Wolfram
Research. The version used in this work is version 11.3, released on March 8, 2018. We
chose to adopt this particular language because it complements symbolic programming
while still providing the user with many advanced instruments of numerical analysis.

3.1 Potentials and parameter choice

Choosing the appropriate potential to correctly reproduce experimental results is often
a difficult task. However, sometimes a simple potential is enough to capture the main
features of a particular phenomenon. In this section we will present the potentials we
based our analysis on.
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3.1.1 De Sitter potential

A Universe where the potential of the field driving inflation is a constant is called a de
Sitter Universe. In such a situation, the accelerated expansion (ä > 0) will go on forever,
since the field will keep evolving in a constant background without ever finding a stable
minimum. This is clearly not a realistic case, since in the early Universe inflation must
come to an end at some point. To achieve this, we can manually stop inflation after we
have let the field evolve for some time.

In our analysis, we used the constant potential

V (φ) = 10−2. (3.1.1)

Inflation starts at Ne = 0 number of e-foldings and decided to stop integration at Nend =
70. This particular value was chosen because, in order to solve the Big Bang problems,
we need to have a inflationary period which lasts & 60. Furthermore, more realistic
models such as the one in appendix B suggest this period should indeed last ∼ 70.

The initial value for the inflaton field was taken to be φ(0) = φ0 = 0. Since the theory
is shift invariant, any initial value should not matter when calculating observables. The
velocity of the field was set to ∂φ/∂Ne

∣∣
Ne=0

= 0. This value does not play any significant
role anyway since any initial velocity that the field might have before observable inflation
begins will get exponentially suppressed shortly thereafter.

Given the simplicity of this model, it cannot give rise to any realistic effects found
in other potentials. Nevertheless, this potential is useful from a pedagogical point of
view since it reproduces many of the features of inflation. This potential is useful as a
consistency check of the numerical procedure given that we have the analytical results
for the noise correlators (2.2.46).

3.1.2 Starobinsky model

This is the main potential we used in this work. It was introduced in 1992 by Russian
astrophysicist Starobinsky [17]. We already introduced this potential in section 2.3.1,
but we will repeat here for convenience’s sake. The potential is given by

V (φ) = V0

[
1 +

1

2

(√
2ε+ −

√
2ε−

)
(φ− φc) tanh

(
φ− φc

δ

)
+

1

2

(√
2ε+ +

√
2ε−

)
(φ− φc)

]
.

(3.1.2)

As specified in section 2.3.1, this is not the form Starobinsky wrote his potential in, but
rather a particular parametrisation found in [11].

The normalisation value was chosen to be V0 = 1. The two parameters ε− and ε+
(recall they are the slow-roll parameters before and after the transition) need to be � 1
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Figure 3.1: Starobinsky potential with the parametrisation by [11]. The right panel
represents the three choices δ = 0.01 (blue), δ = 0.005 (orange) and δ = 0.001 (green).

if we want slow-roll to hold both before and after the transition. In order to induce USR
dynamics, we need to take ε− � ε+. We have chosen ε− = 10−15 and ε+ = 10−1.

Another very meaningful parameter is δ. It is proportional to the duration of the
transition USR phase. We chose δ = 0.01 since we found this value to be small enough
not to ruin the preceding and succeeding slow-roll phases while giving rise to a phase
long enough to allow for a stable numerical analysis.

Once again, we manually stop integration at Nend = 70, in analogy with the de Sitter
case, and set φ(0) = φ0 = 0 and ∂φ/∂Ne

∣∣
Ne=0

= 0 (see section 3.1.1 for an explanation

of why this is sensible), with the transition happening at φc = 6.
In figure 3.1 we have shown the shape of Starobinsky potential and a magnified

version around the transition.

3.1.3 CicoliDiazPedro

We also studied the evolution of the background and the curvature perturbation in a
realistic potential, obtained in the framework of type IIB string theory [18], given by

V (φ) = V0

[
C1 − e−

1√
3
φ̂

(
1− C6

1− C7e
− 1√

3
φ̂

)
+ C8e

2√
3
φ̂

(
1− C9

1 + C10e
√

3φ̂

)]
, (3.1.3)

We refer to appendix B for more details on the shape of the potential and for a sketch
of how it can be derived.

This potential was mainly used to verify to what extent the behaviour of the inflaton
under the influence of simple linear potentials, such as Starobinsky, well approximates
the real behaviour under realistic potentials. The shape of this potential is shown in
figure 3.2.
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Figure 3.2: Shape of the potential described in appendix B. The plateau around φ ∼ 3.5
induces USR dynamics.

3.2 Numerical analysis

In this section we will describe how we integrated the equations of motion to find the
solutions. A numerical integration is desired since it greatly reduces the complexity of
the analysis, given that they feature two functions of time, i.e. H and φ, and their
derivatives.

Since we always used the number of e-foldings as our time variable, we will employ ′

to represent derivation with respect to the number of e-foldings instead of , Ne.

3.2.1 Background solution

Since we are dealing with stochastic inflation, we will coarse-grain the scalar field φ =
φ̄ + δφ as usual. The first step of our analysis is finding the solution to the classical
unperturbed equation of motion for the coarse-grained scalar inflaton field φ̄. This
equation is the usual Klein-Gordon equation (1.4.5) written in number of e-foldings
which reads

φ̄′′ + (3− ε)φ̄′ + V,φ
H2

= 0. (3.2.1)

Clearly this equation alone is not enough since H = H(Ne) is a function of time.
Its time evolution is provided by the time derivative of the Friedmann equation (1.2.3)
given by

H ′ = −Hφ̄
′2

2
. (3.2.2)
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Figure 3.3: In this graph we have used expressions (3.2.4) and (3.2.5) to plot the shape of
the slow-roll parameters ε and |η| in the Starobinsky model (left panel) and the realistic
model from [14] (right panel). The dashed line is drawn at 6, and we can see that |η| ' 6
during USR. Notice that the behaviour of |η| at high numbers of e-foldings in the left
panel is due to the fact that η oscillates about η ' 0 when the second slow-roll phase is
reached.

We can numerically solve (3.2.1) and, at the same time, (3.2.2) to find φ̄ and H
as functions of the number of e-foldings. The initial condition on H is given by the
Friedman equation (1.2.3) at Ne = 0, that is

H(0) = H0 =

√
V

3− φ̄′2/2

∣∣∣∣∣
Ne=0

. (3.2.3)

It is useful to point out that the Hubble parameters ε, η and κ can be expressed in
terms of the fields φ̄ and H. Indeed, from the Friedmann equation (1.2.3) it is easy to
find that

ε = −H
′

H
=
φ̄′2

2
, (3.2.4)

and, from (3.2.1) and (3.2.4), that

η =
ε′

ε
= −6 + 2ε− 2V,φ

φ̄H2
. (3.2.5)

The shape of the slow-roll parameters using such expressions is shown is figure 3.3.

3.2.2 First order perturbation solution

Now that we have obtained the time evolution of the background φ̄, we can move on to
the short-wavelength part δφ. As we mentioned in section 2.2.4, the Hamiltonian system
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Figure 3.4: Solutions for equation of motion (3.2.6) for six different values of the scale
k. In the left panel, we have shown the full evolution of three modes exiting the horizon
at 10 (red), 30 (green) and 50 (blue) e-foldings. Notice that as soon as the perturbation
enters the horizon, it becomes constant until it reaches the USR transition. In the right
panel we have shown the evolution shortly after the transition for modes that leave the
horizon at 33.0 (red), 33.3 (green), which undergoes the highest amount of enhancement,
and 33.6 (blue) e-foldings.

formed by (2.2.18) and (2.2.19) leads to the equation of motion for φk

φ′′k + (3− ε)φ′k +

[(
k

aH

)2

+
V,φφ
H2

+ (φ̄′)2(−3 + ε− η)

]
φk = 0, (3.2.6)

written in Fourier space. The extra term (φ̄′)2(−3 + ε− η) in the effective mass appears
since φ is responsible for the background evolution, i.e. it is not a spectator. We derive
this term in appendix A, following [10]. It should be pointed out that the form in which
that term has been presented here is different than the one in appendix A. However,
using the equation of motion (3.2.1) for the coarse-grained field and (3.2.5), easily leads
one to find that the two expressions are equivalent.

In order to achieve numerical stability, we have shifted the value of the number of
e-foldings that appears in the scale factor a = lnNe by a quantity Nshift, i.e. we defined
a = ln(Ne −Nshift). This is perfectly valid and does not change the physics since the
full definition for the scale factor actually is a = ai lnNe. Choosing a value for Nshift

amounts to choosing a particular ai, which is arbitrary to begin with.
We have taken initial conditions for the quantum field φk to be of Bunch-Davies type.
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Figure 3.5: Power spectrum in the Starobinsky model in logarithmic scales, as opposed
to the linear one of figure 3.6. Notice the super-horizon evolution of scales that leave the
horizon after the transition (Ne ∼ 32).

They read

φk(Nin) =
1

a
√

2k

∣∣∣∣
Ne=Nin

, (3.2.7)

φ′k(Nin) = − 1

a
√

2k

(
1 +

ik

aH

)∣∣∣∣
Ne=Nin

, (3.2.8)

in Fourier space. These conditions mean that the field is in its vacuum state well be-
fore exiting the horizon. The value Nin represents the point in time where integration
of (3.2.6) begins. Ideally, this value should coincide with the beginning of observable
inflation. However, carrying out such an integration would take far too long. Instead,
we opted to begin integration at a reasonable number of e-foldings before horizon exit
for each mode.

In order to build the power spectrum, we solved the equations of motion (3.2.6) n
times, each with a different value for k, and evaluated each solution φk(Ne) at Ne ' Nend.
In figure 3.4 we show the result of our numerical integration for six different values of k.
Notice that, as we mentioned, integration starts moments before horizon exit, and not
at the very beginning of inflation. However, we can safely disregard this early behaviour
for two reasons: firstly we expect a constant slope for the whole duration of the sub-
horizon evolution; secondly, we are only interested in late time behaviour, since the power
spectrum is constructed from those moments.

As soon as the perturbation exits the horizon, it quickly becomes constant up until
it reaches the USR transition. During this phase, the solution is no longer of the Bunch-
Davies type, meaning its form is no longer that of (2.2.50). Instead it must feature both

a H
(2)
ν and a H

(1)
ν contribution, according to the general solution (2.2.48). Physically,

this means that the field is no longer in its ground state, since the transition has raised
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Figure 3.6: Power spectrum obtained from the solutions in figure 3.4. It was constructed
from n = 200 points. In the figure we also show the slow-roll approximation H2/(4π2).
It is clear from the graph that this value is reached after the transition, while before
there is strong disagreement.

the field to an excited state. This is a well known feature of time dependent backgrounds,
that becomes more important whenever the background undergoes sudden transitions.

Furthermore, the index ν, which is real before the transition, becomes purely imagi-
nary during USR, before going back to being real after slow-roll is restored again. This
is not surprising. From definition (2.2.47) we expect ν ' 3/2 in slow-roll, since V,φφ ' 0,
while it becomes imaginary when V,φφ > 9H2/4, which is clearly satisfied during USR.

The exact imaginary value taken by ν during USR depends on the particular model
and its parameters. It mostly depends on the duration of the USR phase. In particular,
shorter USR phases, generated for example by a small δ in Starobinsky, will result in a
big |η| during USR. For our choices of parameters, we found that typically |ν| ∼ O(10).

In figure 3.5, we show the power spectrum for the Starobinsky model. In figure 3.6
we show the Starobinsky power spectrum focused on those scales that leave the horizon
close to the USR phase.

3.3 Analytical analysis

In order to have an exact check of the numerical results, we also developed an analytical
method to treat the same problem. While we can still use the background φ̄ found in
section 3.2.1, some approximations must be done on the equation of motion (3.2.6) for
the quantum part so that (2.2.48) is still a solution to it.
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Figure 3.7: In this graph we show the real (green) and imaginary (blue) parts of the index
ν for Starobinsky model with the parameters chosen in section 3.1.2. Additionally, we
also show the discretised index νdiscr. As evident from the picture, νdiscr is a collection of
successive step theta functions, so that during each sub-interval the index of the Hankel
function is constant. The far left and far right parts of ν are not shown since it quickly
approaches 3/2 (dashed black).

3.3.1 Discretisation of the index ν

Since the Hubble parameter does not change much during inflation, we considered it to
be constant in our analytical calculations. Therefore, in this section, the symbol H refers
to the Hubble parameter evaluated towards the end of inflation, i.e. H = H(Nend). For
this reason, we also set ε = 0. Thus, the equation of motion is given by

φ′′k + 3φ′k +

[
9− 4ν2

4
+

(
k

aH

)2
]
φk = 0, (3.3.1)

where ν was defined in (2.2.47).
If we want (2.2.48) to be a valid solution to the equation of motion (3.3.1), the index

ν needs to be a constant. However, as we explained in section 3.2.2, ν dramatically
changes when approaching USR. In order to overcome this, we divided the interval of
integration into multiple sub-intervals, each with constant ν [19]. Then, one only needs
to link together the solutions by imposing continuity conditions on the perturbation φk
and its derivative φ′k.

For instance, say the i-th transition involves a change from νi to νi+1. The solution
to (3.3.1) before the transition is given by

φk =

(
k

aH

)3/2 [
αiH

(1)
νi

(
k

aH

)
+ βiH

(2)
νi

(
k

aH

)]
. (3.3.2)
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Figure 3.8: Power spectrum in Starobinsky with the analytical (red) method. There is
good agreement between the two methods employed in this work.

After the transition, the solution does not change in form: (3.3.2) is still a solution to
(3.3.1) provided we carry out the substitutions νi 7→ νi+1, αi 7→ αi+1 and βi 7→ βi+1. The
two coefficients can be found through continuity conditions to be given by

αi+1 = αi
(H

(1)
νi−1 −H

(1)
νi+1)H

(2)
νi+1 +H

(1)
νi (H

(2)
νi+1+1 −H

(2)
νi+1−1)

(H
(1)
νi+1−1 −H

(1)
νi+1+1)H

(2)
νi+1 +H

(1)
νi+1(H

(2)
νi+1+1 −H

(2)
νi+1−1)

+ βi
(H

(2)
νi−1 −H

(2)
νi+1)H

(2)
νi+1 +H

(2)
νi (H

(2)
νi+1+1 −H

(2)
νi+1−1)

(H
(1)
νi+1−1 −H

(1)
νi+1+1)H

(2)
νi+1 +H

(1)
νi+1(H

(2)
νi+1+1 −H

(2)
νi+1−1)

,

βi+1 = αi
(H

(1)
νi−1 −H

(1)
νi+1)H

(1)
νi+1 +H

(1)
νi (H

(1)
νi+1+1 −H

(1)
νi+1−1)

(H
(1)
νi+1+1 −H

(1)
νi+1−1)H

(2)
νi+1 +H

(1)
νi+1(H

(2)
νi+1−1 −H

(2)
νi+1+1)

+ βi
(H

(2)
νi−1 −H

(2)
νi+1)H

(1)
νi+1 +H

(2)
νi (H

(1)
νi+1+1 −H

(1)
νi+1−1)

(H
(1)
νi+1+1 −H

(1)
νi+1−1)H

(2)
νi+1 +H

(1)
νi+1(H

(2)
νi+1−1 −H

(2)
νi+1+1)

.

(3.3.3)

The argument of each Hankel function is always k/(aH), and it was omitted for clarity.
We can repeat (3.3.3) n times, once for each transition. The final coefficients are the

ones that determine the final solution.
A part of the Mathematica program was devoted to the discretisation of the index

ν(Ne). The result is shown in figure 3.7. In that figure, the model used to find the
shape of the function ν(Ne) is Starobinsky. We can see that for numbers of e-foldings
Ne < 32, the index is very close to 3/2. This is because the field is in almost perfect
slow-roll. When the transition is approached, ν starts to increase, then plummets to
zero and becomes imaginary. Its imaginary part reaches a peak of ∼ 11i at Ne ∼ 32.16
numbers of e-foldings, then a symmetric behaviour is observed, and for Ne > 32.3 the
index is again 3/2. This is because in Starobinsky models, the phase after the transition
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is slow-roll. However, the coefficient α responsible for the H
(1)
ν contribution is different

from zero after the transition. This means that, while the field propagates in a de Sitter
background, it is in an excited state due to the transition.

When the duration of the transition (in picture 3.7 we can see that it lasts ∼ 0.3
e-foldings) is increased, for instance by increasing the value of the parameter δ in(3.1.2),
the maximum value of Im ν decreases. In the limit δ →∞, the transition disappears since
the potential is linear with only one slow-roll phase. This can be checked by considering
the limit of (3.1.2) for δ →∞, which reads

V (φ) = V0

[
1 +

1

2

(√
2ε+ +

√
2ε−

)
(φ− φc)

]
+O

(
δ−1
)
. (3.3.4)

We used the discretisation method illustrated in figure 3.7 to find the power spectrum
through analytical solutions to (3.3.1). The resulting power spectrum is shown in figure
3.8 and, apart from some noise, the analytical solution has the same shape of the purely
numerical one.

3.4 Conclusions

In the present work we focused on the effects of sudden transitions on the amplitude
of the stochastic noise in a Starobinsky potential and their impact on the production
of primordial black holes in single field inflation by checking whether or not the power
spectrum undergoes sufficient enhancement. Firstly, in chapter 1, we introduced the
main ideas that are utilised to build the foundations of modern cosmology, such as the
cosmological principle, general relativity, the Friedmann equations and, lastly, the Hot
Big Bang theory with its problems and solutions.

Then, in chapter 2, we showed how primordial black holes can be responsible for a
significant fraction of the dark matter abundance today in the Universe given current ob-
servational constraints and investigated the main mechanism that allows for the creation
of such objects: an enhancement in the primordial power spectrum due to non-negligible
quantum effects that amplify the two-point correlation function of the stochastic noise. In
section 2.2, we followed the Hamiltonian formalism developed in [10] and summarised the
main ideas of coarse-graining of the quantum field φ and its momentum π that allow for
a separate treatment of the time-dependent background and the space-time-dependent
quantum fluctuations.

However, in the current literature, one can find multiple works that apply this very
same formalism, but find results that are incompatible with each other. We summarised
three of those article, namely [11, 12, 13], in section 2.3 and presented their findings,
commenting on the respective claims in section 2.3.4.

Chapter 3 is dedicated to our analysis and contribution on the impact of stochastic
effects on the power spectrum enhancement in a Starobinsky potential. First of all, we
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checked that this potential leads to a dynamics similar to that of a more realistic model
and found a qualitatively similar behaviour in the slow-roll parameters, as depicted in
figure 3.3. Although this potential is relatively simple, it is rich enough to allow for
the introduction of an ultra slow-roll phase in the dynamics of the scalar field φ during
inflation. This causes the field to undergo a sudden transition when approaching the
USR regime, which can be observed in the dramatic change of the Hankel function index
ν depicted in figure 3.7. As a result, the field is excited from its ground state (achieved
by imposition of Bunch-Davies conditions at the beginning of observable inflation) to an
excited state. This is a known effect, but its implications are still under scrutiny.

We have implemented both a numerical and an analytical procedure that allows for
the construction of the noise amplitude for different scales. As one can see from figure
3.5, small scales have their noise amplitude suppressed to values much smaller than the
Hubble scale squared, whereas modes that leave the horizon near and after the transi-
tion undergo a rapid growth until they reach the constant value (after some oscillation
visualised in figure 3.6) of H2/(4π2). The good agreement between the analytical and
numerical methods in shown in figure 3.8.

With this computation we demonstrate that, for the Starobinsky potential, the esti-
mates of the noise amplitude found in the literature miss important physics. It would
be interesting to compare our findings regarding the noise amplitude for the Starobin-
sky model with some more realistic ones, and to be able to quantify its effects on the
primordial black hole abundance. We leave these issues for future work.
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Appendix A

Coupling the inflaton to metric
fluctuations

In (3.2.6) we introduced a term in the equation of motion for the scalar perturbations
which is proportional to the velocity of the background field. This term was ignored then
because of its small contribution in simple potentials, but it plays an important role if
the inflaton is strongly coupled to the metric. This term takes into account the back-
reaction of the scalar perturbations on the metric itself. Indeed, scalar perturbations are
expected to modify the metric just like any other form of energy. In this appendix we
will work out how that term can be obtained. Let us use a spatially-flat gauge, where
the metric reads

ds2 = −N(τ)2[1 + 2A(τ, ~x)] dτ 2 + 2a2∂iB(τ, ~x) dτ dxi + a2δij dxi dxj , (A.1)

where A� 1 and B � 1 are small perturbations from the spatially-flat metric (2.2.12).
The same formalism from section 2.2 can be applied. A metric such as (A.1) will result
in the same Hamilton equations (2.2.10) and (2.2.11) for the uncoupled case, provided
the lapse function is remapped as N(τ, ~x) 7→ N(τ)[1 + A(τ, ~x)] and the shift vector as
N i(τ, ~x) 7→ ∂iB(τ, ~x). We will drop the τ and ~x dependencies from now on for brevity’s
sake. When this substitution is carried out, the resulting Hamilton equations are

φ̇ =
N

a3
πφ(1 + A) + ∂iB∂iφ, (A.2)

π̇φ = −Na3V,φ(1 + A) +Na[∆φ+ ∂i(A∂iφ)] + ∂i[(∂
iB)πφ]. (A.3)

At this point, following the procedure of section 2.2.2, one needs to pick a cut-off
wavelength kσ(τ) and split each field in a coarse-grained field (φ̄, π̄) and its quantum
fluctuations (φQ, πQ) through the use of a window function W (k/kσ) (see equations
(2.2.16) and (2.2.17) for reference).
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In theory, the same coarse-graining treatment should also be applied to the functions
which describe metric fluctuations, namely A = Ā+ AQ and B = B̄ +BQ, with

AQ =

∫
R3

d3k

(2π)3/2
W

(
k

kσ

)[
akAk(τ)e−i

~k·~x + a†kA
?
k(τ)ei

~k·~x
]
, (A.4)

and similarly for B. However, the coarse-grained parts Ā and B̄ can be set to vanish.
Let us now go over three reasons why this can be done.

Firstly, since the lapse and shift functions are pure gauge choices, their classical value
should not matter and can be reabsorbed into the definition of N and a2.

Secondly, the line element (A.1) has been written in such a way that two sectors
clearly appear: in that expression, we have two quantities which only depend on the time
variable τ (namely N and a2) and two more which additionally depend on the point in
space ~x (namely A and B). The first group of variables is part of a homogeneous and
isotropic vector, since their value is constant throughout space. The second group forms
the inhomogeneous and perturbative sector. Therefore, there is no reason to introduce
further homogeneous degrees of freedom (Ā and B̄ would be functions of time only) in
the inhomogeneous sector.

Thirdly, at large scales (small k) the scalar field is approximately its coarse-grained
part, i.e. φ ' φ̄. Since this field is constant in space, its metric should be too, hence it
cannot generate any perturbation in the metric.

Let us now linearise equations (A.2) and (A.3) by throwing away any term with at
least two quantum parts. Given the reasons above, we can safely assume Ā = B̄ = 0.
This leads us to the result

˙̄φ+ φ̇Q =
N

a3
[π̄ (1 + AQ) + πQ] , (A.5)

˙̄π + π̇Q = Na∆φQ −Na3 [V,φ (1 + AQ) + V,φφφQ] + π̄2BQ. (A.6)

It must be noted that this expression was obtained by expanding the potential V,φ(φ)
about the coarse-grained value φ̄, so that V,φ(φ) = V,φ(φ̄ + φQ) ' V,φ(φ̄) + V,φφ(φ̄)φQ at
leading order in φQ.

Now let us consider the Hamiltonian (2.2.5) and introduce the coarse-grained fields
with their quantum fluctuations into that expression. We can expand up to second order,
meaning for example that V (φ) ' V (φ̄)+V,φ(φ̄)φQ +V,φφ(φ̄)φ2

Q/2 and keep all terms that
are exactly of second order. Using expression (2.2.6), reveals that the total Hamiltonian
in the scalar sector for the perturbed system is given by

Cφ ∝
∫

d3x
[
N
(
C(2) + AQC(1)

)
+
(
∂iBQ

)
C(1)
i

]
, (A.7)
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where

C(2) =
π2

Q

2a3
+
a

2
∂iφQ∂iφQ +

a3

2
V,φφφ

2
Q, (A.8)

C(1) =
1

a3
π̄πQ + a3V,φφQ, (A.9)

C(1)
i = π̄∂iφQ. (A.10)

From this Hamiltonian, one can compute the Hamilton equations by making use of
(2.2.7), which read

φ̇k =
N

a3
(πk + Akπ̄) , (A.11)

π̇k = −Nak2φk −Na3AkV,φ −Na3V,φφφk − k2π̄Bk, (A.12)

where we have turned to Fourier space. Keep in mind that these expressions were
obtained by making use of the usual commutation relations satisfied by the annihilation
and creation operator which appear inside the definition of the quantum fluctuations,
which in Fourier space basically amount to stating that the only non-null commutators
are the ones that involve the field φQ and its momentum πQ (see section 2.2.2 for a more
thorough explanation).

It is easy to see that the equations of motion (A.5) and (A.6) for the coarse-grained
fields, in conjunction with the equations of motion (A.11) and (A.12) for the quantum
fluctuations, give rise once again to (2.2.23) and (2.2.24), with quantum noises given
precisely as (2.2.25) and (2.2.26). This means that the coarse-grained fields do not feel
the coupling at all, and follow the same evolution as in the uncoupled case. Therefore
(3.2.1) still holds even in the general case.

On the other hand, the equation of motion for φk receives an extra term, as previously
claimed. Following the standard procedure, we can take the time derivative of (A.11),
using (A.12) and (A.6) to make some simplifications, which takes us to the result

φk,NeNe + (3− ε)φk,Ne +

[(
k

aH

)2

+
V,φφ
H2

]
φk

− 1

a3H2

(
2a3AkV,φ −Hπ̄Ak,Ne + k2Hπ̄Bk

)
φk = 0,

(A.13)

where , Ne indicates derivation with respect to number of e-foldings. At this point, one
can find the gravitational constraints, which will relate Ak and Bk to φk, finally reaching
the end result

φk,NeNe + (3− ε)φk,Ne +

{(
k

aH

)2

+
V,φφ
H2

− 1

M2
Pla

3H

d

dN

[
a3H

(
dφ̄

dN

)2
]}

φk = 0.

(A.14)
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Appendix B

A realistic potential

In this work we have made use of the potential introduced in [14] to compare our results
with a realistic case. It was found in the framework of fibre inflation and type IIB
flux compactifications. The name stems from the fact that the underlying Calabi-Yau
compactification manifold has a particular fibre-like structure. These models show a
potential of the form

Vinf = V0(1− e−nφ/f ), (B.1)

where φ is the single scalar field driving inflation called inflaton. The constants V0, f
and n depend on the particular string model one employs. This potential is of interest
because it has a very flat plateau at large φ. However, the potential sketched in (B.1)
can never generate PBHs due to its simplicity. Nonetheless, new string loop corrections
suggest there might be more terms that can still be added to (B.1) in order to allow for
a second plateau at small φ, triggering USR. These terms generally look like

δVinf = −ε1V0
e2nφ/f

1 + ε2e3nφ/f
, (B.2)

where ε1 � 1 and ε2 � 1 can be tuned to find agreement with experimental bounds.
The potential (B.1) with the addition of some terms of the form (B.2) is rich enough,
with some further manipulation, to allow for PBH formation at PBH scales while leaving
CMB scales unscathed.

The role of the inflaton is taken by a Kähler modulus τK3 controlling the size of a K3
divisor fibred over a P1 base with volume tP1 . The Calabi-Yau volume looks like

V = tP1τK3 − τ 3/2
dP , (B.3)

where τdP is the volume of a diagonal del Pezzo divisor. At leading order in the pertur-
bative expansion 1/V � 1 only the directions specified by V and τdP are lifted, while
the remaining direction, which can be parametrised by τK3, flattens. The field τK3 is
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a very promising inflaton candidate since it enjoys an effective non-compact rescaling
symmetry.

This symmetry however has to be slightly broken to generate the correct inflationary
background. This is achieved through open string 1-loops.

The potential is strikingly similar to that of Starobinsky inflation. Indeed, both
models require a trans-Planckian field range to obtain enough e-foldings of inflation,
leading to a promising result for the predicted tensor-to-scalar ratio r ∼ 0.005÷ 0.01.

At leading order in 1/V , the fields V and τdP after stabilisation are heavier than the
Hubble constant, hence play no significant role during inflation. The remaining light
field τK3 is left alone to drive inflation. The potential that guides this field is given by

Vinf =
W 2

0

V2

(
Cup

V4/3
+ g2

s

CKK

τ 2
K3

+
W 2

0√
gs

εF4

VτK3

− CW

V√τK3

+ g2
sDKK

τK3

V2
+ δF4

W 2
0√
gs

√
τK3

V2

)
.

(B.4)

In this expression, all quantities but the modulus τK3 are constants after tree-level sta-
bilisation. Here gs � 1 is the string coupling constant and W0 ∼ O(1÷ 10) is the
superpotential generated by background fluxes. Cup controls the uplifting contribu-
tion and depends on the minimum of the potential. CKK > 0, DKK > 0 and CW

are the coefficients of the 1-loop corrections. They are expected to be of order unity:
CKK ∼ DKK ∼ CW ∼ O(1). Finally, εF4 > 0 and δF4 > 0 only depend on specific topo-
logical properties of the underlying geometry and are expected to be relatively small:
εF4 ∼ δF4 ∼ O(10−3).

In order to continue our analysis of this potential, it is useful to write the modulus
τK3 in terms of its canonically normalised counterpart φ as

τK3 = e
2√
3
φ

= 〈τK3〉 e
2√
3
φ̂
, (B.5)

where we have expanded φ about its minimum as φ =
√

3
2

ln 〈τK3〉 + φ̂. With this trick,
(B.4) becomes

Vinf = V0

(
C1 + C2e

− 4√
3
φ̂

+ C3e
− 2√

3
φ̂ − e−

1√
3
φ̂

+ C4e
2√
3
φ̂

+ C5e
1√
3
φ̂
)
. (B.6)

The new constants can be expressed in terms of the old ones as

V0 =
CWW

2
0

γ1/3V10/3
, C1 = γ1/3Cup

CW

, C2 = g2
s

CKK

γCW

,

C3 =
W 2

0

γ1/3CW
√
gs

εF4

V1/3
, C4 = γg2

s

DKK

CW

, C5 = γC3
δF4

εF4

, (B.7)
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where γ = 〈τK3〉3/2 /V . Although this potential is very promising, it is not yet rich
enough to generate primordial black holes since it lacks the required power spectrum
enhancement. In order to achieve this, one has to consider the generalized potential
which arises from relaxing a few conditions.

In the first place, the quantity CW should be viewed as a function CW(τK3) of the
Kähler modulus τK3, such that

CW 7→ CW(τK3) = CW −
AW
√
τK3√

τK3 −BW

, (B.8)

where the parameters CW ∼ O(1) and AW ∼ O(1) depend on the vacuum expectation
values of the complex structure moduli, while BW ∼ O(1) depends on some topological
properties of the underlying Calabi-Yau 3-fold.

Secondly, another term in the effective action can be added if we take additional
winding 1-loops. These take the form

δVW = W 2
0

τK3

V4

DW −
GW

1 +RW
τ
3/2
K3

V

 . (B.9)

Similarly, DW ∼ O(1) and GW ∼ O(1) become constants only after complex structure
stabilisation, while RW ∼ O(1) only depends on topological features.

We will now make the assumption that our model does not feature any Kaluza-
Klein loop correction, hence CW = DW = 0. Furthermore, F4 terms are expected to be
negligible since they are higher derivative terms. Our model then looks like

Vinf =
W 2

0

V3

 Cup

V1/3
− CW√

τK3

+
AW√

τK3 −BW

+
τK3

V

DW −
GW

1 +RW
τ
3/2
K3

V

 . (B.10)

Making use of (B.5) leads to the final result

Vinf = V0

[
C1 − e−

1√
3
φ̂

(
1− C6

1− C7e
− 1√

3
φ̂

)
+ C8e

2√
3
φ̂

(
1− C9

1 + C10e
√

3φ̂

)]
, (B.11)

where

C6 =
AW

CW

∼ O(1), C7 =
BW

γ1/3V1/3
∼ O(1), C8 = γ

DW

CW

� 1,

C9 =
GW

DW

∼ O(1), C10 =
GW

DW

∼ O(1) (B.12)

The potential (B.11) is rich enough to allow for such a phase to exist provided the
numerical parameter are chosen wisely.
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