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Introduction

The 3-manifolds world is topologically much richer than the surfaces

realm, while yet not so crazy as the four-manifolds universe, which can-

not be classi�ed in any reasonable sense. The 3-manifolds lie in the middle:

we do not have yet a complete satisfactory picture, but we understand them

a good deal. The branch of mathematics that studies these topics is called

low-dimensional topology and it has recently been undergoing an intense

development. On the one hand, the exponential advancement of computer

technologies has made it possible to conduct sophisticated computer experi-

ments and to implement algorithmic solutions, which have in turn provided

a motivation to search for new and better algorithms. On the other hand,

low-dimensional topology has received an additional boost because of the

discovery of numerous connections with theoretical physics.

Among all 3-manifolds, a particular class introduced by H. Seifert in 1933,

known as Seifert manifolds or Seifert �bre spaces, has been widely studied,

well understood, and is having a great impact for understanding 3-manifolds.

They suit many nice properties, whom majority were already known since

the deep work of Seifert. Seifert �bered spaces constitute a large of class of 3-

manifolds and are totally classi�ed by mean of a �nite set of invariants. They

have widely appeared in the literature for playing a central key-role in the

topology of compact 3-manifolds, and nowadays they are very well known

and understood. They have allowed the developing of central concepts in

the study of 3-manifolds such as the JSJ-decomposition and the Thurston's

geometrization conjecture.

iii



iv Introduction

It's a result of D. Epstein that the Seifert �bre spaces are characterized

as those 3-manifolds which admit a foliation by circles. In fact this de�nition

is a little more general than the original de�nition of Seifert, in order to

correctly englobe the case of non-orientable 3-manifolds; it has now become

the modern usual terminology for Seifert �bre spaces.

In order to have an overview over the set of 3-manifolds and to put some

order into their chaos, Matveev has introduced the theory of complexity.

Indeed, the complexity supplies the set of 3-manifolds with a �ltration by

�nite subsets (of 3-manifolds of a bounded complexity), and this allows to

break up the classi�cation problem for all 3-manifolds into an in�nite number

of classi�cation problems for �nite subsets. The complexity is a function that

associates a compact 3-manifold to a non-negative integer number and it has

the following properties: it is additive under connected sum; for any k ∈ Z,
there are only �nitely many closed irreducible manifolds with complexity k;

it does not increase when cutting along incompressible surfaces. The problem

of calculating the complexity of any given 3-manifold is very di�cult. On the

contrary, the task of giving an upper bound for the complexity is very easy,

but this bound may be not at all sharp. In order to understand what the

complexity is and how to estimate it, we'll take as examples of 3-manifolds

the Seifert �bre spaces for their easyness.

Since Seifert �bre spaces are a kind of circle bundle over a 2-dimensional

orbifold, for talking about them we need some prerequisites that we will

introduce in Chapter 1, which are the concepts of 2-dimensional orbifold,

�bre bundle and circle bundle. Afterwards, in Chapter 2, we will study

Seifert �bre spaces, looking at their properties and their classi�cation up to

�bre-preserving homeomorphism and up to homeomorphism, giving a com-

binatorial description of such manifolds. In Chapter 3, we will introduce

the complexity theory, at �rst in a general way that concerns all compact

3-manifolds and then, from Section 3.3 on, focusing ourselves on the esti-

mation of the complexity of Seifert �bre spaces. In Section 3.4, we will also

see some examples in which the estimation ensures us that the complexity of
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the manifold is zero (i.e. when we get that the complexity muse be less or

equal than zero), constructing what is called an almost simple spine of such

manifold.
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Chapter 1

Prerequisites

In this chapter we introduce some concepts that are essential prerequisites

for the understanding of Seifert �bre spaces. Indeed, such 3-manifolds can

be seen as circle bundles over 2-dimensional orbifolds, therefore we will give

some notions about 2-dimensional orbifolds, �bre bundles and circle bundles,

taken from [Sco], [Hat], [Mar] and [Fin].

1.1 2-dimensional orbifolds

De�nition 1.1. An n-dimensional orbifold (without boundary) is a Haus-

dor�, paracompact space which is locally di�eomorphic to the quotient space

of Rn by a �nite group action (eventually trivial).

On the other hand, we can also de�ne n-dimensional orbifolds with boundary

as spaces locally di�eomorphic to the quotient of Rn or Rn
+ (where Rn

+ de-

notes the points of Rn having non-negative last coordinate) by a �nite group

action. The boundary of the orbifold consists of points locally homemorphic

to the quotient of Rn
+ by a �nite group action.

From the previous de�nition it follows that each point x of an orbifold

is associated with a group Gx, well de�ned up to isomorphism, such that a

local coordinate system in a neighborhood of x has the form U ∼= Ũ/Gx with

Ũ = Rn, Rn
+.

1
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De�nition 1.2. The set S consisting of the points x of the orbifold such

that Gx 6= 1 is called the singular locus of the orbifold.

Clearly an orbifold is a manifold if the singular locus is empty. We can

de�ne the following equivalence relation on the set of the orbifolds.

De�nition 1.3. An isomorphism of orbifolds is a di�eomorphism which

respects the given quotient structures on open subsets of the orbifolds.

Recall that a continuous map between topological spaces f : X → Y is a

covering if any point y ∈ Y has a neighborhood U such that f−1(U) is the

disjoint union of sets Vλ, such that f|Vλ : Vλ → U is a homeomorphism.

De�nition 1.4. If X and Y are orbifolds and f : X → Y is an orbifold map,

an orbifold covering is de�ned in the same way as a covering except that one

allows f|Vλ : Vλ → U to be the natural quotient map between two quotients

of Rn by �nite groups, one of which is a subgroup of the other.

In the following we will focus on the 2-dimensional case, so we will consider

E2, i.e., R2 with the euclidean geometry on it, its �nite groups of isometries

and the corresponding quotient spaces.

A �nite group G of isometries of E2 will be as one of the following three types:

a cyclic group of order n generated by a rotation of 2π/n about a point; a

cyclic group of order two generated by a re�exion in a line; a dihedral group

of order 2n generated by a rotation of order n and a re�exion in a line passing

through the rotation center. Each of these three kinds of group will generate

a di�erent kind of singularity, as we will see.

Let us consider the �rst case, that is when G is the cyclic group of order

n generated by a rotation α of 2π/n about a point P ∈ E2. Considering the

action of G on E2 and referring to Fig. 1.1, we can notice that the orbit

of each point has exactly one point in the region W delimited by the two

half lines l1 and l2, except that each point of l1 lies in the same orbit as one

point of l2. It follows that the quotient space E2/G, which is obtained by



1.1 2-dimensional orbifolds 3

identifying each orbit to a single point, is the same as the space obtained

from W by gluing l1 to l2, that is a cone C with cone angle 2π/n at a vertex

P , as shown in Fig. 1.1. There is a natural metric inherited by the surface

Figure 1.1: The region W and the cone C.

E2/G from E2. This metric has a singularity at the vertex P of the cone

C: such singularity is called cone point. This means that the metric of C

restricted to Cr {P} is Riemannian, but the metric on C is not Riemannian.

Consider now G as a cyclic group of order two generated by a re�exion in

a line l. E2/G again inherits a natural metric from E2 and it is isometric to

a half-plane whose boundary line is the image of l, as we can see in Fig. 1.2.

Such boundary line consists of singular points and is called re�ector line.

If G is the dihedral group of order 2n generated by a rotation of order

n about a point P and the re�exion in a line through P , then E2/G again

inherits a natural metric and it is isometric to an in�nite wedge with an-

gle π/n (see Fig. 1.3). In this case, there are two semi-in�nite boundary

lines of singular points called corner re�ectors, which meet in an "even more

singular" point P .

Remark 1.1. Notice that generally a n-dimensional manifold doesn't need

to be topologically a manifold. For example, if the group Z2 acts on E3

by the map x 7→ −x, then the quotient space is di�eomorphic to a cone
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Figure 1.2: The half plane.

Figure 1.3: The in�nite wedge with angle π/n.
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on RP2 and this fails to be a manifold at the cone point. So we see that

in general an orbifold is not even di�eomorphic to a manifold. However, in

dimension two, any orbifold is di�eomorphic to a manifold, because the only

possible types of singular point are: cone points, re�ector lines and corner

re�ectors. It is important to realize that an orbifold with cone points is

di�eomorphic to a manifold but isn't isomorphic to one. Therefore one must

distinguish carefully between a two-dimensional orbifold and the underlying

surface. Note also that if an orbifold has re�exion curves, the points on these

curves are not boundary points of the orbifold.

Given a 2-dimensional orbifold X, we can compute its orbifold fundamen-

tal group as follows.

Let U be a regular neighborhood of the singular set of X and let N be the

closure of X \U . As N is a surface, we can �nd its fundamental group with-

out troubles. We need now to focus on the components of U , each of which

can be of one of the three types seen above. In order to describe what we

mean for fundamental group in this case, we will use the fact that in all the

three cases U ∼= R2/G. Firstly, one can have a cone that is the quotient of

R2 by a �nite cyclic group of rotations. The orbifold fundamental group of

a cone is, of course, �nite cyclic. Secondly, one can have an orbifold whose

underlying space is R× I and which has one re�ector line and one boundary

line: this orbifold has fundamental group Z2. Finally, one can have an orb-

ifold whose underlying space is S1× I and which has one re�ector circle and

one boundary circle: the fundamental group of this orbifold is Z× Z2. Now

X is the union of the surface N with the orbifolds which are the components

of U and so πorb1 (X) can be calculated using van Kampen's Theorem (see

page 43 of [Hat]).

We end this section by introducing two particular orbifolds with boundary

that will be recalled in the next chapter: S2(p) and S2(p, q) (see Fig. 1.4).

The �rst one S2(p) is called teardrop orbifold and is the orbifold having as

underlying surface S2 and one cone point of cone angle 2π/p where p 6= 1.
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The second one S2(p, q) is called spindle orbifold and is the orbifold having

S2 as underlying surface and two cone points, respectively of cone angle 2π/p

and 2π/q, where p 6= q.

Figure 1.4: On the left, the teardrop orbifold S2(p) and on the right the

spindle orbifold S2(p, q).

1.2 Fibre bundles

For further details about the contents of this section, see [Hat] and [Mar].

De�nition 1.5. A map p : E → B is said to have the homotopy lifting

property with respect to a space X if, given a homotopy gt : X → B and a

map g̃0 : X → E lifting g0 (i.e. p ◦ g̃0 = g0), then there exists a homotopy

g̃t : X → E lifting gt.

De�nition 1.6. A �bration is a map p : E → B having the homotopy lifting

property with respect to all spaces X.

For example, a projection B × F → B is a �bration since we can choose

lifts of the form g̃t(x) = (gt(x), h(x)) where g̃0(x) = (g0(x), h(x)).

De�nition 1.7. A �bre bundle structure on a space E, with �bre F , consists

of a projection map p : E → B such that each point of B has a neighborhood

U for which there is a homeomorphism h : p−1(U) → U × F making the



1.2 Fibre bundles 7

diagram below commute, where the unlabelled map is a projection onto the

�rst factor.

Commutativity of the diagram means that h carries each �bre Fb = p−1(b)

homeomorphically onto the copy {b}×F of F . Thus the �bres Fb are arranged

locally as in the product B × F , though not necessarily globally. An h as

above is called a local trivialization of the bundle. Since the �rst coordinate

of h is just p, h is determined by its second coordinate, a map p−1(U) → F

which is a homeomorphism on each �bre Fb.

The �bre bundle structure is determined by the projection map p : E → B,

but to indicate what the �bre is we sometimes write a �bre bundle as a

short exact sequence of spaces F → E → B. The space B is called the base

space of the bundle, E is the total space of the bundle and F is the �bre

of the bundle. Besides, a section of the bundle is a map s : B → E such

that p ◦ s = IdB. A �bre-preserving homeomorphism of two �bre bundles

p : E → B and p′ : E ′ → B′ is given by a couple of maps ψ : E → E ′ and

ϕ : B → B′ such that ϕ ◦ p = p′ ◦ ψ. If B = B′ and ϕ = IdB then we say

that p and p′ are isomorphic.

Remark 1.2. A theorem of Huebsch and Hurewicz proved in �2.7 of [Spa]

says that �bre bundles over paracompact base spaces are �brations, having

the homotopy lifting property with respect to all spaces.

Example 1.1. Let E be the product F ×B with p : E → B the projection

onto the �rst factor. Then E is not just locally a product but globally one.

Any such �bre bundle is called a trivial bundle.

Example 1.2. A �bre bundle with �bre a discrete space is a covering space.

Conversely, a covering space whose �bres all have the same cardinality, for
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example a covering space over a connected base space, is a �bre bundle with

discrete �bre.

Example 1.3. General �bre bundles can be thought of as twisted products.

Familiar examples are the Moebius band, which is a twisted annulus with line

segments as �bres, and the Klein bottle, which is a twisted torus with circles

as �bres. In particular, the Moebius band is a bundle over S1 with �bre an

interval: take E to be the quotient of I × [−1, 1] under the identi�cations

(0, v) ∼ (1,−v), with p : E → S1 induced by the projection I × [−1, 1]→ I

, so the �bre is [−1, 1]. Gluing two copies of E together by the identity map

between their boundary circles produces a Klein bottle, a bundle over S1

with �bre S1.

Let us end this section with the following result about properties of ho-

motopy groups of the spaces involved in a �bre bundle.

Theorem 1.2.1. Let p : E → B be a �bre bundle. Choose basepoints b0 ∈ B
and x0 ∈ F = p−1(b0). Then the map p∗ : πn(E,F, x0) → πn(B, b0) is an

isomorphism for all n ≥ 1. Hence if B is path-connected, there is a long

exact sequence

...→ πn(F, x0)→ πn(E, x0)→ πn(B, b0)→ πn−1(F, x0)→ ...→ π0(E, x0)→ 0.

(1.1)

For the proof of the above theorem, see page 376 of [Hat].

1.3 Circle bundles

We now study a particular class of �bre bundles: the circle bundles over

some compact connected surface S. Particularly we want to classify circle

bundles up to �bre-preserving homeomorphism; in order to do so, we will

distinguish the case in which the surface has non-empty boundary from the

one in which the boundary is empty. For further details about the contents

of this section, see [Sco] and [Fin].
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The case with non-empty boundary

We start by considering the case where the base surface S has non-empty

boundary: in this case every bundleM over S is a 3-manifold with boundary.

Since S is a non-closed surface, then S is homotopy equivalent to a wedge

of circles, so that a bundle over S is determined by its restriction to the

corresponding loops in S. We now look at those loops (homeomorphic to

S1): there are only two circle bundles over S1 and their total spaces are

the torus and the Klein bottle. Hence a circle bundle η over S determines

a homomorphism ω : π1(S) → C2, where C2 = ({1,−1}, ·), such that if

λ : S1 → S is a loop on S, then the restriction of η to S1 is the trivial

circle bundle over S1 if and only if ω([λ]) = 1. Clearly this gives a bijection

between isomorphism classes of circle bundles over S and homomorphisms

π1(S) → Z2, which in turn correspond to elements of H1(S,Z2). So, this

gives a precise classi�cation of circle bundles over S up to isomorphism,

which means that two such are considered equivalent only if there is a �bre-

preserving homeomorphism between them which covers the identity map of

S (see page 7).

Now we wish to classify S1-bundles over S up to �bre-preserving home-

omorphism. In order to do so, let us introduce the following notion: an

automorphism of π1(S) is called geometric if it is induced by a homeomor-

phism of S. The following lemma is easily veri�ed.

Lemma 1.3.1. There exists a �bre-preserving homeomorphism between the

S1-bundles p1 : M1 → S and p2 : M2 → S if and only if there is a geo-

metric automorphism α of π1(S) such that ωp2 ◦ α = ωp1, where ωpi is the

homomorphism π1(S)→ C2 corresponding to pi : Mi → S.

Thus, in order to classify S1-bundles up to �bre-preserving homemor-

phism, it su�ces to classify homomorphisms π1(S) → C2 up to the equiva-

lence given by ω1 ∼ ω2 if there is a geometric automorphism α of π1(S) such

that ω2 ◦α = ω1. To simplify the problem notice that since C2 is abelian, the

homomorphism ω factors through the homomorphism π1(S)/[π1(S), π1(S)] =
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H1(S)→ C2, that we still denote with ω.

If S has genus g ≥ 0 and n > 0 boundary components then, referring to

Fig. 1.5,

H1(S) = 〈ai, bi, sj | s1 + · · ·+ sn = 0〉i=1,...,g, j=1,...,n

if S is orientable, and

H1(S) = 〈vi, sj | s1 + · · ·+ sn + 2v1 + · · ·+ 2vg = 0〉i=1,...,g, j=1,...,n (g ≥ 1)

if S is non-orientable. We say that the circle bundle η : M → S is of type:

• o1 if ω(ai) = ω(bi) = 1 for all i = 1, . . . , g;

• o2 if ω(ai) = ω(bi) = −1 for all i = 1, . . . , g (g ≥ 1);

• n1 if ω(vi) = 1 for all i = 1, . . . , g (g ≥ 1);

• n2 if ω(vi) = −1 for all i = 1, . . . , g (g ≥ 1);

• n3 if ω(v1) = 1 and ω(vi) = −1 for all i = 2, . . . , g (g ≥ 2);

• n4 if ω(v1) = ω(v2) = 1 and ω(vi) = −1 for all i = 3, . . . , g (g ≥ 3).

Figure 1.5: Generators of H1(B).

The following theorem, taken from [Fin], describes the classi�cation of

circle bundles over a �xed surface, up to �bre-preserving homeomorphisms.
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Theorem 1.3.2. Let S be a compact connected surface with non-empty

boundary. The �bre-preserving homeomorphism classes of circle bundles over

S are in 1-1 correspondence with the pairs (k; ε), where k is an even non-

negative number which counts the number of sj such that ω(sj) = −1 and

(a) ε = o1, o2 when S is orientable and ε = n1, n2, n3, n4 when S is

non-orientable, if k = 0 or

(b) ε = o with o := o1 = o2 when S is orientable and ε = n with n := n1 =

n2 = n3 = n4 when S is non-orientable, if k > 0.

The case with empty boundary

Now we study how to classify circle bundles over a closed surface S,

following the approach of [Sco]. Any of such bundles still determines a ho-

momorphism ω : π1(S)→ Z2 and any such homomorphism can occur, but in

order to determine the bundle η one needs an extra invariant, denoted b(η)

and called the Euler number of η, which is the obstruction to the existence

of a section of the bundle η. The invariant b is an integer if the total space

of η is orientable and lies in Z2 otherwise
1. It can take any value and a circle

bundle η over S is determined by the homomorphism ω : π1(S) → Z2 and

by b(η). The following naturality result explains how b alters under �nite

covers.

Lemma 1.3.3. Let η be a circle bundle over a closed surface S with orientable

total space M . Let M̃ be a �nite cover of M of degree d, so that M̃ is the

total space of a circle bundle η̃ over a surface S̃. Let the covering S̃ → S

have degree l and let m denote the degree with which the �bres of η̃ cover

�bres of η so that lm = d.

Then b(η̃) = b(η) · l/m.

Note that b(η̃) must be an integer, so that the possible values of l and

m are somewhat restricted. Moreover, to de�ne b correctly, in the orientable

1Note that this terminology is not uniform in literature. For example in [Sco] the Euler

number is de�ned as −b(η) when b(η) is an integer and 0 otherwise.
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case we have to �x an orientation on M and b(−M) = −b(M). In the non-

orientable case b is zero if M admits a section and 1 otherwise.

In order to better understand the topological meaning of b, we can use the

notion of Dehn �lling: indeed a circle bundle over a closed surface can be seen

as the result of �lling the boundary component of a circle bundle having one

toric boundary component. Let us see what this means by introducing some

notions (see [Mar]). If a 3-manifold M has a spherical boundary component,

we can cap it o� with a ball. If M has a toric boundary component, there

is no canonical way to cap it o�: the simplest object that we can attach to

it is a solid torus S1 ×D2, but the resulting manifold depends on the gluing

map. This operation is called a Dehn �lling and we now see it in detail.

Let M be a 3-manifold and T ⊂ ∂M be a boundary torus component.

De�nition 1.8. A Dehn �lling of M along T is the operation of gluing a

solid torus S1 ×D2 to M via a di�eomorphism ϕ : S1 × ∂D2 → T .

The closed curve {x} × ∂D2 is glued to some simple (i.e., without self-

intersections) closed curve γ ⊂ T , as shown in Fig. 1.6. The result of this

operation is a new manifold M fill, which has one boundary component less

than M .

Lemma 1.3.4. The manifold M fill depends only on the isotopy class of the

unoriented curve γ.

Proof. Decompose S1 into two closed segments S1 = I ∪ J with coinciding

endpoints. The attaching of S1 × D2 may be seen as the attaching of a 2-

handle I×D2 along I×∂D2, followed by the attaching of a 3-handle J ×D2

along its full boundary. If we change γ by an isotopy, the attaching map

of the 2-handle changes by an isotopy and hence gives the same manifold.

The attaching map of the 3-handle is irrelevant (see Proposition 9.2.1 of

[Mar]).

We say that the Dehn �lling kills the curve γ, since this is what really hap-

pens on the fundamental group: after the �lling, γ becomes a representative
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Figure 1.6: Example of Dehn �lling (�gure taken from [Mar]).

of the trivial element of π1(M fill).

De�nition 1.9. A slope on a torus T is the isotopy class γ of an unoriented

homotopically non-trivial simple closed curve.

We indicate the set of slopes on T by S . If we �x a basis (m; l) for

H1(T ;Z) = π1(T ) ∼= Z ⊕ Z, one can prove that every slope can be written

as γ = ±(pm + ql) for some coprime pair (p; q). Therefore we get a 1-1

correspondence S ↔ Q ∪ {∞} by sending γ to p
q
. If T is a boundary

component of M , every number p
q
determines a Dehn �lling of M that kills

the corresponding slope γ.

Let η : M → S be circle bundle with one toric boundary component and let

c be the corresponding boundary component of S. Since, as we have seen

in the previous section, the base space has the homotopy type of a wedge

of circles, it is easy to see that η admits a section s. Moreover, it is possile

to prove that the slope d = s(c) on ∂M does not depend on the choice of

the section (see Corollary 10.2.3 of [Mar]). Moreover, denote with f a �bre

contained in ∂M . If M is oriented, its boundary ∂M is given the orientation

which, followed by an inward normal, coincides with the orientation of M .

We orient d and f such that (d, f) is a positively oriented base of H1(∂M).



14 1. Prerequisites

Then the b
1
�lling of M is a closed circle bundle with Euler number b.



Chapter 2

Seifert �bre spaces

In this chapter we will introduce the theory of Seifert �bre spaces and

their main properties, following [Sco]. We will also give a combinatorial

description of such manifolds, according to the approach of [CMMN], which

will lead to their classi�cation up to �bre-preserving homeomorphism and up

to homeomorphism.

2.1 De�nition and properties

A Seifert �bre space is a 3-manifold which can be expressed as a union

of disjoint circles, called �bres, in a particular way. The de�nition that we

will give, taken from [Sco], is a little more general than Seifert's original

de�nition, which can be found in [Sei]. We �rst need some notions, before

giving such de�nition.

De�nition 2.1. The trivial �bred solid torus is S1 × D2 with the trivial

product �bration. Thus the �bres of S1 × D2 are the circles S1 × {y}, for
y ∈ D2.

De�nition 2.2. The �bred solid torus T (p, q) of type (p, q) with p, q ∈ Z,
p > 0 and gcd(p, q) = 1 is the 3-manifold constructed from a trivial �bred

solid torus by cutting it open along {x}×D2 for some x ∈ S1, rotating one of

the discs so obtained through q
p
of a full turn and �nally gluing the two discs

15
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back together. If we identify the disc D2 with the unit disc in the complex

plane, than such identi�cation is made by gluing the two boundary discs of

[0, 1]×D2 with the homeomorphism ϕp,q de�ned by ϕp,q : (0, z)→ (1, ze2πi q
p ).

The �bre corresponding to z = 0 is called central �bre.

Thus T (p, q) is a solid torus which is �nitely covered by a trivial �bred

solid torus, as we will see at page 20.

Remark 2.1. If a �bred solid torus T (p, q) is constructed by a trivial one by

cutting open along a 2-disc and glueing with q
p
of a full twist, then clearly all

the �bres in T a part from the central one represent p times the generator of

π1(T ) and they also wind q times around the central �bre. Hence if two �bred

solid tori T (p, q) and T (p′, q′) are isomorphic, then p = p′ and q ≡ ±q′ (mod

p). Note that one can alter q by an integral multiple of p by cutting T (p, q)

along a 2-disk and glueing back with a full twist. Hence p is an isomorphism

invariant of a �bred solid torus T (p, q) and q will also be an invariant if we

normalise q so that 0 6 q 6 1
2
p.

De�nition 2.3. The invariants (p, q), normalized such that 0 6 q 6 1
2
p, are

called the orbit invariants of the central �bre of T (p, q).

De�nition 2.4. A �bred solid Klein bottle is constructed from a trivial �bred

solid torus by cutting it open along {x}×D2 for some x ∈ S1 and gluing the

two discs back together by a re�exion. If we identify the discD2 with the unit

disc in the complex plane, than such identi�cation is made by gluing the two

boundary discs of [0, 1]×D2 with the orientation reversing homeomorphism

ϕ de�ned by ϕ : (0, z)→ (1, z̄).

In particular, as all re�exions of a disc are conjugate, there is only one

�bred solid Klein bottle up to �bre-preserving homeomorphism and this is

double covered by a trivial �bred solid torus, as we will see at page 20.

De�nition 2.5. A half solid torus (resp. half solid Klein bottle) is the �bred

manifold obtained from I ×D2
+

1 by gluing {0} ×D2
+ with {1} ×D2

+ by the

restriction of ϕ1,0 (resp. ϕ) to {0} ×D2
+.

1With D2
+ we denote the points of the disc having non-negative real part.
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De�nition 2.6. A Seifert �bre space M is a compact connected 3-manifold

admitting a decomposition into disjoint circles, called �bres, such that each

�bre has a neighborhood in M which is a union of �bres and it is �bre-

preserving homeomorphic to:

• either a �bred solid torus or Klein bottle, if the �bre is contained in

int(M);

• either a half solid torus or a half solid Klein bottle, if the �bre is

contained in ∂M .

We can deduce from the de�nition that any circle bundle over a surface

is a Seifert �bre space.

Seifert's original de�nition of Seifert �bre space excluded the case of the

�bred solid Klein bottle, but there are advantages in allowing such phe-

nomenon, as we can notice from the following theorem. Let's �rst introduce

the notion of foliation.

De�nition 2.7. A foliation by circles of a 3-dimensional compact manifold

M is a decomposition of M into a union of disjoint embedded circles, called

the leaves of the foliation, with the following property: every point in M has

a neighborhood U and a system of local coordinates x = (x1, x2, x3) : U → R3

such that for each leaf S1 the components of U ∩ S1 are described by the

equations x2 = constant, x3 = constant.

Theorem 2.1.1. [Eps] Having a compact 3-manifoldM ,M is a Seifert space

if and only if M is foliated by circles.

This simple statement would be false if one kept Seifert's original de�ni-

tion of a Seifert �bre space.

Let us introduce some notions about the �bres of a Seifert manifold M .

De�nition 2.8. A �bre of a Seifert manifold M is called regular if it has a

neighborhood isomorphic to a trivial �bred solid torus or to a half solid torus

and critical otherwise.
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Since in the de�nition of Seifert �bre space we say that each �bre has

a neighborhood in M which is isomorphic to a �bred solid torus or Klein

bottle or half of them, saying that a �bre is critical means that it has a

neighborhood in M which is isomorphic to a �bred solid torus which is not

trivial or to a �bred solid Klein bottle (or half of it).

Remark 2.2. It follows that in a Seifert �bre space critical �bres are either

isolated, corresponding to the axis of T (p, q) with p > 1, or form properly

embedded compact surfaces, corresponding to the points (I × {z}) / ∼ϕ in

a solid Klein bottle with Im(z) = 0. Indeed, a �bred solid torus has at

most one critical �bre, namely the central one (while all the other �bres

are regular). Moreover, each connected critical surface is either a properly

embedded annulus or it is a closed surface obtained by gluing together the two

boundaries of an annulus, so it is either a torus or a Klein bottle. It follows

that the union of all the critical �bres in a Seifert �bre space M consists

of isolated �bres together with annuli, tori or Klein bottles. We denote by

E(M) (resp. SE(M)) the union of all isolated (resp. non-isolated) critical

�bres of M and call E-�bre (resp. SE-�bre) any �bre contained in E(M)

(resp. SE(M)). Finally, we set SE(M) = CE(M)∪AE(M), where CE(M)

contains the closed components of SE(M), while AE(M) contains the non-

closed ones. Note that if M is orientable then SE(M) = ∅.

The components of ∂M are either tori or Klein bottles: the toric compo-

nents are regularly �bred, while a Klein bottle component is either regularly

�bred (see the left part of Fig. 2.1) or it contains two critical �bres of AE(M)

(see the right part of Fig. 2.1).

Example 2.1. Let us see an example of Seifert �bre space: the lens spaces.

There are two equivalent ways of de�ning lens spaces: one as Dehn �llings

and one as quotients of the 3-sphere.

• Let M = S1 × D2 be the solid torus where the oriented meridian

m = {y} × S1 and longitude l = {x} × S1 form a basis for H1(∂M,Z).

The lens space L(p, q) is the result of a Dehn �lling (see De�nition 1.8)
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Figure 2.1: The two di�erent �bre structures of the Klein bottle boundary

components of a Seifert �bre space.

ofM that kills the slope qm+pl, which means that L(p, q) is the (q, p)-

Dehn �lling of the solid torus. Therefore, L(p, q) is a three-manifold

which decomposes into two solid tori, individuated by the slope qm+pl

in ∂M .

• Consider the 3-sphere S3 as the submanifold of unit vectors in C2, let

f : S3 → S3 be the homemorphism de�ned by f(z, w) = (e
2πi
p , e

2qπi
p )

and Γ = 〈f〉. We de�ne the lens space L(p, q) as the quotient S3/Γ.

One can show (as it is done in [Mar] at page 302) that the manifold S3/Γ

is the (q, p)-Dehn �lling of the solid torus, therefore the two de�nitions

are equivalent.

If we consider just the orientable ones, we can see Seifert manifolds as Dehn

�llings of trivial bundles over surfaces with boundary. Lens spaces are an

example of such case. Indeed, the lens space L(p, q) is a Seifert �bre space

with an exceptional �bre of type (q, p) and with base space an orbifold with

a cone point of type p and undelying manifold S2.

2.1.1 Base spaces

The reason for the terminology ��bre� is that one can think of a Seifert

�bre space M as a generalized kind of bundle in which the circles of the

foliation ofM are the �bres. We say that this is a generalized concept because

the presence of the critical �bres makes a Seifert �bre space a �singular�

circle bundle. Indeed, if we consider M excluding a regular neighborhood
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(see De�nition 3.5) of each critical �bre, we get a circle bundle (otherwise,

M itself is not a circle bundle).

De�nition 2.9. The base space X of a Seifert �bre space M is the quotient

space of M obtained by identifying each circle to a point.

In order to understand how the base space of a Seifert �bre space is, we

will look at the elementary pieces that compose such Seifert �bre space.

• If M is a trivial �bred solid torus S1 × D2, then the base space X is

clearly a 2-disc and the projection M → X is a bundle map.

• IfM is a �bred solid torus T (p, q), thenM is p-fold covered by a trivial

�bred solid torus S1×D2. The corresponding action of Zp on S1×D2

is generated by a homeomorphism which is simply the product of a

rotation through 2π
p

on the S1-factor with a rotation through 2πq
p

on

the D2-factor. Notice that this action of Zp on S1 × D2 induces an

action of Zp on the base space D2, which is generated by a rotation

through 2πq
p
. It follows that the base space X obtained from M by

identifying each �bre to a point can be naturally identi�ed with the

quotient of D2 by this action of Zp, that is, a cone orbifold (i.e. a

2-dimensional orbifold with a cone point) with cone angle 2π
p
.

Notice that the projection M → X is not a bundle map in the usual

sense (because of the singularity at the cone point), but we will think

of it as a bundle map in a generalized sense.

• IfM is a �bred solid Klein bottle, thenM is double covered by a trivial

�bred solid torus S1×D2. The corresponding action of Z2 on S1×D2

is generated by a homeomorphism which is simply the product of a

rotation through π on the S1-factor with a re�exion of the D2-factor.

Clearly the space X obtained from M by identifying �bres to a point

can be naturally identi�ed with the quotient of D2 by this action of Z2,

which is an orbifold with a re�ector line.
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Since locally any Seifert �bre space M is made by �bred solid tori and �-

bred solid Klein bottles, the quotient space X of M obtained by identifying

each �bre to a point is locally as one of the types just analysed. There-

fore X is, topologically speaking, a surface and naturally has an orbifold

structure (see De�nition 1.1) in which cone points correspond to orientation

preserving critical �bres (i.e. the central �bre of non-trivial solid tori) and

points on re�exion curves correspond to orientation reversing critical �bres

(i.e. the critical �bres of solid Klein bottles). From the previous analysis, it

also follows that the orbifold X will have no corner re�ectors. Besides, any

2-dimensional orbifold without corner re�ectors is the base space of at least

one Seifert �bre space. It is natural to construct a Seifert bundle over such

an orbifold X by starting with a circle bundle over a surface (which is ob-

tained from X excluding the interior of a regular neighborhoods of each of its

singular points) and then gluing on pieces corresponding to the components

of the singular set of X. We will see such construction in Section 2.2.1.

Remark 2.3. If M is a manifold without boundary, then the base space X

is an orbifold without boundary, as re�ector curves do not form part of the

boundary of an orbifold. In general, ∂X is the image of ∂M under the

projection M → X. Note that, since M is compact by de�nition, ∂M is a

union of tori and Klein bottles.

2.1.2 Universal covering

As we have seen in Remark 2.2, the union of all the regular �bres in any

connected �bre spaceM is connected and forms a bundle (in the usual sense).

In particular, all the regular �bres of M are freely homotopic to each others

and any critical �bre has a power which is freely homotopic to a regular �bre.

As a consequence, in a covering M̃ of M , the foliation of M by circles gives

rise to a foliation of M̃ by circles (which must again be a Seifert �bration) or

to a foliation of M̃ by lines. In either case, the base space of M̃ , de�ned by

identifying each leaf of the foliation to a point, is an orbifold covering of the

base space of M . This is obvious if M is a �bred solid torus or Klein bottle,
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and then it follows for any Seifert �bre space. Conversely, if M is a Seifert

�bre space over an orbifold X and if X̃ is an orbifold covering of X, there

is a natural covering space M̃ of M with an orbit space X̃ which should be

thought as the bundle over X̃ induced by the projection X̃ → X (i.e. the

foliation is maintained). Again this statement is clear if M is a �bred solid

torus or Klein bottle and then follows for any Seifert �bre space.

We are now in a position to show a signi�cant fact about Seifert �bre spaces.

Lemma 2.1.2. Let M be a Seifert �bre space without boundary. Then the

universal covering M̃ of M is homeomorphic to one of S3, R3 or S2 × R.
Further, the induced foliation of M̃ by circles or lines gives M̃ one of the

following structures:

(a) a Seifert bundle over one of the orbifolds S2, S2(p), S2(p, q) where p and

q are coprime (see page 6);

(b) a product line bundle over R2;

(c) a product line bundle over S2.

Proof. First suppose that the natural foliation of M̃ is by circles, so that M̃

is a Seifert �bre space. As M̃ is simply connected, it has no proper coverings.

Hence the base space of M̃ is an orbifold X̃ with no proper coverings. The

only such orbifolds are S2, S2(p), S2(p, q), where p and q are coprime, and

R2. The case X̃ = R2 cannot occurr, for then M̃ would be S1×R2 and so not

be simply connected. In the other cases, we write X̃ = D1 ∪D2, where D1

and D2 are 2-discs with a possible interior cone point. Thus M̃ is the union

of two �bred solid tori T1 and T2 where Ti has base space Di for i = 1, 2; and

hence is a lens space (see Example 2.1). As M̃ is simply connected, it must

be S3.

If M̃ is foliated by lines, then M̃ is a line bundle over its base space X̃ and

X̃ is an orbifold without singularities. Again X̃ is also simply connected so

that X̃ must be S2 or R2. This gives the cases (b) and (c) of the lemma.
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2.1.3 Fundamental group

We can now see the rather special structure of π1(M), whenM is a Seifert

�bre space.

Lemma 2.1.3. Let M be a Seifert space with base orbifold X. There is an

exact sequence

1 −→ J −→ π1(M) −→ πorb1 (X) −→ 1

where J denotes the cyclic subgroup of π1(M) generated by a regular �bre

and πorb1 (X) denotes the orbifold fundamental group of X. The group J is

in�nite except in the cases where M is covered by S3.

Proof. For π1(M) acts on M̃ preserving the natural foliation, there is an

induced action of π1(M) on X̃. This gives a natural homomorphism π1(M)→
πorb1 (X). The kernel J of this map consists of covering translations of M̃

which project to the identity map on X̃. As J acts freely on any one of the

�bres of M̃ , we see that J is in�nite cyclic if M̃ is not compact and it is

�nite cyclic when M is S3. As J is normal in π1(M), there are no base point

problems with the statement that J is generated by a regular �bre.

This exact sequence gives another reason for regarding M as a kind of

bundle over X. Indeed for a circle bundle η : M → S over a surface di�erent

from the sphere or the projective space, the exact sequence of Theorem 1.2.1

reduces to

1→ π1(S1)→ π1(M)→ π1(S)→ 1

since the universal covering of S is contractible being R2, and so π2(S) = 1

(see page 342 of [Hat]).

2.2 Classi�cation

Our aim now is to classify Seifert �bre spaces: �rstly up to �bre-preserving

homeomorphism and secondly up to homeomorphism. We will also see the

di�erence between the two classi�cations.
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2.2.1 Classi�cation up to �bre-preserving homeomor-

phism

In Subsection 2.1.1 we have seen Seifert �bre spaces as �bre bundles over

orbifolds and now we want to classify them up to �bre-preserving homeo-

morphism, which is a generalization of bundle isomorphism for bundles over

orbifolds. The �rst invariant of a Seifert �bre space M is the base orbifold

X. Let X ′ denote X \ int(N), where N is a regular neighborhood of the

singular locus. Then we have a circle bundle over X ′, which is a surface, and

we have already discussed the classi�cation of such objects in Section 1.3.

There are no extra invariants to attach to the re�ector lines and circles of X

because a circle bundle over X ′ determines uniquely a Seifert �bre space over

the union of X ′ with the components of N which contain re�ector lines or

circles. Our given Seifert �bre space M over X is completed by adding the

�bred solid tori corresponding to the cone points of X. As we have already

seen at page 16, each �bred solid torus determines a pair of coprime inte-

gers (p, q), called orbit invariants, which are invariants for the total Seifert

�bre space too. One more invariant is needed to complete the classi�cation

of Seifert �bre spaces in the case when the base space is a closed orbifold.

This is a generalization of the invariant b de�ned earlier for circle bundles

over closed surfaces at page 11. As in that case, b is an integer if the Seifert

�bre space is orientable and lies in Z2 otherwise. Note that if X has re�ector

curves, then b should be de�ned to be zero. On the other hand, if X has

no re�ector curves, Seifert showed that b could take any value except that if

some pair of orbit invariants is (2, 1), then b must be zero.

To sum up, a Seifert �bre space is determined by:

• the base orbifold X;

• the circle bundle over X ′ obtained restricting the circle bundle over the

orbifold X de�ned by M ;

• the orbit invariants (p, q) of the critical �bres corresponding to cone

points;
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• the value of the invariant b.

A combinatorial description of Seifert �bre spaces is given in [Fin] for

the closed case and in [CMMN] has been extended to the boundary case.

Let us �rst introduce some notation so that we can construct Seifert �bre

spaces in a combinatorial way and then get their classi�cation. We start with

the combinatorial description for Seifert �bre spaces, recovering the notation

seen at pages 10 and 18. Let

• g, t, k,m+,m−, r be non-negative integers such that k+m− is even and

k ≤ t;

• ε be a symbol belonging to the set E = {o, o1, o2, n, n1, n2, n3, n4} such
that (i) ε = o, n if and only if k + m− > 0, (ii) if ε = n4 then g ≥ 3,

(iii) if ε = n3 then g ≥ 2 and (iv) if ε = o2, n, n1, n2 then g ≥ 1;

• h1, . . . , hm+ and k1, . . . , km− be non-negative integers such that h1 ≤
· · · ≤ hm+ and k1 ≤ · · · ≤ km− ;

• (pj, qj) be lexicographically ordered pairs of coprime integers such that

0 < qj < pj if ε = o1, n2 and 0 < qj ≤ pj/2 otherwise, for j = 1, . . . , r;

• b be an arbitrary integer if t = m+ = m− = 0 and ε = o1, n2; b = 0

or 1 if t = m+ = m− = 0 and ε = o2, n1, n3, n4 and no pj = 2; b = 0

otherwise.

The previous parameters with the given conditions are called normalized,

and we denote by{
b; (ε, g, (t, k)) ;

(
h1, . . . , hm+ | k1, . . . , km−

)
; ((p1, q1), . . . , (pr, qr))

}
the Seifert �bre space constructed as follows.

If b = 0, denote by B∗ a compact connected genus g surface having s =

r+t+m++m− boundary components and being orientable if ε = o, o1, o2 and

non-orientable otherwise. By Theorem 1.3.2 there is a unique S1-bundle over

B∗ associated to the pair (k+m−, ε), up to �bre-preserving homeomorphism:
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call it M∗. Note that M∗ has k + m− boundary components which are

Klein bottles and the remaining r + t − k + m+ ones are tori. Denote by

c1, . . . , cs the boundary components of B∗, numbering them such that the last

k +m− correspond to Klein bottles in M∗. Let ∂1B
∗ = c1 ∪ . . . ∪ cr+t−k+m+

and ∂2B
∗ = ∂B∗ \ ∂1B

∗. Finally, denote by s∗ : B∗ → M∗ a section of

f ∗ : M∗ → B∗.

(a) For j = 1, . . . , r �ll the toric boundary component (f ∗)−1(cj) of M∗

with a solid torus by sending the boundary of a meridian disk of the

solid torus into the curve pjdj+qjfj, where fj is a �bre and dj = s∗(cj);

(b) for i = 1, . . . ,m+ (resp. j = 1, . . . ,m−) consider hi (resp. kj) dis-

joint closed arcs inside the boundary component ci+r of ∂1B
∗ (resp.

cj+r+t−k+m+ of ∂2B
∗) and, for each arc and each point x of the arc,

attach a Möbius strip along the boundary to the �bre (f ∗)−1(x), where

the Möbius strip is foliated by circles. On the whole, we attach hi (resp.

kj) disjoint copies of N×I to the boundary ofM∗ corresponding to the

counter-image of ci+r (resp. cj+r+t−k+m+). So the boundary component

remains unchanged if hi = 0 (resp. kj = 0) and it is partially �lled oth-

erwise. In the latter case instead of the initial boundary component we

have hi (resp. kj) Klein bottle boundary components;

(c) for i = 1, . . . , t − k (resp. j = 1, . . . , k) glue a copy of N × S1

(resp. N×̃S1) to each toric (resp. Klein bottle) boundary compo-

nent of M∗ along the boundary via a homeomorphism which is �bre-

preserving with respect to the �bration of the components to glue.

Namely, as in the previous step, for each point x ∈ ci+r+m+ (resp.

x ∈ cj+r+t−k+m++m−) we attach a Möbius strip along the boundary to

the �bre (f ∗)−1(x).

If b 6= 0 (and therefore t = m+ = m− = 0) we modify the above construc-

tion as follows: we take a surface B∗ with r + 1 boundary components and

�ll the �rst r-ones boundary components of M∗ as described in (a) and the
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last one by sending the boundary of a meridian disk of the solid torus into

dr+1 + bfr+1 (i.e., with (pr+1, qr+1) = (1, b)).

The resulting manifold is the Seifert �bre space

M =
{
b; (ε, g, (t, k)) ;

(
h1, . . . , hm+ | k1, . . . , km−

)
; ((p1, q1), . . . , (pr, qr))

}
.

Note that when t = m+ = m− = 0, the above construction gives the

classical closed Seifert �bre space (b; ε, g; (p1, q1), . . . , (pr, qr)) of [Sei].

From the above construction it follows that the critical set of M is com-

posed by: (a) an E-�bre of type2 (pj, qj) for j = 1, . . . , r, (b) t closed critical

surfaces, k of which are Klein bottles while the remaining t− k are tori and

(c) t′ = h1 + · · · + hm+ + k1 + · · · + km− critical surfaces homeomorphic to

annuli. Moreover, the boundary of M has t′ components which are Klein

bottles with two critical �bres (contained in AE(M)) and, for each hi = 0

(resp. kj = 0), a toric (resp. Klein bottle) boundary component without

critical �bres.

The singular locus of the base orbifold B consists of: (a) r cone points

of cone angles 2π/p1, . . . , 2π/pr (in �gures each cone point will be decorated

with the corresponding pair (pj, qj)), (b) t re�ector circles and (c) t′ re�ector

arcs. The underlying surface of the orbifold has genus g and it is orientable if

and only if ε = o, o1, o2. Moreover, it has m+ +m−+t boundary components:

one boundary component containing hi (resp. kj) disjoint re�ector arcs for

each i = 1, . . . ,m+ (resp. j = 1, . . . ,m−), and one boundary components

for each re�ector circle. We decorate by the symbol �−� each boundary

component of the underlying surface having a Klein bottle as counterimage

in M .

Remark 2.4. Conditions on the invariants ensuring the orientability and the

closeness of a Seifert �bre space are the following:

(i) M is orientable if and only if t = m− = 0, hi = 0 for all i = 1, . . . ,m+

and ε = o1, n2;

2Note that a �bred tubular neighborhood of an E-�bre of type (pj , qj) is �bre-preserving

equivalent to T (pj , rj) with rjqj ≡ 1 mod pj .
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(ii) M is closed if and only if m+ = m− = 0.

Example 2.2. The Seifert �bre space {0; (o, 4, (1, 1)) ; (1 | 0) ; ((3, 1), (5, 2))}
is depicted in Fig. 2.2. The thick lines and points represent the singular locus

of the base orbifold B. The Seifert �bre space has two E-�bres of type (3, 1)

and (5, 2), one Klein bottle critical surface and one annulus critical surface.

The boundary consists of two Klein bottles, one with two critical �bres and

another without critical �bres.

(3, 1) (5, 2)

− −

Figure 2.2: The Seifert �bre space {0; (o, 4, (1, 1)) ; (1 | 0) ; ((3, 1), (5, 2))}.

Theorem 2.2.1. Every Seifert �bre space is uniquely determined, up to �bre-

preserving homeomorphism, by the normalized set of parameters

{
b; (ε, g, (t, k)) ;

(
h1, . . . , hm+ | k1, . . . , km−

)
; ((p1, q1), . . . , (pr, qr))

}
,

and, when M \ SE(M) is orientable (i.e., ε ∈ {o1, n2}), by the following

additional conditions: (i) if M is closed and orientable, then b ≥ −r/2 and,

if b = −r/2, 0 < ql < pl/2, (ii) if M is non-closed or non-orientable then

0 < ql < pl/2; where l is the minimum j, if any, such that pj > 2.

For the proof of the above theorem, see page 15 of [CMMN].
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2.2.2 Classi�cation up to homeomorphism

The classi�cation of Seifert �bre spaces up to �bre-preserving homeomor-

phism and the one up to homeomorphism don't coincide in general, but they

do in most of the cases, as the following result shows.

Theorem 2.2.2. Let M be a compact 3-manifold homeomorphic to two

Seifert �bre spaces which are not �bre-preserving homeomorphic. Then one

of the following cases occurs:

(a) M is covered by S3 or S2 × R;

(b) M is covered by S1 × S1 × S1;

(c) M is covered by S1 ×D2 or a I-bundle over the torus or Klein bottle.

For the proof of the above theorem, see page 439 of [Sco].

The conclusion to be drawn from the previous result is that, while the

�bre-preserving homeomorphism of Seifert bundle structures always implies

the existence of a homeomorphism between the Seifert spaces, the vice versa

is not always true but it holds in most of the cases.

In fact, a still stronger result holds: for most manifolds which admit a Seifert

�bration, this �bration is unique up to homotopy, and not just up to �bre-

preserving homeomorphism as we have just seen. The precise statement is

as follows.

Theorem 2.2.3. Let M be a compact Seifert �bre space and let f : M → N

be a homeomorphism. Then f is homotopic to a �bre preserving homeo-

morphism (and hence an isomorphism of Seifert bundles), unless one of the

following occurs.

(a) M is covered by S3 or S2 × R;

(b) M is covered by S1 × S1 × S1;

(c) M is covered by S1 ×D2 or a I-bundle over the torus or Klein bottle.
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For the proof of the above theorem, see page 440 of [Sco].

We conclude this chapter with some results that allow us to characterise

3-manifolds having a Seifert �bre space structure. We �rst see the cases in

which the fundamental group of the manifoldM is in�nite, in particular when

M is P2-irreducible (Theorem 2.2.4) and whenM is non-irreducible (Theorem

2.2.5), and �nally a result about the case in which the fundamental group is

�nite (Theorem 2.2.6). For a deeper analysis of the topic, see [Pré]. Before

stating the results, we give the following de�nitions.

De�nition 2.10. A 3-manifold M is called irreducible if every 2-sphere in

M bounds a 3-ball. Otherwise, M is called reducible.

De�nition 2.11. A 3-manifold M is called P2-irreducible when it is irre-

ducible and it contains no 2-sided RP2.

Remark 2.5. An orientable manifold is P2-irreducible if and only if it is irre-

ducible.

Remark 2.6. If M is reducible, then either it can be decomposed into a non-

trivial connected sum (see De�nition 3.21), or is one of the manifolds S2×S1,

S2×̃S1, the non-orientable S2-bundle over S1.

Theorem 2.2.4. Let M be a P2-irreducible 3-manifold whom π1 is in�nite

and contains a non-trivial cyclic normal subgroup. Then M is a Seifert

bundle.

Theorem 2.2.5. Let M be an orientable non-irreducible 3-manifold whose

π1 contains an in�nite cyclic normal subgroup. Then the manifold obtained

by �lling all spheres in ∂M with balls is a Seifert �ber space.

Theorem 2.2.6. A 3-manifold with �nite π1 containing no sphere in its

boundary is a closed Seifert �bered space when orientable and P2 × I when

non-orientable.



Chapter 3

Complexity

In this chapter we will introduce the complexity theory: at �rst, we will

see the topic in a general way that concerns all compact 3-manifolds, following

the approach of [Mat]. Then, from Section 3.3 on, we will focus on the

estimation of the complexity of Seifert �bre spaces showing some results from

[CMMN] and in Section 3.4 we will see some examples in which we construct

what is called an almost simple spine of manifolds having complexity zero.

3.1 Spines of 3-manifolds

We want to study the geometry and topology of 3-manifolds using their

complexity as a tool. For such purpose, we will need the central notion of

spine of a 3-manifold.

3.1.1 Collapsing

In order to discuss spines, we need to introduce the de�nition of collapsing.

We start with the de�nition of an elementary simplicial collapse.

Let K be a simplicial complex, and let σn, δn−1 ∈ K be two open simplices

such that σ is principal, i.e. σ is not a proper face of any simplex in K, and

δ is a free face of it, i.e. δ is not a proper face of any simplex in K other than

σ.

31
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De�nition 3.1. The transition from K to K \(σ∪δ) is called an elementary

simplicial collapse, see Fig. 3.1.

A simplicial collapse of a simplicial complex K onto its subcomplex L is a

sequence of elementary simplicial collapses transforming K into L.

Figure 3.1: Elementary simplicial collapse (�gure taken from [Mat]).

De�nition 3.2. A polyhedron P collapses to a subpolyhedron Q (notation:

P ↘ Q) if for some triangulation (K,L) of the pair (P,Q) the complex K

collapses onto L by a sequence of elementary simplicial collapses.

In general, there is no need to triangulate the polyhedron P to construct

a collapse P ↘ Q; for this purpose one can use larger blocks instead of

simplexes. It is clear that any n-dimensional cell Bn collapses to any (n−1)-

dimensional face Bn−1 ⊂ ∂Bn. It follows that the collapse of P to Q can be

performed at once by removing cells as we see in the following de�nition.

De�nition 3.3. Let P a polyhedron and Q a subpolyhedron of P , such that

P = Q ∪ Bn and Q ∩ Bn = Bn−1, where Bn is an n-cell and Bn−1 is an

(n − 1)-dimensional face of Bn. The transition from P to Q is called an

elementary polyhedral collapse, see Fig. 3.2.

It is easy to see that an elementary simplicial collapse is a special case

of an elementary polyhedral collapse. Likewise, it is possible to choose a
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Figure 3.2: Elementary polyhedral collapse (�gure taken from [Mat]).

triangulation of the ball Bn such that the collapse of Bn onto its face Bn−1

can be expressed as a sequence of elementary simplicial collapses. It follows

that the same is true for any elementary polyhedral collapse.

We now extend the notion of polyhedral collapse.

De�nition 3.4. A polyhedral collapse of a polyhedron P onto its subpoly-

hedron Q is a sequence of elementary polyhedral collapses.

The notion of collapse allows us to give the de�nition of regular neigh-

borhood, taken from [Hud].

De�nition 3.5. Let P , Q be compact polyhedra in an n-manifold M . We

say that Q is a regular neighborhood of P in M if

(a) Q is an n-manifold,

(b) Q is a topological neighborhood of P in M ,

(c) Q↘ P .

The above de�nition can be extended from polyhedra to compact mani-

folds, up to homeomorphism, therefore it makes sense to talk about regular

neighborhoods of manifolds.
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3.1.2 Spines

De�nition 3.6. LetM be a compact connected 3-dimensional manifold with

boundary. A subpolyhedron P ⊂ M is called a spine of M if M ↘ P , that

is, M collapses to P .

We can extend the notion of spine also to 3-manifolds which are not

compact and connected as follows.

De�nition 3.7. A spine of a closed connected 3-manifold M is a spine of

M \ int(B3) where B3 is a 3-ball in M .

A spine of a disconnected 3-manifold is the union of spines of its connected

components.

Remark 3.1. A simple argument shows that any compact triangulated 3-

manifold M always has a spine of dimension ≤ 2. Indeed, let M collapse to

a subcomplex K. If K contains a 3-simplex, then K contains a 3-simplex

with a free face, so the collapsing can be continued.

It is often convenient to view 3-manifolds as mapping cylinders over their

spines and as regular neighborhoods of the spines. The following theorem

justi�es these points of view. We �rst recall the de�nition of a mapping

cylinder.

De�nition 3.8. Let f : X → Y be a map between topological spaces. The

mapping cylinder Cf is de�ned as Y ∪ (X × [0, 1])/ ∼, where the equivalence
relation is generated by identi�cations (x, 1) = f(x) for all x ∈ X. If Y is a

point, then Cf is called the cone over X. See Fig. 3.3.

Theorem 3.1.1. The following conditions on a compact subpolyhedron P ⊂
int(M) of a compact 3-manifold M with boundary are equivalent:

(a) P is a spine of M ;

(b) M is homeomorphic to a regular neighborhood of P in M ;

(c) M is homeomorphic to the mapping cylinder of a map f : ∂M → P ;
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Figure 3.3: The mapping cylinder and the cone (�gure taken from [Mat]).

(d) The manifold M \ P is homeomorphic to ∂M × [0, 1).

Proof. (a)⇒ (b). This implication is valid in view of the following property

of a regular neighborhood of P in M: it is a submanifold of M that can be

collapsed onto P, as we have seen in De�nition 3.5.

(b) ⇒ (c) Let a pair (K,L) of simplicial complexes triangulate the pair

(M,P ). Denote by St(L,K ′′) the star of L in the second barycentric subdi-

vision K ′′ of K. According to the theorem on regular neighborhoods of [RS],

M can be identi�ed with the underlying space N = |St(L,K ′′)| of the star.

The possibility of representing the manifold N in the form of the cylinder of

a map f : ∂N → P is one of the properties of the star.

(c)⇒ (d). This implication is obvious.

(d) ⇒ (a). Suppose the manifold M \ P is homeomorphic to ∂M × [0, 1).

Denote by N a small regular neighborhood of P in M . Since we have proved

the implications (b) ⇒ (c) ⇒ (d), we can apply them to N . Therefore the

manifold N \ P is homeomorphic to ∂N × [0, 1). Note that the embedding

of N \ P into ∂M × [0, 1) is proper in the following sense: the intersection

of any compact set C ⊂ ∂M × [0, 1) with N \ P is compact. In this case the

manifold Cl(M \N), i.e., the closure of M \N , is homeomorphic to ∂N × I.
Since ∂N × I ↘ ∂N × {0} and N ↘ P , it follows that M ↘ P .
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3.1.3 Simple and special spines

A spine of a 3-manifold M carries much information about M . In par-

ticular, if ∂M 6= ∅ then any spine P of M is homotopy equivalent to M and

hence determines the homotopy type of M . Nevertheless, it is possible for

two non-homeomorphic manifolds to have homeomorphic spines. In order to

eliminate this di�culty, we will restrict our class of spines to those called

special spines. We will give a precise de�nition shortly afterwards. First we

must de�ne the notion of simple polyhedron.

De�nition 3.9. A compact polyhedron P is called simple if the link of

each point x ∈ P is homeomorphic to one of the following 1-dimensional

polyhedra:

(a) a circle (such a point x is called non-singular);

(b) a circle with a diameter (such a point x is a triple point and a line made

of triple points is said triple line);

(c) a circle with three radii (such a point x is a true vertex ).

Typical neighborhoods of points of a simple polyhedron are shown in Fig.

3.4. The polyhedron used here to illustrate the true vertex singularity will

Figure 3.4: Allowable neighborhoods in a simple polyhedron (respectively,

nonsingular point, triple point, true vertex) (�gure taken from [Mat]).

be denoted by E and we will call it a butter�y (see the right part of Fig.

3.4). Its body consists of four segments having a common endpoint, and it
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has six wings. Each wing spans two segments, and each pair of the segments

is spanned by exactly one wing.

De�nition 3.10. The set of singular points of a simple polyhedron (that is,

the union of its true vertices and triple lines) is called its singular graph and

is denoted by SP .

In general, SP is not a graph whose vertices are the true vertices of P ,

since it can contain closed triple lines without true vertices. If there are no

closed triple lines, then SP is a regular graph of degree 4, i.e. every true

vertex of SP is incident to exactly four edges.

Let us consider the structure of simple polyhedra in detail. Each simple

polyhedron is naturally strati�ed. In this strati�cation each stratum of di-

mension 2, which is called a 2-component, is a connected component of the

set of non-singular points. Strata of dimension 1, called 1-strata, consist of

open or closed triple lines, and dimension 0 strata are true vertices.

De�nition 3.11. A simple polyhedron P is called special if:

(a) each 1-stratum of P is an open 1-cell;

(b) each 2-component of P is an open 2-cell.

De�nition 3.12. A spine of a 3-manifold is called simple or special if it is

a simple or special polyhedron, respectively.

Example 3.1. An example of special spine of the 3-ball is shown in Fig. 3.5:

Bing's House with two rooms, which is a cube B decomposed by the middle

section into two rooms. Each room has a vertical tube entrance joined to the

walls by a quadrilateral membrane.

Let us describe a collapse of the 3-ball onto Bing's House. First we collapse

the 3-ball onto a cube B which is contained in it. Next we penetrate through

the upper tube into the lower room and exhaust the interior of the room

keeping the quadrilateral membrane �xed. Finally, we do the same with the

upper room.
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Figure 3.5: Bing's House with two rooms (�gure taken from [Mat]).

Before stating the following theorem, we need the notion of k-handles

attached to 3-manifolds, taken from the de�nition of [Mar] of k-handles at-

tached to n-manifolds.

De�nition 3.13. Let M be a (possibly empty or disconnected) 3-manifold

with boundary and 0 ≤ k ≤ 3. A k-handle is the 3-dimensional ball de-

composed as Dk × D3−k, where Di denotes the i-th ball. By attaching a

k-handle to M we mean gluing Dk × D3−k to M using a di�eomorphism

φ : ∂Dk × D3−k → Y ⊂ ∂M . Clearly, by attaching a k-handle to M we

create a new manifold that, generally, won't be di�eomorphic to M .

Theorem 3.1.2. Any compact 3-manifold possesses a special spine.

Proof. Let M be a 3-manifold with boundary and let T be a triangulation

of M . Consider the handle decomposition generated by T . This means the

following: we replace each vertex with a ball Bi (a handle of index 0), each

edge with a beam Cj (a handle of index 1), and each triangle with a plate Pk

(a handle of index 2), see Fig. 3.6. The rest ofM consists of index 3 handles.

Let P be the union of the boundaries of all handles: P =
⋃
i,j,k ∂Bi∪∂Cj∪∂Pk

(the boundaries of index 3 handles do not contribute to the union). Then

P is a special polyhedron and is indeed a special spine of M with an open
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ball removed from each handle. Alternatively, one can construct a special

spine of multipuncturedM by taking the union of ∂M and the 2-dimensional

skeleton of the cell decomposition dual to T .

It remains to show that if M with m > 1 balls removed has a special spine,

then M with m − 1 balls removed also has a special spine. We do that in

two steps. First, we show that as long as the number of removed balls is

greater than one, there exist two distinct balls separated by a 2-component

of P . This can be achieved by considering a general position arc connecting

two distinct balls and observing that it must pass transversally through at

least one separating 2-component.

The second step consists in puncturing the spine to fuse these two balls into

one so that the remaining spine is also special. If we just made a hole to cut

our way through the 2-component, the boundary of the hole would contain

points of forbidden types. One can try to collapse the punctured spine as

long as possible with hoping to get a special polyhedron, but sometimes we

would end up with a polyhedron which is not even simple. So we must �nd

a way to avoid this. The arch construction illustrated in Fig. 3.7 gives us a

solution.

The arch connects two di�erent balls separated by a 2-cell C in such a way

as to form a special polyhedron. To see this, consider how we get such an

arch: �rst add a �blister� to the spine as illustrated in Fig. 3.7. This is done

by considering a neighborhood of the spine and then collapsing most of it

(except the blister) back down to the spine. Squeeze in the blister until what

remains is a �lled tube attached by a membrane F to the spine. From each

end of the tube, push in its contents until all that remains is a disk in the

middle of the tube. Now remove this disk.

The claim is that we get a special spine for M with the number of re-

moved balls decreased by one. The crux of the matter is that each of the

2-components of the new spine is a 2-cell. Actually the only �suspicious�

2-component is D, that appeared after joining 2-components A and B by

the arch. Clearly, D is a 2-cell provided A 6= B (if A = B, we get either
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an annulus or a Moebius band). To see that the proviso always holds, one

should use the fact that we have started with two distinct balls separated by

the 2-component C: A di�ers from B, since they separate di�erent pairs of

balls.

After a few such steps we get a special spine P ′ of once punctured M . If M

is closed, then we are done. If not, we slightly push P ′ into the interior of

M and use the arch construction again to unite the ball and a component of

M \ P ′ homeomorphic to ∂M × [0, 1).

Figure 3.6: Going from a triangulation to a handle decomposition (�gure

taken from [Mat]).

Figure 3.7: The arch construction (�gure taken from [Mat]).
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Theorem 3.1.3. If two compact connected 3-manifolds have homeomorphic

special spines and either both are closed or both have non-empty boundaries,

then these 3-manifolds are homeomorphic.

The proof of the above theorem can be found at page 8 of [Mat]. Its

meaning is that any special spine of a manifold determines it uniquely. It

follows that special spines may be viewed as presentations of 3-manifolds.

One should point out that, in contrast to group theory where every presenta-

tion determines a group, not every special polyhedron presents a 3-manifold.

It is because there exist unthickenable special polyhedra which cannot be

embedded into 3-manifolds.

Example 3.2. We attach the disc D2 by its boundary to the projective plane

RP2 along the projective line RP1. All the 2-components of the 2-polyhedron

P obtained in this way are 2-cells. However, P cannot be embedded into a

3-manifold M . Indeed, if this were possible, the restriction to RP1 of the

trivial normal bundle of D2 in M would be isomorphic to the non-trivial

normal bundle of RP1 in RP2.

Since P has no true vertices, it is not special. Nevertheless, it is easy to attach

to P additional 2-cells (bubbles) to get an unthickenable special polyhedron.

It turns out that the �normal bundle obstruction� described above is the

only thing that can make a special polyhedron unthickenable.

Moreover, a 3-manifoldM can be reconstructed from a regular neighborhood

N(SP ) in P of the singular graph SP of P : starting from N(SP ), one can

easily reconstruct P by attaching 2-cells to all the circles in ∂N(SP ), and

then reconstruct M . If M is orientable, then N(SP ) can be embedded into

R3. This gives us a very convenient way for presenting 3-manifolds: we simply

draw a picture, see Fig. 3.8 for the representation of the Bing's House with

two rooms, a special spine of the 3-ball .

Theorem 3.1.4. For any integer k there exists only a �nite number of special

spines with k true vertices. All of them can be constructed algorithmically.
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Figure 3.8: Bing's House with two rooms presented as regular neighborhood

of its singular graph (�gure taken from [Mat]).

Proof. We will construct a �nite set of special polyhedra that a fortiori con-

tains all special spines with k true vertices. First, one should enumerate

all regular graphs of degree 4 with k true vertices. Clearly, there is only a

�nite number of them. Given a regular graph, we replace each true vertex v

by a copy of the butter�y E that presents a typical neighborhood of a true

vertex in a simple polyhedron, see De�nition 3.9. Neighborhoods in ∂E of

triple points of ∂E (we will call them triodes) correspond to edges having

an endpoint at v. In Fig. 3.9 the triodes are shown by fat lines. For each

edge e, we glue together the triodes that correspond to endpoints of e via a

homeomorphism between them. It can be done in six di�erent ways (up to

isotopy). We get a simple polyhedron P with boundary. Attaching 2-discs

to the circles in ∂P , we get a special polyhedron. Since at each step we

have had only a �nite number of choices, this method produces a �nite set

of special polyhedra. Not all of them are thickenable. Nevertheless, the set

contains all special spines with k true vertices.

3.2 Almost simple spines and de�nition of com-

plexity

It would be a natural idea to measure how complex is a 3-manifold by the

number of true vertices of its special spine. This characteristic is convenient
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Figure 3.9: A decomposition of N(SP ) into copies of E (�gure taken from

[Mat]).

in that there exists only a �nite number of 3-manifolds having special spines

with a given number of vertices. But it has two shortcomings. First, it is

not additive with respect to connected sums (see De�nition 3.21). Second,

restricting ourselves to special spines, we lose the possibility to consider very

natural spines such as a point for the ball (and S3), a circle for the solid

torus, and a projective plane for the projective space RP3. Also, working

only with special spines, we are sometimes compelled to make arti�cial tricks

to preserve the special polyhedra structure. For example, in the proof of

Theorem 3.1.2 we used a delicate arch construction instead of simply making

a hole in a 2-cell.

All these shortcomings have the same root: the property of being special is

not hereditary. In other words, a subpolyhedron of a special polyhedron may

not be special, even if it cannot be collapsed onto a smaller subpolyhedron.

This is why we shall widen the class of special polyhedra by considering

a class of what we call almost simple polyhedra. Roughly speaking, the

class of almost simple polyhedra is the minimal class which contains special

polyhedra and is closed with respect to the passage to subpolyhedra.

De�nition 3.14. A compact polyhedron P is said to be almost simple if

the link of any of its points can be embedded into Γ4, a complete graph with
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four vertices (see Fig. 3.10).

A spine P of a 3-manifold M is almost simple, if it is an almost simple

polyhedron.

Figure 3.10: The complete graph with four vertices Γ4.

It is convenient to present Γ4 as a circle with three radii or as the boundary

of the standard butter�y.

Remark 3.2. One usually considers only almost simple polyhedra that cannot

be collapsed onto smaller subpolyhedra. One can notice that any proper sub-

polyhedron of the circle with three radii can be collapsed onto a polyhedron

L having one of the following types:

(a) L is either empty or a �nite set of n ≥ 2 points;

(b) L is the union of a �nite (possibly empty) set and a circle;

(c) L is the union of a �nite (possibly empty) set and a circle with a diameter;

(d) L is a Γ4.

An almost simple polyhedron P cannot be collapsed onto a smaller subpoly-

hedron if and only if the link L of any point of P is contained in the above

list.
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The notions of a true vertex, singular graph, 2-component of an almost

simple polyhedron are introduced in the same way as for simple polyhedra,

see Section 3.1.3.

Almost simple spines are easier to work with than special spines, since we

may puncture cells and stay within the realm of almost simple spines.

De�nition 3.15. The complexity c(P ) of an almost simple polyhedron P is

equal to the number of its true vertices.

De�nition 3.16. The complexity c(M) of a compact 3-manifold M is equal

to k if M possesses an almost simple spine with k true vertices and has no

almost simple spines with a smaller number of true vertices.

In other words, c(M) = minP c(P ), where the minimum is taken over all

almost simple spines of M .

Let us give some examples. The complexity of S3, of the projective space

RP3, of the lens space L(3, 1) (see Example 2.1), and the manifold S2×S1 is

equal to zero, since they possess almost simple spines without true vertices:

the point, the projective plane, the triple hat1, and the wedge of S2 with

S1, respectively. Among compact manifolds with boundary, zero complexity

is possessed by all handlebodies2 and I-bundles over surfaces. Indeed, any

handlebody collapses to a graph that (being considered as an almost simple

polyhedron) has no true vertices, while the I-bundles collapse to surfaces.

It is convenient to observe that removing an open ball does not a�ect the

complexity.

Proposition 3.2.1. Suppose that B is a 3-ball in a 3-manifold M . Then

c(M) = c(M \ int(B)).

1Recall that by the triple hat we mean the quotient space of D2 by a free action of the

group Z3 on ∂D2.
2The genus n handlebody Hn is the compact orientable 3-manifold bounded by a com-

pact orientable surface of genus n embedded in R3.
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Proof. If M is closed, then c(M) = c(M \ IntB) since M and M \ IntB have

the same spines by de�nition of the spine of a closed manifold. Let ∂M 6= ∅,
and let P be an almost simple spine of M \ IntB possessing c(M \ IntB) true

vertices. Denote by C the connected component of the spaceM\P containing

B. Since M is not closed, there exists a 2-component α of P that separates

C from another component of M \ P . Removing an open 2-disc from α and

collapsing yields an almost simple spine P1 ⊂ P of M . The number of true

vertices of P1 is no greater than that of P , since puncturing α and collapsing

results in no new true vertices. Therefore, c(M) ≤ c(M \ IntB).

To prove the converse inequality, consider an almost simple spine P1 of M

with c(M) true vertices. Let us take a 2-sphere S2 inM such that S2∩P1 = ∅.
Join S2 to P 1 by an arc l that has no common points with P1∪S2 except the

endpoints. Clearly, P = P1 ∪ S2 ∪ l is an almost simple spine of M \ IntB.
New true vertices do not arise. It follows that c(M) ≥ c(M \ IntB).

In general, the problem of calculating the complexity c(M) of a 3-manifold

M is very di�cult. Let us start with a simpler problem of estimating c(M).

To do that it su�ces to construct an almost simple spine P of M . The

number of true vertices of P will serve as an upper bound for the complexity.

Since an almost simple spine can be easily constructed from practically any

presentation of the manifold, the estimation problem does not give rise to

any di�culties. Let us describe several estimates of the complexity based on

di�erent presentations of 3-manifolds.

Proposition 3.2.2. Suppose a 3-manifold M is obtained by pasting together

n tetrahedra by a�ne identi�cations of their faces. Then c(M) ≤ n.

Proof. Recall that any tetrahedron ∆ contains a canonical copy P∆ = ∪|lki(vi,∆′)|
of the standard butter�y E, where vi, 0 ≤ i ≤ 3, are the vertices of ∆. When

pasting together the tetrahedra, these copies are glued together into a simple

polyhedron P ⊂M that may have a boundary if M is not closed. The poly-

hedron P has n true vertices and is a spine of M with several balls removed

from it. These balls are the neighborhoods of the points which are obtained
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by gluing the vertices of the tetrahedra and lie in the interior ofM . It follows

from Proposition 3.2.1 that c(M) ≤ n.

Remark 3.3. Indeed for closed irreducible and P2-irreducible manifolds (see

De�nition 2.10 and 2.11), the complexity coincides with the minimum num-

ber of tetrahedra needed to construct a manifold, with the only exceptions

of S3, RP3 and L(3, 1), all having complexity zero.

Proposition 3.2.3. Suppose M̃ is a k-fold covering space of a 3-manifold

M . Then c(M̃) ≤ kc(M).

Proof. Let P be an almost simple spine of M having c(M) true vertices.

Consider the almost simple polyhedron P̃ = p−1(P ), where p : M̃ → M is

the covering map. Since the degree of the covering is k, the polyhedron P̃

has kc(M) true vertices. If ∂M 6= ∅, then P̃ is an almost simple spine of

M̃ , since the collapse of M onto P can be lifted to a collapse of M̃ onto P̃ .

Therefore, c(M̃) ≤ kc(M).

If M is closed, P̃ is a spine of the manifold M̃ \ π−1(V ), where V is an open

3-ball in M . The inverse image p−1(V ) consists of k open 3-balls, hence, by

Proposition 3.2.1, we have c(M̃) = c(M̃ \ p−1(V )) ≤ kc(M).

In [Mat, p.77] an upper bound for the complexity of lens spaces (see

Example 2.1) is given. In order to describe it we need the following de�nition.

De�nition 3.17. For two coprime integers p, q with 0 < q < p denote by

S(p, q) the sum of the coe�cients of the expansion of p/q as a continued

fraction:

if
p

q
= a1 +

1

. . . +
1

ak−1 +
1

ak

, then S(p, q) = a1 + · · ·+ ak.

The upper bound for the complexity of lens spaces that we can �nd in

[Mat] is the following:

c(L(p, q)) ≤ max{S(p, q)− 3, 0}, (3.1)
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which has been proved to be sharp in many cases (see [JRT, JRT2]).

3.2.1 Converting almost simple spines into special ones

We have already stated the advantages of using almost simple spines,

yet there are important downsides too. In general, almost simple spines

determine 3-manifolds in a nonunique way, and cannot be represented by

regular neighborhoods of their singular graphs alone. Since special spines,

as has been mentioned before, are free from such liability, we would like to

go from almost simple polyhedra to special ones whenever possible. We will

now see when it is possible.

Let P be an almost simple spine of a 3-manifold M that is not a special

one. Then P either possesses a 1-dimensional part or has 2-components not

homeomorphic to a disc. Our aim is to transform P into a special spine

of M without increasing the number of true vertices. In general this is not

possible, but there are cases in which it is. To give an exact formulation, we

need to recall a few notions of 3-manifold topology.

Recall that a compact surface F in a 3-manifold M is called proper if F ∩
∂M = ∂F .

De�nition 3.18. A 3-manifoldM is boundary irreducible if for every proper

disc D ⊂ M the curve ∂D bounds a disc in ∂M . Otherwise, M is called

boundary reducible.

De�nition 3.19. Let M be an irreducible and boundary irreducible 3-

manifold. A proper annulus A ⊂ M is called inessential if either it is ∂-

parallel to an annulus in ∂M , or the core circle of A is contractible in M

(in the second case A can be viewed as a tube possessing a meridional disc).

Otherwise A is called essential.

De�nition 3.20. Let P be a simple polyhedron in a 3-manifoldM . An open

ball V ⊂M \ P is called proper (with respect to P ), if Cl(V ) \ V ⊂ P .
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Theorem 3.2.4. Suppose M is a compact irreducible boundary irreducible

3-manifold such that M 6= D3, S3, RP3, L(3, 1) and all proper annuli in

M are inessential. Then for any almost simple spine P of M there exists a

special spine P1 of M having the same or a fewer number of true vertices.

Proof. IdentifyM (orM with a 3-ball removed, ifM is closed) with a regular

neighborhood of P . We will assume that P cannot be collapsed to a smaller

subpolyhedron. We convert P into P1 by a sequence of transformations

(moves) of three types. To control the number of steps, we assign to any

almost simple polyhedron P the following three numbers:

• c2(P ), the number of 2-components of P ;

• −χ2(P ) = −∑α χ(α), where the sum is taken over all 2-components

α of P and χ(α) is the Euler characteristic.

• c1(P ) = mine(XP ), where the 1-dimensional part XP of P (i.e., the

union of points having 0-dimensional links) is presented as a graph with

e(XP ) edges and the minimum is taken over all such presentations.

The triples (c2(P ), −χ2(P ), c1(P )) will be considered in the lexicographic

order.

Move 1. Suppose that the 1-dimensional part XP of P is nonempty. Con-

sider an arc γ ⊂ XP and a proper discD ⊂M which intersects γ transversally

at one point. SinceM is irreducible and boundary irreducible, D cuts a 3-ball

B out of M . Removing B ∩ P from P and collapsing the rest of P as long

as possible, we get a new almost simple spine P ′ ⊂M . If B ∩ P contains at

least one 2-component of P , then c2(P ′) < c2(P ). If B ∩ P is 1-dimensional,

then the 2-dimensional parts of P , P ′ coincide and thus c2(P ′) = c2(P ),

−χ2(P ′) = −χ2(P ). Of course, c1(P ′) < c1(P ).

Assume that a 2-component α of P contains a nontrivial simple closed curve

l so that the restriction to l of the normal bundle ν of α is trivial. If α

is not D2, S2 or RP2, then l always exists. It follows that one can �nd a

proper annulus A ⊂ M that intersects P transversally along l. Since all
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annuli are inessential, either A is parallel to the boundary or its core circle

is contractible.

Move 2. Suppose that A is parallel to the boundary. Then it cuts o� a solid

torus V from M so that the remaining part of M is homeomorphic to M .

Removing V ∩ P from P , we obtain (after collapsing) a new almost simple

spine P ′ ⊂M . This move annihilates α, so c2(P ′) < c2(P ).

Move 3. Suppose that the core circle of A is contractible. Then both circles

of ∂A are also contractible. Choose one of them. By Dehn's Lemma (see

[Pap]), it bounds a disc in M and, since M is boundary irreducible, a disc D

in ∂M . It follows that there is a disc D ⊂ IntM such that D ∩ P = ∂D = l.

Since M \ P is homeomorphic to ∂M × (0, 1], D cuts a proper open 3-ball

B out of M \ P , see De�nition 3.20. If we puncture D, collapse B and then

collapse the rest of D, we return to P . However, if we get inside the ball B

through another 2-component of the free boundary of B (see Fig. 3.11), we

get after collapsing a new almost simple spine P ′ ⊂M .

Let us analyze what happens to α under this move. If l does not separate α,

then the collapse eliminates α completely together with D. In this case we

have c2(P ′) < c2(P ).

Suppose that l separates α into two parts, α′ and α′′ (the notation is chosen

so that the hole is in α′′). Then the collapse destroys α′′, and we are left

with α′ ∪D. In this case either c2(P ′) < c2(P ) (if the collapse destroys some

other 2-components of P ), or c2(P ′) = c2(P ) and −χ2(P ′) < χ2(P ) since

−χ(α′ ∪D) < −χ(α).

Now let us perform Steps 1, 2, 3 as long as possible. The procedure is �nite,

since each step strictly decreases the triple (c2(P ),−χ2(P ), c1(P )) and hence

any monotonically decreasing sequence of triples is �nite. Let P1 be the re-

sulting almost simple spine of M . By construction, P1 has no 1-dimensional

part and no 2-components di�erent from D2, S2, and RP2. The following

cases are possible:

• P1 has no 2-components at all. Since it also has no 1-dimensional part,

P1 is a point and thus M = S3 or M = D3;
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• P1 contains a 2-component which is not homeomorphic to the disc.

In this case P1 is either RP2 or S2. Suppose that P1 = RP2. Then

M = RP2 × I or RP3. We cannot have M = RP2×̃I, i.e., the twisted

I-bundle over RP2, since this manifold is a punctured projective space

and hence is reducible. For the same reason we cannot have P1 = S2:

the manifold S2 × I is reducible;

• All the 2-components of P1 are discs and P1 has no true vertices but

contains triple points. Denote by k the number of 2-components of P1.

We cannot have k = 3, since the union of three discs with common

boundary is a spine of S3 with three punctures, which is a reducible

manifold. The simple polyhedron obtained by attaching two discs to

a circle is unthickenable, see Example 3.2. We may conclude that P1

has only one 2-component, which is homeomorphic to the disc. In this

case M is homeomorphic to L(3, 1).

• There remains only one possibility: P1 has true vertices and all its 2-

components are discs. In this case P1 is special.

Figure 3.11: Attaching D2 along l and puncturing another 2-component

produces a simpler spine (�gure taken from [Mat]).
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3.2.2 The �niteness property

Theorem 3.2.5. For any integer k, there exists only a �nite number of

distinct compact irreducible boundary irreducible 3-manifolds that contain no

essential annuli and have complexity k.

Proof. Follows immediately from Theorem 3.2.4 and Theorem 3.1.4.

Restricting ourselves to the most interesting case of closed irreducible

3-manifolds, we immediately get the following corollary.

Corollary 3.2.6. For any integer k, there exists only a �nite number of

distinct closed irreducible 3-manifolds of complexity k.

Remark 3.4. To show that the assumptions of Theorem 3.2.5 are essential,

let us describe three in�nite sets of distinct 3-manifolds of complexity 0. The

sets consist of manifolds that are either reducible (a), or boundary reducible

(b), or contain essential annuli (c).

(a) For any integer n, the connected sum (see De�nition 3.21)Mn of n copies

of the projective space RP3 is a closed manifold of complexity 0. To

construct an almost simple spine of Mn without true vertices, one may

take n exemplars of the projective plane RP2 and join them by arcs.

(b) The genus n handlebody Hn (see footnote at page 45) is irreducible, but

boundary reducible. Since it can be collapsed onto a 1-dimensional spine,

c(Hn) = 0.

(c) Manifolds ∂Hn× I are irreducible and boundary irreducible, but contain

essential annuli. They have complexity 0 since can be collapsed onto the

corresponding surfaces.

The property seen in Corollary 3.2.6 has been used in order to construct a

census of closed irreducible 3-manifolds according to complexity: exact values

of it are listed for the orientable case at http://matlas.math.csu.ru/?page=search

(up to complexity 12) and for the non-orientable case at https://regina-normal.github.io

(up to complexity 11).
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3.2.3 The additivity property

Let us �rst recall the notions of connected sum and boundary connected

sum of two compact 3-manifolds M1, M2.

De�nition 3.21. The connected sum M1#M2 of two compact 3-manifolds

M1,M2 is de�ned as the manifold (M1\int(B1))∪h(M2\int(B2)), where B1 ⊂
int(M1), B2 ⊂ int(M2) are 3-balls, and h is a homeomorphism between their

boundaries. If the manifolds are orientable, their connected sum depends on

whether h is orientation reversing or preserving. In this case M1#M2 will

denote any of the two possible connected sums. Alternatively, one can use

signs and write M1#(±M2).

De�nition 3.22. To de�ne the boundary connected sum M1 qM2 of M1,

M2, consider two discs D1 ⊂ ∂M1, D2 ⊂ ∂M2 in the boundaries of the

two 3-manifolds. Glue M1 and M2 together by identifying the discs along

a homeomorphism h : D1 → D2. Equivalently, one can attach an index 1

handle I × D2 to M1 ∪ M2 such that the base of the handle {0, 1} × D2

coincides with D1 ∪ D2. The manifold M thus obtained is M1 q M2. Of

course, M depends on the choice of the discs (if at least one of the manifolds

has disconnected boundary), and on the choice of h (the resulting manifold

changes depending on whether h preserves or reverses orientation). Thus the

notation M1 qM2 is slightly ambiguous, like the notation for the connected

sum. When shall use it to mean that M1 qM2 is one of the manifolds that

can be obtained by the above gluing.

Theorem 3.2.7. For any 3-manifolds M1, M2 we have:

(a) c(M1#M2) = c(M1) + c(M2)

(b) c(M1 qM2) = c(M1) + c(M2)

Proof. We begin by noticing that the �rst conclusion of the theorem follows

from the second one. To see that, we choose 3-balls V1 ⊂ IntM1, V2 ⊂ IntM2

and V3 ⊂ Int(M1#M2). It is easy to see that (M1 \ IntV1) q (M2 \ IntV2)
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and (M1#M2)\V3 are homeomorphic, where the index 1 handle realizing the

boundary connected sum is chosen so that it joins ∂V1 and ∂V2. Assuming

(b) and using Proposition 3.2.1, we have: c(M1#M2) = c((M1#M2) \ V3) =

c(M1 \ IntV1) + c(M2 \ IntV2) = c(M1) + c(M2).

Let us prove the second conclusion. The inequality c(M1 qM2) ≤ c(M1) +

c(M2) is obvious, since if we join minimal almost simple spines of M1,M2 by

an arc, we get an almost simple spine of M1qM2 having c(M1) + c(M2) true

vertices.

The proof of the inverse inequality is based on Haken's theory of normal

surfaces (see Chapter 3 of [Mat]). So we restrict ourselves to a reference

to Corollary 4.2.10 of [Mat], which states that attaching an index 1 handle

preserves complexity.

3.3 Estimation of the complexity of Seifert man-

ifolds

We now show some results about how to estimate the complexity of Seifert

�bre spaces. We give a result about how to �nd an upper bound for their

complexity in terms of the invariants of the combinatorial description seen

in Section 2.2. All the results are taken from [CMMN], where it is possible

to �nd also the relative proofs.

Theorem 3.3.1. LetM =
{
b; (ε, g, (t, k)) ;

(
h1, . . . , hm+ | k1, . . . , km−

)
; ((p1, q1), . . . , (pr, qr))

}
be a Seifert �bre space such that ∂M 6= ∅ (i.e., m+ +m− > 0). Then

c(M) ≤ t+
r∑
j=1

max {S(pj, qj)− 3, 0} , (3.2)

where S(pj, qj) denotes the sum of the coe�cients of the expansion of pj/qj

as a continued fraction.

Moreover, if M = N × S1, N×̃S1, D2 × S1, SK then c(M) = 0.

Next corollary characterizes a wide class of Seifert �bre spaces having

complexity zero.
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Corollary 3.3.2. Let M be a Seifert �bre space with ∂M 6= ∅, and such that

i) SE(M) = AE(M) (i.e., t = 0),

ii) the E-�bres of M , if any, are of type (2, 1), (3, 1) and (3, 2),

then c(M) = 0.

Proof. From the above conditions we have S(pj, qj) ≤ 3. So the statement

follows directly from (3.2).

Theorem 3.3.3. Let M = {b; (ε, g, (t, k)) ; ( | ) ; ((p1, q1), . . . , (pr, qr))} be a

closed Seifert �bre space with b ≥ −r/2, and let χ = 2 − 2g if ε = o, o1, o2

and χ = 2− g if ε = n, n1, n2, n3, n4.

(a) If χ = 2 and r = t = 0, then c(M) ≤ max{b− 3, 0};

(b) if χ = 2, t = 0, r = 1 and b > 0, then c(M) ≤ max{b+ S(p1, q1)− 3, 0};

(c) if χ = 2, t = 0, r = 1 and b = 0, then c(M) ≤ max{S(p1, q1) − 3 −
bp1/q1c, 0}, where b·c denotes the integer part function;

(d) if χ = 1, ε = n1, r = t = 0 and b = 0, then c(M) ≤ 1;

(e) if χ = 1, ε = n1, r = t = 0 and b = 1, then c(M) = 0;

(f) in all other cases:

c(M) ≤ max{b− 1 + χ, 0}+ 6(1− χ) +
r∑
j=1

(S(pj, qj) + 1) , (3.3)

if M is orientable;

c(M) ≤ 6(1− χ) + 6t+
r∑
j=1

(S(pj, qj) + 1) , (3.4)

if M is non-orientable.
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Remark 3.5. Both the proofs of the Theorems 3.3.1 and 3.3.3 follow the idea

of constructing a particular almost special spine for the Seifert manifold M

and counting its true vertices: by de�nition, the number so obtained gives

an upper bound for the complexity of the manifold. Such spine is built as a

union of skeletons, each of which is a skeleton of one of the blocks in whichM

is divided. Indeed, we consider separately the critical block, obtained from

M by removing neighborhoods of the critical �bres of CE(M) and E(M)

(for the meaning of the notation, see page 18), and the main block, which

is what is left in M from such removal. The critical block gets divided into

sub-blocks, depending on the number and the kind of critical �bres that it

contains. For each of these sub-blocks there is a particular construction of

the corresponding skeleton.

The details of such constructions can be found in [CMMN]. In the next

section we describe explicitely some examples of spines for Seifert �bre spaces

of complexity zero (i.e., those of Corollary 3.3.2).

Remark 3.6. The complexity estimation given by the formula (3.4) is sharp

in most of the cases listed in the catalogues of Seifert manifolds that can be

found in [AM] (up to complexity 7), in [Bur] (up to complexity 10) and at

the web page https://regina-normal.github.io (up to complexity 11).

By saying that the complexity estimation is sharp, we mean that it actually

coincides with the real value of the complexity. There are some cases of

Seifert manifolds for which the estimation (3.4) is not sharp: they are listed

in [CMMN].

3.4 Examples of spines of Seifert manifolds

Complexity of closed Seifert manifolds has been studied quite deeply,

indeed their catalogues until complexity 11 have been listed and are available,

as we said in Remark 3.6. Therefore, we will focus on the bordered case, in

order to provide some basic examples of spines of Seifert �bre spaces in this

less studied case. In particular, we'll consider the case in which the hypothesis
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of Corollary 3.3.2 are veri�ed and therefore the complexity of the manifold

is zero. So following the combinatorial description of the Seifert �bre spaces

M =
{
b; (ε, g, (t, k)) ;

(
h1, . . . , hm+ | k1, . . . , km−

)
; ((p1, q1), . . . , (pr, qr))

}
that we introduced at page 25, we will consider Seifert manifolds such that:

b = t = k = 0; m+ + m− 6= 0; (pi, qi), if there are any, are either = (2, 1),

(3, 1) or (3, 2).

In all of these examples, we'll start by looking at the base orbifold B of the

Seifert �bre space M considered, indicating with f : M → B the projection

of M on its base B. In order to make our analysis easier to understand,

we'll consider in separate examples the di�erent kinds of singularities that

can appear in the base orbifold B (even though we could �nd them all in the

same one). We'll start with examples in which there are no singular points

in B, then we'll consider the cases in which the base contains cone points

and �nally re�ector arcs. These are the only kinds of singularities that we

consider on B for being sure that the complexity of M is zero, following the

hypothesis of Corollary 3.3.2.

In this last section, following the idea of the proof of Theorem 3.3.1 de-

scribed in Remark 3.5, we will explain how to obtain a spine for a general

Seifert manifold gluing together the skeletons constructed for the sub-blocks

composing the manifold.

3.4.1 Base without singular points

Example 3.3. The trivial case.

Let B = D2 andM be the trivial circle bundle over B, thereforeM is the triv-

ial solid torus S1×D2, whose combinatorial description is {0; (o1, 0, (0, 0)); (0|); }.
Since the base B is a disk, we can contract it to a point O. Let P = f−1(O):

it is a circle in M which is an almost simple spine of M , as we can see in

Figure 3.12.

Example 3.4. Let B be the Moebius strip N and M be the trivial circle

bundle over B, i.e., M = S1 × N with the trivial �bration on it, whose
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Figure 3.12: The trivial solid torus M and its almost simple spine P .

combinatorial description is {0; (n1, 1, (0, 0)); (0|); }. Since the base B is a

Moebius strip, we can contract it to its core circle Γ (the thick line in Figure

3.13). De�ning P = f−1(Γ) we obtain a torus (because S1 × Γ is actually

S1 × S1) which is an almost simple spine of M .

Figure 3.13: The Moebius strip with its core circle depicted with a thick line.

Adding boundary components toM (which corresponds to removing solid

tori or Klein bottles fromM and removing disks fromB) causes an addition of

tori or Klein bottles to the spine of M , according to the sign of the function

ω that we introduced while characterizing Seifert �bre spaces (see Section

1.3). We just have to glue appropriately these skeletons, so that during the

gluing no true vertex appears in the global spine and so its complexity is

still zero. Such gluing is made by attaching annuli or Moebius strips to the

"partial" skeletons. Let us see a simple example.
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Example 3.5. As base B we take a Moebius strip in which a disk has been

removed as depicted in Figure 3.14. In this example we don't consider M

as the trivial circle bundle over B: the combinatorial description of M is

{0; (n1, 1, (0, 0)); (|0, 0); }. Indeed, indicating by s1 and s2 the two boundary

components of B and by v the generator of H1(B), we have ω(s1) = ω(s2) =

−1, ω(v) = 1. Notice that as a conseguence of Theorem 1.3.2, we could not

have an odd number of boundary components si such that ω(si) = −1.

The base B can be contracted to the graph Γ depicted with colours in Figure

3.14. Therefore as a spine of the manifold M we take P = f−1(Γ): it is

actually an almost simple spine of M . P is composed by a Klein bottle (over

the orange circle) and a torus (over the green circle), linked by an annulus

(over the blue segment) in such a way that one of the boundary circles of

the annulus is glued to a �bre of the torus and its other boundary circle is

glued to a �bre of the Klein bottle. P cannot be properly represented in R3,

therefore we represent it in the plane, identifying edges of quadrilaterals in

Figure 3.15.

Figure 3.14: The base B in grey and the graph Γ in orange, blue and green.



60 3. Complexity

Figure 3.15: A representation of the spine P . The identi�cations are made

between edges of the same colour, with the same arrow depicted on them

and in the direction indicated. The dashed lines represent the �bration.

3.4.2 Base with cone points

Now we consider an example in which in the base space appear two types

of cone points: (2, 1) and (3, 1). This choice is due to the fact that these two

kinds of singularities give rise to di�erent kinds of blocks, and we want to

show all of them. A cone point of kind (3, 2) would give the same type of

blocks as the cone point (3, 1) gives (see [FW] for further explanations).

Example 3.6. Let B be a disk with two cone points of type (2, 1) and

(3, 1) as in Figure 3.16 and let M be the Seifert �bre space with base B

such that M = {0; (o1, 0, (0, 0)); (0|); (2, 1), (3, 1)}. The presence of the cone

point of type (2, 1) produces a torus block, called second torus block in [FW],

having as skeleton a properly embedded Moebius strip as showed in Figure

3.17. On the other hand, the cone point of type (3, 1) produces two other

blocks: a torus block, called �rst torus block in [FW], having as skeleton a

properly embedded Moebius strip with half a disk as a �wing� as represented

in Figure 3.18 and another torus block, called transitional block in [FW],

having as skeleton the polyhedron Pt represented in Figure 3.19. All these

blocks belong to the critical block of the manifold, while the main block of

M is the trivial circle bundle over the space resulting from the removal of

neighborhoods of the cone points from B (in Fig. 3.16, we remove from B

the disks delimited by the dashed circles). As a skeleton for the main block,
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we consider the annulus f−1(Γ) where Γ is a graph composed of just one edge

(depicted in grey in Fig. 3.16). For getting the global spine of M , we �nally

need to glue all these pieces together. In particular:

• we glue the border of the wing attached to the Moebius strip (called r

in Figure 3.18) of the �rst torus block to the edge in Pt that we named

s in Figure 3.19;

• we glue one of the two boundary components of the annulus f−1(Γ)

to the boundary of the Moebius strip of the �rst torus block and the

other boundary component of f−1(Γ) to the boundary of the Moebius

strip of the second torus block.

Figure 3.16: The base B with the cone points of type (2, 1) and (3, 1) and

the graph Γ. The dashed circles delimit neighbourhoods of the cone points.

3.4.3 Base with re�ector arcs

We now consider the case in which the base space B has re�ector arcs as

singular points. We will see that a re�ector arc in the base space corresponds
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Figure 3.17: The second torus block and its skeleton in darker grey (�gure

taken from [FW]).

Figure 3.18: The �rst torus block and its skeleton in darker grey (�gure taken

from [FW]).
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Figure 3.19: The transitional block and its skeleton in grey (�gure taken

from [FW]).

to a Moebius strip in the construction of the spine of the manifoldM . In the

following example, we'll see the case in which we have just one re�ector arc,

but we could actually have several of them, on the same boundary component

or on di�erent ones: for each re�ector arc we just add a Moebius strip to the

spine of M , properly attached to the rest of the spine.

Example 3.7. Let B be an annulus with a re�ector arc, as showed in Figure

3.20, and let M be the Seifert �bre space having as base B and as combi-

natorial description {0; (o1, 0, (0, 0)); (0, 1|); }. The base B can be contracted

to the graph Γ depicted in orange and green in Figure 3.20. Therefore as a

spine for M we take P = f−1(Γ): over the orange circle we get a torus and

over the green segment a Moebius strip. Such spine is an almost simple spine

for M and is a torus with a Moebius strip attached to it along a �bre.

3.4.4 The general case

We end this section with a generalization of the examples that we have

just seen. Indeed, we can construct spines for Seifert �bre spaces with more

complex base spaces than the ones we saw, still having complexity zero:
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Figure 3.20: The base B in grey and the graph Γ in orange and green.

we can have a di�erent underlying space, several cone points of type (2, 1),

(3, 1) and (3, 2), several boundary components and several re�ector arcs. The

spine will be composed by gluing together the pieces that we have seen in the

previous examples, connected in an adequate way. Consider for example the

base space B of Figure 3.21 and let M be the Seifert �bre space having base

B and combinatorial description {0; (n1, 3, (0, 0)); (0, 0, 1, 2|); }. We take as

main block the bundle over the base space depicted in Figure 3.21, which is B

with the removal of neighborhoods of the cone points. On the other hand, we

take as critical block the bundle over the neighborhoods of the cone points.

As skeleton of the main block we take f−1(Γ), where Γ is the grey graph

in Figure 3.22 and as skeleton of the critical block we construct skeletons

for the neighborhoods of the cone points as we did in Example 3.6. Then,

gluing together such skeletons, we get a spine for M , which will actually be

an almost simple spine of M and will have no true vertices.
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In a similar way we can obtain spines for all the Seifert �bre spaces of type

M =
{

0; (ε, g, (0, 0)) ;
(
h1, . . . , hm+ | k1, . . . , km−

)
; ((p1, q1), . . . , (pr, qr))

}
such that m+ +m− 6= 0 and (pi, qi), if there are any, are either = (2, 1), (3, 1)

or (3, 2).

Figure 3.21: The base space B of the Seifert �bre space M =

{0; (n1, 3, (0, 0)); (0, 0, 1, 2|); }.
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Figure 3.22: The base space of the main block and the graph Γ in grey.
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