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Abstract

In recent years, substantial advancements in machine learning have led us in
the so-called deep learning revolution [1]. Tasks that were considered impossi-
ble to be done by machines are now the foundation of many intelligent objects
that surround us. This revolution has been possible thanks to the increasing
complexity of learning models, which have been developed to resolve many
different tasks, from object detection to automatic translation.

One of the most fascinating models is generative adversarial network (GAN),
proposed by Goodfellow et al. in 2014 [2]. This model, as its name suggests,
is able to generate new data that closely resemble the examples used dur-
ing training. The development of GANs has made possible one of the most
challenging problems in computer vision: image-to-image translation. Just as
language translation seeks to translate one sentence from one language to an-
other without altering the meaning, image-to-image translation aims to map
an image from one domain to another, without losing information about the
content. As an example, a photograph taken at night can be translated to day
conditions, even if a real image of the same scene during daytime does not
exist.

Another task where GANs have demonstrated their potential is style transfer.
Style transfer is the ability to merge two images together, keeping the content
of the first picture applying the style of the second. Style transfer is nowadays
mainly used for creating works of art, hence GANs are not only used by com-
puter scientist, but also adopted by artists. For this reason, GANs used for
artistic purposes are often renamed creative adversarial networks (CAN) [3].

This dissertation is focused on trying to use concepts from style transfer and
image-to-image translation, not only to create art, but also to address some
open problems in computer vision. In particular, the focus of experiments is
concentrated on defogging. Defogging (or dehazing) is the ability to remove
fog from an image, restoring it as if the photograph was taken during optimal
weather conditions. The task of defogging is of particular interest in many
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vi ABSTRACT

fields, such as surveillance or self driving cars.

In this thesis an unpaired approach to defogging is adopted, trying to trans-
late a foggy image to the correspondent clear picture without having pairs of
foggy and ground truth haze-free images during training. This approach is
particularly significant, due to the difficult of gathering an image collection of
exactly the same scenes with and without fog.

Many of the models and techniques used in this dissertation already existed
in literature, but they are extremely difficult to train, and often it is highly
problematic to obtain the desired behavior. Our contribute was a systematic
implementative and experimental activity, conducted with the aim of attaining
a comprehensive understanding of how these models work, and the role of
datasets and training procedures in the final results. We also analyzed metrics
and evaluation strategies, in order to seek to assess the quality of the presented
model in the most correct and appropriate manner. In doing so, we focused
on the aforementioned problem of defogging, trying to utilize the knowledge
we have acquired to address a challenging research problem.

First, the feasibility of an unpaired approach to defogging was analyzed, using
the cycleGAN model [4]. Then, the base model was enhanced with a cycle
perceptual loss, inspired by style transfer techniques. Next, the role of the
training set was investigated, showing that improving the quality of data is
at least as important as the utilization of more powerful models. Finally, our
approach is compared with state-of-the art defogging methods, showing that
the quality of our results is in line with preexisting approaches, even if our
model was trained using unpaired data.



Sommario (Italiano)

Negli ultimi anni, enormi avanzamenti nel campo dell’intelligenza artificiale, e
in modo più specifico nel machine learning, ci hanno proiettato nella cosiddetta
rivoluzione del deep learning [1], dove problemi che sembravano impossibili da
risolvere in modo automatico, sono ora la base di molti degli oggetti intelligenti
che ci circondano. Questa rivoluzione è stata possibile grazie alla complessità
sempre maggiore dei modelli di apprendimento automatico, i quali sono stati
sviluppati per risolvere compiti molto diversi, come il riconoscimento di oggetti
o la traduzione automatica.

Uno dei modelli più interessanti è detto generative adversarial network (rete
avversaria generativa, GAN) ed è stato proposto da Ian Goodfellow et al.
nel 2014 [2]. Tale modello, come il nome suggerisce, ha la proprietà di poter
generare nuovi dati, i quali sono indistinguibili dagli esempi usati durante il suo
addestramento. GANs hanno reso possibile la soluzione di uno dei problemi
più impegnativi nell’ambito della computer vision, ovvero la traduzione di
un’immagine in un’altra. Allo stesso modo della traduzione tra due linguaggi,
che cerca di tradurre una frase da un linguaggio ad un’altro senza alterarne
il significato, la traduzione tra immagini cerca di mappare un’immagine da
un certo dominio ad un’altro, senza perdere informazioni sul contenuto. Ad
esempio, è possibile tradurre una fotografia scattata di notte, come se fosse
stata scattata di giorno, anche se non esiste alcuna immagine della scena ripresa
durante il giorno.

Un altro problema in cui i modelli avversari generativi hanno mostrato tutto il
loro potenziale è lo style transfer. Esso consiste nel creare una nuova immagine,
non esistente, che mantiene il contenuto di una certa immagine, e lo stile di
un’altra. Oggigiorno lo style transfer è sopratutto usato per creare nuove
forme d’arte, e per tale motivo, le reti GAN non sono utilizzate soltanto da
informatici, ma anche da artisti. Per tale motivo, i modelli GAN usati per
scopi artistici sono spesso chiamati reti avversarie creative (creative adversarial
networks, CAN ) [3].
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L’elaborato si focalizza nel cercare di utilizzare concetti derivati dallo style
transfer e dalla traduzione tra immagini, non solo per creare arte, ma per
risolvere alcuni problemi tutt’ora aperti in computer vision. Da un punto di
vista pratico, il problema sul quale è stato deciso di focalizzare l’attenzione è
quello della rimozione della nebbia da immagini (defogging). Tale problema è di
cruciale importanza in molte applicazioni pratiche, come la videosorveglianza
o la guida autonoma.

Nel risolvere tale problema, è stato adottato un approccio non accoppiato,
dove un’immagine annebbiata viene tradotta nella corrispondente immagine
in assenza di nebbia, senza avere coppie di immagini della stessa scena con e
senza nebbia durante l’addestramento del modello. Questo approccio è parti-
colarmente significativo per il problema del defogging, poiché è estremamente
complesso raccogliere un insieme di immagini della stessa esatta scena, con e
senza nebbia.

Molti dei modelli utilizzati in questa tesi sono già noti in letteratura, tuttavia
essi sono estremamente complessi da addestrare, e spesso è altamente prob-
lematico ottenere il comportamento desiderato. Il contributo di questa tesi
di Laurea è una sistematica attività implementativa e sperimentale, atta ad
ottenere una profonda conoscenza di come tali modelli funzionano, e il ruolo
del dataset e della procedura di addestramento nel risultato finale. Oltre a ciò,
diverse metriche sono state esaminate, in modo da valutare la qualità del nos-
tro modello nel modo migliore e più corretto possibile. Facendo ciò, il focus è
caduto sul già menzionato problema del defogging, scelto in modo da applicare
le conoscenze acquisite in uno stimolante problema di ricerca.

Prima di tutto è stato analizzata la fattibilità di un approccio non accoppiato,
utilizzando un modello denominato cycleGAN [4]. In seguito, tale prototipo
è stato migliorato, attraverso una cycle perceptual loss, ispirata da diverse
tecniche di style transfer. Dopo di che, è stato investigato il ruolo del dataset
di addestramento del modello, mostrando come l’utilizzo di immagini migliori
sia importante quanto l’uso di modelli più complessi. Infine, il modello risultate
è stato confrontato con lo stato dell’arte, mostrando una forte competitività
del nostro approccio, anche se esso è stato addestrato con dati disaccoppiati.
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Introduction

What is a real image? How we can distinguish between a photograph or
a computer generated picture? What are the essential features of what we
call reality? These fairly philosophical questions have not been answered yet,
though even a child can easily discern real and fake images. Before the advent
of machine learning computers were programmed algorithmically: a procedure
instructs the machine step-by-step, often in a deterministic and predetermined
manner. However, not every aspect of our reasoning can be reduced to an
algorithm, simply because we still do not know all the procedures involved.
Nobody told us the exact algorithm to distinguish a cat from a dog, we simply
have seen many cats and many dogs, and, during our infancy, other people
told us which of them were cats, and which of them were dogs. We learned
from data.

The same approach is the base of machine learning. Computers are not pro-
grammed, but they learn directly from data how to perform their tasks. This
paradigm is the foundation of many intelligent systems that nowadays surround
us, from vocal assistants to self driving cars. However, unlike us, these models
will be extremely confused if something unexpected is presented to them. As
an example, if we present a photograph of a dog with wings to a classificator,
probably the output class will be dog, or bird, because the model cannot use
its knowledge to create new classes. Unlike us, machine learning models are
not creative, they usually do not aggregate their knowledge to produce new
items.

In 2014, Goodfellow et al. introduced generative adversarial networks (GAN)
[2], a machine learning model that can generate new data similar to the exam-
ples used during training. GANs learn the intrinsic features of the data and
the data distribution, and, starting from a noise vector, they produce a totally
new sample, which is indistinguishable from the real data. In order to perform
well, GANs have to correctly answer the questions reported at the beginning
of this chapter. GANs, like us, learn, somehow, the difference between real
and fake data, and use this knowledge to produce realistic samples.
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2 Introduction

In the last few years, GANs have been enhanced in order to carry out increas-
ingly complex tasks, such as style transfer and image-to-image translation.
Style transfer is the ability to mimic the style of an image, keeping unchanged
the content of the original picture. Given a photograph, machine learning
models can apply the style of a portrait, producing works of art that never
existed before. Computers have become creative.

Image-to-image translation is an even more complex task than style transfer.
Images are translated from one domain to another, such as from summer to
winter, or from day to night. A particular model derived from GAN and named
cycleGAN [4] has shown impressive results in image-to-image translation, using
an unpaired approach. The model is trained with two collections of images,
representing the two domains that have to be translated. CycleGAN learns
the most important features that distinguish the two domains, and it finds out
a mapping directly from data, with the aim of correctly generating an image
in one domain, given a photograph in the other.

The full potential of these creative models has not yet been explored; thus,
the aim of this dissertation is to deeply understand these approaches and tech-
niques, and apply them to an open research problem: removing fog from im-
ages. In chapter 1 a brief background about machine learning and neural
networks will be covered. In chapter 2 and chapter 3 generative adversar-
ial networks and cycleGAN are examined in details, with a particular focus
on the learning procedure. In chapter 4 results of experiments on defogging
are reported, and compared with the state-of-the-arts methods. Finally, in
chapter 5, conclusions will be drawn, and future work directions suggested.
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Background

Science is like a hungry furnace that must be fed logs from the forest
of ignorance that surrounds us. In the process, the clearing we call
knowledge expands, but the more it expands, the longer its perimeter
and the more ignorance come to view.

– Matt Ridley, Genome (1999)

In this chapter a brief introduction to machine learning is provided. The goal
of the following sections is to introduce the reader to the principal topics and
techniques of machine learning, and present the recent developments in the
field.

1.1 Machine Learning

Learning is commonly described as the acquisition or modification of knowledge
and behaviors, as a result of interaction with the environment. This ability is
possessed even by the simplest of animals and by some plants [5]. Learning
can be achieved through education, experience, training or the processing of
acquired data, in order for it to be organized it more generally or to infer new
knowledge.

How learning works has been a mystery for a long time, and only in the last cen-
tury, with the development of psychology, cognitive science and neuroscience,
have some of the processes involved in learning come to light.

Since the advent of computers, producing machines capable of learning in a
human-like manner has been one of the most compelling task in computer
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4 1. Background

science, and a great example of multidisciplinary research. It has also led
to the creation of completely new subjects, such as artificial intelligence or
computational neuroscience. The study of computational modeling of learning
constitutes the foundation of machine learning.

Since the dawn of artificial intelligent research, many problems marked as
difficult to solve by humans have been solved by machines, especially in the field
of optimization. Surprisingly, many problems which are easy to solve by people,
such as classifying or detecting objects in an image, proved to be extremely
difficult for computers to achieve. This phenomenon can be explained by
the lack of formalism for the aforementioned problems. In fact, it is nearly
impossible to produce a classical algorithm that can detect components in
an image when executed by a machine. One of the most effective way to
produce such behavior is t train a computer in the same manner as children
are instructed to recognize common object during their infancy.

Overall, machine learning can be described as a field of study aimed to give ma-
chines the ability to learn from data, without being explicitly programmed. In
this sense, learning is formalized by the famous statement by Tom M. Mitchell
“A computer program is said to learn from experience E with respect to some
class of tasks T and performance measure P, if its performance at tasks in T,
as measured by P, improves with experience E” [6]. The importance of this
definition is twofold: it describes machine learning in a formal way, and it
emphasizes the role of performance evaluation.

1.1.1 Machine learning tasks and applications

The learning process of a learning model is commonly composed of two phases:
the training phase, when the model actually learn from the given data, and the
evaluation phase, when the performance of the model is assessed. From the
definitions given in section 1.1 emerges that machine learning relies heavily on
data. Data can be arranged in any form, from numbers to sequences. Usually
the data is organized in a dataset, which is often split in three independent
collections [7]:

• Training set: contains the data used for training the model in the
training phase.

• Test set: contains items not present in the trainig set (the model does
not see the elements of the test set during training) and it is used for
evaluating the performance after the training phase.
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• Validation set: contains data used for hyper-parameters validation and
tuning.

Normally the training set contains a larger amount of data than the other two.
A rule-of-thumb ratio of the sets dimensions is: 60% of the data go to the
training set, and 20% to the test and validation set, respectively. However, if
the number of samples is small, utilizing a subset of them for validation alone
can cause unreliable estimations of the performance of the model. In these
cases a common approach is to use cross validation [8].

Tasks

Historically, machine learning tasks are divided into three broad categories,
based on the nature of the data, the presence of additional information, the
nature of feedback given to the model and the nature of the task to accomplish
[7].

• Supervised learning: in this approach the model infers a function
from supervised or labeled data. The training set consists of input-output
pairs, and the goal of the model is to infer the correct mapping between
the inputs and the outputs. The inferred function has to be general in
order to yield the correct output from an unseen input.

• Unsupervised learning: the data do not contain any additional infor-
mation, and the goal of the model is to learn how to analyze the data, in
order to find patterns or structures. An unsupervised approach can be
the goal of the model (e.g. in the case of clustering), or an intermediate
data analysis step.

• Reinforcement learning: in this case the learning model interacts
directly with the environment, and learns from the consequences of its
actions. The data consists of information about the environment and
the set of available actions. When an action is performed, the RL-agent
receives a reward, which indicates how positive was the action’s outcome
was. The goal of an RL-agent is to maximize the accumulated reward
over time.

These categories are partially overlapped, i.e. between supervised and un-
supervised learning lies the category of semi-supervised learning, where some
(often many) of the entries in the training set are not labeled, or some labels
are not correct.

Another category of machine learning tasks that is gaining interest in recent
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years is active learning. In this approach, unlabeled data is abundant and
labeling them is possible, but expensive in terms of time or resources. In this
scenario, a learning model can actively query some external entity for the labels
of a subset of data. The aim of the active learning agent is to analyze the data
and seek the most suitable items that require labeling by the external entity,
in order to infer the most general input-label map with the lowest amount of
labeled data.

Applications

Another categorization of machine learning tasks arises when considering the
desired output of the learning system [7]:

• Classification: the input is divided in two or more classes, and the goal
of the learning-agent is to produce a model which assigns to an unseen
input one or more of these classes. This is a typical application of super-
vised learning, when the training data is labeled with the correspondent
class.

• Regression: the output of the model has to be continuous rather than
discrete (e.g. the weight of a person given her/his height). As well
as classification, regression is mainly accomplished through supervised
learning.

• Clustering: the input data has to be divided into groups. The groups
are usually not known beforehand, making clustering a typical example
of unsupervised learning.

• Density estimation: finds the distribution of input data in a defined
space. The inferred distribution can be used for statistical analysis of
the data, or for generating artificial data that closely resemble the real
one.

• Dimensionality reduction: simplify the data, learning a representa-
tion into a lower-dimensional space.

• Representation learning: in many machine learning models, raw data
has to be pre-processed in order to extract significant features, which are
provided as input to the model. Representation learning aims to learn
how to automatically extract those features from raw data. Many of
the machine learning models used nowadays use representation learning
techniques to extract the necessary feature to solve the problem from
raw data.
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1.2 Computer Vision

Computer vision is an interdisciplinary field that deals with how machines can
be made to acquire high-level understanding from digital images or videos. It
also seeks to automate tasks that the human visual system can do [9]. This
image understanding can be seen as the disentangling of symbolic information
from image data, using contributions from physics, biology, geometry, statistic
and machine learning.

The representation of visual data can widely vary widely according to different
applications, ranging from simple RGB images, sequences of images, views
from multiple cameras or multi-dimensional data from a medical scanner.

Since the majority of information that we process are acquired through the
sight, it is a little surprise that many machine learning models are used for
computer vision. Some of these models are directly related to their biological
counterpart, such as convolutional neural networks, which will be discussed in
section 1.5.

1.2.1 Typical tasks

Computer vision is a wide and active research area, and for this reason is
commonly divided into subfields. Some of the most important fields are:

• Recognition: the classical problem in computer vision. The goal is to
determine whether or not the the image contains some specific object,
such as a face.

• Motion analysis: a sequence of images is processed, in order to produce
an estimate of the velocity at each point in the image. A typical example
of motion analysis is tracking, where an object is followed throughout the
image sequence.

• Scene reconstruction: given one or more images (or a video) of the
same scene, the objective is to reconstruct the 3D model of the scene.

• Image restoration: the aim is the removal of noise from images. Noise
can be caused by movement, blur, occlusions or atmospheric phenomena,
such as fog or rain.



8 1. Background

1.3 Artificial Neural Networks

In machine learning, artificial neural networks (ANNs) are computing systems
inspired by the biological neural networks that constitute the brains of animals
[7]. Initially artificial neural networks were developed to solve problem in a
general way, as the human brain does. However, over time, the attention
shifted to more specific tasks, often departing from the initial biology-inspired
systems [10]. Artificial neural networks have been used on a wide variety of
tasks, from speech recognition to medical diagnosis.

ANNs are generally composed of interconnected units called neurons, which
send signals to each other through their connections. Each connection has a
numeric property, called weight, that can be tuned during the training phase,
making ANNs capable of learning from data. Following this reason an artificial
neural network can be seen as the function f : X → Y , which maps some input
x ∈ X to some output y ∈ Y . f is characterized by learnable parameters θf ,
which represent the weights of the connections.

1.3.1 Artificial Neurons

Neurons used in artificial neural networks were initially developed taking in-
spiration from the biological neurons present in the brain of most animals. A
neuron (or nerve cell) is a specialized cell that receives, processes and transmits
information through electrical and chemical signals [11]. These signals between
neurons occur via connections called synapses. Neurons can connect to each
others to form neural circuits, or neural networks. Taking inspiration from
biological neurons, Frank Rosenblatt developed the concept of the perceptron
[12]. A perceptron is a mathematical abstraction of a biological neuron and,
at the same time, a binary classifier. As actual neurons, the perceptron can be
fed with more than one input source. It receives an input vector x consisting
of n elements, and produces a single output y (see Figure 1.1). A perceptron
is characterized by a set of n weights, one for each input, and a threshold. In
the classical model, the output of the perceptron is binary, and is positive if
the weighted sum of the inputs is greater than the threshold:

y =

{
0 if

∑n
i=1wixi ≤ threshold

1 if
∑n

i=1wixi > threshold
(1.1)

The learnable parameters are the weights and the threshold. By varying them,
different models of decision-making can be obtained, according to the problem.
Making a parallel with a biological neuron, the input vector x represents signals
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Figure 1.2: Some of the most used activation functions.

collected by the synapses of the neuron and the weights w represent the the
modulation (e.g. amplification/attenuation) operated by each synapse to the
corresponding input.

Figure 1.1: A percep-
tron.

The perceptron is also a binary classifier: suppose
that the inputs can be distinguished in two classes, a
value of y equal to zero can represent the first class,
and a value equal to one, the second class.

The classic perceptron model is the easiest one, and
starting from it many more neural models were de-
veloped using it as a starting point. The output of a
classic perceptron is strictly binary, and this can be a
disadvantage during learning. In fact, a small change
in the weights or the threshold may switch the out-
put of the neuron from zero to one or vice versa. In

order to overcome this limitation, different activation functions were evolved.
The most famous of these is the sigmoid function:

σ(z) =
1

1 + e−z
. (1.2)

The sigmoid function is continuous, derivable, and its image vary from zero to
one. This function is suitable during learning, because small changes in the
perceptron’s parameters are reflected in small changes in the output. A per-
ceptron which uses the sigmoid function is commonly called a sigmoid neuron.
Using a sigmoid function, the output of a neuron becomes:

y =
1

1 + exp(−
∑n

i=0wixi − t)
. (1.3)

where t is the threshold.
In some cases, the sigmoid function is replaced by the hyperbolic tangent

(tanh or softmax ), so the output of the neuron varies from -1 to +1.
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Another widely used activation function is the rectifier (ReLU) [13]:

f(z) = z+ = max(0, z). (1.4)

The rectifier, apart from being biologically inspired, has shown better perfor-
mance during the learning phase, especially in deep networks [14], and for this
reason, is the most used activation function for deep models [15]. A graphical
representation of the most common activation function is shown in Figure 1.2.

Learning

As stated earlier, a perceptron, regardless of the activation function used,
can be considered a simple binary classifier, and a learning strategy can be
adopted to find the optimum combination of parameters. Given a binary
labeled training set, the error of the perceptron can be expressed as:

E(w, t) =
1

2

m∑
j=1

(
f

(
n∑
i=1

(wi · x(j)i )− t

)
− l(j)

)2

(1.5)

where:

• w is a vector containing the weights of the perceptron.

• t is the threshold associated with the perceptron.

• m is the number of elements in the training set.

• f is the activation function.

• x(j) is the j-th element of the training set.

• l(j) is the desired result (label) associated with the j-th element of the
training set.

• n is the number of elements in the input vector x.

To simplify the notation, the threshold t can be included in the weight vector
(w0 = t) and associated with an input x0 = 1; thus Equation 1.5 becomes:

E(w) =
1

2

m∑
j=1

(
f

(
n∑
i=0

(wi · x(j)i )

)
− l(j)

)2

(1.6)

Hence, the objective is to find the optimal combination of values of w which
minimize the error. Let

Wx(j)(w) =

(
f

(
n∑
i=0

(wi · x(j)i )

)
− l(j)

)2

(1.7)
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the error of the perceptron for the input vector x(j). An approach based on
gradient descent can be applied, in order to update w to minimize the error.
The gradient of Wx(j)(w) (∇Wx(j)(w)) indicates the direction of maximum
growth of Wx(j)(w) with respect to w. The opposite direction (−∇Wx(j)(w)),
on the contrary, indicates the direction of faster decrease of the function, with
regards to w. If the weights are updated following the opposite direction of
the gradient, the function will be minimized. Using an iterative method, it is
possible to get closer and closer to the minimum point, which correspond to
the optimal solution of the optimization problem stated as:

s∗ = min
w

m∑
j=1

Wx(j)(w) (1.8)

The update of the weighs occurs with the following procedure:

wj+1 = wj − η∇Wx(j)(w) ∀j ∈ {1, . . . ,m} (1.9)

where:

• wj is the vector of the weights at step j

• η is the learning rate, which is the displacement step used to update w.
If it is too large, the optimum may be impossible to reach, whereas if it
is too small, it can greatly slow down convergence. The learning rate is
a typical example of a hyper-parameter.

Thanks to Equation 1.9, a perceptron can learn how to classify data simply
by being exposed to the data itself. However, the perceptron can only solve
binary classification problems, and the classification is linear, which means
that it may not perform well if the patterns are not linearly separable.

In spite of that, the perceptron is the fundamental building block of most of
the neural network models, currently used to solve many extremely complex
tasks in the field of machine learning.

1.3.2 Multilayer Perceptron

Following the biological inspiration that led to the development of artificial
neurons, it seemed natural to try to connect them together, in order to form
neural networks similar to those present in the brain, seemed natural. The first
example of an artificial neural network was the multilayer perceptron (MLP). In
a multilayer perceptron the neurons are organized in layers, and the outputs
of the neurons of one layer are the input to the next layer. The minimum
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number of layers is three, one input layer, one or more hidden layers and one
output layer.

Figure 1.3: A multilayer perceptron with four layers.

A multilayer perceptron is an example of a feedforward neural network. These
kinds of model can classify patterns in more than two classes, and separate
them non-linearly. Moreover, a feedforward neural network with only one
hidden layer and a finite number of neurons has been demonstrated to be a
universal approximator [16]. This means that a simple neural network can
represents a wide variety of interesting functions, when given appropriate pa-
rameters. This theoretical result is one of the reasons for the widespread
adoption of neural networks for a wide range of different problems.
A multilayer perceptron usually has the following properties:

• In an MLP the number of input neurons should be equal to the number
of dimensions of the input, i.e. if the input is a 3-dimensional vector, the
network should have three neurons in the input layer.

• A MLP should have as many perceptrons in the output layer as the
number of classes. The value produced by an output neuron represents
the probability that the current input will be classified with the class
associated to the neuron.

• A MLP should associate an input to the class represented by the output
perceptron by computing the highest value among its peers.

• In a MLP all the neurons should have the same activation function.

• In a MLP every perceptron can only be connected to perceptrons in the
next layer.
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Figure 1.3 shows a common example of MLP architecture, composed of two
hidden layers. In the example, the MLP acts as a binary classifier (there are
only two neurons in the output layer). The perceptrons in the input layers
usually do not compute any function, but simple propagate the input to the
first hidden layer.

Besides MLP, many other types of neural networks exist, which differ from
each other in terms of their architecture and the organization of neurons. One
model worth mentioning here is the recurrent neural network (RNN), in which
cycles are present between units of neurons. RNNs have gained popularity in
recent years as a result of their extensive use with time sequences.

1.3.3 Loss Function

In section 1.3.1 it is stated that, in order to be able to learn, a perceptron should
take classification error into consideration, and try to minimize it. Equation 1.5
is an example of a loss function.

Generally, a loss function (or cost function) is a function that maps an event
or values onto a real number, which represents a certain cost associated with
the event. In many optimization problems, the goal is to minimize the cost
function, or, in a parallel way, maximize the objective function (which is the
negative of the cost function). A loss function is often used in statistics as a
parameter estimation of a distribution, computing the difference between real
and estimated data. In classification, a loss function is usually a penalty for
an incorrect classification, and it grows in accordance with the classification
error.

The choice of the most suitable loss function is a problem of crucial importance,
and the differences in performance and accuracy of the same model trained
with different loss functions may be broad.

Application of loss function is not limited to neural networks, on the contrary, it
is a common concept in various machine learning models. The most commonly
used loss functions are described below.

Squared loss

The squared loss (or mean square error) is formulated as:

L(Y, Ŷ ) =
1

n

n∑
i=1

(y(i) − ŷ(i))2. (1.10)
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where:

• y(i) ∈ Y are the observed data.

• ŷ(i) ∈ Ŷ are the predictions of the model.

• n is the number of elements in the training set.

The target of the squared loss function is to minimize the residual sum of
squares. This loss function suffers from slow convergence when used with neu-
rons that use the sigmoid function. It also tends to penalize outliers excessively,
and if there are many of them present in the training data, the convergence
may be difficult. Hence, squared loss is more commonly used for regression
tasks, rather than classification.

Mean absolute error

The mean absolute error, or L1 loss, is formulated as:

L(Y, Ŷ ) =
1

n

n∑
i=1

|y(i) − ŷ(i)|. (1.11)

This loss is similar to squared loss, but it penalize outliers less, so it is preferred
in this sense. However, the mean absolute loss has the same gradient for every
point, regardless of the distance to the optimum, hence it is more difficult to
find the optimal solution.

Cross entropy loss (log loss)

Cross entropy loss is commonly used in binary classifiers (labels are 0 or 1),
and it is formulated as:

L(Y, Ŷ ) =
1

n

n∑
i=1

[−y(i) log(ŷ(i))− (1− y(i)) log(1− ŷ(i))]. (1.12)

Cross entropy loss is closely related to the Kullback-Leibler divergence, which
measures the difference between two distributions. If the cross entropy loss
is large, its means that the distribution of real data is different from what
has been predicted. Cross entropy loss is usually preferred to squared loss,
especially in deep models, due to its faster convergence. Cross entropy loss
can be generalized for multiclass problems, in categorical cross entropy [8].
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1.3.4 The Backpropagation Algorithm

section 1.3.1 describes how a single perceptron can learn the optimal set of
parameters directly from data. Does a similar algorithm exists for training a
neural network, potentially composed of milions of neurons? Ever since the
1960s, research had been carried out to provide possible answers to this ques-
tion [17] and by 1970 the first version of the backpropagation algorithm was
developed by Seppo Linnainmaa [18]. However, the algorithm remained mostly
unknown, mainly due to the limited computing power of machines at the time.
Backpropagation gained recognition after the publication by Rumelhart et al.
in 1986 [19].

The backpropagation algorithm is an optimization algorithm, which minimizes
the loss function by changing the parameters of the model. Since its introduc-
tion, the backpropagation algorithm has been the de facto standard for training
neural networks, especially in recent years, when it benefits form cheap and
powerful GPU-based computer systems.

The backpropagation algorithm repeats a two phases cycle: propagation and
weight update. In the first phase, an input vector is propagated through
the network, layer by layer, until it reaches the output layer. The output of
the network is then compared to the desired output, using a derivable loss
function. The resulting error is calculated for each neuron in the output layer,
and then propagated from the output layer back to the input layer (as the
name backpropagation suggests), until each neuron has an associated error
value. After that, those errors are used to calculate the gradient of the loss
function. In the second phase, the weights are modified by an optimization
procedure, according to the gradient of the loss function.

Stochastic gradient descent

The backpropagation algorithm is an example of gradient descent optimization.
The goal of the procedure is to find a minimum in a function, changing its
parameters according to the opposite direction indicated by the gradient.

Let F (·) be a continuous function defined by parameters θ. Let θn be the
parameters at iteration n. If we want to minimize F (θ) using gradient descent,
the parameters of the next step are updated as follows:

θn+1 = θn − η∇F (θn) (1.13)

In most machine learning models the function to be minimized is the loss
function. As described in subsection 1.3.3, if the training set is composed of
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m items, the loss function usually assumes the form:

L(Q(X, θ), Y ) =
1

m

m∑
i=1

Li(Q(x(i), θ), y(i)). (1.14)

where

• x(i) ∈ X is an element of the training set.

• y(i) ∈ Y is the label associated to the i-th item of the training set.

• Q(X, θ) is the output of the neural network.

• Li(Q(x(i), θ), y(i)) is the per-example loss.

Updating the parameters of such a model with gradient descent requires com-
puting:

θn+1 = θn − η
1

m

m∑
i=1

∇θLi(Q(x(i), θ), y(i)). (1.15)

which has a computational cost of O(m), thus computing the gradient can be
prohibitive if the training set contains billions of examples.

In order to overcome the problem, the gradient can be computed using a small
subset of samples, so that the optimization is based on an estimation of the
gradient rather than the actual gradient. This approach is called stochastic
gradient descent (SGD). The parameters are updated considering a set of m′

examples (minibatch), drawn uniformly from the training set. The number of
sampled example is usually much smaller than the training set. The update
to the parameters is performed as:

θn+1 = θn − η
1

m′

m′∑
i=1

∇θLi(Q(x(i), θ), y(i)). (1.16)

One notable case is when m′ = 1. In this particular case, the update to
parameters is performed after every iteration.

SGD has made the training of models through gradient descent on very large
datasets possible. Indeed, for a fixed model size, the cost per SDG update
does not depend on the training set dimension. It can consequently be stated
that the computational cost of one step of SGD is O(1), as a function of m
[10].
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Figure 1.4: A multilayer perceptron

The algorithm

Consider the neural network displayed in Figure 1.4. Assuming that a mini-
batch of dimension 1 is used, so for every iteration a new input is considered.
Generalizing, the output of the hidden layer’s neutrons are q1, q2, . . . , qm and
can be computed as:

qi = f(vix) ∀i ∈ {1, . . . ,m} (1.17)

Then, y1, y2, . . . , yn are the output of the network, and can be computed as:

yi = f(wiq) ∀i ∈ {1, . . . , n} (1.18)

where:

• wi is the weights vector associated with the i − th perceptron in the
output layer.

• vi is the weights vector associated with the i−th perceptron in the hidden
layer.

• f is the activation function.

Let Lx(y) be the loss on the current input x. The loss can be seen as the error
made by the network when it is fed with x. It is possible to begin decomposing
this error by calculating the error of the output layer’s neurons. This can be
expressed as:

ei =
∂Lx(y)

∂yi
∀i ∈ {1, . . . , n} (1.19)
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which represents how much the loss varies due to small changes in yi. Since the
only way to modify yi is to change the weights wi or the hidden layer output
q, we can rewrite Equation 1.19 as:

ei =
∂Lx(y)

∂wiq
∀i ∈ {1, . . . , n} (1.20)

which for the chain rule of calculus becomes:

ei =
∂Lx(y)

∂yi
· ∂f(wiq)

∂wiq
=
∂Lx(y)

∂yi
f ′(wiq) ∀i ∈ {1, . . . , n} (1.21)

Now we want to calculate the error of the hidden layer, which is equal to:

ri =
∂Lx(y)

∂qi
· ∂f(vix)

∂vix
=
∂Lx(y)

∂qi
f ′(vix) ∀i ∈ {1, . . . ,m} (1.22)

The first term of the equation can be rewritten, using the chain rule of calculus
as:

∂Lx(y)

∂qi
=

n∑
j=1

(
∂Lx(y)

∂yj
· ∂f(wjq)

∂wjq
· ∂w

jq

∂qi

)
=

n∑
j=1

(
ej ·

∂wjq

∂qi

)
(1.23)

And since ∂wjq
∂qi

= wi
j what is obtained is that:

ri = f ′(vix)
n∑
j=1

ejwi
j ∀i ∈ {1, . . . ,m} (1.24)

In case of a neural network with more than one hidden layer, the errors of
the others layers are calculated by repeating Equation 1.24, treating the next
hidden layer as if it were the output layer.

After the error backpropagation, the weights of the network are updated.
Starting from the output layer, a small change in a weight produces the fol-
lowing variation on the loss:

∂Lx(y)

∂wi
=
∂Lx(y)

∂yi
· ∂f(wiq)

∂wiq
· ∂w

iq

∂wi
= ei · q ∀i = 1, . . . , n (1.25)

So the weights can be updated with the following criterion:

wi = wi + η · ei · q ∀i ∈ {1, . . . , n} (1.26)

And, similarly, the weighs of the hidden layer can be adjusted as follow:

vi = vi + η · ri · x ∀i ∈ {1, . . . ,m} (1.27)



1.3. Artificial Neural Networks 19

Figure 1.5: The error is back-propagated through the network, in order to
update the weights accordingly.

At the end of the backpropagation operations, the weights of the network are
updated in order to take a step towards the opposite direction of the gradient
of Lx(y). Repeating this procedure for every pattern in the training set is the
basic learning mechanism of neural networks.

Algorithm 1 Back-propagation algorithm

Require: H = number of hidden layers
1: for each input pattern x do
2: forward propagation
3: compute the error for output percetrons using Equation 1.21
4: for i = H to 1 do
5: back-propagate error on the hidden layer i, using Equation 1.24
6: end for
7: update weight of the output perceptrons using Equation 1.26
8: for i = H to 1 do
9: update weights of the hidden layer i using Equation 1.27

10: end for
11: end for
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1.3.5 Optimization tricks

Momentum

Stochastic gradient descent is the standard procedure for optimizing most ma-
chine learning models, but it can sometimes present problems. In fact, in the
presence of a ravine, which are common around local optima, or if the func-
tion to be optimized presents many local minimums, the SGD oscillates across
the slopes, making only hesitant progress towards the optimal solution [20].
The momentum method accumulates an average of the past gradients, and
adds a fraction of that to the current updating vector. The name momentum
derives from an analogy with physics: just as an object that rolls downhill
gains momentum in the direction of the fall, so too are the parameters are
pushed in the direction of previous steps. This prevents oscillation of the loss
function around an optimal solution, and, moreover, momentum can move the
cost function away from a local minimum.

Adaptive learning rates

In subsection 1.3.4, it is stated that the weight update occurs with a fixed
learning rate. This means that every step downhill has approximately the
same length. However, this behavior may not be desired. In fact, if the
function to be optimized is far from the minimum, a larger step is preferable.
On the other hand, when the optimal solution is near, a shorter step should
be used. Indeed, the use of learning rate schedulers have become common in
most neural network models. These schedulers decrease the learning rate as
the training phase advances in order to make smaller steps when the model
is reasonably near a minimum. Many methods, such as Adagrad, Adadelta,
AdaMax or Adam [10], are based on using different learning rates for each
parameter. The parameters which are infrequently modified are updated with
larger steps, whereas parameters that are edited more frequently are updated
with smaller steps. This procedure greatly improves the robustness of the
SGD, and the methods cited above are used nowadays to train large-scale
neural networks [20].

1.4 Deep Learning

Deep learning (DL) is a branch of machine learning, based on learning data
representation using simple but non-linear hierarchical modules, which trans-
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form the representation at one level into a representation at a higher, more
abstract level [21].

Conventional machine learning techniques were limited in their ability to pro-
cess raw natural data. In fact, constructing a pattern recognition machine
required considerable domain expertise in order to design a feature extractor
that transforms the raw data into a suitable feature vector. Deep learning
is based on representation learning methods, which allow machines to be fed
with raw data and to automatically discover the best representation needed
for the actual task. The key concept of deep learning (and the reason is is
deep), is that the representation is constructed in a hierarchical manner, often
with several layers, enabling models to learn complicated concepts by building
them out of simpler ones [10].

The quintessential model of deep learning is an MLP with more than one
hidden layer. The first hidden layer can be seen as a feature extraction from
the raw data, and each subsequent layer builds up more complex features
from the output of the previous ones [10]. Nowadays, it is common to have
networks with a large number of hidden layers (ten or more), which have been
demonstrated to be greatly superior to classical one-hidden-layer MLPs [22].

The main reasons behind the widespread adoption of deep learning techniques
in recent years are bigger datasets and fastest hardware, which supports deeper
models [10]. The availability of big datasets (millions of items) have lightened
the key burden of statistical estimation: generalizing satisfactorily after ob-
serving only a small amount of data. Advancements in hardware have made
the training of huge models in a reasonable amount of time possible.

Various deep learning architectures such as deep neural networks, deep belief
networks, recurrent neural networks, convolutional neural networks, etc., have
been applied to a multitude of different fields, such as images, video or audio
processing, bioinformatics, natural language processing and computer vision.

1.4.1 Regularization for deep learning

The training of deep models is obviously more difficult than training simpler
ones. For this reason, many techniques have been developed in order to obtain
better performance. The key point of regularization is reducing the general-
ization error of a model, while keeping its training error constant [10]. There
are many regularization strategies, some of which are describe below.
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Parameter penalties

Neural networks whose weights are close to zero1 tend to be more stable and
generalize better, even when they are fed with less data. In order to keep the
parameters close to their initial value, a regularization term can be added to
the loss:

L(Y, Ŷ , θ) = L(Y, Ŷ , θ) + αΩ(θ). (1.28)

where

• Y and Ŷ are the expected output and the actual output of the network,
respectively.

• α ∈ [0,+∞) is a hyperparameter that weights the contribution of the
regularization.

• Ω(θ) is the penalty function, usually L1 or L2 norm.

Dataset augmentation

The more straightforward way to make a machine learning model generalize
better is to train it on a larger dataset [10]. In practice, this is not always
possible, even in the current age of big data. One way to get around this
problem is to create artificial data and add it to the training set. This is
particularly easy for tasks such as classification. In this case, the training
set is composed of data in the form (x, y), where x is the actual data and
y is the label. Applying some kind of transformation to x, (i.e. in the case
of images: rotation, blurring, scaling, translation, etc.) obtaining x′, and
adding the pair (x′, y) to the dataset is a widely adopted technique. For many
other tasks, augmenting the dataset is not so straightforward. Recently, some
deep generative models have been used to generate realistic data [23], making
dataset augmentation for a wider range of problems possible.

Dropout

Dropout [24] provides a computationally inexpensive but powerful method for
the regularization of a broad family of deep models. At every training step, a
subset of the non-output neurons are ignored during the forward and backward

1In fact, we can regularize parameters to be near any point in space, and surprisingly still
get a regularization effect. However, better results are obtained for a value near the optimal
value. Since the optimal value is the objective of the training, zero is used as a default [10].
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passes (their output is set to zero). This can be thought of as a method of
bagging with many large models. At every step, some neurons are removed
from the network, yielding a different model every time. Neurons can develop
co-dependence during the training phase, leading to overfitting. Dropout offers
a convenient way of preventing these dependencies from occurring, making the
resulting model more general.

Batch normalization

Batch normalization [25] is considered one of the most important recent inno-
vation in optimizing deep networks [10]. Its basic principle is really simple: in
most models, the data is normalized (usually in the 0-1 range), before presen-
tation to the model, to improve its invariance to input. Therefore, the concept
is to normalize each layer’s output, in addition to its input. In SGD, a mini-
batch of m input vectors is used. Let oji be the output of the i-th neuron of
the j-th layer. The mean and the standard deviation of the output of the layer
is calculated as:

µj =
1

m

∑
i

oji , σj =

√
δ +

1

m

∑
i

(
oji − µj

)2
(1.29)

where δ is a small positive value, imposed to avoid the indefinite gradient at
σ =
√
z with z = 0. Now the output of the neuron is substituted with:

ôji =
oji − µj

σj
(1.30)

Repeating this procedure for every layer of the network has the effect of nor-
malizing the outputs of each layer, and reducing the internal covariate shift
(ICS). ICS is the phenomenon wherein the distribution of inputs in a layer of
the network changes due to an update in the parameters in the previous lay-
ers. This change leads to a constant shift in the underlying training problem,
slowing down the convergence of the model. In addition to the normalization
with batch mean and variance, batch normalization adds two more learnable
parameters to every activation in order to maintain the expressiveness of the
model. Thus, the output of the neuron is defined as:

yji = γji ô
j
i + βji . (1.31)

where γji and βji are the learnable parameters. Without them the model were
not be able to learn even simple input transformations, such as the identity
function.
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1.5 Convolutional Neural Networks

Convolutional neural networks (CNN) are a class of deep, feedforward artifi-
cial neural networks, most commonly applied to images analysis. An image
is usually defined in three dimensions: width (W), height (H) and number
of channels (C). If we consider a fully-connected MLP, in which each input
neuron is associated with one of the image’s pixels, every neuron in the first
hidden layer should have W×H×C weight associated to it. Even for small im-
ages (i.e 64×64×3), the first fully connected layers contains 12.288 weights for
each neuron. For non-trivial architectures, the number of parameters rapidly
explodes, leading to intractable models.

CNNs are one of the greatest successes of biologically-inspired artificial intel-
ligence [10]. Indeed, the intuition that influenced the development of CNNs
arose from studies of the visual cortex of mammals, conducted by Hubel and
Wiesel [26]. They found that the visual cortex is composed of layers, and the
first layer respond strongly to very specific patterns, such as edges or oriented
bars, but hardly respond at all to more complex structures. The output of the
first layer is then passed to successive layers, where simple characteristics are
combined in order to produce more complex features (see Figure 1.6). Layer-
ing and the composition of simple feature are the basic mechanisms used by
convolutional neural networks.

Figure 1.6: The human visual cortex system.
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Figure 1.7: The result of a single convolution operation. The process is re-
peated by shifting the filter all-over the entire original image.

1.5.1 Building blocks

Convolution

The convolution operation is the core building block of CNNs. A convolution
over an image requires a convolution matrix (or filter) which is moved across
the image. The result of a single convolution operation is the sum of all
products between the filter elements and the corresponding pixels.

Usually, the results are stored in a new image, which represents the response
of the original image to the filter used. Changing the filter results in different
features being extracted from the initial image. The resulting image’s size
depends on the size of the original image and the size of the filter. More
formally:

wo = wi − wf + 1 and ho = hi − hf + 1 (1.32)

where:

• wo and ho are the width and height of the image resulting from convolu-
tion.

• wi and hi are the width and height of the input image.

• wf and hf are the width and height of the filter used.
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Often CNNs have to deal with 3D input, such as RGB images. In those cases,
the filter is also 3D, with a depth equal to the input’s number of input channels.
The output of a single convolution operation is still a number. Generally,
more than one filter is used in each convolution layer, with the aim of deriving
different features from the same input. Thus, each convolution layer can be
represented as a bank of filters, and its output is composed of k different output
images (feature maps), with k = number of filters.

In a convolutional neural network the filters are automatically learned during
the training phase. This means that the network learns what features are the
most crucial, and how to extract them from an image.

The two most important characteristic of convolutional neural networks are
the sharing of weights among neurons in the same layer, and the locality of
the connection. Every neuron in a convolutional layer is connected with only a
small portion of the perceptrons of the previous layers, as defined by the size of
the filter. Moreover, the weights are shared among neurons in the same layer,
drastically reducing the number of parameters, with respect to an MLP. As
an example, in the first convolution layer, assuming 3×3 filters and an RGB
input image (C = 3), the filter is characterized only by 3 · 3 · C = 27 weights,
so there are only 27 parameter to be learned, regardless the number of neurons
in the layer.

Downsampling

The downsampling block is another important module of a CNN. It has the
aim of reducing the dimension of the input, in order to lower the number of
parameters and give the model more robustness to input changes [10]. The
most commonly used downsamplig layer is max pooling. In the max pooling
layer, the image is divided into small blocks and every block is condensed to
its higher value (see Figure 1.8). Another commonly used downsamplig block
is average pooling, when the output of a block is the average of all the values
within it.

1.5.2 Architecture

Convolutional neural networks are powerful classifiers [27], mainly due to the
automatic extraction of relevant feature, which had to be manually extracted
before the advent of CNNs. They are extremely suitable when the dimension-
ality of the data is particularly high, as in images.
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Figure 1.8: The result of a max pool operation using 2x2 blocks.

A CNN is typically composed of two modules: the feature extractor and the
classifier. The input, which usually consists of RGB images, is given to the
former module, which produces a feature vector of k elements. This array is
then delivered to a fully connected neural network, which assigns a class to
the input, relying on the extracted features.

Figure 1.9: General CNN architecture, composed of a feature extractor and a
classifier.

The classifier is usually a fully-connected multilayer perceptron, with as many
neurons in the output layer as the number of classes. The feature extractor,
by contrast, generally consists of many convolutional layers, each of which
are usually followed by an activation layer (ReLU is commonly used as an
activation function). Every s block of convolution plus activation, there is a
downsampling layer, which reduces the dimensionality of the feature maps.
The value of s depends on the network, and can even vary inside the network
itself, but usually ranges from one to three. In some cases, only convolution
plus activation is used [28]; on uch occasions, the CNN is commonly called a
fully convolutional network (FCN).

The training phase of a convolutional neural network is similar to the one
described in subsection 1.3.4. Backpropagation is used as in MLPs and the
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weight are updated in a similar manner.

Figure 1.10: A typical CNN architecture, with a pooling layer after every
convolution plus ReLU block. The total number of layers in the network is a
design choice, and can widely vary from different models.

1.5.3 Applications

As stated at the beginning of this section, CNNs are widely used for image
processing. This trend started in 2012, when AlexNet won the ImageNet Large
Scale Visual Recognition Challenge [29]. Since then, convolutional neural net-
works have become the standard for image-related tasks, such as classification
or object detection.

The feature extractor module can be used for transfer learning. A trained
CNN is a powerful feature extractor: changing only the classifier and training
it, keeping the former module fixed, is often much faster than training a CNN
from scratch.

Another application of CNN is within a class of methods named encoders. In
general terms, an encoder is a device that converts information from one format
to another, and can be mathematically expressed as a function: φ : A → B
where A and B are two different spaces (e.g. image space and feature space).
The inverse operation of encoding is decoding, which can be expressed as:
ψ : B → A. The purpose of encoding is to compress data into a short code
in a latent space. If the encoding is carried out properly, the latent code
should contain only the most important features of the data, ignoring noise or
unimportant aspects. The latent space can also be used for data editing. For
instance, if an encoder has learned how to represents concepts like a cat and
flying, those codes can be mixed in the feature space in order to generate a
flying cat after decoding, even if neither the encoder nor the decoder has ever
seen a flying cat [30]. Often a single CNN acts both as encoder and as decoder.
In this case, the model is called an autoencoder. Autoencoders are one of the
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most active research topics in deep learning [10], and are predominantly used
for representation learning.





2

Generative Adversarial
Networks

The most interesting idea in the last 10 years in machine learning.

– Yann LeCun, Director of AI research at Facebook

In this chapter, a description of Generative adversarial networks (GANs) is
provided, starting from the basic concepts that led to the development of the
GAN model. Then, the procedure used to train such models is described,
focusing on the differences and problems when compared to classical neural
networks, and presenting some solutions to them. At the end of the chapter,
the problem of evaluation is discussed , which is common to many generative
models.

2.1 Generative Models

In statistical classification, as in machine learning, there are two main types of
model: discriminative and generative models [8]. Given an observable variable
X, and a target variable Y (i.e X represents the actual data, while Y are the
labels), a discriminative model is a model of the target Y given an observation
x ∈ X, symbolically P (Y |X = x). A discriminative model, in brief, learns
how to classify every pattern x to the correct label y. Methods like support
vector machines (SVMs) and neural networks fall into this category.

On the other hand, generative models are statistical models of joint probability
distribution P (X, Y ). A generative model learns the intrinsic distribution of

31
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Figure 2.1: The operation of density estimation performed by a generative
Gaussian model over mono-dimensional data. [31]

data, allowing it to generate new data according to the real data distribution
(this is why these models are called generative). In short, a generative model,
given a training set consisting of samples drawn from a distribution pdata,
learns how to represent and estimate such a distribution, and the result is a
probability distribution pmodel, which will hopefully be similar to pdata [31].

It is important to report that, given the Bayes theorem:

P (Y |X) =
P (X|Y )P (Y )

P (X)
and P (X|Y )P (Y ) = P (X, Y ) (2.1)

the result is that:

P (Y |X) =
P (X, Y )

P (X)
. (2.2)

Since

P (X) =
∑
y

P (X, Y = y) (2.3)

the discriminative model can be directly derived from the generative one:

P (Y |X) =
P (X, Y )∑

y P (X, Y = y)
. (2.4)

Therefore, given a generative model, it is possible to derive a discriminative
model. Moreover, the former contains more information than the latter, and
it can be used to discover complex relationships between X and Y , such as
in the case of multi-modal outputs (given an input x ∈ X, more than one
element of Y is correct; i.e. x is a frame in a video and y is the predicted
next frame). However, for classification purposes, discriminitavive models are
usually preferred, due to their higher accuracy, if they are trained with large
datasets [32].
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2.1.1 Maximum likelihood estimation

In the previous section, it was stated that generative models produce a prob-
ability distribution pmodel which should resemble the real distribution of data
pdata. Likelihood provides a metric for comparing two probability distribu-
tions, and the maximum likelihood estimator can be used to find the optimal
parameters of the generative model.

The likelihood of a model is given by l =
∏n

i=1 pmodel(x
(i), θ), where x(i) is the

i-th element of the dataset, and θ represents the parameters of the model.
To simplify computations, the log likelihood is often taken into consider-
ation, and therefore the product is transformed into a sum of logarithms:
l =

∑n
i=1 log pmodel(x

(i), θ). The best model is the one with the maximum
likelihood, so:

θ∗ = arg max
θ

n∑
i=1

log pmodel(x
(i), θ)

= arg max
θ

Ex∼p̂data log pmodel(x, θ) (2.5)

where p̂data is the distribution defined by the training data. The maximum
likelihood estimator can be interpreted as a method to minimize the dissim-
ilarity between p̂data and pmodel, similarly to the KL divergence. Usually, the
optimal parameters are estimated by minimizing the negative of the likelihood;
thus:

θ∗ = arg min
θ
−Ex∼p̂data log pmodel(x, θ) (2.6)

Note that minimizing the KL divergence between two distributions corresponds
precisely to minimizing the cross entropy between them. For this reason, the
cross entropy loss defined in subsection 1.3.3 is widely used in many machine
learning models.

2.1.2 A taxonomy of generative models

Some generative models do not use maximum likelihood in principle, but they
can be examined using a maximum likelihood variant. The main distinction
among generative models is between explicit and implicit density models. For
a complete review of generative models in relation to GANs see [31].
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Explicit density function

Models that are in this category explicitly define the density function pmodel.
For these kind of models, the maximization of the likelihood is straightforward:
it is sufficient to use Equation 2.5 and follow the gradient uphill (or downhill
if the divergence is used).

The main difficulty with explicit density models is the designing of a model
that can capture all the complexity of the data and, at the same time, maintain
computational tractability. To confront this challenge, there are two different
strategies:

• Tractable explicit models: the density function pmodel is chosen to be
computationally tractable. Examples of such models are fully-visible be-
lief networks, nonlinear independent component analysis and pixelRNN.

• Approximated explicit models: when the distribution of the data
cannot be reduced to a tractable pmodel, a intractable one is used, and
approximated with a lower bound L(x, θ) ≤ log pmodel(x, θ). Maximiz-
ing L(x, θ) has almost the same effect as maximizing the likelihood if the
two functions are not distant, especially in their optimal point. The most
famous example of approximate explicit models is the variational autoen-
coder (VAE). Another kind of models uses the Markov chain approxima-
tion instead of defining a lower-bound function. The most prominent
example of these models is the Boltzmann machine [33].

Implicit density function

Some models can be trained without the need to explicitly define a density
function. These models interact only indirectly with pmodel, usually sampling
data from it in order to compare the generated data with the training set
distribution p̂data. In brief, the goal of these types of models is not to learn
how the data is distributed throughout space, but how to generate items that
seem extracted from pdata. Some implicit density models use Markov chains
to draw samples from the implicit pmodel, as generative stochastic networks.
Those models, however, do not scale well to high dimensional space, and they
require many steps to generate data. Generative adversarial networks were
designed to avoid those problems, so they are able to generate samples in a
single step.



2.2. Adversarial networks 35

2.2 Adversarial networks

Generative adversarial networks (GANs), introduced by Goodfellow et al. in
[2], are an emerging technique for both unsupervised and semi-supervised
learning. They are implicit density generative models, and they are char-
acterized by two main components: a generator G, and a discriminator D.
The basic idea of GANs is to set up a game between the generator and the
discriminator. The former tries to generate samples that are intended to come
from the real data distribution, while the latter examines real and generated
samples in order to distinguish between real or fake data. A common analogy
is to think of the generator as an art forger, and the discriminator as an art
expert [34]. The forger tries to create forgeries which are increasingly similar
to real paintings, in order to deceive the art expert. The expert, at the same
time, learns more and more sophisticated ways to discriminate between real
and false artworks.

The generator can be seen as a function G : Z → X that transforms some
latent variable z ∈ Z into a sample in the data space x ∈ X. The discriminator
can be formalized as a function: D : X → (0, 1), which maps an item to its
probability of being real.

One of the most crucial points of GANs is that the generator has no direct
access to the real data: the only manner for it to learn is through interaction
with the discriminator. By contrast, the discriminator has access to both real
and generated data. This behavior can be expressed via a minimax game,
where the generator tries to minimize the gain of the discriminator, while the
discriminator tries to do the opposite.

2.2.1 Minimax games

Minimax is a decision rule, used in many different fields, for minimizing the
possible loss in a worst case scenario. Originally, it was formulated for zero-
sum two-players games, where a player gains advantage at the expense of the
opponent. Minimax has also been extended to general decision-making in the
presence of uncertain.

In a two player game, the minimax value of a player is the smallest value that
the opponent can force it to obtain, without knowing the actual action of the
player. In other words, it is the largest benefit that the first player can be sure
to obtain, when they know the action of the other player:



36 2. Generative Adversarial Networks

v̄i = min
a−i

max
ai

vi(ai, a−i) (2.7)

where:

• ai and a−i are the two players.

• vi is the value function for player i.

In this case, player a−i tries to minimize the gain of ai, without knowing ai’s
move. On the other hand, ai tries to maximize its benefit, knowing a−i’s move.

The reverse of minimax is maximin, where a player tries to maximize their gain
without knowing the move of the opponent, who tries to minimize the same
quantity. The solution of a minimax game is equivalent to a Nash equilibrium
[35], in witch none of the players can achieve a higher benefit by unilaterally
changing their strategy.

2.2.2 Model architecture

The first architecture proposed for GANs consisted of two multilayer percep-
trons, one representing the generator and the other the discriminator. The
generator is fed with a noise vector, and produces a sample x drawn from the
implicit distribution pmodel. The discriminator is fed with x and yields the
probability that x is sampled from pdata. The output of the discriminator is
used to update the parameters of both the models.

Figure 2.2: GAN general architecture.
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More formally, the generator is a differentiable function G(z, θ(G)) and the
discriminator a differentiable function F (x, θ(D)). The objective of the dis-
criminator is to minimize a certain loss function J (D)(θ(D), θ(G)), and to have
do so only by controlling θ(D). At the same time, the generator wishes to min-
imize another loss function J (G)(θ(G), θ(D)) by only controlling θ(G). Thus, the
cost of each model depends on the other model’s parameters. This scenario is
simpler to describe as a game, rather than as an optimization problem. The
theoretical optimum is when the generator’s implicit model is able to perfectly
match pdata, so that even an optimal discriminator will be maximally confused,
predicting a probability of 0.5 for every input.
The GAN game is commonly played in the following way:

1. Some training examples x are randomly sampled from pdata.

2. The discriminator tries to make D(x) = 1.

3. Some items z are sampled from the generator latent space.

4. The discriminator seeks to make D(G(z)) = 0, while the generator
strives to make the same quantity approach 1.

In the last point, the reason GANs are adversarial models is made clear: both
the generator and discriminator tries to maximize and minimize the same
function respectively.

Neural networks have been used predominantly for both the discriminator
and the generator since the work of Goodfellow et al. [2]. The main reasons
for this trend are that NNs are able to perform nonlinear transformations of
the input, potentially making the mapping between the latent space and the
predicted distribution extremely complex [34]. Another reason is that neural
networks are universal approximators, making GANs asymptotically consistent
(i.e the estimation of optimal parameters grows if more data is provided).
Nevertheless, any differentiable model can be used for both the components of
a GAN, and even different models can also be adopted for the discriminator
and the generator.

2.3 Training

The training of generative adversarial networks is often more problematic than
the training of neural networks, due to the fact that it is not an optimization
problem, but a minimax game. Ideally, the parameters of the two models
should be updated at the same time, but this is unfeasible in practice. Since
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the majority of GANs use neural networks, training is performed following the
backpropagation algorithm described in subsection 1.3.4.

Loss functions

In the GAN game, the discriminator is the player that tries to maximize its
gain, knowing the move of the opponent. Indeed, it seeks to classify the au-
thentic data as real, and the generated samples as fake. This behavior can
be correlated with a binary classifier, which aims to categorize data into two
classes: real or fake. As reported in subsection 1.3.3, cross entropy loss is usu-
ally adopted for a binary classification. The GAN game can thus be expressed
as:

min
G

max
D
L(D,G) = Ex∼pdata [logD(x)] + Ez∼pz [log(1−D(G(z)))] . (2.8)

where L(D,G) represents the adversarial loss, which is actually a value func-
tion, since the discriminator aims to maximize it.

The value function of the discriminator, with regards to the parameters of the
model, can be expressed as:

J (D)(θ(D), θ(G)) = Ex∼pdata logD(x) + Ez∼pz log(1−D(G(z))). (2.9)

In many models this is substituted with LD(θ(D), θ(G)) = −J (D)(θ(D), θ(G))/2,
in order to minimize instead of maximize. The only difference between adver-
sarial discriminator loss and cross entropy loss is that the data comes from two
different distributions, so the discriminator is trained with two minibatches of
data: one coming from pdata, and the other from pmodel. In [2], it is demon-
strated that Equation 2.9 is the optimal discriminator strategy, and the equi-
librium of the game is reached when the discriminator output is 0.5 for every
input.

The cost function of the generator, since we are in a minimax game, is the
same of the discriminator (one model tries to minimize it, while the other tries
to maximize it). Thus, the generator has to minimize:

LG(θ(G), θ(D)) = Ez∼pz log(1−D(G(z))) (2.10)

where the first term is omitted, since does not depend on the generator.

2.3.1 Training algorithm

Similarly to neural networks, SGD and backpropagation are used for param-
eter updating. In a training step, the discriminator is usually trained before
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the generator. Some authors recommend running more training steps on the
discriminator, before updating the generator1, while others claim that the best
strategy is to run only one step for both models [31]. This is an open research
question, and a solution to this debate has not been found so far (November
2018). The procedure is described in Algorithm 2.

Algorithm 2 GAN Training procedure [2]

Require: k = number of steps the discriminator has to be trained before
training the generator.

Require: m = minibatch size.
1: for number of training iteration do
2: for k steps do
3: • Sample minibatch of m noise samples {z(1), . . . , z(m)} from noise

prior pg(z).
4: • Sample minibatch of m examples {x(1), . . . , x(m)} from data

generating distribution pdata(x).
5: • Update the discriminator by ascending its stochastic gradient:

∇θ(D)

1

m

m∑
i=1

[
logD

(
x(i)
)

+ log
(
1−D

(
G
(
z(i)
)))]

.

6: end for
7: • Sample minibatch of m noise samples {z(1), . . . , z(m)} from noise

prior pg(z).
8: • Update the generator by descending its stochastic gradient:

∇θ(G)

1

m

m∑
i=1

log
(
1−D

(
G
(
z(i)
)))

.

9: end for

One of the key feature of GANs is that the generator has no access to data, and
it learns only by observing the output of the discriminator. This means that
the generator is not directly related to its loss, i.e. changes in the perceptrons
of the generator output layer cannot be converted in subsequent changes in the
loss. Resuming the forgery example, the forger’s ability to create counterfeits
is not the only factor that determines the amount of money he or she can
make by selling his or her works: the competence of the art expert is a part
of the equation. More formally, this means that the gradient of the loss has
to be propagated through the discriminator, before reaching the generator.

1Theoretically, the equilibrium of the game can be reached by starting from an optimal
D and training only G; however, in practice, this approach is not feasible [36].
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Moreover, since the discriminator is usually updated before the generator, the
latter receives the gradient after the discriminator’s weights are updated. This
is the core of the minimax game played by GANs: the generator has to make a
move without knowing the move of the discriminator. This, incidentally, makes
GANs resistant to overfitting, since the generator has no possibility (even an
implicit one) of copying training examples [31]. A more detailed GAN training
algorithm is shown in Algorithm 3.

Summing up these properties, the training of the generator can be seen as a
strange form of reinforcement learning [31]: the generator takes actions and
gets a reward from them. It differs from traditional RL because the reward
function is not stationary (the discriminator changes during training) and the
generator is able to observe not just the reward, but its gradient. The last
point states that, in spite of their names, the generator and the discriminator
are not adversarial. In fact, the discriminator can be seen as a teacher, which
evaluates the generator, and freely share knowledge with it about the real
distribution in order to instruct the generator in how to improve [31].

2.3.2 Problems

As stated in the previous section, the training of GANs is more problematic
than the training of most machine learning models, mainly because finding an
equilibrium in a Nash game is more difficult than solving an optimization prob-
lem. In this section, three of the most important problems that are commonly
encountered during learning are analyzed.

Instability

The instability of GANs is well documented in the literature [34, 36, 37] and
it is caused by trying to find an equilibrium point with gradient descent. The
equilibrium is a point (θ(D), θ(G)) such that both the generator and the dis-
criminator losses lie at a minimum with respect to their parameters. This has
motivated the idea of using gradient descent to update the parameters of the
two models. But, as discussed in [37], this idea does not hold, even for simple
functions. If the discriminator changes its parameters, in order to minimize its
loss, the generator is likely to shift away from its optimum point, and when the
generator update its parameters, the same thing occurs with the discriminator.
Equilibrium is not reached, because each player destroys the progress of the
other, causing the value of the GAN function to oscillate. This oscillation is
not easy to detect and to avoid, making the training of GANs instable. For
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Algorithm 3 A more detailed GAN training algorithm.
For the discriminator cost function, cross entropy loss is used, instead of the
objective function in Equation 2.9, in order to minimize instead of maximize.
.

Require: k = number of steps the discriminator has to be trained before
training the generator.

Require: m = minibatch size.
1: for number of training iterations do
2: for k steps do
3: • Sample a minibatch x of size m from pdata.
4: • Sample a minibatch z of size m from pz (latent space).
5: • Set the discriminator loss as:

LD = − 1

m

m∑
i=1

[
logD(x(i)) + log(1−D(G(z(i))))

]
.

6: • Back-propagate the loss only through the discriminator.
7: • Update the parameters of the discriminator.
8: end for
9: • Sample a minibatch z of size m from pz (latent space).

10: • Set the generator loss as:

LG =
1

m

m∑
i=1

log(1−D(G(z(i)))).

11: • Back-propagate the loss through the discriminator and the generator.
12: • Update the parameters of the generator.
13: end for

a complete analysis of the various sources of instability during the training of
GANs, see [36].

Even with those problems, SGD is still predominantly used during the train-
ing of adversarial networks, due to its popularity and its adoption by many
machine learning frameworks.

Vanishing gradient

The vanishing gradient is a problem that is not limited to GANs, but common
to many deep learning models. However, in generative adversarial networks,
this problem is particularly difficult to overcome, for two main reasons.
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The first reason is that the gradient of the loss has to flow through the dis-
criminator, before reaching the generator. As can be seen in subsection 1.3.4,
the error on one neuron is calculated by summing the errors of the following
layer, and multiplying the result by the derivative of the activation function.
For some activation functions, the derivative varies between zero and one, re-
ducing the propagated error. Thus, when arrives at the generator, the error
might be too small to change the parameters in a perceptible way, thereby
stopping the learning.

Another cause of vanishing gradient is the loss function of the generator. In
the classic model, the generator wants to minimize:

J (G) = log(1−D(G(z))). (2.11)

This function produces small values if the discriminator is able to reject the
output of the generator with high confidence. This means that, if the discrim-
inator overwhelms the generator, the latter does not have enough gradient to
improve its parameters. This situation may seem difficult to encounter, but
in [36] it is demonstrated that, if the space in which the pdata lies is high-
dimensional, in the early stages of learning, even a trivial classifier is able to
distinguish between real and fake data, with an accuracy of nearly 100%. This
has led to the adoption of the following loss function for the generator:

J (G) = − log(D(G(z))). (2.12)

This function has the advantage of providing an higher gradient during the
initial steps of training. Moreover its minimum point is definite, as opposed
to Equation 2.11, in which it is indefinite (−∞).

Mode collapse

Mode collapse (also known as the Helvetica scenario) occurs when the generator
maps many different vectors from the latent space to the same output. In
practice, a complete mode collapse is rare, but partial mode collapse (the
generator produces only similar images) is common. The problem arises when
the generator finds some weaknesses in the discriminator, and, since the loss is
low for that output, it continues to produce the same outcome. It is not easy
for the discriminator to notice this problem, as it does not conserve a history
of data.

Even if the discriminator detects the issue and starts to reject the generated
data, the generator simply searches for another mode, and starts to generate
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data that is close to the newly discovered vulnerability. Thus, the training
becomes a cat-and-mouse game, without converging to the optimal point [38].

Mode collapse is still an open problem, and it is considered by many authors
to be one of the most important issues of GANs [31].

2.3.3 Possible solutions

Since the advent of GANs, the problems described above have been analyzed,
and some solutions have been proposed. Most of these contributions are merely
practical, since a rigorous theoretical understanding of many phenomena re-
lated to training such models is still missing [37].

Virtual batch normalization

Batch normalization (see subsection 1.4.1) has been proved to be very helpful in
many deep learning models, but for GANs it has a few unfortunate effects. The
use of a different batch of data for computing the reference statistics (mean and
variance) in every forward pass, results in fluctuations of these normalization
parameters [31]. This is especially problematic when the minibatch sizes are
small, because these fluctuations become large enough that they have a greater
effect on the output than the input z.

Virtual batch normalization [37] uses a reference batch of images extracted
randomly from the training set at the beginning of the training phase. Statis-
tics are computed on this batch and they are used in combination with batch
statistics, calculated during forward passes. This procedure has the effect of
reducing parameter fluctuations, and making the images in the same batch
independent from each others.

One-sided label smoothing

Deep learning classification models are prone to produce classifications with
very high confidence, especially when the data is artificially constructed. This
is the case of the discriminator in GANs, which, in the first part of the training
phase, usually greatly outperforms the generator.

One-sided label smoothing is a trivial technique from the 1980s, but one which
has recently been rediscovered for the regularization of deep learning models
[39]. The approach consists of smoothing the labels on the discriminator, i.e.
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real data are not associated with the label 1, but with 0.9. Similarly, fake
samples are associated with label 0.1 instead of 0. Training the discriminator
with these labels results in less extreme gradients for the generator, speeding
up the training. Moreover, it has been demonstrated that one-sided label
smoothing can help the discriminator to resist attack by the generator (e.g.
mode collapse).

Historical averaging

Historical averaging is a set of techniques derived from reinforcement learning,
which consists of keeping a history of the training. In [37], is recommended
that the parameters should be updated by taking the previous updates into
consideration. Another approach is to maintain a pool of generated data, and
sometimes feed the discriminator with an old sample, rather than the last one
generated. Other authors recommend keeping the old parameters, and every
k iterations substituting one of the two models with the old one.

Training with labels

If the training set is composed of data with labels, the use of a discriminator
that classifies the data with those labels, instead of simply using real or fake
classifications, often results in a dramatic improvement in the subjective qual-
ity of generated images [31, 37]. The reason of this behavior is not completely
clear, but it seems that using labels results in a discriminator that is more sim-
ilar to our own visual system. Thus, to trick the discriminator, the generator
is forced to put more emphasis on the features we emphasize when we observe
an image. Note that the improvement in image quality may not be objective.
In fact, it is still not clear whether or not the images produced using labels
are more realistic when they are viewed by humans, or if they actually have
an intrinsic realism [31].

Noise adding

In [36], it has been demonstrated that, if the output space is high-dimensional,
even a simple discriminator can easily overwhelm the generator. As an exam-
ple, if the output space is the space of 64×64×3 images, it has 12,288 di-
mensions. Commonly, the target distribution (pdata) lies in a low-dimensional
manifold, as does the model distribution (pmodel). As demonstrated in [36], a
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discriminator is not able to correctly classify data that comes from two differ-
ent manifolds if they match perfectly in a large part of space. This is proven
to be almost impossible if the space is high-dimensional (as in images).

One way to overcome this problem is by adding noise to the data before giving
them to the discriminator. This procedure relaxes the bounds of the two
manifolds, and penalizes the performance of the discriminator, in order to
provide a better gradient to the generator during learning.

2.4 The problem of evaluation

The evaluation of generated data is an open issue, and it is not limited to
GANs, but, in general, to all the generative models. As stated in section 2.1,
a generative model tries to estimate the true distribution of data using some
sample from a training set. Generative models are often built in order to
generate new samples, so the evaluation has to be done with regards to the
outputs.

A generative model can be evaluated using its likelihood, or, if it is impossible
to calculate it, an approximation of the likelihood or some other metrics. How-
ever, as discussed in [40], these metrics are often unrelated to image quality.
It is common that a generative model shows a good likelihood, but that it
produces bad quality samples, or vice versa. In general, different metrics do
not correlate well with each other, making an objective assessment of samples
quality nearly impossible.

2.4.1 Why the loss function is not enough

Generative adversarial networks are particularly inclined to this problem, since
the likelihood is not calculated: they lack an explicit representation of pmodel,
which is hidden in the generator’s parameters. Moreover, GANs do not have a
proper loss function: their goal is to find an equilibrium point, not a minimum.

The only cost function present in GANs is the discriminator loss (the gen-
erator loss is derived from it). It can be argued that this loss can be used
for assessing the model quality, since a better generator is more likely to fool
the discriminator. However, the discriminator loss should not be used as the
only method to evaluate the quality of GANs for two main reasons: it is not
stationary and it can suffer from adversarial attacks.
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Figure 2.3: An example of adversarial attack. Suppose the objective of the
generator is to generate images of gibbons, and the goal of the discriminator
is to correctly classify gibbons. The image on the right is confidently classified
as a gibbon, thus the generator loss is very low, even if it is improbable that
the image belongs to the gibbon images distribution. Image from [41].

The discriminator is not a passive entity, it evolves, and its evolution is driven
by both real and generated data. This means that, if, during training, the
discriminator finds an effective way to separate real and fake samples, the
generator loss increases, even if the quality of generated data remains the same.
The discriminator’s loss depends on two entities, so it may be unreliable to
use it to evaluate the performance of the generator alone.

Moreover, the discriminator can be fooled if the generator is able to spot one
weakness. A typical example is mode collapse: a mode collapsed generator
produces very similar samples, which are believed to be real by the discrimi-
nator. In this case, pmodel can be very different from pdata, but the generator’s
loss is usually small. An example of adversarial attack is shown in Figure 2.3.

2.4.2 Assessment of result quality

As stated in the above section, the assessment of result quality is particularly
difficult for GANs. Indeed, many works still rely on human evaluation of
generated data (especially if the results are images). One metric that has
shown promising results is the inception score [37]. The inception score was
initially proposed only for images, but can be used for every type of data.
The score is based on the assumption that for an image to be recognized as
real it must contain meaningful objects. At the same time, the generator has
to produce a wide variety of different images, containing disparate objects.
The metric applies a classifier to every image generated by the generator in
order to obtain the conditional label distribution p(y|x = G(z)). Images that
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contain meaningful objects should have a conditional label distribution with
low entropy (the object is recognized with high confidence). On the other
hand, the marginal

∫
p(y|x = G(z))dz should have high entropy, since the

classes have to be equally represented (note that
∫
p(y|x = G(z))dz = p(y)).

The score is given by the divergence of the conditional and the marginal label
distributions, so:

score = exp(ExDKL(p(y|x)||p(y))). (2.13)

It has been observed that the inception score correlates well with human judg-
ment, and for this reason its adoption is increasing for a wide range of general
models.

2.5 Examples and applications

In this section some examples of GAN models and some applications are pro-
vided. What follows is not a comprehensive list, since generative adversarial
networks are a extraordinary active research field, and new models and ap-
plications are discovered and published every day. Those listed below are the
most important, in particular, for the models used in the following chapters.
For a more comprehensive view of models and applications see [31, 34].

2.5.1 Examples

The first GAN model dates back to the original paper by Goodfellow et al.
[2] and it is commonly called vanilla GAN. This first version of GAN uses
simple multilayer perceptrons for both the generator and the discriminator.
This is the simplest model possible, and, in the training phase, it uses the
exact algorithm described in Algorithm 3. With this model it is possible to
generate simple images, such as fake digit, similar to those present in the
MNIST dataset2 or images of different objects using the CIFAR-10 dataset3.

The reference for most of the GANs developed today is DCGAN [30]. DCGAN
stands for Deep Convolutional GAN, and though GAN used convolution before
DCGAN, it was the first model which learned how to generate high-resolution
images in a single shot. Before this, another model called LAPGAN (Lapla-
cian GAN) used multiple generators to generate different levels of detail in a

2http://yann.lecun.com/exdb/mnist/
3https://www.cs.toronto.edu/~kriz/cifar.html

http://yann.lecun.com/exdb/mnist/
https://www.cs.toronto.edu/~kriz/cifar.html
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Laplacian pyramid representation of an image. DCGAN is based on two key
points, which are:

• The use of batch normalization in both the generator and the discrimi-
nator. During training, the discriminator uses different statistic for the
two minibatches.

• No pooling or unpooling layers. If the spatial dimension of representation
has to be increased, the model uses transpose convolution with a stride
greater than one.

In the original architecture, the DCGAN was fed with a 100-dimensional vector
from the latent space, and it produced a 64×64×3 image. Moreover, it has
been clearly demonstrated that DCGAN uses the latent vector in a meaningful
way, i.e. a simple operation in the latent code has a clear interpretation on
the output [31].

Conditional GANs (CGAN) [42] use supplementary information, in addition
to generator and discriminator input. The additional information can be the
desired class of the output, or any type of data with the aim of conditioning the
generator in producing whatever is required. The most important element of
this model is that the discriminator also receives the conditioning information.
The objective of the discriminitar is no longer to distinguish between real and
fake data, but to evolve into a more sophisticated task, which is: given the
conditional information, is the data produced by the generator conditioned
in the proper manner? As an example, if the conditioning information is the
desired class of the output, the discriminator’s task becomes one of yielding
the probability that, given the class, the output of the generator represents an
object of that class (p(x|y)), which is different from classification (p(y|x)).

Another model worth mentioning is the Wasserstein GAN (WGAN) [43]. This
model was developed with the precise idea of resolving most of the problems
that usually arise when a GAN is trained. Wasserstein GANs use the notion
of Wasserstein distance, or Earth Mover distance (EM) as a loss function for
the discriminator. This approach was demonstrated to provide a more usable
gradient for the generator, and it is less prone to instability problems.

2.5.2 Applications

Generative adversarial networks have been applied to a wide range of topics,
predominantly related to computer vision. In this section some applications
where GANs have shown particularly promising result are described, especially
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when compared to classic machine learning approaches. For a broader list of
present and potential future applications see [31, 34, 44].

Image synthesis

Image synthesis is the ability to produce images, starting from another type
of information. This information can be random noise, as in DCGAN, a text
describing the image, or a feature of the image. GANs, since their advent,
have shown an extremely high level of photo-realism, even if the latent vector
given to the generator is not as high-dimensional as the output result. One of
the most impressing examples of image synthesis waws carried out by NVIDIA
Research [45], which uses the technique of progressively growing the generator
and discriminator, starting from only one layer in each model, and adding
layers as the training advances. The model is able to generate 1024×1024
images that are practically indistinguishable from real ones, starting from a
latent vector of only 512 values (see Figure 2.4).

Figure 2.4: An example of image synthesis using generative adversarial net-
works. None of the people represented above is a real person. The model was
trained with celebrity faces, and maps a latent code of 512 values onto high
resolution photographs. Image from [45]

Text-to-image is considered the holy grail of computer vision [44], since, if a
model can generate realistic images from text, there is an high likelihood that
the model actually understands what is in the image. Current test-to-image
models based on GANs perform well if the image contains only one object,
but lack precision and sharp details if the scene has to include more than one
item. For a broad analysis of the use of GANs in text-to-image see [44].
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Image-to-image translation

Image-to-image translation is defined as translating the possible representa-
tion of one scene into another, such as mapping greyscale images to RGB, or
generating an image from only the edges. Problems related to image-to-image
translation are often ill-posed, since for one input image, more than one cor-
rect mapping can exist, making the assessment of the result difficult. One
task that is directly related to image-to-image translation is style transfer. In
style transfer, the goal is to transfer the style of one target image to another,
maintaining the content of the input. An example of this is the transformation
of a photo into the style of a famous painter, or the change of the season, from
winter to summer or vice versa. Style transfer is discussed in detail in the next
chapter.

Another example of image-to-image translation is super-resolution, where the
resolution of the input image is enhanced. One of the most successful models
is SRGAN [46], where the adversarial loss is used in combination with other
losses related directly to the resulting image. An example of super resolution
is shown in Figure 2.5.

Image-to-image synthesis techniques can be used for video prediction. In this
case, the generator takes a frame as input, and tries to produce the next frame
of the video [47].

Figure 2.5: An example of super-resolution performed with a generative adver-
sarial network, compared with a non-adversarial approach. The GAN result
presents a higher sharpness, and more details are visible. Image from [46]

Feature learning

The generator, in GANs, learns a mapping between an arbitrary latent space
and data space, in a completely unsupervised manner. The generator asso-
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ciates the feature code’s values to the actual semantic attributes of the out-
put. It has been demonstrated that interpolations in the latent space produce
smooth and plausible variations in the generated data, and certain directions
in the latent space are associated with particular semantic values of the model
distribution. So, the generator considers the latent code as a feature vector,
and it learns in an unsupervised manner how to map data features onto latent
space. If it were possible to invert the generator, a powerful feature extractor
could be created. Unfortunately, most GAN models do not include this inverse
mapping.

In [48], a model called BiGAN is proposed, where an additional encoder E
is trained in order to invert the mapping performed by the generator. The
encoder can be used as a feature extractor after the training phase, and the
original image can be reconstructed using the generator.

Others models that are used in unsupervised feature learning are adversarial
autoencoders [49]. In these models the generator is an autoencoder that maps
the data onto a latent space, and back again to data space. So, the latent
feature vector produced after the encoding phase must represent the most
important feature of the data, and this mapping is learned in an unsupervised
fashion.

Semi-supervised learning

In the previous applications, the goal of the model is to train the generator
with the help of the discriminator, which acts like a teacher. Usually, after the
learning phase, the discriminator is discarded, and only the generator is used.
In semi-supervised learning, this paradigm is shifted, since the objective is to
train the discriminator, with the help of the generator.

Having a vast dataset is one of the prerequisites for training deep models. How-
ever, a large amount of labeled data is not always available, even if unlabeled
data is abundant. In these cases, a supervised approach is not feasible, but
a deep classifier can be successfully trained with adversarial semi-supervised
learning [37]. Suppose that the goal is to classify data in k classes, having many
unlabeled samples and only few labeled ones. The approach consists in extend-
ing the discriminator, so that it will be able to classify data in k + 1 classes:
the k original classes plus the class of fake data. Therefore, the discriminator
is fed with labeled, unlabeled and fake data. The objective is different for
each category of data. If the discriminator is fed with labeled data, the goal
becomes to maximize the confidence of the right classification. If the given
data is unlabeled, the discriminator’s objective is to minimize the probability
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of the data to be classified as fake, and when generated data is presented to
the discriminator, its objective is to maximize the confidence of the fake class.

Using the procedure above, great improvements in classification tasks have
been demonstrated, when there is only a small amount of labeled data [31],
especially if the discriminator uses feature matching to analyze the input data.



3

Cycle-Consistent Adversarial
Networks

It’s difficult to be rigorous about whether a machine really ‘knows’,
‘thinks’, etc., because we’re hard put to define these things. We un-
derstand human mental processes only slightly better than a fish un-
derstands swimming.

– John McCarthy, The Little Thoughts of Thinking Machines (1983)

In this chapter the focus will shift from more general concepts to a detailed
description of one adversarial model. First, a discussion about image-to-image
translation will be provided, with particular emphasis on the most recent de-
velopments in the field. Subsequently, the cycleGAN model will be presented
and discussed in details, with an analysis of the training procedure, in order
to give a comprehensive examination of the framework.

3.1 Image-to-image translation

Image-to-image translation is a class of computer vision and graphic problems,
where the goal is to learn how the mapping between two classes of images takes
place, formally: f : IA → IB, where IA and IB are the image classes. The
concept of image translation can be compared with the translation between
two different languages. Concepts have to remain the same, the only thing that
changes is the representation of these concepts. Just as the same sentence can
be translated in many different languages, so too can a scene be represented

53
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Figure 3.1: Some examples of image-to-image translation. Images from [50].

in many forms, such as RGB images, label maps, depth maps, edge maps,
etc. The aim of image-to-image translation is to correctly transform an image
from one representation into another. Many problems in image processing
can be posed as a translation problem, such as image colorization, depth map
estimation or semantic segmentation. Some examples of translations are shown
in Figure 3.1.

Unfortunately, unlike sentences in different languages, images in distinct rep-
resentations may not have the same information content, making the problem
of image-to-image translation ill-posed, i.e. more than one output can be cor-
rect, given the same input. As an example, suppose we have a depth map of
a scene, and we want to translate it into an RGB image. The depth map does
not contain information about colors or small details, so many outputs can
be considered valid. Moreover, a reference image is often missing, making the
evaluation of the result even more difficult.

Image-to-image translation can be also used for images that have the same
representation, but a different domain. For instance, an image of a winter
scene can be translate into the same scene, but as if the photo was taken in
summer. This form of image translation is particularly interesting for removing
unwanted features, such as noise or bad weather conditions.

3.1.1 Style transfer

Style transfer is a particular application of image-to-image translation, where
the goal is not translating from one image domain to another, but creating a
new picture by the union of two different images. These images are named
content and style images. The former defines the essence of the mixed image,
while the latter determines its style. More formally, style transfer can be
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Figure 3.2: Some examples of style transfer. Image from [51].

formulated as f : {I1(C1, S1), I2(C2, S2)} → Io(C1, S2), where I(C, S) is an
image with content C and style S. Style transfer is nowadays mainly used to
create artistic artworks, therefore it is not only used by computer scientists,
but by a wide range of artists and photographers. Some examples of style
transfer are shown in Figure 3.2.

Apart from artistic creations, style transfer can be useful for understanding to
what extent current machine learning models are able to correctly understand
the semantics of images. Content and style are two different aspects of pictures,
and combining them together in a meaningful way requires some sort of image
comprehension.

The style of an image is usually defined as a texture; indeed, it is similar to
different parts of the same picture, and it is repeated across the image. The
content, however, is composed of local features, which represent the shapes of
the represented objects. Mixing local and global feature is the goal of style
transfer.

Nevertheless, the boundary between image-to-image translation and style trans-
fer is not clearly defined, and often the two concepts are used as synonyms,
especially if the translation is performed between two different domains, in-
stead of diverse representations.
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3.1.2 Related work

The revolution in computer vision that followed the introduction of deep con-
volutional networks dramatically improved the performance and the quality
of image-to-image translation models, in particular for style transfer. On the
other hand, generative adversarial networks have demonstrated exceptional
results in image translation, due to adversarial training. In this section, a
summary of the principal techniques used for image-to-image translation is
provided.

Style Transfer

Style transfer is based on transferring the style of one image to another, while
maintaining the same content. The work carried out by Gatys et al. [52] was
the first example of style transfer that was able to produce impressive results.
The proposed model consisted of a pre-trained classifier, used as a feature
extractor, in order to match feature statistics in the convolutional layers of the
network. VGG-19 [53] was used in the original paper as the feature extractor.
The content images’s features were initially extracted from a layer of the VGG-
19 network, and, in a similar manner, the style features were extracted from
more than one layer, and calculated using the Gram matrix. The output image
was then edited by gradient descent during training, in order to minimize the
loss defined to preserve the content of one image and the style of the other.

The presented algorithm is flexible, since it can work with any content or style
image, but expensive, because it requires an optimization phase for any run. In
[54], this problem is tackled by introducing an image transformation network,
which is a CNN, so it can be trained in order to apply the style of one image to
its input in one pass. The main drawback of this approach is that the image
transformation network can learn only one style, so it is necessary to train
more than one net to enforce different styles.

Some advancements are proposed in [51], where the image transformation net-
work is trained with many styles, and the input is conditioned in order to
inform the network about which style to apply. Another step forward is pre-
sented in [55], where the conditional information about the style is directly
extracted from the style image, making the application of many more styles
possible, even if the network has never been trained with the corresponding
image.
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Image-to-image translation

Generative adversarial networks have shown impressive performance in image-
to-image translation problems, mainly because the same model can be used
for many different tasks. Before the advent of GANs, each of these tasks was
tackled by a different model, despite the fact that the fundamental problem
is always the same: translating from pixel to pixel. One of the first works
that took a step this direction was pix2pix [50], where a conditional GAN is
used to translate an image in one domain to another. The model exploits the
GAN’s ability to automatically learn a loss that adapts to the data (the cost is
given by the distance between real and fake data distribution), producing many
different translations simply by training the model with different datasets. The
generator receives an input image x, and it tries to translate it in the domain
Y , producing ŷ. The discriminator is fed with the pair (x, ŷ), and yields the
probability that, given x, ŷ resembles a real mapping in the domain Y . This
loss is added to the L1-loss between ŷ and the real translation y, in order to
diminish blurring.

The approach of pix2pix has demonstrated exceptional results, but it requires
a ground truth image of the mapping during training. In other words, each
image from the first domain must have a corresponding image in the second
domain (i.e. image pairing). This is a limitation, since for several domains the
ground truth image y may not be available (e.g. if we want to apply the style
of a painter). Cycle GAN [4] surmounts this obstacle using two adversarial
networks, one for the mapping X → Y and the other for the inverse operation.
Cycle GANs are discussed in more detail in the next sections.

As stated before, the problem of image-to-image translation is ill-posed, since a
single input image may correspond to multiple possible outputs. Both pix2pix
and cycleGAN are deterministic: once trained, the same input image always
produces the same mapping. In [56], an architecture named BicycleGAN is
proposed, which is capable of producing many different results, given the same
sample. Simply adding noise to condition the generator has no effect [50], so
the idea consists in extracting a feature vector from the ground truth image,
and using it to condition the generator. The same features are extracted from
the resulting image, and compared with those of the ground truth image. Thus,
the generator learns to produce translations that are conditioned by certain
features. This, after training, can be used even in the absence of ground
truth images, conditioning the generator with the features that are desired
in the resulting image (e.g. a night-day translator can be conditioned with
information about the weather condition, such as cloudy, sunny etc.).
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Figure 3.3: An example of deep photo style transfer. Image from [57].

A model that lies in the indistinct boundary between style transfer and image-
to-image translation is proposed by Luan et al. [57], where tasks typical of
image-to-image translation are performed following a style transfer approach
(see Figure 3.3).

3.2 Cycle GAN

Cycle-consistent adversarial network (CycleGAN) [4] is an adversarial model
for image-to-image translation, which, unlike pix2pix, has the ability to learn
mapping without requiring paired data. The model can capture the charac-
teristics of one image collection, and figure out how these features could be
translated to the other image domain, all in the absence of paired examples.

This is similar to how humans are able to translate an image from one domain
to another, even if they have never seen the photo before. For instance, we can
easily image how a winter landscape might appear in the summer. We can do
this because we have seen many summer scenes over the course of our lifetime,
hence we can infer their most important features, and use them to translate
images to the summer domain.

The CycleGAN model tries to do the same, exploiting the adversarial training
for learning a mapping from the domain X to Y so that ŷ = map(x ∈ X) is
a plausible element of the domain Y . Note that ŷ cannot be compared to any
image of Y , since the two domains are unpaired.

3.2.1 The problem of paired data

As illustrated in subsection 3.1.2, many powerful translation models have been
produced, but the majority of them rely on paired datasets during the training
phase. A paired dataset is a dataset which contains a collection of pairs {x, y}
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representing the same scene rendered in two different domains. An example of
a paired dataset is shown in Figure 3.4.

Figure 3.4: A paired and an unpaired
dataset. Image from [4].

On the other hand, an unpaired
dataset is composed of two distinct
collections, a source set and a target
set, with no information provided as
to which element from the first set is
associated to the second one. In gen-
eral, an unpaired dataset consist of
two uncoupled collections of data.

A paired dataset is often more dif-
ficult and expensive to obtain than
an unpaired one, since for many do-
mains, direct mapping is not possi-
ble. As an example, a paired dataset

of summer-winter images is extremely challenging to collect, as small changes
in camera position or the effect of the wind can easily result in misalignment
between a pair of photographs. Furthermore, in many cases, a ground truth
input-output pair is impossible to obtain, for example if the task is collection
style transfer, where the goal is to apply the style of an artist to an input image.
In this case, we have a collection of paintings and a collection of photographs,
which are not linked in any way.

Working with paired data is usually simpler than using unpaired training sets,
due to the fact that the output can be directly compared with the desired
result. If the ground truth output is missing, there is no way to directly
evaluate the quality of the mapping.

3.2.2 Cycle consistency

Trying to learn an image-to-image mapping with unpaired data is like learning
to translate from one language to another without having a dictionary. What
we have is just a collection of sentences in the two languages, without any
direct relationship between them. Although ground truth input-output pairs
are not present, an adversarial model can be exploited in order to learn a map
G : X → Y such that the output ŷ = G(x), x ∈ X is indistinguishable from
images in Y for an adversarial discriminator. However, such a translation does
not guarantee that the input x and the output ŷ are paired in a meaningful
way. In fact, the generator is only forced to produce images that resemble the
ones present in Y , not to maintain the characteristics of the input x in ŷ.
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In pix2pix [50], the mapping is forced to be meaningful using an L1-loss be-
tween the desired output and the generated image, but this is not possible if
we work with unpaired data. Therefore, the property that a translation should
be cycle consistent [58] can be exploited. This property, in the original formu-
lation, states that a sentence, translated from one language to another, and
then translated back to the original language, should be similar to the initial,
original untranslated sentence. Formally, if we have a mapping G : X → Y
and another mapping F : Y → X, then G and F should be inverse mappings
i.e. F (G(x)) = x, ∀x ∈ X and G(F (y)) = y, ∀y ∈ Y .

CycleGAN uses this principle to obtain a meaningful mapping from X to Y .
The generator G tries to translate an image x ∈ X to an output ŷ, making it as
similar as possible to images in Y . At the same time, another translator F is
trained to learn the inverse mapping of G. The cycle consistency is calculated
as the L1-loss between F (ŷ) and the original x:

Lcycle = ||F (ŷ)− x||1 = ||F (G(x))− x||1 (3.1)

This loss forces ŷ to be consistent with x, since the latter has to be recon-
structed from the former. Combining the adversarial loss of GANs and the
cycle consistency loss, the generator G can be forced to learn a mapping that
translate an image x into an image ŷ with two fundamental properties:

• ŷ has to resemble images in the domain Y (adversarial loss).

• ŷ has to be similar to x, since the inverse mapping should reconstruct x
with high accuracy (cycle consistency loss).

These two properties together yield the final objective of cycleGAN, for un-
paired image-to-image translation. It is worth noting that the cycle consistency
loss is not domain specific, nor is the adversarial loss. For this reason, cycle-
GAN is a general purpose model, which can learn many mappings between
different domains, from data alone.

3.2.3 General structure

The general model of CycleGAN is composed of two main components: a
translator from domain X to Y , and the inverse translator, which maps the
domain Y to X. The two components are modeled as generative adversarial
networks, so they are composed of a generator, which performs the mapping,
and a discriminator. Broadly speaking, two translations are learned in parallel:
one defined by G : X → Y and the discriminator DY : Y → [0, 1], and the
other formalized as F : Y → X and DX : X → [0, 1].
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The two models are held together by the cycle consistency loss, which states
that: F (G(x)) ≈ x, ∀x ∈ X and G(F (y)) ≈ y, ∀y ∈ Y . The general
architecture of a cycleGAN is shown in Figure 3.5.

(a)

(b)

Figure 3.5: (a) The general model of a cycleGAN, with the two generators G
and F and the two discriminators DX and DY . (b) A visual representation
of the cycle consistency. Note that the combination G ◦ F can be seen as
an adversarial autoencoder, which maps x to x̂, passing through an internal
representation that is compelled to be similar to Y by the discriminator DY .
The same is valid for F ◦G. Images from [4].

The cycleGAN model can be seen as the training of two autoencoders [4]:
defined as F ◦ G : X → X and G ◦ F : Y → Y . However, the internal
representation is not defined in a feature space of lower dimensionality with
respect to the input, but it is the translation of the input image into another
domain. Such a set-up can also be seen as a special case of adversarial autoen-
coding [49], which uses the adversarial loss to train the bottleneck layer of an
autoencoder to match an arbitrary target distribution. In this case, the target
distribution for the F ◦G autoencoder is the domain Y (see Figure 3.5b for a
graphical explanation of this concept).
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Losses

The cycleGAN model is composed of two losses: the adversarial loss and the
cycle consistent loss. The adversarial loss is a typical GAN loss, presented
in section 2.3. Since cycleGAN is composed of two GANs, there are two
adversarial losses. The adversarial loss for the mapping G : X → Y and the
discriminator DY can be expressed, using the classical GAN loss, as:

LGAN(G,DY ) = Ey∼pdata(y)[logDY (y)]

+ Ex∼pdata(x)[log(1−DY (G(x)))] (3.2)

where pdata(x) and pdata(y) are the two image distributions. This function has
to be minimized by the generator, and maximized by the discriminator. For
this reason, the name adversarial loss is misleading, since it is actually a value
function. However, the name loss is maintained to keep coherence with the
original publication [4].

In this case, G tries to generate images G(x) that look similar to those from
domain Y , while DY aims to distinguish between real and generated data.
As in the GAN game, the generator and the discriminator play a minimax
game; more precisely, G tries to minimize this objective, whereas DY tries to
maximize it. This can be expressed as minG maxDY

LGAN(G,DY ). A similar
adversarial loss is introduced for the inverse mapping F : Y → X, with the
discriminator DX .

The cycle consistency loss is based on the assumption that, since G and F
are one the inverse of one another, F (G(x)) ≈ x and G(F (y)) ≈ y. The
former is called forward cycle consistency, while the latter is backward cycle
consistency. The cycle consistency loss is the union of these two components,
and it is defined as:

Lcycle(G,F ) = Ex∼pdata(x)‖F (G(x))− x‖1
+ Ey∼pdata(y)‖G(F (y))− y‖1. (3.3)

The L1 norm was chosen because it produces less blurred results, compared to
the L2 norm [50].

The cycle consistency loss does not include the discriminators, rather it is
calculated using the generators alone. This loss binds the two GAN models
together, because both the forward and the backward cycle losses require the
two generator to be calculated. This loss in not adversarial, since both G and
F have the goal of minimizing it.
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The full objective of the cycleGAN model is:

L(G,F,DX , DY ) = LGAN(G,DY ) + LGAN(F,DX) + λLcycle(G,F ) (3.4)

where λ controls the relative importance of the cycle consistency loss. The
cycleGAN game is defined as:

G∗, F ∗ = arg min
G,F

max
DX ,DY

L(G,F,DX , DY ). (3.5)

In more details, the optimal discriminator DY and the optimal generator G
are defined as:

D∗Y = arg max
DY

LGAN(G,DY ) (3.6)

G∗ = arg min
G

LGAN(G,DY ) + λEx∼pdata(x)‖F (G(x))− x‖1. (3.7)

It is important to notice that, in contrast to simple GANs, the optimal gen-
erator G depends on the discriminator DY and also on the other generator
F . A similar conclusion can be derived for F and DX . Thus, four different
models have to be trained in parallel, introducing even more instability than
in classical GANs.

In [4], some experiments are presented where only one loss is used, instead
of the combination of adversarial training plus cycle consistency. Using only
the adversarial or the cycle loss resulted in a degradation of the quality of
the results. Moreover, using the cycle consistency loss in only one direction
(forward or backward) is not sufficient to regularize the training.

3.2.4 Details

All four models are implemented as convolutional neural networks, since the
primary goal of the models is to work with images.

Generator’s network

The architecture of the generative networks G and F is an adaptation of the
image transformation network, defined in [54], due to its impressive results for
style transfer and super-resolution. CNNs, apart from classic blocks illustrated
in subsection 1.5.1, use more sophisticated techniques, described below.
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Instance normalization : this is an improvement of batch normalization,
where the normalization parameters (mean and variance) are calculated
for the single channel, rather than for the entire batch. As an example,
if the batch size is 5, and every element of the batch is composed of 64
channels, and batch normalization is used, every activation in the k-th
channel is normalized with mean and variance calculated among the five
k-th channels of every element in the batch. With instance normalization
the neurons’ activations are normalized with regard to the k-th channel
of the batch element. For a visual representation see Figure 3.6a.

Residual block : this is the main component of residual networks [59], a very
deep architecture that has shown impressive results on image recognition.
A residual block is characterized by the residual connection, a shortcut
connection between the input and the output, and it is often composed of
only a few convolutional layers. In order to be able to combine the input
and the output, a residual block does not produce any dimensionality
transformation. The residual blocks used in cycleGAN’s generators are
composed of one 3x3 convolution layer with stride 1 and padding 1, fol-
lowed by an instance normalization and a ReLU activation layer. After
that, the convolution is replicated, followed by another instance normal-
ization layer. The output is then combined with the original input. See
Figure 3.6b.

Transpose convolution (or fractional-strided convolution): this is commonly
used in the upsampling layers of autoencoders, to augment the dimen-
sionality of the feature maps, using an operation which is the reverse of
a convolution. The easiest way to think about a transposed convolution
on a given input i is to imagine the convolution that had produced that
input, starting from a feature map m. The transposed convolution can
be seen as the operation that allows the shape of the initial feature map
m to be reconstructed starting from i, maintaining the connectivity of
the convolution operation [60].

The generators architecture is fully convolutional, this means that they are
able to work with images of different dimensions, without changing the network
structure. The detailed generator architecture is shown in Table 3.1.

Discriminator’s network

The architecture of the discriminator is based on the patchGAN model [46].
This model aims to classify overlapping n × n image patches as real or fake,
and the final result is the average of all the classifications. The output layer
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(a) (b)

Figure 3.6: (a) The difference between batch normalization and instance nor-
malization. In batch normalization, mean and variance are calculated batch-
wise. In instance normalization, they are determined only with regards to the
single channel. (b) The residual block used in the image transformation net-
work [54]. In cycleGAN, the same architecture is used, but batch normalization
is substituted by instance normalization.

of the network is a matrix of predictions, each of them related to a different
patch. This is possible due to the locality property of CNN, that states that a
convolutional neuron is connected only with a small set of neighboring neurons
in the previous layer. For this reason, an output neuron’s activation is only
dependent on a small part of the input, as described in Figure 3.7.

Figure 3.7: The patchGAN architecture.

Just like the generators, the patchGAN discriminators are also fully convolu-
tional, in order to process images of different sizes. The detailed architecture
of the discriminators is shown in Table 3.2.
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Layer Activation size

Input 3×256×256
32×7×7 conv, stride 1, reflection padding 3 32×256×256

64×3×3 conv, stride 2, padding 1 64×128×128
128×3×3 conv, stride 2, padding 1 128×64×64

Residual block, 128 filters 128×64×64
. . . * . . .

Residual block, 128 filters 128×64×64
64×3×3 conv, stride 1/2†, padding 1 64×128×128
32×3×3 conv, stride 1/2†, padding 1 32×256×256

3×7×7 conv‡, stride 1, reflection padding 3 3×256×256

* The networks use a total of nine residual blocks.
† Stride 1/2 represents a transposed convolution layer with stride 2.
‡ The last convolution is followed by a softmax activation layer.

Table 3.1: Architecture of generators. Every convolutional layer is followed by
a an instance norm layer and a ReLU activation layer.

Layer Activation size

Input 3×256×256
64×4×4 conv*, stride 2, padding 1 64×128×128
128×4×4 conv, stride 2, padding 1 128×64×64
256×4×4 conv, stride 2, padding 1 256×32×32
512×4×4 conv, stride 1, padding 1 512×31×31
1×4×4 conv†, stride 1, padding 1 1×30×30

* No instance normalization.
† Followed by a sigmoid activation layer.

Table 3.2: PatchGAN discriminator’s architecture. Every convolutional layer
is followed by an instance norm layer and a leaky ReLU activation layer, with
slope 0.2.

3.3 Training

A cycleGAN is composed of two generative adversarial networks, which have to
be trained simultaneously. As for GANs, the generator cost function depends
on the discriminator, but furthermore, every generator depends on the other
generator for the calculation of the cycle consistency loss.
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3.3.1 Training procedure

Backpropagation is adopted as the default algorithm for training the four net-
works. In the GANs training algorithm illustrated in section 2.3, the discrim-
inator is trained before the generator [4]. However, in the original implemen-
tation of cycleGAN, the two components are swapped, and the generators are
trained before the discriminators. The order does not influence the quality of
the system after the learning phase, so the original cycleGAN implementation
is used.

Similarly to GANs, where the adversarial loss has to be propagated through the
discriminator before reaching the generator, in cycleGAN the cycle consistency
loss is also not directly related to the model that has produced it. For instance,
the cycle loss for the generator G is:

LcycleG = Ex∼pdata(x)‖F (G(x))− x‖1. (3.8)

When the associated loss is back-propagated, it flows first through F , and then
is propagated through G. Nevertheless, as opposed to classical GANs, the
gradient that flowed in F is conserved and accumulated, and it is used during
the update to F ’s parameters. A similar behavior is utilized for the backward
consistency loss. Moreover, in the original cycleGAN implementation, the two
generators are updated at the same time, since the cycle consistency loss affects
both of them.

To improve the stability of the training and to produce better results [61], the
adversarial loss is substituted with a squared loss: L = (ŷ − y)2, where y is
the real label and ŷ is the prediction of the model. The discriminator aims to
yield a high probability when real data are presented to it, and a lower one
when it is fed with fake data. Thus, real data should be labeled with 1, and
fake data with 0. The adversarial loss of the discriminator DY becomes:

LGANDY
= Ey∼pdata(y)(DY (y)− 1)2 + Ex∼pdata(x)(DY (G(x)))2 (3.9)

In the same manner, the squared loss can be derived for the generator G.
It tries to maximize the output of the discriminator, when generated data is
presented to it. In other words, the adversarial objective of the generator is
that DY (G(x)) = 1, for every generated image. Thus, 1 can be used as a label,
and the generator adversarial loss written as:

LGANG
= Ex∼pdata(x)(DY (G(x))− 1)2. (3.10)

The same procedure can be performed for F and DX .



68 3. Cycle-Consistent Adversarial Networks

Therefore, the losses of the four components of the model are:

LDY
= Ey∼pdata(y)(DY (y)− 1)2

+ Ex∼pdata(x)(DY (G(x)))2 (3.11)

LDX
= Ex∼pdata(x)(DX(x)− 1)2

+ Ey∼pdata(y)(DX(F (y)))2 (3.12)

LG = Ex∼pdata(x)(DY (G(x))− 1)2

+ Ex∼pdata(x)‖F (G(x))− x‖1 (3.13)

LF = Ey∼pdata(y)(DX(F (y))− 1)2

+ Ey∼pdata(y)‖G(F (y))− y‖1 (3.14)

The training procedure is shown in Algorithm 4.

Algorithm 4 CycleGAN training algorithm. The forward pass is performed
only once for every sample (rows 6-7), and not recalculated in every loss func-
tion.

Require: m = minibatch size
1: for number of training iterations do
2: sample a minibatch x of size m from pdata(x)
3: sample a minibatch y of size m from pdata(y)
4: reset the accumulated gradient
5: for i = 1 to m do
6: ŷ ← G(x(i))
7: x̂← F (y(i))
8: calculate LG using Equation 3.13
9: calculate LF using Equation 3.14

10: back-propagate and accumulate LG and LF only in G and F
11: calculate LDY

using Equation 3.11
12: calculate LDX

using Equation 3.12
13: back-propagate and accumulate LDY

and LDX
only in DY and DX

14: end for
15: update G and F parameters
16: update DY and DX parameters
17: end for
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3.3.2 Training improvements

The basic training algorithm presented in Algorithm 4 has been improved with
some minor changes, especially to contrast instability and mode collapse issues.

The first enhancement tries to stabilize the training procedure, maintaining
a pool of generated images, and updating the discriminator with one image
in the pool, rather that the one produced in the last iteration [62]. One of
the problems with adversarial learning is that the discriminator only focuses
on the last images generated. This lack of memory may cause the training to
become unstable, and the reintroduction of artifacts in the generated images
that the discriminator had forgotten about. Indeed, the perfect discriminator
should be able to correctly classify as fake every image that the generator
has ever produced during the entire training phase. Algorithm 4 is slightly
modified, adding an image pool of fixed dimension B. At each iteration, the
discriminator loss is computed using m/2 images generated in this step, and
m/2 images from the pool, withm being the batch size. After that, m/2 images
are randomly replaced in the pool with newly generated ones. If m = 1, the
use of a new or old image is random.

Another improvement is the decay of the learning rate in the second half of
the training phase. The model uses the Adam optimizer by default, which
computes a different learning rate for each parameter. However, the range
of the update can be manually set, and is often maintained the same for the
entire training process. In [4], the authors of the cycleGAN model used, for
their experiments, the same learning rate for half of the epochs of training, and
then it was linearly decayed to zero over the other half of the training. Such
a mechanism ensures a more stable convergence, especially in the last epochs,
where the two models are hopefully near to the equilibrium point, and large
updates can cause a high fluctuation in the loss.

The last improvement is the addition of a further loss, to encourage the gen-
erators to preserve colors between input and output. In fact, especially for
the task of photo generation from paintings, the generators are free to change
the tint of input images, even if there is no need to do so. Indeed, as has
been said before, image-to-image translation is an ill-posed problem, and more
than one output can be valid for the same input. Identity loss is based on the
assumption that if a generator translates from the domain X to Y , providing
it with an image y ∈ Y should not produce any transformation. Identity loss
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can be formalized as:

Lidentity(G,F ) = Ey∼pdata(y)‖G(y)− y‖1
+ Ex∼pdata(x)‖F (x)− x‖1 (3.15)

This loss is added to Equation 3.13 and Equation 3.14 for the corresponding
generator. The weight factor is normally 0.5λ, where λ is the weight of the
cycle consistency loss.



4

Experiments

The principle of science, the definition, almost, is the following: The
test of all knowledge is experiment. Experiment is the sole judge of
scientific “truth”.

– Richard Feynman, The Feynman Lectures on Physics (1964)

In this chapter, the results from several experiments regarding style transfer
and image-to-image translation are reported. The main goal is to demonstrate
the quality of the adversarial approach in such fields, especially with real-
world examples. For this reason, an attempt was made to adopt the cycleGAN
model to address the problem of defogging, principally with unpaired data. In
the first section, PyTorch is briefly described, since it was the library used
for developing and running the experiments. After that, an analysis of the
problem of defogging is provided. Next, the experiments goals, setups and the
procedures adopted for assessing the quality of our work are reported. Finally,
the results of the experiments are revealed and described; and consequentially,
some conclusions and reflection, based on the results obtained, are presented
and discussed.

4.1 PyTorch

PyTorch [63] is an open source machine learning library, derived from torch,
optimized to run on GPUs, especially with CUDA. PyTorch is based on tensor
computation, which can be done either in the CPU or the GPU. A tensor is a
multidimensional array, that abstracts the notion of a vector or matrix.

71
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PyTorch is divided into modules, and one of the most important is the autograd
module. This component is a tape-based automatic differentiation library,
and it is one of the core features of the framework. Similarly from other
machine learning libraries, such as TensorFlow or Caffe, PyTorch uses a tech-
nique called reverse-mode auto-differentiation, which automatically calculate
the derivative of the operations, and backpropagated them through the com-
putational graph. The computational graph is a graph that connects every
operation performed to variables, linking the results to the sources. As an
example, if two tensors are summed together, and the result multiplied with
another tensor, the output can be differentiated with regards to a particular
value, and then back-propagated through the computational graph, until the
two initial tensors. However, differently from Tensorflow or caffe, that have a
static view of the world, in PyTorch the computational graph is constructed
dynamically, so adding another operation in the chain is possible even at run-
time [64].

Another fundamental module of PyTorch is the nn module. Such a component
is a library that contains utilities for the development of neural networks, and
it is deeply integrated with the autograd module. The nn library contains
useful implementation of neural network components, such as convolutional
layers, in order to build complex networks in just a few lines of codes.

PyTorch is a complete library, that comprises data loaders and a multiprocess-
ing library, which can be used to speed up the load of the datasets or to share
tensors between threads, in order to train the model in parallel.

4.2 Defogging

Images captured under bad weather conditions such as fog, mist or haze, suffer
from limited visibility, poor contrast, faded colors and loss of sharpness, which
constitute a significant obstacle for computer vision applications, e.g. object
detention, tracking, classification and segmentation. Most of the models used
in these tasks are usually trained on clear images, so the presence of fog or
haze may reduce their performance [65]. Defogging (or dehazing) is the task
of removing the fog in a given image, reconstructing the same scene as if it
were taken in good weather conditions.

A robust haze removal technique can be useful in many circumstances, both as
a preprocessing step and as a stand-alone procedure. For instance, fog has ever
constituted a major cause of road accidents, hence a strong defogging algorithm
can be extremely helpful for drivers, informing them of hazards that are hidden
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behind the mist. Even self-driving cars often are extremely confused in foggy
weather, due to the limited visibility and the creation of reflections and glare
in the cameras [66]. Moreover, image restoration can be used to improve the
quality of surveillance systems that might have difficult in recognizing suspect
movements with scarce visibility. Defogging can be used as an independent
operation in image enhancement tasks, with the aim of improve the visual
quality of photographs taken in bad weather conditions.

In presence of fog or haze particles, the original irradiance received by the
camera gets attenuated, proportionally to the distance of the objects. This
effect is combined with the scattering of atmospheric light, and the result is a
hazy image. The mathematical model of a foggy image can be formulated as
[65]:

I(x) = J(x)t(x) + α(1− t(x)) (4.1)

where:

• I(x) is the observed hazy image.

• J(x) is the haze-free image.

• t(x) is the scene transmission map.

• α is the atmospheric light.

• x is an individual pixel location in the image.

The scene transmission t(x) can be expressed as function of the depth, as:

t(x) = e−βd(x) (4.2)

where:

• d(x) is the depth of the pixel x with respect to the camera.

• β is the scattering coefficient of the atmosphere.

The goal of a defogging algorithm is to find J(x), given I(x). However, as
can be seen from Equation 4.1, the problem is ill-posed, since the equation
contains three unknown terms: J(x), t(x) and α.

The complexity of defogging is further increased by the difficulty of creating a
large dataset of paired haze and haze-free images. Capturing the same photo-
graph with and without haze is an extremely difficult task, due to the fact that
little changes in the camera or an object’s position can make the two images
not perfectly aligned. Moreover, the level of illumination of the scene must be
the same with and without fog. For these reasons, the majority of datasets
used for training defogging models consist of synthetic foggy images, where
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the fog is artificially added, starting from clear pictures. Nevertheless, syn-
thetic haze does not perfectly resemble real fog, indeed, many models trained
with synthetic dataset are not able to correctly reconstruct a clear image if
they are fed with a real foggy image [67]. Therefore, an approach based on
unpaired datasets, composed of real foggy images and real clear photographs
is the preferred approach for resolving the dehaze problem in real conditions.
CycleGAN has shown impressive results in many image-to-image translation
tasks in different domains [4], so its adoption to tackle the defogging problem
has been investigated here.

4.2.1 Related work

In this section, we only consider methods that use a single image to perform
the defogging. Earlier algorithms based on multiple images are not considered,
due to their limited practical applicability. For a complete review of state-of-
the-art defogging methods see [65, 66, 68].

The first single image dehazing method was proposed by Narasimhan et al.
[69], and it relied on supplied information about the scene structure. One
of the most successful methods was developed by Fattal [70], who used an
Independent Component Analysis-based method to estimate the albedo and
transmission map of a scene. He et al. [71] observed an interesting property
of outdoor nature scenes with clear visibility: most objects have at least one
color channel that is significantly dark (the pixel value for that channel is near
zero). Using this property, a method based on dark channel prior was used
to estimate the transmission map t(x). One of the drawbacks of the previous
methods is computational time. The methods cannot be applied in a real time
application, where the depth of the image change from frame to frame. Tarel
et al. [72] proposed a method which complexity is linear in the number of
image pixels. The method use a heuristic to estimate the atmospheric veil,
which then is used to recover the haze-free image.

Most recent approaches are based on deep learning techniques, which are used
for the estimation of atmospheric light and the transmission map. An approach
based on convolutional neural networks was proposed by Ren et al. [73], where
a coarse holistic transmission map is first produced using a CNN, and then
refined using a different fine-scale network. Cai at al. use another CNN, which
they called DehazeNet [74], with the goal of learning a direct map between
foggy images and the transmission map, without using many learning levels.

Most of the models proposed for defogging are based on the estimation of
the transmission map t(x) (the atmospheric light α can be derived, with some
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assumption, from t(x) [65]). The fog-free image is then computed in a separate
step, using Equation 4.1. None of the approaches described above consider the
aesthetic quality of the resulting image in the parameter estimation phase.
Only recently have end-to-end models emerged, which produce a clear image
directly from an hazy one, starting from the AOD-Net, proposed by Li et al.
[75].

The application of generative adversarial networks to dehazing is even more
recent, indeed there are few works present in the literature on this topic. Most
notably, the use of adversarial training for the estimation of the transmission
map is proposed in [76]. Moreover, the use of GANs for end-to-end models
which directly produce the haze-free image without estimating the transmis-
sion map, was first developed by Swami et al. [77]. In their model, the gener-
ator network consists of an autoencoder that transform the foggy image to the
corresponding clear picture. In that model, the discriminator is conditioned: it
receives a pair of images, the hazy image and the clear one, so its goal becomes
to yield the probability that the given pair is ground truth, i.e. the haze-free
image is the real one, given the foggy picture, and it was not produced by the
generator.

All the machine learning approaches described above are based on the utiliza-
tion of a paired dataset of foggy and clear images during training. As stated
before, those datasets are often synthetic, and for this reason the quality of
the model may decrease if it is tested with real hazy photographs. Engin et
al. [78], recently proposed a model, based on cycleGAN, for unpaired image
defogging. However, the dataset used by them is not really unpaired, since it
was obtained by data augmentation of the O-Haze dataset [67].

4.3 Experiment design

The main goal of the following experiments was to evaluate the adoption of
unpaired image-to-image translation methods, principally based on cycleGAN,
to resolve the problem of defogging, especially in conditions of strong natural
fog. Moreover, the investigation was conducted using a real unpaired dataset
for hazy and clear photos, and not using image patches derived from a paired
collection, as in [78]. The fist step was the evaluation of the cycleGAN model
with regards to the defogging task, without any further improvement. That
served as a baseline for following investigations. Next, the cycleGAN model
was enhanced by the addition of perceptual loss, and the results are evaluated
in comparison with the simple model. After that, the role of the dataset was
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investigated, showing that the choice of the correct data might greatly improve
the quality of the generated images. Finally, a comparison with state-of-the-
art methods was conducted, followed by a discussion of the results and the
critical issues of the proposed and existent defogging methods.

4.3.1 Dataset

The first difficulty was to find a dataset for training and testing the cycleGAN
model, with the goal of translating between foggy and clear images. As stated
in section 4.2, the majority of datasets used for defogging tasks are paired; and
therefore, the fog is often artificially added to clear images, in order to produce
paired data. Furthermore, the datasets are often small, including only a few
dozens of images; thus they are not adequate for training complex machine
learning models.

Below, a brief description of some of the most used haze datasets is provided,
followed by an indication of those which were chosen in the following experi-
ments.

D-Hazy [79]

Type Loc. Train Test
Synthetic Indoor 1449 -

The D-Hazy is a paired dataset composed of 1449 pairs of clear scenes and the
corresponding synthetic hazy image. It is based on the NYU depth dataset1,
and contains indoor images of various rooms. Although interiors are not a
common place to find fog, this collection is broadly used, mainly because the
depth map used for haze generation is much more accurate than in outdoor
datasets.

O-Haze [67]

Type Loc. Train Test
Real Outdoor 45 -

1https://cs.nyu.edu/~silberman/datasets/nyu_depth_v2.html

https://cs.nyu.edu/~silberman/datasets/nyu_depth_v2.html
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The O-Haze dataset contains 45 pairs of high resolution images, with and
without fog. It is one of the few non-synthetic paired datasets, despite the fact
that the fog is not really natural. In fact, the haze was produced using fog
machines, and even though it is artificial, the effect can be considered a good
approximation of real foggy conditions.

RESIDE [66]

Type Loc. Train Test
Synthetic Outdoor 313.950 500

Reside is one of the biggest defogging datasets available, and is composed
of many subsets. The outdoor training set (OTS) is made up of 8.970 clear
images, mainly taken in urban environments. Each haze-free photograph was
processed with 25 different levels of fog, producing the 313.950 training images.
The synthetic objective testing set (SOTS) is composed of 500 clear pictures,
and the corresponding 500 synthetically hazy images. The hybrid subjective
testing set (HSTS) contains real and synthetic haze images, and it is used
to evaluate state-of-the-art models. Reside contains other sets of haze and
haze-free pictures, not used in this dissertation.

FRIDA2 [80]

Type Loc. Train Test
Synthetic Outdoor 330 -

The FRIDA2 dataset was specifically developed for defogging in urban road
scenes, from the point of view of a car driver. The images are not real, but
artificially rendered with computer graphics. FRIDA2 comprises 66 different
road scene, each of which is associated with 4 different fog levels and the
corresponding depth map.

LIVE [81, 82, 83, 84]

Type Loc. Train Test
Real Outdoor 1000 100
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The LIVE database is one of the few unpaired datasets, comprising 500 real
fog images and 500 clear photographs. A test set of a further 100 real hazy
images is provided.

Since the goal of the experiments was to evaluate the possibility of exploiting
unpaired image-to-image translation for removing haze from images, and the
desire was to focus on real cases, our models were trained using the LIVE
dataset. During testing, the test set of the same collection was used for ref-
erenceless metrics, and the SOTS dataset for full-reference ones. In order
to compare our approach to the state-of-the-art models, we used the HSTS
dataset.

4.3.2 Metrics

The evaluation of existent defogging methods, in most cases, relies on the pres-
ence of a ground truth real image, which can be directly compared with the
dehazed result. Often, the preferred metrics are structural similarity (SSIM)
and peak signal-to-noise ratio (PSNR), even if the quality of the defogging
might not be correctly evaluated by them [66]. In particular, has been demon-
strated that SSIM and PSNR do not correlate well with human judgment or
with referenceless metrics. Moreover, since a ground truth image is required,
the evaluation needs a paired dataset, and, as has been reported in the pre-
vious section, in these datasets, the fog is often artificial, and it can be quite
different from natural mist. However, the majority of authors still use SSIM
and PSNR to evaluate their model, so it was decided to adopt them here, in
order to compare this approach to state-of-the-art methods.

In the case of referenceless data, i.e. when the ground truth clear image is not
present, the majority of previous works have used visual comparison of images
and human evaluation, usually performed via automatic tools such as Amazon
mechanical turk 2. Nevertheless, such techniques are subjective, and may be
influenced by external factors, such as the competence or the motivation of
assessors.

Since the goal of the presented approach is natural scene defogging, evaluating
it using only synthetic images may not yield meaningful results, since artificial
foggy scenes often present a low level of haze, whereas the goal in this case
is to produce a model that can be used even in condition of severely scarce
visibility. Unfortunately, a standard referenceless metric for evaluating the
quality of a defogged image does not exist. The problem of assessing the

2https://www.mturk.com

https://www.mturk.com
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quality of an image without a ground truth is not limited to defogging, but
is an open research problem in computer vision [85]. Moreover, most of the
methods proposed in recent years are general, and targeted to assess the quality
of compressed images. For a wide-ranging review of no-reference metrics used
for the evaluation of defogging results see [68].

One of those blind metrics was proposed by Hautière et al. [86], and consisted
of three different indicators: e, σ and r̄. The value of e is based on the number
of visible edges in the defogged image, relative to the original foggy picture.
An edge is considered visible if the local contrast is above 5%. A high value of e
means that the defogging has revealed edges that were invisible in the original
image. The value of σ represents the percentage of saturated (black or white)
pixels in the defogged image. A good dehazing method should keep this value
low, because the contrast has to be restored without over-saturating the image.
r̄ indicates the quality of the contrast restoration in the defogged image. For
a more detailed description of the computation of e, σ and r̄ see [86]. This
metric was developed specifically for evaluating dehazing algorithms, thus it
was chosen as a blind metric to evaluate the presented model.

4.3.3 Set-up of experiments

If not explicitly stated otherwise, for all the experiments the same set-up was
used, which is similar to the one used by the authors of the cycleGAN model
for their investigations. The model was trained for 200 epochs, using a batch
size of one, in order to update the parameters after every sample. The learning
rate was initially set to 0.0002, and kept unaltered during the first 100 epochs,
and then linearly decayed to zero in the last 100 epochs. The objective function
of the discriminators is divided by two, in order to slow down the rate at which
they learn relative to generators. The parameters of the neural networks were
initialized from a Gaussian distribution with mean 0 and standard deviation
0.02. The weight factor of the cycle consistency loss λ was set to 10, and the
weight of the identity loss was set to 0.5λ. The images were scaled to 286×286
pixel, using a bicubic interpolation, and then a random crop of size 256×256
was taken and used as input to the networks.

The experiments were performed using a NVIDIA GeForce 1080 Ti3 GPU,
with 3.584 CUDA cores and 11GB of memory. The server were equipped with
64GB of RAM and two Intel Xeon E5-26504 with 16 core each.

3https://www.nvidia.com/en-us/geforce/products/10series/

geforce-gtx-1080-ti
4https://ark.intel.com/products/64590/Intel-Xeon-Processor-E5-2650

https://www.nvidia.com/en-us/geforce/products/10series/geforce-gtx-1080-ti
https://www.nvidia.com/en-us/geforce/products/10series/geforce-gtx-1080-ti
https://ark.intel.com/products/64590/Intel-Xeon-Processor-E5-2650
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4.4 Getting started: cycle defogging

The first experiment was aimed to produce a baseline for evaluating subsequent
improvements, in order to appraise the feasibility of defogging real images
using a model trained on unpaired data. For this reason, the model consisted
of a simple cycleGAN without any change, and it was trained with the LIVE
dataset. This basic training configuration was called training1.

After the first experiment, however, the results were not satisfactory, since the
images with thick fog were translated in a poor manner, almost resembling
works of artistic style transfer (see Figure 4.1). After further investigation, the
conclusion was reached that the two sets of foggy and clear images, were too
different from each other. Indeed, the hazy image set mainly contains pictures
of natural landscapes and city views, while the set of clear images includes
many photographs of people or animals, and even some indoor scenes. Since
cycleGAN tries to translate an image from one data distribution into another,
if the two distributions are too diverse, the mapping will be meaningless. This
is caused by the presence of both the adversarial loss and the cycle consistency
loss at the same time. As an example, if a landscape photograph is translated
into a domain composed mainly of photos of people, the former loss pushes
the model to change the content of the image, while the latter enforce the
generator to maintain the input’s characteristic in the output.

Hence, an attempt was made to change the set of haze-free training images
to one that was more similar to the collection of foggy pictures. The dataset
used for collection style transfer in the original cycleGAN model [4] was cho-
sen, which is composed of 6.287 RGB images downloaded from Flickr, using
the combination of tags landscape and landscapephotography. We called this
training configuration training2. The training was repeated using training2
configuration, and a comparison between training1 and training2 configura-
tions is shown in Figure 4.1. Particularly good images are shown in Figure 4.2.
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(a) (b) (c)

Figure 4.1: The results obtained by training the model with different sets of
clear images. (a) real hazy images from the LIVE test set, (b) the dehazing
produced by training the model with training1 configuration, (c) the results
obtained using training2 configuration.
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Real foggy image Defogged image

Figure 4.2: Some good examples of defogging, using the cycleGAN model.
These examples demonstrate the validity of an unpaired approach, even in
case of fairly different collections of haze and haze-free images.
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4.5 Enhancing the model: cycle perceptual loss

The example presented in Figure 4.2 demonstrate the validity of unpaired de-
fogging, even if the model is the classical, general purpose, cycleGAN, without
any domain specific improvement. However, some dehazed images manifested
blurry borders, especially in the presence of thick fog. This phenomenon was
particularly accentuated in city views, where the buildings were often con-
fused with clouds, and faded into the background. Some examples of this
phenomenon are shown in Figure 4.3.

Real foggy image Defogged image

Figure 4.3: Some example of poor defogging, where some elements of the image
are transformed in clouds and blended into the background.

4.5.1 Cycle perceptual loss

Many models for style transfer do not evaluate the results exclusively in image
space, but also in feature space [52, 54]. A pre-trained CNN, often trained
for object detection, is utilized as a feature extractor, and a loss is computed
between the features of the target and the output images. Such a comparison,
performed in the feature space, is often called perceptual loss, since it is based
on the fundamental characteristic of images, rather than their representation.
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CycleGAN does not have a reference image, since it operates with an unpaired
dataset; therefore, the only way to include a perceptual loss is to transform it
into a cycle perceptual loss, calculated between the original image x and the
recovered image x̂ = F (G(x)). A similar approach was developed by Engin
et al. in [78], and has shown an improvement in the dehazing quality, when
compared to cycle consistency loss alone. Their implementation uses VGG-16
[53] as a feature extractor, and the features of interest are extracted from the
2nd and the 5th pooling layers.

The cycle perceptual loss can be expressed as a mean squared error loss, uti-
lizing the L2-norm, similarly to the content loss in the works of Gatys and
Johnson for neural style transfer [52, 54]. The cycle perceptual loss is formu-
lated as:

Lperceptual(G,F ) = Epdata(x)‖φ(x)− φ(F (G(x)))‖22
+ Epdata(y)‖φ(y)− φ(G(F (y)))‖22 (4.3)

where φ(·) represents features extracted from the 2nd and 5th pooling layers
of VGG-16. As with the cycle consistency loss, both G and F aim to minimize
this cost, but neither of them have full control over the loss, because the other
generator takes part in its formulation.

The full objective of the cycle perceptual cycleGAN can be expressed as:

L(G,F,DX , DY ) = LGAN(G,DY ) + LGAN(F,DX)

+ λLcycle(G,F ) + γLperceptual(G,F )

where γ controls the relative importance of the cycle perceptual loss in the full
objective function.

Implementation details

The cycle consistency loss was added to the cycleGAN model as a separate
module, which can be included or excluded depending on the experiment set-
up. PyTorch, natively, makes the VGG pretrained on ImageNet models avail-
able, through the torchvision package. The networks had been trained using
images normalized in the (0,1) range and with the mean and standard devi-
ation of the ImageNet dataset5. However, the cycleGAN generators output
images in the range (-1,1), so they have to be normalized before presentation
to the feature extractor.

5http://www.image-net.org

http://www.image-net.org
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In order to extract the features from the hidden layers of the VGG-16 network,
an approach called forward hook was used, which consists in dynamically
attaching a custom function to a neural network layer, which will be called
during the forward pass, when the data go through the desired layer. The
custom forward hook simply stores the output feature map, in order to use it
during the loss calculation.

4.5.2 Evaluation

First, the adoption of the cycle perceptual loss was evaluated in a objective
manner, using a paired dataset and calculating the SSIM and the PSNR be-
tween the dehazed images and the corresponding ground truth. Since the
models had been trained with nature and urban scenes, the test data should
be composed of similar images, in order to evaluate the dehazing in a mean-
ingful way. Thus the adoption of cycle perceptual loss was evaluated using the
SOTS dataset. The images were scaled to 400×400 pixel with bicubic interpo-
lation, and the SSIM and PSNR were calculated every ten epochs of learning,
in order to track the progress of the two models. The relative weight of the
perceptual cycle loss (γ) was set to 0.1, in order to make its value similar to
the cycle consistency loss. The results of these evaluations are presented in
Table 4.1.

As can be seen from Table 4.1, the addition of cycle perceptual loss has im-
proved the performance of the model, especially in the fist epochs. Moreover,
a more stable behavior is observed in the model augmented with cycle percep-
tual loss. In fact, the two metrics did not fluctuate as in the simple model, and
the advancement of the training is more coupled with defogging improvements
(see epochs 30-80). Some graphical comparisons between the results of the two
models are shown in Figure 4.4.

The adoption of cycle perceptual loss was also evaluated using the blind metric
outlined in subsection 4.3.2. Since the assessment does not require a paired
dataset, the test set of LIVE dataset was used, which is composed of 100 real
foggy images. However, only 99 of them were used, because one photograph
does not present any edge with local contrast above 5%, so its value of e is
infinite. The results of the evaluation are reported in Table 4.2.
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CycleGAN CycleGAN + Lperceptual
Epoch SSIM PSNR (dB) SSIM PSNR (dB)

10 0.6074 14.54 0.7770 18.79
20 0.7586 18.32 0.8264 20.36
30 0.7616 17.29 0.7898 18.28
40 0.8110 19.56 0.8071 19.99
50 0.8101 19.53 0.8059 19.67
60 0.7668 17.11 0.8231 20.41
70 0.8018 19.35 0.8280 19.73
80 0.7671 17.39 0.8320 20.60
90 0.7610 16.88 0.8232 19.67
100 0.7683 17.92 0.8172 20.13
110 0.8254 19.65 0.7907 18.49
120 0.7936 18.37 0.8211 20.03
130 0.8157 19.10 0.8327 20.56
140 0.8171 19.48 0.8509 21.33
150 0.7895 17.24 0.8346 20.27
160 0.8041 18.40 0.8306 19.80
170 0.8068 18.55 0.8243 19.86
180 0.7992 18.29 0.8224 19.99
190 0.7976 18.25 0.8269 20.16
200 0.7975 18.33 0.8259 20.16

Table 4.1: The progress of SSIM and PSNR, calculated on the SOTS dataset,
through the learning epochs. The best values of every model are highlighted
in blue.

CycleGAN CycleGAN + Lperceptual
e σ(%) r̄ e σ(%) r̄

Mean 5.546 0.0022 1.686 6.559 0.0011 2.094
Median 0.1182 0 1.463 0.3613 0 1.796

Table 4.2: Evaluation of dehazed images using the metrics from [86], using the
LIVE test set of natural foggy images. The two models were evaluated using
the best resulting parameters in Table 4.1.

In general, the cycle perceptual loss makes the images less blurred and less
impressionistic, preserving the original colors more accurately. The objects
represented in the photographs are more defined, and the contrast is intensified,
especially for small details, such as tree branches. Overall, the quality of the
dehazing was slightly enhanced by the addition of the cycle perceptual loss,
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and this can be verified both from full reference and blind metrics.

Real foggy image CycleGAN CycleGAN + Lperceptual

Figure 4.4: The effect of the perceptual cycle loss on defogging. The results
of the two models were obtained using the best parameters that resulted from
the objective study reported in Table 4.1.
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4.6 The role of dataset

The extension of the basic cycleGAN model with the perceptual cycle loss has
resulted in an improved quality of the defogging, preserving the true colors
more faithfully and enhancing the contrast. However, the problem of faded
objects remained, especially for scenes captured in thick fog. This issue was
particularly relevant in urban views, where buildings were often transformed
in hybrid objects similar to clouds, and fused with the background. Moreover,
some defogged images seemed impressionistic, as clouds and sunset colors were
added during the dehazing. Apart from artistic purposes, that kind of images
should be avoided, even if they are a plausible translation of a foggy image,
due to the ill-posed nature of the problem.

Some techniques for reducing the problem of artistic translations were investi-
gated, and following the reasoning reported in section 4.4 focus was primarily
made on the importance of the training dataset. The models previously eval-
uated had used the training2 configuration, which included a training set that
was a combination of real foggy images from the LIVE dataset [81] and clear
photograph from the real image set used for collection style transfer in [4].
The latter collection, as reported earlier, is composed mainly of landscape
photographs, and most of the images are aesthetically appealing, containing
colorful skies and interesting lighting.

To evaluate the importance of the training set, the clear image collection was
substituted with a selection of clear images from the OTS (Outdoor Training
Set) included in the RESIDE dataset [66]. This collection is composed of 2.651
images, manually selected in order to include only daytime photographs, with
clear skies and good lighting. The images consist mostly of city view, so it was
expected that the defogging would be more effectively for urban scene, and
consequently less efficacious for landscapes. This new training configuration
was called training3.

The same training parameters of the cycle perceptual model were maintained,
the only change being the training set. Some results are shown in Figure 4.5
and Figure 4.6.
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(a) (b) (c)

Figure 4.5: The effect of the training dataset on the quality of the defog-
ging. (a) real foggy images, (b) results of the model trained with training2
configuration, (c) results of the model trained with training3 configuration.
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(a) (b) (c)

Figure 4.6: The effect of the training dataset on the quality of the defog-
ging II. (a) real foggy images, (b) results of the model trained with training2
configuration (c) results of the model trained with training3 configuration.

As can be seen from the above examples, the role of the training dataset is
fundamental for obtaining valuable results. The cycleGAN model, in fact, is
based on the estimation of two distribution, and how to transform a sample
from one distribution to another. For instance, if the set of clear images does
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not include buildings, the model does not know how to correctly translate them
if they are present in the hazy set. Thus, it substitutes them with something
known, in the case of training2 configuration, with clouds. Using a training
set as similar as possible to the target domain has proved to be at least as
important as the addition of perceptual cycle loss.

The model trained with the training3 configuration was evaluated using the
same metrics adopted before: SSIM and PSNR. The same test set was used:
SOTS, which is composed mainly of city views. The results are reported in
Table 4.3.

CycleGAN + Lperceptual (training3 configuration)
Epoch SSIM PSNR (dB)

10 0.7897 22.10
20 0.8318 22.38
30 0.8382 22.47
40 0.8281 22.24
50 0.8572 22.86
60 0.8560 22.91
70 0.8696 22.61
80 0.8709 23.17
90 0.8778 23.19
100 0.8785 23.00
110 0.8890 23.44
120 0.8903 23.36
130 0.8904 23.22
140 0.8842 23.41
150 0.8960 23.46
160 0.8930 23.55
170 0.8935 23.67
180 0.8889 23.28
190 0.8899 23.19
200 0.8900 23.19

Table 4.3: The progress of SSIM and PSNR, calculated on the SOTS dataset,
through the learning epochs. The best values are highlighted in blue. The best
values of the model trained with training2 configuration are SSIM = 0.8509,
PSNR = 21.33.

The results reported above prove a considerable improvement in the quality
of the defogged images. However, the credit goes mainly to the utilization of
a training set that was more similar to the test images collection. This im-



92 4. Experiments

plication should be considered when an unpaired image-to-image translator is
trained, due to its high dependency on the data distribution of the two do-
mains. Such a consideration poses a question about the possibility of building
a general defogger from unpaired image sets. This problem goes beyond the
scope of this thesis, and will be investigated in future work.

4.7 Comparison with state-of-the-art methods

In this section a comparison is carried out between the unpaired model pre-
sented above and some state-of-the-art defogging algorithms and machine
learning approaches.

4.7.1 Reference-based comparison

First, an objective comparison was performed, using the full reference metrics
SSIM and PSNR. For their evaluation, ground truth images were required, so
the HSTS dataset, included in the RESIDE release, was used. The choice of
that test set was driven by the fact that it was adopted as a test set by Li et
al. in their comprehensive study of defogging techniques [66], thus the method
presented in this dissertation could be compared using the same baseline. The
pix2pix model [50] has been included in order to assess differences in image-to-
image translation between paired and unpaired approaches, using generative
adversarial networks as a ground model. Pix2pix was trained with the SOTS
dataset for 200 epochs. Table 4.4 displays the detailed score of each technique
in terms of SSIM and PSNR.

DCP [71] FVR [72] BCCR [87] GRM [88] CAP [89] NLD [90]
PSNR 14.84 14.48 15.08 18.54 21.53 18.92
SSIM 0.7609 0.7624 0.7382 0.8184 0.8727 0.7411

DehazeNet [74] MSCNN [73] AOD-Net [75] Pix2Pix [50] Our
PSNR 24.48 18.64 20.55 24.22 23.48
SSIM 0.9153 0.8168 0.8973 0.8891 0.8868

Table 4.4: Average PSNR and SSIM of dehazing results on HTST. Data of
other methods, except pix2pix, are taken from [66]. The above methods are
based on natural or statistical prior, the methods below are learning-based.
The top-3 performances are highlighted using red, blue and cyan, respectively.
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The method adopted in this dissertation exhibits results in line with the state-
of-the-art learning-based approaches, achieving the third PSNR score and the
fourth SSIM result. Indeed, the presented method is outperformed only by
DehazeNet and Pix2Pix. However, all the other learning methods are based
on paired data, and a ground truth clear image (or the true transmission map)
is used during loss calculation. Moreover, the test was conducted on a synthetic
fog dataset, while the presented model was trained using a set of natural foggy
images, where, in many cases, the haze level is much higher than in testing
images.

4.7.2 Referenceless comparison

The blind metrics proposed by Hautière et al. [86] and described in subsec-
tion 4.3.2 was used in the current study. The model trained with the training3
configuration was evaluated, using the parameters of epoch 170. As for the
comparison made in subsection 4.5.2, the test set of the LIVE dataset was
adopted, using only 99 images, since one photograph was too foggy for being
used with this metric. Many authors have adopted the Hautière et al. metrics
in their work, but it was often used for evaluating single images. Even if this
evaluation cannot be directly compared with state-of-the-art models, it was
included here, in order to present a baseline for further research work. The
results of the evaluation are reported in Table 4.5.

e σ(%) r̄
Mean 33.03 0.0214 3.271

Median 0.741 0 2.596

Table 4.5: Mean and median of the Hautière et al. metric [86], calculated on
the LIVE test set of natural foggy images. The model used was trained with
the training3 configuration.

The results presented above demonstrate that the unpaired defogging method
used in this dissertation is competitive, even in the presence of thick natural
fog. The high average value of e can be explained by the fact that some images
do not present many edges with local contrast above 5%, and therefore, even a
small improvement in the quality might result in a high number of new edges in
the recovered image. The median values are more significant, and they prove
a contrast and quality enhancement of the defogged images. Some examples
of dehazed images and the heat map of visibility enhancement, calculated
following [86] method, are shown in Figure 4.7 and Figure 4.8.
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(a) (b) (c)

Figure 4.7: Some example of defogging using the unpaired approach adopted
in this dissertation. (a) real hazy image (b) the resulting defogged image (c)
contrast enhancement map.
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(a) (b) (c)

Figure 4.8: Some example of defogging using the unpaired approach adopted
in this dissertation II. (a) real hazy image (b) the resulting defogged image (c)
contrast enhancement map.
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Conclusions and future works

Considerate la vostra semenza:
fatti non foste a viver come bruti,
ma per seguir virtute e canoscenza.

Consider well the seed that gave you birth:
you were not made to live your lives as brutes,
but to be followers of worth and knowledge.

– Dante Alighieri, The Divine Comedy, Inferno, Canto XXVI

In this section, some conclusions about the work carried out in this disserta-
tion are drawn, highlighting the strengths and the weaknesses of the presented
unpaired approach to defogging. Then, some future improvements, both the-
oretical and practical, are proposed.

5.1 Conclusions

The goal of the experiments was to prove the effectiveness of an unpaired
approach to defogging, using models and techniques from style transfer and
image-to-image translation.

The qualitative results obtained using full-reference metrics, and the refer-
enceless ones achieved using the Hautière et al. approach [86], demonstrate
the validity of the unpaired method used in the present study, especially in
the case of thick fog. The addition of cycle perceptual loss improved the qual-
ity of dehazed images, in particular, restoring sharpness and color vividness

97
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of the scene. The high visual quality of the results can be attributed to the
proven image generation capabilities of generative adversarial networks, espe-
cially in referenceless scenarios. The comparison with state-of-the-art methods
has demonstrated that the unpaired approach developed in this thesis is in
line with the most recent learning models, and can rival methods trained with
paired couples of foggy and clear images.

On the other hand, our model is prone to produce artifacts on the generated
results, particularly if the visibility on the hazy image is near zero. This can
be explained by the fact that the cycleGAN model learns a mapping between
two image distributions, which are estimated through the training data. The
model is forced, by the adversarial loss, to produce images similar to those of
the other distribution. If a generator maps images from domain X to Y , and
a nearly uniform image is presented to it, the generator is forced to add the
more probable objects present in Y images to the result, since a uniform image
is not a probable item of Y . For this reason, in the presence of very thick fog,
and almost uniform images, the model adopted produces unrealistic results,
populated with the most probable characteristic of the clear images test set.
An example of this phenomenon can be seen in Figure 5.1.

(a) (b) (c)

Figure 5.1: An example of the production of artifacts for extremely foggy
images. In the absence of clear objects in the input, the model inserts the
most common characteristics of the training data. (a) real foggy image (b)
model trained with the training2 configuration (c) model trained with the
training3 configuration.

This behavior may be controlled using a conditional approach, i.e. the gener-
ator does not receive only the foggy image, but some other data that can be
used for producing better results, such as an estimated depth map. Another
approach might be to present the same image many times to the generator,
every time with a different noise vector added to the picture. After that, the
resulted images are compared, and the artifacts that appear only in one of
them will be removed.
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5.2 Future works

In this section, a number of possible improvement to the work carried out in
this dissertation are discussed. They are conveniently divided into the following
four categories:

Use a more targeted dataset In section 4.6, was analyzed the importance
of the training set for the quality of the defogging, and resulted that using
a dataset as similar as possible to the target domain is effective to refine
the model. Unfortunately, the majority of defogging datasets are quite
general, and not targeted to a specific domain. The unpaired nature of
the approach developed in this thesis simplify the acquisition of a dataset,
even for specific domains. The gathering of such data collections may
improve the performance of the presented model, and can assess in a more
accurate manner the quality of the defogging. Apart from meliorate the
model, the collection of a domain-specific dataset of real foggy images
might be of interest for the entire “defogging” research community, since
it can be used for the evaluation of existent models in real use cases.
The creation of a general defogger can also be achieved using targeted
datasets: instead of using a huge collection of different images, the model
can be trained with one dataset at a time, and updated with continual
learning techniques [91].

Use conditioning information In all the experiments, the presented model
was trained without additional information, apart the input foggy image.
Mirza et al. [42] demonstrated that the addition of information can help
the generator to produce better results. Thus, the single image can
be enriched with supplementary data, such as an estimated depth map
or images from an infrared camera. These additional data are often
available in vision systems of intelligent cars, and they may enhance the
quality of the defogging, removing artifacts and producing images more
similar to the real haze-free image. Recently, a system for recovering
an approximated ground truth picture using hardware already present
in self-driving cars has been presented [92]. This approach can be used
to condition the generator with an estimated ground truth, or to collect
datasets of hazy and approximated haze-free images.
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Evaluate the model with task driven metrics The metrics used for as-
sessing the quality of the defogging, and to compare the quality of the
presented model against state-of-the-art methods, are not exempt of de-
fects. In particular, SSIM and PSNR often do not align well with human
evaluation or blind metrics, and the referenceless metric proposed by
Hautière et al. [86] may be meaningless if in the result are present many
artifacts. Thus, defogging models should be evaluated using task-driven
metrics, rather than solely on the image quality, which is a fairly ab-
stract concept. In a defogged image should be easier to detect objects,
so a pretrained object detector can be used to evaluate the quality of the
defogging. The presented model should be tested using the Real-world
Task-Driven Testing Set (RTTS), included in the RESIDE dataset [66].
This dataset contains 4.322 foggy images annotated with objects cate-
gories and bounding boxes. Using an evaluation metrics based on a real
task can yield more significant results, especially if the defogging is used
as a preprocessing step in a computer vision pipeline.

Use videos instead of images The cycleGAN model was developed to per-
form image-to-image translation, thus the presented model works within
the images domain. However, many tasks related to defogging use video
stream as a data source, e.g. surveillance systems or intelligent cars.
A model for high resolution video-to-video translation has been recently
proposed by Wang et al. [93]. Thus, the present model can be adapted to
work with videos. Apart from the obvious complications, working with
videos may have some advantages, such as exploiting the data stream to
remove artifacts that are present in only few frames, or regularizing the
output using the previous results.



Bibliography

[1] Terrence J. Sejnowski. The Deep Learning Revolution. MIT Press, 2018.
[2] Ian J. Goodfellow et al. “Generative Adversarial Nets”. In: Proceedings

of the 27th International Conference on Neural Information Process-
ing Systems - Volume 2. NIPS’14. Montreal, Canada: MIT Press, 2014,
pp. 2672–2680.

[3] Ahmed M. Elgammal et al. “CAN: Creative Adversarial Networks, Gen-
erating ”Art” by Learning About Styles and Deviating from Style Norms”.
In: ICCC. 2017.

[4] J. Zhu et al. “Unpaired Image-to-Image Translation Using Cycle-Consistent
Adversarial Networks”. In: 2017 IEEE International Conference on Com-
puter Vision (ICCV). Oct. 2017, pp. 2242–2251.

[5] Charles I. Abramson and Ana M. Chicas-Mosier. “Learning in Plants:
Lessons from Mimosa pudica”. In: Frontiers in Psychology 7 (2016),
p. 417. issn: 1664-1078.

[6] Thomas M. Mitchell. Machine Learning. 1st ed. New York, NY, USA:
McGraw-Hill, Inc., 1997. isbn: 0070428077, 9780070428072.

[7] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Ap-
proach. 3rd. Upper Saddle River, NJ, USA: Prentice Hall Press, 2009.
isbn: 0136042597, 9780136042594.

[8] Kevin P. Murphy. Machine Learning: A Probabilistic Perspective. The
MIT Press, 2012. isbn: 0262018020, 9780262018029.

[9] Milan Sonka, Vaclav Hlavac, and Roger Boyle. Image Processing, Analy-
sis, and Machine Vision. Thomson-Engineering, 2007. isbn: 049508252X.

[10] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
MIT Press, 2016.

[11] E. R. Kandel, J. H. Schwartz, and T. M. Jessell. Principles of neural
science. 6th. Upper Saddle River, NJ, USA: McGraw-Hill, 2000.

[12] F. Rosenblatt. Principles of neurodynamics: perceptrons and the theory of
brain mechanisms. Report (Cornell Aeronautical Laboratory). Spartan
Books, 1962.

101



102 Bibliography

[13] Richard H. R. Hahnloser et al. “Digital selection and analogue amplifi-
cation coexist in a cortex-inspired silicon circuit”. In: Nature 405 (2000),
pp. 947–951.

[14] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. “Deep Sparse Rec-
tifier Neural Networks”. In: Proceedings of the Fourteenth International
Conference on Artificial Intelligence and Statistics. Ed. by Geoffrey Gor-
don, David Dunson, and Miroslav Dud́ık. Vol. 15. Proceedings of Ma-
chine Learning Research. Fort Lauderdale, FL, USA: PMLR, Nov. 2011,
pp. 315–323.

[15] P. Ramachandran, B. Zoph, and Q. V. Le. “Searching for Activation
Functions”. In: ArXiv pre-prints (Oct. 2017). arXiv: 1710.05941.

[16] G. Cybenko. “Approximation by superpositions of a sigmoidal func-
tion”. In: Mathematics of Control, Signals and Systems 2.4 (Dec. 1989),
pp. 303–314. issn: 1435-568X.

[17] Jürgen Schmidhuber. “Deep learning in neural networks: An overview”.
In: Neural Networks 61 (2015), pp. 85–117. issn: 0893-6080.

[18] Andreas Griewank. “Who Invented the Reverse Mode of Differentia-
tion?” In: Documenta Mathematica, Extra Volume: Optimization Stories
(2012), pp. 55–64.

[19] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. “Learn-
ing Representations by Back Propagating Errors”. In: Nature 323 (Oct.
1986), pp. 533–536.

[20] S. Ruder. “An overview of gradient descent optimization algorithms”.
In: ArXiv e-prints (Sept. 2016). arXiv: 1609.04747.

[21] Yann Lecun, Yoshua Bengio, and Geoffrey Hinton. “Deep learning”. In:
Nature 521.7553 (May 2015), pp. 436–444. issn: 0028-0836.

[22] Yoshua Bengio. “Learning Deep Architectures for AI”. In: Found. Trends
Mach. Learn. 2.1 (Jan. 2009), pp. 1–127. issn: 1935-8237.

[23] A. Antoniou, A. Storkey, and H. Edwards. “Data Augmentation Gen-
erative Adversarial Networks”. In: ArXiv pre-prints (Nov. 2017). arXiv:
1711.04340.

[24] Nitish Srivastava et al. “Dropout: A Simple Way to Prevent Neural Net-
works from Overfitting”. In: Journal of Machine Learning Research 15
(2014), pp. 1929–1958.

[25] Sergey Ioffe and Christian Szegedy. “Batch Normalization: Accelerating
Deep Network Training by Reducing Internal Covariate Shift”. In: Pro-
ceedings of the 32Nd International Conference on International Confer-
ence on Machine Learning - Volume 37. ICML’15. Lille, France: JMLR.org,
2015, pp. 448–456.

http://arxiv.org/abs/1710.05941
http://arxiv.org/abs/1609.04747
http://arxiv.org/abs/1711.04340


Bibliography 103

[26] David H Hubel and Torsten N Wiesel. “Receptive fields, binocular in-
teraction and functional architecture in the cat’s visual cortex”. In: The
Journal of physiology 160.1 (1962), pp. 106–154.

[27] Y. Lecun et al. “Gradient-based learning applied to document recogni-
tion”. In: Proceedings of the IEEE 86.11 (Nov. 1998), pp. 2278–2324.
issn: 0018-9219.

[28] J.T. Springenberg et al. “Striving for Simplicity: The All Convolutional
Net”. In: ICLR (workshop track). 2015.

[29] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “ImageNet
Classification with Deep Convolutional Neural Networks”. In: Advances
in Neural Information Processing Systems 25. Ed. by F. Pereira et al.
Curran Associates, Inc., 2012, pp. 1097–1105.

[30] A. Radford, L. Metz, and S. Chintala. “Unsupervised Representation
Learning with Deep Convolutional Generative Adversarial Networks”.
In: ICLR (workshop track). 2016.

[31] Ian Goodfellow. “NIPS 2016 Tutorial: Generative Adversarial Networks”.
In: ArXiv e-prints (Dec. 2017). arXiv: 1701.00160.

[32] Andrew Y. Ng and Michael I. Jordan. “On Discriminative vs. Generative
Classifiers: A Comparison of Logistic Regression and Naive Bayes”. In:
Proceedings of the 14th International Conference on Neural Information
Processing Systems: Natural and Synthetic. NIPS’01. Vancouver, British
Columbia, Canada: MIT Press, 2001, pp. 841–848.

[33] G. E. Hinton and T. J. Sejnowski. “Parallel Distributed Processing: Ex-
plorations in the Microstructure of Cognition, Vol. 1”. In: ed. by David
E. Rumelhart, James L. McClelland, and CORPORATE PDP Research
Group. Cambridge, MA, USA: MIT Press, 1986. Chap. Learning and
Relearning in Boltzmann Machines, pp. 282–317. isbn: 0-262-68053-X.

[34] A. Creswell et al. “Generative Adversarial Networks: An Overview”. In:
IEEE Signal Processing Magazine 35 (Jan. 2018), pp. 53–65.

[35] John F. Nash. “Equilibrium points in n-person games”. In: Proceedings
of the National Academy of Sciences 36.1 (1950), pp. 48–49. issn: 0027-
8424.

[36] M. Arjovsky and L. Bottou. “Towards Principled Methods for Training
Generative Adversarial Networks”. In: ArXiv e-prints (Jan. 2017). arXiv:
1701.04862.

[37] Tim Salimans et al. “Improved Techniques for Training GANs”. In: Pro-
ceedings of the 30th International Conference on Neural Information
Processing Systems. NIPS’16. Barcelona, Spain: Curran Associates Inc.,
2016, pp. 2234–2242. isbn: 978-1-5108-3881-9.

[38] L. Metz et al. “Unrolled Generative Adversarial Networks”. In: ArXiv
e-prints (Nov. 2016). arXiv: 1611.02163.

http://arxiv.org/abs/1701.00160
http://arxiv.org/abs/1701.04862
http://arxiv.org/abs/1611.02163


104 Bibliography

[39] Christian Szegedy et al. “Rethinking the Inception Architecture for Com-
puter Vision”. In: 2016 IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR) (2016), pp. 2818–2826.

[40] L. Theis, A. van den Oord, and M. Bethge. “A note on the evaluation
of generative models”. In: International Conference on Learning Repre-
sentations. Apr. 2016.

[41] I. J. Goodfellow, J. Shlens, and C. Szegedy. “Explaining and Harnessing
Adversarial Examples”. In: ArXiv e-prints (Dec. 2014). arXiv: 1412.

6572 [stat.ML].
[42] M. Mirza and S. Osindero. “Conditional Generative Adversarial Nets”.

In: ArXiv e-prints (Nov. 2014). arXiv: 1411.1784.
[43] M. Arjovsky, S. Chintala, and L. Bottou. “Wasserstein GAN”. In: ArXiv

e-prints (Jan. 2017). arXiv: 1701.07875 [stat.ML].
[44] H. Huang, P. S. Yu, and C. Wang. “An Introduction to Image Synthe-

sis with Generative Adversarial Nets”. In: ArXiv e-prints (Mar. 2018).
arXiv: 1803.04469.

[45] T. Karras et al. “Progressive Growing of GANs for Improved Quality,
Stability, and Variations”. In: ICLR (workshop track). 2018.

[46] Christian Ledig et al. “Photo-Realistic Single Image Super-Resolution
Using a Generative Adversarial Network”. In: 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR) (2017), pp. 105–114.

[47] Xiaodan Liang et al. “Dual Motion GAN for Future-Flow Embedded
Video Prediction”. In: 2017 IEEE International Conference on Computer
Vision (ICCV) (2017), pp. 1762–1770.
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