
ALMA MATER STUDIORUM – UNIVERSITÀ DI BOLOGNA
CAMPUS DI CESENA

Scuola di Ingegneria e Architettura
Corso di Laurea Magistrale in Ingegneria e Scienze Informatiche

BLOCKCHAIN AND BEYOND:
PROACTIVE LOGIC SMART CONTRACTS

Tesi in

SISTEMI AUTONOMI

Relatore

Prof. ANDREA OMICINI

Co-relatore

Dott. GIOVANNI CIATTO

Presentata da

ALFREDO MAFFI

Seconda Sessione di Laurea
Anno Accademico 2017 – 2018

Abstract

Blockchain-based smart contracts are computer programs which run on top of
a blockchain in order to enforce the terms of an agreement between mutually-
untrusted parties without the need of a trusted intermediary. With their actual
implementations, smart contracts are passive entities, that is, they do noth-
ing until one of the parties explicitly trigger them. As a result, they are not
able to “actively” participate in the execution of the agreement. Furthermore,
since they are deployed on the blockchain, their source code is immutable and
cannot be adapted as changes in the real world occur over time. In this thesis,
we rethink blockchain-based smart contracts as proactive and logic entities to
overcome the aforementioned issues. In our vision, smart contracts are “proac-
tive” in the sense that they can act without necessarily being triggered by one
of their parties, and “logic” in the sense that their business logic is expressed
by means of logic programming, allowing for a controllable mutability of their
behaviour over time through meta programming. In this work, we analyse
the problems which arise as soon as smart contracts are designed as proactive
entities, carrying out a feasibility study for their implementation in the first
place. Subsequently, we implement a system which supports their execution
as a proof-of-concept for our idea. Finally, we show how our proactive smart
contracts can be used to further enforce the terms of a contract with respect
to three different use cases. This work represents a first step towards our final
end, which consists in the realization of fully autonomous smart contracts, able
to reason about the world and automatically act against violations committed
with respect to the agreement’s terms.

Keywords: blockchain, proactive smart contracts, distributed ledger, logic
programming

The message dies, in envelopes
The words divide

The vanity prospers on solo lectures behind walls
Unite the peace of silence

Among the loud it whispers
“Exist, be quiet, and listen”

— Destrage

Acknowledgements

I would like to thank Prof. Andrea Omicini for offering me the opportunity
to carry out this work and for his wonderful teachings throughout the last two
years. I would like to thank Dott. Giovanni Ciatto for supervising my work
and for his patience, his great support, and his trust in me.

I would like to thank my friends and colleagues Manuel and Gabriele, for
being wonderful companions throughout this long journey and beyond.

I would like to thanks my parents, Manuela and Massimo, and my aunt
Maria, for their everlasting love and for always supporting me and my decisions.

Finally, I would like to thank Savant, Destrage, and wac for their music,
which helped me a lot during these years.

vii

Contents

Abstract iii

Acknowledgements vii

1 Introduction 1

2 State of the art 5
2.1 The blockchain technology . 5

2.1.1 Data structure . 5
2.1.2 Identities, trust and consensus 8
2.1.3 Real-world usages and examples 14

2.2 Smart-contract-enabled BCTs 15
2.2.1 Smart contracts . 16
2.2.2 Ethereum . 17
2.2.3 Hyperledger Fabric . 21

2.3 Tendermint . 25
2.3.1 Tendermint Core . 26
2.3.2 Application BlockChain Interface (ABCI) 29

2.4 Logic programming . 32
2.4.1 The paradigm . 32
2.4.2 Horn clauses and the SLD-resolution principle 34
2.4.3 Prolog, strengths and weaknesses 35
2.4.4 Logic-based smart contracts 37

3 Vision 39
3.1 Idea . 39
3.2 Requirements . 40

3.2.1 Functional requirements 41
3.2.2 Non-functional requirements 42

3.3 Glossary . 43
3.4 Scenarios . 44
3.5 Problem analysis . 45

ix

x CONTENTS

3.5.1 Feasibility study . 45
3.5.2 Logic architecture . 49

4 Design 53
4.1 Architectural design . 53

4.1.1 Design choices . 53
4.1.2 General architecture . 57
4.1.3 Interaction . 58

4.2 Detailed design . 60
4.2.1 Blockchain . 61
4.2.2 Transactions and certificates 61
4.2.3 Smart contracts . 63
4.2.4 Full nodes . 64
4.2.5 Clients . 70
4.2.6 Certification authorities 73

5 Implementation 75
5.1 Implementation overview . 75

5.1.1 Logic interpreter . 75
5.1.2 Certification authority & client 76

5.2 Smart contracts . 76
5.3 Further security enhancements 79

5.3.1 Faulty interpreters tolerance 79
5.3.2 Auditing . 80

6 Validation 83
6.1 Requirement compliance . 83
6.2 Real-world use cases . 83

6.2.1 Periodic Payments . 84
6.2.2 Supply-chain management 86
6.2.3 Automatic auctions . 89

7 On smart contracts’ autonomy 93
7.1 Proactive smart contracts . 93
7.2 Comparison with actors and agents 94

8 Conclusions 97
8.1 Summary . 97
8.2 Future works . 98

Bibliography 103

Chapter 1

Introduction

Over the past decade, the scientific community has witnessed the ever-
growing attention gained by the disruptive technology which goes by the name
of blockchain. First introduced in 2008, the blockchain can be conceived as a
novel solution to the age-old human problem of trust, within the context of
distributed systems. It offers an architecture which allows mutually-untrusted
parties to trust the system outputs without the need of a central, trusted
entity. From a technical standpoint, a blockchain is a shared, append-only,
transparent, and distributed data structure which stores transactions in linked
blocks, which form a chain. A transaction can be conceived as a change made
by a certain system user to some common data. The blockchain is replicated
over multiple nodes linked in a peer-to-peer network, and each one of its copies
keeps tracks of the same order and timing of these transactions, which are
secured through the use of cryptographic schemas. As a result, malicious
system users cannot tamper with transactions, that is, modify or remove the
ones which have been already inserted into a block. This interesting property
allows system users to trust the state of the common data, which is the result
of all the transactions included in the blockchain, without trusting each others.
New transactions are added consistently to each copy of the blockchain (i.e.
in the same block and in the same order) through a consensus protocol, which
nodes employ to agree on the next block which will be appended to each local
copy.

Even if the primary use of blockchains is as a distributed ledger for cryp-
tocurrencies, they can be used as a system backbone for the realization of a
wide range of applications, such as smart property applications or naming and
voting systems. Despite their different purposes, all of these applications rely
on a blockchain as a way for securely storing data without a single point-of-
trust within the system.

Nowadays, there are several blockchain implementations which support the

1

2 CHAPTER 1. INTRODUCTION

creation of smart contracts to mediate interaction between untrusted parties.
In this context, a smart contract is essentially a computer program which
is deployed “on the blockchain” by users, meant to act as an intermediary
between them while reducing failures and enforcing trust. Smart contracts
are capable of managing assets (e.g. amount of cryptocurrencies) and interact
synchronously with each others. They can be executed by users by means of
special transactions.

The concept of smart contracts was first introduced in 1994 as “comput-
erized transactions protocol that executes the terms of a contract” [5]. While
blockchain-based smart contracts can be seen as a reification of such a con-
cept, we think that their actual implementation may have hindered the full
potential of the original idea. More precisely, as of now, smart contracts are
implemented as passive entities, meaning that they actually enforce the terms
of a physical contract only when “invoked” by one of their parties. As a con-
sequence, smart contracts do not participate “actively” in the execution of a
contract, since they do nothing until one of the parties sends a transaction to
them. Furthermore, since they are deployed on the blockchain, their source
code is immutable. Once deployed, they cannot be adjusted or adapted to
changes that may occur in the real world.

Stemming from such considerations, we rethink smart contracts as proac-
tive entities, that is, smart contracts able to (i) participate actively in the
execution of a contract without necessarily waiting to be triggered through
a transaction sent by its parties, (ii) interact asynchronously with each oth-
ers, and (iii) automatically execute postponed or periodic computations. We
then rely on logic programming to endow these smart contracts with a logic
nature, in turns providing the capability of reasoning and planning in order
to figure out the best course of action leading to a satisfactory achievement
of theirs goals—i.e. the contractual terms. Moreover, such logic nature may
allow some controllable mutability of the smart contracts behaviour – other
than the capability of learning and exchanging behaviours by interacting with
each others –, mitigating a well known issue affecting the mainstream notion
of smart contract. In this thesis we model and implement a system for the
execution of such smart contracts as a proof-of-concept for our idea, paving
the way to the realization of autonomous smart contracts.

The reminder of this thesis is structured as follows. In chapter 2, we provide
a technical background for what concerns blockchains, smart contracts, and
logic programming. In chapter 3, we better describe our vision of proactive
smart contracts, defining a set of requirements for the system we wish to
realize. In chapter 4, we model the system and its components, describing their
structure, interaction, and behaviour. In chapter 5, we provide an overview

CHAPTER 1. INTRODUCTION 3

on the system implementation, describing the main elements of interest. In
chapter 6, we validate the system, providing examples of different use cases
in which our smart contracts can be used to actively execute the terms of a
contract. Finally, we discuss our smart contracts’ autonomy in chapter 7, and
conclude our work in chapter 8, presenting some interesting future works and
directions.

Chapter 2

State of the art

In this chapter, we provide a technical background briefing on the argu-
ments of interest of this thesis. In section 2.1, we describe blockchains, their
functioning, and the methods that make their adoption viable in the context of
distributed systems. In section 2.2, we examine the concept of smart contract
along with two examples of real-word, smart-contract-enabled systems, namely
Ethereum and Hyperledger Fabric. In section 2.3 we describe Tendermint, a
novel general purpose consensus engine for blockchain applications, and we
finally provide an introduction to logic programming in section 2.4.

2.1 The blockchain technology

Since their first appearance in 2008 with Bitcoin [13], blockchains have been
gaining a lot of attention, especially in the research field. Nowadays, their
practical usages range from entertainment to insurances, from supply chain
management to healthcare. In this section we describe what blockchains are
and how they work, highlighting strengths and weaknesses of this disruptive
technology.

2.1.1 Data structure

At its core, a blockchain is essentially a data structure which stores infor-
mation in blocks that are linked together, forming a chain. More specifically,
each block stores an hash pointer to the previous block in the chain, except
for the first one. An hash pointer consists of a pointer to where some in-
formation is stored together with the cryptographic hash (or digest) of that
same information. So, to draw an analogy, a blockchain is like a linked list of
blocks with hash pointers instead of normal pointers. Thanks to them, one
can determine, for each block of the chain, the location of the previous block

5

6 CHAPTER 2. STATE OF THE ART

and check through its digest if its content has not changed. The hash pointer
which points to the most recent block is called head. To append new data to
the blockchain, it is necessary to (i) create a new block which stores the data
of interest along with an hash pointer to the most recent block and (ii) update
the head, making it pointing to the newly block.

Figure 2.1: A blockchain. Each block is linked to the previous one in the chain by storing
an hash pointer that points to it. Source: [26]

Hash pointers make the blockchain a valid candidate for tamper-evident log
applications [26]. Let us suppose to have a blockchain shared by several users,
each of them storing its personal copy of the blockchain head. If an attacker
wants to tamper with data stored in the blockchain and tries to modify the
content of a certain block x, then the digest of this block won’t match up
with the one stored in the hash pointer of block x+1 anymore. To solve
this discrepancy, the attacker will have update the latter, creating however
a mismatch between the digest of block x+1 and the one stored in the hash
pointer of block x+2. Therefore, in order to preserve the integrity among
hash pointers, even the smallest change made by the attacker in one block will
unavoidably propagate to the head of the blockchain, making it possible for
other blockchain users to detect the attack.

So far, the digest of a block has been defined as the cryptographic hash
of the entire block. In practice, almost all existing blockchain technologies
divide each block in two parts: the header, which contains meta information
about the block (i.e. the timestamp of its creation and an hash pointer to the
previous block), and the body, which contains the actual data to be stored.
Such technologies define the digest of a block as the cryptographic hash of its
header for efficiency reasons.

In order to keep the body data tamper-proof, another data structure which
shares some affinities with blockchains is usually employed. This data structure
is called Merkle tree, named after its inventor Ralph Merkle.

CHAPTER 2. STATE OF THE ART 7

In its classical version, a Merkle tree is a binary tree. Let us suppose to
split the content of a block body in several chunks. A merkle tree can be built
out of these chunks as follows: the chunks, which make up the tree leaves, are
grouped in pairs of two and, for each pair, a data structure containing two
hash pointers, one to each of the chunks, is built. These data structures form
the next level up the tree. At this point, they are in turn grouped in pairs to
form the data structures of the upper level of the tree. This routine is repeated
recursively until only one node is left. This node is the root of the tree, called
Merkle root. Figure 2.2 shows a graphical representation of a Merkle tree.

Figure 2.2: A binary Merkle tree. The leaves are grouped in pairs of two and the hash of
each of them is stored in their parent node. The parent nodes are in turn grouped in pairs
and their hashes are stored in the upper level of the tree. This routine continues until there
is only one node left, that is, the root. Source: [26]

Building a Merkle tree from data chunks and storing the root in the block
header prevents data chunks from being tampered with. This is because,
as with the blockchain, if an attacker tampers with some data chunk at the
bottom of the tree, the digest of the hash pointer that’s one level up will not
match anymore. If the attacker proceeds to tamper recursively with non-leaf
nodes, the initial change will eventually propagate to the top of the tree, where
he/she will not be able to tamper with the Merkle root that we stored in the
block header.

Summing up, if someone tries to tamper with the Merkle root in the block
header, the attempt will be detected thanks to the blockchain hash pointers.
If someone tries to tamper with the data chunks of some block, the attempt
will be detected thanks to the Merkle root stored in the block header.

8 CHAPTER 2. STATE OF THE ART

Merkle roots has also a handful feature which blockchains lack: they allow
for proofs of membership. If a blockchain user wants to prove that a data
chunk is a leaf of a certain Merkle tree, all he/she has to provide is the set
of nodes which are on the path between the data chunk and the Merkle root.
The other nodes of the tree can be ignored. Other users can check the proof
by calculating the digest of the given data chunk and verifying the hash chain
of the nodes in the path up to the Merkle root.

Blockchains for themselves are great for those applications in which data
is stored all in one place, being owned, managed and updated by a certificated
entity. As long as the application users trust this entity, they can befit from
the blockchain security with respect to the data stored in it. When data
doesn’t have an owner and it needs to be both replicated and shared by several
mutually-untrusted users, giving each one of them the possibility to update it,
a blockchain alone in not enough anymore. It is necessary to deal with a range
of issues, which includes (i) identities management, (ii) how users can trust
each other, (iii) who gets to propose a new block of data to be appended to the
blockchain, and (iv) how users can reach consensus on the proposed blocks.
We cover these issues in the next section.

2.1.2 Identities, trust and consensus

As the previous section provides a technical description of the blockchain as
a data structure, we now explain how blockchains can be used in a distributed
context.

Terminology and Functioning Overview

The expression “BlockChain Technologies” (or BCTs henceforth) refers to
existing distributed applications which rely on a blockchain to provide their
functionalities, such as Bitcoin. Systems of this kind usually consist of a net-
work of nodes connected in a peer-to-peer fashion, each one of them storing a
copy of the shared blockchain. Such copies are updated consistently over time
thanks to an algorithm, which is employed by nodes to agree upon the next
block that will be appended to each copy of the blockchain. This algorithm is
called consensus ; we provide a description about consensus algorithms in one
of the following sections.

Users of these systems need to send data to one of the nodes in order to
perform a writing operation on the blockchain: this data will be spread by
the recipient node to its peers and eventually included in a new block, which
will be appended consistently to each blockchain copy. Thus, the consensus
algorithm ensures that all the events that occur in the system (i.e. the writing

CHAPTER 2. STATE OF THE ART 9

operations) are seen and perceived in the same order by all nodes.
Furthermore, from the application standpoint, each node of the system has

a state, which can be seen as the result of all the events that have occurred since
system boot. Each new event leads to a state transition. Since the consensus
algorithms ensures total ordering of all events, nodes share the same state and
update it consistently over time.

As a result, every BCT is inherently a good example of State Machine
Replication [14] where, given a state machine replicated over multiple nodes
with each replica running in parallel with respect to one another, changes to
a replica are propagated consistently to all other replicas.

Finally, for the sake of clarity, in this section we use the word “entity” to
denote either a node or a user of the system.

Identities and Trust

Every BCT has its own methods for dealing with identities management,
trust among entities and consensus on blocks. Some of these methods shares
the same concepts, being slightly different in practice; others are totally dif-
ferent from one another. Their choice is strongly influenced by the type of
blockchain that is adopted. Even if there is no clear definition, blockchains are
usually categorized in one of the following types:

1. Public or permissionless blockchains: this term is used to denote
those blockchains where there are no restrictions on who can interact
with them (i.e. reading/writing data). In other words, there isn’t a
trusted, third-party entity which controls the blockchain and regulates
accesses to it. Examples of blockchain technologies which rely on a public
blockchain are Bitcoin [13] and Ethereum [17].

2. Private or permissioned blockchains: as opposed to public ones,
these blockchains are controlled by a third-party, federated entity which
regulates accesses to them. Note that this entity could use an access
policy which is more fine-grained than the “all or nothing” one. For ex-
ample, a role-based access control (RBAC) policy [6] could be employed,
granting full access to some entities and read-only access to others by
means of roles. Examples of blockchain technologies which rely on a
private blockchain are Hyperledger Fabric [34] and Corda [24].

As many other sorts of distributed system, BCTs assign an identity to each
one of their entities for accountability purposes: only who is endowed with an
identity can interact with them. The ones which rely on a public blockchain
establishes how everyone can generate, on their own, an identity, since there

10 CHAPTER 2. STATE OF THE ART

is not a third-party entity in charge of doing so. Conversely, with private
blockchains identities are created and assigned only by the third-party entity
that controls them, which acts as a Certification Authority (CA). Note that
in this case the CA has total control over the number of entities which are
allowed to interact with the system (i.e. users) or be a part of it (i.e. nodes),
being able to set an hypothetical upper-bound to it.

In most cases, blockchains technologies use asymmetric cryptography to
deal with both identity management and trust issues. Each entity is equipped
with a self-generated pair of cryptographic keys and its identity is represented
(i) by the public key, in the context of public blockchains1, or (ii) by a cer-
tificate that is created and released by the CA, in the context of private
blockchains. A certificate usually consists of the entity’s public key, an ex-
piration date, some optional data about the entity, and a signature made by
the CA with its private key. Also, if a RBAC policy is adopted, a certificate
shall contain even a role, which established the privileges of the certificate’s
owner within the system, that is, what operations the owner is allowed to do.

Trust issues can now be resolved as follows: to write some data on the
blockchain, a user must first sign this data with its private key; every node
or other user that will, respectively, receive or consult this data along with
its signature (and eventually the user certificate) will be able to verify both
authenticity and integrity of that same data. Likewise, every time a node
proposes a new block to its peers, it signs the block with its private key in
order to be trusted.

Finally, in order for nodes to reach consensus on the next block to be
appended to the shared blockchain, some BCTs rely on one of the “classical”
consensus algorithms, while others adopt different approaches. We cover this
matter more specifically in the following section.

Consensus

In the field of distributed systems, consensus is a very-well known and
studied problem that many applications have to face. With regard to this
problem, the literature offers a broad range of algorithms that can be adopted
as viable solutions.

Some of these algorithms, such as Paxos [8], introduce the concept of voting,
being the following the idea behind them: each network node has the ability
to vote for data (blocks in our case) proposed by other nodes; every time
a proposal is made, consensus is reached through election: every node gets
to vote on that proposal; if the number of gathered votes exceeds a prefixed
quorum, every node proceeds to add the proposed data to its local database

1Actually, many blockchain technologies use a digest of the public key to identify entities.

CHAPTER 2. STATE OF THE ART 11

(the blockchain in our case). Other consensus algorithms, such as Raft [19],
rely on a leader-based approach: upon system start, a leader is chosen among
the system nodes Its duty is to deal with proposals by following certain rules,
with the purpose of reaching consensus on those proposals.

In addition to ensuring data consistency among replicas, some of these
algorithms, such as PBFT [11], BFT-SMaRt [16], and Honey Badger [25],
have been modelled to be Byzantine fault tolerant (BFT), that is, given n
nodes involved in the consensus, they can tolerate up to n/3 − 1 of them
exhibiting arbitrary behaviour. Further details and comparisons about BFT
algorithms can be found in [15].

All of these “classical” algorithms can be adopted in real distributed sys-
tems and they are ideal when nodes participating in consensus are known a
priori. Yet they present the following two weaknesses.

1. Performance degradation: as the number of nodes in the system
starts to grow (i.e. > 100 or 1000 depending on the algorithm), most
of these algorithms suffer from a performance degradation, which makes
them unusable in practice [23]. In this context, with the term “perfor-
mance” with respect to one of such algorithms we refer to the amount of
data per second on which consensus can be reached (i.e. the throughput).

2. One entity/multiple identities: systems which rely on a quorum-
based algorithm are vulnerable to the Sybil attack [12], since a single
malicious entity could set up multiple nodes with different identities and
subvert the election process. This is because he/she would be able to
reach the quorum without the need of any further (honest) vote.

Summing up, such algorithms are not a good solution for open systems
(like BCTs relying on a public blockchain) because of (i) the number of nodes
participating in consensus, which can be arbitrarily high, and (ii) the lack of
control on the relationships entity/identity. Nonetheless they are still ideal for
reaching consensus in the context of private blockchains, where the number of
nodes and their identities can be strictly monitored by the CA.

As an alternative solution, most of the existing BCTs which rely on a
public blockchain adopt a competition-based approach: they employ “novel”
consensus algorithms (with respect to the classical ones) where nodes compete
against each other to be the first to propose a new, valid block. On the one
hand, these algorithms are designed to be resistant to Sybil attacks while
working with a virtually infinite number of nodes. On the other hand, they
are far less performing than the classical ones in terms of throughput.

For the sake of brevity, in this section we provide a description for the most
popular competition-based algorithm only, namely Proof-of-Work. Examples

12 CHAPTER 2. STATE OF THE ART

of other competition-based consensus algorithm are Proof of Stake (PoS) [32],
Proof of Elapsed Time [31], and IOTA Tangle [28], being [30] an excellent
survey on them.

Proof of Work (PoW) was first proposed in [10] as a countermeasure to
email-spam and denial of service attacks. In general, in a systems employing
PoW, nodes need to solve a computational-expensive problem in order to send
data to other nodes. This problem usually consists of a cryptographic puzzle
related to the data that a node wishes to send. When a node finds a solution
to it, it sends the data to the desired recipients along with this easy-to-verify
solution, which represents the proof of its effort (hence the name “proof of
work”). When receiving some data, a node acts as follows: if the related
solution is valid, it accepts the data; if the related solution is invalid or missing,
it ignores the data.

In the context of public blockchains, consensus on blocks can be reached
by binding additions to the blockchain to proof of work contributions: in order
for a node to append a new block to the chain, a cryptographic puzzle related
to that block must be solved first. This approach makes the system resistant
to Sybil attacks, since the number of valid block proposals (votes) that an
attacker can make are no longer related to the number of its identities but
rather to his/her computational power (called “hashpower” in this context).
Furthermore, systems employing PoW as a consensus algorithm do not suffer
from performance degradation implied by their number of nodes.

Let us explain this approach more in detail by referring to Bitcoin’s PoW:
in order to add a new block to the chain, a node has to repeatedly calculate
the hash of this block, while varying a field of its known as “nonce” (i.e. a
progressive number), until the output is lower than or equal to a certain target
value. This repetitive process is called mining, while its actors are called
miners. When a miner finally finds a nonce that gives a valid output, which
makes up its proof of work, it proposes the block to its peers multicasting it
to them. When receiving a block, a miner can easily verify if its hash results
in a valid one (i.e. if it’s lower than or equal to the target). If so, it includes
the block in its copy of the blockchain and begins to mine on top of it.

The target value is set by the PoW algorithm and determines the average
number of hashing operations that a node must do in order to obtain the
desired output (i.e. the difficulty of the puzzle). Furthermore, the difficulty
value is periodically adjusted by the algorithm itself in order to compensate
the variation of computational power of the nodes composing the system. Note
that, as long as a strong hash function is used, a node is not able to cheat,
since the only way for it to obtain a solution to the problem is by means of
brute-force, which is how required by the algorithm.

Following this approach, a blockchain fork can occur if two valid block

CHAPTER 2. STATE OF THE ART 13

proposals are made by different nodes at about the same time. In order to
solve this problem, miners follow a simple rule: in case of forks, they always
choose (and mine on) the longest chain. Eventually, either the original chain
or its fork will become longer than the other, making all nodes dropping the
shorter one. Thus, the algorithm ensures eventual-consistency among nodes.

PoW is a great solution to the consensus problem for BCTs which rely on
a public blockchain. Still, it has its own defects:

• Electricity consumption: as stated before, mining is a computationally-
expensive process, meaning that it requires a lot of electricity. In a real
system with thousand of miners, such as Bitcoin, the overall mining pro-
cess results in a huge consumption of electricity.

• Incentives: there is no reason for miners to spend their computational
resources if no reward is given when a solution to the puzzle is found.
Thus, some kind of incentive is required in order for PoW to be usable
in practice and for miners to keep behaving honestly.

• The 51% attack: the PoW consensus can be subverted if an attacker
manages to gain control on a number of miners such that the sum of
their computational powers exceed half of the total. This is because,
in such scenario, the attacker would be able to mine new blocks at a
faster pace with respect to honest miners. Thus, he/she could (i) create
a blockchain fork on purpose, (ii) mine new blocks on top of it until its
length exceeds the one of the “original” blockchain, and (iii) propose it
to the honest miners, which would drop the original one. As a result,
the attacker would have total control over the blockchain, being able to
change its content as desired.

With regard to the problem of incentives, BCTs usually reward miners with
some valuable asset whenever they find a solution to the cryptographic puzzle
or whenever they correctly include data in a block on behalf of a certain user:
in most cases, this asset is a digital currency. Furthermore, in most BCTs users
send data to nodes through special messages, called transactions. Figure 2.3
depicts the employment of a blockchain in a distributed context.

Summing up, it is possible to rely on cryptography and consensus algo-
rithms to make blockchains viable in the context of distributed systems. With
each node of a system storing a copy of the blockchain and a consensus algo-
rithm which ensure data consistency among such copies, one can benefit from
both blockchains’ properties (e.g. immutability of the past) and distributed
systems’ properties (e.g. availability and fault-tolerance). Nonetheless, many
BCTs suffer from a common problem, that is, scalability. More precisely, the
number of transactions per second which can be processed by a BCT is strictly

14 CHAPTER 2. STATE OF THE ART

dependent on the transaction size, the block size, the latency among nodes,
and the algorithm of consensus which is employed. It does not scale as system
users increase. For a given BCT, if the number of transactions per second sent
by users exceeds its throughput, some of these transaction will have to wait
for some additional time (i.e. delay) before being included into a block. The
more the number of transactions per second, the longer the delay.

Transactions
Blocks
Blockchain
Miners
Clients

Figure 2.3: A blockchain in a distributed context. Each miner stores a copy of the blockchain
and participates in the consensus protocol to consistently update it. Clients (i.e. end users)
send transactions to miners to let them be included into a block.

2.1.3 Real-world usages and examples

We now briefly describe some applications that can be realized thanks to
the usage of blockchain in a distributed context, along with some real-world
example.

Cryptocurrencies : the most prominent use case up to now is the one
of cryptocurrencies. Bitcoin and Ethereum are concrete examples of
how a new digital and decentralized currency can be created relying on
blockchains and PoW. The digital currency is decentralized in the sense
that it is neither controlled nor released by a central authority, such as
a bank, but rather generated by miners when a new block is correctly
added to the blockchain. In this scenario, amounts of this currency are
exchanged among end users by means of transactions; each block of the
chain consists of a set of transactions. Therefore, the blockchain can
be seen as a distributed ledger, which keeps track of all the money ex-
changes which have occurred within the system. The system state is

CHAPTER 2. STATE OF THE ART 15

implicitly represented by the amount of currency that each system user
currently holds, which is the result of all the transactions included in the
blockchain. Thanks to the blockchain and PoW, users cannot revert a
transactions made in the past nor double-spend the same transaction.

Distributed asset tracking : cryptocurrency-oriented BCTs represent a spe-
cific use case of distributed asset tracking applications, where the asset
that needs to be tracked is the amount of currency hold by each user of
the system. In general, there is no restriction on the nature of this asset,
which could be, for example, an image or a textual file.

Digital Identities Management : many central institutions and compa-
nies stores the digital identities of their citizens/employees in a central-
ized way, that is, all in one place. Blockchains can be used as a novel
approach to securely decentralize the management of digital identities.
One example of company providing this kind of service is represented by
OneName2.

Online Voting Systems : the inherent transparency and security of public
blockchains could be exploited to build an online voting system [27], in
order to provide greater transparency in the voting process with each vote
being securely stored on the blockchain. In 2015, the Bitcoin foundation
started a project3 with this exact goal.

2.2 Smart-contract-enabled BCTs

Through the past ten years, the blockchain technology has undergone con-
siderable development which led to its increasing adoption in real distributed
systems. This development process is usually split in phases. Even if there is
not a clear distinction of these phases in the literature, they are usually three,
which result in three so-called blockchain “generations” [22]:

1. Bitcoin and Cryptocurrencies: in the first generation, BCTs were
seen mainly as a means to build a monetary system in which no central
entity is involved in the management of the currency.

2. Digital asset tracking and smart contracts: as time went on, de-
velopers began to believe that a blockchain could do more than simply
document transactions. Thus, the idea that digital assets of any kind and

2https://onename.com/
3https://bitcoinfoundation.org/voting-on-the-blockchain-version-1-0/

https://onename.com/
https://bitcoinfoundation.org/voting-on-the-blockchain-version-1-0/

16 CHAPTER 2. STATE OF THE ART

trust agreements could also benefit from blockchain management began
to grow, leading to the adoption of smart contracts.

3. The future: we are currently in the third generation of blockchains,
where developers study new BCTs to deal with existing BCTs’ scalability
issues. Examples of third-generation BCT are BitShares4 and Steem5.

In this section, we provide a definition of such trust agreements among
users, known as smart contracts, and we describe them referring to the most
well-known smart-contract-enabled BCT, namely Ethereum. Finally, we briefly
explain the functioning of Hyperledger Fabric, another smart-contract-enabled
BCT, in order to offer a comparison with respect to Ethereum.

2.2.1 Smart contracts

The concept of smart contract was first introduced by Nick Szabo in [5] as
a “computerized transaction protocol that executes the terms of a contract”.
In other words, a smart contract is the digitalized version of a classic con-
tract which has the tasks to (i) regulate the interaction between its parties
while enforcing the terms of the contract, (ii) clarify the implications of this
interaction, (iii) minimize exceptions, both malicious and accidental, and (iv)
minimize the presence of trusted intermediaries. In Szabo’s vision, smart con-
tracts could be used as a means for reducing the transaction costs related to
the execution of some kind of contracts as well as “opportunities for creating
new kinds of businesses and social institutions”.

Nowadays, such a concept has found its implementation in the context of
cryptocurrency-oriented BCTs, being Ethereum the most mature and studied
smart-contract-enabled BCT. In general, smart contracts are designed and
implemented as computational processes which act as a means for executing
general purpose code on top of a blockchain. With their actual implementation,
smart contracts have the following properties:

• User-defined: smart contracts are created and deployed by end users.

• Stateful: each smart contract has its own internal state and exposes a
set of methods finalized at changing it. Furthermore, smart contracts
can usually take custody of assets on the blockchain.

• Public: the source code of the smart contract is stored on the blockchain,
meaning that each end user is able to inspect it.

4https://bitshares.org/
5https://steem.com/

https://bitshares.org/
https://steem.com/

CHAPTER 2. STATE OF THE ART 17

• Immutable: being deployed on the blockchain, the source code of smart
contracts is immutable.

• Replicated: in a given moment, there are multiple copies of a given
smart contract, one in each node which stores the blockchain. Nonethe-
less, the copies of a smart contracts always act as one.

• Deterministic: the execution of a smart contract is always determinis-
tic. We explain this matter more in detail in subsection 2.2.2.

• Reactive: smart contracts are executed only when someone issues a
transaction to them.

Before explaining them more in detail with Ethereum, let us observe what
follows: there is a clear discrepancy, as greatly explained in [29], between the
original idea behind smart contracts and their actual implementation in BCTs,
since the latter is not strictly related to the classical concept of a contract.
This is probably caused by their multifaceted nature, being it strictly related
to both Law and Computer Science. Thus, experts of both fields should work
together to be able to fully exploit the potential of the original idea employed
in the context of BCTs.

2.2.2 Ethereum

Ethereum6 is a cryptocurrency-oriented BCT which acts as platform for
the deployment and execution of smart contracts [17]. The system relies on
a public blockchain and consists of a set of nodes linked in a peer-to-peer
network. Some of these nodes act as clients for end users to interact with the
system. The others, called miners, store the blockchain and participate in a
PoW consensus algorithm to consistently update it. They also take charge of
executing smart contracts deployed by end users. For the effort put in the block
mining process, miners are rewarded with some amount of ether - the native
cryptocurrency of the system - whenever they mine a new block or execute a
transaction. The blockchain is used for tracking the possessions of ether and
storing both smart contracts’ source code and end users’ transactions.

End users are endowed with a pair of cryptographic keys and interact with
smart contracts by publishing transactions. From their standpoint, the system
is perceived as a single, consistent state machine, which coherently responds to
all their inputs; thus, end users see every existing smart contract as a unique
computational process; technically, this is not true: since smart contracts are
deployed on the blockchain, each of them is actually replicated all over the

6https://www.ethereum.org/

https://www.ethereum.org/

18 CHAPTER 2. STATE OF THE ART

network, with one copy in each miner. So, every time a user invokes the exe-
cution of a certain smart contract by publishing a transaction, all the copies
of the target smart contract are invoked and all the same operations are per-
formed, on all miners. This technical matter has two important implications:
thanks to it, the overall system state is kept consistent among miners; because
of it, the execution of smart contracts must be deterministic, otherwise miners
would not be able to reach consensus on its result.

After this short overview, we provide a more detailed description of the
system functioning in the following subsections.

Ethereum Virtual Machine (EVM)

Each miner is endowed with an interpreter for smart contracts, know as
Ethereum Virtual Machine (EVM). The EVM bytecode set is Turing-complete
and users can choose between two contract-oriented programming languages
to write smart contracts with, namely Serpent (which is actually deprecated)
and Solidity7. Programs written in such languages can be compiled down to
EVM bytecode and thus be executed by miners.

More in detail, Serpent and Solidity are designed to write smart contracts
whose execution is strictly deterministic. Thus, they don’t provide the pro-
grammer with random number generators or any other randomness source.
Nevertheless, programmers can still rely on some hard-to-predict data to sim-
ulate randomness, such as the hash of a block or its timestamp.

Accounts

In Ethereum, the application state is made up of data structures called
accounts, while state transitions are caused by information exchange between
these accounts, which occur when a end user publishes a transaction. Each
account is associated with a fixed-length address, which identifies either a end
user or a smart contract. Thus, there are two types of account: externally
owned accounts (EOA), which belong to end users and are controlled by their
private key, and contract accounts, which belong to smart contracts and are
controlled by their source code. In the former case, the address is a crypto-
graphic hash of the end user’s public key; in the latter, the address is generated
from a combination of the smart contract creator’s address and a progressive
number. An account stores the amount of ether possessed by its owner, a
nonce used to avoid for a same transaction to be processed twice, the smart
contract source code (if any), and the smart contract’s internal storage (if any,
initially empty). As a result, both end users and smart contracts can own

7https://solidity.readthedocs.io/en/v0.4.24/

https://solidity.readthedocs.io/en/v0.4.24/

CHAPTER 2. STATE OF THE ART 19

ether. Figure 2.4 offers a graphical representation of both an EOA account
and a contract account.

User

hash(Public Key)

Balance

Private & Public Keys

Smart Contract

Storage

Balance

Code

Address

Figure 2.4: A high-level representation of two accounts. Nonces are omitted. Furthermore,
The user’s keys are depicted for clarity purpose only and are not actually included in the
account data structure.

Transactions and Messages

Users are able to publish transactions in the system at any time. The
act of publishing consists of multicasting a transaction to some miners, which
proceed to validate it. If the transaction is valid, miners execute it and keep
it in their mining pool along with other transactions. The transaction will be
eventually included into a new block, on which consensus will be reached.

As depicted in Figure 2.5, there are three type of transactions: (i) transfer
transactions, used to transfer a certain amount of ether from one account to
another; (ii) deployment transactions, used to create a new smart contract;
(iii) invocation transactions, used to invoke the execution of a smart contract.
Regardless of the type, the transaction fields are always the same. These fields
are:

• The recipient of the transaction (i.e. its address).

• A cryptographic signature of the transaction, made by the sender
with his/her private key.

• A nonce, that is, a progressive number representing the number of trans-
actions previously sent by the sender.

• The amount of ether to transfer from the sender’s account to the
recipient’s one (possibly 0).

• An optional data field.

• Two additional fields called gasLimit and gasPrice , described subse-
quently.

20 CHAPTER 2. STATE OF THE ART

As a result, the type of a transaction can be deducted only by the value of its
fields: deployment transactions have no recipient and their data field contains
the source code of the smart contract to be created; transfer transactions have
an EOA address in their recipient field and the data field left empty; invocation
transactions have a smart contract address in their recipient field with some
optional input parameters in their data field.

Receiver

Sender

Invocation

Caller

Arguments

Gas

Owner

Deployment

Code

Callee

Transfer

Amount

Figure 2.5: A high-level representation of the three types of transaction in Ethereum.

Smart contracts are not able to publish transactions, since they are not
endowed with a private key. Nevertheless, they can still send messages to
other smart contracts. A message is much like a transactions: they share the
same fields except for the signature field and the gasPrice field, which are
not included in the former. Every time a smart contract sends a message to
another one, it waits until a result is received or an exception is raised. Thus,
the interaction between smart contracts is always synchronous.

Miners and consensus

In Ethereum, miners are responsible for (i) validating transactions pub-
lished by end users and spreading them to their peers subsequently by means
of gossip, (ii) participating in the consensus process in order to mine new
blocks, and (iii) executing transactions.

• Validation: a transaction is considered to be valid when it’s well formed,
its signature is authentic, its nonce coincides with the total number of
transactions that the issuer has previously published and the amount of
ether which the issuer wishes to transfer (if any) doesn’t exceed his/her
balance.

• Consensus: the consensus algorithm engaged by miners is a variant of
the GHOST protocol [33]; thanks to it, a new block is generated once
every 15 seconds on average8.

8https://etherscan.io/chart/blocktime

https://etherscan.io/chart/blocktime

CHAPTER 2. STATE OF THE ART 21

• Execution: transactions are executed by a node after the validation
process or when a block is received; the execution of each transaction
causes a state transition.

The Ethereum pricing model

The gasLimit and gasPrice fields are required in invocation transactions
in order adhere to the system anti-DoS (Denial of Service) model: Ethereum
introduces the concept of gas as the fundamental unit of computation. In
other words, each computational step performed by miners costs 1 gas. The
gasLimit field represents how many computational steps the transaction exe-
cution is allowed to take; the gasPrice field represents the fee which the sender
is willing to pay for each computational step. During the actual transaction
execution, if the number of computational steps exceeds the gasLimit value, an
exception is raised and all the side effects of the execution are reverted. In any
case, upon termination, the whole computation cost is computed (gasPrice ·
computational steps taken) and withdrawn from the balance of the transac-
tion issuer. This amount of ether is redeemed by the miner which includes the
transaction in a new block as a reward for its computational effort. Actually,
some computational steps (i.e. bytecode instructions) cost more than 1 gas,
since they are more computationally expensive. A full pricing list can be found
in [21].

This approach is adopted to prevent both accidental and hostile infinite
loops, which would otherwise break the system. In fact, if transactions were
able to trigger infinite computation, a end user may easily succeed in a Denial
of Service attack to the whole Ethereum network by simply deploying and then
invoking some non-terminating smart contract.

Note that miners usually privilege the execution of transactions with higher
gasPrice in order to obtain a greater reward. Thus, end users can adjust
their transactions’ gasPrice depending on their needs: they can set a higher
gasPrice if they want a high chance for their transaction to be executed almost
immediately, or set a lower gasPrice otherwise.

2.2.3 Hyperledger Fabric

Hyperledger Fabric9 is a modular and extensible open-source system for
deploying and operating permissioned blockchains, which supports the exe-
cution of distributed applications written in any programming language [34].
It introduces a novel blockchain architecture aimed at enhancing resiliency,
flexibility, scalability, and confidentiality.

9https://www.hyperledger.org/projects/fabric

https://www.hyperledger.org/projects/fabric

22 CHAPTER 2. STATE OF THE ART

Most of the existing BCTs rely on the so-called order-execute architecture:
a consensus protocol is adopted by peers to order transactions and then each
peer executes all the ordered transactions sequentially. This architecture suffer
from several limitations: (i) the consensus protocol is hard-coded within the
system and cannot be changed according to necessities; (ii) the validity of
transactions is established by the consensus protocol and cannot be adapted
to the application requirements; (iii) within smart-contract-enabled BCTs,
smart contracts must be written in a domain-specific language, which limits
the adoption of the system as it requires extra effort to learn that language;
(iv) the sequential execution of transactions by all peers limits performance.

To overcome these problems, Fabric introduces the execute-order-validate
architecture by separating the transaction flow in three phases, which are per-
formed by different entities within the system.

Fabric Network

In order to adhere to this architecture, a Fabric network is usually composed
by the following modules:

• Membership service provider: this module plays the role of the third-
party entity (i.e. the CA) which deals with identity management within
the system. Thus, it is responsible for associating peers with identities,
maintaining the permissioned nature of Fabric.

• Ordering service: this module is in charge of establishing consensus on
the order of transactions and broadcasting state updates to peers. Thus,
it ensures a total order on all transactions. It consists of a set of nodes
and each one of them is called an ordering service node.

• Peer-to-peer gossip service: its task is to disseminate the updates
published by the ordering service to all peers.

Figure 2.6 depicts a standard Fabric network. Each peer locally stores the
blockchain and the application state is represented through a key-value store.
Furthermore, in Fabric it is possible to create and deploy smart contracts to
handle application logic: they are called chaincodes and run in isolated envi-
ronments (i.e. Docker containers). Each chaincode has to specify an endorse-
ment policy, which must be fulfilled by transactions addressed to it in order for
them to be actually executed. There is a concise set of endorsement policies
from which a chaincode can choose from. In the general case, chaincodes must
specify which or how many peers should endorse the transaction in order for
it to be considered valid.

CHAPTER 2. STATE OF THE ART 23

Figure 2.6: A standard Fabric network. Nodes in the network play one of three roles: client,
peer or ordering service node. Their identities are managed by a federated membership
service provider. Each peer runs multiple chaincodes, represented by the differently shaded
and colored boxes. Source: [34]

Transaction Flow

The adoption of the execute-order-validate architecture splits the transac-
tion flow in the three following phases:

• Execution phase: when an client wishes to interact with a chaincode,
it sign and send a transaction proposal to all the peers specified by the
chaincode’s endorsement policy. These peers are called endorser nodes.
Upon receipt of a proposal, an endorser locally executes it, checking
its correctness. This execution is actually a simulation and does not
persistently update the application state. When the simulation ends, the
endorser signs an endorsement message related to the received proposal,
which contains data about the simulation and its outcome, and sends it
back to the end-user enveloped in a proposal response.

The client collects endorsements until the endorsement policy of the de-
sired chaincode is satisfied. Then, he/she assembles a proper transaction
and sends it to the ordering service. A transaction is made up with a
payload, transaction metadata and a set of endorsement messages.

• Ordering phase: in these phase, the ordering service nodes engage con-
sensus to establish a total order on the submitted transactions, batching
them into blocks.

24 CHAPTER 2. STATE OF THE ART

• Validation phase: blocks are delivered to peers either by the ordering
service or thanks to the peer-to-peer gossip service. Upon receipt, a block
enters the validation phase. First, all the endorsement policies of its
transactions are evaluated in parallel : if the endorsement is not satisfied,
the corresponding transaction is marked as invalid and its effects are not
applied. Subsequently, the block is appended to the local blockchain and
all the valid transactions are executed. Their execution results in a state
update.

Figure 2.7: Fabric transaction flow. The client issues a transaction proposal related to a de-
sired chaincode to one or more endorsing peers. They simulate the execution of the proposal
and reply with endorsement messages. When the client has collected enough endorsements
to satisfy the endorsement policy imposed by the chaincode, he/she creates a proper trans-
action and sends it to the ordering service. The transaction is included into a block, which
is delivered to all peers. Finally, peers validate the block and add it to their local copy of
the blockchain. Source: [34]

Advantages

The adoption of this modular architecture brings several advantages: (i)
the consensus protocol is pluggable, since it is not hard-coded into the system;
as a result, developers can choose the most suitable consensus protocol for
their Fabric system and let the ordering service use it; (ii) the transactions
execution occurs in parallel in the validation process, which makes Fabric reach
a throughput of more than 3500 transactions per second; (iii) chaincodes run

CHAPTER 2. STATE OF THE ART 25

in Docker containers and thus can be written in any programming language;
(iv) the validity of each single transaction is determined by the chaincode
endorsement policy to which it is addressed; this is in contrast with the one-
for-all trust model adopted by other BCTs, such as Ethereum, which could be
too restrictive for some kind of applications.

2.3 Tendermint

Tendermint10 was introduced in 2014 by Jae Kwon as an alternative so-
lution to the blockchain consensus problem [18]. At the time, the core idea
behind it was to provide a consensus protocol which required no proof of work
involved in the mining process and had a high level of protection against dou-
ble spending attacks. In its very first version, the Tendermint software had
a simple currency built in: to participate in consensus, its users had to bond
units of this currency into a security deposit, which would be revoked if they
misbehaved, making Tendermint a Proof-of-Stake algorithm [32].

Through time, Tendermint has evolved to become a general purpose, quo-
rum-based consensus engine. Thus, it is not a fully-operating BCT but rather
a “minimal” core, based on a private blockchain, which developers use to write
their own application.

More specifically, the engine can host arbitrary applications: developers
can write an application, in any programming language, and use Tendermint
to replicate it over several machines in a secure and consistent way, creating
their own BCT. In this scenario, every machine runs a replica of the Tendermint
software and a replica of the application. Tendermint is “secure” in the sense
that it can tolerate up to 1/3 of machines fail in arbitrary ways (i.e. it is
Byzantine Fault Tolerant). It is “consistent” in the sense that every non-faulty
machine sees all the transactions in the same order and computes the same
application state. Note that Tendermint does not impose a fixed representation
of the application state and developers are therefore free to represent it as they
prefer (e.g set of accounts as in Ethereum, key-value store as in Fabric, . . .).

The Tendermint software is made up of two components: a consensus en-
gine, called Tendermint Core, and an application interface, called Application
BlockChain Interface (ABCI). The consensus engine deals with all the aspects
related to blockchain management and peer-to-peer connectivity, delegating
the business logic to the application which developers build on top of it. It
also exposes a set of remote procedure calls (RPCs) which allows end users
to send transactions to it or to query the blockchain/application state. The
application interface establishes a fixed set of messages which Tendermint Core

10https://tendermint.com/

https://tendermint.com/

26 CHAPTER 2. STATE OF THE ART

and the application must use to interact with each other. This approach is in
contrast with the one adopted in other blockchain technologies, such as Bitcoin
and Ethereum, where all the aspects of a decentralized ledger are handled by a
single program. Thanks to that, it is even possible to use Tendermint as a re-
placement for other blockchain consensus engines, as Tendermint’s developers
did for Ethermint11 (Ethereum over Tendermint).

2.3.1 Tendermint Core

Besides the remote procedure calls, Tendermint Core is a Byzantine Fault
Tolerant consensus algorithm. Before describing it, let us take a step back:
in a system employing Tendermint, there is a set of nodes that are connected
to each other in a peer-to-peer network. These nodes relay new information
by gossip and each node keeps a complete copy of a totally ordered sequence
of the events (i.e. transactions) which occurred in the system. This copy is
stored in the form of a blockchain and the consensus protocol is used to update
this shared blockchain in a consistent way among nodes. From the nodes point
of view, transactions have no syntax nor semantics: they are arbitrarily-long
byte arrays. It is a duty of the ABCI application to define the transactions
structure and encoding, and therefore their syntax and semantics.

Each block has its own height (i.e. the number of blocks before it in the
chain) and consists of a header and a body. The header contains metadata
about the block and the consensus, as the number of transactions which com-
poses its body, the block height, the block creation time, and the hash of the
previous block. It also stores the transactions result returned by the appli-
cation via ABCI and some additional hashes which can be used to verify the
identity of nodes that participated in its commitment in the consensus. The
body of a block simply stores all the transactions included in the block along
with the set of votes that committed the previous block.

A node which participates in the consensus is called a validator and is
endowed with a pair of keys. These keys give the validator an identity and
allow it to send signed messages (called votes henceforth) to its peers, as the
algorithm requires. The votes that a validator can create and broadcast are
pre-vote, pre-commit, and commit. A validator has also its own mempool,
where it can store all the transactions sent to it which wait to be included into
a block.

The algorithm is based on a modified version of the DLS protocol [4] and
is used among validators to reach consensus on new blocks. It is round-
based: each round is composed by three steps (i.e. Propose, Pre-vote, and
Pre-commit) along with two special steps (i.e. Commit and NewHeight). For

11https://ethermint.zone/

https://ethermint.zone/

CHAPTER 2. STATE OF THE ART 27

the commitment of the block at height H, there may be more than one round
required to commit that block.

In the beginning of each round, a proposer for the new block is selected
from the set of validators in a round-robin fashion. At this point, the current
round goes through the following steps:

1. Propose: the proposer of this round broadcasts a proposal containing
the new block. If the proposer is locked on a block from some prior
round, it proposes that block along with a proof-of-lock. Proof-of-locks
are created, and thus explained, in the pre-commit step.

2. Pre-vote: in the beginning of this step each validator makes a decision.
If the validator was locked on a proposed block form some prior round, it
signs and broadcast a pre-vote for that block. Otherwise if the validator
had received an acceptable proposal for the current round, then it signs
and broadcasts a pre-vote for the proposed block. If the validator had
received no proposal or an invalid one, it signs a special nil pre-vote. No
locking happens during the pre-vote step.

3. Pre-commit: at this point, if a validator had received more than the 2/3
of pre-votes for a particular block, it signs and broadcasts a pre-commit
for that block. It also locks onto that block, releasing any prior locks. A
node has a lock on at most one block at a time. If the node had received
more than 2/3 of nil pre-votes then it simply unlocks. When locking (or
unlocking) the node gathers the pre-votes for the locked block (or the
prevotes for nil) and packages them into a proof-of-lock for later when
it is its turn to propose. If a node had not received more than 2/3 of
pre-votes for a particular block (or nil), then it does not sign or lock
anything.

At the end of the pre-commit step each validator makes a decision. If
the validator had received more than 2/3 of pre-commits for a particular
block, then the node enters the commit step. Otherwise it continues onto
the propose step of the next round.

4. Commit: in this step the block is committed and the round is finalized,
provided that two parallel conditions are both satisfied. First, the val-
idator that enters this step must receive the block committed by the
network if it had not already. Once the block is received, it signs and
broadcasts a commit for that block. Second, the validator must wait
until it receive at least 2/3 of commits for the block pre-committed by
the network. Once both conditions are satisfied the validator sets its
CommitTime to the current time and switches to the New Height step.

28 CHAPTER 2. STATE OF THE ART

5. NewHeight: before starting the new round at height H, validators enter
this step and waits a fixed amount of time past their local CommitTime.
This wait is meant to gather additional commits for the just committed
block at height H − 1, letting block proposals to include more than the
minimum 2/3 of commits, thus allowing the commits of slower validators
to be included in the blockchain.

At any time during the consensus process, if a node receives more than 2/3
of commits for a particular block, it immediately enters the Commit step if
it had not already. Also, at any time during the consensus process, if a node
is locked on a block from round R but receives a proof-of-lock for a round R′

where R < R′, the node unlocks. The diagram in Figure 2.8 summarizes the
algorithm described above.

Figure 2.8: The Tendermint Core consensus protocol without locking rules. There is a
picture of a couple doing the polka: in the Tendermint jargon a polka is when more than
two-thirds of the validators pre-vote for the same block. Source: [20]

The Tendermint Core is Byzantine Fault Tolerant, which is what it makes it
“secure”. By default, all validators have the same voting power, meaning that
all the votes created and broadcast have the same ”weight” in the consensus
protocol. This could be problem for those systems where there is the need of

CHAPTER 2. STATE OF THE ART 29

different kinds of validators, which are required to have different voting power.
Unfortunately, Tendermint isn’t endowed with its own currency anymore, but
since it can replicate arbitrary applications, it is possible for the developer to
define his/her own currency, and denominate the voting power in that currency.

2.3.2 Application BlockChain Interface (ABCI)

The Application BlockChain Interface allows for Byzantine Fault Tolerant
replication of applications written in any programming language. It essentially
marks the boundary between Tendermint Core (called core henceforth) and
the application written by the developer. The interface defines a fixed set of
messages that the core, acting as a client, sends to the application when some
event occurs (e.g. receipt of a new transaction, commitment of a new block,
. . .) and a set of replies that the application, acting as a server, is meant to
send back to the core.

The primary messages that gets delivered from the core to the application
are:

• InitChain: this is a message sent to the application upon system start.
It contains information about the validators that will participate in the
consensus protocol.

• CheckTx: message meant for validation purpose only. The core sends
this message to the application upon the receipt of a new transaction,
including the transaction in it. The duty of the application is to validate
the transaction against the actual application state according to some
internal logic. For example, the validation of a transaction could include
the check for the progressive number (if any) of the transaction, and
return an error if that number is not the one expected. If the core
receives a positive reply to a CheckTx message, it proceeds to broadcast
the corresponding transaction to its peers. Otherwise, the transaction
is discarded. The application should not update the current state upon
the receipt of a CheckTx message.

• DeliverTx: message meant to deliver a transaction to the application
which has been successfully included into a block. For security reasons,
the application should re-check the validity of the transaction before
actually executing it. With the expression ”executing a transaction”, we
mean updating the current state of the application.

• Commit: the commit message is sent from the core to the application
when the former needs a cryptographic hash of the current application
state, which will be included in the next block header. Thanks to this,

30 CHAPTER 2. STATE OF THE ART

inconsistencies in updating the application states among the replicas will
appear at core level as a blockchain forks, making the validators aware
that something went wrong.

• Query: given a system employing Tendermint, an end user of such sys-
tem can query the core of a certain node to retrieve information about
the application state. When this happens, the core creates and sends a
Query message to the application, which replies with the desired infor-
mation.

Figure 2.9 summarizes the interaction between core and application dic-
tated by ABCI. There are other secondary messages which the core is allowed
to send to the application. A full list, along with a meticulous description, can
be found on Tendermint’s website12.

Tendermint ABCI comes with its primary implementation, the Tendermint
Socket Protocol. By default, it opens three different TCP connections form the
core to the application, called Mempool Connection, Consensus Connection,
and Query Connection.

• Mempool Connection: this connection is used only for CheckTx re-
quests. Transactions, enveloped in CheckTx messages, are sent to the
application in the same order they were received by the core.

• Consensus Connection: once a new block is committed, a series of
messages is sent through this connection. First, a BeginBlock message
is sent to the application, which contains information about the new
block (e.g.: height, previous block hash, . . .). Then a series of DeliverTx
messages is sent, one for each transaction in the committed block, in
order. Note that these messages are received by the application in the
same order they were sent thanks to TCP. This series is followed by a
EndBlock message and, finally, by a Commit message.

• Query Connection: this connection is used to query the application
without engaging consensus. Queries sent from users to the core result in
Query messages that are sent to the application through this connection.

12https://tendermint.com/docs/spec/abci/abci.html

https://tendermint.com/docs/spec/abci/abci.html

CHAPTER 2. STATE OF THE ART 31

Figure 2.9: The core, represented by blocks ”Mempool” and ”Consensus Logic”, interacts
with the application, represented by the block ”Application Logic”, through ABCI. Source:
[20]

Note that, at application level, transaction execution must be determin-
istic. Otherwise, different replicas of the application would reply to Commit
messages with different hashes of the actual application state, breaking the
system consistency. As a consequence, consensus would not be reached among
the core replicas.

Summing up, thanks to this interface developers can write, in a language of
their choice, their own server which follows the ABCI specifications and then
use it to write an application which runs on top of Tendermint. Besides the
one written in Go by Tendermint’s developers, there are already other ABCI
servers available, written in Python13, Javascript14, C++15 and Java16.

13https://github.com/tendermint/tendermint/tree/develop/abci/example/

python3/abci
14https://github.com/tendermint/js-abci
15https://github.com/block-finance/cpp-abci
16https://github.com/jTendermint/jabci

https://github.com/tendermint/tendermint/tree/develop/abci/example/python3/abci
https://github.com/tendermint/tendermint/tree/develop/abci/example/python3/abci
https://github.com/tendermint/js-abci
https://github.com/block-finance/cpp-abci
https://github.com/jTendermint/jabci

32 CHAPTER 2. STATE OF THE ART

2.4 Logic programming

Logic programming is the outcome of decades of research concerning how
inference, the creative process we use to reason and draw conclusions, can be
reproduced and automated with computation, a mechanical process where no
creativity is required.

It is a programming paradigm based on formal logic which is rather different
from others for the concept of computation in the first place: for a given
input (i.e. an expression), computation usually consists in calculating the
corresponding result following a set of fixed rules; within logic programming,
for a given input (i.e. a conjecture), computation consists in searching a proof
to that input in a solution space, following a fixed strategy.

In this section, we provide an introduction to logic programming and show
how smart contracts could benefit from it.

2.4.1 The paradigm

Logic programming has its root in automated deduction and first-order
logic. The former was studied by Kurt Gödel and Jacques Herbrand in the
1930s, whose work can be seen as the origin of the ”computation as deduction”
paradigm. The latter was first introduced by Gottlob Frege and subsequently
modified by Giuseppe Peano and Bertrand Russell throughout the second half
of the 19th century.

These works led Alan Robinson, in 1965, to the invention of a resolution
principle based on the notion of unification [1], which makes it possible to prove
theorems of first-order logic and thus compute with logic. The final steps to-
wards logic programming were made in the 1970s by (i) Robert Kowalski, who
introduced the notion of logic programs with a restricted form of resolution,
compared to the one proposed by Robinson, as a feasible proof search strategy
[2]; (ii) Alain Colmerauer and its team, who worked on a practical realization
of the idea of logic programs, giving birth to Prolog.

The Logic programming paradigm can be summarized by the following
three features [9]:

1. Terms: Computing takes place over the domain of all terms defined over
a “universal” alphabet.

2. MGU: Values are assigned to variables by means of automatically-
generated substitutions, called most general unifiers. These values may
contain variables, called logical variables.

3. Backtracking: The control is provided by a single mechanism, called
automatic backtracking.

CHAPTER 2. STATE OF THE ART 33

The universal alphabet is composed by variables, function symbols (or func-
tors), parenthesis, and the comma symbol. A term is defined as follows: (i) a
variable is a term; (ii) a functor with arity 0, called constant, is a term; (iii)
if f is a n-ary functor (or functor of arity n) and t1,. . . ,tn are terms, then
f(t1,...,tn) is a term. Terms which include no variables are ground terms ;
variables and constants are atomic terms, while terms built out of functors are
structured terms. In general, terms have no a priori meaning: each one of them
can be associated to a domain-specific entity by means of pre-interpretation.

Let us explain terms with the following examples: the variable X is an
atomic term; the constant a is a atomic and ground term; given the functor
f of arity 2, f(a,X) is a structured term; given another functor g of arity 3,
g(X, f(a, X), a) is also a structured term.

Variables are non-initialised at first and they can be assigned one of all the
possible terms. Assignments of a term to a variable are called substitutions.
The notation:

{X1/t1, . . . , Xn/tn}
denotes a substitution, which assigns term ti to variable Xi, for 1 ≤ i ≤ n.
Referring to the examples above, if we apply the substitution {X/t(c, Y)} to
term g(X, f(a, X), a), we obtain g(t(c, Y), f(a, t(c,Y)), a).

Given two terms, a substitution which makes them equal (if any) is called
unifier. Thus, in logic programming, unification is the process of solving an
equation between terms. This process adheres to a simple set of rules: (i) two
non-initialised variables X and Y unify with the substitution X/Y; (ii) two
constants unify if and only if they are the same constant; (iii) two structured
terms unify if and only if they have the same functor and arity, and their terms
unify recursively.

The least constraining unifier is called most general unifier (mgu). For
example, given the expression

g(a, Y) = g(X,Z)

the substitution {X/a, Y/Z} represents the mgu and is less constraining than
substitutions {X/a, Y/b, Z/b} and {X/a, Y/a, Z/a}.

In logic programming, atomic actions are equations between terms, which
are executed through the unification process. In other words, the unification
process is the basic operation on which the proof-search strategy relies to
check whether a proof to a given conjecture has been found or not. As stated
before, the proof-search strategy employed in logic programming is the one
proposed by Kowalski, known as SLD-resolution principle. So, in order to
understand how computation works in its entirely, in the following section
we briefly explain how the SLD-resolution principle works, after a short but
necessary introduction to Horn Clauses.

34 CHAPTER 2. STATE OF THE ART

2.4.2 Horn clauses and the SLD-resolution principle

In logic, sentences are called prepositions, which can be written through
predicates. Predicates are essentially structured terms and, in logic, are called
atoms : if p is a predicate symbol of arity n and t1,. . . ,tn are terms, then
p(t1,...,tn) is an atom.

If the literal A is an atom then the logical formula “A” states that A is true,
while “¬A” states that A is false. Literals can be combined through logical
connectives to build more complex logic formulas. If A and B are literals, they
can be combines through : conjunction (e.g. A ∧ B, both A and B are true);
disjunction (e.g. A ∨ B, either A or B is true); implication (e.g. A → B, if A
is true then B is true); equivalence (e.g. A ↔ B, A is true if and only if B is
true).

A logic clause is a finite disjunction of literals. Given n literals A1,. . . ,An

and m literals B1,. . . ,Bm, the formula

A1 ∨ . . . ∨ An ∨ ¬B1 ∨ . . . ∨ ¬Bm

is a logic clause with n “positive” literals and m “negative” literals, which is
often written as

A1, . . . , An ← B1, . . . , Bm

A conjunction of logic clauses is called a Clausal Normal Form (CNF).
Finally, Horn clauses are logic clauses with at most one positive literal. One

example of them is represented by definite clauses, which are logic clauses with
exactly one positive literal (e.g. A← B1, . . . , Bm). Furthermore, there are two
kinds of definite clauses: unitary clauses, which have no negative literals (e.g.
A ←) and definite goals, which have no positive literals (e.g. ← B1, . . . , Bm).
Both of them are Horn clauses too.

We are interested in Horn clauses since the SLD-resolution principle works
as follows: given a logic program P written as a CNF of Horn clauses and a
formula F, it shows that it is possible to compute (by contradiction) whether P
logically entails F. So, in order to exploit it, logic programs are written as CNF
of Horn clauses. In a logic program, definite clauses are called rules, unitary
clauses are called facts and definite goals are simply called goals. Rules and
facts make up the “source code” of a logic program, while goals represents the
input that must be proven.

The SLD-resolution principle, as the one proposed by Robinson, proceed
by contradiction: it negates the formula F and succeeds if it fails to prove it
against the program P. To prove a goal G with respect to a program P, the
principle works as follows:

1. It looks for a logic clause in P whose head (i.e. the positive literal) unifies
with G.

CHAPTER 2. STATE OF THE ART 35

2. There are three possible outcomes to this search:

2.1 → no clause could be found: in this case the resolution fails.

2.2 → a rule R of form A ← B1, . . . , Bm is found: being θ the mgu of
G and R, then the proof of G succeeds, and is represented by Gθ, if it
is possible to further prove the sub-goals B1θ . . . Bnθ, where Biθ is the
application of θ to Bi. Thus, these sub-goals represent now the current
goal.

2.3 → a fact F is found: being θ the mgu of G and F, no sub-goals are
added to the current goal and the solution is represented by Fθ.

3. If the current goal is empty, the resolution ends successfully (SLD refuta-
tion). Otherwise, a selection rule is adopted to choose the next sub-goal
to prove, starting back from point 1. If the current goal never gets emp-
tied, the resolution does not terminate.

Furthermore, resolution relies on automatic backtracking : at a given point
τ in the resolution process, for the current goal/sub-goal G there could be more
than one clause in the program whose head matches with it; after choosing one
of them, if the resolution of the related sub-goals fails, the process automat-
ically backtracks to point τ , where another clause is chosen. Backtracking is
performed until at least one “candidate” clause is still present.

The SLD-resolution principle is often called a “proof search” because of
its non-deterministic nature: as just stated, while looking for a clause in the
program P, there could be more that one whose head matches with the current
goal (or-nondeterminism); furthermore, non-determinism occurs when the res-
olution process has to choose the next goal to prove among several sub-goals
(and-nondeterminism). The way these forms of non-determinism are dealt
with represents how the proof-search proceeds in the solution space.

2.4.3 Prolog, strengths and weaknesses

Prolog is a programming language which allows to write logic programs.
An example of logic program is as follows:

% Some facts.

% manuela is a parent of alfredo

% manuela is a parent of laura

% ...

parent(manuela, alfredo).

parent(manuela, giovanni).

parent(dino, manuela).

parent(laura, manuela).

36 CHAPTER 2. STATE OF THE ART

% A rule.

% X is a grandparent of Z if X is a parent of

% some Y AND this Y is a parent of Z.

grandparent(X, Z) :- parent(X, Y), parent(Y, Z).

Listing 2.1: An example of logic program in Prolog. Lines starting with “%” are comments.
The implication symbol (←) is replaced by the symbols “:-” and the syntax requires for each
clause to be ended with a period (i.e the character “.”). Recall that clauses have no a priori
meaning attached, but one can assign a meaning to them by pre-interpretation.

There are several implementations of these language, such as SWI-prolog17

and tuProlog 18. They serve as logic engines, allowing programmers to write
logic programs and submit goals to them. When a goal is submitted, the SLD-
resolution process starts, resulting in a goal proof or a resolution failure. For
example, submitting the goal parent(dino, X) to the above program using
tuProlog gives the following output:

yes.

X / manuela

Solution: parent(dino,manuela)

Listing 2.2: The solution to goal parent(dino, X) submitted to the logic program displayed
in Listing 2.1. The goal can be interpreted as “is there someone whose parent is dino?”.
The answer is yes: dino is a parent of manuela.

Summing up, on the one hand logic programming and logic programs have
the following advantages:

• Declarative programming: the paradigm allows for declarative pro-
gramming, that is, programming through sentences which declare what
to compute. The how is delegated to the underlying logic engine. Declar-
ative programs are usually more concise and easier to understand than
procedural programs, which are written through operational statements
which declare directly how to compute.

• Interactive programming: the paradigm supports interactive pro-
gramming. Users can write logic programs and then interact with them
by means of queries (i.e. submission of goals).

• Meta-programming: many of the Prolog implementations support
meta-programming. Given a logic program, it is possible to submit

17http://www.swi-prolog.org/
18http://apice.unibo.it/xwiki/bin/view/Tuprolog/WebHome

http://www.swi-prolog.org/
http://apice.unibo.it/xwiki/bin/view/Tuprolog/WebHome

CHAPTER 2. STATE OF THE ART 37

queries which add or subtract clauses to/from the source code of the
program as a side-effect.

Examples of these queries are assert(Clause), which causes the addi-
tion of Clause to the program, and retract(Clause), which cause the
deletion of Clause from the program, if present.

On the other hand, they suffer from the following disadvantage:

• Inefficiency: despite several adopted optimizations, modern Prolog im-
plementations are usually slower and thus less efficient than other pro-
gramming languages or paradigms. This is mostly due to the declarative
nature of logic programs and the proof-search strategy required by the
resolution process. In most cases, searching for a proof in a solution
space is much more computationally-expensive than straight-forwardly
executing a procedural program.

• Hard to debug: logic programs are very hard to debug because of their
lack of typing. Furthermore, it is very difficult to apply clean code rules
to programs.

2.4.4 Logic-based smart contracts

The logic programming paradigm could be employed in the context of
BCTs, rethinking smart contracts as logic-based entities [35]. For example,
the EVM could be replaced with a logic engine, allowing end users to express
smart contracts as logic programs. In this scenario, invocation transaction
could be rethought as well to include a goal. This goal would be submitted to
the target smart contract as a query to its source code.

On the one hand, end users would benefit from the declarative nature of
logic programming, which could ease the development of smart contracts as
well as the comprehension of their source code. Furthermore, logic program-
ming would enhance the inspectability of smart contracts’ source code. Since
Prolog is an interpreted language, logic program could be directly deployed
on the blockchain without the need of compilation and subsequently inspected
seamlessly. Finally, meta-programming could also be employed as a means
to change smart contracts’ source code over time. This would allow for bug
fixes and updates of the source code. More in detail, smart contracts could be
endowed with both a static knowledge base (KB) containing immutable rules
and facts, and a dynamic knowledge base containing rules and facts subject
to change through meta-programming, allowing for a controlled mutability of
their source code.

38 CHAPTER 2. STATE OF THE ART

On the other hand, the adoption of logic programming would come with
the cost of inefficiency, causing the execution of invocation transactions to be
less performing.

Summing up, if system performance is not a critical requirement, the adop-
tion of logic programming could be used as a viable alternative to existing ap-
proaches for smart contracts management, benefiting from all the advantages
describe above.

Chapter 3

Vision

In this chapter, we focus on the concept of proactive smart contracts, paving
the way towards the realization of a system meant to support their execution.
In section 3.1 we discuss the idea behind this work, providing a description for
proactive smart contracts and our goal. In section 3.2, we list the requirements
of the system we wish to realize, along with a glossary in section 3.3 for clarity
purposes. In section 3.4, we provide a set of scenarios in order to better
understand the system dynamics, and we finally carry out a feasibility study
in section 3.5, producing a first logic architecture of the system.

3.1 Idea

As explained in section 2.2, smart-contract-enabled BCTs allow for the
creation and the deployment of smart contracts; end users can interact with
them by publishing transactions and, in some BCTs, smart contracts can in
turn synchronously send messages to other contracts.

Referring to Ethereum, let us observe what follows:

• No proactivity: smart contracts are essentially OOP objects. They
are endowed with their own internal state and transactions issued to
them can be conceived as remote method invocations. They encapsulate
no control flow and the one that executes their code actually originates
from the transaction issuer. In other words, smart contract are passive
entities and the interaction with them is strictly data-driven, since they
do nothing until a transaction is issued to them.

• Messages 6= Transactions: messages differ from transactions since
they are not provided with a digital signature and their interaction model
is always synchronous; as depicted in Figure 3.1a, after sending a mes-
sage smart contracts must wait for a response before proceeding with

39

40 CHAPTER 3. VISION

execution. On the one hand, the lack of signatures is not a problem,
since end users are not able to forge messages by design: messages exist
only within the Ethereum system. On the other hand, the synchronous
nature of messages prevents smart contracts from performing any kind
of asynchronous interaction. As a result, smart contract are forced to
wait for responses to their messages even when they are not interested
in them.

• Irreversible deployment: since smart contracts are deployed on the
blockchain, their source code results immutable. This matter has two im-
portant consequences: code errors cannot be fixed/updated and smart
contracts cannot be eliminated, since both operations would require to
modify the block where their source code is stored, invalidating the
blockchain integrity. This leads to the presence of buggy smart contracts
on the blockchain which soon fall into disuse after their deployment.

Among these issues, the passive nature of smart contracts is the most
limiting one. Because of it, smart contracts cannot perform periodic tasks,
such as simple periodic payments in cryptocurrency-oriented BCTs, or react
to events which occur within the system, such as the publication of transactions
which are not addresses to them. More generally, they cannot play an active
role in the execution of the terms of a physical contract.

Our goal is to overcome these problems. Thus, the core idea behind this
work concerns both the study and the design of proactive smart contracts and
the implementation of a BCT which supports them as a proof-of-concept. With
respect to smart contracts, by the term “proactive” we refer to (i) the ability to
perform computation even without external stimuli ; (ii) the ability to interact
with other smart contracts asynchronously, as depicted in Figure 3.1b; (iii) the
ability to be reactive to time and to transaction issued to them. Furthermore,
our aim is to allow end users of the system to modify the source code of
smart contracts over time, in a secure and controlled way. In the next section,
we formalize our idea in a detailed description of both functional and non-
functional requirements which the system must fulfil.

3.2 Requirements

The system must be realized following the general architecture of modern
BCTs; thus, it must consist of a set of nodes connected to each other in a
peer-to-peer network and rely on a public or private blockchain to provide its
functionalities in a distributed fashion. End users interact with the system
by means of messages called transactions or queries. The former are used to

CHAPTER 3. VISION 41

(a) Synchronous message (b) Asynchronous message

Figure 3.1: Sequence diagrams depicting the possible interaction models of smart contracts’
messages.

interact actively with the system, changing it’s state; the latter are used only
to retrieve information about the current state of the system.

3.2.1 Functional requirements

Nodes: the system nodes must continuously listen for incoming transactions.
Each node must store a copy of the blockchain and participate in a consensus
algorithm to update it consistently along with its peers. The blockchain must
be used to store transactions published by end users. When a transaction
is received, a node must relay it to its peers, spreading it over the network.
Nodes are also in charge of executing transactions. As soon as a new block
is committed to the blockchain, each node must execute all the transactions
included in the block.

Furthermore, nodes must continuously listen for incoming queries. When
a query is received, a node must reply with the desired information. Queries
must allow end users to retrieve a list of all the existing smart contracts or
retrieve the source code of a desired smart contract.

Smart contracts management: the system must act as an execution en-
vironment for smart contracts and enable end users to create, invoke, update
and destroy them by means of transactions. More specifically:

• The system must support the execution of four different types of transac-
tion, which end users are allowed to publish. These types are (i) creation

42 CHAPTER 3. VISION

transactions, used to create a smart contract; they contain the source
code of the smart contract and the initial operation that the smart con-
tract must perform upon its creation (if any). They also specify whether
the interaction with the newly smart contract should be free (i.e. ev-
eryone can invoke it) or restricted (i.e. it can be invoked by the creator
only); (ii) invocation transactions, used to invoke a smart contract; they
contain the operation to be invoked with respect to a desired smart con-
tract; (iii) update transactions, used to update the source code of a smart
contract; they include the operation to be either added or removed from
the source code of the desired smart contract; (iv) destruction transac-
tions, used to destroy a smart contract.

• The system must regulate the execution of smart contracts’ operations
in order to correctly manage non-terminating computations.

• The system must prevent the execution of non-deterministic code, in
order avoid the creation of inconsistencies among nodes. Thus, the exe-
cution of smart contracts’ operations must be strictly deterministic.

Smart Contracts: smart contracts can be created and destroyed by end
users by means of creation transactions and destruction transactions respec-
tively. Furthermore, they must:

• Encapsulate their own state and expose a set of operations which can be
invoked through invocation transactions.

• Be able to perform an operation specified by the creator when they are
started.

• Be reactive to transactions which are addressed to them.

• Be reactive to time and thus be able to support the postponed execution
of operations as well as the periodic execution of operations.

• Be able to send proper invocation transactions asynchronously to other
smart contracts.

3.2.2 Non-functional requirements

Accountability: for each transaction, the system must keep track of the
entity, either end user or smart contract, that published it. This non-functional
requirement is aimed at identifying system attackers or faulty entities.

CHAPTER 3. VISION 43

Security: before being included into blocks, transactions must be validated.
They must satisfy both the properties of authenticity and integrity ; more pre-
cisely, for a given transaction the system must verify if the alleged issuer
corresponds to the claimed one and if its content hasn’t been altered. If a
transaction does not fulfil this properties, it must be discarded.

Furthermore, the system must adhere to the following policy in order to
properly regulate interactions with smart contracts: (i) every end user can
create smart contracts; (ii) a smart contract can be updated and destroyed by
its creator only; (iii) a smart contract can be invoked by its creator only if the
interaction with it is restricted, or by everyone otherwise.

Finally, the system must prevent a transaction from being executed more
than once.

3.3 Glossary

For the sake of clarity, in this section we provide a description for each
term or phrase that could result ambiguous or too vague in this context.

Term/Phrase Meaning
Entity Either a smart contract or

an end user.
Operation A piece of smart contracts’

code that can be object
of computation, such as a
function or a logic predi-
cate. We use this term to
abstract away from any pro-
gramming paradigm.

Periodic operation An operation which is exe-
cuted periodically at a fixed
time rate once invoked.

Delayed operation An operation which is ex-
ecuted with a specific de-
lay with respect to when in-
voked.

To publish a transaction The act of sending a trans-
action to a node of the sys-
tem.

44 CHAPTER 3. VISION

3.4 Scenarios

Scenario 1 : an end user writes the source code of a smart contract that
he/she wishes to create. The source code consists of a set of operations which
can be invoked. Then, he/she packages the source code in a creation transac-
tion, specifying an operation to be executed from the smart contract upon its
creation. The transaction is issued to a node of the system. The node checks
its validity (i.e. if the transaction satisfy both the properties of authenticity
and integrity); if the transaction is valid, the node relays it to its peers. Oth-
erwise, the transaction is discarded. In the former case, the transaction will
be eventually included into a block and thus executed by each node, causing
the creation of a new smart contract. When created, the smart contract will
execute the operation specified by its creator.

Scenario 2 : an end user wishes to invoke an already created smart contract.
First, he/she sends a query to one node of the system in order to retrieve and
consult the source code of the desired smart contract. Then, he/she packages
the operation that he/she wishes to invoke into an invocation message, sending
it to a node. The transaction will be eventually included into a block if it is
valid and if the issuer is allowed to interact with the smart contract. When
the transaction is executed, the target smart contract executes the operation
specified in the transaction.

Scenario 3 : an end user wishes to create a smart contract and make it
executing an operation periodically, i.e, once every X seconds. First, he/she
writes the source code of the smart contract including the periodic operation in
it. Second, he sends a proper creation transaction to a node and waits for the
smart contract to be created. Third, he packages the periodic operation into
an invocation transaction for that smart contract and sends the transaction to
a node. When the transaction will be executed, the smart contract will start
to execute that operation periodically.

Scenario 4 : an end user wishes to update an already created smart contract.
He/she packages the operation to be added or removed from the source code
of the smart contract into an update transaction, sending it to a node. In this
case, the transaction will be eventually executed if it is valid and if the issuer
is the creator of the smart contract. The same logic applies to destruction
transactions.

CHAPTER 3. VISION 45

3.5 Problem analysis

In this section we study the problems arising from the requirements, car-
rying out a feasibility study in subsection 3.5.1; subsequently, we draw a first
logic architecture of the system in subsection 3.5.2.

3.5.1 Feasibility study

In order to rely on a shared, replicated blockchain and update it consis-
tently over time, nodes have to employ a consensus algorithm. As explained
in subsection 2.1.2, the type of blockchain affects the choice of the consensus
algorithm. Since there are no requirements regarding performance and scala-
bility, the system could rely on either a public or private blockchain, adopting
the most appropriate consensus algorithm. After this premise, we analyse the
system requirements providing possible solutions for their fulfilment.

Node responses: end users interact with the system by means of messages
called transactions and queries. This interaction is clearly of type request-
response. End users send messages to nodes which replies accordingly. The
requirements establish how nodes should reply to queries, being vague on how
and when they should reply to transactions. As a result, nodes could reply to
a transaction at different times, that is, (i) when the transaction is received,
(ii) when the transaction is validated, or (iii) when the transaction is included
into a block and thus executed.

Transaction security: The system must ensure both authenticity and in-
tegrity of transactions. This can be reached by following the approach adopted
by other BCTs, that is, through asymmetric cryptography. End users must
be provided with a pair of cryptographic keys and sign transactions with their
own private key. Upon the receipt of a transaction, nodes can verify the sig-
nature with the public key of the issuer before sending it to their peers and
including it into a block. Since smart contracts must be able to send transac-
tions as well, it is necessary for them to be provided with a pair of keys too.
Unfortunately this is not possible; we cover this matter later.

Identities: within the system, each entity must be endowed with a unique
identity. Every transaction sent to nodes must contain the identity of the issuer
for accountability purposes. The representation of identities is affected by the
type of blockchain which will be employed by the system. Let us examine the
two possible cases.

46 CHAPTER 3. VISION

• A public blockchain is adopted. In this case, end users would generate
their own identities. Thus, it would not be possible to rely on representa-
tions such as nicknames. This is because different end users could choose
the same nickname as their identity, preventing the system to uniquely
identifying them. For a given end user, his/her identity could be repre-
sented by his/her public key, its hash, or another unique identifier (such
as UUIDs).

• A private blockchain is adopted. In this case, the system would include a
CA in charge of dealing with identity management. End users’ identities
could be generated by either end users themselves or by the CA. In both
cases, these identities would need to be enveloped in a certificate released
by the CA to end users in order to be considered valid. In their transac-
tions, end users would include both their identity and certificate. With
this approach, the system would have total control on all the identities.
Thus, end users could be identified through a nickname, a progressive
number, a UUID, or through their public key.

In both cases, smart contracts’ identities would be generated and controlled by
the system. They could be created according to a fixed strategy. For example,
the identity of a smart contract could be represented by a simple progressive
number, a nickname, or be generated by combining the issuer’s address with
a progressive number and computing the hash such a combination. In case a
private blockchain is adopted, smart contracts would have to be provided with
a certificate for their identity in order to properly send transactions. Otherwise,
end users could pretend to be a smart contract and forge a transaction without
certificate, which would be considered valid.

Smart contracts: The system must allow for the update and destruction
of smart contracts. As a consequence, smart contracts’ source code cannot be
stored on the blockchain since it would be immutable. Thus, it is required for
the system to store source codes at the application level in order to modify
or delete them. Furthermore, there are no restrictions on the programming
language to adopt for the development of smart contracts. This means that
they could be written either with a compiled or an interpreted programming
language. In the first case, it would be necessary to follow an approach à la
Ethereum, providing every node with a compiler for the chosen language and
eventually a virtual machine for interoperability purposes. An update to the
source code of a smart contract would require to re-compile it, leading to the
loss of the smart contract’s internal state. In the second case, it would be
necessary to provide every node with an interpreter for the chosen language.

CHAPTER 3. VISION 47

Updates to the source code would not require to compile it again, preventing
state losses.

Non-determinism: The system must prevent smart contracts from exe-
cuting non-deterministic code. Smart contracts can possibly execute non-
deterministic code if the language employed for their writing supports non-
deterministic computation. Thus, this issue could be solved by (i) creating
(and adopting) a new language with no support for non-deterministic com-
putation; (ii) modifying (and adopting) any programming language in such a
way to remove support for non-deterministic computation; (iii) adopting any
programming language with no restrictions; in this last case, nodes should
inspect both creation and update transactions, invalidating them if any non-
deterministic operation is found.

Non-terminating computation: The system must deal with infinite loops
that could occur when a smart contract is executing some operation. To solve
this problem, the system could follow the approach adopted by Ethereum,
that is, employing a pricing model. Nonetheless, this approach would strictly
require the presence of a native cryptocurrency. Another solution would be to
allocate a limited amount of time T for the execution of each operation. In
this case, for a given invocation transaction the nodes could either

• simulate the execution of the operation it contains before including it into
a block. If the execution time exceeds the amount T, the transaction is
marked as invalid and thus discarded.

• normally execute the operation contained in it when it is included into a
block. If the execution time exceeds the amount T, nodes revert all the
side effects caused by the execution.

Reactivity to time: smart contracts must be reactive to time. This means
that they must be time-aware in the first place, that is, be provided with a
notion of time. Since every smart contract is replicated over the system nodes,
the presence of a shared, global time is crucial in order to avoid inconsistencies
between a smart contract and its copies. For example, let us suppose what
follows: an end user issues an invocation transaction to a smart contract, which
cause it and all its copies to schedule the execution of an operation at a certain
point in time. In this scenario, if nodes do not share the same time zone and
the copies of the smart contracts relies on the node’s local time, the scheduled
operation would end up being executed at different times in different nodes,
leading to inconsistencies of the global application state. Since the system

48 CHAPTER 3. VISION

relies on a blockchain, blocks timestamps could be used as a solution to this
problem. Smart contracts could use the timestamp of the most recent block as
a shared and synchronized global time, which gets updated every time a new
block is added to the chain.

Smart contracts’ asynchronous interaction: smart contracts must be
able to interact asynchronously with other contracts by means of proper trans-
actions. As stated before in this section, transactions must be endowed with
a signature in order to be validated properly. To adhere to this requirement it
could be possible to:

• Provide smart contracts with cryptographic keys. In this case, they
would sign transactions as end users do. Nevertheless, the creation of
these keys represents a problem when performed within the system.
This is because most cryptographic schemas rely on sources of non-
determinism to generate keys. As explained in subsection 2.2.2, the
execution of code must be strictly deterministic, making this approach
invalid. As a workaround, the task of creating keys for a smart contract
could be delegated to the end user that wishes to create it. This approach
would be invalid too, because end users would have to include the key
pair in their creation transaction, exposing the private key to everyone.
Furthermore, smart contracts would not be able to securely store their
private key, as their source code and storage are public.

• Rely on transaction hash chains. In this case, transactions sent by smart
contracts would not be endowed with a signature but rather with a
hash pointer to the transaction which caused their creation. Assuming
that smart contracts send transactions only when invoked, this approach
would cause every transaction issued by a smart contract to be a part of
a tamper-proof hash chain in which the first transaction is always issued
by an end user.

To validate transaction with no signature, nodes would need to traverse
its chain up to the the origin, that is, until a transaction issued by an end
user is found. The validity of such transaction would assert the validity of
the ones with no signature. Although this approach would allow smart
contracts to be freed from cryptographic keys, it presents two major
flows. First, smart contracts would not be allowed to send transactions
on their own, since they would need to include an hash pointer to a
transaction they do not have. Second, with this approach a malicious
end user could pretend to be a smart contract by forging a transaction
with no signature and setting its hash pointer to any already validated

CHAPTER 3. VISION 49

transaction, forming a two-transaction chain. Since the first transaction
of the chain is valid, the forged one would be considered valid as well.

• Provide nodes with cryptographic keys. In this case, nodes would be in
charge of signing transactions which smart contracts wish to send. These
transactions would then be validated in the same way as those sent by
end users.

Nonetheless, a malicious end user could pretend to be a smart contract
and forge a transaction by signing it with his/her own private key. When
receiving a forged transaction, nodes would not be able to verify if the
signature has been made by a node or by a malicious end user. This issue
could be solved by relying on a private blockchain, introducing a CA in
the system. In such case, certificates issued by the CA would (i) assert
the identity of the owner, (ii) assert the validity of a public key, and (iii)
assert the nature of the owner (i.e. either node or end user). Following
this approach, transactions would be endowed with both a signature and
a certificate. For transactions issued by end users, the signature would
be made by end users themselves. For transactions issued by smart
contracts, the signature would be made by nodes. Transaction sent by
a smart contract would be valid if endowed with a valid signature and
a certificate which asserts that the signatory is a node. Note that this
approach does not require to assign certificates to smart contracts.

Smart contracts’ synchronous interaction: smart contracts are not able
to interact synchronously with each others. This prevents smart contracts to
wait for a response to a previously sent transaction when needed. A form
of synchronous interaction could be implemented introducing a new type of
transaction, namely, acknowledgement transactions, and using them as follows:
if a smart contract A sends an invocation transaction to a smart contract B,
then B executes the operation contained in the transaction and asynchronously
sends an acknowledgement transaction back to A, containing the result of the
operation.

3.5.2 Logic architecture

The most critical issue which arises from subsection 3.5.1 is the one related
to signatures in smart contracts’ transactions. The feasibility study showed
that the only viable solution to this problem consists in relying on a private
blockchain and on the presence of a CA, allowing nodes to properly sign smart
contracts’ transactions.

50 CHAPTER 3. VISION

The need of both a CA and asymmetric cryptography for the validation
of transactions makes it possible to define a logic architecture of the system
in terms of structure, interaction end behaviour. The subjects involved in the
system are:

• End users: they are external to the system and must be provided with a
pair of cryptographic keys and a certificate issued by the CA in order to
be allowed to interact with the system. End users are able to (i) create,
invoke, update, and destroy smart contracts by means of transactions
and (ii) retrieve information about smart contracts through queries.

• Nodes: they make up the system, forming a peer-to-peer network.
Nodes are in charge of (i) managing the blockchain, (ii) providing an
execution environment for smart contracts, and (iii) serving transac-
tions and queries. Furthermore, they must be provided with a pair of
cryptographic keys and a certificate issued by the CA to properly sign
transactions on behalf of smart contracts.

• Smart contracts: they are deployed by end users and invoked by means
of invocation transactions. Thus, they are reactive to transactions issued
to them and reactive to time as well. They are able to asynchronously
send transactions to other smart contracts.

• Certification Authority (CA): it is a trusted component within the
system which is in charge of dealing with identity management. More
specifically, it releases certificates to end users and nodes. Given a cer-
tificate, it is possible to assert whether the owner is a end user or a
node.

Figure 3.2 depicts the logic architecture of the system. End users and
nodes must send a request to the CA in order to obtain a certificate. Upon the
receipt of a request, the CA asserts the nature of its issuer, creates a proper
certificate, and sends it back to the issuer. Thus, both end users and nodes
communicate with the CA through request-response interactions.

Since nodes are linked in a peer-to-peer network, they relay transactions
and blocks to their peers by means of message passing interactions too.

The requirements do not describe the interaction between nodes and smart
contracts which occurs when an invocation transaction is received. They could
communicate through message passing or method calling, depending respec-
tively on the active or passive nature of smart contracts.

CHAPTER 3. VISION 51

Figure 3.2: The logic architecture of the system. Nodes are linked in a peer to peer network.
Every smart contract (SC) is replicated over the nodes. End users interact with the system
by means of transactions and queries. Nodes and end users must request a certificate to
the CA in order to be provided with a valid identity. In addition to smart contracts, each
node stores a copy of the blockchain, which has not been included in the figure in order to
preserve its readability.

Chapter 4

Design

After the previous chapter, where we established a set of requirements
an analysed the deriving problems, we now focus on the system design. In
section 4.1 we establish a general architecture of the system after discussing
our design choices. In section 4.2 we describe in detail each component of such
an architecture.

4.1 Architectural design

In this section we discuss our design choices, taken after the considerations
carried out with the feasibility study in subsection 3.5.1. As a result, we subse-
quently refine the logic architecture of the system proposed in subsection 3.5.2,
focusing on the interaction between components.

4.1.1 Design choices

During the feasibility study carried out in subsection 3.5.1, a couple of de-
sign choices were taken in advance to fulfil two system requirements. More
precisely, asymmetric cryptography must be adopted in order to assert both
authenticity and integrity of transactions and the introduction of a certifica-
tion authority is necessary to make it possible for smart contracts to send
proper invocation transactions. Furthermore, the security requirements im-
plicitly split the transaction flow in different phases. When a transaction is
received by a node, it enters the validation phase, which is aimed at verify-
ing both its signature and certificate and validating it against the transaction
policy. When this phase ends, the transaction gets discarded if it is not valid.
Otherwise, the transaction enters the broadcast phase, where it is spread from
the node to its peers. Eventually, the transaction will be included into a block.

53

54 CHAPTER 4. DESIGN

At this point, the execution phase begin and the transaction is executed by all
the peers.

With respect to the remaining requirements, the feasibility study showed
different approaches which can be adopted to satisfy them. We now describe
our design choices, providing a motivation for each on of them.

Identities: since a private blockchain is adopted and identities must be cer-
tified by the certification authority, their representation can be chosen at will.
Among the representations listed in subsection 3.5.1, none of them offers par-
ticular advantages with respect to the others. Thus, we decide to represent
identities as follows1:

• The identities of end users and nodes are represented by the crypto-
graphic hash of their public key. Given an hash function H(·) and the
public keyKpublic, the corresponding identity is represented by “H(Kpublic)”.

• Smart contract identities are represented by the letters sc followed by the
cryptographic hash of the combination between the creator’s identity
and a progressive number. Given an hash function H(·), the creator’s
identity ID, and a progressive number n, the identity of a smart contract
is represented by “sc+H(ID + n)”.

Certificates and roles: the identities of end users and nodes must be cer-
tified by the CA through certificates. Furthermore, given a certificate, it must
be possible for a node to determine if the owner is either a end user or a node,
in order to detect forged transactions. To make this possible, we introduce the
concept of role within the system. We establish two roles to be included into
certificates, namely, “node” and “user”. In order to obtain a certificate, end
users and nodes send their public key to the CA, which replies with a signed
certificate containing the issued public key, the related identity, and a role.
Quite obviously, the CA assigns the role “node” to nodes and the role “user”
to end users. Smart contracts do not need a certificate since they borrow the
nodes’ one when they wish to send a transaction.

Security enhancements: since roles are employed to detect forged trans-
actions, we decide to exploit them to grant a finer management of interactions
with smart contracts. More precisely, we adopt a RBAC policy in order to reg-
ulate smart contracts invocations. Creation transactions will no longer specify
the kind of interaction with respect to the newly smart contract (i.e. free or

1The symbol “+” is the concatenation operator between strings and the formalism H(X)
denotes the cryptographic hash of X obtained through the hash function H(·).

CHAPTER 4. DESIGN 55

restricted), but rather a role, which establishes who is allowed to invoke it. If
the specified role is “user”, only end users will be allowed to invoke the smart
contract. Similarly, if the specified role is “node”, only other smart contracts
will be allowed to invoke the smart contract. In order to preserve the “all-
or-nothing” policy of the free/restricted approach, we introduce two dummy
roles, namely, root and any. If a creation transaction includes the former, no
one will be allowed to invoke the newly smart contract except for its creator.
If a creation transaction includes the latter, everyone will be allowed to invoke
the newly smart contract. Furthermore, the root role can be used for the cre-
ation of proper certificates for system administrators, granting them full access
to the system. Thus, we redefine the overall interaction as follows: (i) every
transaction must be endowed with a valid certificate in order to be accepted
and processed by nodes; (ii) everyone can create smart contracts; (iii) a smart
contract can be updated and destroy by its creator and by system adminis-
trators; (iv) invocations of a certain smart contract are regulated by the role
specified in the creation transaction which caused its creation; regardless of
the specified role, a smart contract can always be invoked by its creator and
by system administrators.

Smart contracts nature: smart contracts could be modelled either as ac-
tive or passive components. In the former case, they would encapsulate a
control flow and nodes would interact with them through message passing.
In the latter case, nodes would interact with them through method calling.
Let us observe what follows: smart contract are perceived by end users as
proactive, independent entities which can be created, invoked, modified, and
destroyed through transactions. Nonetheless, interactions between end users
and smart contracts are always mediated by nodes, and since nodes must be
able to manipulate smart contracts having total control on them, we decide to
model smart contracts as passive entities.

“Synchronous” interaction: as stated in the feasibility study, the lack of
synchronous interaction can be a problem in several scenarios. For this rea-
son, we decide to introduce acknowledgement transactions in order to simulate
synchronous interactions. These transactions are meant to be sent by a smart
contract A to a smart contract B after A is invoked by B through an invoca-
tion transaction. More specifically, when A executes an operation invoked by
B producing a result R, it creates and send an acknowledgement transaction
to B containing (i) the invocation transaction which B sent to A and (ii) the
result R.

56 CHAPTER 4. DESIGN

Infinite computation management: in order to correctly deal with in-
finite computations, the feasibility study showed that it is possible to either
rely on a pricing model or impose an execution time limit for each operation.
We decide to adopt the latter approach, since the former would require the
implementation of a cryptocurrency, which is not in the scope of this thesis.
The chosen approach offers in turn two possible solutions to the problem. The
first consists in simulating the execution of operations before including invoca-
tion transactions into blocks, invalidating them if the simulations time exceed
a certain threshold T ; the second avoids this control, executing invocation
transactions normally when they are included into a block, and reverting the
side effects of an operation if its execution time exceeds T. We decide to rely
on the first solution, since it prevents invalid invocation transactions to be
included into blocks.

As a result, an invocation transaction is considered to be valid if three
conditions are met. Firstly, it must satisfy both the properties of authenticity
and integrity. Secondly, it must adhere to the transaction policy. Finally, the
simulation of the operation which is contained in it must take less time than
a certain threshold T.

Language for smart contracts: referring to the language to be adopted
for the writing of smart contracts, we choose to rely on an interpreted and
logic-based programming language. This is because (i) the interpreted nature
of the language prevents state losses of smart contracts when update trans-
actions are executed; it also enhances the inspectability of source codes, since
they do not need to be compiled down to bytecode or binary [35]; (ii) meta-
programming can be used to ease updates to smart contracts’ source code;
(iii) the declarative nature of programs written in this language could ease
both their development and their understanding; (iv) smart contract can be
structured in such a way to modify their behaviour in a controllable way, as
better described in subsection 2.4.4. As a result, the operations which make
up the source code of a smart contract are either facts or rules. Operations
sent in invocations transaction are goals, which can be conceived as query to
be submitted to the target smart contract.

Preventing non-deterministic computation: the feasibility study showed
different approaches to prevent the execution of non-deterministic code. We
discard the idea of writing a brand new language with no support for non-
deterministic computation, since its realization would go far beyond the scope
of this thesis. Furthermore, we discard the approach which consists in in-
specting source codes and invocation transactions, since it can be avoided by
adopting a modified version of a programming language with no support for

CHAPTER 4. DESIGN 57

non-deterministic computations.
Summing up, smart contract are modelled as logic entities written in a

language with no support for non-deterministic computation. The choice of
this language is delegated to the implementation phase.

Node responses: when a transaction is received, nodes could reply to end
users at different times with different responses or not reply at all. We decide
to model nodes so that they can reply at three different times, that is, (i)
when the transaction is received, (ii) when it is validated, or (iii) when it is
included into a block. As a result, end users can send transactions in three
different modes, namely, async, sync, and commit. Depending on the chosen
mode, they will receive a response either when the transaction is received by
the node, when the node ends the validation process, or when the transaction
is successfully included into a block and thus executed.

Node splitting: the feasibility study showed that source codes of smart
contracts cannot be stored on the blockchain, otherwise they could not be
updated or deleted. Thus, they must be stored at “application level”. In
general, modelling each node as a monolithic module which provides all the
functionalities is considered as bad practice. This module would probably lack
flexibility and would be difficult to both understand and modify. With that
being said, we decide to split each system node into two modules, namely
core and logic interpreter. The former is in charge of dealing with blockchain
management and peer-to-peer connectivity. The latter is in charge of managing
smart contracts and their execution, acting as a logic interpreter.

Multicast/Broadcast: each invocation transaction is addressed to a single
smart contract (i.e. unicast). In many real-case scenarios, it would be useful
for end users and smart contracts to send the same transaction to a sub-set
of smart contracts or to all of them. To support this extra feature, we decide
to introduce both a multicast and broadcast mode for invocation transactions.
Given one of these transactions, it is invalid if (i) it causes at least one timeout
or (ii) the issuer can invoke none of the recipient smart contracts.

4.1.2 General architecture

In subsection 3.5.2 we provided a first architecture of the system. However,
we think that it is necessary to revisit this architecture as it presents two issues,
related to both security and end users’ interaction with the system.

The security issue concerns the certification authority. Within the system,
it is the trusted entity which is in charge of certifying the identities of all

58 CHAPTER 4. DESIGN

end users and nodes. Being the only one, it represents a single point-of-trust.
If an attacker manages to gain control over it, the trust model of the whole
system would be compromised. In order to deal with this problem, we replace
the single certification authority with a hierarchy of certification authorities.
In this hierarchy, CAs are arranged at levels, forming a tree. The first level
includes a single CA, called root, which is responsible for releasing a certificate
to each sub-CA at the second level. These ones are in turn responsible for
releasing a certificate to each sub-CA at the third level, and so on. The last
level includes the CAs which are responsible for releasing certificates to end
users and nodes, called leaves. By design, there is no limit to the number of
levels that a real deployment of the system could employ. To check the validity
of a certificate X released to either a node or an end user it is necessary to:
(i) check if the certificate signature is valid; (ii) contact the CA who released
it and require its certificate; (iii) repeat these two steps until the root CA is
reached; if its certificate is valid, then the certificate X is valid too.

While adopting such a hierarchy, if an attacker were to gain over a sub-CA,
he/she would invalidate only a subset of the released certificates. Nonetheless,
the root CA still represents a single point-of-trust. Thus, this approach is used
to mitigate the problem and not to entirely solve it.

The other issue is as follows: actually, end users have no support to interact
with the system. The requirements do not include the realization of a module
meant to mediating end users’ interaction with the system, in order to ease
both the creation and sending of transactions and certificate requests. We
introduce a new type of system node, namely, client nodes. Clients consist of
a web application which allows to (i) request a certificate to a CA; (ii) create
and send both transactions and queries. Each client is meant to mediate the
interaction with the system on behalf of a single end user.

Summing up, the system now includes a hierarchy of CAs and two types
of node, namely, full nodes and client nodes. These refinements are depicted
in Figure 4.1, which represents the general architecture of the system.

4.1.3 Interaction

The systems is made up by several heterogeneous and distributed compo-
nents. In order to properly interact with each others, the components need an
interaction media meant to support their distributed nature, namely, the In-
ternet. Thus, all interactions will occur over the Internet and will be regulated
by different protocols depending on the interacting parts.

We decide to employ the HTTP protocol for the regulation of request-
response interactions. Both clients and full nodes request certificates to sub-
CAs by means of HTTP requests, and both transactions and queries are sent

CHAPTER 4. DESIGN 59

Figure 4.1: The general architecture of the system, a refinement of the one depicted in
Figure 3.2. In this representation, the CA hierarchy has two levels. Sub-CAs shall request
a certificate to the root-CA, while end users and full nodes shall request a certificate to
one of the sub-CAs. Each full node is divided in two modules, namely “core” and “logic
interpreter” (L.I.). The blockchain (stored by each core) and smart contracts (managed by
each logic interpreter) are not depicted in order to preserve readability. The interaction
between end users and nodes is mediated by clients.

by clients through HTTP requests as well. As a result, CAs and full nodes
expose a web server in order to correctly manage these requests. Within the
system context, there are seven different HTTP requests:

• GenerateCertificate: GET request which can be sent to CAs in or-
der to request and obtain a new certificate. The relative URL path is
/generateCertificate. These requests must contain a public key and
a role as query parameters, by the fields “publicKey” and “role” respec-
tively.

• RetrieveCertificate: GET request which can be sent to CAs in order
to retrieve their certificate. The relative URL path is /getCertificate.

• SendTransactionAsync: GET request which can be sent to full nodes in
order to publish a transaction and get a response as soon as the transac-
tion is received. The relative URL path is /broadcastTxAsync. These
requests must contain the transaction to be published as a query param-
eter, by the field “tx”.

60 CHAPTER 4. DESIGN

• SendTransactionSync: request similar to the previous one. When re-
ceiving such a request, full nodes will reply only when the transactions
is validated. The relative URL path is /broadcastTxSync.

• SendTransactionCommit: request similar to the previous one. Upon the
receipt of such a request, full nodes will reply either when the trans-
action is validated (if it is not valid) or when the transactions is suc-
cessfully included into a block (if it is valid). The relative URL path is
/broadcastTxCommit.

• Query: GET request which can be sent to full nodes in order to re-
trieve information about the application state. The relative URL path is
/query. These requests must contain the field “data” as a query param-
eter. The corresponding value can be either “smartContractIdentities”
to retrieve the list of smart contracts’ identities or the identity of a smart
contract in order to retrieve its source code.

• RetrieveBlocks: GET request which can be sent to full nodes in or-
der to retrieve a set of contiguous blocks. The relative URL path is
/blockchain. Since the position of blocks is identified by their heights,
as described in subsection 4.2.1, these requests must specify both a min-
imum and a maximum height as query parameters, by the fields “min-
Height” and “maxHeight” respectively.

The protocol used to regulate full nodes inter-communication is strictly
dependent on the consensus algorithm which will be employed. Since the
system relies on a private blockchain, we are interested in “classical” consensus
algorithm, both BFT and non-BFT, as explained in subsection 2.1.2. The
choice of this algorithm, and thus of the interaction protocol, is delegated to
the implementation phase, in chapter 5. In this phase we can simply assume
that a consensus protocol is engaged by full nodes and the total ordering of
transactions is thus ensured.

4.2 Detailed design

In this section, we first give a shape to blockchain blocks, establishing their
structure and fields. Then, we set a fixed representation for both transactions
and certificates. Finally, we focus on smart contracts and the main system
components, giving a detailed description regarding both their behaviour and
interaction.

CHAPTER 4. DESIGN 61

4.2.1 Blockchain

The blockchain stores blocks at heights, with one block at each height.
Each block is made up of a header and a body. The header contains meta
information about the block, that is, (i) its height, (ii) the Unix timestamp
of its creation (iii) the Merkle root of the application state reached after the
execution of the transactions included into the previous block, (iv) the Merkle
root of the transactions contained in the body, and (v) a hash pointer to the
previous block in the chain. The body consists of a set of transactions.

Each time a new block is added to the blockchain, each full node synchro-
nizes its local time with the timestamp of the new block. As a result, all the
full nodes share the same (global) time, which is kept synchronized among
them thanks to blocks timestamps. This notion of global time is essential to
make smart contracts time-aware, and thus reactive to time.

The first Merkle root is included into headers to securely store a represen-
tation of the application state after the execution of some transactions. Clients
can retrieve the data that makes up the application state, compute the corre-
sponding Merkle root, and rely on the first Merkle root in the header of the
most recent block to verify if the retrieved data is valid. The second Merkle
root is included into headers in order to guarantee proof-of-membership for
transactions.

All the blocks must adhere to this structure and contain at least all the
described fields. Additional fields could eventually be added to both header
and body if required by the consensus algorithm which will be employed.

4.2.2 Transactions and certificates

Given the adoption of logic programming for smart contracts, we decide
to model transactions and certificates as logic terms. Furthermore, we decide
to split certificates in two categories, namely, intermediate and entity-or-node
(EON) certificates. The former are released by a non-leaf CA to another CA;
the latter are released by a leaf CA to either a end user or a node.

Intermediate certificates consist of (i) the PUBLIC KEY of the CA, (ii) an
EXPIRATION DATE, (iii) the URI of the CA which issued the certificate, and
(iv) a SIGNATURE made by the CA which issued the certificate. What follows
is the representation of an intermediate certificate, structured as a logic term.

certificate(PUBLIC KEY, EXPIRATION DATE, URI, SIGNATURE)

EON certificates consist of (i) the IDENTITY of the requester, generated by
the public key, (ii) the specified PUBLIC KEY, (iii) the specified ROLE, (iv) an
EXPIRATION DATE, (v) the URI of the CA, and (vi) a SIGNATURE, made by the

62 CHAPTER 4. DESIGN

CA with its private key. They are represented as:

certificate(IDENTITY, PUBLIC KEY, ROLE, EXPIRATION DATE, URI, SIGNATURE)

Every certificate must contain the URI of the CA which released it in order to
make the validation of certificates possible, as explained in subsection 4.2.6.
Also, providing each certificate with an expiration date is usually a good prac-
tice to enhance security, as it forces certificate owners to request a new one
periodically.

All transactions adhere to a fixed representation. As a result, full nodes
can deduct their type only by inspecting their content. Transactions contain
(i) the sender IDENTITY, (ii) a BODY, (iii) a NONCE, (iv) a CERTIFICATE, and
(v) a SIGNATURE. The fixed representation is as follows:

transaction(IDENTITY, BODY, NONCE, CERTIFICATE, SIGNATURE)

NONCE is an integer value which represents the number of transactions which
the sender has previously sent. Nonces are included into transaction in order
to detect duplicates and for the creation of smart contracts’ identities when
necessary. The BODY establishes the transaction type and it can be one of the
following terms:

• create(theory([CLAUSE | OTHER CLAUSES]), ROLE, INIT OP): struc-
tured term used to create a new smart contract. The source code is
represented by the list of logic clauses included in the first term; a logic
clause can be either a fact or a rule. The second term, i.e. ROLE, defines
who can invoke the newly smart contract, and can be either any, user,
node, or root. The last term contains the initial operation, i.e. the goal,
the must be submitted to the newly smart contract. A transaction with
this body is a creation transaction.

• assert(SC ID, CLAUSE): structured term used to update the smart con-
tract with identity SC ID. It causes the addition of the logic clause CLAUSE
to its source code. A transaction with this body is an update transaction.

• retract(SC ID, CLAUSE): structured term used to update the smart
contract with identity SC ID. It causes the removal of the logic clause
CLAUSE from its source code, if present. A transaction with this body is
an update transaction.

• send([SC ID1, SC ID2 | OTHER SC IDS], GOAL): structured term used
to invoke an arbitrary-long list of smart contracts. The first term is a
list of smart contract identities. The second one is the GOAL that must

CHAPTER 4. DESIGN 63

be submitted as a query to each smart contract. A transaction with this
body is an invocation transaction, in unicast mode if the list contains
one identifier, in multicast mode otherwise.

• send(, GOAL)2: structured term used to invoke all the existing smart
contracts, submitting the goal GOAL to each one of them. A transaction
with this body is an invocation transaction, in broadcast mode.

• ack(SC ID, TRANSACTION, RESULT): structured term used to acknowl-
edge an invocation transaction. The first term is the identity of the smart
contract which issued the invocation transaction. The second term is the
invocation transaction itself. The third term is the result computed by
“executing” the goal inside the invocation transaction. A transaction
with this body is an acknowledgement transaction.

• destroy(SC ID): structured term used to destroy the smart contract
with identity SC ID. A transaction with this body is a destruction trans-
action.

We decide to rely on the RSA algorithm for the generation of keys and
validation of signatures, adopting 2048-bit long keys. More precisely, each
signature is computed through the ”RSAwithSHA256” algorithm. Given some
data that needs to be signed, the algorithm first computes the SHA256 digest
of it and then runs RSA to create a signature. Thus, given the hash function
SHA256(·) and the RSA signature algorithm SIGN(·), the SIGNATURE field of
both certificates and transactions is calculated by (i) concatenating all the
other fields, forming the string X, (ii) computing the SHA256 digest of X,
formally SHA256(X), and (iii) running the RSA signature algorithm with the
digest as input, formally SIGN(SHA256(X), Kprivate), where Kprivate is the
private key of either the certificate issuer or the transaction creator.

4.2.3 Smart contracts

Smart contracts are designed as logic programs. Every smart contract is
endowed with a static knowledge base (KB) and a dynamic KB. The static
KB stores immutable rules and facts, while the dynamic KB stores mutable
ones. This neat division allows for a controllable mutability of smart contracts.
“Library” facts and rules which are essential to smart contracts’ functioning
are stored permanently in the static KB, preventing their deletion. The source
code is stored in the dynamic KB, making its modification possible.

2The underscore character (“ ”) is called an anonymous variable and unifies with any
term.

64 CHAPTER 4. DESIGN

Operations sent within invocation transactions can be conceived as goals
which must be queried to the source code of smart contracts. In order to allow
developers to define how their smart contracts should react to invocation trans-
actions, we designed smart contracts’ behaviour as follows: when receiving an
invocation transaction containing the goal Goal, a goal-oriented computation
Body is triggered if the source code of the target smart contract contains a
rule such as receive(Goal) :- Body. Otherwise, the invocation fails. This
approach allows developers to define an interface for their smart contracts,
meant to group the goal-oriented computations which end users are allowed
to trigger. Let us explain this concept with a trivial example. Listing 4.1
contains the source code of a smart contract, which stores data in a key-value
fashion. Data can be read or written only through two apposite rules. If a
end user sends an invocation transaction containing the goal set data(key3,

data3), the smart contract is invoked with goal receive(set data(key3,

data3)), which causes the addition of a new key-value pair to the source
code. Similarly, if the goal is get data(key1, Value), the smart contract
is invoked with goal receive(get data(key1, Value)), giving the solution
get data(key1, value1). If the goal is key value(key1, Value) the invo-
cation fails, since there is no rule in the source code whose head matches with
receive(key value(key1, Value)).

% Facts.

key_value(key1, value1).

key_value(key2, value2).

% Rules which make up the smart contract interface.

receive(set_data(Key, Value)) :- assert(key_value(Key, Value)).

receive(get_data(Key, Value)) :- key_value(Key, Value).

Listing 4.1: An example of source code of a smart contract.

Finally, when created, a smart contract is endowed by default with a set
of library terms, which allows it to (i) store the identity of its creator, (ii)
consult the current global time, (iii) send invocation and acknowledgement
transactions, and (iv) perform delayed and periodic computation.

4.2.4 Full nodes

Full nodes are composed of two separated modules, namely, core and logic
interpreter. The former listens for transactions from both clients and smart
contracts and relays them to other full nodes; it also participates in the con-
sensus algorithm along with the other cores to establish a total ordering of
transactions, storing them in the blockchain. The latter is in charge of (i)

CHAPTER 4. DESIGN 65

validating and executing transactions, (ii) managing both the creation and
destruction of smart contracts, (iii) running a logic engine, used to submit
queries to smart contracts, aimed at updating or invoking them, (iv) building
responses to transactions or queries to be sent back to clients. The application
state of a full node is handled by the logic interpreter. At a give point in time,
the state is represented by the set of smart contracts that currently exist.

Note that clients never interact with logic interpreters directly. This inter-
action is always mediated by cores, as described in the following section. This
approach is adopted to keep the application state consistent among full nodes.

Interaction & behaviour

The interaction between the two modules is strongly inspired to the one
adopted by Tendermint. They communicate through a series of messages, in a
request-response fashion. A communication act is initialized from the core to
the logic interpreter when it receives either a transaction or a query and when
a new block is added to the blockchain. When the core receives a transaction
through one of the three GET requests or by one of its peers, the interaction
proceeds as follows:

1. The core packages the transaction in a checkTx message, and sends it to
the logic interpreter. Then, it waits for a checkTxResponse message.

2. The transaction is received by the logic interpreter and enters the vali-
dation phase. The algorithm for checking if a transaction is valid is as
follows.

2.1. Check if the transaction is well formed, i.e. it adheres to the repre-
sentation described in subsection 4.2.2.

2.2. Check if its certificate is valid. The validation process of certificates
is described in subsection 4.2.6.

2.3. Check if the signature is valid using public key contained within the
certificate.

2.4. Check if the transaction adheres to the transaction policy. More pre-
cisely, for invocation, update, and destruction transactions, check if
the sender is allowed to perform the operation contained within the
transaction.

2.5. Simulate the transaction and assure that its execution time does
not exceed a predefined threshold T. During this steps, no changes
are committed to the application state.

66 CHAPTER 4. DESIGN

If any of these steps fails, the logic interpreter sends a negative checkTxRes-
ponse message back to the core. Otherwise, it sends a positive checkTxRes-
ponse message.

3. If the core receives a positive validation response message, it spreads the
transaction to the other full nodes and stores it until it is included into
a block. Otherwise, the transaction is discarded.

When a query is received, the core sends a query message to the logic inter-
preter, which replies with a queryResponse containing the desired information.
Figure 4.2 depicts the interaction between core and logic interpreter when the
former receives either a transaction or a query.

(a) The interaction flow between the
parts when a transaction is received.

(b) The interaction flow between the
parts when a query is received.

Figure 4.2: Sequence diagrams depicting the interaction between core and logic interpreter
(L.I.) when either a transaction or a query is received by the core.

Whenever a block is created and added to the blockchain, the interaction
proceeds as follows:

1. The core creates a beginBlock message and sends it to the logic inter-
preter. This messages contains meta information about the block, as
its timestamp and height. Then, it waits for a beginBlockResponse

message.

2. The logic interpreter synchronize its global time with the timestamp of
the block. Then, it sends back a beginBlockResponse.

3. At this point, the core packages each transaction contained in the block
in a deliverTx message. Then, it sends these messages to the logic inter-
preter, one by one. After sending one of them, it waits for a deliverTxRe-
sponse message before sending the following in the list.

CHAPTER 4. DESIGN 67

4. When receiving a deliverTx message, the logic interpreter executes the
transaction contained in it. Then, it builds and sends back a deliverTxRe-
sponse message, whose content depends on the type of transaction ex-
ecuted. For creation transactions, it contains the identity of the newly
smart contract; for invocation transactions, it contains the invocation
result (i.e. the mgu between the submitted goal and the source code of
the target smart contract). Otherwise, the content is left empty.

5. After sending all the deliverTx message, the core sends an endBlock

message in order to tell the logic interpreter that all the transactions
within the new block have been sent. The logic interpreter replies with
a endBlockResponse message.

6. Finally, the core a sends a commit message to the logic interpreter, meant
to require the Merkle root of the new application state. It will be included
in the header of the next block.

7. The logic interpreter computes the Merkle root and sends it back to the
core inside a commitResponse message.

Figure 4.3: Sequence diagram depicting the interaction between core and logic interpreter
(L.I.) when a new block is committed to the blockchain.

68 CHAPTER 4. DESIGN

Logic interpreter

A logic interpreter is made up by several components, each one of them
providing a different functionality. These components are orchestrated by a
Controller, which encapsulates the overall application logic, making the logic
interpreter behave as described previously in this section. The interaction
occurs through method-invocation. The components are as follows:

• Server: component in charge of listening for messages sent by the core
at port 5724. As soon as a message is received, this component notifies
the Controller.

• Smart Contract Manager: component in charge of storing smart con-
tracts created by end users. It runs a logic engine to submit goals con-
tained in invocation and update transactions to smart contracts. Thus, it
is the one which effectively (i) simulate transactions during the validation
phase and (ii) executes them when necessary, changing the application
state. In order to properly simulate transactions without changing the
application state, this component stores a copy of each existing smart
contract. Each one of this copies is a dummy version of the original one,
meaning that it has the same source code but is incapable of sending
transactions or perform delayed/periodic tasks. Thus, given an invo-
cation or update transaction issued to a certain smart contract X, its
simulation is performed on the dummy copy of X, while its real execu-
tion is performed on X.

Finally, every time that all the transactions in a block are effectively
executed and a commit message is received, all the dummy copies are
deleted and re-computed. This is done to preserve consistency between
smart contracts and their dummy copies over time.

• Http Client: a simple http client meant to allow smart contracts to
send proper transactions to the underlying core. More precisely, it is able
to send SendTransactionAsync requests on behalf of smart contracts.
Moreover, it makes it possible to (i) send GenerateCertificate requests
to leaves CA in order to obtain a valid certificate for the full node, (ii)
send RetrieveCertificate requests to any CA in order to retrieve its
certificate.

• Authorization Manager: for each smart contract, this components
keeps track of the roles which are allowed to invoke it. For a given
transaction, this component is able to check whether the issuer is allowed
to perform the operation specified in it.

CHAPTER 4. DESIGN 69

• Key Manager: component in charge of dealing with cryptography op-
erations within the system. It stores the key pair of the full node and
is able to both create and verify RSA signatures, through the algorithm
“SHA256withRSA”. The key pair is generated at runtime by this com-
ponent.

• Time Manager: component in charge of storing the system global time,
making it available to the other components.

• Certificate Manager: component in charge of managing the full node’s
certificate, making it available to the other components when required.
It requests a new certificate through the Http Client both when (i) the
logic interpreter is started and (ii) the current certificate expires.

• Transaction Validator: component meant to carry out all the neces-
sary controls on transactions in order to assert their validity. For each
identity, it keeps track of the corresponding “expected nonce”, that is,
the nonce that needs to be included in the next transaction in order for
that transaction to be valid. When invoked for the validation of a trans-
action, it in turn invokes (i) the Authorization Manager for verifying the
transaction adherence to the access control policy, (ii) the Key Manager
for verifying signatures, (iii) the Http Client for requesting certificates
to be verified, and (iv) the Smart Contract Manager for simulating the
execution of the transaction.

• Transaction Builder: component in charge of building proper transac-
tions when requested by smart contracts. More precisely, smart contracts
can invoke this component providing a BODY and their NONCE to obtain
a well-formed transaction endowed with the full node’s certificate and a
proper signature.

Whenever a message is received by the Server, the Controller is invoked,
which in turn invokes other components depending on the message type. For
checkTx messages, the Transaction Validator is invoked to carry out the val-
idation process on the corresponding transactions; for beginBlock messages,
the Time Manager is invoked in order to synchronized the global time with the
one contained in the messages; for deliverTx messages, the Smart Contract
Manager is invoked for executing the corresponding transactions; for commit

messages, the Smart Contract Manager is invoked to retrieve all the existing
smart contracts and compute the Merkle root of the application state. The
Merkle root is computed from a tree in which the source codes of smart con-
tracts make up its leaves.

70 CHAPTER 4. DESIGN

Core

Like logic interpreters, cores are made up by several components. First of
all, the business logic is handled by controller, which is notified by the other
components when some event occurs (i.e. a transaction is received, the logic
interpreted replied to a previously sent message, . . .). The other components
are as follows:

• Web Server: component meant to listen for transactions and queries at
port 5521. Recall that transactions can be sent by both end users and
smart contracts, through clients and logic interpreters respectively, while
queries can be sent by clients only. The web server accepts five types of
HTTP requests, namely, SendTransactionAsync, SendTransactionSync,
SendTransactionCommit, Query, and RetrieveBlocks.

• Peer-to-peer module: component meant to manage communication
with other full nodes; more precisely, its duty is to relay both transactions
and blocks to other full nodes when necessary; transactions are relayed
after being validated by the logic interpreter; a block is relayed when
required by the consensus protocol which will be employed.

• Blockchain Manager: component meant to store the blockchain and
attach new blocks to it when necessary.

• Client: component meant to manage the full node’s inter-communication
with the logic interpreter.

The consensus algorithm which will be adopted may require the addition
of components outside from this list, in order to manage, for example, the
creation of new blocks. These components cannot be modelled here, since the
consensus algorithm has not been decided yet. Because of this, the description
of both interaction and behaviour of the listed components is delegated to the
implementation phase, where it will be possible to draw up a more accurate
and complete list.

4.2.5 Clients

Clients mediates the interaction between end users and full nodes. Each
client is essentially a web application which is in charge of managing the key
pair and the certificate of a certain end user, enabling him/her to send both
transactions and queries to a full node and inspect the blockchain. They do
not store the blockchain nor do they participate in the consensus algorithm

CHAPTER 4. DESIGN 71

employed by full nodes. More precisely, clients are meant to ease the aforemen-
tioned interaction as much as possible. Thus, they transparently (i) generate
the end user’s key pair, (ii) request a new certificate to a leaf CA when neces-
sary, (iii) store and update the progressive number that needs to be included
in each transaction that the end user wishes to send (i.e. the NONCE field), and
(iv) sign each transaction.

Clients can send transactions to full nodes through one of the three possi-
ble HTTP requests described in subsection 4.1.3. The content of full nodes’
responses depends on the corresponding request, as depicted in Figure 4.4.
Clients can also send GenerateCertificate requests to leaf CAs in order to
obtain a new certificate for the end user. Clients can send Query requests to full
nodes in order to retrieve information about the identities of smart contracts
and their source code. Finally, clients can send RetrieveBlocks requests to
full nodes to retrieve a certain set of contiguous blocks.

Since clients are web applications, end users interact with them through
their web server. A end user can initialize the interaction with his/her (local)
client through a GET request with path “/” at port 7098. When receiving this
request, the client replies with an HTML page, namely, the HomePage. From
now on, the interaction proceeds through further GET requests, allowing the
end user to carry out all the aforementioned operations. The HTML pages
which form the web application interface are:

• HomePage: through this page, end users can choose what operation to
carry out next, that is, send a transaction, send a query, or inspect the
blockchain.

• SendTransactionPage: through this page, end users can easily insert
the body of a transaction they wish to send and specify the sending
mode for that transaction, that is, sync, async, or commit. For invo-
cation transactions, they can choose their type as well, that is, unicast,
multicast, or broadcast.

• QueryPage: through this page, end users can request a full list of all the
existing smart contracts and the source code of a desired smart contract.

• BlockchainPage: through this page, end users can specify both a “min-
Height” and a “maxHeight” in order to retrieve the desired set of con-
tiguous block.

For a given transaction that needs to be sent, end users have to specify its
body only. The transaction itself is properly built by clients which automati-
cally insert all the other fields.

72 CHAPTER 4. DESIGN

(a) The client sends a SendTransactionAsync re-
quest. The response is empty.

(b) The client sends a SendTransactionSync request.
The response contains a boolean, stating whether the
validation process has succeeded or not.

(c) The client sends a SendTransactionCommit re-
quest. The response contains the result of the trans-
action execution.

Figure 4.4: Sequence diagrams depicting the interaction between a client and the network
of full nodes. The whole peer-to-peer network is depicted as a single entity (i.e. Full Nodes)
for clarity purposes. Nonetheless, note the a client actually sends requests to a single full
node. The interaction depends on the kind of HTTP request which is sent.

CHAPTER 4. DESIGN 73

4.2.6 Certification authorities

Every CA in the hierarchy is provided with a certificate released by a CA
from the upper level, except for the root, whose certificate is self-signed. Each
one of them consists of a web server, which listens for two types of HTTP re-
quests at port 3000, namely, GenerateCertificate and RetrieveCertificate.
End users (through clients) and full nodes can request a new certificate to
leaves CAs through a GenerateCertificate request. Furthermore, they can
also send a RetrieveCertificate request to a certain CA in order to require
its certificate.

In general, the validation of a certificate X owned either by a end user or
a full node is carried out as follows:

1. Thanks to the URI contained in X, a RetrieveCertificate request is
made to the issuer of X in order to retrieve its certificate Y.

2. The public key contained in Y is used to verify the signature of X. If
the signature is invalid or the certificate has expired, then X is invalid.
Otherwise, another RetrieveCertificate request is made to the issuer
of Y in order to retrieve its certificate.

3. The routine is repeated as long as all signatures are valid and all cer-
tificates have not expired, until a request is made to the root CA. If its
certificate is valid and has not expired yet, then the certificate X is valid.

Finally, each CA keeps track of the certificates which it releases until they
expire, in order to avoid the creation of two certificates for the same public
key.

Chapter 5

Implementation

In this chapter we briefly discuss the system implementation [36]. In sec-
tion 5.1 we provide an overview of the system components’ implementation.
In section 5.2 we describe how smart contracts can effectively perform de-
layed/periodic tasks and send transactions. Finally, in section 5.3 we discuss
two technical features of the system which are implemented to enhance the
overall security.

5.1 Implementation overview

In order to shorten the system implementation process, we decide to em-
ploy Tendermint as the core of each full node. Thus, all the aspects related
to blockchain management and peer-to-peer connectivity are handled by Ten-
dermint, which also expose a set of HTTP endpoints which can be used by
clients and smart contracts to send transactions, query the application state,
and inspect the blockchain through the HTTP requests described in subsec-
tion 4.1.3.

Furthermore, since this project is meant to be a proof-of-concept for proac-
tive smart contracts, in this phase we substitute the hierarchy of certification
authorities with a single CA, in order to further shorten the realization of the
system.

5.1.1 Logic interpreter

The logic interpreter is written in Java. Regarding the communication with
Tendermint Core, we rely on JTendermint, an ABCI server written in Java.
Thus, the Server component described in subsection 4.2.4 is actually replaced
by JTendermint. All the other components are implemented as singletons.
When the logic interpreter is started, the following operations are performed:

75

76 CHAPTER 5. IMPLEMENTATION

1. All the components are statically initialized, except for the Controller
and the Certificate Manager. Upon initialization, the Smart Contract
Manager create two distinct sets, meant to store smart contracts and
their dummy copies respectively, while the Key Manager generates the
full node’s key pair.

2. A JTendermint server is created, setting the Controller as a listener for
messages sent by Tendermint Core. When launched, the JTendermint
server waits for three connections to be opened by Tendermint Core, as
described in subsection 2.3.2. The server runs on his own thread.

3. The Controller is initialized, which in turn initializes the Certificate Man-
ager. The latter retrieves the full node’s public key from the Key Man-
ager and sends a GenerateCertificate request to the certification au-
thority to obtain a proper certificate for the full node.

The logic interpreter is now ready to process both transactions and queries.

5.1.2 Certification authority & client

The certification authority is a simple web server written in Node1. When
started, it waits for GenerateCertificate requests as described in subsec-
tion 4.2.6. It does not support RetrieveCertificate requests since there is
not a hierarchy of CAs yet.

The client is a web application written in Node too. More precisely, the
server side is actually written in Typescript2, while the HTML pages described
in subsection 4.2.5 are created and rendered through Pug3. When started, the
client automatically generates a RSA key pair and sends a GenerateCertificate
request to the certification authority to obtain a proper certificate.

5.2 Smart contracts

In order to be able to write smart contracts as logic programs within an
application written in Java (i.e. the logic interpreter), we relied on multi-
paradigm programming with tuProlog4. tuProlog is a lightweight implementa-
tion of the Prolog language which offers a so-called Java API, meant to allow
developers to use a logic engine within a Java application.

1https://nodejs.org/en/
2https://www.typescriptlang.org/
3https://pugjs.org/api/getting-started.html
4http://apice.unibo.it/xwiki/bin/view/Tuprolog/WebHome

https://nodejs.org/en/
https://www.typescriptlang.org/
https://pugjs.org/api/getting-started.html
http://apice.unibo.it/xwiki/bin/view/Tuprolog/WebHome

CHAPTER 5. IMPLEMENTATION 77

A tuProlog logic engine establishes two predicate types, that is, library
predicates, which cannot be modified or deleted at runtime, and user-defined
predicates, which are modifiable at runtime through meta-programming. From
a technical standpoint, each tuProlog engine is composed of a theory, meant to
contain all the user-defined predicates, and a set of libraries, meant to contain
all the library predicates. The theory makes up the dynamic KB, while the
set of libraries makes up the static KB.

Each smart contract is thus a Java object which encapsulates a tuProlog
logic engine, which is an object as well. The smart contract’s source code
is stored in the dynamic KB of the engine (i.e. it is stored in the engine as
its theory). Each engine is provided with several libraries by default, which
contain useful, “general-purpose” predicates. Moreover, each engine makes it
possible to submit goals to the source code and retrieve the corresponding
result, if any.

The Java API allows developers to (i) write new library predicates and
add them to the static KB of a logic engine, (ii) remove libraries from the
static KB of a logic engine. The body of new library predicates can be written
directly in Java. Thus, we exploited this functionality to provide the logic
engine of each smart contract with a set of library predicates, meant to enable
smart contracts to send transactions and schedule both delayed and periodic
task. In this context, the last statement actually means “schedule the delayed
or periodic submission of a goal to the logic engine”. Such predicates are as
follows5:

• self/1

self(Identity) allows to retrieve the identity of the smart contract.

Template: self(-Identity)

• owner/1

owner(Identity) allows to retrieve the identity of the smart contract’s
owner.

Template: owner(-Identity)

• sender/1

sender(Identity) is true if the smart contract is solving a goal con-
tained in an invocation transaction. In this case, the predicate can be
used to retrieve the identity of the transaction sender. Otherwise, this
predicate is false.

Template: sender(-Identity)

5The prefix “-” denotes an output term, while the prefix “+” denotes an input term.

78 CHAPTER 5. IMPLEMENTATION

• now/1

now(Time) allows to retrieve the system global time. It is the one which
makes smart contracts aware of time.

Template: now(-Time)

• send/2

send(Identity List, Goal) allows smart contracts to send an invoca-
tion transaction with the specified Goal to one or more smart contracts,
whose identities are specified in Identity List. The Identity List

can be replaced by the anonymous variable “ ” to send a transaction in
broadcast mode.

Template: send(+Identity List, +Goal)

• ack/2

ack(Transaction, Result) allows smart contracts to send an acknowl-
edgement transaction for a certain invocation Transaction which has
been issued to them by another smart contract, including the resolution
Result in it.

Template: ack(+Transaction, +Result)

• delayed task/2

delayed task(Delay, Goal) submits the specified Goal to the logic en-
gine after an initial Delay, which is expressed in seconds.

Template: delayed task(+Delay, +Goal)

• when/2

when(Global Time, Goal) submits the specified Goal to the logic engine
when the system global time reaches the point in time Global Time, ex-
pressed as Unix epoch. If the specified Global Time is a point in the past,
this predicate is false. This predicate is a variant of delayed task/2.

Template: when(+Global Time, +Goal)

• periodic task/3

periodic task(Delay, Period, Goal) submits the specified Goal to
the logic engine periodically (i.e. once every Period) after an initial
Delay. Both Period and Delay are expressed in seconds.

Template: periodic task(+Delay, +Period, +Goal)

The predicates which allow for the postponed or periodic submission of
goals to the logic engine (i.e. delayed task/2, when/2, and periodic task/3)
have been realized through Java’s ScheduledExecutorService. Summing up,

CHAPTER 5. IMPLEMENTATION 79

all the smart contracts that are created by end users are equipped with these
library predicates by default, which can be used but not modified or cancelled.

At last, a note on non-determinism. tuProlog engines supports the creation
of random numbers through a subset of library predicates. In order to make
the resolution process of goals strictly deterministic, we removed these library
predicates from the static KB of each engine. As a result, the submission of
some goal to a certain smart contract will always give the same result.

5.3 Further security enhancements

In this section, we describe two different techniques which decide to employ
to deal with faulty logic interpreters and system attackers respectively.

5.3.1 Faulty interpreters tolerance

The peer-to-peer network of the system is composed by full nodes. Each
one of them contains a copy of the Tendermint Core and a copy of our logic
interpreter. Recall that the Tendermint consensus is BFT. Given n copies of
the Tendermint Core participating in the consensus, the algorithm can tolerate
up to n/3 − 1 of them exhibiting arbitrary behaviour. Unfortunately, this
property does not hold for our logic interpreters. At the current state, a single
malicious copy of the logic interpreter provided with a proper certificate could
pretend to be a smart contract and forge an invocation transaction accordingly.
This forged transaction would exceed the validation process carried out by
other logic interpreters and would eventually be executed.

In such a scenario, the “victim” smart contract would be held accountable
for the transaction execution and for any hypothetical damage caused to the
system by it. Moreover, the next transaction sent by the victim smart contract
would be invalid, as its nonce would not match up with the one expected by
the Transaction Validator.

To overcome this problem, we exploit the “replicated” nature of smart
contracts. Recall that even if end users perceive a certain smart contract as
a single entity, there are actually n copies of it in the system, one in every
full node, where n is the number of full nodes. This means that every time a
smart contract sends a transaction, n copies of this transaction are actually
sent. Each copy is endowed with the same IDENTITY, BODY, and NONCE, while
having different CERTIFICATE and SIGNATURE from one another.

Thus, the solution to the problem is as follows. Each logic interpreter
executes a certain transaction sent by a smart contract only if it receives at
least a certain percentage x of its copies within a fixed amount of time, each

80 CHAPTER 5. IMPLEMENTATION

one of them endowed with a different SIGNATURE. With this approach, forged
transaction are not executed even if sent multiple times, since each copy would
have the same SIGNATURE. The default value of x is 67% and can be adjusted
by the system owner as desired, before starting the logic interpreter.

This solution is made viable thanks to Tendermint, which makes each logic
interpreter aware of the number of full nodes that are participating in the
consensus algorithm, that is, the total number of transaction copies that will
be sent for each authentic transaction generated by a smart contract.

5.3.2 Auditing

At the current state, invalid transactions are just rejected by full nodes,
meaning that they are neither included in the blockchain nor executed. Since
invalid transactions include the ones sent by hypothetical system attackers,
it would be useful to store them in the blockchain in order to enable system
administrators to consult them and take action against such attackers.

To this end, we introduce a new transaction type, namely, audit trans-
actions, meant to keep track of invalid ones. These transactions are sent to
Tendermint Cores by logic interpreters whenever a faulty transaction does not
exceed the validation process. Each one of them contains the faulty transac-
tion and the error which caused the failure of the validation process. More
precisely, the body of an audit transaction is of type audit(Transaction,

Error). The possible errors are no identity found (i.e. the transaction is
addressed to a smart contract that does not exist), unexpected nonce, in-
valid transaction signature, invalid certificate signature, certificate expired, cre-
ation timeout (i.e. the operation carried out by the smart contract upon its
creation caused a timeout), invocation timeout, and forged transaction. Audit
transactions are addressed to a special smart contract created by the system
at start-up, namely, auditing smart contract. This smart contract cannot be
modified or destroyed. It is not provided with the library predicates described
in section 5.2 since its only purpose is to store audit transactions in its dynamic
KB, as a part of its source code. Thus, audit transactions can be perceived
as invocation transactions issued to the auditing smart contract, which simply
stores their bodies in its dynamic KB.

While following this approach, audit transactions are stored both in the
blockchain and at application level thanks to the auditing smart contract.
End users can retrieve the full list of audit transactions by sending a Query

request to full nodes for the source code of the auditing smart contract.
Audit transactions suffer from the same problem of invocation transac-

tions sent by smart contracts, that is, a faulty logic interpreter could forge an
audit transaction a send it to the auditing smart contract. More precisely, a

CHAPTER 5. IMPLEMENTATION 81

faulty logic interpreter could (i) forge an invocation transaction with an invalid
signature and (ii) package it into an audit transaction, specifying the error in-
valid signature. The audit transaction would exceed the validation process
and would eventually be executed. To overcome this problem, we employ the
approach described in the previous section for audit transactions too. Thus, a
certain audit transaction is executed by a logic interpreter only if it receives at
least the fixed percentage x of the transaction’s total copies, each one of them
endowed with a different SIGNATURE.

Chapter 6

Validation

After the previous chapters, where we analysed and modelled the system
to finally implement it, we now proceed with its validation. More precisely, we
briefly discuss the requirement compliance of the system in section 6.1. Then,
in section 6.2 we describe three use cases that can be put into practice in the
context of BCTs thanks to our smart contracts.

6.1 Requirement compliance

The system adheres to all the requirements, both functional and non-
functional. Moreover, it is even endowed with additional functionalities that
were introduced during the design phase in section 4.1, such as (i) the support
for invocation transactions in multicast and broadcast mode, (ii) the support
for a form of “synchronous” communication between smart contracts, (iii) the
adoption of RBAC to provide the system with a finer control over who is al-
lowed to interact with a certain smart contract, and (iv) the possibility for end
users to send transactions in three different modes, namely, async, sync, and
commit.

6.2 Real-world use cases

In this section we describe three different use cases which can be realized
within the context of BCTs by employing proactive smart contracts. All of
these use cases require smart contracts to be reactive to time and able to
perform asynchronous communication. Thus, they cannot be put into practice
relying on “classic” smart contracts.

83

84 CHAPTER 6. VALIDATION

6.2.1 Periodic Payments

By adding support for a cryptocurrency as a distributed asset within the
system, smart contracts would be able to carry out periodic payments thanks
to their reactivity to time. In this case, the logic interpreter would keep track
of the amounts of this cryptocurrency hold by each end user and each smart
contract. Furthermore, the system would support an additional type of trans-
action, meant to send amount of cryptocurrency to either smart contracts or
end users, namely, transfer transactions. Smart contracts would be endowed
with an additional library predicate which would allow them to send these
type of transactions, namely, transfer(Recipient Id, Amount). A transfer
transaction addressed to a smart contracts would also cause the invocation of
goal receive(transfer(N)), where N is the amount of cryptocurrency con-
tained in the transaction. Note that adding support to the system for these
new functionalities requires minimal effort.

Regarding the use case, let us suppose that some ACME company offers a
service for which subscribed customers need to pay monthly. For this service,
ACME accepts payments through our system, setting a service price of 10
units of cryptocurrency per month. Thus, in this scenario ACME would have
its own smart contract, called company contract henceforth, and would use it
to correctly (and automatically) manage monthly payments from customers.
The company contract, whose source code is depicted in Listing 6.1, would
keep track of the credit of all the subscribed customers and run a periodic task
meant to withdraw 10 units of cryptocurrency from each customer credit once
every 30 days. To achieve the latter functionality, the company would specify
periodic task(0, 2592000, withdraw)1 as the initial goal to be submitted
to the company contract. Furthermore, the company contract would allow
customers to specify the identity of the smart contract which will send periodic
payments on their behalf.

% Facts meant to keep track of which customer a

% certain smart contract pays for.

contract_to_customer(id_smart_contract_1, id_customerA).

contract_to_customer(id_smart_contract_2, id_customerB).

% Facts meant to store customers’ credit, represented

% as units of cryptocurrency.

credit(id_costumerA, 7).

credit(id_costumerB, -2).

% Rule meant to allow customers to declare

12592000 seconds are equal to 30 days.

CHAPTER 6. VALIDATION 85

% the idenity of the smart contract which

% will make periodic payments on their behalf.

receive(bind_id(ContractId)) :-

sender(Sender),

credit(Sender, _), % check if the sender is a customer

assert(contract_to_customer(ContractId, Sender).

% Rule used to accept payments from smart contracts

% and update the credit of the corresponding customer.

receive(transfer(Amount)) :-

sender(Sender),

contract_to_customer(Sender, UserId),

retract(credit(UserId, Credit)),

New_Credit is Credit + Amount,

assert(credit(UserId, New_Credit)).

% Rule used to withdraw 10 units of cryptocurrency

% from all the customer balances.

withdraw :-

findall(ID, credit(ID, _), IDs),

withdraw(IDs).

withdraw([]).

% For the current ID, withdraw 10 units

% from the corresponding credit

withdraw([ID | Other_IDs]) :-

retract(credit(ID, Amount)),

New_Amount is Amount - 10,

assert(credit(ID, New_Amount)),

withdraw(Other_IDs).

Listing 6.1: The company contract ’s source code.

Customers could create a smart contract to carry out automatic payments
for the service they are subscribed to (source code in Listing 6.2). First, they
would send an invocation transaction to the company contract meant to bind
their identity to the one of their smart contract. Then, they would provide
their smart contract with some amount of cryptocurrency and initialize peri-
odic payments through an invocation transaction. More precisely, to carry out
the latter operation they would retrieve the identity of the company contract
(say, sc7098) and send an invocation transaction to their smart contract con-
taining the goal pay periodically(sc7098, 2592000, 10).

86 CHAPTER 6. VALIDATION

% Rule to initialize a periodic payment to a certain recipient.

% First, a check is made in order to verify that the issuer of the

% invocation transaction is effectively the owner of the smart

% contract. Then, the "periodic payment" task is launched.

receive(pay_periodically(Recipient, Interval, Amount)) :-

sender(Sender),

owner(Sender),

periodic_task(0, Interval, transfer(Recipient, Amount)).

Listing 6.2: The source code of a smart contract which allows its owner to carry out periodic
payments.

With this approach, ACME would monitor costumers’ credit and stop pro-
viding its service to customers as soon as their balance becomes negative. The
realization of the functionalities offered by both of these smart contracts is
possible thanks to the predicate periodic task/3, which allows to schedule
the periodic submission of a certain goal in a very simple way. As a result,
both of these smart contracts and their functionalities cannot be realized in
other BCTs, such as Ethereum.

6.2.2 Supply-chain management

Smart contracts capable of performing asynchronous interactions can be
used to enforce the terms of a contract between two parties within the context
of supply-chain management processes. We explain this statement with a real
use case.

Let up suppose the manufacturer company ACME is the supplier of the
company Globox for a certain product. For the shipment of this product,
ACME draws up a contract with the shipping agency Cervice. The two parties
negotiate for a price X, which ACME pays to Cervice in advance. Then, they
establish some penalties for Cervice to be applied in case of delayed delivery.
The contract states:

• The product must be delivered within 3 days

• If the delivery time is between 3 and 5 days, Cervice will refund 40% of
the full amount X to ACME

• If the delivery time exceeds 5 days, Cervice will refund the full amount
X to ACME

For security purposes, ACME and Cervice decide to rely on our system by cre-
ating a smart contract in charge of enforcing and fulfilling the aforementioned

CHAPTER 6. VALIDATION 87

rules. After the smart contract’s creation, ACME sends a transfer transac-
tion to it, in order to provide it with the necessary amount of cryptocurrency
needed for the payment to Cervice. Note that both ACME and Cervice can
be conceived as end users of the system, each one of them provided with a
certificate and the related identity. The smart contract does not pay Cervice
upfront in order to be capable of issuing refunds to ACME if necessary.

In order to make the smart contract aware of departure and arrival times
of the product to be shipped, ACME and Globox act as follows. They both
assign a smart device to one of their employees, which is able to read RFID tags
and send transactions to the aforementioned smart contract. Smart devices
are assumed to be endowed with a proper certificate in order to be able to
interact with our system. Then, ACME attaches an RFID tag containing a
UUID to the product.

Before assigning the product with UUID ‘‘ac3e’’2 to Cervice’s courier,
the ACME employee is assumed to read the RFID tag with his/her smart
device, which automatically sends an invocation transaction to the smart con-
tract. This transaction denotes the departure time of the product by carrying
the term departure(ac3e). When the smart contract receives this transac-
tion, it schedules two delayed task meant to automatically trigger refunds when
(and if) necessary. These task are delayed by 3 and 5 days respectively. The
first one sends back 40% of the full amount X to ACME, while the second one
sends back the remaining 60% of the full amount. These refunds effectively
occur only if the product has not reached destination yet.

When the product reaches its destination, the Globox employee reads the
RFID tag with his/her smart device, which automatically sends an invocation
transaction to the smart contract as well. This transaction denotes the arrival
time of the product by carrying the term arrival(ac3e). When receiving
this transaction, the smart contract pays Cervice the remaining amount of X,
if any. Listing 6.3 contains the smart contract’s source code.

The realization of this use case is made possible thanks to the predicate
delayed task/2, which enables the smart contract to automatically send back
refunds to ACME when necessary, without waiting for the product to be ef-
fectively delivered. Thus, as the previous one, this use case cannot be realized
in other BCTs, such as Ethereum.

2For the sake of clarity, in this example, we use a 4-character string instead of a proper
UUID, since UUID are quite verbose

88 CHAPTER 6. VALIDATION

% Facts which store the necessary identities.

acme_id(o38bn27y4).

cervice_id(d92jf4dfs).

acme_smart_device_id(g21vfjd4c).

globox_smart_device_id(y5dv7pc21).

shipment_cost(50).

receive(departure(UUID)) :-

sender(Sender),

acme_smart_device_id(Sender),

shipment_cost(Amount),

assert(to_pay(UUID, Amount)), % remember to pay

delayed_task(3 * 86400, partial_refund(UUID)), % 3-day delay

delayed_task(5 * 86400, total_refund(UUID)). % 5-day delay

receive(arrival(UUID)) :-

sender(Sender),

globox_smart_device_id(Sender),

retract(to_pay(UUID, Amount)), % if this rule is still present...

cervice_id(Id), % ...then remove it...

transfer(Id, Amount). % ...and pay Cervice

partial_refund(UUID) :-

retract(to_pay(UUID, Amount)), % if this rule is still present...

Refund is Amount * 0.40,

acme_id(Id),

transfer(Id, Refund), % ...refund 40% to ACME...

Remaining is Amount * 0.60,

assert(to_pay(UUID, Remaining)). % ...and store the remaining

total_refund(UUID) :-

retract(to_pay(UUID, Remaining)), % if this rule...

acme_id(Id), % ...is still present, remove it and...

transfer(Id, Remaining). % ...refund the full amount to ACME

Listing 6.3: The source code of the smart contract created by ACME. Upon a product
departure, it schedules two delayed task meant to perform automatic refunds if necessary.
Upon a product arrival, it pays Cervice through a transfer transaction only if the delivery
time does not exceed 5 days

CHAPTER 6. VALIDATION 89

6.2.3 Automatic auctions

Proactive smart contracts can also be employed for the realization of con-
tract net-based applications within the context of a BCT. The term contract net
derives from the homonymous protocol [3] which is generally employed within
the scope of Multi-Agent Systems in order to let an agent propose some task
to one or more other agents, possibly competing to be the best one for its ful-
filment. In such situation, those agents would then form a so-called “contract
net”. When an agent needs help for the fulfilment of a task, it announces it
to the contract net along with a point in time T, playing the manager role.
The latter represent the time threshold beyond which the manager will no
longer accept bids. When receiving this announce, the other agents can de-
cide whether to make a bid for it, playing the role of (potential) contractors.
The manager collects bids until T and then chooses the best bid, assigning the
task to the corresponding contractor. In general, agents can announce multiple
tasks and choose multiple bids for their fulfilment.

Regarding our system, an interesting use case related to contract nets is
represented by automatic auctions. Let us suppose that the system makes it
possible to keep track of the ownership of some products through the underlying
blockchain. Both end users and smart contracts can own products and are able
to claim ownership when required. They are also able to transfer ownership of
their products to other end users or smart contracts by means of special trans-
actions, namely, transfer ownership transactions. Note that adding support to
the system for this new functionality requires minimal effort.

A seller smart contract could set up an auction for a predefined amount of
time in order to sell its products. First, it would open the auction and schedule
a delayed task meant to close it when desired. Then, it would announce the
auction opening through an invocation transaction in broadcast mode, spec-
ifying the products for sale and the auction deadline. When receiving the
announce, each buyer smart contract would establish whether it is interested
in one or more of the products and send back proposals for them; each proposal
would contain the product of interest and the amount of cryptocurrency that
the smart contract is willing to pay for it. The seller smart contract would
gather proposals as long as the auction is still running. Upon auction end,
it would choose the best proposal for each one of its products and alert the
corresponding issuers (called winning buyers henceforth) with an invocation
transaction. Each winning buyer would then send a transfer transaction to the
seller containing the proposed amount of cryptocurrency. When receiving a
payment from a winning buyer, the seller smart contract would issue a transfer
ownership transactions to it, finalizing the deal.

Example of source codes of both sellers and buyers can be found in List-

90 CHAPTER 6. VALIDATION

ing 6.4 and Listing 6.5 respectively. As in the previous example, the predicate
delayed task/2 is essential for the realization of this use case, since it makes
it possible for the auction to be automatic. Thus, this use case cannot be
realized in other BCTs.

auction_duration(86400).

% Products for sale.

selling([product1, product2, product3]).

receive(open_auction) :-

sender(S),

owner(S),

retractall(proposal(_, _, _)), % remove previous proposals...

retractall(winner(_)), % ...and winners

assert(auction_is_open), % the auction is now open

auction_duration(Duration), % schedule a task meant to...

delayed_task(Duration, close_auction), % ...close the auction

now(T),

selling(Products),

send(_, ongoing_auction(deadline(T + Duration), Products)). %

broadcast

receive(proposal(Amount, Product)) :-

auction_is_open, % if the auction is still open

selling(Products),

member(Product, Products),

sender(Sender),

assert(proposal(Sender, Amount, Product)). % store the proposal

receive(transfer(Amount)) :-

sender(Sender),

winner(Sender), % if a winner pays...

proposal(Sender, Amount, Product), % ...for its product...

transfer_ownership(Product, Sender), % ...transfer ownership...

retract(selling(Products)), % ...and update the product list

delete(Product, Products, Updated_List),

assert(selling(Updated_List).

close_auction :-

retract(auction_is_open), % the auction is now closed

selling(Products),

sell(Products). % check proposals and sell products

CHAPTER 6. VALIDATION 91

sell([]).

% Find the best proposal for Product and invoke its issuer.

sell([Product | Other_Products]) :-

findall(Amount, proposal(_, Amount, Product), Offers),

max(Offers, Max_Amount),

proposal(Sender, Product, Max_Amount), % the best proposal

assert(winner(Sender)), % remember the "winner"

send(Sender, best_proposal(proposal(Product, Max_Amount))),

sell(Other_Products).

% If no proposals were made for Product, check the next product.

sell([Product | Other_Products]) :-

findall(Amount, proposal(_, Product, Amount), Offers),

length(Offers, L),

L = 0,

sell(Other_Products).

Listing 6.4: The seller ’s source code. This smart contract is able to open an auction for a
list of products, broadcasting an annouce for it. It gathers proposals from buyers until the
auction is open. Upon auction end, it chooses the best proposal for each of its products and
alerts the corresponding buyers. When the payment with respect to a certain product is
received, it finalizes the deal with a transfer ownership transaction, sending it through the
library predicate transfer ownership/2.

% The products of interest for this smart contract.

interest(product1, 20).

interest(product2, 35).

receive(ongoing_auction(deadline(Deadline), Products)) :-

now(T),

T < Deadline, % If the auction is still running

evaluate_products(Products). % evaluate the products

receive(best_proposal(proposal(Product, Amount)) :-

sender(Sender), % If my proposal is the best

retract(proposal_made(S, Product, Amount)),

transfer(Sender, Amount). % pay the amount

evaluate_products([]).

evaluate_products([Product | Other_Products]) :-

not(interest(Product, _)), % If not interested

evaluate_products(Other_Products). % evaluate the next product

92 CHAPTER 6. VALIDATION

evaluate_products([Product | Other_Products]) :-

interest(Product, Amount), % If interested

sender(Sender),

send(Sender, proposal(Product, Amount)), % make a proposal

assert(proposal_made(Sender, Product, Amount)).

Listing 6.5: The buyer ’s source code. This smart contract stores the products of its interest
along with the amount of cryptocurrency which it is willing to pay for each one of them.
Whenever a seller sets up an auction for a list of products and annouces it through a
broadcast, the buyer checks the list and sends a proposal back to the seller for each product
of interest. If one of its proposals is chosen by the seller (i.e. the buyer is invoked with
the goal best proposal(P)), the buyer transfers to the seller the amount of cryptocurrency
proposed.

Chapter 7

On smart contracts’ autonomy

In this chapter we discuss smart contracts’ autonomy, concerning both our
proposed “logic contract” notion and future declinations of the smart contract
notion, which may possibly be influenced by other computational or program-
ming models. In section 7.1 we recap the work that has been carried out to
implement these logic, proactive smart contracts, pointing out our final goal.
In section 7.2 we provide a comparison for them with actors and agents, high-
lighting similarities and differences.

7.1 Proactive smart contracts

At the beginning of this work, we analysed smart contracts and their mod-
ern implementation, taking Ethereum as our main reference. We studied the
limitations deriving by their OOP-like nature, stating how the choice of mod-
elling them as passive, synchronous objects may limit the amount of scenarios
where smart contracts would be useful or of interest. Stemming from such
remarks, we rethought smart contracts as proactive entities with one clear mo-
tivation in mind, that is, making them actually autonomous entities, capable
of acting in order to reach or maintain the goals and (contractual) terms they
have been created for. To reach this goal, we endowed smart contracts with
the ability of interacting asynchronously with each others in the first place. By
combining this feature with time-awareness we made smart contracts reactive
to time, and thus able to perform postponed or periodic computations over
time. Finally, to move a first step towards autonomy, we gave smart contracts
the ability of performing an initial operation when created. Thanks to this
capability, smart contracts can “initialize” themselves autonomously, carrying
out certain operations according to their own internal logic.

In the realization process, we came across several problems concerning the
system security, which were solved by adopting a private blockchain and rely-

93

94 CHAPTER 7. ON SMART CONTRACTS’ AUTONOMY

ing on certification authorities. Furthermore, we employed RBAC and other
security enhancements, described in section 5.3, which made the system resis-
tant to faulty nodes at a certain extent. At the current state, we could not
find any further security flaw in the system.

The real word use cases described in section 6.2 showed how our smart
contracts can effectively enforce the terms of their physical counterparts and
strictly regulate the interaction between their parties. They mediate this in-
teraction in an “active” way, ensuring the fulfilment of terms and carrying
out payments on behalf of physical users. Furthermore, their logic nature en-
hances the observability of their source code, making their business logic easier
to understand, update, and verify.

Our current implementation paves the way towards the achievement of our
final end, which consists in the realization of fully autonomous smart contracts,
able to observe the behaviour of their parties, detect if some violation is com-
mitted with respect to the contractual terms, and act against such violations.
To achieve this end, the logic nature of smart contracts could be exploited
to make them capable of planning and reasoning, in order to (i) proactively
and contextually infer the best way to enforce the real world condition/agree-
ments they should guarantee, (ii) plan a course of action, and finally (iii) act,
executing such plan.

7.2 Comparison with actors and agents

In the field of computer science, system components are usually modelled
(and implemented) as either objects, actors, or agents, which are different
classes of computational entities.

Objects are passive entities. They encapsulate a state, made up by a set
of variables (called fields), and expose a set of methods that can be invoked
through method-calling. These methods are meant to modify their state in a
controlled way. Since objects are passive, they do not encapsulate a thread of
control, meaning that their methods are only invoked by external entities.

Actors are active/reactive entities. They encapsulate a state, just like
objects, and can be invoked through message-passing. Their methods can
be conceived as message handlers, each one of them consisting in a set of
operations to be carried out when a certain message is received. They are
active in the sense that they do encapsulate the thread of control. At the
same time, they are reactive in the sense that they perform some kind of
computation only when they receive a message. Thus, actors are actually
reactive to messages.

Agents are autonomous entities. By definition, they (i) encapsulate the

CHAPTER 7. ON SMART CONTRACTS’ AUTONOMY 95

thread of control, (ii) have total control over their own internal state, (iii)
cannot be invoked by external entities, and (iv) encapsulate a criterion to
self-govern their control flow. These properties make up the essential feature
of agents, that is, autonomy. From this feature, many others features stem.
Agents are proactive, in the sense that they can use their criterion to make
something happen instead of necessarily wait for something to happen. Agents
are situated, that is, they are strictly coupled with the context where they live
and interact. Thus, their actions are modelled depending on the representa-
tion of context where they take place. Thanks to their situatedness, agents
are reactive to changes to the context. Furthermore, agents are interacting,
meaning that they can interact with other agents by means of communica-
tion actions. Finally, agents are goal/task oriented entities, meaning that they
build possible plans of actions to either reach a certain state of the world (i.e.
a goal) or bring an activity (i.e. a task) to an end.

These features make up the notion of weak agent, which is opposed to
the notion of strong agent [7]. Strong agents are conceptually endowed with
mental components such as beliefs, desires, intentions, goals, and plans. Strong
agents may be intelligent, and use their intelligence as the criterion for self-
governance.

Our smart contracts are placed in between the notion of actor and the no-
tion of agent. They are more than actors since (i) they are proactive and (ii)
they are reactive to both messages sent to them, i.e. invocation transactions,
and time. More precisely, the notion of actor does not necessarily include
time awareness, making (default) actors incapable of performing postponed or
periodic computation. Nonetheless, even if our smart contracts do exhibit a
first form of proactivity through the operation carried out upon their creation,
they cannot be considered as agents since they (still) lack their fundamental
feature, that is, autonomy. They do not have total control over their internal
state, since they cannot refuse invocation transactions as agents can refuse
communication actions. Furthermore, even if they can be conceived as situ-
ated entities where the context is represented by the underlying blockchain,
they are not reactive to changes to the context in general. As a result our
smart contracts are incapable of planning and reasoning about their context
to automatically achieve goals and fulfil tasks submitted to them.

Chapter 8

Conclusions

In this last chapter, we firstly summarize the work that has been done with
this master thesis in section 8.1. Finally, we discuss some possible future works
that could be carried out to enhance the system implementation in section 8.2.

8.1 Summary

In chapter 2, we provided a technical background for what concerns blockch-
ains, smart contracts, and logic programming. We also described Tendermint
in detail, being the consensus engine we relied on for the realization of our
system. In chapter 3, we described our vision of proactive smart contracts,
defining a set of requirements for the system we wished to realize. Stemming
from such requirements, we carried out a feasibility study which led us to
choose the adoption of a private blockchain in advance. In chapter 4, we mod-
elled the system and its components, describing their structure, interaction,
and behaviour. We also chose to endow the system with additional features
meant to further enhance it. In chapter 5, we provided an overview on the
system implementation, describing the main elements of interest. In chapter 6,
we validated the system, describing three different use cases in which our smart
contracts can be used to actively execute the terms of a contract. Finally, we
discussed our smart contracts’ autonomy in chapter 7, and we compared their
implementation with the notion of actor and agent.

This top-down methodology allowed us to (i) both detect and analyse the
problems arising from our idea, (ii) carefully model the system and all its
functionalities, and (iii) implement the system with ease.

Summing up, the system offers a first support for the creation and execution
of proactive logic smart contracts on top of a private blockchain. As already
stated in section 6.1, it has been developed to fulfil all the requirements grouped
in section 3.2. Moreover, it is endowed with additional features that we decided

97

98 CHAPTER 8. CONCLUSIONS

to implement (i) as a result of our design choices described in subsection 4.1.1
and (ii) to enhance the overall system security, as described in section 5.3.
The CAs hierarchy proposed in subsection 4.1.2 has not been implemented.
Nonetheless, its actual implementation would require minimal effort.

Ultimately, we are overall satisfied with the work that has been carried out
with this thesis.

8.2 Future works

The system has been implemented as a proof-of-concept for our idea of
proactive smart contracts. For this reason, there are several works that could
be carried out to (i) add new functionalities to the system and (ii) modify
some existing functionalities in order to enhance the system under different
points of view, from security and modularity to user experience. These works
are as follows:

• Smart contracts: one of the main future works concerns smart con-
tracts. Their current implementation could be enhanced in order to
shorten the gap with the notion of agent. More precisely, they could be
endowed with the ability of (i) refusing invocation transactions and (ii)
being reactive to changes to the context (i.e. changes to the blockchain).
With the latter ability, they would be effectively capable of automatically
planning and reasoning about their “world”.

• Cryptocurrency: the introduction of a cryptocurrency would make the
system a valid candidate for the realization of different applications, as
the ones described in section 6.2.

• Better control over certificates: at the current state, the certification
authority releases a new certificate every time an entity, either a end user
or a full node, requests one through a GenerateCertificate request. No
controls are made on such a request and there is no upper bound to the
number of certificates which can be released. In a real deployment of
the system, an upper bound n would be presumably set in order to gain
control over the number of system entities. If so, a malicious end user
could create a denial of service attack by requesting n certificates for
n different public keys, preventing other entities from obtaining a valid
certificate and from interacting with the system. Note that malicious end
users would be able to perform this attack since no controls are made on
GenerateCertificate requests.

CHAPTER 8. CONCLUSIONS 99

This problem could be faced introducing a registration phase, which both
end users and full nodes must perform in order to obtain a proper cer-
tificate. This phase would allow the certification authority to uniquely
identifying each entity, preventing the assignment of two or more certifi-
cates to the same entity.

• CAs hierarchy: at the current state, the system is provided with a
single certification authority, which is in charge of assigning certificates
to all entities, both end users and full nodes. One possible future work
consists in the actual implementation of the CAs hierarchy described in
subsection 4.1.2. The presence of a hierarchy would mitigate the single
point-of-trust problem and make the system employable as a trusted
platform shared by multiple, mutually-untrusted organizations. More
precisely, given the presence of a root-CA, each organization could set
up its own sub-CA within the system, meant to assign certificates to
their members only. The system would act as a trusted intermediary
among the organizations, where their members could create and manage
smart contracts meant to regulate inter-organization interaction.

• Clients enhancement: at the current state, clients do not store the
end user’s key pair and certificate persistently. This means that every
time a client is started, a new key pair is generated and a new certificate
is requested to the certification authority. In a real system deployment
where the total number of certificates that can be released is limited, the
current client implementation would not be viable. Thus, one possible
future work consists in enhancing the management of both keys and
certificates so to store them persistently over times.

Furthermore, when end users send a RetrieveBlocks request to a full
node, the client shows the blocks content in JSON format. Thus, clients
could be enhanced even from the user experience point of view, displaying
the blocks content in a more understandable way.

• IP manager: at the current state, the IP addresses of both the full
node and the certification authority are hard-coded within the client. As
a result, a client always interacts with the same full node and requests
certificates to the same certification authority. Given a real deployment
where a client interacts with the full node X, if X crashes the client would
no longer be able to send transactions to the system (i.e. to other full
nodes). To solve this problem, a new component in charge of tracking
full nodes’ IP could be added to the system. This component would be
an IP manager. Full nodes would register their IP to the IP manager
and clients would retrieve the full list of IPs from it periodically. Thus,

100 CHAPTER 8. CONCLUSIONS

clients would use these IPs in a round-robin fashion in order to interact
with the system and balance the amount of transactions sent to each full
node. If one full node crashes, another IP can be used. Furthermore,
given the presence of a CAs hierarchy, the IP manager could be used to
keep track of CAs’ IPs too, enabling clients and full nodes to retrieve
them when necessary.

• Logic interpreter splitting: at the current state, the logic interpreter
of each full node is in charge of both (i) validating transactions, through
the Transaction Validator, and (ii) executing them, through the Smart
Contract Manager. To enhance system modularity and adhere to the
single responsibility principle, each logic interpreter could be split in two
components, in charge of validating and executing transactions respec-
tively.

Bibliography

[1] John Alan Robinson. “A machine-oriented logic based on the resolution
principle”. In: Journal of the ACM (JACM) 12.1 (1965), pp. 23–41.

[2] Robert Kowalski. “Predicate logic as programming language”. In: IFIP
congress. Vol. 74. 1974, pp. 569–544.

[3] Reid G Smith. “The contract net protocol: High-level communication
and control in a distributed problem solver”. In: IEEE Transactions on
computers 12 (1980), pp. 1104–1113.

[4] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. “Consensus in the
Presence of Partial Synchrony”. In: J. ACM 35.2 (Apr. 1988), pp. 288–
323. issn: 0004-5411. doi: 10.1145/42282.42283. url: http://doi.
acm.org/10.1145/42282.42283.

[5] Nick Szabo. “Smart contracts”. In: Unpublished manuscript (1994).

[6] David Ferraiolo, Janet Cugini, and D Richard Kuhn. “Role-based ac-
cess control (RBAC): Features and motivations”. In: Proceedings of 11th
annual computer security application conference. 1995, pp. 241–48.

[7] Michael Wooldridge and Nicholas R Jennings. “Intelligent agents: The-
ory and practice”. In: The knowledge engineering review 10.2 (1995),
pp. 115–152.

[8] Leslie Lamport. “The Part-time Parliament”. In: ACM Trans. Comput.
Syst. 16.2 (May 1998), pp. 133–169. issn: 0734-2071. doi: 10.1145/

279227.279229. url: http://doi.acm.org/10.1145/279227.279229.

[9] Krzysztof R Apt. “The logic programming paradigm and prolog”. In:
arXiv preprint cs/0107013 (2001).

[10] Adam Back. Hashcash - A Denial of Service Counter-Measure. http:
//www.hashcash.org/papers/hashcash.pdf. 2002.

[11] Miguel Castro and Barbara Liskov. “Practical Byzantine Fault Tolerance
and Proactive Recovery”. In: ACM Trans. Comput. Syst. 20.4 (Nov.
2002), pp. 398–461. issn: 0734-2071. doi: 10.1145/571637.571640.
url: http://doi.acm.org/10.1145/571637.571640.

101

https://doi.org/10.1145/42282.42283
http://doi.acm.org/10.1145/42282.42283
http://doi.acm.org/10.1145/42282.42283
https://doi.org/10.1145/279227.279229
https://doi.org/10.1145/279227.279229
http://doi.acm.org/10.1145/279227.279229
http://www.hashcash.org/papers/hashcash.pdf
http://www.hashcash.org/papers/hashcash.pdf
https://doi.org/10.1145/571637.571640
http://doi.acm.org/10.1145/571637.571640

102 BIBLIOGRAPHY

[12] John R Douceur. “The sybil attack”. In: International workshop on peer-
to-peer systems. Springer. 2002, pp. 251–260.

[13] Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System. https:
//bitcoin.org/bitcoin.pdf. 2008.

[14] Bernadette Charron-Bost, Fernando Pedone, and André Schiper, eds.
Replication: Theory and Practice. Berlin, Heidelberg: Springer-Verlag,
2010.

[15] Rachid Guerraoui et al. “The Next 700 BFT Protocols”. In: Proceed-
ings of the 5th European Conference on Computer Systems. EuroSys ’10.
Paris, France: ACM, 2010, pp. 363–376. isbn: 978-1-60558-577-2. doi:
10.1145/1755913.1755950. url: http://doi.acm.org/10.1145/
1755913.1755950.

[16] Joao Sousa and Alysson Bessani. “From Byzantine consensus to BFT
state machine replication: A latency-optimal transformation”. In: De-
pendable Computing Conference (EDCC), 2012 Ninth European. IEEE.
2012, pp. 37–48.

[17] Vitalik Buterin et al. “A next-generation smart contract and decentral-
ized application platform”. In: white paper (2014).

[18] Jae Kwon. “Tendermint: Consensus without mining”. In: Draft v. 0.6,
fall (2014).

[19] Diego Ongaro and John K Ousterhout. “In search of an understandable
consensus algorithm.” In: USENIX Annual Technical Conference. 2014,
pp. 305–319.

[20] Tendermint Images. https://tendermint.com/docs/introduction/
introduction.html. 2014.

[21] Gavin Wood. “Ethereum: A secure decentralised generalised transaction
ledger”. In: Ethereum project yellow paper 151 (2014), pp. 1–32.

[22] Melanie Swan. Blockchain: Blueprint for a new economy. ” O’Reilly Me-
dia, Inc.”, 2015.

[23] Marko Vukolić. “The quest for scalable blockchain fabric: Proof-of-work
vs. BFT replication”. In: International Workshop on Open Problems in
Network Security. Springer. 2015, pp. 112–125.

[24] Richard Gendal Brown et al. “Corda: An introduction”. In: R3 CEV,
August (2016).

https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://doi.org/10.1145/1755913.1755950
http://doi.acm.org/10.1145/1755913.1755950
http://doi.acm.org/10.1145/1755913.1755950
https://tendermint.com/docs/introduction/introduction.html
https://tendermint.com/docs/introduction/introduction.html

BIBLIOGRAPHY 103

[25] Andrew Miller et al. “The Honey Badger of BFT Protocols”. In: Pro-
ceedings of the 2016 ACM SIGSAC Conference on Computer and Com-
munications Security. CCS ’16. Vienna, Austria: ACM, 2016, pp. 31–42.
isbn: 978-1-4503-4139-4. doi: 10.1145/2976749.2978399. url: http:
//doi.acm.org/10.1145/2976749.2978399.

[26] Arvind Narayanan et al. Bitcoin and cryptocurrency technologies: a com-
prehensive introduction. Princeton University Press, 2016.

[27] Ryan Osgood. “The Future of Democracy: Blockchain Voting’”. In: COMP116:
Information Security (2016).

[28] Serguei Popov. “The tangle”. In: cit. on (2016), p. 131.

[29] Josh Stark. Making Sense of Blockchain Smart Contracts. Ed. by coin-
desk.com. https://www.coindesk.com/making-sense-smart-contracts/.
June 2016.

[30] Christian Cachin and Marko Vukolić. “Blockchains consensus protocols
in the wild”. In: arXiv preprint arXiv:1707.01873 (2017).

[31] Lin Chen et al. “On security analysis of proof-of-elapsed-time (poet)”.
In: International Symposium on Stabilization, Safety, and Security of
Distributed Systems. Springer. 2017, pp. 282–297.

[32] Proof of stake. https://en.bitcoin.it/wiki/Proof_of_Stake. 2017.

[33] Zibin Zheng et al. “An overview of blockchain technology: Architecture,
consensus, and future trends”. In: Big Data (BigData Congress), 2017
IEEE International Congress on. IEEE. 2017, pp. 557–564.

[34] Elli Androulaki et al. “Hyperledger fabric: a distributed operating system
for permissioned blockchains”. In: Proceedings of the Thirteenth EuroSys
Conference. ACM. 2018, p. 30.

[35] Giovanni Ciatto et al. “From the Blockchain to Logic Programming and
Back: Research Perspectives”. In: WOA 2018 – 19th Workshop “From
Objects to Agents”. Ed. by Massimo Cossentino, Luca Sabatucci, and Va-
leria Seidita. Vol. 2215. CEUR Workshop Proceedings. Sun SITE Central
Europe, RWTH Aachen University, June 2018, pp. 69–74.

[36] Additional material: https : / / github . com / maffone / proactive -

logic-smart-contracts.

https://doi.org/10.1145/2976749.2978399
http://doi.acm.org/10.1145/2976749.2978399
http://doi.acm.org/10.1145/2976749.2978399
https://www.coindesk.com/making-sense-smart-contracts/
https://en.bitcoin.it/wiki/Proof_of_Stake
https://github.com/maffone/proactive-logic-smart-contracts
https://github.com/maffone/proactive-logic-smart-contracts

	Abstract
	Acknowledgements
	Introduction
	State of the art
	The blockchain technology
	Data structure
	Identities, trust and consensus
	Real-world usages and examples

	Smart-contract-enabled BCTs
	Smart contracts
	Ethereum
	Hyperledger Fabric

	Tendermint
	Tendermint Core
	Application BlockChain Interface (ABCI)

	Logic programming
	The paradigm
	Horn clauses and the SLD-resolution principle
	Prolog, strengths and weaknesses
	Logic-based smart contracts

	Vision
	Idea
	Requirements
	Functional requirements
	Non-functional requirements

	Glossary
	Scenarios
	Problem analysis
	Feasibility study
	Logic architecture

	Design
	Architectural design
	Design choices
	General architecture
	Interaction

	Detailed design
	Blockchain
	Transactions and certificates
	Smart contracts
	Full nodes
	Clients
	Certification authorities

	Implementation
	Implementation overview
	Logic interpreter
	Certification authority & client

	Smart contracts
	Further security enhancements
	Faulty interpreters tolerance
	Auditing

	Validation
	Requirement compliance
	Real-world use cases
	Periodic Payments
	Supply-chain management
	Automatic auctions

	On smart contracts' autonomy
	Proactive smart contracts
	Comparison with actors and agents

	Conclusions
	Summary
	Future works

	Bibliography

