Simulation techniques for the aerodynamic study of automotive components

Pantalone, Matteo (2018) Simulation techniques for the aerodynamic study of automotive components. [Laurea magistrale], Università di Bologna, Corso di Studio in Aerospace engineering / ingegneria aerospaziale [LM-DM270] - Forli', Documento full-text non disponibile
Il full-text non è disponibile per scelta dell'autore. (Contatta l'autore)

Abstract

When it comes to vehicle aerodynamics, wheels have always a primary importance due to their high drag contribution, expecially if they cannot be shrouded. For a vehichle such as a F1 car, wheel total drag contribution reaches high percentage, such as 30-40%. This study has the purpose to investigate the aerodynamic behaviour of a non-deformable rotating flat sided wheel without hubs. The testcase is supposed to have dimensions of a 2018 F1 front tyre. A Computational Fluid Dynamics (CFD) approach, by using Open-FOAM (OF), is used to catch the main flow features, vortex structures and forces involved. A lot of time is spent to get a good mesh around the wheel with OF internal mesher due to the ground presence. Widely used Spalart-Allmaras, κ-ω SST, Realizable κ-ε codes are implemented first. Then the analysis is concentrated to κ-ω SST LM and several built-in DES models: κ-ω SST DES, Spalart-Allmaras DES, Spalart-Allmaras DDES. In the transtional model the goal is to look for laminar-turbulent boundary layer transition. In the DES/DDES approaches it is desiderable to see more detailed flow fields and a reduction of turbulent viscosity in regions where the mesh is fine enough to perform a local LES. As a consequence, comparisons between models output data and catching capabilities are made. Furthermore, the feasibility of using a DES approach with respect to RANS in automotive problems is analyzed in the case mesh grids don’t allow a fine wall resolution. Experimental data matching the testcase considered don’t exist but literature, however, provides a good agreement with the results for similar researches.

Abstract
Tipologia del documento
Tesi di laurea (Laurea magistrale)
Autore della tesi
Pantalone, Matteo
Relatore della tesi
Scuola
Corso di studio
Ordinamento Cds
DM270
Parole chiave
Isolated wheel, DES, automotive, bluff bodies, rotating wheel, RANS, CFD
Data di discussione della Tesi
13 Dicembre 2018
URI

Altri metadati

Gestione del documento: Visualizza il documento

^