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Sommario

Uno dei campi d’interesse della Fisica dei Sistemi Complessi è lo studio quanti-
tativo della mobilità umana. Lo scopo di questa tesi è lo sviluppo e l’applicazione
di un algoritmo per il calcolo di entropie a partire da traiettorie sperimentali,
per permettere un approccio al problema tramite la Fisica Statistica. É stato
scelto un approccio basato su un algoritmo di compressione lossless di tipo
Lempel-Ziv 78, adattato alla stima di entropie. Utilizzando dati dal database
BellaMossa 2017, si calcolano le distribuzioni di entropia di traiettorie ciclis-
tiche e pedonali raccolte a Bologna durante l’estate 2017. Il calcolo delle dis-
tribuzioni d’entropia viene svolto al variare della durata temporale dei viaggi,
e si discute una possibile correlazione con la domanda di mobilità realizzata
dai dati registrati.
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Abstract

One of the main topics in Physics of Complex Systems is the quantitative
study of human mobility. The aim of this thesis is to develop and apply an
algorithm to compute entropies from experimental trajectories, to allow a Sta-
tistical Physics approach. An approach based on a lossless Lempel-Ziv 78 com-
pression algorithm has been chosen, adapting it to the estimation of entropy.
Using data from the BellaMossa 2017 database, the entropy distributions were
computed, for the trajectories of cyclists and pedestrians recorded in Bologna
during the spring and summer 2017. The entropy distributions were computed
with respect to the travels’ time duration, and a possible correlation with the
mobility demand realised by the recorded data is discussed.
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Introduction

The aim of the present thesis, is to analyse the entropic properties of human
mobility, using geolocalised mobility data and a lossless compression algorithm.
The idea is to follow some of the procedures described in [9], substituting the
activity encoding used in said article with a coordinates encoding. The ap-
plications of a Statistical Physics approach to study human mobility has been
considered in the framework of Complex Systems Physics to highlight statis-
tical laws underlying a cognitive behaviour of particles representing subjects.
We’re interested in the pedestrians’ and cyclists’ mobility, in the area of the city
of Bologna. The data used are from the BellaMossa 2017 initiative, and they
were obtained through a collaboration with SRM Bologna [2]. The area under
exam contains the whole city centre, the periphery and portions of the nearby
towns Casalecchio di Reno, San Lazzaro di Savena and Calderara di Reno. In
the first section of Chapter 1, I briefly explain the database origin, and some of
its technical properties. The first operation performed on the data has been to
remove any activity different from pedestrians and cyclists, or trespassing the
region of interest boundaries. Since the data acquisition instrument consisted
mainly in handheld devices such as telephones, it has been deemed necessary
to filter the data to remove acquisition errors. So a further filtering mecha-
nism has been devised, using as a discriminant the inter-record velocities. The
details on this are presented in Section 1.3. In the same section I conduct an
analysis on the distribution of the travels’ duration and spatial length. The
encoding procedure that has been used, consisted in a subdivision of the region
of interest in 200m sided squares, each assigned a numeric code. The choice of
200m as cell width is a compromise between the necessity of analysing typical
walking trips and without introducing too many details in the bicycle trips.
This tessellation allows to assign to any point in the region of interest the code
of the cell to which it belongs. Two types of strings are built, the timed patterns
and the jump patterns. The first kind encodes the user location for each 10
seconds passed. The second only adds a character whenever the user moves
to another cell. The encoding procedures are described in Section 1.5. The
theoretical background for the definition of entropy, and for its computation
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through compression algorithms, is laid out in Chapter 2. The idea of using
entropy as a characterising magnitude for the motion of a system is introduced
in the theory of dynamical systems. In Section 2.1 I give the definitions of a
dynamical system, of ergodicity for a dynamical system, of a phase space parti-
tion and of dynamical entropy. Phase space partition is a procedure that allows
the so-called coding of the trajectories. In this context the dynamical entropy
of a phase flow quantifies the amount of refinement induced on the partition
by the flow’s action. I also present the concept of Markov Partitions. These
are the partitions that allow a 1-1 correspondence between the encoded strings
and the trajectories. I finish by highlighting that phase space partition allows
to view a dynamical system as a stochastic process. In Section 2.2 I present
the theory of stochastic processes, and the definition of entropy in the field of
random variables. In particular I show the definition of ergodicity for Markov
Chains, to show the similarity with dynamical systems. Then I compare the
definitions of entropy and entropy rate for a stochastic process, and prove that
for stationary processes they coincide. In Section 2.3 I show that the entropy
rate of a process can be given the fundamental meaning of average description
length, for an optimally encoded information source. I conclude the section,
and the chapter, by describing the theory justifying the use of the LZ78 lossless
compression algorithm to estimate the entropy rate of a symbolic stochastic
process, and the algorithm itself. In Chapter 3, I show the results obtained
from the data. I begin by building a connectivity graph of the cells, connecting
cells that are the ends of a travel. I did this to check whether the mobility in
Bologna is organised in a single, highly interconnected ,nucleus or in several
of them which are weakly connected among themselves. Finally I show the
results obtained from the entropy computation and I discuss the relevance of
the entropy measures with respect to the duration of the considered trips.



Chapter 1

The experimental data and their
processing

In this chapter I present the experimental data that has been used in the
thesis and the data analysis performed to filter the data, and to produce the
symbolic sequences used for entropy calculation. I start by briefly describing
the database and the means by which it has been created. I then give some
generalities on the selection of the types of mobility and of the Region of
Interest. Finally I explain the strategies that were devised to clean the database
of some errors such as duplicate records.

1.1 The BellaMossa 2017 initiative and database

The data used in this work were gathered during the BellaMossa intiative, ac-
tive in the Bologna city area between April and September of 2017. To take
part in the initiative people were required to download an application on their
mobile phones, which allowed the user to declare the performance of mobility
activities such as movements on foot, by bicycle, transfers by means of pub-
lic transportation or car sharing. Being given previous authorisation by the
user, during the carrying out of the activities, the device’s latitude and longi-
tude∗ measured by its GPS system were periodically sent to a remote server.
Along with said data each record was provided with a numerical activity-unique
ID code, a timestamp and the declared activity type. These data were then
partially elaborated by BellaMossa. The data were provided to the Physics of
Complex Systems group (PhySyCom) of the University of Bologna Physics and
Astronomy Department (DIFA), thanks to a collaboration with SRM Bologna.

∗As in common practice, latitude is expressed in degrees above the earth’s equator and
longitude is expressed in degrees to the east of the Greenwhich meridian.

1
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2 CHAPTER 1. EXPERIMENTAL DATA

The data were aggregated in twelve two-week long CSV files(Comma Separated
Values). In Figure 1.1 we display the first six lines of one of the files: the first
is a header containing the names of each record’s fields, the remaining five are
examples of records.

ActivityId,ActivityType,Time,Latitude,Longitude,Accuracy,Speed,IdentifiedType,IdentifiedConfidence
1145763,Car_Share,2017-04-01 00:01:33,44.60015,10.94717,50,21.8,Unknown,100
1145783,Cycle,2017-04-01 00:19:36,44.48921,11.3405,32,0,InVehicle,42
1145783,Cycle,2017-04-01 00:19:45,44.48908,11.34053,12,1.69,InVehicle,62
1145783,Cycle,2017-04-01 00:19:47,44.48898,11.34043,12,1.96,InVehicle,62
1145783,Cycle,2017-04-01 00:19:49,44.4889,11.34037,8,2.4,InVehicle,62

Figure 1.1: The first six lines from one of the files supplied by BellaMossa.

There are some fields other than the ones containing the geolocalisation
data, time and activity information mentioned before. Two of them (Accuracy,
Speed) were probably attributed depending respectively on the quality of
the signal and some estimate on the person’s velocity. The remaining two
(IdentifiedType, IdentifiedConfidence) were likely obtained by some kind
of inference system. We kindly thank BellaMossa for the opportunity of study-
ing the Bologna city area mobility through their data.

1.2 Region of interest and activity type filtering
The first filtering actions performed on the data were to remove all activities
but pedestrians and cyclists, and to remove all users who were, at any time in
their activity, out of a given region of interest. Moreover only trajectories span-
ning more than 15 minutes in time were kept, as this has been considered the
minimal time a mobility activity has to last in order to be significant. While
going through this process, moreover, fields deemed not relevant were removed.
These were Accuracy, Speed, IdentifiedActivity, IdentifiedConfidence.
This choice has been made on grounds of ease of use, as an approximate, yet
coherent and more informative, value of speed could be obtained also from
space and time data, and of precaution, as the system used for the ranking of
data accuracy, and the inference of the activity type was unknown.
The discriminating field used for activity type assignment has been ActivityType,
that is the activity type declared by users prior to the commencement of such
activity.
Every ActivityType value different from Walk or Cycle has been ignored,
and the whole activity related to it discarded, as buses, trains and car sharing
platforms weren’t the object of the present study. For ease of subsequent use
the values Walk and Cycle have also been mapped respectively to 0 and 1. In
order to restrict the analysis to the sole Bologna city centre and suburbs area,
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a rectangular region of interest has been defined by the boundaries in Table
1.1.

The North-Western corner is a point roughly 2 km to the West of Airport
Guglielmo Marconi, whereas the South-Eastern one is about 1 km east of Bel-
laria Hospital, as it is visible in the map in Figure 1.2. The rectangle delimited
by such corners is called region of interest as any activity which exceeds these
limits at any time is excluded from the later stages of the study.

From a practical point of view this first filtering stage has been imple-
mented in a Python program making use of data processing functions from the
pandas data analysis module. For each of the files the data were first loaded on
Random Access Memory as a pandas DataFrame. Records were then grouped
by the travel-unique ActivityId so that each group was identified by its Id.
Groups were then re-concatenated on condition that both latitude’s and lon-
gitude’s minima and maxima were inside the region of interest borders, that
the ActivityType field evaluated either to Walk or Cycle and that the differ-
ence of the final and initial timestamps was equal or greater than 15 minutes,
otherwise discarded.

This first selection has reduced noticeably the database size, which from
12.4 GB has been cut down to 3.9 GB on hard drive.

Rectangle corner Latitude (◦) Longitude (◦)

North-Western 44.53518 11.26029
South-Eastern 44.46417 11.40243

Table 1.1: The region of interest corners’ latitude and longitude.
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1.3. SPEED FILTERING AND GPS ERRORS DETECTION 5

1.3 Speed filtering and GPS errors detection
The most common source of errors in geolocalised data comes from losses of
signals by the utilised GPS devices. Each travel comes in the CSV files as
a series of time-stamped coordinates. By taking a look at the inter-record
distance distribution shown in Figure 1.3, I found out that the tracking system
probably attempted to record a point for each 10m of distance travelled, thus
making the single series of data ideally evenly sampled with respect to space.
For information concerning the approximations made in distance calculation
the reader is directed to Appendix A. Assuming different average speeds for
cyclists and pedestrians, the 10m sampling hypothesis is consistent also with
the inter-record time distribution in Figure 1.4.

Figure 1.3: Inter-record distance distribution, showing a pronounced peak
slightly above 10m. The histogram was made with 30, 1 m wide bins on
the range 0-30 m.

This however doesn’t prove to be realistic in practice. Due to minor GPS
or internet signal issues or sudden, but reasonable, velocity changes, points
may be further or closer to each other than the said 10m, even in a generally
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Figure 1.4: Inter-record time interval distribution: two peaks are visible, the
most prominent around 3s (marked in red) is mostly due to cyclists, while the
less evident one around 7s (marked in blue) mostly contains pedestrians. The
histogram was made with 30, 1 s wide bins on the range 0-30 s.

good trajectory. Thus there really isn’t a spatial inter-record distance thresh-
old to distinguish correctly measured points from errors. The same can be said
for inter-record time intervals. These considerations, therefore, point out the
need to devise a different error detection strategy. As points could be further
apart than expected in space or in time, I computed for each pair of consec-
utive records the average velocity, and rejected a trajectory if it presented at
least one velocity spike incompatible with the type of activity that generated
it (pedestrian or cyclist). The selection of the speed thresholds to use in a
filter of this kind could be done using the preferred walking speed and preferred
cycling speed, that is the speeds kept on average by pedestrians and cyclists
during their movement. There are papers such as [5] presenting measures of
these quantities for several environments with different degrees of urbanisation.
This, although, proves to be too strict a criterion, even conceding tolerances
of up to 5σ on the mean values reported in literature. Users in fact can exceed
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also largely, though for short periods of time, the preferred speed for their kind
of activity. This becomes evident as one takes into account, for example, the
quick accelerations needed at times in the act of crossing a road.
Indeed, even allowing through the filter values as high as 5σ over the preferred
speed limits, only about 5% of the database made it through the filter. Upon
closer inspection of the problematic trajectories, I found out that presumed
errors emerged near the points where one would naturally expect quick ac-
celerations and decelerations. Another cause of such spikes can be a minor
loss of GPS signal, not significant enough to compromise the overall quality of
the whole trajectory. Therefore it is reasonable to raise the limit even a little
further physically sensible speeds, in order to take such effects into account.
The values used as speed acceptability limits were then set to those specified
in Table 1.2.

Users Preferred speed (m/s) Filter limit (m/s)

Pedestrians 1.34 ± 0.37 7
Cyclists 4.875 ±1.085 21

Table 1.2: The preferred speed values, as reported in experimental literature
on the subject, along with the limits used for filtering in this study.

There were two other kinds of issue with the records. More specifically: there
were both activities with duplicate points, that is with two consecutive records
with equal coordinates and timestamps, and ubiquitous records, that is two
consecutive records with same timestamp but different coordinates. The for-
mer problem has simply been addressed by removing one of the two duplicates.
On the other hand ubiquitous records, which were present in a very small
amount of cases, were considered indicators of poor signal quality and any
activities exhibiting such features weren’t let into the filtered database. The
inter-record speed histogram in Figure 1.5 shows two peaks. The histogram is
peaked around values compatible with the ones presented in Table 1.2, as one
in fact should expect, as the preferred speed is kept for most of the activity,
and therefore represents the foremost contribution to the distribution. Never-
theless, higher speeds are reasonable on short times as discussed before, thus
creating, probably along with a fraction of faster-than-average people, a de-
creasing tail. This tail decreases to zero quite quickly for higher speeds, a fact
that is in accord with the fact that the great deviations grow less likely as the
deviation grows. After the application of these filters, the database contained
122175 pedestrian activities and 131882 cyclist activities.
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Figure 1.5: The speed histogram shows two peaks in correspondence of the
preferred speeds for both kinds of mobility taken into consideration. The his-
togram has been made with 28, 0.5 m/s wide bins, on the range 0-14 m/s.

1.4 Travel times and distances statistics

In Figure 1.6 I present the travelling time histogram, intended as the time be-
tween the last and first record in an activity. The data distribution goes to zero
very quickly, faster than an exponential. There could be periods of stationarity
linking a number of actual travels. In the following section I’ll devise a way to
spot them and break down the travels in actual mobility segments.



1.4. TRAVEL TIMES AND DISTANCES STATISTICS 9

Figure 1.6: The histogram of travel times, it shows a faster-than-exponential
decay, in function of the travel time.

Figure 1.7: The histogram of travel distances appears as a superposition of
two asymmetrical bell-shaped distributions. The histogram has 100 bin, each
of 100m, on the range 0-10000 m.
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In Figure 1.7, the travel distance distribution can be seen. It appears as
a superposition of two asymmetrical bell-shaped distributions. The first peak
corresponds to pedestrians, the second to cyclists. Such behaviour is expected,
since cyclists are quicker than pedestrians, on average. Thus, when given the
same amount of time, they can go farther.

1.5 Encoding of the experimental trajectories

In order to compute the entropy rate for the mobility in Bologna, it is necessary
to encode the trajectories as sequences of symbols, each representing a partition
of the space involved in the present study. A grid of squares with a side of
200m has been chosen, covering the region of interest. These squares were first
numbered each with a pair (i, j), with the first index indicating the row and
the second the column, as one would do for the entries of a matrix. This yields
a grid of 40 rows by 57 columns, leading to a total of 2280 cells. Using 2280
proper characters would require the usage of an extended character set, thus
potentially creating endianity issues. Consequently I decided to use unsigned
integers, simply obtained by counting the cells from the top left corner of the
region of interest, rows first. The expression used to map a point to its code is
in Equation 1.1.

(lat, lon) 7→

(⌊
rEarth
l

2π(lat− lat0)

360◦

⌋
,

⌊
rEarth
l

2π(lon− lon0) cos
(

2πlat
360◦

)
360◦

⌋)
≡ (i, j)

7→
⌊
rEarth
l

2π(lat− lat0)

360◦

⌋
·max(j) +

⌊
rEarth
l

2π(lon− lon0) cos
(

2πlat
360◦

)
360◦

⌋
≡ i ·max(j) + j

(1.1)

Where (lat0, lon0) are the coordinates of the north-western corner, d is the
cell side length and rEarth is the Earth’s radius. Through Formula 1.1, it is
possible to attribute to any geographical point in the region of interest a pair
of non-negative integers (i, j) and then a code i · max(j) + j, thus effectively
transforming any trajectory into a string of symbols.

The actual process of building the strings opens two options:

• Setting a time resolution, and writing the symbol identifying the cell a
person is in, for each passing time period. In this case we’re building a
timed pattern.
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• Writing a symbol only when a person changes cell location, disregarding
time dependence. These strings are called the jump patterns.

In this thesis I will only work with timed patterns. The first option, although,
poses the problem of the sample’s non-homogeneity in the time domain. The
approach used in this work has been the following. The time resolution has been
set to periods of ten seconds starting from the 1st of January 1970, that is to
the integer division of UNIX time by ten. Then with each of the inhomogeneous
trajectories a polygonal chain has been built, and on it points were taken at
each time interval, interpolating across the experimental points, the procedure
is made clear by the interpolation formula 1.2, where (lat, lon)i and (lat, lon)i+1

are two consecutive points, respectively at times ti and ti+1, and we’re willing
to interpolate at time tint.

(lat, lon)int ≡
tint − ti
ti+1 − ti

((lat, lon)i+1 − (lat, lon)i) + (lat, lon)i (1.2)

As it is clear from the expression, the interpolation is appropriately performed
as long as ti ≤ tint ≤ ti+1. Otherwise, indeed, it wouldn’t even be an interpo-
lation.

All the operations described so far, were implemented by me in a number
of Python programs. I mostly used the modules numpy and pandas for calcu-
lations and the management of data. All of the programs are available on my
repository on GitHub: http://www.github.com/GColom/Bolo_BM[1].

http://www.github.com/GColom/Bolo_BM




Chapter 2

Theoretical apparatus

In this chapter I outline the theoretical framework used in the present work.
I start by pointing out how a connection between a dynamical system and a
discrete deterministic dynamics can be made. Provided that some measure-
theoretic requirements are met, a probabilistic setting is built, and a symbolic
dynamics can be approximated by a stochastic process. Such probabilistic
setting allows for the definition of dynamical entropy, which can be used to
characterise the system. Eventually, Information Theory will provide the tools
necessary to evaluate entropy rates experimentally, without explicit knowledge
of the phase flow.

2.1 Dynamical systems and phase space coding

We start by defining the concept of dynamical system. A natural definition is
the following:

Definition 2.1.1: Classical Dynamical System
Let M be a smooth manifold, µ a measure on M defined by a continuous
density, let Φt :M→M be a one-parameter group of measure-preserving dif-
feomorphisms. The triplet (M, µ,Φt) is called a Classical Dynamical System.

Although this definition is enough to encompass many of the features of
classical mechanics, a more general one can be given.

Definition 2.1.2: Abstract Dynamical System
Let (M, µ) be a measure space, and let Φt be a one parameter group of measure-
preserving automorphisms (mod 0) of (M, µ). Then (M, µ,Φt) is called an
Abstract Dynamical System.

13



14 CHAPTER 2. THEORETICAL APPARATUS

For a deeper explanation of the concepts involved in these definitions, the
reader is invited to look at Appendix 6 in [3].

If t ∈ R the system is called a Continuous Time Dynamical System and Φt

is a continuous group of transformations, that in many physical situations is
defined as the solution to a set of differential equations. If, instead, t ∈ Z one is
considering a Discrete Time Dynamical System, and the group describing the
time evolution is discrete. In this case it is custom to call Φ the single time-step
evolution operator, since any Φn can be obtained by iterated composition. It
is clear that the second definition also retains in itself the first one. I will now
present two interesting examples of both kinds of systems.

Example 2.1.1: Arnol’d’s Cat Map
Let’s take M = {(x, y) mod 1} as our configuration space with the measure
dxdy, and let the discrete-time flow be defined by

Φ(x, y) = (x+ y, x+ 2y) (mod 1) (2.1)

By extending the flow to the whole R2 plane one obtains the following linear
application:

Φ̃(x, y) =

[
1 1
1 2

] [
x
y

]
(2.2)

As det Φ̃ = 1 the flow clearly preserves the measure, thus we are confronting
a dynamical system. Φ̃ has two real eigenvalues 0 < λ2 < 1 < λ1. It can
be shown that for time-step n → ∞ the orbits of Φ are close to those of the
continuous-time map defined by:

ẋ = 1, ẏ = 1− λ1 (2.3)

For maps of this kind, on spaces analogous to the torus M there exists a
Theorem due to Jacobi (ref. Appendix 1 of [3]), that states that if ẏ

ẋ
= 1−λ1 /∈

Q then for each set A ⊂ M, ΦnA converges to a dense helix on the torus. In
figure 2.1 is a representation of the map’s action. This system is an example
of Classical Dynamical System. The Cat Map has also a chaotic behaviour,
in the sense that, for any two points ~x1, ~x2 ∈ M, the distance ‖Φt~x1 − Φt~x2‖
diverges as eλt. This system also has a known Markov Partition (see Def. ).

Example 2.1.2: Bernoulli Schemes
Let’s define M to be the set of bi-infinite sequences of a given alphabet of
symbols. In order to do this let’s first define Zn = 0, 1, ..., n− 1 the set of
the first n − 1 non-negative integers as our alphabet. It is natural to define
M = ZZ

n , that is to view bi-infinite strings of symbols as elements in the
cartesian product of countable copies of the alphabet Zn. The second element
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Figure 2.1: A representation of the action of Φ and Φ̃, each on its domain.
Image reference is [4]

.

needed to define an Abstract Dynamical System is the σ-algebra of measurable
sets. The generating sets for the σ-algebra are the strings Aji defined as follows:

Aji = {m|ai = j} i ∈ Z, j ∈ Zn (2.4)

In fact Aji is a string that as its only defining requirement has character j in its
i-th position. Clearly, a countable intersection of such strings can generate any
element of M. The third structure needed to define an Abstract Dynamical
System is a measure. It is possible to define a normalised measure on the
alphabet, in other words, a discrete probability function (PF):

µ(0) = p0, µ(1) = p1, ... µ(n− 1) = pn−1 : pi such that
n−1∑
i=0

pi = 1

(2.5)
The next step would be to assign to each Aji the measure µ(Aji ) = pj, this
is sufficient to fully define a measure on M since each Aji can be viewed as
a generator of the σ-algebra on M, distinct from the others, therefore the
measure of an intersection of such terms is the product of the measures of the
terms themselves. The measure onM has then the expression below:

µ(m) = µ(Aj1i1 ∩ A
j2
i2
∩ ... ∩ Ajkik ) =

k∏
l=1

µ(Ajlil ) (2.6)

Where the first equality is possible thanks to the way we defined the Aji sets:

m = (ai1 = j1, ai2 = j2, ..., aik = jk) =
k⋂
l=1

Ajlil (2.7)
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The last necessary item is the automorphism, we’ll use a discrete time shift
Φ :M→M defined as pointed out in

Φ : m = (. . . , ai, . . . ) 7→ m′ = (. . . , a′i, . . . ) with a′i = ai−1 (2.8)

This kind of automorphism is also called a shift. Let’s verify that this shift is
measure-preserving. It is sufficient to verify the action of Φ on the σ-algebra
generators. Indeed one has:

µ(ΦAji ) = µ(Aji−1) = pj = µ(Aji ) (2.9)

Thus a Bernoulli Scheme has the structure of a dynamical system. This scheme
is relevant because it is a Symbolic Dynamical System, that is an important
link between ergodic theory and stochastic processes. Moreover, this system
already has a normalised measure to start with, providing a natural link with
stochastic processes.

A very important class of dynamical systems is that of Ergodic Systems.
These are the systems for which the mean values of observables, on the long run,
do not depend on the initial conditions. It is necessary to set these condition
formally.

Definition 2.1.3: Time and space means of a function
Let (M, µ,Φt) be a dynamical system, and f :M→ C, f ∈ L1(M). The time
mean f ∗ of f is defined by:

f ∗(x) ≡ lim
T→+∞

1

T

∫ T

0

f(Φtx)dt (2.10)

Where the integral is turned into a sum for discrete maps.
The space mean f̄ of f is defined by

f̄ ≡ 1

µ(M)

∫
M
f(x)dµ (2.11)

Where both definitions can be given only if the defining expressions exist.

Note that eq. 2.10 defines a function onM, potentially varying from point
to point, conversely, eq. 2.11 defines a constant. The definition of ergodicity
can now be posed.

Definition 2.1.4: Ergodic System
A system (M, µ,Φt) is said to be ergodic if and only if:

∀f :M→ C, f ∈ L1(M, µ) f ∗(x) = f̄ a.e. (2.12)
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Inspecting closely this definition one can realise that in order for it to be
satisfied the time mean f ∗ must not depend on the initial conditions x. An
important property that is satisfied by ergodic systems is indecomposability,
that means they cannot be divided into phase-flow-invariant subsets. This
indeed proves to be a theorem.

Theorem 2.1.1 (Ergodicity ⇐⇒ Indecomposability). A dynamical system
is ergodic if, and only if, it is indecomposable, that is if every measurable set
invariant under the phase flow has measure 0 or 1.

This result implies that either the whole system or none of it is invariant
under the phase flow, up to null-measure sets. A very important kind of oper-
ation that can be performed on dynamical systems is Phase Space Coding.
It allows to transform any regular dynamical system into a symbolic one and
to make foundations for interesting links with stochastic processes. The first
step is to define a partition on the phase space.

Definition 2.1.5: Phase Space Partition
Let M be the phase space of a dynamical system. A phase space partition on
M is any (at most numerable) family of subsets P = {Pi|Pi ⊂M} such that:

1. µ(Pi ∩ Pj) = 0 if i 6= j

2. M =
⋃
i Pi

In this context, Pis are called atoms. A partition is said to be measurable if
µ(
⋃
i Pi) < +∞.

If one associates a symbol to each of the atoms in a partition one effectively
builds a coding for the system: Pj 7→ j. In fact, a partition naturally defines a
map C, that sends each point in the phase space to the string containing the
symbols of the atoms visited by the system when starting from there, at each
evolution step, as determined by the phase flow.

C : x 7→ (. . . , jn−1, jn−1, jn−1, . . .)

⇐⇒
. . . ,Φn−1x ∈ Pn−1,Φ

nx ∈ Pn,Φn+1x ∈ Pn+1, . . . (2.13)

Any partition generates a coding, but we want to know on what conditions the
strings can be in a 1-1 relation with the trajectories. This leads to the concept
of Markov partitions. In order to introduce this concept it is necessary to know
what a stable and unstable manifolds are, see Appendix B for the definitions.
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Definition 2.1.6: Markov partition
Let P be a phase space partition for a given system (M, µ,Φ). P is a Markov
partition with respect to Φ if and only if for any x ∈ Pi such that Φx ∈ Pj with
Pi, Pj ∈ P:

Φ(W u(x) ∩ Pj) ⊃ W u(Φx) ∩ Pj
Φ(W s(x) ∩ Pj) ⊂ W s(Φx) ∩ Pj

(2.14)

In other words: a partition is a Markov partition for a phase flow if and
only if each atom’s image crosses completely each other atom it intersects along
the expanding direction, and falls completely inside it along the contracting
one. If one system is coded with a Markov partition there is a one to one
correspondence between orbits and strings. It is possible to give a definition
of dynamical entropy for a phase flow, with respect to a partition of the phase
space. Given that one is working with a finite or σ-finite measure (both cases
are reunited by the measurable partition request)∗, it is possible to normalise
such measure and set µ(M) = 1, thus building a probability measure. In this
context one can define the entropy of a partition similarly to that of a random
variable.

Definition 2.1.7: Entropy of a partition
Let P = {Pi}i∈I with I at most numerable, be a partition of phase space. The
entropy of partition P is defined by:

H(P) ≡
∑
i∈I

µ(Pi) log2

(
1

µ(Pi)

)
(2.15)

The base of the logarithm in the definition fixes the unit of measurement: bits
for base 2, nats for base e.

The maximal entropy of a partition is obtained when all the atoms have
equal measure. The result can be proved by maximising the right hand side
of eq. 2.1.7 on the constraint

∑
i µ(Pi) = 1 using Lagrange’s multipliers. This

definition of entropy of a partition matches the one that we’ll give for a discrete
probability function. The probability function is defined by the measures of the
partition’s atoms and the associated alphabet is made up of the symbols given
to each of them. Let’s now take into account the effects of time evolution. If
one interprets the atoms of a partition as the states of a stochastic process, it
is possible to select one of them, A, for the system to be in at t = 0,and let it

∗A σ-finite measure is one where the whole measure space can be expressed as union
of countable elements of finite measure. This allows, by introduction of adequate weights,
having a finite measure value for the whole space.
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evolve one step forward in time. In general, then, one can intepret µ(ΦA∩Pi) as
the probability of the system falling in state i at the time instant immediately
successive to when the system was in A, one can denote this with P (0A, 1Pi),
by intending implicitly that time occurrence of events is ordered from left to
right. Similarly to what we just did one can ask for P (0A, 2Pi), and obtain:

P (0A, 2Pi) = µ(Φ2A ∩ Pi) (2.16)

1 2 3

4 5 6

7 8 9

1

2

3
4

5
67

8

9

P

ΦP

Figure 2.2: A representation of the action of Φ on partition P, the initial
partition has been drawn in black, the evolved copy in red. The probabilities
such as that in 2.16 are the measures of the overlapping regions.

By looking at Figure 2.2 it is easy to picture the geometrical meaning of
2.16: the probability of being in P5 at time 0 and in P6 at time 1 is given by
the measure of the intersection of the black region marked by 6 and the red
one labelled 5.

Moreover, one can extend the analysis to more than to two instants:

P (0A, 1Pi, 2Pj) = µ((Φ2A ∩ Pj) ∩ (ΦA ∩ Pi)) (2.17)

In general then, the probability distribution of the sequences of N symbols has
alphabet defined by all the intersections of N copies of the initial partitioning,
each evolved one step further in time with respect to the preceding one, and
PMF defined by the measure of such intersections. That is:

P (i0 , i1 , . . . , in−1, in) = µ(ΦnPi0 ∩ Φn−1Pi1 ∩ . . . ∩ ΦPin−1 ∩ Pin) (2.18)

In order to make writing clearer one can define an n-ary operation on partitions.
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Definition 2.1.8: ∨-intersection of a collection of partitions
Let G be a collection of partitions of a given phase space M, let N ≡ #G
be the cardinality, at most numerable, of G. We define on this structure the
operation called ∨-intersection as follows:∨
Pi∈G

Pi = {P1 ∩ P2 ∩ P3 ∩ . . . ∩ Pn|P1 ∈ P1, P2 ∈ P2, P3 ∈ P3, . . . , PN ∈ PN}

(2.19)

In measure spaces language, we are asking for the partition made up by
the generators of the join σ-algebra of all the σ-algebras generated by the
partitions in G. With the setting of this definition, the sets whose measure is
taken in the right hand sides of eq.s 2.16, 2.17 and 2.18 are all elements of the
∨-intersection of appropriately evolved copies of the initial partition. Given
a partition we have defined an entropy over it, this enables us to define the
entropy of a partition with respect to an automorphism.

Definition 2.1.9: Entropy of a partition with respect to an automor-
phism
Let (M, µ,Φ) be a dynamical system, let P be a measurable partition on M.
We define the entropy of P relative to Φ by:

H(P,Φ) ≡ lim
n→∞

H(Φn−1P ∨ Φn−2P ∨ Φn−3P ∨ . . . ∨ P)

n
(2.20)

Theorem 2.1.2. The limit in Def. 2.1.9 always exists.

The proof relies on the fact that at each time step the entropy increases, but
of a smaller amount each time. Consequently, the entropy difference between
a time step and the preceding one forms a positive, non-increasing sequence.
Thus it has a limit, and therefore the sequence of entropies converges by the
Cauchy criterion.

The n denominator is present to keep entropy from diverging. Indeed, in
the worst case scenario, with all partitions intersecting all their evolved copies,
the number of probability atoms N grows as Nn, and thus entropy grows as n,
as n, the time index, goes to infinity.

The entropy of a dynamical system, therefore, is an indicator of how finer
the partition gets as the system evolves. Secondly: by comparing this definition
of entropy and the one for a stochastic process, yet to be presented, we will
see that there are strong similarities, and that such similarities are symptom of
a strong conceptual link between stochastic processes and dynamical systems
introduced by the partitioning. For a deeper view on these topics the reader is
invited to look at [3] and [6].
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2.2 Stochastic Processes

Informally speaking, a stochastic process is a collection of random variables
indexed by an integer, usually given the meaning of time, where probability is
defined on collections of variables. We shall first define some basic probability
theory concepts such as that of probability space for a given experiment.

Definition 2.2.1: Probability space
Let Ω be the set of possible outcomes of a given probabilistic experiment, also
called the sample space. Let F be the σ-algebra on Ω of probabilistic events.
Finally let a measure p : F → [0, 1] such that p(Ω) = 1 be the probability
measure. The triplet (Ω,F , p) is called a probability space.

The next concept needed is that of random variable, as a function of ad-
mitted probabilistic events.

Definition 2.2.2: Random variable
Let (Ω,F , p) be a probability space. Any real and measurable function X defined
on Ω is called a random variable. The set of values a certain variable can
assume is called its alphabet and is denoted by χ if it is finite or countable.

From now on we’ll only work with discrete random variables. Note that
in this setting there is no need to define a probability distribution for a given
random variable. In fact such distribution is naturally defined by the measure
on Ω.

Definition 2.2.3: Probability distribution of a random variable
Let X be a random variable defined on a given probability space (Ω,F , p). The
probability function P is the function defined by:

P (X = x) ≡ p(fx) (2.21)

Where ax ∈ F is defined as:

ax ≡ {ω|ω ∈ Ω,X(ω) = x} (2.22)

In the following, whenever we’ll want to refer to P (X = x) we’ll just write
P (x), in order to unburden the notation.

One can study the probability of outcomes from more than one variable.

Definition 2.2.4: Joint probability distribution
Let X and Y be two random variables on the same sample space. Their joint
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PMF can be defined on the same lines of what was done for a single variable
by setting:

P (X = x,Y = y) = p(ax ∪ ay) (2.23)

with:
ax ≡ {ω|ω ∈ Ω,X(ω) = x} (2.24)

ay ≡ {ω|ω ∈ Ω,Y(ω) = y} (2.25)

Another important concept is the conditional probability distribution: this
quantifies the confidence that one variable has a certain value, given that we
know the one of another value. In particular, measure theory allows us to set
a precise geometric definition of this apparently causal link.

Definition 2.2.5: Conditional probability distribution
Let X and Y be two random variables. We define the probability of "X = x
given that Y = y" as

P (X = x|Y = y) =
p(ax ∩ ay)
p(ay)

(2.26)

Where ax and ay have the same meaning as in defs. 2.2.3 and 2.2.4. In the
following the conditional distribution will be indicated by P (X|Y = y), and its
values by P (x|Y = y), possibly omitting even the Y if there’s no chance of
misunderstanding.

Given a certain random variable it can be useful to define some informative
quantities on it. The first is the expected value of a function with respect to
the variable.

Definition 2.2.6: Expected value of a function of a random variable
Let X be a random variable and let f be a function defined on χ, the alphabet
of X. We define 〈f〉X,the expected value of f with respect to X, as:

〈f〉X ≡
∑
x∈χ

P (x)f(x) (2.27)

By averaging the values of appropriate functions one can generate several
quantities, for example if one sets f(x) = x the mean value is called the
Expected Value of the distribution. Another important quantity which can
be viewed as the mean value of a function is Entropy.

Definition 2.2.7: Entropy of a random variable
Let X be a random variable with alphabet χ, the entropy of X is defined by:

H(X) ≡
∑
x∈χ

P (x) log2

(
1

P (x)

)
= −〈log2 P (x)〉X (2.28)
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Where, on grounds of continuity, we set the convention 0 log2(0) = 0 in order
to exclude automatically any character with probability 0 that could be present
in the alphabet.

We’ll see that the entropy of a random variable carries important informa-
tion on the informative content of the variable. We define entropy also for a
conditioned variable.

Definition 2.2.8: Entropy of a conditioned random variable
Let X and Y be random variables with alphabets χX and χY, the entropy of
X|y with y ∈ Y is defined by:

H(X|y) ≡
∑
x∈χ

P (x|y) log2

(
1

P (x|y)

)
= −〈log2 P (x|y)〉X (2.29)

The generalisation to the joint distribution of a collection of variables is
natural: it simply is necessary to sum over the cartesian of all alphabets. On
the other hand it is possible to define the conditional entropy of a variable in
the following way.

Definition 2.2.9: Conditional entropy of a random variable
Let X be a random variable with alphabet χX, and let Y be another random
variable, with alphabet χY. We define the entropy of X given Y as follows.

H(X|Y) ≡
∑
y∈χY

P (y)H(X|y) = 〈P (y)H(X|y)〉Y (2.30)

Note the difference between def. 2.2.8 and 2.2.9: in the first we are fixing
the value of y, in the second one we are averaging over all possible y.

There are a few theorems on entropies which will be needed in the future.

Theorem 2.2.1 (Chain rule for entropy). Let X and Y be two random vari-
ables, the following equality holds:

H(X, Y) = H(X|Y) +H(Y) = H(Y|X) +H(X) (2.31)

Let {Xi}1≤i≤n be a collection of random variables, the above formula generalises
to n variables as:

H(X1, X2, . . . , Xn) =
n∑
i=1

H(Xi|Xi−1, . . . ,X1) (2.32)
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Proof. We shall prove 2.31 explicitly and use it recursively to prove 2.32.

H(X,Y) = −
∑
x∈χX

∑
y∈χY

P (x, y) log2(P (x, y))

= −
∑
x∈χX

∑
y∈χY

P (x, y) log2(P (y|x)P (x))

= −
∑
x∈χX

∑
y∈χY

P (x, y) log2(P (y|x))−
∑
x∈χX

∑
y∈χY

P (x, y) log2(P (x))

= −
∑
x∈χX

P (x)
∑
y∈χY

P (y|x) log2(P (y|x))−
∑
x∈χX

P (x) log2(P (x))

= −
∑
x∈χX

P (x)H(Y|x) +H(X)

= H(Y|X) +H(X)

(2.33)

Thus proving 2.31. We can use this result iteratively to prove 2.32.

H(X1,X2) = H(X1) +H(X2|X1)

H(X1,X2,X3) = H(X1) +H(X2,X3|X1)

H(X1,X2,X3) = H(X1) +H(X2|X1) +H(X3|X1,X2)

...
H(X1,X2, . . . ,Xn) = H(X1) +H(X2|X1) + . . .+H(Xn|Xn−1, . . . ,X1)

=
n∑
i=1

H(Xi|Xi−1, . . . ,X1)

(2.34)

Theorem 2.2.2 (Entropy is never negative). For any random variable X, its
entropy H(X) as defined in def. 2.2.7 is a non-negative quantity.

Proof.

∀x ∈ χX : 0 ≤ P (x) ≤ 1 =⇒ −P (x) log2(P (x)) ≥ 0 ∀x (2.35)

Theorem 2.2.3 (Conditioning reduces entropy). For any two random vari-
ables X and Y, the following holds:

H(X|Y) ≤ H(X) (2.36)
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The proof of this Theorem is a mere property of a quantity called Mutual
Information, but its introduction would be probably out of context here, so
I redirect the reader to [7] for an ampler disquisition on the foundations of
Information Theory.

We would like to introduce some kind of dynamics in this probabilistic
setting. This leads to the definition of stochastic process.

Definition 2.2.10: Stochastic Process
Let {Xi} be an indexed collection of random variables on the same probability
space and with the same alphabet χ. Let the probability distribution be defined
jointly on this collection.

P (. . . , Xi = x1, Xi+1 = x2, Xi+2 = x3, . . .) = P (. . . , x1, x2, x3, . . .) (2.37)

with . . . , x1, x2, x3, . . . ∈×χ a suitable (at most numerable) quantity of
times. In particular if in the definition of the collection one sets n ≤ i ≤ m
with n ≤ m ∈ Z the PMF is defined on finite sequences†. This kind of structure
defines a Stochastic Process.

Usually the index i is given the meaning of a discretisation of time. A
particular class of stochastic processes is that of Markov Processes. A definition
of them can be given as a case of n-th order process.

Definition 2.2.11: Stochastic Process of m-th order
Let {Xi} be a stochastic process. It is said to be a process of m-th order if and
only if the following property on conditional probability holds:

P (Xn+1|Xn, Xn−1, . . .) = P (Xn+1|Xn, Xn−1, . . . , Xn−m+1) (2.38)

That means asking that conditioning affects the transition probability up to m
states before and including the current one. A stochastic process of 1st order
is generally called a Markov Chain or Markov Process.

We shall now give some definitions of different kinds of stochastic processes.

Definition 2.2.12: Stationary stochastic process
Let {Xi} be a stochastic process. {Xi} is said to be stationary if the PMF is
invariant under shift of the indices:

P (X1, X2, . . . , Xn) = P (X1+m, X2+m, . . . , Xn+m) (2.39)

with m ∈ Z.
†This is the case we’ll be concerned with.
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In order to make some links with the characteristics we defined on dynamical
systems we need to enter the classification of states for a stochastic process.
The main tool in states classification is the higher-order transition probability.

Theorem 2.2.4 (Chapman-Kolmogorov Equation). Let {Xi} be a stochastic
process. The following holds:

P (X1, X2, . . . , Xn−1) =
∑
x∈χXn

P (X1, X2, . . . , Xn−1, Xn = x) (2.40)

Where the marginalisation has been effected on the n-th variable for ease of
notation, but one could have chosen any in the available range.

Proof. The proof consists of a marginalisation with respect to the variable one
wants to remove.

The Chapman-Kolmogorov Equation allows us to evaluate transition prob-
abilities for given initial and final states and number of steps. In the following
we’ll be dealing with Markov Chains only.

Definition 2.2.13: n-steps transition probability
Let {Xi} be a Markov Chain. We denote the probability of passing from state
i to state j in n steps as pnij.

Theorem 2.2.5 (Expression for transition probabilities in n steps). Let {Xi}
be a Markov Chain. The following expression holds for pnij:

pni1i2 =
∑

i2∈χX2

. . .
∑

in−1∈χXn−1

P (i1, i2, . . . , in−1, in) (2.41)

By convention it is set that p0
ii = 1.

Proof. The proof consists in a repeated application of the Chapman-Kolmogorov
Equation, to marginalise the joint PMF with respect to the intermediate tran-
sitions.

There are some ulterior auxiliary quantities useful in dealing with the clas-
sification of states. A very important one is the first passage probability after n
steps fnij, the probability of arriving for the first time on j after having started
from i, n time steps ago. By summing over all possible ns one can define
fij ≡

∑∞
ν=1 f

ν
ij the probability of ever reaching state j from i. If such quantity

converges to 1 it is possible to set the following definition.
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Definition 2.2.14: First passage distribution
Let {Xi} be a Markov Chain. We call First passage distribution through j
from i, the probability distribution of n defined by fnij for given i, j and denote
it as {fnij}, if the sum of such terms

∑∞
ν=1 f

ν
ij converges to 1.

In particular by setting i = j, and if the sum of the probabilities is nor-
malised, one obtains the recurrence times distribution, {fnii} for state i, that is
the probability of returning to state i for the first time after n time steps since
having started from there. I will present, without proving it, an equation that
implicitly defines the {fnij} as its solutions.

Theorem 2.2.6 (Equation for the first passage probabilities). Let {Xi} be
a Markov Process. The first passage probabilities {fnij} are a solution to the
following equation:

pnij =
n∑
ν=1

f νijp
(n−ν)
jj (2.42)

Interpreting, if it is possible, {fnii} as the distribution of the recurrence
times, it is feasible to take the mean value of n over it, thus defining the mean
recurrence time.

Definition 2.2.15: Mean recurrence time
Let {Xi} be a Markov Process. Let {fnjj} be the associated recurrence time
distribution, definable if the recurrence time probabilities are normalised. The
mean recurrence time in this case is defined by:

µj ≡ 〈n〉{fnjj} (2.43)

With the aid of these definitions we can give a general classification of the
states in a process’s alphabet.

Definition 2.2.16: Period of a state
Let {Xi} be a Markov Chain. t > 1 is called the period of state j if pnjj = 0
unless n = νt with ν any non-zero integer, and t is the largest integer with this
property. If no such integer t > 1 exists then j is called an aperiodic state.

Taking periodicity out of the picture, another legitimate question is whether
a return to a given state is certain. In this view, we give a definition of persis-
tence.

Definition 2.2.17: Persistent state
Let {Xi} be a Markov Process. A state i is said to be persistent if fii = 1, that
is if a return to it is asymptotically certain. A persistent state is called a null
state if its mean recurrence time diverges µi =∞.



28 CHAPTER 2. THEORETICAL APPARATUS

In this context it is possible to define ergodicity as a "local" property.

Definition 2.2.18: Ergodic state
Let {Xi} be a Markov Process. A persistent and aperiodic state i with µi <∞
is called ergodic.

An important property in stochastic processes is irreducibility.

Definition 2.2.19: Irreducible process
Let {Xi} be a Markov Chain. It is called irreducible if each state can be reached
from every other state.

The irreducibility of a chain implies that all states are of the same type, that
is, they do or do not satisfy all the same definitions in matters of ergodicity,
periodicity, etc.

Theorem 2.2.7. All states of an irreducible Markov Chain are of the same
type.

This result is instrumental to another, more important, one.

Theorem 2.2.8. If a Markov Chain is irreducible and ergodic, the limits de-
fined by:

uj = lim
n→∞

pnij (2.44)

exist and are independent of i. The uj define a probability distribution since:

uj > 0∑
j

uj = 1 (2.45)

Moreover, the uj define a stationary state of the chain:

uj =
∑
i

uipij (2.46)

In the opposite direction: if for an irreducible and aperiodic chain there exist
some real numbers uj satisfying 2.45 and 2.46 then all states are ergodic (i.e.
the chain is ergodic), the uj satisfy 2.44 and for each of them:

uj =
1

µj
(2.47)

With µj the mean recurrence time for state k.
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For a proof of this theorem and the preceding one, the reader is invited to
look at Chapter 15, Paragraphs 6 and 7, of [8]. This last Theorem is particularly
interesting if we remember the results on ergodic systems recalled in Section
2.1. Indeed it shows that, similarly to ergodic systems, on the long run the
process loses information on his starting state, and the chance to find it in
a state rather than another depends only on the state itself. The difference,
although, is in the fact that since no measure is given, a priori, on the alphabet,
the probability will be determined, in this case by the ujs of the stationary
distribution.

We’d like to introduce Entropy for stochastic processes.

Definition 2.2.20: Entropy of a stochastic process
Let {Xi} be a stochastic process, we define its entropy H(χ) as follows:

H(χ) = lim
n→∞

1

n
H(X1, X2, X3, . . . , Xn) (2.48)

When such quantity is defined.

The entropy of a stochastic process coincides with that of a partitioned
dynamical system. There is another quantity, related to entropy, in a stochastic
process.

Definition 2.2.21: Entropy rate of a stochastic process
Let {Xi} be a stochastic process, we define its entropy rate H ′(χ) as follows:

H ′(χ) = lim
n→∞

H(Xn|Xn−1, Xn−2, Xn−3, . . . , X1) (2.49)

When such quantity is defined.

We now prove that for stationary processes, both limits exist, and they
coincide.

Theorem 2.2.9. For a stationary stochastic process the limit in eq. 2.49 exists.

Proof. Let {Xi} be a stochastic process, its entropy rate reads:

H ′(χ) = lim
n→∞

H(Xn|Xn−1, Xn−2, Xn−3, . . . , X1) (2.50)

We perform the following operations:

H(Xn|Xn−1, . . . , X1) ≤H(Xn|Xn−1, . . . , X2)

=H(Xn−1|Xn−2, . . . , X1)
(2.51)

Where the inequality holds because conditioning reduces entropy, and the
equality is a consequence of the shift invariance of probability for station-
ary processes. Therefore the entropy rates form a non-negative, non-increasing
sequence, and thus have a limit, H ′(χ).
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Theorem 2.2.10. For a stationary stochastic process the limit in eq. 2.48
exists, and is equal to H(χ).
Proof. By the chain rule one can decompose the right hand side of def. 2.2.20,
before taking the limit, into a sum of entropy rate terms:

H(X1, X2, X3, . . . , Xn)

n
=

1

n

n∑
i=1

H(Xi|Xi−1, . . . , X1) (2.52)

The Cesàro mean theorem states that, if a sequences converges to a limit, then
the sequence of its running averages converges to the same limit. Taking the
limit on both sides in eq. 2.52, the right hand side is the running average of
a sequence of terms of the form H(Xi|Xi−1, . . . , X1), but those converge to
H ′(χ), therefore by Cesàro’s mean theorem, the RHS converges to the same
value, thus yielding:

H(χ) = H ′(χ) (2.53)

An interesting comparison can be made by taking a look simultaneously at
def. 2.1.9, given for a dynamical system, and 2.2.20. In fact, the (normalised)
measure of the elements of the ∨-intersection of the n time evolutions of the
partition has the very same meaning of the joint probability mass function of
n variables, defining a stochastic process: the probability for the system to
have visited a given ordered collection of n states during its evolution. In this
sense the states of the stochastic process and the atoms of the partition are
identified. Moreover: if the phase flow is discrete and it is a function of the
sole coordinates, the evolved of a set depends only on the starting set itself,
therefore the kind of process generated upon partitioning is Markovian, with
the transition probabilities from a state to another given by the measure of
the overlapping region of the starting one and the evolved one, normalised by
the measure of the starting one. This parallel is also suggested by the fact
that some characteristics (e.g. ergodicity) can be defined for both kinds of
systems, presenting similar interconnections with each other in both settings
(e.g. the long-term memory loss). Also, some quantities’ definition coincide
(e.g. entropy), upon correct interpretation of the playing terms. This allows
us to introduce a general rule for the discretisation of a dynamical system:

Given a generic, discrete-time, dynamical system (M, µ,Φ), if it is possible
to normalise µ into a probability measure, then it is possible to generate a
stochastic process upon introduction of a partition P defining the states. In
this context the entropy rate of the process coincides with the entropy of the
system with respect to P, and the former can be studied in lieu of the latter.
If Φ is solely a function of the current coordinates, the process is a Markov
Chain, with transition probabilities given by P (j|i) =

µ(ΦPi∩Pj)

µ(Pi)
.
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2.3 Information theoretic notions on average de-
scription length

Up to this point, in the current presentation, the entropic properties of pro-
cesses have been seen as something that is defined by the mathematical expres-
sions regulating the process itself, and computable from said expressions. In a
physical context we would like to have a way of estimating entropic quantities
from experimental data, especially in the case when the phase flow is particu-
larly difficult to work with or unknown at all. Information theory, in particular
the side products of its results on data compression, come to our avail.

The object of Information Theory is the study of the quantification, storage
and communication of information. Information is intended in the sense of the
amount of data needed, on average, to reliably transmit the symbols produced
from a process called source to a receiver. The source appears to the receiver
as a probabilistic process, in the sense that the latter is instructed on the
admissible symbols and on their probability, but has no deterministic, a priori
knowledge of the sequence they’re about to receive. In order to transmit the
symbols produced by the source, it is necessary to encode them. Note that it
is impossible to avoid coding, in this sense, as the very fact of having labelled
the states constitutes an inevitable coding.

Definition 2.3.1: Coding of a random process
Let X be a random variable with alphabet χ. A D-ary code C is any map
C : χ→ D∗, with D∗ the set of finite-length strings of characters from a finite
set D, such that #D = D. We denote with C(x), x ∈ χ the encoding of each
outcome, and with l(x), x ∈ χ the length of the D-ary string associated with x.
A code is said non-singular if C is 1-1.

We’re assigning to each outcome in χ a finite string in D∗, called codeword.
The legitimate question of how many characters will be needed on average for
each symbol transmitted, when using a certain code C, can then be answered
by averaging l(x) over P (x).

Definition 2.3.2: Average description length
Let X be a random variable with alphabet χ. Let C be a code for its outcomes.
The average description length of X, using C, is defined as:

L(C,X) = 〈l(x)〉X =
∑
x∈χ

P (x)l(x) (2.54)

Non-singularity is an important feature, as it allows the reliable encoding
and decoding of the strings representing each source symbol, if taken singularly.
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In general, though, we are interested in the transmission of a sequence of
symbols, therefore it is necessary for the receiver to be able to tell each character
from the preceding and following one, in order to avoid the ambiguity that
could occur if two codewords contained, when concatenated, a third one. An
idea could be to select an element of D∗ as a separator between characters,
but this would mean to loose a symbol over the alphabet and potentially to
almost duplicate the size of any message. A better idea would be to devise
a self-punctuating code, that is a code where no separator is needed between
characters.
Definition 2.3.3: Prefix Code
A code C is said to be a prefix code or an instantaneous code if for each finite
sequence used as a codeword, all those sequences that begin with said sequence
are not codewords. In other words, if no codeword is contained as a prefix in
another codeword.

This kind of device solves the problem because as soon as the receiver
recognises a sequence matching any codeword, he may start listening for the
next one, since no other codeword could have started with that same sequence.
This kind of code is subject to an inequality determined by its prefix-free
structure.
Theorem 2.3.1 (Kraft’s inequality). Let C be a D-ary, istantaneous code,
with word lengths l1, l2, l3 . . . , lmax. The following inequality holds:∑

i

D−li ≤ 1 (2.55)

And conversely, given any set of lengths l1, l2, l3 . . . , lmax satisfying Kraft’s
inequality, it is possible to construct a prefix code with those lengths.
Proof. Given a finite maximal length lmax, the number of D-ary words, lmax
characters long, is Dlmax . Some of these are acceptable codewords and some
are not. In order to create the codewords we start from no character at all, and
add one character at a time: we keep one of the D possible words as a proper
codeword, thus removing all those to which it would be a prefix, and we use
as prefixes the remaining D − 1. Thus, for each li we are removing Dlmax−li ,
lmax character long possible words. Eventually, though, we are keeping D of
them, since there are D lmax-long codewords which have none of the previous
sequences as prefix. Therefore the total number of lmax-long words removed is
inferior to the total number of potentially available lmax-long words:∑

i

Dlmax−li ≤ Dlmax

=⇒
∑
i

D−li ≤ 1
(2.56)
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The inequality can be generalised to a countable set of instantaneous code-
words. The advantage of using prefix codes is that they have codewords of
a number of different lengths. This permits distributing cleverly the shortest
codewords on the most frequent symbols, thus effectively reducing the average
description length. These prefix code are indeed a good starting point in the
problem of designing the optimal code for a given source, that is the code that
has the absolutely least average description length. The work of Information
theory continues by minimising L(C,X) on the constraints set by Kraft’s in-
equality and by the request that the lengths l1, l2, . . . be positive integers. I will
bring up only a result, without proving it, that has been of cardinal importance
in the present work. Although I presented some ideas from information theory
for symbols generated by a single random variable, the concepts can be ex-
tended to stochastic sources. Indeed the case of i.i.d. (independent identically
distributed) variables is that of a process without memory‡.

Theorem 2.3.2 (Bounds on the average description length for an optimal
coding). Let {Xi} be a stochastic process, and let C∗ be the optimal code for
such process. There exists a bound on L∗, the average description length of
{Xi} with C∗.

H(X1, X2, . . . , Xn)

n
≤ L∗ ≤ H(X1, X2, . . . , Xn) + 1

n
∀n (2.57)

In particular, if {Xi} is stationary, the condition is stronger: introducing L∗n,
the mean description length over n symbols one has the following.

lim
n→∞

L∗n = H(χ) (2.58)

For a proof of this Theorem the reader is redirected to [7].
This result is fundamental. Indeed, after having defined a stochastic pro-

cess from a dynamical system, by introduction of a partition, it is possible
to use it as a source of symbols. Then by building an optimal code for the
process, it is possible to get arbitrarily good estimates of the system’s entropy,
given that one has access to sufficiently long strings of symbols generated by
the system. Nevertheless, in many cases this is not enough. This is because
the construction of an optimal code for a process still requires to be in posses-
sion of a lot of information on it. An idea, in this case, is to build a perfectly
invertible compression algorithm that asymptotically achieves the optimal av-
erage description length. The class of algorithms that achieve this result is that

‡Indeed for a process with PMF defined on n i.i.d. variables it is easy to prove H(χ) =
H(X) by use of the n-ary chain rule.
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of optimal compression algoritms. I will present the algorithm I used on the
data, slightly adapted from its presentation in [7], in order to produce correct
estimates for an n-ary process. In the same book, the interested reader will
also find a proof of optimality for said algorithm. The algorithm is generally
known as Lempel-Ziv 78 (LZ78) or Tree-Structured Lempel-Ziv algorithm, as
it is due to the computer scientists Abraham Lempel and Yaakov Ziv.

The Lempel-Ziv 1978 algorithm

The basic idea of LZ78 is to run over the input stream of symbols and identify,
at each time, the shortest string never-before-seen upstream. In other words,
it is performing what is called a distinct parsing of the stream. Once it has
found one, it means that the string is formed by an already-seen string with
an extra character appended in the end, therefore the never-before-seen string
will be encoded by the position of the prefix in the coded message and the
last character. The algorithm’s correct start, stop and ability to deal with new
characters at runtime are granted by the a priori insertion among the already-
seen strings of the empty set ∅. It is used as a prefix for new characters
(including the first ever of the stream) and as a postfix in case the last string
is an already seen one. Let’s follow the algorithm’s work, step by step, on an
example: let the input stream be the one pictured below. The cursor will be
represented by a vertical line after the current character.

Input: |AABBAABABBBA Output:

The algorithm reads the first character: since it is a new character, it appends
(∅, A) to output.

Input: A|ABBAABABBBA Output: (∅, A)

The algorithm advances one step further, finding another A. As A is an already
known string, it goes forward again, thus reading AB, which hasn’t been seen
before. The algorithm writes to output: (1, B), meaning that to reconstruct
the string it has seen, it is necessary to get the 1st string in the compressed
message and append a B to it.

Input: AAB|BAABABBBA Output: (∅, A), (1, B)

Moving another step further the algorithm finds letter B, which it hasn’t seen
alone, as yet: it writes (∅, B) to output.

Input: AABB|AABABBBA Output: (∅, A), (1, B), (∅, B)
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Going forward the next suitable sequence is AA, the pair inserted on output
is (1, A).

Input: AABBAA|BABBBA Output: (∅, A), (1, B), (∅, B), (1, A)

After an adequate number of steps we obtain the following:

Input: AABBAABABB|BA Output: (∅, A), (1, B), (∅, B), (1, A),

(3, A), (3, B)

At this point the cursor will reach the end-of-input marker without having
found any new string. This means that the string currently under examination
has already been seen, therefore the pair appended to output will contain the
pointer to the former occurrence of said string and the empty set as a postfix.

Input: AABBAABABBBA| Output: (∅, A), (1, B), (∅, B), (1, A),

(3, A), (3, B), (5, ∅)

A flow-chart demonstrating the procedure followed by the algorithm in more
practical terms is shown in Fig. 2.3. It can be proved that LZ78 is an optimal
compression scheme for stationary and ergodic sources. A proof is presented
in Paragraph 13.5.2 of [7] for binary processes. Since the data on which the
algorithm has been used weren’t from a binary source, but indeed from a D-
ary one, I would like to present a version of the optimality theorem slightly
modified to fit the needs of the study.

Theorem 2.3.3 (Optimality of LZ78). Let {Xi} be a stationary and ergodic
stochastic process on a D-ary alphabet. By defining the LZ78 codeword length
for a given input string (x1, x2, . . . , xn) as:

l(x1, x2, . . . , xn) = c(n)(log2(c(n)) + log2(D)) (2.59)

Where c(n) represents the number of strings in which the algorithm divides the
input (x1, x2, . . . , xn).
The following holds:

lim sup
n→∞

l(x1, x2, . . . , xn)

n
≤ H(χ) with probability 1§ (2.60)

With H(χ) the entropy rate of the process.

This theorem completes the theoretical background necessary for the car-
rying out of the measurements. Indeed it provides an important tool, since it

§For the several definitions of convergence for random variables the reader can look into
[8] and [7].
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allows to estimate the entropy rate of a system from its encoded experimental
trajectories, by measuring the average description length per-symbol after their
lossless compression. The estimate can be carried out up to a desired degree
of approximation, determined also by the amount of available data. Among
several available algorithms for lossless compression LZ78 has been chosen also
for its relatively low computational complexity that goes as O(N log(N)), with
N number of symbols. For an optimality evaluation of my implementation of
the algorithm, see Appendix C.



2.3. INFORMATION THEORETIC NOTIONS 37

Figure 2.3: A flow-chart portraying the LZ78 algorithm.
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Chapter 3

Results

3.1 Mobility network overview
An interesting preliminary observation, is to see to what degree the overall
most connected cells are all interconnected among themselves. To this end, I
built an undirected graph, increasing of one a link’s weight between two cells,
whenever a travel started from one and ended on the other, or vice versa.

Figure 3.1: A colour-coded map of the set of cells generating the 86.4% of the
total mobility. The weights are referred only to the generating set.

One says that a certain set of cells generates the X% of the mobility when,

39
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by keeping only the travels that start or finish in a cell in the set, one preserves
the X% of all the travels. Figure 3.1 displays the most connected nodes of said
graph. From this analysis, the city’s dynamics appears to be generated by a
very highly connected nucleus in the city centre, and by some more peripheric
branches, that run along the streets coming out of the most important gates.
There are also some highly connected, but geographically isolated cells. These
are mainly outdoors points of interest, common destinations during the summer
and spring, such as a number of gardens or the Basilica di San Luca.

3.2 Further preparation of the timed patterns
By inspecting some of the actual strings generated from the data, it appeared
that many travels contained stationary periods of different length. In order to
have proper mobility patterns, it is necessary to spot the stationary periods in
timed patterns. Such periods need to be removed, and the patterns connecting
them are to be considered as separated travels. To do so in practice, it is
necessary to devise a criterion. I chose to set a numeric threshold for character
repetitions. This way if a symbol is contiguously repeated more times than
it is suitable in actual mobility, the travel is broken down into an appropriate
number of sequences. This selection, thus, allows to set a resolution for social
activities. In fact any actual social activity, shorter than this resolution, is
regarded as mobility. After having performed this operation on the timed
patterns, the pattern length distribution appears as in Figure 3.2. Since the

Figure 3.2: The length distribution after breaking down all the sequences, when
a stop longer than 15 minutes was detected.

LZ78 algorithm is asymptotically optimal, on short strings its estimate tends
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to yield always the same value, independently of the sample∗ Therefore it is
necessary to select a length threshold that sequences need to surpass in order
to enter the entropy calculation. In timed patterns this translates also into
a duration requisite, because of the uniform time resampling the sequences
underwent.

3.3 Timed patterns analysis

Two relevant quantities used in the filter were used as control parameters. The
first is the minimal amount of time a travel has to last in order to be included
in the entropy computation, we’ll call this the Time Threshold (T.T.). The
second is the maximal amount of time an individual can stay in the same cell
before triggering the break down of the string in several travels, we’ll call this
the Breaking Time (B.T.). All of the following are histograms obtained from
the timed patterns. In each entropy rate histogram I will indicate both of the
control quantities. I now will show three histograms, obtained for a B.T. of 15
minutes and varying the T.T.

Figure 3.3: Timed entropy rate for 15 minutes T.T. and 15 minutes B.T.

∗The independence on the sample has been spotted because of the presence, in the first
run, of a very high entropy spike on an exact value close to 3.78 bits/outcome, which turned
out to be the value assigned by the algorithm to any two-character string of two different
characters.
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Figure 3.4: Timed entropy rate for 30 minutes T.T. and 15 minutes B.T.

Figure 3.5: Timed entropy rate for 45 minutes T.T. and 15 minutes B.T.

In Figure 3.3, Pedestrians show two peaks very close to each other, respec-
tively around 2.75 and 3.5 bits/outcome, almost of the same height. Cyclists,
on the other hand, have two uneven peaks, the most prominent at around 5.5
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bits/outcome and the other around 4 bits/outcome. Thus both distributions
are bimodal. In Figure 3.4, pedestrians have a single principal peak around
3 bits/outcome, and cyclists have one around 4 bits/outcome. This points
out that the most entropic activities for cyclists happen in the 15 to 30 min-
utes time scale. Indeed, increasing the T.T. to 45 minutes in Figure 3.5, only
the lower entropy peaks remain: around 2.5 bits/outcome for pedestrians, and
around 3.5 bits/outcome for cyclists. Short travels, therefore, show higher
entropy rates, indicating a wider set of visited locations. I present now two
histograms obtained by fixing the T.T. to 30 minutes, for values of B.T. of 30
and 45 minutes, in order to select travels that link social activities of different
durations.

Figure 3.6: Timed entropy rate for 30 minutes T.T. and 30 minutes B.T.
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Figure 3.7: Timed entropy rate for 30 minutes T.T. and 45 minutes B.T.

We can compare these histograms with 3.4 as well, since they all share the
T.T. of 30 minutes. In Figure 3.6, pedestrians have essentially a single peak
roughly around 2 bits/outcome. Cyclists have two peaks, the principal one
being around 3 bits/outcome. In Figure 3.7 both distributions keep roughly
the same peaks. By raising the B.T. one chooses to view as separated travels
only the strings that connect stopping periods longer than B.T.. If one assumes
that prolonged stopping periods correspond to social activities, Figures 3.4, 3.6
and 3.7 represent the entropy distributions for travels connecting activities of
durations respectively greater than 15, 30 and 45 minutes. I found that entropy
is lower, for travels that connect longer activities. This is true for both cyclists
and pedestrians. In Table 3.1, I display the number of entries of each histogram
in this Section.

Time Threshold (min) Breaking Threshold (min) Pedestrians Cyclists

15 15 24007 15703
30 15 35799 28998
45 15 13637 7859
30 30 51651 42579
30 45 56684 46175

Table 3.1: The number of samples used to fill each histogram.



Conclusions

In the present work, I analysed the entropic properties of human mobility in
the Bologna city area. The data I used was made out of the BellaMossa 2017
database pedestrian and cyclist records in the Bologna Metropolitan City. The
data have been filtered with a simple procedure taking into account the inter-
record speeds. The resulting database has been encoded using a 200m sided
square grid, covering the whole ROI. I implemented a version of the Lempel-
Ziv 1978 compression algorithm, modified to compute entropy rates on N -ary
stochastic processes, and used it on the encoded, uniformly interpolated, trajec-
tories. The results, presented in Chapter 3, point out some interesting features
of pedestrian and bicycle mobility. I plotted the entropy rate distributions for
several values of the control parameters Time Threshold and Breaking Time.
By comparing them I found out that entropy tends to be higher on the small
scale, in the sense that considering short travels that connect short activities,
the entropy distribution is peaked on higher values. In particular the peak
of highest entropy for cyclists vanishes when one doesn’t consider the travels
shorter than 15 minutes, indicating that the most entropic bicycle travels hap-
pen in this time scale. The pedestrians’ distribution, instead, loses the most
entropic peak on the 30 minutes time scale. This is reasonable, taking into ac-
count the higher speed attainable by a cyclist with respect to a pedestrian. If
one neglects the shorter activities, considering them a part of mobility, entropy
decreases. Looking at the same trajectories, but interrupting them only for
activities as long as 45 minutes, both distributions tend to be peaked around
2 bits. This means that looking at activities on the long time scale allows to
perceive their origin-destination nature, overlooking the local, minor deviations
that naturally incur. This highlights the short-range-disordered, long-range-
ordered nature of human urban mobility. A continuation of the work could
consist in the analysis of the trajectories separating them by day of the week,
time of the day or district of origin. In order to highlight the geometric prop-
erties of the trajectories, it could also be interesting to work with the jump
patterns.
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Appendix A

Distances calculations

In order to measure the distance between two different geographical points
it is necessary to take into account the shape and curvature of the earth.
The longer the distances, the more precise the used approximation has to be.
For the length scales considered in this work a spherical approximation was
deemed sufficient. The paths traveled by the users are described by polygonal
chains, where the length of each segment generally much shorter than the over-
all length of the chain. For this reason it has also been considered satisfactory
to approximate the length of each element of the chain, to that of an element
of infinitesimal length on the surface of a sphere. The infinitesimal element of
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Figure A.1: The tangent space to a sphere.

length can be obtained from the parametrisation of the sphere’s surface. The
metric matrix for the spherical coordinates on a sphere is the following:

G =

[
∂~r
∂ϕ
· ∂~r
∂ϕ

∂~r
∂ϕ
· ∂~r
∂ϑ

∂~r
∂ϑ
· ∂~r
∂ϕ

∂~r
∂ϑ
· ∂~r
∂ϑ

]
=

[
r2 sin2 ϑ 0

0 r2

]
(A.1)
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The element of length, therefore, is defined by:

ds2 =
[
dϕ dϑ

] [r2 sin2 ϑ 0
0 r2

] [
dϕ
dϑ

]
= r2 sin2 ϑ dϕ2 + r2dϑ2 (A.2)

In order to pass from standard spherical coordinates to a latitude-longitude
coordinate system in degrees, the following conversions apply, for points in the
northern hemisphere.

ϕ 7→ π

180◦
lon

ϑ 7→ π

2
− π

180◦
lat

(A.3)

With these expressions, and turning the differentials into finite differences, we
can build the final formula as used in the programs implemented for this study.

∆s =
√
k2r2

Earth cos2(k lat)∆lon2 + k2r2
Earth∆lat2 (A.4)

Where, to unburden the notation, it has been set k = π
180◦

.



Appendix B

Stable and unstable manifolds of a
point

In the definition of Markov partitions we encountered the concepts of stable
and unstable manifolds. They are defined as follows.

Definition B.0.1: Stable manifold of a point
Let (M, µ,Φ) be a dynamical system, let x ∈ M be a point of its phase space.
We define the stable manifold of x with respect to Φ, W s(Φ, x) as follows:

W s(Φ, x) ≡ {y ∈M | lim
n→+∞

d(Φn(y),Φn(x)) = 0} (B.1)

The stable manifold of a point therefore is the set of points attracted to its
evolution as time evolves.

Definition B.0.2: Unstable manifold of a point
Let (M, µ,Φ) be a dynamical system, let x ∈ M be a point of its phase space.
We define the unstable manifold of x with respect to Φ, W s(Φ, x) as its stable
manifold with respect to Φ−1:

W u(Φ, x) = W s(Φ−1, x) (B.2)

The unstable manifold, conversely, is the set of points which are repelled by
the point’s evolution as time flows. These concepts represent a generalisation
of the stable and unstable manifolds of a fixed point of the phase flow.
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Appendix C

Optimality assessment of the
implemented LZ78 algorithm

Theorem 2.3.3 guarantees asymptotical convergence, but in experimental ap-
plications one faces finite strings. To find out the magnitude of the finite
string effect, I performed tests on samples of known entropy. This way of
testing the algorithm was inspired by [10], where several estimates are done
on binary processes. My implementation of the algorithm can be found on
the project repository [1]. I selected sequences of independent, identically
distributed (i.i.d.) uniform discrete distributions as testing processes. For a
process of i.i.d. variables, the entropy rate is equal to the entropy of a single
variable, by Theorem 2.2.1:

H(χ) = lim
n→∞

1

n
H(X1, X2, X3, . . . , Xn)

= lim
n→∞

∑n
i=1H(Xi|Xi−1, . . . ,X1)

n

= lim
n→∞

n H(X)

n
= H(X)

(C.1)

Furthermore, for a uniform distribution on an N -ary alphabet:

H(X) = −
N∑
i=1

1

N
log2(

1

N
) = log2(N) (C.2)

Therefore, generating uniform samples on an N -ary alphabet, we expect to
measure values close to log2(N). Because of the asymptotic convergence, we
also expect the estimate to get better as the size of the sample increases. I
generated samples from uniform distributions on 2, 4, 8, 16, 32, 64, 128 and 256
characters, repeating the generation five times, with increasing sample lengths,
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from 105 up to 9× 105 characters. For each sample length I performed a linear
regression, I report the results in Table C.1.

Sample length (chars) Slope Intercept(bits/char) r-value

1× 105 1.270 -0.2267 0.9978
3× 105 1.219 -0.1207 0.9993
5× 105 1.201 -0.08788 0.9996
7× 105 1.194 -0.07861 0.9996
9× 105 1.192 -0.07845 0.9996

Table C.1: The linear regression values for each number of samples used.

Figure C.1: The experimental entropy rates versus the logarithm of the alpha-
bet size.

In Figure C.1, I plotted the experimental entropy rates versus the expected
entropy value. A convergence towards the expected values is visible, but it ap-
pears very slow, thus requesting extremely long sequences to make the estimate
better. The algorithm, therefore, doesn’t seem to yield good results on absolute
entropy estimation. Nevertheless, as the dependence seems to be linear, the
algorithm remains reliable for evaluating relative entropy. Therefore, given its
reasonably low computational cost (N logN), it has been deemed good for this
study.
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