Brandoni, Domitilla
(2018)
Tensor decompositions for Face Recognition.
[Laurea magistrale], Università di Bologna, Corso di Studio in
Matematica [LM-DM270]
Documenti full-text disponibili:
|
Documento PDF (Thesis)
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato
Download (4MB)
|
Abstract
Automatic Face Recognition has become increasingly important in the past few years due to its several applications in daily life, such as in social media platforms and security
services. Numerical linear algebra tools such as the SVD (Singular Value Decomposition) have been extensively used to allow machines to automatically process images in
the recognition and classification contexts. On the other hand, several factors such as expression, view angle and illumination can significantly affect the image, making the
processing more complex. To cope with these additional features, multilinear algebra tools, such as high-order tensors are being explored. In this thesis we first analyze tensor calculus and tensor approximation via several dif-
ferent decompositions that have been recently proposed, which include HOSVD (Higher-Order Singular Value Decomposition) and Tensor-Train formats. A new algorithm is
proposed to perform data recognition for the latter format.
Abstract
Automatic Face Recognition has become increasingly important in the past few years due to its several applications in daily life, such as in social media platforms and security
services. Numerical linear algebra tools such as the SVD (Singular Value Decomposition) have been extensively used to allow machines to automatically process images in
the recognition and classification contexts. On the other hand, several factors such as expression, view angle and illumination can significantly affect the image, making the
processing more complex. To cope with these additional features, multilinear algebra tools, such as high-order tensors are being explored. In this thesis we first analyze tensor calculus and tensor approximation via several dif-
ferent decompositions that have been recently proposed, which include HOSVD (Higher-Order Singular Value Decomposition) and Tensor-Train formats. A new algorithm is
proposed to perform data recognition for the latter format.
Tipologia del documento
Tesi di laurea
(Laurea magistrale)
Autore della tesi
Brandoni, Domitilla
Relatore della tesi
Scuola
Corso di studio
Indirizzo
Curriculum A: Generale e applicativo
Ordinamento Cds
DM270
Parole chiave
HOSVD tensor-train face recognition tensor decompositions
Data di discussione della Tesi
26 Ottobre 2018
URI
Altri metadati
Tipologia del documento
Tesi di laurea
(NON SPECIFICATO)
Autore della tesi
Brandoni, Domitilla
Relatore della tesi
Scuola
Corso di studio
Indirizzo
Curriculum A: Generale e applicativo
Ordinamento Cds
DM270
Parole chiave
HOSVD tensor-train face recognition tensor decompositions
Data di discussione della Tesi
26 Ottobre 2018
URI
Statistica sui download
Gestione del documento: