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Abstract
Multi-sensing Data Fusion: Target Tracking via Distributed Particle Filtering

by Alessandro Contro

In this Master’s thesis, Multi-sensing Data Fusion is firstly introduced with a focus
on perception and the concepts that are the base of this work, like the mathemati-
cal tools that make it possible. Particle filters are one class of these tools that allow
a computer to perform fusion of numerical information that is perceived from real
environment by sensors. For this reason they are described and state of the art math-
ematical formulas and algorithms for particle filtering are also presented. At the core
of this project, a simple piece of software has been developed in order to test these
tools in practice. More specifically, a Target Tracking Simulator software is presented
where a virtual trackable object can freely move in a 2-dimensional simulated envi-
ronment and distributed sensor agents, dispersed in the same environment, should
be able to perceive the object through a state-dependent measurement affected by
additive Gaussian noise. Each sensor employs particle filtering along with commu-
nication with other neighboring sensors in order to update the perceived state of
the object and track it as it moves in the environment. The combination of Java and
AgentSpeak languages is used as a platform for the development of this application.
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Chapter 1

Introduction

In the current days the interest in distributed autonomous systems research is at its
peak. Just by looking at any engineering publication, it is easy to find articles talking
about Internet of Things and autonomous self driving cars. These systems hugely rely
on environmental awareness through the use of sensor arrays or sensor networks in
order to perform their operations. This leads us to focus our interest on the mathe-
matical and engineering processes that are at the base of perception carried out by a
computer.

In this thesis we take on a journey to explore how this process of environmen-
tal awareness is performed by a computing machine, which brings us to introduce
Multi-Sensing Data Fusion as the starting point for understanding how the environ-
ment is modeled inside a sensor-enabled agent. Considering that these agents can
only "see" the environment at discrete times, the Dynamic World Modeling framework
iteratively allows them to keep track of a set of environmental states, which form the
agent’s internal description of the world.

The world modeling iterative process can be done for numerical values perceived
by the agent’s sensors, and it is enabled by statistical methods such as particle fil-
ters. For this reason, after a brief introduction to distributed particle filtering, we
try to master a specific technique to obtain a Particle Filter (PF) on an agent in a
Multi-Agent System (MAS), which is the Likelihood Consensus Distributed Particle Fil-
ter (LCDPF) algorithm in a sensor-agent network.

To try out this new acquired knowledge we then try to implement a small MAS
which simulates a sensor network tracking a moving object in a 2-dimensional vir-
tual environment. For the implementation we make the architectural choice of using
the Jason library in Java, which allows us to easily create and run logic for agents
written in AgentSpeak language. For this reason we dedicate a section to introduce
Jason and the AgentSpeak language, focusing on the features that are more relevant
to this project.

The thesis is organized as follows: chapter 2 firstly gives an overview on the
state of the for data fusion and distributed particle filtering. It then focuses more into
LCDPF as it is the core topic of this thesis. In the same chapter a small introduction to
Jason and AgentSpeak language is exposed. In chapter 3 the case study is introduced
and with that the theory for particle filtering is given a context. Chapter 4 describes
the architecture of the software application that we implement, and shows how the
particle filtering techniques are translated into runnable Java and AgentSpeak code.
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Chapter 2

State of the art

This chapter is mainly dedicated to introduce all the knowledge found in litera-
ture that has been used in the work for this project. Section 2.1 briefly describes
AgentSpeak and the Jason library and focuses mainly on the features that are used
in software developed for the case study later discussed in this work. Section 2.2
gives and overview on the foundations of data fusion which is Dynamic World Mod-
eling. Finally section 2.3 firstly introduces the reader to particle filtering and shows
various distributed approaches to this techniques, then it dives deep into the tech-
nique we decided to implement in this work, giving all the necessary mathematical
foundations on which the software we developed is based on. Note that most of
the information is directly quoted from the respective documents cited along the
chapter.

2.1 AgentSpeak and Jason

On the contrary of traditional programs with a simple input-compute-output struc-
ture, agents and multi-agent systems are that kind of software that needs to maintain
a long-term, ongoing interaction with their environment. An agent is a reactive sys-
tem that exhibits some degree of autonomy in the sense that we delegate some task
to it, and the system itself determines how best to achieve this task [4].

An agent is a system situated in a certain environment and by that we mean that
the agent is capable of sensing their environment and that it is also capable of act-
ing on that same environment via effectors and actuators in order to modify its state.
Apart from being situated, an agent also shows other properties such as autonomy,
proactiveness, reactivity and social ability [4].

It is more likely that these agents live in a multi-agent system where other agents
are present and each one may have different characteristics, such as different be-
haviors. Due to their autonomous feature, agents may be created equal, but the
evolution of the environment may lead them to act differently from each other. Each
agent has a certain "sphere of influence" on the environment which most of the times
overlaps with the sphere of influence of other agents, making the overall evolution
of the system unpredictable.

2.1.1 The BDI Agent Model

BDI stands for belief, desire and intention and this kind of architecture originated from
the theory of human practical reasoning. This model depicts the agent as if it had a
mental state and the three elements of the model can be described as follows:
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Beliefs are information that the agent has about the world, these information can
come as perception, as knowledge from other agents or as knowledge inferred
by the same agent (self).

Desires are all the possible states of affairs that the agent might like to accomplish.
They are potential influencers of the agent’s actions and it’s reasonable to have
conflicting desires.

Intentions are the states of affairs that the agent has decided to work towards. They
may be goals that are delegated to the agent or may result form considering
desires. Intentions are desires that the agent has committed to.

Agent-oriented Programming (AOP) offers a familiar and non-technical way to
talk about complex systems, and it relieves the user from dealing with the control
issues of traditional declarative programming, in other words the user tells what the
system should achieve and the built-in control mechanism figures out how to reach
that goal.

2.1.2 Agent Communications

So far what we discussed above deals with the internal operations of a single agent,
but as we said it’s more likely that an agent operates in a system with other agents
and that requires social interactions via a certain communication architecture. Com-
munication in multi-agent systems is usually based on the speech-act theory according
to which that "language is action", in the sense that an agent attempts to change the
world with the use of communication as much as the use of actual actions. The dif-
ference between speech actions and non-speech actions is that the domain of the former
is limited to the mental state(s) of the recipient of the act, while the latter directly
interact with the environment.

Speech acts, also referred as performatives, are classified according to their illocu-
tionary force which can be listed as follows:

• representatives, passing simple information

• directives, which attempt to get the recipient to do something

• commissives, which state the commitment of the speaker

• expressives, whereby a speaker expresses a mental state

• declaration, such as declaring a state

For the purpose of communication among agents a dedicated language has been
developed and it’s called Knowledge Query and Manipulation Language (KQML).
It is a dedicated high-level communication language which defines a number of per-
formatives such as tell, which is at the base of agent communication in Jason. Based
on KQML a standard was developed which is called FIPA (Foundation for Intelligent
Physical Agents). This standard aims to simplify and rationalise the performative set
as much as possible, and to address the issue of semantics. This should impose cer-
tain rules on the way communication is perfomed among agents via KQML which
in the end should allow for a certain level of interoperability between BDI agents
developed with different languages or between agents living on different systems.
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2.1.3 Jason Agent Programming Language

According to the BDI architecture the main components of a Jason agent are the
belief base, which can be updated accordingly after perceiving the environment, and
the agent’s goals which are achieved by the execution of plans. BDI agents, and so
Jason agents, are reactive planning systems which permanently run and react to
some form of events. The reaction to these events is carried on with said plans.

The interpretation of the agent program determines the agent’s reasoning cycle.
The agent is constantly perceiving the environment, reasoning about how to act so
as to achieve its goals, then acting so as to change the environment. The reasoning
is done according to the plans that the agent has in its plan library. When the agent is
created at runtime, the plan library consists of the plans that the programmer writes
as an AgentSpeak program.

Next a brief description of the main components of an AgentSpeak/Jason agent:

Beliefs An agent has a belief base, which in its simplest form is a collection of lit-
erals, as in traditional logic programming where information is represented in
symbolic form by predicates. Predicates in the belief base can be accompanied
by annotations which are Prolog structures that provide details that are strongly
associated with one particular belief. Annotation can contain any kind of in-
formation, but only specific kind of annotation have a meaning for the Jason
interpreter. One of those is the source annotation which contains the source
of the associated belief. The main kinds of source are perceptual information,
communication from other agents and mental notes generated by the same agent
(self notes).

// sensor 1 knows its name
name(sensor1)[source(self)]
// sensor 1 has been told that sensor2 is its neighbor
//by sensor2 itself
neighbor(sensor2)[source(sensor2)]

Goals Goals express the properties of the states of the world that the agent wishes to
bring about. When representing a goal in a agent program, it means the agent
is committed to act so as to change the world to a state in which the agent will
believe that the goal is true, by sensing the environment. AgentSpeak offers
achievement goals and test goals. The former is meant as we described above,
where the agent commits to act and change the world until a certain belief
becomes true. The latter is a way to retrieve information from the belief base,
although they can still lead to the execution of plans in certain circumstances.

//the agent has the goal to move left
!move(left)
//this will trigger a plan that should provide the agent
//with a percept telling it has successfully moved right

or not

Plans They are the agent’s know-how and they are usually triggered by changes in
the agent’s beliefs and goals. A plan is composed by three distinct parts: the
triggering event, the context and the body. The triggering event tells the agent,
for each of the plans in their plan library, which are the specific events for
which the plan is to be used. Context is used for checking the current situation
so as to determine whether a particular plan, among the various alternatives, is
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FIGURE 2.1: Example interface of a custom internal action (source
[4]).

likely to succeed in handling the event, given the latest information the agent
has about the environment. Then at last the body is a sequence of formulæ de-
termining a course of action that will hopefully succeed in handling the event
that triggered the plan.

triggering_event : context <- body.

Another important tool that an agent has is the action. Actions allow the agent to
act within an environment and they represent what the agent is able to do. In other
words they are a symbolic representation of "hardware" actions. Executing an action
on the environment doesn’t give a direct feedback on its success, so it is necessary
that the agent has a way to perceive if something changed due to the execution
of that action. As example while moving a robot arm, it has to give a feedback
that the motion was completed or not, or if the arm performed some changes in the
environment, the agent should be able to perceive them through its sensors.

While actions can be seen as something acting outside of the agent, there is a
distinction with another kind of action, called internal action. This kind of formula
allows to do some reasoning within the agent. Internal actions can be customized by
programmers to extend the AgentSpeak language with operations written in Java
that are not otherwise available (fig. 2.1).

Jason offers a number of standard internal actions, one of the most important for
communication is the internal action .send which allows the exchange of messages
between agents. The general form of the pre-defined internal action for communica-
tion is:

.send(receiver ,illocutionary_force ,propositional_content)

where the receiver is the agent name, or a list of names, given during configuration
(if more instances of the same agent are present, Jason adds a number after the name
starting by 1). The illocutionary force denotes the kind of message that the agent is
sending, and the available options are:

• tell: s intends r to believe (that s believes) the literal in the message’s content
to be true;

• untell: s intends r not to believe (that s believes) the literal in the message’s
content to be true;

• achieve: s requests r to try and achieve a state of affairs where the literal in the
message content is true (goal delegation);
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• unachieve: s requests r o drop the goal of achieving a state of affairs where the
message content is true;

• askOne: s wants to know if the content of the message is true for r;

• askAll: s wants all of r’s answers to a question;

• tellHow: s informs r of a plan (passing know-how);

• untellHow: s requests that r disregard a certain plan (delete plan from r’s plan
library);

• askHow: s wants all of r’s plans that are relevant for the triggering event in the
message content.

The propositional content is usually a literal and is the content of the message.

2.1.4 Simulated Environment in Jason

One of the key aspects of autonomous agents is that they are situated in an environ-
ment. It can be the real world or the Internet, while some other times it is necessary
to create a computational model that is able to simulate the dynamic aspect of a real
environment, e.g. for testing or for research. It is important that the model creates
a certain level of transparency at the agent, so it can operate as if it was in the real
world environment (figure 2.2).

FIGURE 2.2: Interaction between agent and environment (source [4]).

Jason provides the Environment interface which can be extended by the user, it
can be parametrized in the init method and logic for agents’ actions can be defined
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in the method executeAction, which is called by the underlying infrastructure when-
ever and agent performs an action (fig. 2.2). The whole class can then be customized
like a regular Java class. It is possible for example to create an UI that draws rele-
vant agent operations on screen. The interface finally offers methods that deal with
agent perception, so percepts can be added or removed from an agent’s belief base
and the agent will always see these beliefs with the note source(percept). Generally a

FIGURE 2.3: Environment interface and extendable methods in Jason
(source [4]).

simulated environment in Jason is composed by the main class Environment which
interacts with the agents and by other support classes such as a model class that tracks
relevant information, and a view which renders the model on screen. In figure 2.3 it’s
possible to see all methods that Jason provides for the Environment class. It should
be noted that the environment is able to access all agents’ percepts and modify them
woth the the field agPercepts and the methods add/remove/clear Percept, which can be
targeted to all agents or a single one. Note also that the word percept refers only to
beliefs that are generated by the environment, so other kind of beliefs that an agent
has in their belief base should not be accessible from the outside.
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2.2 Perception and Data Fusion

An agent, seen as something that "acts" in a certain environment, needs first of all
to be aware of the state of that same environment and in order to do that it needs
to create and maintain an internal coherent description of that state through the in-
terpretation of different discrete observations performed by sensing means usually
captured at different times. These interpretation can then be integrated and used
to maintain the internal description of the world, or the part of it that is interesting
to the agent. All this process of acquisition, interpretation and integration of obser-
vations into a coherent internal description of the world is at the base of perception
and takes the name of Dynamic World Modeling [5], where "dynamic" means that the
model changes with time, taking advantage of its relative continuity.

2.2.1 Perception

Perception is not a goal, but a mean for an agent to acquire information from the
environment in order to execute actions towards a certain goal and for this the agent
needs to have a description of that environment. Perception is defined as:

The process of maintaining of an internal description of the external en-
vironment. [5]

Somebody could think that it would be easier to just use the actual environment as
the description model but that would require an extremely complete and rapid sens-
ing ability from the agent and most of the times the entirety of the world contains
way much more information than the agent needs for its goals.

A generic framework for Dynamic World Modeling is presented in [5] which we
are going to describe and it’s pictured in figure 2.4. In the framework, independent
observations are translated into a common coordinate space and vocabulary and
then fused into a model by a cyclic 3-phases process. The phases are Predict, Match
and Update.

During the prediction phase, the current state of the model is used to "guess"
the state of the observed external world according to a transition model at the time
when the next observation is taken. During the matching phase the observations are
used to align the model to the external world. While during the update phase, the
information obtained from the new observations is integrated into the model. This
cycle can be used both to add new information to the model and to remove "old" or
"incorrect" information from it, which also prevents the model from growing with
no limits.

2.2.2 Principles for integrating perceptual information

The authors in [5] identify the following set of principles for data fusion.

1) Primitives in the world model should be expressed as a set of proper-
ties.

A primitive should express an association of properties that describes the state of
some part of the world and is most likely paired with a value of precision. This is
known as state vector.

2) Observation and Model should be expressed in a common coordinate
system.
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FIGURE 2.4: Dynamic World Modeling framework scheme.
Source [5]

When the model represents the state in a different way than the pure observation, a
transformation function should be applied to the latter. This usually requires knowl-
edge of the sensor geometry and function. The most used coordinate systems can be
scene based or observer based. The decision of which system to use is related to the
cost of the transformation and the use case.

3) Observation and model should be expressed in a common vocabulary.

A model can be seen as a state database, values referring to the same property should
be labeled the same way. A good approach to integrate information coming from
different (kinds of) sensors is to define a standard primitive that contains all the
properties that can be observed or inferred by the different sensors. This way each
sensor can supply a complementary subset of properties of the state vector.

4) Properties should include an explicit representation of uncertainty.

Precision and Confidence. The former can be seen as a spatial uncertainty, often rep-
resented by a probability function of noise. The latter indicates how close the agent
thinks the property is to the the real value.

5) Primitives should be accompanied by a confidence factor.

Primitives should be considered as hypotheses that the agent makes on the external
world. Each hypotheses should include a value of likelihood which can be expressed
as a probability. This way information that is uncertain at first can be confirmed or
deleted from the model after some iterations.
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2.2.3 Techniques for Numerical Data Fusion

When dealing with primitives composed by numerical property estimates and their
precision, a well defined set of techniques is available from Mathematical and Statis-
tical studies. One powerful tool that is also the scope of this work is the particle filter
which will better discussed later on.

A dynamic world model M(t), is a list of primitives which describe the state of
a part of the world at an instant in time t.

M(t) ≡ {P1(t), . . . , Pm(t)}

Each primitive Pi(t) in the world model describes a local part of the world as a
conjunction of estimated properties X̂(t). plus a unique id and a confidence factor
C(t)

P(t) ≡ {id, X̂(t), C(t)}

The confidence factor allows the system to filter the good primitives from the bad
ones, keeping the former and removing the latter. Successive observations change
the confidence value, increasing it the more the primitive is close to the value ob-
served. Primitives that obtain a low confidence factor are considered as noise and
removed from the model. High confidence on certain elements allows them to re-
main relevant for several cycles, even in the case the part of the world observed is
obscured.

A primitive is an estimate of a part of the world as a set of N properties, repre-
sented by the vector X̂(t).

X̂(t) ≡ {x̂1(t), . . . , x̂n}

X(t) is the actual state of the external world, and it is estimated byt the obser-
vation process H which projects the world onto an observation vector Z(t), and it’s
corrupted by random noise N(t)

Z(t) ≡ H X(t) + N(t)

The world state X(t) is not directly knowable and the estimate X̂(t) should converge
to that through successive observations. At each cycle the system produces an esti-
mate X̂(t) by combining a predicted observation Z̄(t) with and actual observation
Z(t). The difference between the predicted vector Z̄(t) and the observed vector Z(t)
provides the basis for updating the estimate X̂(t).

Both the estimate and the observation must be accompanied by a value of uncer-
tainty which provides the tolerance bounds when matching observation and predic-
tions, and provides the relative strength of prediction and observation when calcu-
lating a new estimate [5].
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2.3 Particle Filtering

Particle filtering is a Monte Carlo approximation of optimal sequential Bayesian
state estimation. It has become the methodology of choice for nonlinear and non-
Gaussian systems and due to the increasing interests in sensing agent networks a
lot of research in Distributed Particle Filters (DPF) has been made. Because of the
distributed nature of agent networks, the measurements are dispersed among the
agents and for that diffusing the locally available information throughout the net-
work becomes an essential component of DPFs.

Agents cooperatively estimate certain parameters of the surrounding environ-
ment based on their local measurements and they need to cooperate among each
other because their local measurements are usually insufficient for obtaining reli-
able and complete estimates.

For distributed estimation algorithms, the communication aspects of the agent
network are very important, such as the communication topology, usually described
as a graph, and the properties of the links.

In these kind of systems it is assumed that the locations of the agents are known
and that each single agent is estimating its position related to the environment. This
information can either be self-acquired by the agent (in the case of mobile agents)
or given as parameter to the agent at the start of its operation (in the case of fixed
agents).

Additional aspects influencing the design of distributed estimation algorithms
include energy constraints, such as limited battery, and computation constraints,
such as limited transmission power and range and latency. The algorithms may also
have to meet other requirements related to the application like robustness to link
and node failure and scalability.

We will now provide a top-down overview of particle filters before focusing on
a specific PF technique. Particularly on this chapter and consequently along the rest
of this thesis, we heavily rely on Particle Filtering theory presented in [6], [7] and [8].

2.3.1 Sequential Bayesian Estimation

Distributed Particle Filtering is a variant of the centralized Sequential Bayesian Esti-
mation, so before moving on could be useful to review these principles first.

Consider a time-dependent state vector xn, n being a discrete time index, that
evolves according to the system model

xn = gn(xn−1, un), n = 1, 2, . . . . (2.1)

gn(·, ·) is a known (usually nonlinear) function and un is white driving noise that
is independent of the past and present states and whose probability density function
(pdf) is known. At time n, measurement vector zn is observed, which relates to xn
via the measurement model

zn = hn(xn, vn), n = 1, 2, . . . . (2.2)

hn(·, ·) is a known (usually nonlinear) function and vn is white measurement
noise that is independent of the past and present states and of the driving noise and
whose pdf is known. z1:n , (zT

1 . . . zT
n )

T is defined as the vector for all measure-
ments up to time n. Equation 2.1 and 2.2 together with the statistical assumption de-
termine a probabilistic formulation of the system model by the state-transition pdf
f (xn|xn−1) and of the measurement model by the likelihood function f (zn|xn), both
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of which are allowed to be time-varying. From the statistical assumptions it also
follows that f (xn|xn−1, zn−1) = f (xn|xn−1), which means that the state xn is con-
ditionally independent of all past measurements z1:n−1, and that f (zn|xn−1, zn−1) =
f (zn|xn), which means that zn is conditionally independent of all past measurements
z1:n−1, given the current state xn.

The task is the estimation of the state xn from all measurements up to time n,
z1:n, in a sequential (recursive) manner. The Bayesian approach is to calculate the
posterior pdf f (xn|z1:n) and with that one can then calculate various estimates of xn
such as the minimum mean-square error (MMSE) estimator of xn obtained as the mean
of f (xn|z1:n)

x̂MMSE
n , E[xn|z1:n] =

∫
xn f (xn|z1:n)dxn, n = 1, 2, . . . . (2.3)

It can be shown that the posterior f (xn|z1:n) can be calculated sequentially from
the previous posterior f (xn−1|z1:n−1) and the measurement vector zn, in two steps.
First, in the prediction step, the "predicted posterior" f (xn|z1:n−1) is calculated from
the previous posterior f (xn−1|z1:n−1) and the state-transition pdf f (xn|xn−1) accord-
ing to

f (xn|z1:n−1) =
∫

f (xn|xn−1) f (xn−1|z1:n−1)dxn−1, n = 1, 2, . . . . (2.4)

In the update step, the predicted posterior f (xn|z1:n−1) is converted to the poste-
rior f (xn|z1:n) according to

f (xn|z1:n) =
f (zn|xn) f (xn|z1:n−1)

f (zn|z1:n−1)
, n = 1, 2 . . . . (2.5)

Note that this involves the likelihood function f (zn|xn). The recursion for f (xn|z1:n)
established by 2.4 and 2.5 is initialized by f (xn|z1:n)|n=0 = f (x0).

A straightforward calculation of relation 2.3-2.5 is usually infeasible, since an
analytical solution is in most cases unavailable and a numerical implementation in-
volves the computation of multidimensional integrals. An important exception is
the special case of linear system and measurement models with Gaussian driving
and measurement noises and a Gaussian prior f (x0). Usually this class of problems
is solved with Kalman Filters or other similar approaches like the Gaussian sum filter
[6] which are suboptimal solutions that may lead to large errors or even divergence.

2.3.2 The Particle Filter

A Particle Filter performs a Monte Carlo simulation-based approximation of optimal
sequential Bayesian estimation in (2.3)-(2.5). The non-Gaussian posterior f (xn|z1:n)

is represented by a set {(x(j)
n , w(j)

n )}J
j=1 of randomly drawn samples or particles x(j)

n

and corresponding weights w(j)
n which establishes a discrete approximation of the

posterior f (xn|z1:n) ≈ ∑J
j=1 w(j)

n δ(xn − x(j)
n ). (δ(·) denotes the multidimensional

Dirac delta function). With this representation, one can obtain various estimates
of xn. In particular (2.3) can be approximated as

x̂MMSE
n ≈ x̂n ,

J

∑
j=1

x(j)
n w(j)

n . (2.6)
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This approximation is accurate if the number of particles x(j)
n located in regions of

significant probability mass is sufficiently large and if the weights w(j)
n are calculated

appropriately.
At time n the Particle Filter recursively updates the previous particles x(j)

n−1 and

weights w(j)
n−1 using the observation zn. More specifically, the particle representation

of the posterior is used to approximate the prediction step in (2.4) and the update
step in (2.5). This is done by means of importance sampling, whereby the samples
x(j)

n are randomly drawn from a specified pdf that is different from the posterior
f (xn|z1:n). The prediction step (2.4) is performed by sampling from a proposal pdf
q(xn|xn−1, zn), thus obtaining particles that are used to approximate the predicted
posterior f (xn|z1:n−1). The update step (2.5) is performed by computing the particle
weights w(j)

n using the likelihood function f (zn|xn).

Generic Particle Filter (SIR Filter) Algorithm

Here we present the sequential importance sampling (SIR) filter algorithm from where
the particle filter in this project, as many other well-known particle filters, is derived.

At time n = 0, the algorithm is initialized by J particles x(j)
0 , j = 1, . . . , J drawn

from a prior pdf f (x0). The weights of the particles are initially equal (w(j)
0 =

1/J ∀j). At time n ≥ 1, the following steps are performed:

1. Prediction step: For each previous particle x(j)
n−1, a new particle x(j)

n is sampled

from a suitably chosen proposal pdf q(xn|x(j)
n−1, zn) ≡ q(xn|xn−1, zn)|xn−1=x(j)

n−1
.

2. Update step: Non-normalized weights associated with the particles x(j)
n drawn

on the previous step are calculated according to

w̃(j)
n = w(j)

n−1
f (zn|x(j)

n ) f (x(j)
n |x

(j)
n−1)

q(x(j)
n |x

(j)
n−1, zn)

, j = 1, . . . , J. (2.7)

The weights are then normalized according to w(j)
n = w̃(j)

n / ∑J
j′=1 w̃(j′)

n . The set

of particles and weights {(x(j)
n , w(j)

n )}J
j=1 represents the posterior f (xn|z1:n).

3. Calculation of estimate: From the set of particles and weights {(x(j)
n , w(j)

n )}J
j=1,

an approximation of the MMSE state estimate is computed according to (2.6)
x̂n = ∑J

j=1 w(j)
n x(j)

n .

4. Resampling: The set {(x(j)
n , w(j)

n )}J
j=1 can be resampled if necessary. The re-

sampled particles are obtained by sampling with replacement from the set
{(x(j)

n }J
j=1, where x(j)

n is sampled with probability w(j)
n . This produces J resam-

pled particles x(j)
n . The weights are redefined to be identical, i.e., w(j)

n = 1/J.

Note that resampling is done to avoid the degeneracy problem [3], where, after a
few iterations, all but one particle will have a negligible weight. The idea of resam-
pling is to eliminate particles that have small weights so to concentrate on particles
with large weights.
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2.3.3 Distributed Sequential Bayesian Estimation

In a distributed Agent Network setting, the measurements are dispersed among the
agents. Let us consider an AN consisting of K agents. At time n, agent k ∈ {1, . . . , K}
observes a local measurement vector zn,k, which is relate to the state xn via the local
measurement model [cf. (2.2)]

zn,k = hn,k(xn, vn,k), n = 1, 2, . . . . (2.8)

Here hn,k(·, ·) is a known, agent-dependent, generally nonlinear function and vn,k
is a local measurement noise that is white and independent of the past and present
states and of the driving un in (2.1). The global (all-agents) measurement vector zn in
(2.2) is now given by the collection of all local measurement vectors in (2.8), i.e., zn ,
(zT

n,1, . . . , zT
n,K)

T. Equation (2.8) together with the statistical assumptions determines
the local likelihood function f (zn,k|xn) of agent k. Bayesian estimation assumes that
vn,k is independent of the local measurement noises of the other agents, vn,k′ for
k′ 6= k. This implies that the global likelihood function f (zn|xn) factorizes into the local
likelihood functions, i.e.,

f (zn|xn) =
K

∏
k=1

f (zn,k|xn). (2.9)

The goal of distributed sequential estimation is to estimate xn in a sequential manner,
based on the measurements zn′,k of all (or relevant subset of) agents k for all times n′

up to the current time n. Preferably, each agent should communicate only with the
neighboring agents, and the estimation results should be available at each agent or
at least at a relevant subset of agents.

2.3.4 Distributed Particle Filtering

To obtain a Distributed Particle Filter implementation, some approximations are typ-
ically required. Further approximations may be needed to reduce computation and
communication requirements. As a result, DPFs usually do not perform as well as
a centralized PF that has access to all the measurements locally. However, avoiding
these approximations will usually imply excessive communication requirements,
poor scalability, and practically inconvenient constraints such as the need for syn-
chronized random generators.

The existing DPF algorithms differ in aspects such as type and amount of the data
communicated between the agents, communication range, local processing, compu-
tational complexity, memory requirements, estimation accuracy, robustness, scala-
bility, and latency. A basic distinction can be made between algorithms that employ
a central processing unit, called fusion center (FC), and those that operate in a de-
centralized manner. Figure 2.5 shows the taxonomy for distributed particle filters.
In the remainder of this section a short summary is given explaining briefly each
category.

Based on the type of data communicated between the agents, we will discrim-
inate two broad classes of decentralized DPFs: statistics dissemination-based DPFs,
where processed data (representations of posteriors or likelihood functions) are ex-
changed between the agents, and measurement dissemination-based DPFs, where raw
or quantized measurements are exchanged. A subdivision of the statistics dissemination-
based class can be based on the set of agents that perform particle filtering at any
given time, with corresponding differences regarding agent scheduling and commu-
nication topology. Accordingly, we will distinguish between leader agent (LA)-based
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FIGURE 2.5: Taxonomy of DPFSs. (source [6])

DPFs, where at any given time only one agent is in charge of the processing, and
consensus-based DPFs, where all the agents in the network process data simultane-
ously.

2.3.5 Consensus-Based DPFs

With consensus-based DPFs, all agents perform particle filtering simultaneously and
possess a particle representation of a posterior. Ideally, this posterior is the global
posterior f (xn|z1:n) reflecting the current and past measurements of all agents, z1:n.
This goal is achieved, or, at least approached by a decentralized consensus algo-
rithm that establishes an agreement on certain global quantities across all agents.
These quantities are then used by each agent to establish a local approximate parti-
cle representation of the global posterior f (xn|z1:n). The use of consensus algorithms
implies that each agent transmits certain quantities to a set of neighboring agents.

The advantages of a consensus approach:

• consensus only requires communication with neighboring agents

• no need for routing protocols or global knowledge of the network

• each agent is in possession of the global estimate

• robustness to changes of then network topology, link failures and agent fail-
ures

while the main disadvantages:

• higher communication requirements compared to Leader Agent-based approach

• the number of consensus iterations to diffuse the information may increase
with the size of the network.
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Next we’ll briefly describe the three classes of Consensus based particle filtering
algorithms.

Consensus-based calculation of particle weights This class of DPF performs a dis-
tributed computation of global particle weights w(j)

n (reflecting the measurements of
all agents) from local weights w(j)

n,k (each reflecting only the measurement of the re-

spective agent k). For each weight w(j)
n , j ∈ {1, . . . , J}, one consensus algorithm for

computing an average is executed. This approach presupposes that identical sets of
particles {x(j)

n }J
j=1 are sampled at each agent. This, in turn, requires that the local ran-

dom number generators at the agents are synchronized, such that the same pseudo-
random numbers are obtained in the entire network, and that the identical particle
representations {(x(j)

n−1, w(j)
n−1)}

J
j=1 of the previous global posterior f (xn−1|z1:n−1) are

available at each agent.

Consensus-based calculation of posterior parameters In DPFs with this approach,
the global posterior f (xn|z1:n) is approximated by a Gaussian or Gaussian Mixture
pdf. A similar parametric approximation is used for the local posteriors f (xn|z1:n−1, zn,k)
incorporating the past measurements of all agents, z1:n−1, and the current local mea-
surement of agent k, zn,k. The parameters of the global posterior are calculated from
the parameters of the local posteriors in a distributed manner using consensus algo-
rithms.

Consensus-based calculation of likelihood parameters This is a class of DPFs in
which consensus algorithms are used to compute the global likelihood function (GLF)
(sometimes also called joint likelihood function (JLF)) f (zn|xn) rather than the poste-
rior f (xn|z1:n). The GLF, or at least an approximation, is obtained at each agent as
a function of xn. This allows each agent to evaluate the GLF at the particles x(j)

n ,
which is required for calculating the weights w(j)

n in the particle filter update step
(2.7). Therefore each agent is able to locally run a PF that is equivalent to a global
PF because it uses the GLF and calculates a global estimate involving the all-agents
measurement vector zn. The local PFs operate independently of each other (only
the GLF is computed cooperatively), so that a synchronization of random number
generators is not required. Note that global estimates obtained at individual agents
may differ slightly. More in depth detail are give in the dedicated section (2.4)

Consensus algorithms

Consensus algorithms are effective tools for diffusing information in distributed
computations. In the context of agent networks, "consensus" means a global agree-
ment on some quantity that depends on the data of all agents, and a "consensus
algorithm" specifies the corresponding information exchange between neighboring
agents and the computations performed by each agent. Consensus algorithms are
iterative schemes that diffuse information through the network and, usually, reach
a global agreement only asymptotically. The differences between the values at the
individual agents after a finite number of iterations depends on the number of itera-
tions, the size and topology of the network, and the particular consensus algorithm.
Consensus algorithms are advantageous in that there is no bottleneck or single point
of failure, and the algorithms are robust to changing network topology and unreli-
able network conditions such as link failures.
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The most common consensus algorithms used in DPFs are the average consensus,
the randomized gossip, and the max-consensus. Then general situation for when a con-
sensus algorithm can be used, is when each agent k ∈ {1, . . . , K} possesses a scalar
quantity sk and the result of the disseminated information can be calculated with
a sum, like for example the average 1

K ∑K
k=1 sk or a mathematical function such as

maxk∈{1,...,K}{sk}, so the result is available at each agent. At each iteration i of the
consensus algorithm each agent updates an internal state using the internal states of
a set of neighboring agents. At each agent the following steps are performed in the
consensus process:

1. Initialize the internal state.

2. For i = 1, . . . , I (I is the max number of iterations), update the internal state
with a function u(·) which combines the previous internal state at i − 1 with
the previous internal states of all neighboring agents k′ ∈ Nk. The new internal
state is broadcast to all neighbors k′ ∈ Nk.

The function u(·) depends on the type of consensus algorithm:

• Average consensus The new internal state is a linear combination of the previous
internal state and the previous internal states of the neighbors. Each element
of the combination has a weight defined by a dedicated function. For I → ∞,
each internal state converges to the average.

• Randomized consensus The new internal state is the average between the previ-
ous internal state and the previous internal state of an agent randomly picked
from the set of neighbors of agent k. Again for I → ∞, each internal state
converges to the average.

• Max-consensus The new internal states becomes the max among all the internal
states. With the appropriate changes it is possible to find the min as well. For
I → ∞, each internal state converges instead to the max/min.

2.4 Likelihood Consensus Distributed Particle Filtering

In sections (2.3.1) and (2.3.3) we discussed how Sequential Bayesian Estimation works,
how it operates in a distributed context and how it dictates the core behavior of the
particle filter algorithm. As we said in (2.3.5) likelihood consensus distributed particle
filtering (LCDPF) means that each sensor in a network runs a local particle filter and
all the sensors agree on the same, or almost the same, approximation of likelihood
function via a consensus algorithm, so we now discuss how this approximation takes
place.

2.4.1 Approximation of the Joint Likelihood Function

The likelihood consensus method can always be used it the local likelihood functions
belong to the exponential family of distributions [7]. This requires an approximation
of the local likelihood functions, and consequently of the JLF.

We assume that the local likelihood functions (seen as conditional pdf of zn,k)
belongs to the exponential family of distributions and it can be written as

f (zn,k|xn) = cn,k(zn,k) exp(aT
n,k(xn)bn,k(zn,k)− dn,k(xn)), k = 1, . . . , K, (2.10)
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with some time- and sensor-dependent functions cn,k(·) ∈ R+, an,k(·) ∈ Rq, bn,k(·) ∈
Rq, and dn,k(·) ∈ R+, with arbitrary q ∈ N. It is furthermore assumed that sensor
k knows its own functions cn,k(·), an,k(·), bn,k(·) and dn,k(·), but not cn,k′(·), an,k′(·),
bn,k′(·) and dn,k′(·) for k′ 6= k. Using the factorization in (2.9), the JLF is obtained as

f (zn|xn) =
K

∏
k=1

cn,k(zn,k) exp(aT
n,k(xn)bn,k(zn,k)− dn,k(xn)) (2.11)

= Cn(zn) exp(Sn(zn, xn)), (2.12)

where

Cn(zn) ,
K

∏
k=1

cn,k(zn,k) (2.13)

and

Sn(zn, xn) ,
K

∑
k=1

[aT
n,k(xn)bn,k(zn,k)− dn,k(xn)]. (2.14)

Note that the JLF (viewed as the conditional pdf of zn) also belongs to the expo-
nential family. Thus, according to (2.12), for global inference based on all-sensors
measurement vector zn, each sensor needs to know Sn(zn, xn) as a function of xn,
for the observed (fixed) zn. However, calculation of Sn(zn, xn) at a given sensor ac-
cording to (2.14) presupposes that the sensor knows the measurement zn,k and the
functions an,k(·), bn,k(·) and dn,k(·) for all sensors, i.e., for all k. Transmitting the
necessary information from each sensor to each other sensor may be infeasible [7],
[8].

As we discussed in (2.3.5) a powerful approach to diffusing local information
through a sensor network is given by consensus algorithms. Unfortunately, a consensus-
based distributed calculation of Sn(zn, xn) is not possible in general because the
terms of the sum in (2.14) depend on the unknown state xn [7]. Therefore, an ap-
proximation of Sn(zn, xn) is used that involves a set of coefficients not dependent on
xn. The approximation is induced by the following approximations of the functions
an,k(·) and dn,k(·) in terms of given basis functions {ϕn,r(xn)}Ra

r=1 and {ψn,r(xn)}Rd
r=1,

respectively:

an,k(xn) ≈ ãn,k(xn) ,
Ra

∑
r=1

αn,k,r ϕn,r(xn) (2.15)

dn,k(xn) ≈ d̃n,k(xn) ,
Rd

∑
r=1

γn,k,rψn,r(xn). (2.16)

Here, αn,k,r ∈ Rq and γn,k,r ∈ R are expansion coefficients that do not depend on
xn. αn,k,r are referred to as coefficients even though they are vector-valued. The basis
functions ϕn,r(xn) and ψn,r(xn) do not depend on k, which means the same basis
functions are used by all sensors. They are allowed to depend on n although time-
independent basis functions may often be sufficient [7]. It is assumed that sensor k
knows the basis functions ϕn,r(xn) and ψn,r(xn), as well as the coefficients αn,k,r and
γn,k,r corresponding to its own functions an,k(xn) and dn,k(xn), respectively; however
it does not know the coefficients of other sensors, αn,k′,r and γn,k′,r with k′ 6= k. The
coefficient αn,k,r and γn,k,r can either be precomputed, or each sensor can compute
them locally.

Substituting ãn,k(xn) for an,k(xn) and dn,k(xn) for d̃n,k(xn) in (2.14), the following
approximation of Sn(zn, xn) is obtained:
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S̃n(zn, xn) ,
K

∑
k=1

[
ãT

n,k(xn)bn,k(zn,k)− d̃n,k(xn)
]

=
K

∑
k=1

[(
Ra

∑
r=1

αT
n,k,r ϕn,r(xn)

)
bn,k(zn,k)−

Rd

∑
r=1

γn,k,rψn,r(xn)

]
.

(2.17)

By changing the order of summation, it is further obtained

S̃n(zn, xn) =
Ra

∑
r=1

An,r(zn)ϕn,r(xn)−
Rd

∑
r=1

Γn,rψn,r(xn), (2.18)

with

An,r(zn) ,
K

∑
k=1

αT
n,k,r ϕn,r(xn), Γn,r ,

K

∑
k=1

γn,k,r. (2.19)

Finally, substituting S̃n(zn, xn) from (2.18) for Sn(zn, xn) in (2.12), an approximation
of the JLF is obtained as

f̃ (zn|xn) ∝ exp(S̃n(zn, xn)) = exp

(
Ra

∑
r=1

An,r(zn)ϕn,r(xn)−
Rd

∑
r=1

Γn,rψn,r(xn)

)
(2.20)

This shows that a sensor that knows An,r(zn) and Γn,r can evaluate an approx-
imation of the JLF (up to a zn-dependent but xn-independent normalization fac-
tor) for all values of xn. The vector of all coefficients An,r(zn) and Γn,r, t̃n(zn) ,
(An,1(zn · · · An,Ra(zn) Γn,1 · · · Γn,Rd)

T, can be viewed as a sufficient statistic that epito-
mizes the total measurement zn within the limits of the approximation [7]. Because
of (2.20), this sufficient statistic fully describes the approximate JLF f̃ (zn|xn) as a
function of xn.

The expressions (2.18) and (2.19) allow a distributed calculation of S̃n(zn, xn) and,
in turn, of f̃ (zn|xn) by means of consensus algorithms, due to the following key facts:

(i) The coefficient An,r(zn) and Γn,r do not depend on the state xn but contain the
information of all sensors (sensor measurement zn,k and the approximations
coefficients αn,k,r and γn,k,r)

(ii) The state xn enters into S̃n(zn, xn) only via the functions ϕn,r(·) and ψn,r(·),
which are sensor independent and known to each sensor

(iii) According to (2.19), the coefficients An,r(zn) and Γn,r are sums in which each
term contains only local information of a single sensor.

These facts form the basis of the LC method [7], [8].

Normalization factor If this factor is required at each sensor, it can also be com-
puted via consensus algorithm if we consider the expression (2.13) and apply the
logarithm

log Cn(zn) =
K

∑
k=1

log cn,k(zn,k). (2.21)

Since this is a sum and cn,k(zn,k) is known at each sensor, a consensus algorithm can
be used for a distributed calculation of logCn(zn)
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Basis Functions and Coefficients Approximation

ϕn,r(·) and ψn,r(·) are basis functions which can be monomials, orthogonal polyno-
mials, and Fourier basis functions. The choice of the functions affects the accuracy,
computational complexity, and communication requirements of the LC method.

Polynomial approximation A way that the expansion (2.15) can be approximated
is through a polynom:

ãn,k(xn) =
Rp

∑
r=0

αn,k,r

M

∏
m=1

xrm
n,m (2.22)

where r , (r1 · · · rM) ∈ {0, . . . , Rp}M; Rp is the degree of the multivariate vector-

valued polynomial ãn,k(xn); ∑
Rp
r=0 is short for ∑

Rp
r1=0 · · ·∑

Rp
rM=0 with the constant ∑M

m=1 rm ≤
Rp; and αn,k,r ∈ Rq is the coefficient vector associated with the basis function (mono-
mial) ϕn,r(xn) = ∏M

m=1 xrm
n,m (here, xn,m denotes the m-th entry of xn). (2.22) in its

expanded form looks like:

ãn,k(xn) =
Rp

∑
r1=0
· · ·

Rp

∑
rM=0

αn,k,r1,...,rM xr1
n,1 · · · x

rM
n,M (2.23)

(2.22) can be written in form of (2.15) by a suitable index mapping (r1 . . . rM) ∈
{0, . . . , Rp}M ↔ r ∈ {1, . . . , Ra}, where Ra = (Rp+M

Rp
). An analogous polynomial

expansion can be used for d̃n,k(xn) in (2.16).
A convenient method for calculating the approximations of ãn,k(xn) and d̃n,k(xn)

is given by a form of regression called Least Squares (LS) Fitting in which the J
predicted particles at sensor k are used in data pairs {(x(j)

n,k, an,k(x
(j)
n,k))}

J
j=1 to approx-

imate the αn,k,r coefficients that describe the polynom for ãn,k(xn) so that ∑J
j=1 ‖

ãn,k(x
(j)
n,k)− an,k(x

(j)
n,k) ‖2 is minimized.

2.4.2 Sequential LC Algorithm

Once we are able to describe the full likelihood function via basis expansion approx-
imation and we computed the local expansion coefficient to form a local sufficient
statistic, we are ready to proceed with the consensus algorithm to obtain the global
sufficient statistic that describes the JLF. A linear consensus is used, although other
consensus algorithms can be used.

The Sequential Likelihood Consensus (SLC) Algorithm is an evolution of the Dy-
namic Consensus Algorithm presented in [8]. The main difference is that SLC is able
to update the set of coefficients in a single step per each time n, based only on its
previous value and the current measurements, reducing the overall latency and the
transmitted data volume among sensors. In what follows Nk ⊆ {1, . . . , K} \ {k} de-
notes a fixed set of sensors that are neighbors of sensor k. The operation performed
by a fixed sensor k are explained, which are performed by all sensors simultaneously.
The SLC algorithm can be summarized as follows.

Sequential Likelihood Consensus (SLC) Algorithm [8] At each time step n ≥
1, each sensor k performs the following tasks (note that the steps for the two sets
of coefficients are the same, beside the use of the respective values for R and the
initialization of the internal state) :
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1. The coefficients {αn,k,r}Ra
r=1 and {γn,k,r}Rd

r=1 of the approximations are calculated
via regression.

2. Dynamic consensus algorithm (single step) - An,r(zn) for each r ∈ {1, . . . , Ra}:

(a) If n = 1, the internal state of sensor k is initialized as s0,k,r = αT
1,k,rb1,k(z1,k)

(b) A temporary internal state is computed

ζn,k,r = µsn−1,k,r + (1− µ)αT
n,k,rbn,k(zn,k) (2.24)

where µ ∈ [0, 1] is a tuning parameter.

(c) The temporary internal state ζn,k,r is broadcast to all neighbors k′ ∈ Nk.

(d) The internal state sn,k,r is calculated from the local and neighboring tem-
porary internal states, ζn,k,r and {ζn,k′,r}k′∈Nk by a single consensus step:

sn,k,r = Wk,kζn,k,r + ∑
k′∈Nk

Wk,k′ζn,k′,r (2.25)

The weights Wk,k′ are Metropolis weights:

Wk,k′ =

{
1

1+max(|Nk |,|Nk′ |)
, k′ 6= k,

1−∑k”∈Nk
Wk,k” k′ = k

(2.26)

(e) The internal state sn,k,r is scaled as Ãn,r(zn) , Ksn,k,r

3. Dynamic consensus algorithm (single step) - Γn,r(zn) for each r ∈ {1, . . . , Rd}:
repeat the same steps as for An,r(zn) but initialize the internal state at n =
1 and compute the temporary state with γ1,k,r and γn,k,r respectively. While
Γ̃n,r(zn) , Ksn,k,r

4. By substituting Ãn,r(zn) for An,r(zn) and Γ̃n,r(zn) for Γn,r(zn) in (2.20), sensor
k is able to obtain a consensus approximation of the JLF f̃ (zn|xn) for any given
value of xn.

Note that with this algorithm the total number of sensors K present in the network
has to be known at each sensor.

2.4.3 JLF Approximation with Gaussian Measurement Noise

In this section the polynomial approximation introduced in (2.4.1) is applied to the
special case of (generally nonlinear) measurement functions and independent addi-
tive Gaussian measurement noise at the various sensors.

Measurement Model

The dependence of the sensor measurement zn,k on the state xn is described by the
local likelihood functions f (zn,k|xn). Let’s assume that the measurements are mod-
eled as

zn,k = hn,k(xn) + vn,k. k = 1, . . . , K, (2.27)

where hn,k(·) is the measurement function of sensor k and vn,k N (0, Qn,k) is zero-mean
Gaussian measurement noise that is independent of xn′ for all n′. It is furthermore
assumed that vn,k and vn′,k′ are independent unless (n, k) = (n′, k′). Under these
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assumptions, the zn,k are conditionally independent given xn and (2.9) holds. The
local likelihood function of sensor k is given by

f (zn,k|xn) = c̄n,kexp
(
−1

2
[zn,k − hn,k(xn)]

TQ−1
n,k [zn,k − hn,k(xn)]

)
, (2.28)

with c̄n,k , [(2π)Nn,k det{Qn,k}]−1/2. Then using (2.9), the JLF obtained is

f (zn|xn) = c̄nexp

(
−1

2

K

∑
k=1

[zn,k − hn,k(xn)]
TQ−1

n,k [zn,k − hn,k(xn)]

)
, (2.29)

with c̄n = ∏K
k=1 c̄n,k.

The local likelihood function f (zn,k|xn) in (2.28) is a special case of the exponen-
tial family (2.10), with

an,k(xn) = hn,k(xn),

bn,k(zn,k) = Q−1
n,kzn,k,

cn,k(zn,k) = c̄n,kexp
(
−1

2
zT

n,kQ−1
n,kzn,k

)
,

dn,k(xn) =
1
2

hT
n,k(xn)Q−1

n,khn,k(xn).

(2.30)

Consequently,

Sn(zn,k, xn) =
K

∑
k=1

hT
n,k(xn)Q−1

n,k

[
zn,k −

1
2

hn,k(xn)

]
. (2.31)

It is now possible to approximate an,k(xn) and dn,k(xn) by truncated basis expansion
ãn,k(xn) and d̃n,k(xn). According to (2.30), approximating an,k(xn) is equivalent to
approximating the sensor measurement function hn,k(xn). Thus,

ãn,k(xn) = h̃n,k(xn) =
Ra

∑
r=1

αn,k,r ϕn,r(xn). (2.32)

Furthermore, an approximation of dn,k(xn) can be obtained in an indirect way by
substituting in (2.30) the above approximation h̃n,k(xn) for hn,k(xn); this yields

d̃n,k(xn) =
1
2

h̃T
n,k(xn)Q−1

n,k h̃n,k(xn)

=
1
2

Ra

∑
r1=1

Ra

∑
r2=1

αT
n,k,r1

Q−1
n,kαn,k,r2 ϕn,r1(xn)ϕn,r2(xn).

(2.33)

Using a suitable index mapping (r1, r2) ∈ {1m . . . , Ra}×{1, . . . , Ra} ↔ r ∈ {1, . . . , Ra},
it is possible to write 2.33 in the form

d̃n,k(xn) =
Rd

∑
r=1

γn,k,rψn,r(xn), (2.34)

with Rd = R2
a, γn,k,r =

1
2 αT

n,k,r1
Q−1

n,kαn,k,r2 , and ψn,r(xn) = ϕn,r1(xn)ϕn,r2(xn) It is easily
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verified that with this special basis expansion approximation of dn,k(xn), the result-
ing approximate JLF can be written as

f̃ (zn|xn) = c̄nexp

(
−1

2

K

∑
k=1

[zn,k − h̃n,k(xn)]
TQ−1

n,k [zn,k − h̃n,k(xn)]

)
, (2.35)

which is (2.29) with hn,k replaced by h̃n,k.
Note that in the additive Gaussian noise case the algorithm for particle filter-

ing operates almost like in the general case. The only difference is that coefficients
γn,k,r can be calculated indirectly, without using a separate LS fitting, hence reducing
the computational complexity. However in general coefficient obtained directly and
indirectly will be different.

Polynomial Approximation

Using (2.22), it is obtained for (2.32)

ãn,k(xn) = h̃n,k(xn) =
Rp

∑
r=0

αn,k,r

M

∏
m=1

xrm
n,m

=
Rp

∑
r1=0
· · ·

Rp

∑
rM=0

αn,k,r1,...,rM xr1
n,1 · · · x

rM
n,M.

(2.36)

Inserting this into (2.33) yields

d̃n,k(xn) =
2Rp

∑
r=0

γn,k,r

M

∏
m=1

xrm
n,m

=
2Rp

∑
r1=0
· · ·

2Rp

∑
rM=0

γn,k,r1,...,rM xr1
n,1 · · · x

rM
n,M,

(2.37)

with

γn,k,r1,...,rM =
1
2

Rp

∑
r′1=0
· · ·

Rp

∑
r′M=0

Rp

∑
r1”=0

· · ·
Rp

∑
rM”=0

αT
n,k,r′1,...,r′M

Q−1
n,kαn,k,r1”,...,rM”, (2.38)

with the condition on the indexes

(r′1, . . . , r′M) + (r1”, . . . , rM”) = (r′1 + r1”, . . . , r′M + rM”) = (r1, . . . , rM). (2.39)

Next, inserting expressions (2.36) and (2.37) into (2.17), we obtain

S̃n(zn, xn) =
K

∑
k=1

2Rp

∑
r=0

βn,k,r(zn,k)
M

∏
m=1

xrm
n,m, (2.40)

with

βn,k,r =

{
αT

n,k,rbn,k(zn,k)− γn,k,r, r ∈ R1

−γn,k,r, r ∈ R2,
(2.41)

where R1 is the set of all r = (r1 · · · rM) ∈ {0, . . . , Rp}M such that ∑M
m=1 rm ≤ Rp

and R2 is the set of all r ∈ {0, . . . , 2Rp}M \ R1 such that ∑M
m=1 rm ≤ 2Rp. Finally,
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changing the order of summation in (2.40) gives

S̃n(zn, xn) =
2Rp

∑
r=0

Bn,r(zn)
M

∏
m=1

xrm
n,m (2.42)

with

Bn,r(zn) =
K

∑
k=1

βn,k,r(zn,k) (2.43)

The coefficients Bn,r(zn) can again be calculated using a consensus algorithm. For
each time n, the number of consensus algorithm that have to be executed in parallel,
is given by Nc = (2Rp+M

2Rp
)− 1 (the −1 because the coefficient for r = 0 corresponds

to the JLF factor that does not depend on xn)

2.4.4 LC-DPF Algorithm

The distributed implementation of the particle filter algorithm is based on the SIR
Filter discussed in (2.3.2), with the main difference that each sensors acts as a fusion
center of a centralized PF. More specifically, sensor k tracks a particle representation
of the global posterior f (xn|z1:n) using a local PF which can be used to compute the
state estimate x̂n,k at time n based on the past and current measurement of all sensors.
This requires each sensor to know the JLF f (zn)|xn) as a function of xn for the weight
evaluation. Therefore, an approximation of the JLF is provided at each sensor via a
distributed consensus algorithm. The algorithm can be summarized as follows.

LC-Based Distributed Particle Filter [8] At time n = 0, J particles x(j)
0,k, j = 1, . . . , J

are sampled from a prior distribution f (x0) at sensor k, for all k simultaneously. At
any give time n ≥ 1, the following steps are performed:

1. For each previous particle x(j)
n−1,k, a new particle x̄(j)

n,k is drawn from f (xn|x(j)
n−1,k).

2. The approximate JLF f̃ (zn|xn) is computed in a distributed way by means of
the SLC as described in (2.4.2). Communication among neighboring sensors is
required only on this step.

3. The weight associated with particles x̄(j)
n,k are calculated as

w(j)
n,k =

f̃ (zn|x̄(j)
n,k)

∑J
j′=1 f̃ (zn|x̄(j′)

n,k )
, j = 1, . . . , J. (2.44)

This is evaluated for all particles x̄(j)
n,k.

4. From the weighted particles {x̄(j)
n,k, w(j)

n,k}
J
j=1, an approximation of the MMSE

state estimate can be computed as

x̂n,k =
J

∑
j=1

w(j)
n,kx̄(j)

n,k. (2.45)

5. The set of particles and weights {x̄(j)
n,k, w(j)

n,k}
J
j=1 representing the current global

posterior f (xn|z1:n) is resampled; this produces J resampled particles x(j)
n,k with



26 Chapter 2. State of the art

identical weights. The x(j)
n,k are obtained by sampling with replacement from

the set {x̄(j′)
n,k }

J
j′=1, where x̄(j′)

n,k is sampled with probability w(j′)
n,k

Now that we had an overview of the mathematical process behind distributed
particle filtering, we can proceed to contextualize the formulæin our case study in
the next chapter, while in chapter 4 an overview to the software implementation is
given.
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Chapter 3

Target Tracking via Particle
Filtering

In this chapter we firstly define a specific scenario and the we try to adapt the knowl-
edge acquired in chapter 2 to it, in order to have a better understanding of what we
need to do later on in the software implementation.

3.1 Case Study: Target Tracking Scenario

Target tracking is one application of the more generic method of state tracking, where
the state of the world that needs to be tracked is the state describing a target object (or
many objects), and the state vector usually describes the object position and speed
expressed in a certain measurement system, that has to be the same as the one used
to describe the world in which the object moves. With this brief description we can
already identify some important elements that defines our case study.

First of all we assume that an object is moving in a limited 2-dimensional space
and its real state vector describes the two position coordinates, and the relative
speeds along each axis which at a discrete time n assumes the form:

xn = {xn, yn, ẋn, ẏn} (3.1)

and the system model that defines the state evolution simply applies linear motion
laws over time affected by driving zero-mean Gaussian noise:

gn(xn−1, un) =


xn = xn−1 + ẋn−1 + ux,n

yn = yn−1 + ẏn−1 + uy,n

ẋn = ẋn−1 + uẋ,n

ẏn = ẋn−1 + uẏ,n

(3.2)

Now, in order to apply particle filtering, a sensing element is required and for
that we assume the environment to be populated with located sensors capable of
detecting the object and periodically sample a measurement that depends on the
real object state vector xn. The measurement assumed is scalar and it’s the Euclidean
distance between the position of the sensor and the one of the object, and the mea-
surement function for the sensor k has the following form:

hn,k(xn) = hn,k(xn, yn) =
√
(xn − xk)2 + (yn − yk)2 (3.3)

where xk and yk are the coordinates of the position of the sensor, which we assume
locally known at the sensor. The measurement process yields a value that is affected
by zero-mean additive Gaussian noise which makes us fall into the Gaussian noise
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special case (cfr. 2.4.3), and the scalar value obtained by sensor k at discrete time n
is:

zn,k = hk(xn, yn) + vn,k (3.4)

where vn,k ∼ N (0, σ2
v ). Note that the measurement zn,k doesn’t depend on the veloc-

ities ẋn and ẏn. Finally the local likelihood function and the JLF assume the form:

f (zn,k|xn) =
1√

2πσ2
v

exp
(
− 1

2σ2
v
[zn,k − hn,k(xn)]

2
)

(3.5)

f (zn|xn) =
1√

(2πσ2
v )

K
exp

(
− 1

2σ2
v

K

∑
k=1

[zn,k − hn,k(xn)]
2

)
(3.6)

and hence

Sn(zn, xn) =
1
σ2

v

K

∑
k=1

hn,k(xn)

[
zn,k −

1
2

hn,k(xn)

]
(3.7)

3.2 Particle Filtering in the Case Study

After defining the elements to work with, we now take a look at how the mathemat-
ical particle filtering formulæ are adapted to the case study.

3.2.1 LC Approximation

For LC, the measurement function hn,k(xn) is approximated by a polynomial of de-
gree Rp = 2 as follows (cfr. 2.36)

hn,k(xn) = hn,k(xn, yn) ≈ h̃n,k(xn, yn) =
2

∑
r1=0

2

∑
r2=0

αn,k,r1,r2 xr1
n yr2

n (3.8)

note that M = 2 because the velocities are not tracked, since the sensors can only
sample a measurement dependent on the position coordinate. This approximation
requires a total of (Rp+M

Rp
) = (2+2

2 ) = 6 coefficients to be computed via regression and
the expanded polynomial looks like the following:

h̃n,k(xn, yn) = αn,k,0,0 + αn,k,1,0xn + αn,k,0,1yn + αn,k,1,1xnyn + αn,k,2,0x2
n + αn,k,0,2y2

n (3.9)

Using h̃n,k(xn), d̃n,k(xn) is approximated as

d̃n,k(xn) =
4

∑
r1=0

4

∑
r2=0

γn,k,r1,r2 xr1
n yr2

n (3.10)

with

γn,k,r1,r2 =
1
2

2

∑
r′1=0

2

∑
r′2=0

2

∑
r1”=0

2

∑
r2”=0

αn,k,r′1,r′2
(σ2

v )
−1αn,k,r1”,r2” (3.11)

with the constraint r′1 + r1” = r1 and r′2 + r2” = r2. This for a fixed pair (r1, r2)
leads to select all the elements of the half-matrix of coefficients An,k along a single
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diagonal:

An,k =

αn,k,0,0 αn,k,0,1 αn,k,2,0
αn,k,1,0 αn,k,1,1 0
αn,k,0,2 0 0

 . (3.12)

Finally putting everything together we obtain

S̃(zn, xn) =
K

∑
k=1

4

∑
r1=0

4

∑
r2=0

βn,k,r1,r2(zn,k)xr1
n yr2

n (3.13)

where βn,k,r1,r2 assumes the following values (cfr. 2.41)

βn,k,r1,r2(zn,k) =

{
αn,k,r1,r2(σ

2
v )
−1zn,k − γn,k,r1,r2 , (r1, r2) ∈ R1

−γn,k,r1,r2 , (r1, r2) ∈ R2,
(3.14)

where R1 is the set of pairs (r1, r2) ∈ {0, 1, 2}2 such that r1 + r2 ≤ 2 (cfr. matrix
An,k in (3.12) ) and R2 is the set of pairs (r1, r2) ∈ {0, 1, 2, 3, 4}2 \ R1 such that r1 +
r2 ≤ 4. Note that in case of R2 elements, the reader has to refer to equation (3.11)
which, for elements with index ri > 2, due to the constraint, only requires elements
present in An,k. Now the set of βn,k,r1,r2 is ready to be computed locally and then
approximated via a consensus algorithm. For easiness of reading the resulting Bn,k

matrix containing (2Rp+M
2RP

) = (4+2
4 ) = 15 coefficients is

Bn,k =


βn,k,0,0 βn,k,0,1 βn,k,0,2 βn,k,0,3 βn,k,0,4
βn,k,1,0 βn,k,1,1 βn,k,1,2 βn,k,1,3 0
βn,k,2,0 βn,k,2,1 βn,k,2,2 0 0
βn,k,3,0 βn,k,3,1 0 0 0
βn,k,4,0 0 0 0 0

 . (3.15)

Along with the approximation needed for S̃(zn, xn), the approximation of the
normalization factor cn,k(zn,k) (cfr. 2.30) is needed and for our case study it assumes
the form :

cn,k(zn,k) =
1√
2π

exp
(
−1

2
z2

n,k

)
(3.16)

which computed over all sensors becomes (2.13) and rewritten as a logarithm, it is
ready to be estimated globally via consensus

log Cn(zn) =
K

∑
k=1

log cn,k(zn,k) =
K

∑
k=1

log
[

1√
2π

exp
(
−1

2
z2

n,k

)]
. (3.17)

Note that for any time n the measurement vector zn is a constant, so cn,k(zn,k) is
firstly computed at each sensor and then made into a logarithm for the consensus
algorithm.

This concludes all the necessary approximations needed before estimating the
global JLF via consensus.

3.2.2 Consensus steps

Now that we have a clearer idea on how the set of coefficients than needs to be
estimated via consensus look like, we can now take a look at the consensus algorithm
steps, adapted to the case study.
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At s sensor k the following steps are performed:

1. The set of coefficient {βn,k,r1,r2}(r1,r2)∈{0,...,4}2 and the normalization factor cn,k(zn,k)
are computed as shown in section 3.2.1;

2. Dynamic consensus algorithm (single step) - for each non-zero element in Bn,k:

(a) if n = 1, initialize the internal state as s0,k,r1,r2 = β1,k,r1,r2

(b) compute the internal state (cfr. 2.24)

ζn,k,r1,r2 = µsn−1,l,r1,r2 + (1− µ)βn,k,r1,r2 (3.18)

(c) ζn,k,r1,r2 is broadcast to all neighboring sensors k′ ∈ Nk

(d) The new internal state sn,k,r1,r2 is calculated in a single consensus step as
in (2.25) and the weights in (2.26)

(e) β̃n,r1,r2 is obtained by scaling sn,k,r1,r2 by K, which is the total number of
sensors

β̃n,r1,r2 = Ksn,k,r1,r2 (3.19)

3. The same process is performed for the logarithm of the normalization fac-
tor log cn,k(zn,k) so to obtain the internal state ςn,k which once scaled by the
number of sensors K, becomes the logarithm of the global normalization factor
log C̃n(zn);

After turning the estimate of the logarithm of the normalization factor back into
C̃n(zn), the final result of the JLF estimation has the following form

f̃ (zn|xn) = C̃n(zn) exp(S̃n(zn, xn)) (3.20)

where

S̃n(zn, xn) =
4

∑
r1=0

4

∑
r2=0

β̃n,r1,r2(zn)xr1
n yr2

n . (3.21)

Note that β̃n,r1,r2 has already been scaled by the number of sensors K at the end of
the consensus algorithm and it does now not depend on k.

3.2.3 The PF steps

Using the adapted elements defined in this chapter we now take a look at the particle
filtering algorithm to give a better vision on how the formulæ are applied.

At time n = 0, a set of J particles x(j)
0,k = (x, y, ẋ, ẏ)(j)

0,k, j = 1, . . . , J is sampled from
a prior distribution. For the position hypothesis we chose 2 different distribution
function combinations based on 2 cases:

(i) The sensor samples a measurement of the object before initialization,

(ii) The sensor samples the first measurement only after initialization.

On case (i) a Uniform distribution function U (l, u) for each coordinate of the posi-
tion is used, l and u are the lower and upper bounds for the functions respectively,
which in our case coincide with the coordinates of the left-to-right bounds coordi-
nates for the x and the top-to-bottom bounds coordinates for the y. This way the
sensor creates a cloud of particles uniformly spread all over the virtual space, suc-
cessive iterations should filter the particles keeping only the ones close to real object
position.
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On case (ii) the sensor performs a measurement before generating the particles so
it already has an idea at which distance the object may be located. With this informa-
tion available it is possible to generate a cloud of particles around the sensor, around
the distance sampled, according to a zero-mean Gaussian distributionN (0, σ2) which
adds some noise to the sampled measurement in order to create variety among the
guessed particles. To decide at which angle around the sensor position the particle
should be located, again an Uniform distribution is used, with bounds [0, 360]. Once
the guessed distance and the angle are set, they are converted into Cartesian coordi-
nates with a simple trigonometric formula{

x0,k = r cos φ

y0,k = r sin φ
(3.22)

where r = z0,k +n0,k , with n0,k ∼ N (0, σ2) is the varied distance and φ is the sampled
angle.

Once the initial J particles are generated, the particle filter can start performing
the iterative tracking process.

1. Prediction: Here the function of the system model (3.2) is applied to all particles
x(j)

n−1,k, generating J predicted particles x̄(j)
n,k = (x̄(j)

n,k, ȳ(j)
n,k);

2. JLF Computation: the J predicted particles and the measurement function hn,k(·)
are used in the regression to approximate h̃n,k(·) and consequently estimate the
JLF via consensus algorithm as described in section 3.2.2;

3. Update: Using the approximate JLF, the non-normalized weight for each pre-
dicted particle is computed as follows

w̄(j)
n,k = C̃n(zn)exp(S̃n(zn, xn, yn)) (3.23)

where S̃n(zn, xn, yn) fully expanded has the form

4

∑
r1=0

4

∑
r2=0

β̃n,r1,r2(zn)xr1
n yr2

n =

βn,k,0,0 + βn,k,0,1y + βn,k,0,2y2 + βn,k,0,3y3 + βn,k,0,4y4+

βn,k,1,0x + βn,k,1,1xy + βn,k,1,2xy2 + βn,k,1,3xy3 + βn,k,2,0x2+

βn,k,2,1x2y + βn,k,2,2x2y2 + βn,k,3,0x3 + βn,k,3,1x3y + βn,k,4,0x4

(3.24)

The weight w̄(j)
n,k is the normalized by the sum of all J weights so to obtain w(j)

n,k.

4. MMSE Estimate: The global MMSE estimate is computed for each predicted
element of the state vector involved in the tracking over all J particles:

x̂n,k =
J

∑
j=1

w(j)
n,k x̄(j)

n,k (3.25)

ŷn,k =
J

∑
j=1

w(j)
n,kȳ(j)

n,k (3.26)
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5. Resampling: The J particle pairs (x̄(j)
n,k, ȳ(j)

n,k) are sampled with replacement so

to create a new set of J pairs (x(j)
n,k, y(j)

n,k). The probability for each pair j to be

chosen is w(j)
n,k. In the chosen resampling method Monte Carlo Importance Sam-

pling a discrete cumulative distribution function is computed using all J weights
and for each new element that needs to be extracted an Uniform distribution
un,k ∼ U (0, 1) is sampled and the bin in which the sample is included, defines
the index j of the particle that has to be added to the resampled set.

This concludes contextualization of the mathematical knowledge acquire in chap-
ter 2 and should now allow us to continue to chapter 4 where a more architectural
definition of the problem is given and the implementation of steps discussed above
into the simulator software is described.
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Chapter 4

Software Application

In this chapter we take Data Fusion theory and the particle filtering knowledge dis-
cussed in chapter 2 and put them into practice on the case study scenario discussed
in chapter 3 focusing on the software implementation of a Target Tracking Simulator
application structured as a Java/AgentSpeak multi agent system.

4.1 Software Architecture for the Case Study

In chapter 3 we defined some central elements that can be directly translated into
the architecture of our software implementation. The generic idea of this project
is to create a piece of software that is able to simulate an object moving around
in a virtual 2-dimensional space while being observed by a distributed network of
located sensors. These sensors have limited perception capabilities and can only
measure the distance between them and the moving object. The network of sensors
has to employ distributed communication and particle filtering in order to correctly
update the state that keeps track of the object position. The software should also
be capable of showing some information on screen to the user, such as the position
of the tracked object and of the sensors displaced in the 2-dimensional space. It
then should also draw the result of the tracking in order to do at least qualitative
evaluation.

4.1.1 The Approach

After a long time spent studying the literature around this novel practices for dis-
tributed systems, we decided to employ Java and the AgentSpeak library Jason in
our project for the following reasons:

• Java is a well known Object Oriented Language that allows a lot of flexibility.

• The Jason library is available for Java which allows the integration with AgentS-
peak.

• The agent oriented, event-driven infrastructure supplied by Jason is easy enough
to allow the programmer to focus on the core matters of the project, instead of
dealing with agent-related issues in the code. This allows an easy deployment
of a distributed agent system.

• Jason supports Internal Actions that can be written fully in Java language, al-
lowing the creation of custom logic that can easily be executed by the BDI
agent.

• AgentSpeak allows a quick and easy way to define the behavior of a BDI agent.
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For the development of the project, we decided to take a staged approach which is
described as high level requirements as follows.

1. First of all we had to set a working base for the moving object that has to be
tracked. The object needs to be controlled by the user and that means control-
ling the position where it enters the environment and its movement during the
simulation. The UI and the system model are also defined in this stage. This
sets the structure where in the following stages the sensor agents are inserted.

2. Once the Environment is able to host a fully controllable moving object, it’s
time to define the logic for the sensors performing the tracking. We decided
to approach their introduction in two sub-stages. The first, and more simple
one, is done mainly to test the centralized version of the particle filtering al-
gorithm, while the second is done to implement a fully distributed system of
local particle filters.

(a) On this stage, in order to try the centralized algorithm of the Particle fil-
ter, a FA-based particle filter is created, where simplified sensor agents
only perform measurements on the moving object from their relative po-
sition in the environment and send the data to a Fusion Agent where the
centralized particle filter is implemented. This "middle of the road" ex-
periment allows us to understand better the PF algorithm once it has been
translated into Java code and sets a base structure for the fully distributed
stage.

(b) Now the LC-based distributed particle filter is implemented. Each sen-
sor now performs a local version of the centralized particle filter with
the difference that this time the likelihood function is computed with a
distributed consensus algorithm. This way the resilience of the system
against failures is improved while maintaining a relatively low complex-
ity and low volume of transmitted data, since instead of sending all the
measurements collected in the network to a single fusion center, each sen-
sor needs only to communicate with its own neighbors. The structure of
the code explored in the first stage is expanded and adapted to accommo-
date the various changes.

3. Once the core logic of the project is working, it is possible to optimize the code
and add various quality-of-life features.

Note that the Environment is also adjusted at each stage while maintaining all the
features introduced in a previous stage.

4.1.2 Architecture for each stage

Stage 1

The first stage has no active sensor, and the only elements present are:

• The Environment element hosts the various agents in a virtual 2-dimensional
space limited by borders and deals with all the interactions they would have
with a real environment while also providing a simple way to show the in-
formation to the user through a GUI. In order to do this it needs to collect
and model critical information such as the position of each agent in the virtual
space. If we assume that anything outside an agent is part of the environment,
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user commands also are, so the environment should facilitate agents’ control
by the user.

• The moving object. This is a very simple agent that can enter the environment
and move around at any direction in the 2-dimensional space, or stay still. Its
movement is controlled by the user and it can move forward, backwards or
rotate (anti)clockwise at constant speed. The user is also able to decide the
initial position of the object.

Stage 2: Introducing the sensors

In this stage we introduce the sensor agents and implement particle filtering in two
sub-stages:

FIGURE 4.1: Agent configuration for stage (2.a). Note that behavior
implemented for secondary operations is not shown in the diagram.

Fusion Agent method This sub-stage is solely intended to test the PF tracking al-
gorithm in its centralized form, getting accustomed with the process and the coding
tools needed, and set the base for the step towards a complete distributed version.
The new elements are introduced as follows and are pictured in the diagram in fig-
ure 4.1.

• The Sensor Agent has a very simple behavior. Once positioned in the environ-
ment it cannot move and can only be removed by the user. We assume the sen-
sor is able to know its position in the environment. When the trackable object
enters the virtual space, the sensor percepts its presence and begins sampling
the distance between itself and the object. Once the information is acquired, a
message to the fusion agent is sent, containing the fresh measurement and the
position of the sensor.

• The Fusion Agent doesn’t need to be positioned in the environment as its only
role is to collect the measurements of all sensors and to perform the particle
filtering algorithm. In order to start the process, it needs to know when the
trackable moving object enters the environment so to begin the tracking. If no
sensor is active, the FA should not be able to initiate the PF algorithm.

The environment is modified so it can provide the right percepts to the agents, the
correct response to the action sample, while tracking and showing to the user all
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the new generated information (sensor positions, estimated object position...). The
user should have access to a set of commands to manually or randomly position the
sensor agents around the virtual space.

FIGURE 4.2: Agent configuration for stage (2.a). Note that behavior
implemented for secondary operations is not shown in the diagram.

Distributed Consensus method With this configuration all the PF computation is
transferred into the sensor agent, and the only communication happening is among
sensors and it is during the consensus algorithm. Beside that, the sensor needs to
know some information that we assume being provided by algorithms that are not
the focus of this work. In this case the information needed is provided as percept
by the environment, which is the major change to the environment element from the
previous iteration.
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4.2 Software Development

For the software implementation it was decided to use a combination of Java and
AgentSpeak, respectively for the more procedural part and for the distributed agent
operations and communications.

The Jason library [1] described in chapter 2, offers a good interface between Java
and AgentSpeak especially because it offers a fair amount of access to agent’s state
and controls from the Java code, while also allowing the definition of Internal Ac-
tions written completely in Java, which, for more procedural operations, offer more
flexibility compared to AgentSpeak.

For the more complex mathematical operations, e.g. regression or anything not
included in the standard Math class in Java, the Apache Commons Mathematics
Library [2] is used.

4.2.1 Implementing the Environment

Our custom Environment class implements the Jason Environment interface and it
acts as the entry point for the agent system. The class should implement the method
executeAction in order to apply changes to the environment induced by the agents.

[...] executeAction(String agName , Structure action){
switch (action.getFunctor ()) {
case "action_name":{

//logic for action
// returns true if action is successful
// otherwise returns false

}
}

}

An action doesn’t necessarily need to trigger a perception change in the agent’s be-
lief base. In the set of actions that we implemented, the only one that updates the
sensor’s percepts is sample, which is meant to measure the distance between the sen-
sor and the moving object at a certain time. When the action is called in the agent’s
AgentSpeak code, the underlying MAS infrastructure calls the method executeAc-
tion in the custom Environment class, passing some information such as the caller’s
name, the action’s name and its eventual parameters. A simple case switch is im-
plemented in order to route the correct logic depending on the action that needs to
be executed. In the specific case of sample, the id of the agent is extracted from the
action and the switch leads the control flow to enter the logic for the action. At this
point the id of the object is extracted from the action parameters and both the po-
sitions of the sensor and of the object are retrieved from the world model and the
distance between the two is computed. The result is then formatted into a literal and
the method to update the caller agent’s percept is performed.

// inside executeAction switch ...

case "sample":

// retrieve the kind of measurement (distance)

String type = action.getTerm (0).toString ();



38 Chapter 4. Software Application

// retrieve the target

String trackable = action.getTerm (1).toString ();

// retrieve states from the model

TrackableState target = model.getState(trackable);
TrackableState sensor = model.getState(agName);

// measure distance affected by additive Gaussian noise

if (type.equals("distance")) {
double distance =
Measure.distanceXY(target.x, sensor.x, target.y, sensor.y)
+ noise.sample ();

distance = Math.max(distance , 0);

// update sensor percepts

removePerceptsByUnif(agName ,
literal("distance(_)[trackable (%s)]",
trackable));

addPercept(agName ,
literal("distance (%s)[trackable (%s)]",
distance , trackable));

informAgsEnvironmentChanged(agName);
return true;

}
return false;

Note that agent perception can be modified and updated in other occasions, for ex-
ample when a new sensor is positioned in the environment, its neighbors need to be
informed, or when the object enters the environment, all sensors need to perceive it.
All of this happens in the method to create new agent which is called with the press
of a button in the UI and anActionListener on that UI element. The actionPerformed
method routes the action with a switch and the creation of a new sensor agent is
described as follows.

[...]
case "spawn_sensorDPF":

//the new sensor agent is created and is given a name
//and it is specified what logic it needs to has (.asl file)

String newAgentName =
getEnvironmentInfraTier ().getRuntimeServices ().createAgent(
"sensorDPF" + sensorNumber ++,
"sensorDPF.asl",
null , null , null , null , null);

//the new agent is started
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getEnvironmentInfraTier ()
.getRuntimeServices ()
.startAgent(newAgentName);

//at the same time it is added to the model
//note that even if an update method is used
//a new entry is added to the model
//if an agent with the same name doesn 't exist
//the initial sensor position is retrived from the UI

model.updateState(newAgentName ,
view.getSettings ().getSensorInitState ());

// update the total_sensors belief for all sensors

totalDPFSensors ++;
for (String agent : getEnvironmentInfraTier ()
.getRuntimeServices ()
.getAgentsNames ()) {

if (agent.startsWith("sensorDPF")) {
removePerceptsByUnif(agent ,
literal("total_sensors(_)"));

addPercept(agent ,
literal("total_sensors (%s)", totalDPFSensors));

informAgsEnvironmentChanged(agent);
}

}
break;

The custom environment class, beside dealing with agent interactions, needs also
to maintain a system model for the virtual space, as to "remember" where each el-
ement is located, and all the information that could be perceived by the agents, in-
cluding the user. Then, to show this information to the user, the class also needs to
implement a GUI. For these secondary, but important task, we decided to implement
two designated elements called world model and view.

World Model The world model is a class designated to store and update the infor-
mation relative to the "visible" state of the agent in the environment, which in our
case is the array of values that describes one agent’s position, speed and orientation
in the 2-dimensional space. The model is time-dependent and periodically updates
the state of moving objects according to linear motion laws.

This class also defines an observer interface which is implemented by the custom
environment and the view. This allows the two classes to execute certain operations
whenever there is a change in the state of the model. For example whenever the
object moves, it causes a change in the world model, in succession the latter signals
the custom environment class and the view that the state update operation was suc-
cessful. This triggers the environment class to update the percepts at the sensors,
and the view to update the position of the object on screen.

//the interface for the observers

public interface WorldObserver {
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void onStateChanged(String trackableID ,
TrackableState newTrackableState ,
TrackableState oldTrackableState);

void onStateRemoved(String trackableID ,
TrackableState removedState);

}

// methods informing the observers that the model has changed

private synchronized void notifyStateChanged(String
trackableID ,

TrackableState newTrackableState ,
TrackableState oldTrackableState) {

observers.forEach(o -> o.onStateChanged(trackableID ,
newTrackableState , oldTrackableState));

}

private synchronized void notifyStateRemoved(
String trackableID ,
TrackableState removedState) {

observers.forEach(o -> o.onStateRemoved(trackableID ,
removedState));

}

// methods for adding and removing states
//world borders are taken in consideration
//so agents can't be positioned outside

public synchronized void updateState(String id,
TrackableState newState) {
if (inBorders(newState)) {
TrackableState old = trackableStates.put(id, newState);
notifyStateChanged(id, newState , old);

}
}

public synchronized void removeState(String id) {
TrackableState removed = trackableStates.remove(id);
notifyStateRemoved(id, removed);

}

View This is the class designated to draw the GUI and all the necessary elements
on screen for the user. Within the GUI a set of buttons and controls are available
to the user which allow to position the object and the sensors around the virtual
space. To make the qualitative evaluation of the tracking possible, the GUI also has
to draw either the particle cloud or the MMSE computed by each particle filter (FA or
sensors). In order to do this a container class is implemented which acts like a small
database, storing the position of each particle grouped by sensor and then by object
(in the case in the future tracking more than one object was necessary). The GUI uses
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Java Swing to draw all the elements on a window which is periodically refreshed.
At each refresh the object and sensors’ position are consulted in the world model,
the particle position are instead consulted in the custom container and everything is
painted on screen.

These support elements of the custom Environment class are initialized in its
constructor.

4.2.2 Implementing the Particle Filter Algorithm

We now explain how each step of the PF algorithm presented in section 2.4.4 was
implemented in our application.

Initialization In the initialization step, happening right after a sensor perceives a
trackable object entering the environment, and before the first iteration of the particle
filtering algorithm, a fresh set of particles is initialized at the sensor and memorized
inside its Belief Base via a dedicated Internal Action called by the agent itself once
the event that perceives the object is triggered. The idea is to populate the set with
hypothesis on the trackable object’s position within a certain area according to a
certain probability distribution. Two ways of initialization have been tested each
using a different combination of pdfs:

• Unknown initial location In the first case we assume the trackable object could
be anywhere inside a rectangle with fixed borders at the moment it enters the
environment with uniform probability. For this reason a Uniform pdf is used
and the class UniformRealDistribution from the Apache library is instantiated
for each one of the position coordinates with the respective borders coordinates
as min/max parameters.

• Known initial location In this case an initial measurement (with Gaussian noise)
on the position of the object is taken before commencing the particles initial-
ization. For this reason an Uniform distribution is used to sample the angle
between 0 and 360 around the sensor at which the particle will be initialized.
Then using the distance and the sampled angle a second 0-mean Gaussian pdf
(class NormalDistribution) is used to add some variability in the distance for
each different particle. This way a cloud of particles around the sensor is cre-
ated possibly giving a bit more of accuracy in the early iterations of the PF
algorithm, increasing the chance of a good tracking result. After each sample
is taken, the position is translated into the common reference system of coor-
dinates using the sensor position in the environment.

Each new particle is then formatted into a literal and stored into the agent’s belief
base using the appropriate Jason method call.

Particle update In the particle update step, each particle is updated according to
the system model that defines the state change of the object with time. In this case the
object is simply moving around with a certain speed and direction, but since the only
part of the object state that is being tracked is the position, we limited the update
process to change the object location adding Gaussian noise scaled to a balance factor
using values present in the numerical example in [7] as a reference.

// update states according to state transition
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double std_dev = 10;
NormalDistribution noise =
new NormalDistribution (0, std_dev);

for (double [] s : states) {
s[0] += s[2] + 0.5 * noise.sample ();
s[1] += s[3] + 0.5 * noise.sample ();
s[2] += Math.max(0,noise.sample ());
s[3] += Math.max(0,noise.sample ());

}

where the state array is s : (x, y, ẋ, ẏ). Note that all values, such as the standard
deviation, should be adjusted based on the dimension used in the system model in
order to obtain a better tracking result.

Particle weighing This steps happens once the likelihood function is ready. The
process where the likelihood function is computed is better explained in the dedi-
cated section (4.2.2).

The result of the likelihood function computation is an object on which the method
weigh(s) can be invoked. As input it receives an array containing the two position
coordinates for the hypothetical object location stated by a particle. The output is
the non normalized weight value associated for that particle. Each weight needs
then to be normalized so that the sum of all weights is ≈ 1 (due to limited decimal
representation of data types it may happen that sum is lower than 1 if some particles
happen to be far from the likelihood position). To normalize each weight a sum of
all weights is computed and used for normalization.

MMSE approximation For MMSE approximation an average value is computed
for each coordinate of the state using the computed weights as weights in the mean
expression 2.6, resulting in the centroid of the particle cloud. Note that each sensor
computes its own MMSE approximation which may differ from the approximations
of other sensors due to a different random set of particles.

Resampling Any resampling with replacement can be used in this step, so we de-
cided to implement a simple Monte Carlo Importance Sampling algorithm in a method
that accepts a list of the pairs {w(j)

n,k, x(j)
n,k}

J
j=1 and the number of samples needed (J),

and outputs a list of J sampled particles x̄(j)
n,k. The algorithm computes a cumula-

tive distribution function using the weights provided as input, by creating an array
where each element is the sum of all the previous weights j < i and the j-th weight,
where i is the array index. This way a series of bins is created and a UniformRealDis-
tribution object from the Apache library is instantiated between 0 and the last index
of the array. J iterations are performed where a sample is taken from the Uniform
Distribution and the bin where the sample "lands" is found. The index associated
with that bin becomes the index of the particle that is sampled, which is then added
to the list of sampled particles instantiated for the output.

[...] samplingMC(List <Pair <Double , E>> input , int maxSamples){
List <E> samples = new LinkedList <>();
double [] c = new double[input.size()];
c[0] = input.get(0).getFirst ();
for (int i = 1; i < c.length; i++)
c[i] = c[i - 1] + input.get(i).getFirst ();
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UniformRealDistribution unif =
new UniformRealDistribution (0, c[c.length - 1]);

for (int j = 0; j < maxSamples; j++) {
double u = unif.sample ();
int l = 0;
for (; l < maxSamples && c[l] <= u; l++)
;

samples.add(input.get(l).getSecond ());
}
return samples;

}

Likelihood approximation and consensus

Depending on the configuration of the application a different way of computing the
likelihood function is implemented.

FA configuration In the Fusion Agent configuration, each sensor that perceives the
trackable object performs a measurement of the distance at regular intervals with a
simple while iteration that is present in the goal triggered when the trackable object
enters the environment. The measurement is then sent to the FA as a message, which
stores the information in FA belief base.

[...]
+sensing(Object) <-

while(sensing(Object)){
.wait (10);
sample(distance ,Object)}.

//When the sensor obtains a new percept from the environment
//send the information to the fusion agent

+distanceFrom(Object ,D) <-
?position(X,Y);
.send(fa,tell ,distanceFrom(Object ,D)[pos(X,Y)]).

The FA is also informed when the trackable object enters the environment so to
begin the particle filtering algorithm, which is the same that is performed at each
sensor in the LC configuration, with the exception of the likelihood function compu-
tation.

[...]
//when the object enters the environment
+!track(Object) <-

while(cycle(C)[trackable(Object)]){
// Particle filtering IA
pf.updateState(Object ,C);
// update counter for tracking iterations
-+cycle(C+1)[trackable(Object)];

}.

The FA, knowing all sensors’ measurements and their respective positions, is able
to compute the likelihood function in a centralized way as the intersection of all the
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local likelihood functions of all sensors (cfr. 2.9), treating each function as a Gaussian
pdf shifted by the measurement distance, which is also independent from all the
other functions.

To perform the likelihood function computation, all the available sensors’ mea-
surements and relative positions are collected from the belief base and saved in-
side an instantiated object that we called LikelihoodFunction. This class features the
method weight(p), that at each call sequentially computes the product of all the local
likelihood functions and outputs the weight value for the particle given as input.
During a single iteration, a local likelihood function is computed as a Gaussian dis-
tribution centered at the value of the measurement (distance) zn,k and then sampled
at the distance obtained between the sensor k and the input particle, using the same
measurement model as the sensor.

LC configuration In the LC configuration, the behavior of the sensor agent is sim-
ilar to the previous case, with the main difference that no measurement is sent to a
FA. The major changes happens in the particle filtering Internal Action where this
time the exponential basis function approximation is implemented. Before the ac-
tual consensus algorithm, the local likelihood approximation parameters need to be
computed and, since our simulation fits the special case of Gaussian measurement
noise (2.4.3), we applied that same process in Java code. Each sensor computes its
own set of local parameters using the particles {x(j)

n,k}
J
j=1 and the measurement model

function hk(·). Firstly the set of αn,k,r coefficients is computed, in order to approx-
imate the hk(·). In order to do that, a regression class from the Apache library is
used which takes in input the polynomial expansion computed at each particle po-
sition with the relative function hk(·) result. The polynomial expansion is calculated
with Rp = 2 and M = 2, so the expansion has the form of x + y + xy + x2 + y2

(cfr. 2.32) and each element of the regression input vector becomes each element
of the polynom with that same order. Pairing the input vector with hk(x, y) as in-
put of the regression object for each particle, yields the set of αn,k,r1,r2 parameters
{αn,k,0,0, αn,k,1,0, αn,k,0,1, αn,k,1,1, αn,k,2,0, αn,k,0,2}, where the indexes r1 and r2 correspond
to the exponent of the relative state element.

computeAlphas(List <double[]> states ,
Function <double[], Double > h) {
UpdatingMultipleLinearRegression sr =
new MillerUpdatingRegression (5, true);

for (double [] state : states) {
double [] v = { state[0], state [1] };
sr.addObservation(polynomExpand2D(v),
h.apply(state));

}
return sr.regress ().getParameterEstimates ();

}

where h is the function for the measurement model, given as parameter

Function <double[], Double > h = v -> {
return Measure.distanceXY(v[0], posX , v[1], posY);

};

and polynomExpand2D() expands the 2D vector, into the needed 6-element expan-
sion.
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The result of this operation is a vector with (Rp+M
Rp

) = (2+2
2 ) = 6 coefficients for

the polynom approximating the measurement function hk(·). In the next step the
β coefficients need to be computed (cfr. 2.41). In this step the measurement zn,k is
involved, so it gets acquired from the sensor’s belief base. This time a new vector of
(4+2

4 ) = 15 coefficients is computed and their order in the array is {βn,k,0,0, βn,k,0,1,
βn,k,1,0, βn,k,0,2, βn,k,1,1, βn,k,2,0, βn,k,0,3, βn,k,1,2, βn,k,2,1, βn,k,3,0, βn,k,0,4, βn,k,1,3, βn,k,2,2,
βn,k,3,1, βn,k,4,0}. Note that in the code, the alpha coefficients, for ease of use in this
specific case, are represented by a 2-dimensional array.

//r=2 , m=2

double [] beta_array = new double [15];
int i = 0;
for (int k = 0; k <= 2 * r; k++)
for (int r1 = 0; r1 <= k; r1++) {
int r2 = k - r1;

// compute gamma for r1 and r2

double gamma =
computeGamma(alpha , r, r1, r2);

if (k <= 2) {
beta_array[i++] =
alpha[r1][r2] * z - gamma;

} else {
beta_array[i++] = -1 * gamma;

}
}

return beta_array;

where computeGamma(alpha, r, r1, r2) is

double gamma = 0;

// r1' = a, r2 '= b, r1" = c, r2"= d

for (int a = 0; a <= r; a++) {
int c = r1 - a;
if (c >= 0 && c <= r)
for (int b = 0; b <= r; b++) {
int d = r2 - b;
if (d >= 0 && d <= r)
gamma +=
alpha[a][b] * alpha[c][d];

}
}
return 0.5 * gamma;

The sensor is now ready to begin the consensus algorithm we discussed in sec-
tion 2.4.2. Note that along with the β̃n,k,r1,r2 coefficients, the normalization factor
C̃n(zn) is also computed via consensus on the logarithm (2.21).

1. For the coefficient vector and the normalization factor, the old internal state is
retrieved or created from scratch in the case the sensor is at its first PF iteration.
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2. A temporary state for the vector and the normalization factor is updated from
the old internal state, using current information

//tp is the tuning parameter
computeTempState(double [] current ,

double [] prev_is , double tp) {
double [] temp_is =
new double[current.length ];

for (int i = 0; i < temp_is.length; i++)
temp_is[i] =

tp * prev_is[i] + (1 - tp) * current[i];
return temp_is;
}

3. The updated temporary state is broadcast to all neighboring sensors with the
approriate send method offered by the Jason library (the list of neighbors is
previously retrieved from the belief base)

4. Disregarding synchronization, the currently available temporary states broad-
cast by other sensors are retrieved from the agent’s belief base and, in a single
iteration, the Metropolis weight is calculated (cfr. 2.26) and used in the inter-
nal state computation (including the normalization factor). After the cycle has
ended, the local temporary state is added to the new internal state, in order to
facilitate the computation of the Metropolis weight for the local state.

// acquire belief from agent 's belief base

belief = agent.getBB().getCandidateBeliefs(

// supply the format of the belief needed

Format.literal("temp_state(_,_)[trackable (%s)]",
trackable),

un);

//if some belief is found

if (belief != null)

//cycle through all beliefs with that format

while (belief.hasNext ()) {
Literal lit = belief.next();

// obtain the temporary coefficients

double [] state =
Format.numberListToArray (( ListTerm) lit.getTerm (0));

// obtain the temporary normalization factor

double c =
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(( NumberTerm) lit.getTerm (1)).solve();

// compute Metropolis weights
//the number of neighbors a sensor has is carried along

with the
// broadcast temporary state as an annotation

double weight = 1 / (1 + Math.max(( double)
neighbors.size(),

(( NumberTerm)
lit.getAnnot("neighbors")

.getTerm (0)).solve()));
totalw += weight;

//the weighted temporal state is added to the new
internal state

for (int j = 0; j < internal_state.length; j++)
internal_state[j] += weight * state[j];

norm_const += weight * c;
}

//local temporary state is added

double weight = 1 - totalw;
for (int j = 0; j < internal_state.length; j++)

internal_state[j] += weight * temporary_state[j];
norm_const += weight * temp_norm_const;

[...]
//all the internal state elements are multiplied
//by the number of sensors in the whole network

for (int j = 0; j < internal_state.length; j++)
likelihood_parameters[j] = internal_state[j] * k;

norm_const = k * norm_const;

Finally, a JLF object can be instantiated with the coefficients and the normal-
ization Cn factor as parameters (Note that the normalization factor at this point is
actually its logarithm, so before being multiplied to the exponential it needs to be
reverted). When the method weight(particle) is called, the approximated exponen-
tial sum (2.42) is computed, and the complete approximation of the JLF (cfr. 2.12) is
evaluated for the particle given as input.

public double weight(double [] state) {
double sum = 0;
int i = 0;
for (int k = 0; k <= 4; k++)
for (int r1 = 0; r1 <= k; r1++) {
int r2 = k - r1;
sum += coefficient[i++]
* Math.pow(state[0], r1)
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* Math.pow(state[1], r2);
}

return Math.exp(sum + logcn);
}

4.3 Possible improvements

Now that we have a complete insight on the whole implementation and the engi-
neering difficulties that we encountered, we took a moment to rehearse what we’ve
and think to what could be improved. Certainly, in this primordial stage, the ap-
plication might not yet be suitable for research or other kinds of application since it
lacks some quality-of-life improvements that would make this software much more
versatile and desirable.

Some of the improvement ideas are listed as follows.

• For now the application works only with a very specific set of parameters. A
big improvement would be editing the each procedure in the particle filtering
algorithm so that it can accept a variable set of parameters, so that different
experiments can be performed.

• Currently the application only works for the tracking of a mobile object posi-
tion in a 2-dimensional virtual space, though distributed particle filtering can
be applied for any kind of state vector, provided there is a set of sensors ca-
pable of measuring all the dimensions present in the state vector. On this idea
another huge improvement would be having different measurement functions
which can be set as parameters for the sensor. The logic of the sensor would be
the same, but the kind of measurement changes. In this way a heterogeneous
sensor network could be simulated and tested.

• Having a set of different sensor logic, each for any kind of distributed particle
filtering configuration. This way the user could quickly set up a new network
and test how different configurations perform.

• Small-grain modularity, letting the user select different functions to compose
the algorithm e.g. choosing among different resampling methods.

• A wider range of testing and data collection tools should made available to the
user, such as simulated transferred data volume counters in the case a wireless
network needs to be tested, or simply a wider range of statistical tools measur-
ing accuracy and other kinds of performance indicators.

• Overall a better looking and functional GUI.
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Chapter 5

Conclusions

We began this project with the idea of having an insight on what the mathematical
notions and the technical difficulties are when a Distributed Multi-sensing Data Fu-
sion System needs to be implemented. Along the way we found out that Particle
filtering is one tool, among others, that best performs when it’s time to fuse numeri-
cal -data perceived by different sensors- into a dynamic world model. This led us to
closely explore this data fusion practice in literature, and try to use it in the imple-
mentation of a distributed agent system software so to better understand the process
and face the aforementioned technical difficulties first-hand. For this we defined a
specific case study of target tracking onto where we applied the acquired knowledge
for distributed particle filtering. The case study brought us to implement a small tar-
get tracking simulator software application using Java, with the Jason library, and
AgentSpeak languages. The outcome was an application that allowed us to try out
this novel technique that addresses a desirable feature in located autonomous sys-
tems, that is a reliable process able to dynamically model the environment in which
these systems are immersed. The application that has been developed only covered
a very specific case scenario, but allowed us to grasp the core mechanisms of likeli-
hood consensus distributed particle filtering. Consequently this enables us to more
easily apply those same mechanisms to many different and more complex scenarios,
by only changing the architectural requirements.
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