
UNIVERSITY OF BOLOGNA

BACHELOR OF SCIENCE THESIS

State of the art techniques for creating
secure software within the Agile process: a

systematic literature review

Author:
Francesco Maria MONETA

Supervisor:
Professor Paolo CIANCARINI

A thesis submitted in fulfillment of the requirements
for the degree of Bachelor of Science

in the

dipartimento di Informatica
Scuola di scienze

October 5, 2018

http://www.unibo.it
http://www.johnsmith.com
http://www.jamessmith.com
http://researchgroup.university.com
http://department.university.com

iii

Declaration of Authorship
I, Francesco Maria MONETA, declare that this thesis titled, “State of the art tech-
niques for creating secure software within the Agile process: a systematic literature
review” and the work presented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research de-
gree at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

Signed:

Date:

v

“Look again at that dot. That’s here. That’s home. That’s us. On it everyone you love,
everyone you know, everyone you ever heard of, every human being who ever was, lived
out their lives. The aggregate of our joy and suffering, thousands of confident religions,
ideologies, and economic doctrines, every hunter and forager, every hero and coward, every
creator and destroyer of civilization, every king and peasant, every young couple in love,
every mother and father, hopeful child, inventor and explorer, every teacher of morals, every
corrupt politician, every "superstar," every "supreme leader," every saint and sinner in the
history of our species lived there–on a mote of dust suspended in a sunbeam.”

Carl Sagan

vii

UNIVERSITY OF BOLOGNA

Abstract
Computer Science
Scuola di scienze

Bachelor of Science

State of the art techniques for creating secure software within the Agile process:
a systematic literature review

by Francesco Maria MONETA

Agile processes have become ubiquitous in the software development community,
and are used by the majority of companies. At the same time, the need for secure and
trustworthy software has been steadily growing. Agile software processes nonethe-
less have proven difficult to integrate with the preexisting security frameworks de-
veloped for the Waterfall processes. This thesis presents the results of a systematic
literature review that investigates solutions to this problem. The research questions
to which the researcher tried to answer are: "which are the latest solutions to en-
hance the security of the software developed using the Agile process??" and "Which
of the solutions discussed have performed best pilot studies?". This study analyzed
39 papers published between 2011 and 2018. The results were ordered according to
which exhibited the highest consensus and coded into four sets. The most salient
suggestions were: increase the training of the developers, add dedicated security
figures to the development team, hybridize security solution from the waterfall pro-
cesses and add security artifacts such as the "security backlog" and "evil user stories"
to Agile.

HTTP://WWW.UNIBO.IT
http://faculty.university.com
http://department.university.com

ix

Acknowledgements
Many thanks to my supervisor, Professor Paolo Ciancarini, and to my co-supervisor,
Professor Daniele Russo, for their timely help and their suggestions in the writing of
this thesis.
Many thanks to Dott. Marzia Ramponi, she is the reason I am today able to attend
University.
Many thanks to Prof. Matteo Zucchi, for making me discover the beauty of Com-
puter Science.
Many thanks to Prof. Emerit. W. Gill Woodall and to Amy Scott, M.D. for their moral
support and for the confidence in me they always displayed.

xi

Contents

Declaration of Authorship iii

Abstract vii

Acknowledgements ix

1 Introduction 1

2 Background 3
2.1 Software Engineering . 3
2.2 Agile process . 3

2.2.1 Scrum . 3
2.2.2 Requirements traceability . 4

2.3 Security . 5
2.3.1 What is security . 5
2.3.2 Design principles . 5
2.3.3 Touchpoints . 6
2.3.4 OWASP . 7
2.3.5 Microsoft Security (Software) Development Lifecycle 8
2.3.6 Decomposition of Security . 8

3 Research method 11
3.1 Research questions . 12
3.2 Selection Process . 12
3.3 Data extraction and coding . 12
3.4 statistical analysis . 16

4 Results 17
4.1 RQ1: Which are the latest solutions to enhance the security of the soft-

ware developed using the Agile process? 17
4.1.1 Human factor . 17
4.1.2 Solutions addressing the Agile process itself 20
4.1.3 Tools . 22
4.1.4 New artifacts for Agile . 25

4.2 RQ2: Which of the solutions discussed have performed best in pilot
studies? . 26
4.2.1 External consultants and workshops 26
4.2.2 Addition of professional figures to the development team . . . 27
4.2.3 Frameworks hybridization . 27
4.2.4 Addition of artifacts to Agile . 28

xii

5 Discussion 29
5.1 Observations on the proposed solutions 30
5.2 Limitation of this study . 31
5.3 Related work . 32
5.4 Future research . 32

6 Conclusions 33

Bibliography 35

xiii

For Audrey, who was always at my side

1

Chapter 1

Introduction

Agile software engineering methods have become the norm in recent years and their
usage has widely outnumbered the waterfall methods (Project Management Insti-
tute 2017). A recent survey showed that currently, in 2018, 91% of companies have
adopted Agile, up from 82% in 2015 (Dimensional research 2018). Software com-
panies turn to Agile for the shorter time to market, higher productivity, increased
quality of the product and heightened engagement and satisfaction from the em-
ployees (Cohn 2009). Nonetheless, there is a cost to pay for these improvements.
Reduced time-to-market means reduced time to write and maintain the documen-
tation. Because Agile does not put great emphasis on big upfront design, features
are presented to the stakeholders sooner. But certain application, with specific non-
functional requirements needs, seem to suffer from the reduced preparatory phase.
It is the case, in particular, for application that have stringent security requirements.
During the years, many frameworks and solutions have been developed to produce
secure software. These solutions, like the Capability Maturity Model developed
withing the Department of Defense of the United States (Humphrey 1988), were
developed to fit into the software engineering main methods of the time, based on
the waterfall process. Big upfront design, comprehensive testing and a general top-
down approach are key elements of these frameworks. All of these attributes are in
clear contrast with the Agile paradigm (Beck et al. 2001) and with the new methods
that spawned at the beginning of the new century. New ideas to produce software
with a high degree of trustworthiness within the Agile process were required. This
thesis tries to present them, discussing the latest and most advanced techniques that
the scientific literature has to offer. To perform this study, the "systematic literature
review" method was used. It enabled the researcher to acquire, codify and thor-
oughly present the studies that were meaningful to the this research. The thesis is
organized as follows: the first chapter is dedicated to this brief introduction. Fol-
lowing, the background chapter discusses all the topics that are necessary to the
understanding of the thesis itself. Chapter three is dedicated to the method and the
analysis of this systematic literature review. It contains the information necessary
to repeat this study and presents some statistical analysis of the findings. The sub-
sequent chapter, Results, is dedicated to presenting the findings of this study. Each
of the two research questions is introduced in a section, in which the data collected
from the study papers is thoroughly discussed. The suggestions are ordered in de-
scending order. Priority is given to the solutions that exhibited the highest consensus
among the researches. The fifth chapter, Discussion, gives an overview of the meth-
ods presented beforehand, debates the the limitation of this study, presents related
work and possible future researches. Finally, the sixth chapter, Conclusions, sums
up the findings and present a synopses of this thesis.

3

Chapter 2

Background

2.1 Software Engineering

The notion and discipline of “software engineering” originated in the 1960’s as a
way to maximize the quality of the software and increase its reliability by streamlin-
ing its development. At the NATO conference on “Software Engineering” of 1968, a
discussion took place on how to turn software development, considered too much
of an art, into a scientific discipline, by the means of structuring the programs and
their execution, using modules and testing (d’Agapeyeff 1969). The classical soft-
ware engineering methodology that spurred early on and dominated the field until
the late 2000’s, came from the defense sector. The waterfall model, proposed in an
article by(Royce 1970) and developed within the U.S. Air Force, suggests a top-down
approach to the development. In a well defined series of steps, the requirements are
elicited, the software is designed and coded. In the end testing and deployment
conclude the development process.

2.2 Agile process

Agile software development methodologies were born in the early 2000 in opposi-
tion to plan-driven methods. The latter, perceived as slow and heavy were an un-
satisfactory answer to the needs of an ever changing software landscape. Agile has
spurred a plurality of different methods, each sharing a set of principles expressed
in the Agile Manifesto (Beck et al. 2001). Agile methods privilege “individual and
interactions over processes and tools”, “Working software over comprehensive doc-
umentation”, “Customer collaboration over contract negotiation” and finally “Re-
sponding to change over following a plan”.

2.2.1 Scrum

Scrum (Schwaber and Beedle 2002) is the most widely adopted development method
based on Agile, being used in more than half the organizations, according to (Col-
labnet 2018). This method is described as “ A framework within which people can
address complex adaptive problems, while productively and creatively delivering
products of the highest possible value” (Schwaber and Sutherland 2017). Scrum de-
scribes a specific set of artifacts and events to structure the development process
and create a product through small but constant series of increments. Moreover,
certain figures composing the scrum team are described. Specifically: the Prod-
uct Owner, whose duties and prerogatives include managing the “Product Backlog”
(ordering the items to achieve maximum value, ensure visibility and transparency
of the items), the Scrum Master, responsible for the good execution of the Scrum
method. This person acts as a mediator between the team and the shareholders and

4 Chapter 2. Background

FIGURE 2.1: Iterative nature of the Agile development process, (Oth-
mane et al. 2014)

ensures fruitful interactions between the parties. The Development team should be
self organized and cross-functional. A team should be small enough to be deft and
agile to minimize the communicational overhead, but still able to produce a value-
increment in each iteration. Moreover, it is the team that is held accountable for the
development of the artifacts, even for those that have been produced by an single
member. An iteration of the process in Scrum is called a “sprint” and it lasts between
2 and 8 weeks. The sprints are designed to provide ad addition of value to the prod-
uct at every iteration. Because of its iterative nature, Scrum is well suited to adapt to
changes in the product requirements.

2.2.2 Requirements traceability

Ensuring that all the requirements have been met is not a simple task. Activities of
software engineering were developed to trace these requirements, describing their
"life" in the context of the life of the project. Thus, we are able to associate at each
stage of the development the produced artifacts to the requirements they describe.
A novel traceability model is discussed in paragraph 4.1.3 by (Barbosa and Barros
Sampaio 2015).

2.3. Security 5

2.3 Security

2.3.1 What is security

Security is the property of a system or of data that assures its resiliency against im-
proper or malicious use. Security has been historically divided in three main at-
tributes (Brooks 2013): Confidentiality, Availability, Integrity. Specifically, confiden-
tiality assures us that the information we use will remain secret (private) to any-
body who does not hold the authorization to view it. Integrity safeguards us on the
fact that only those who hold the authorization may change the system or the data.
Availability is the property that ensures us that the the information or the system
will always be accessible.

Different type of attacks may subvert one or more of these properties. For in-
stance, DDoS attacks will menace the availability of a certain service, without com-
promising the other two. A man-in-the-middle exploit will instead target the con-
fidentiality. The integrity of a data and system may be compromised if an attacker
obtains, through privilege escalation, an administrative account. When developing
a secure system, it is important to elicit the requirements that said system will have
to satisfy (Bishop 2003). A system exposed to the Internet and that has to handle sen-
sitive information, such as credit card numbers, social security numbers and private
records, will have to abide to stricter requirements than a gaming software. Some
organization may privilege confidentiality over availability, and vice versa. These
considerations will dictate the policy of a system, or the set of rules defining "who
is allowed to do what". More technically, a policy defines a set of allowed states in
which the system is considered secure. Transitions are also defined, moving the sys-
tem from a safe state to another one. If the system is allowed to move into an unsafe
state, of if a malicious use forces into one, the system is considered non secure.

Enforcing the policy, which is, making sure that the system does not enter un-
allowed and unsafe states, depends on the mechanisms. The technical mechanisms
necessary tend to be complex to implement and, like any software, are prone to in-
clude errors.

2.3.2 Design principles

As described in the classic work by (Saltzer and Schroeder 1975), there exists 8 se-
curity principles that, if used as guidelines, may help to provide a design and an
implementation with fewer security flaws. The principles are the following:

• Simplicity or Economy of mechanism: aim at keeping the design as simple and
as small as possible.

• Fail-safe defaults: in absence of a specific permission, the standard behavior
should be lack of access. Permission should never be granted by exclusion.

• Complete mediation: Every access to any object should be checked for author-
ity.

• Open design: the design should be open and visible. Security “through se-
crecy”, and thus depending on the ignorance of the potential attacker, is a bad
principle and unattainable if the software is widely distributed.

• Separation of privilege: a mechanism that requires two identification methods
(keys) will always be inherently safer than another that requires only one.

6 Chapter 2. Background

• Least privilege: each program and user should operate at the lowest privilege
level that allows it/him to complete the job.

• Least common mechanism: minimize the amount of mechanism common to
more than one user and depended on by all users.

• Psychological acceptability: ease of use should be essential when designing
protection mechanisms.

nonetheless, only some of these principles have become staples of security prac-
tices and can be found on modern widespread and complex software. As noted
in (Smith 2012), three principles do not play a role anymore in nowadays software
landscape. Simplicity, complete mediation, and psychological acceptability, due to
market requirements, obsoleteness and human behavior, respectively.

2.3.3 Touchpoints

While seldom mentioned in the papers scrutinized in the production of this system-
atic literature review, many if not most of the ideas proposed can be traced to the
work of Gary McGraw. In his book (McGraw 2006), McGraw counters the issue of
security reaction, proper of organizations that encountered losses due to lack of se-
curity in their software, by “building security in”. A set of seven “touchpoints” or
best principles are suggested as one of the pillars of creating secure software. These
appeared initially on (McGraw 2005) and since then have been widely adopted “by
the US National Cyber-Security Task Force report, by Cigital, by the U.S. Department
of Homeland Security, and by Ernst and Young” (McGraw 2006).

In his work, McGraw proposes these best practices to fill the gaps between the
“state of the art” security ideas and the actual industry practices. These touchpoints
are said to apply to any software development process, regardless of the method-
ology. This agnostic way of implementing security is stressed as critical, since or-
ganizations will not be prone to subvert the proven methods on which they rely to
produce software. Instead, the “touchpoints” are ensured to be easily portable to
any agile or waterfall process, and thus can be migrated with minimal disruption.
While all important and highly recommended, the author orders the best practices
from most to least effective, so that organizations may prioritize their implementa-
tion. The touchpoints are in order:

1. Code review

2. Architectural risk analysis

3. Penetration testing

4. Risk-based security tests

5. Abuse cases

6. Security requirements

7. Security operations

These 7 practices provide an holistic approach to security and comprehend both self
described “destructive” and “constructive” practices. The first ones are described as
activities to “break software”, attacks and exploits, designed to highlight flaws and

2.3. Security 7

Touchpoints

FIGURE 2.2: Touchpoints chart as shown in (McGraw 2006)

vulnerabilities during development. The second ones, defensive in nature, are based
on safe design and functionality.

By reviewing the results of the multiple studies taken into consideration in this
systematic literature review, it is clear that these touchpoints were, and remain,
highly influential in dictating the strategies to produce secure software.

2.3.4 OWASP

The Open Web Application Security Project (The OWASP foundation n.d.) is a non-
profit organization founded in 2001 with the aim of improving the security of soft-
ware. During the years, many projects, documentation and tools were developed
within it. Many suggestions found in results of this systematic literature review are
directly derived from OWASP recommendations. Thus, in this background section
of the research, the most influential ones are reviewed.

The most famous document, produced in various iterations since 2010, is the
“OWASP top 10” (OWASP top 10 2017), which expresses the consensus of the IT
community on the ten “most critical security risks to web applications”. Each of
the risks gets a score on multiple concerns such as: Exploitability, Prevalence, De-
tectability, and a technical value. Attack scenarios and tips on how to prevent the
vulnerability are also present, to provide real-world advice and effective guidance to
developers. It is seen as a stepping stone for any organization wanting to implement
a change in the software culture and to produce secure code.

8 Chapter 2. Background

Another well known and recurring tool that gets mentioned in the research pa-
pers is the "OWASP Dependency-Check" (OWASP dependency check n.d.). At its core,
it is an application that automatically checks the dependencies used by the software.
The results are then run against a database containing all the publicly known vul-
nerabilities for the libraries. According to (Williams 2014), while many companies
are increasingly aware of the need for the non functional requirement of security in
their custom code, few of them realize the inherent danger represented by insecure
libraries. This under-appreciated danger affects most of the software, because mod-
ern complex software products strongly rely on them. Up to 80% of the total number
of lines of code may be composed by libraries.

2.3.5 Microsoft Security (Software) Development Lifecycle

Microsoft Secure Software Development lifecycle is a process developed for water-
fall methodologies to "build more secure software and address security compliance
requirements while reducing development cost" (Microsoft SDL n.d.).

FIGURE 2.3: Microsoft SDL proprietary security process, waterfall
pictured.

Microsoft also developed a version dedicated to Agile development (Microsoft
SDL for Agile n.d.). Facing the problematic that, as this research will show in chap-
ter four, many other researchers had to tackle when hybridizing waterfall and agile
processes, Microsoft opted for a novel solution. The company re-organized the dif-
ferent SDL practices by the number of times these gets do be executed. The practices,
pictured in figure 2.3, are divided in: "every sprint", "bucket" and "one-time" prac-
tices, according to the frequency with which they have to be completed. Moreover,
Microsoft stresses the importance of training, even before approaching SDL. Core
security training is a prerequisite for both SDL and SDL for Agile. This suggestion
will be recurring in the research papers and will be further discussed in chapter 4.

2.3.6 Decomposition of Security

Presented for the first time in the article by (Chenxi Wang and Wulf 1997), the "de-
composition of security" is a technique that will get further discussed in the findings
of this research. It produces an evaluation of the security strength of a system by
decomposing it into its core components. The breaking-down phase is formed by
four steps:

1. the identification of a security related goal (root)

2. the identification of components vital to the goal (nodes)

2.3. Security 9

3. iterative decompositions of these nodes until no further simplification can take
place

4. end the process when the leafs are independent from each other and can be
assigned a security score

A security score is assigned to each of these resulting components and then, the
aggregated value is computed to form the final estimate. This was a pioneering
security metrics development approach, novel in the security field when presented
at the time.

11

Chapter 3

Research method

There exists many research methods to conduct a study in the Software Engineer-
ing field, as described in (Basili, Selby, and Hutchens 1986). The chosen method to
conduct this thesis was the Systematic Literature Review, a research process origi-
nating in the medicine field. It provides a broad but accurate view of all the solution
to a problem, which can then be analyzed, compared and interpreted. It consists
of 3 main stages: planning, conducting and reporting the data. Initially, during the

FIGURE 3.1: This charts shows the three main phases of this systemic
literature review. Each phase was composed by number of subsec-

tions, shown in the rectangles on the side.

planning phase of this study, the research question were developed, making sure
that these were narrow and precise enough to make the SLR manageable. Devel-
oping a strategy for conducting the research in advance was not only advisable but
necessary to avoid bias in the research questions and in the coding phase. Once
the scope was defined, a selection process and a strategy for the relevant paper was
devised, as well as inclusion and exclusion criteria. To perform the data extraction
phase, groups were created to incorporate the solutions. When conducting this SLR,
the papers were selected using the aforementioned strategy, then the data was ex-
tracted and coded for ease of access and control. Solutions were summarized and
categorized, before being actually reported on this review.

12 Chapter 3. Research method

3.1 Research questions

Two research questions were studied in the completion of this thesis. These were:
RQ1: Which are the latest solutions to enhance the security of the software de-

veloped using the Agile process? RQ2: Which of the solutions discussed have per-
formed best pilot studies?

3.2 Selection Process

The process of obtaining the review papers was preceded by the creation of a strat-
egy, as highlighted in (Kitchenham 2004). The steps followed were:

1. Automated search querying research databases

2. Selection of relevant papers based on title

3. Full text review and quality assessment

Step 1 started by querying four different databases: IEEE, “Web Of Science”,
ACM and Scopus. The research strings, developed beforehand to avoid bias, evolved
after a series of trials until the results were satisfactory.

Furthermore the research strings had to be adapted to the different standards
and dialects of the peculiar front-end systems while maintaining the same seman-
tic expression. The researcher concluded not to incorporate any paper older than
2011 for two reasons: firstly because this thesis wanted to propose and analyze only
the most recent solutions developed in the academia. Secondly, it was necessary
to maintain a scope that resulted manageable for a single researcher to work on.
The inclusion and exclusion criteria were developed before the actual selection pro-
cess, but were subject to improvements and changes during that phase. The initial
search prompted 156 results. These were then inspected to reveal duplicates and
false positives. A final batch of 39 relevant papers was then reviewed and extracted.
Moreover, a quality value was assigned to each paper. This qualitative screening
rated each and every paper “low”, “average” or “high”. This aided the researcher in
compiling the results and establishing if a consensus on certain practices had been
established.

3.3 Data extraction and coding

The data extraction phase was performed by mapping the findings of the papers on
four different answer sets, relevant in answering the two research questions. Thus,
each paper was completely analyzed to extrapolate its significance and its data. The
"findings" section of the studies was always the part that required the most attention.
Each and every suggestion was cataloged with in depth explanations. Subsequently,
through a series of summarizations, the information was distilled to a form detailed
enough to allow for discrepancies of method between similar studies, but general
enough to allow for the coding phase to take place. The subdivision of the papers
into four groups could then take place. Each solution presented in the papers was
mapped into the corresponding group or groups, defined a priori. Confirming the
quality of the initial planning phase, each study mapped directly to at least one set.
This reassurance was essential. Had the papers shown ideas that were completely

3.3. Data extraction and coding 13

impossible to reduce to one of the solution sets, it would have meant having to re-
design the research from the ground up to take the additional non-mapped sugges-
tion into consideration. Various papers were instead mapped on multiple sets, thus
creating a complex web of researches to analyze in order to find the consensus on
the best strategies.

14 Chapter 3. Research method

TABLE 3.1: List of research papers belonging to each group
Artifacts of Ag-
ile

Human Factor Agile Process tools

(Maier, Ma, and
Bloem 2017b)
(Imran Ghani
and Jeong 2014)
(Baca, Boldt,
et al. 2015)
(Bartsch 2011)
(Barbosa and
Barros Sampaio
2015) (Epstein
2008) (Rindell,
Hyrynsalmi,
and Leppänen
2016)

(Imran Ghani
and Jeong 2014)
(Baca, Boldt,
et al. 2015)
(Poller et al.
2017) (Adel-
yar and Norta
2017) (Caldwell
2015) (Terpstra,
Daneva, and
Chong Wang
2017) (Alnatheer
et al. 2013)
(Oyetoyan, D.
Cruzes, and
Jaatun 2016)
(Camacho, Mar-
czak, and D.
Cruzes 2016)
(Bartsch 2011)
(Tigist, Kidane,
and Bengt 2013)
(Barbosa and
Barros Sampaio
2015) (Epstein
2008) (Felderer
and Pekaric
2017) (Loser and
Degeling 2014)
(Choliz, Vilas,
and Moreira
2015) (D. S.
Cruzes et al.
2017)

(Maier, Ma, and
Bloem 2017b)
(Baca, Boldt, et
al. 2015) (Bala-
subramani et al.
2012) (R. Savola,
Frühwirth, and
Pietikäinen
2012) (Keramati
and Mirian-
Hosseinabadi
2008) (Tigist, Ki-
dane, and Bengt
2013) (Fran-
queira et al.
2011) (Baca and
Carlsson 2011)
(Choliz, Vilas,
and Moreira
2015) (Maier,
Ma, and Bloem
2017a) (Rindell,
Hyrynsalmi,
and Leppänen
2015) (Siponen,
Baskerville, and
Kuivalainen
2012) (A. F. B.
Arbain, Ghani,
and Kadir 2014)
(Othmane et al.
2014) (Renatus,
Teichmann, and
Eichler 2015)
(Sonia, Singhal,
and Banati 2014)
(Hutchinson,
Maddern, and
Wells 2011)
(Rindell, Hyryn-
salmi, and
Leppänen 2016)

(Mackey 2018)
(Raschke et al.
2014) (Munetoh
and Yoshioka
2013) (Terpstra,
Daneva, and
Chong Wang
2017) (Felderer
and Pekaric
2017) (Renatus,
Teichmann, and
Eichler 2015)
(Sonia, Singhal,
and Banati 2014)
(D. S. Cruzes
et al. 2017)
(Hutchinson,
Maddern, and
Wells 2011) (Ku-
mar et al. 2012)
(Bansal and Jolly
2014)

3.3. Data extraction and coding 15

FIGURE 3.2: Databases included in search, and number of matched
articles. The research papers were obtained by querying 4 different
databases. Here the graph shows the percentage of papers included

in the literature review that came from each of these.

FIGURE 3.3: Not all the papers obtained from the databases were use-
ful. A number of papers were removed during the manual phase
of the selection process. This chart illustrates how many studies
from each database were either false-positive and thus removed (red),
copies (yellow) and papers that made it into the SLR (green). Note:
"Web Of Science" bar shows no copies because the output of this

database was the first one to be analyzed.

16 Chapter 3. Research method

FIGURE 3.4: This line chart plots the number of papers included in
the research that were published in each year.

3.4 statistical analysis

4 distinct databases were queried: IEEE, ACM, Scopus and Web Of Science, prompt-
ing 63, 9, 50 and 34 results respectively. Figure 3.2 charts the years in which the
papers taken into consideration for this study were published and displays their
number. Figure 3.3 illustrates how many papers ended up being used, how many
were copies and how many were included in the automatic query results but were
non-pertinent to this systematic literature review.

17

Chapter 4

Results

4.1 RQ1: Which are the latest solutions to enhance the secu-
rity of the software developed using the Agile process?

To answer this question the data extracted from the papers was mapped on 4 differ-
ent groups/sets, which were able to fully express and synthesize the studies’ results.
The sets considered were the following:

1. Solutions addressing artifacts of the Agile method

2. Solutions addressing the human factor (Training, professional figures)

3. Solutions addressing the agile process itself (frameworks, organization, activi-
ties)

4. Solutions addressing the tools

Papers that offered multiple solutions were mapped in each of the relevant groups.
Although some of the research paper provided solution that mapped on multiple
sets, most of the them took the “agile-security” problem and answered it by nar-
rowly addressing certain issues, while neglecting the other aspects of the develop-
ment. This lack of a overall view was furthermore exacerbated by the endemic ab-
sence of real world data, a problematic acknowledged by most of the authors. The
studies that did involve industry players reported mostly mixed results, perduring
the view that a “silver-bullet” technique may not be found. Moreover, the solutions
that implemented security principles borrowed from the Waterfall development of-
ten failed to scale and adapt to the Agile Development cycle, thus prompting delays
and running in over-cost. The findings are loosely organized in descending order,
presenting first the suggestions that gathered the greatest consensus, then followed
by the remaining ones of their group. Subsequently another group is presented. Pro-
posal that failed to appear in more than one paper and that were given a “low” score
in quality are not presented individually.

4.1.1 Human factor

Although being second in number of citations in the papers group-wise, the “human
factor” set was the one that exhibited the highest consensus. Virtually all the sugges-
tion in the category depicted a grim panorama in the agile development community.
The lack of training and understanding of security issues, at each and every level of
the development team, was viewed as the root cause of the security vulnerabilities
in the software being developed. The suggestion raised was to invest profoundly on
seminars and training for the team, thus increasing the Security Awareness of the
members. How this training should be performed and who should received was

18 Chapter 4. Results

FIGURE 4.1: Sets mapping on the studies. It is easy to see that

matter of debate.
Specifically, (Poller et al. 2017) studied the improvement of security through work-
shops and security consultants in a multinational company using Scrum and Kan-
ban as methods for the production cycle. The company’s teams were self organizing
and the management could steer the focus towards security only indirectly, through
quality indicators. moreover, neither the company nor its products had ever expe-
rienced losses related to malevolent attackers. Thus, security was perceived of little
value, and directly stacked against other non-functional requirements (such as per-
formance, usability and scalability) and against the features which hold direct value
for the company. Although the security training was perceived as beneficial and
raised the awareness of the teams, few changes were effectively incorporated into
the development life-cycle. Individual developers were in charge of making sure
that security was integrated in the features they were working on. But often, these
activities were executed only superficially, due to the time constraints and pressure
to roll-out the product. Finally, the task of solving issues was usually assigned to
the most experienced developer in that area, limiting knowledge exchange between
team members. This issue was highlighted by (Oyetoyan, D. Cruzes, and Jaatun
2016), which argued that an effort should be made to create an effective environ-
ment that makes replication of software security successes possible among teams. In
the study, it was also noted that the area in which coaching efforts should be focused
the most was secure design training. This came as no surprise, as the lack of atten-
tion to design and architectural issues is a serious limitation of the agile approach
(Rosenberg and Stephens 2003).

(Adelyar and Norta 2017) consisted in a case study of the security activities of
agile based on (Saltzer and Schroeder 1975) 8 principles. The interviews with de-
velopers pointed to little security awareness as the main cause of flaws in agile de-
velopment, similarly to what indicated by (Caldwell 2015) and (Terpstra, Daneva,
and Chong Wang 2017). in the studies by (Camacho, Marczak, and D. Cruzes 2016)

4.1. RQ1: Which are the latest solutions to enhance the security of the software
developed using the Agile process?

19

and by (Bartsch 2011), a series of interviews with IT professionals in different multi-
national companies were performed, and highlighted similar issues, although no
suggestion were made. It was also noted that while experienced developers tend to
consider non-functional requirements, like security and performance, more than ju-
nior professional, they failed to spread their attention and care to the other members
of the team. This reinforces the idea presented by (Oyetoyan, D. Cruzes, and Jaatun
2016) that without an environment that aids the replication of security knowledge
between teams and members of the same group, the development of software with
high non-functional requirements standards is left to the non-homogeneous exper-
tise of the development teams. The management and the stakeholders were also
considered, bringing up the issue related to the perception of security not as a desir-
able non-functional requirement , but only as a nuisance and a cost to be curtailed.
The attitude towards security from these parties had to shift, according to the paper
if security was to be improved.

(Loser and Degeling 2014) recommended the introduction of “hygiene require-
ments”(salary, workspace qualities and conditions or work-life balance) to improve
the developers attention to security. It was perceived that training alone resulted
insufficient to ensure a high degree of security in the development process. Thus the
introduction of a hygiene requirements to ensure that non-functional requirements
would get the amount of attention needed. This article approached the problem of
security from a completely different point of view, focusing on the psychology of the
developers and their level of satisfaction.

A different approach to the problematic of developers expertise highlighted in
the studies suggested the addition of one or more professional figures to the devel-
opment team. While the addition of experts was perceived to substantially increase
the overall security of the product, questions about the costs of such a solution were
discussed. Moreover, agile philosophy places much emphasis on the concept of
“cross functional team”. The addition of a security dedicated professional with a
specific role would seem to violate.
Taking inspiration from the concept of the "security principles" from the classic study
by (Saltzer and Schroeder 1975) and from Microsoft SDL, (Imran Ghani and Jeong
2014) proposed the addition of a "Security Master" figure, to be added to the Scrum
process. This new role, in charge of the newly created "security backlog" (see para-
graph 4.1.3) would increase the degree of agility of the process. (Epstein 2008) also
proposed the introduction of a "security master". However a limitation noted by the
study to this solution was the "shortage of professional security experts to perform
this role". The addition of a professional figure was also suggested by (Alnatheer
et al. 2013), such as a software engineer that should consider security at every step
of development. In this last study, the addition of a security professional to the team
gained more approval amid IT professionals than the idea of "developing with se-
curity in mind", although adding a security engineer to the process was considered
more costly.
A more extreme approach was proposed in the research papers (Baca, Boldt, et al.
2015) and (Choliz, Vilas, and Moreira 2015). In (Baca, Boldt, et al. 2015), a group
composed by a security manager, a security architect, a security master and a pene-
tration tester was integrated with the agile development team. Their responsibility
were discusses in depth. Respectively, the "Security Manager" handled the tradi-
tional features connected to security, such as ISO-certification and legal aspects con-
nected with the development. Moreover, he was responsible for the prioritization of

20 Chapter 4. Results

the requirements in the product development. The Security Architect was respon-
sible for transforming the document presenting the general non-functional require-
ments into a more technical depiction. The Security Master was instead account-
able for the security features during development. This figure was also in charge of
the risk analysis, an activity meant to estimate the likelihood and the the degree of
negative consequences of attacks. Finally, the Penetration Tester, being part of the
quality assurance team, conduced exploratory testing and verified that the system
could withstand improper malicious use. This approach proved extremely effective
in reducing the number of issues present in the product and increase its trustworthi-
ness, but at the cost of an increased spending for dedicated personnel (see paragraph
4.2.2). A similar effort was studied by (Choliz, Vilas, and Moreira 2015). In this case,
the security team was not integrated with the other development groups, but was
granted a high degree of freedom and independence. It was noted, nonetheless, that
this went directly against the Scrum directive of cross functional teams. The Scrum
guide states clearly that “Development Teams do not contain sub-teams dedicated
to particular domains like testing or business analysis” (Schwaber and Sutherland
2017).

4.1.2 Solutions addressing the Agile process itself

Hybridizing waterfall security principles with agile development was a common
proposed solution. The software development processes that were ported and hy-
bridized with agile came from other frameworks like Microsoft SDL, CLASP by
OWASP and the Capability Maturity Model. In this section of the research the ap-
proaches taken by the researches and the resulting processes created will be dis-
cussed. Finally, some standalone event addition are presented.
The most cited framework by the studies was Microsoft Secure Software Develop-
ment Life cycle (Microsoft SDL for Agile n.d.). Its success was explained in (Choliz,
Vilas, and Moreira 2015) by its effectiveness, usability and because it organized se-
curity activities in categories according to how often these are executed. The theo-
retical research by (Rindell, Hyrynsalmi, and Leppänen 2015) argued that SDL, in
conjunction with Scrum or Extreme Programming can easily enhance security and
thus "that agile development is readily adaptable to even the most strict security
requirements". Other studies looked into improving the solutions proposed by mul-
tiple members of the industry. (Baca and Carlsson 2011) evaluated SDL, Cigatel
touchpoints and Common Criteria to effectively produce an security enhanced de-
velopment method, providing the maximum benefit without hindering the degree
of agilness of the development. the results showed that these frameworks do not
scale well into agile the context. Microsoft SDL (Microsoft SDL for Agile n.d.) was
said to have "the largest negative effect on an Agile development process", in clear
contrast with other studies that instead embraced its model. "Dynamic analyses"
was the only favorable activity viewed by the review panel, while "Threat model-
ing", "specific tools", "Cost analyses" and "Incident response" activities were either
considered too costly or incapable of scaling to agile methods, hindering the process.
Cigatel Touchpoints activities (McGraw 2006) were praised in the requirement, de-
sign and implementation phase, but were considered problematic during the tests
phase, achieving minimal improvements at a high cost. Finally, Common Criteria
(Keblawi and Sullivan 2006) had troubled hybridizing due to the assumption of an
upfront design resulting in an "lengthy implementation phase". The resulting "Ag-
ile Security Process" combined the most compatible and beneficial activities, thus

4.1. RQ1: Which are the latest solutions to enhance the security of the software
developed using the Agile process?

21

providing the best theoretical cost-effective solution. In a similar study, (Tigist, Ki-
dane, and Bengt 2013) compared the aforementioned development methods, SDL,
Touchpoints and Common Criteria, with CLASP (CLASP principles n.d.), a set of best
practices developed by the OWASP organization. The study then provided a list of
the most effective activities to integrate into the agile method, ordered by the devel-
opment phase in which they should be applied. Initial education was proposed as a
"pre-requirement" of the development, hinting to the need for a certain know-how
when building secure application. For the initial requirement phase, they suggested
to implement "security requirements", similarly to what (Baca and Carlsson 2011)
suggested, together with the following activities: "Agree on Definitions", "Role Ma-
trix", "Identify Trust Boundary" and "Specify Operational Environment". During the
design phase, the beneficial activities highlighted were "Risk Analyses", "Quality
Gates", "Secure Design Principles" and "Counter Measure Graphs". Testing high-
lighted "Vulnerability and Penetration Testing" from the Touchpoints and "security
testing" from CLASP. During the implementation phase, the activities that gener-
ated a consensus were the use of "Security Tools" and "coding rules", both from SDL.
Finally, for the release phase, "Signing the Code" and "Operational Planning and
Readiness" were the suggested activities.

The research by (Baca and Carlsson 2011) produced another version of a secu-
rity enhanced agile process. The authors analyzed the security activities proposed
by Microsoft SDL, OWASP touchpoints and by the Common Criteria recommenda-
tions and then interviewed a group of professional to obtain feedback on them. The
resulting activities were supposed to be the most beneficial at the least cost. The
activities during the requisites phase of the development were: "Security Require-
ments" and "Role Matrix". Similarly, the only activities suggested during the design
phase were: "Static Code Analyses" and "Coding Rules". During design instead, the
proposed activities were: "Countermeasure graphs", "Assumption Documentation",
"Abuse Cases" and "Requirement Inspection". "Repository Improvement" was con-
sidered beneficial after the release of the product. Finally, during the testing phase,
"Dynamic analyses" of the program was seen as cost effective. It is interesting to note
that the suggested activities for the requisite and design phases appear also in the
similar research by (Tigist, Kidane, and Bengt 2013) hinting to a certain consensus
among the researchers. No empirical test-case was carried out.

The perception that these waterfall addition would impact the “agilness” of the
team was widely discussed. These solution were thus considered a tradeoff between
the need to implement security and the will to adhere to the Agile principles. Some
research approached this tradeoff in a quantitative way.

(Sonia, Singhal, and Banati 2014) introduced core security activities to the Ag-
ile "Extreme Programming" process based on CLAPS. To choose which activities
performed best and were most "agile-effective", the researchers created an "agility
matrix", where each activity from CLASP was weighted and received a score for its
"agilness". Afterwards the researchers produced an "integration matrix", by match-
ing the beneficial CLASP activities to the phases of the Extreme Programming pro-
cess to which they could be associated. The resulting process could thus be ad-
justed on the spot by selecting only the activities with a degree of agility above a
certain threshold. The researchers also developed a tool, called TISA-XP, that allows
to graphically select this threshold degree of agilness, and outputs the resulting se-
lected activities.

Other frameworks with associated tools to quantitative measure the trade-off
between agilness and security were proposed by researches such as, for example,

22 Chapter 4. Results

(Keramati and Mirian-Hosseinabadi 2008). These are discussed in the relative sec-
tion of the research, together with the TISA-XP (Sonia, Singhal, and Banati 2014) and
others.

Nonetheless, the dichotomy between the Agile development and Waterfall based
security frameworks was not overcome, hinting to an intrinsic problematic associ-
ated with hybridizing solutions originating from incompatible ideas.

(Maier, Ma, and Bloem 2017a) proposed once again a security enhanced agile
process. The researches this time looked at solutions that would satisfy the ISO
"Capability Maturity Model" while retaining a degree of "agilness". Novel to this pa-
per was the introduction of a risk evaluation component, adapted from the OWASP
"Application threat modeling". Risk management solutions were also proposed by
(Franqueira et al. 2011), (Tigist, Kidane, and Bengt 2013) and (Hutchinson, Maddern,
and Wells 2011). These were seen as a effective way to reduce waste and plan ahead
which features would require security and to which degree. It should be noted that
these risk management models were not meant to be used only on the hybridized so-
lutions derived from the Waterfall methods, but could and were applied also as stan-
dalone solutions (Hutchinson, Maddern, and Wells 2011). In particular, (Franqueira
et al. 2011) argued that by using "empirical data in the format of public catalogs and
the NVD database", the level of expertise required to manage security risks could
be reduced. The authors created an iterative risk model consisting of three main
phases: risk assessment, treatment and acceptance. At the end of each sprint, risk
assessment should provide a guidance to the client and the product owner, guiding
their choices on which security feature should be prioritized.

"BugBash" was also designed to tackle testing and quality issues, but was not
based on any existing security frameworks. The research presenting it, (Balasubra-
mani et al. 2012), advocated this event as a feasible solution for quality assurance.
Lasting from three to five days, "BugBash" was described as a moment in which ev-
ery member of the development team "turns his/her attention to testing". Teams
of "eight to ten" members formed by "a mix of Developers, Product Managers, and
Designers" were created. The recommendation was to "have a mixed bag of folks to
test the product".

An approach based on the "decomposition of security objectives" presented in
paragraph 2.3.6 and firstly shown by the research (Chenxi Wang and Wulf 1997)
was the an industrial pilot study by (R. Savola, Frühwirth, and Pietikäinen 2012).
In the paper, further discussed in the section relative to the second research ques-
tion, a risk-driven method to the design of a complex system is discussed. Based
on earlier models developed by the researchers, "an iterative methodology for se-
curity metrics development" based on the decomposition of security objectives was
tested. Moreover, attention was payed to the visualization of these decompositions.
The perceived benefit was an increased manageability of the security metrics col-
lected. The tool used for this visualization was the "Metrics Visualization System"
(R. M. Savola and Heinonen 2011). This method visualization of visualization was
novel in its use of traffic-light color to aide the presentation of data to non-technical
development and management members.

4.1.3 Tools

This section of the chapter concerns the use of tools suggested by the researches.
Some papers presented new ones, created by the researches. Other instead rec-
ommended the use of existing one. Overall, 11 papers suggested applications that

4.1. RQ1: Which are the latest solutions to enhance the security of the software
developed using the Agile process?

23

matched this group. Like for the other sections, the results will be presented in depth
in the following pages.

Reviewing changes for an effective evaluation of the changes in the source code
was the focus of the research by (Raschke et al. 2014). The researchers developed a
tool, based on open source software, named "Change Detection Analysis". The aim
of this instrument was to track every change at the end of the sprint, helping the
developers with the security requirements in the ever-changing threat landscape.

Some papers discussed and encouraged the addition of closed-source software,
such as "BlackDuck" (Mackey 2018) to perform "Software Composition Analysis", a
technique that consists in checking the dependency of the developed software and
compare it against known vulnerabilities. Setting aside the goodness of the prod-
uct, the researcher could not avoid noting a troubling conflict of interest when the
authors of the article were also working for the company developing the product.

Other researches did not present tools usable directly to improve the software,
but meta-tools to improve the process itself. (Terpstra, Daneva, and Chong Wang
2017) and (Sonia, Singhal, and Banati 2014) followed this approach. (Sonia, Singhal,
and Banati 2014) used the integration matrix and weighted matrix from the TISA-XP
framework to dynamically select all and only the methods whose agility level was
above a certain threshold.

A similar approach was undertaken by (Renatus, Teichmann, and Eichler 2015).
The authors in this case presented again a meta-approach, capable of comparing
and selecting methods for agile security engineering. Some of the properties that
were key in the decision-making of the process were, among others: the choice of
additional "Artefacts", "Scrum modifications" to the method, "Security expertise" of
the developers. The research thus divided the enhancement aiming at improving
security similarly to what this systematic literature review did, albeit by viewing the
grouping sets through different lenses.

(D. S. Cruzes et al. 2017) study joined the chorus of researches lamenting "lack
of guidelines in practice as well as empirical studies in real-world projects on agile
security testing". Testing was considered problematic, since in most companies such
activity is executed after development "to detect failures, but typically not to prevent
them". What emerged was that "security tests on the system level are to a large extent
automated and there is almost no manual security testing". When non-functional
requirements were tested, the focus was usually on the performance. Citing (Crispin
and Gregory 2009) and the four quadrant of "Agile Testing",

(Munetoh and Yoshioka 2013) Introduced a tool called "RAILROAD", which of-
fered a "model-assisted security testing framework for developing Web applications"
by using Ruby-on-Rails code base. The application was designed to abstract the de-
sign of the code that was given to it, and took into consideration malicious and
improper behaviors. The application inner workings was described in four steps:

1. parse the application code and create a navigation model

2. assess the security design and requirements with the navigation model

3. generate an abuse model by adding the behaviors of the security features, and
attack vectors to the navigation model

4. generate the minimum amounts of test cases

No case-study of the application was provided due to its infancy. Further versions
would provide additional features in a "plug-in" fashion.

24 Chapter 4. Results

FIGURE 4.2: Agile testing quadrants are widely adopted in practice.
By Lisa Crispin, (Crispin and Gregory 2009)

As thoroughly described in paragraph 4.1.1, building secure application using
the Agile process is deeply dependent on the developers’ personal knowledge of
the field. the research by (Felderer and Pekaric 2017) started by acknowledging this
fact and looking at possible solutions to expand the knowledge-base that the profes-
sionals can access. The framework that the researcher proposed was thus a frame-
work consisting of two components: a "Security Data Collection and Analysis" Com-
ponent designed to automatically extract informations about known vulnerabilities
from public and private sources while the "Security Knowledge Generation" compo-
nent was tasked with merging and processing the data "in in order to provide it for
different roles and various purposes in the agile development process". The produc-
tion of such an application however proposed several challenges to the researchers.
For instance, the identification of quality sources of information was troublesome.
Moreover, the vast majority of information gathered was non-relevant (95%). Finally,
extracting data from a variegated and non-coherent set of sources was a non trivial
task, and for these reasons, the creation of such an automatic "tool/framework" was
said to be a formidable objective.

(Hutchinson, Maddern, and Wells 2011) proposed a model to alleviate the com-
plex task of assessing security risks. The conceptual framework was composed
by an dataset of vulnerabilities, taken from of online databases and resources that
hosted information about known issues (much like the aforementioned (Felderer
and Pekaric 2017)), and by a survey directed at the project manager that gauged the
level of the "level of risk facing the project".

4.1. RQ1: Which are the latest solutions to enhance the security of the software
developed using the Agile process?

25

4.1.4 New artifacts for Agile

Not all the solution that affected Agile were borrowed from existing waterfall frame-
works and then adapted. Many innovative or re-imagined ideas stemmed from the
Agile process itself, from its artifacts and ceremonies. Some of these include: the
need to integrate the security requirements into the process artifacts (Bartsch 2011),
the “abuse cases” and “evil user stories” (Epstein 2008) and the “security backlog”
(Imran Ghani and Jeong 2014). We will analyze them in this last chapter.

In detail, (Barbosa and Barros Sampaio 2015) discussed the introduction of three
artifacts and activities to the Agile Process: "Evil User Stories", "Security Backlog"
and "Protection Poker", which were considered to be beneficial and to favor the pri-
oritization of security features. "Evil User Stories were described to be documented
as normal user stories. An experienced professional, in the role of security master,
was tasked to write them in conjunction with the stakeholders, thus prioritizing the
protection of the most vital business components. The aim of the "evil stories" was
highlighting possible security problems and stimulating the development of coun-
termeasures. The "Security Backlog" was described as a list of "features in the Prod-
uct Backlog that need security attention". Again, the task of writing the "security
backlog" was assigned to the security master figure. The benefit of this additional
artifact was an ease in the "traceability of security requirements". Finally, the "pro-
tection poker" activity was discussed. It occurred during the "planning poker", and
it concerned the security requirements. It was supposed to develop and extend the
discussion on security issues. The higher the value of the estimate, the more atten-
tion was to be given to the security risk.
The work by (Imran Ghani and Jeong 2014) reiterates the addition of a "security
backlog" and the role of the "security master" in charge of it. Novel to this approach,
some of the artifacts of Scrum (product, release and sprint backlogs) were taken and
then staked against the security principles by (Saltzer and Schroeder 1975). The "se-
curity backlog" component was here described as a "step" in which features pass
before reaching the actual product backlog. To validate this approach, the authors
analytically studied the degree of agility of each phase of the process using the 4-dat
framework. The findings indicated that the degree of agility improved, according to
their model, after the addition of the "security backlog", but no empirical validation
was performed. The case-study performed by (Rindell, Hyrynsalmi, and Leppä-
nen 2016) adopted a "lightweight" version of the methods discussed above. In this
case, the researcher introduced the security activities directly into the product back-
log, and not adding any further artifact to the Scrum process. An innovative way
to build security inside Agile was investigated by (Othmane et al. 2014) and was
based on the "security assurance cases" presented by (Weinstock, Lipson, and Good-
enough 2012). The most common method to implement security assurance was the
use of checklists to verify security requirements. These cases were instead described
as a "a semi-formal approach" to it and were described to be composed by a set of
claims, arguments and evidences. To efficiently structure the cases, tree-diagrams
were employed. The root of each tree was a main security claim, the nodes were
more descriptive and detailed focused sub-claims, and its leafs the evidences. The
novel model used secure engineering activities such as risk assessment, engineering,
and security assurance in conjunction with "security assurance cases". Focus of this
approach was ensuring compatibility with the iterative nature of the Agile develop-
ment process. Although a case-study performed by the researchers, no third party or
empirical evaluation of the method was performed. Moreover, the scalability of this

26 Chapter 4. Results

method was highlighted by the researchers as a possible issue, since tracking the im-
pact of new user stories to the security assurance cases became harder and harder.
The effort required grew "very fast" by each component, claim, evidences and ar-
guments added. (A. F. B. Arbain, Ghani, and Kadir 2014) proposed a brand new
approach creating a "Traceability Process Model"(TPM) that takes non-functional re-
quirements into consideration. The NFR are considered critical to the quality of any
project being developed and include "security" and "performance" of the system.
The new TPM was produced to be agile-compatible, after noting that none of the ex-
isting models was designed with this capability in mind. Moreover, the researchers
identified specific problems arising from applying standard traceability models to
Agile, in particular "propagation issue" and "consistency issue". Further industry
case study where also planned to further validate this model, due to the lack of em-
pirical data.

4.2 RQ2: Which of the solutions discussed have performed
best in pilot studies?

Only 7 papers included in this systematic literature review included real world data
and were suitable to answer this research question. The researcher thought that
this question could help practitioners in two different ways. First, it would provide
them with tested solutions that have been proven beneficial in real world applica-
tions. Second of all, it would suggests which issues and difficulties other developers
and companies had faced when adopting these techniques. Thus, the two research
questions provide the same answers, but view them under two very different lenses.
Moreover this section highlights the staggering lack of empirical data in the field and
suggests possible future work for other researchers.

Fully successful Mixed results Negative
(Baca, Boldt, et al. 2015) (Terpstra, Daneva, and

Chong Wang 2017)
(Poller et al. 2017)

(Choliz, Vilas, and Mor-
eira 2015)

(Oyetoyan, D. Cruzes,
and Jaatun 2016)
(R. Savola, Frühwirth,
and Pietikäinen 2012)
(Rindell, Hyrynsalmi,
and Leppänen 2016)

The solutions that the companies had adopted strove to be cost-effective, since
the projects were always constrained by budget and profitability.

4.2.1 External consultants and workshops

While providing a growth in the interest of developers and their knowledge in the
field, security training in some cases failed to produce effective changes in the de-
velopment cycle. It is the case emphasized in (Poller et al. 2017) where developers
were not assured that the training actually improved significantly the quality of their
software. They instead highlighted how changes in the management of the organi-
zation must take place to fully take advantage of the improved know-how of the
developers.

4.2. RQ2: Which of the solutions discussed have performed best in pilot studies? 27

It should be noted that (Terpstra, Daneva, and Chong Wang 2017) results, which
were extrapolated from publicly available online resources, found that "practition-
ers did not search for complex and mathematics-grounded techniques. Instead they
applied simple practices with a focus on incorporating those in the social environ-
ment of their projects". (Oyetoyan, D. Cruzes, and Jaatun 2016) argued that secure
design training was the most demanded and sought after coaching need, but further
studies were required to validate such statement.

4.2.2 Addition of professional figures to the development team

(Baca, Boldt, et al. 2015) reported a success in integrating a security enhanced pro-
cess, called SEAP, with Agile. The company involved in the study was "Ericsson"
and the development team was composed, for this particular project, by 88 staff
members, distributed among 8 development teams. The approach taken relied on
risk analysis and on 4 additional professional figures dedicated to security, which
are described in the paragraph 4.1.1. The results showed that the usage of SEAP
achieved a great reduction of issues in the code thus improving security:

• The proportion of risks that were corrected within the software version in de-
velopment increased more than five times

• The number of unhandled risks decreased significantly

• More severe risks were found because of a more detailed risk analysis

• The time to solve security issues was greatly reduced

On the other hand, the cost payed to achieve this improvement came from the
increased spending on the 4 additional professionals per team. In particular:

• The daily security work done by all security resources proved essential, the
risk analysis composed only a fraction of the effort

• The cost dedicated to solve security issues went from the 1% estimate to 5% of
the total cost project.

The research argued that a cost-comparison with the non-enhanced process would
be nonsensical, since it would not be plausible to calculate the direct-monetary gains
and costs of it.

4.2.3 Frameworks hybridization

(R. Savola, Frühwirth, and Pietikäinen 2012) performed as well a pilot study at "Er-
icsson", an experience whose results were mixed. In this case the Agile process had
been modified by the addition of a "risk-driven" security design, and by collecting
information through a "hierarchical metric" system, based on the decomposition of
security objectives, which enabled the developers to better connect the SO with the
corresponding metrics. Measuring these security metrics was viewed as positive
by the practitioners who emphasized the improved ability of compliance with the
standards, as well as "bird-view" vision of the security throughout the project.

In the study by (Choliz, Vilas, and Moreira 2015), the synchronization between
the the development team using Agile and the security needs was studied and proved
successful. The company name was not disclosed, but it was said to develop soft-
ware products and "software-as-a-service" solutions. The the security and the devel-
opment team were kept separate in this process. The efforts to align the two teams

28 Chapter 4. Results

focused on applying Microsoft SDL practices (every-sprint, bucket one-time) and
automated and semi-automated tools to aide the testing. The firm tested the new
process on two projects, and compared the findings with other two projects, devel-
oped this time with a waterfall process. The results showed that issue-detection
happened much earlier on the Agile process projects. No improvements in the num-
ber of security issues discovered nor in terms of cost were found in this particular
case.

4.2.4 Addition of artifacts to Agile

(Rindell, Hyrynsalmi, and Leppänen 2016) adopted only a slightly modified version
of Scrum, enhancing the process with weekly refinements to the product backlog.
The final product was a secure identity management system and its management
processes which had to be compliant with the "VAHTI" security instructions, a set
of guidelines published by the Ministry of Finance of the Finnish government. The
outcome was positive but the process showed mixed results. The study highlighted
how this approach to security, which is, adding the security concerns inside the
product backlog as items to develop, was sufficient to satisfy the "VAHTI" require-
ments, but may have not been cost-effective. it was noted that Scrum may have not
been used fully, since many security activities were performed in "spikes" of work,
outside the sprints. Thus an accurate assessment of this methodology could not be
performed.

29

Chapter 5

Discussion

In this section, the solutions presented in depth in the findings chapter are discussed.
Particular focus was given in comparing the research questions findings when these
differed. Subsequently, the limitation of this study and future research are discussed.

TABLE 5.1: Suggested actions for implementing security in Agile
Solutions pro-
posed

Sources Number of
cases

Solutions ad-
dressing the
artifacts

7 (18%)

Addition of se-
curity related ar-
tifacts

(Maier, Ma, and Bloem 2017b), (Imran Ghani
and Jeong 2014), (Bartsch 2011),(Barbosa and
Barros Sampaio 2015), (Epstein 2008)

5

Enhancement of
existing artifacts

(Rindell, Hyrynsalmi, and Leppänen 2016) 1

Risk-analysis ar-
tifacts

(Baca, Boldt, et al. 2015), 1

Human Factor 17 (44%)
Consultants and
training

(Poller et al. 2017),(Caldwell 2015), (Terpstra,
Daneva, and Chong Wang 2017), (Oyetoyan,
D. Cruzes, and Jaatun 2016), (Camacho, Mar-
czak, and D. Cruzes 2016), (Bartsch 2011),
(D. S. Cruzes et al. 2017), (Adelyar and Norta
2017), (Tigist, Kidane, and Bengt 2013), (Bar-
bosa and Barros Sampaio 2015), (Felderer and
Pekaric 2017)

11

Addition of a se-
curity dedicated
team member

(Imran Ghani and Jeong 2014), (Epstein 2008),
(Alnatheer et al. 2013)

3

Addition of a
full security
team

(Baca, Boldt, et al. 2015),(Choliz, Vilas, and
Moreira 2015)

2

Improvements
of the workplace

(Loser and Degeling 2014) 1

30 Chapter 5. Discussion

Solutions pro-
posed

Sources Number of
cases

Solutions ad-
dressing the
Agile process
itself

18 (47%)

hybridize wa-
terfall security
frameworks

(Maier, Ma, and Bloem 2017b), (Baca and
Carlsson 2011), (Choliz, Vilas, and Moreira
2015), (Rindell, Hyrynsalmi, and Leppänen
2015), (Siponen, Baskerville, and Kuivalainen
2012), (Tigist, Kidane, and Bengt 2013), (Oth-
mane et al. 2014), (Rindell, Hyrynsalmi, and
Leppänen 2016), (Renatus, Teichmann, and
Eichler 2015)

9

Agile enhanced
with risk-
evaluation

(Maier, Ma, and Bloem 2017a), (Franqueira et
al. 2011), (Hutchinson, Maddern, and Wells
2011), (Baca, Boldt, et al. 2015)

4

Dynamic frame-
works based on
"agilness"

(Keramati and Mirian-Hosseinabadi 2008),
(Sonia, Singhal, and Banati 2014)

2

Decomposition
and traceability
of SO

(R. Savola, Frühwirth, and Pietikäinen
2012),(A. F. B. Arbain, Ghani, and Kadir 2014)

2

Specific testing
activity

(Balasubramani et al. 2012) 1

Solutions ad-
dressing the
tools

11 (26%)

Agile-process-
evaluation tools

(Terpstra, Daneva, and Chong Wang 2017),
(Kumar et al. 2012), (Sonia, Singhal, and Ba-
nati 2014), (Renatus, Teichmann, and Eichler
2015), (Bansal and Jolly 2014)

5

Automatic test-
ing tools

(Munetoh and Yoshioka 2013) (D. S. Cruzes et
al. 2017)

2

Changes evalua-
tion software

(Raschke et al. 2014) 1

Closed source
software

(Mackey 2018) 1

Vulnerability
gathering tools

(Felderer and Pekaric 2017) 1

Risk-analysis
tools

(Hutchinson, Maddern, and Wells 2011) 1

5.1 Observations on the proposed solutions

As highlighted by the table, the use of consultants and workshops to perform secu-
rity training directed to the development team, was the suggestion with the highest
consensus among the research papers. The cause of this agreement may originate
from established practices. Security training and awareness is in fact a prerequisite
to an established framework such Microsoft SDL. Incidentally, this practice did not

5.2. Limitation of this study 31

work well in the industry-study by (Poller et al. 2017). The practitioners did see an
improvement in their awareness and perception of security, but were concerned that
without changes in the way the work was being done, the benefit would have been
minimal. It thus seems that training may be a necessary but not sufficient driver for
the implementation of security.

The addition of specialized figures or teams dedicated to security echoed estab-
lished business practices, and proved successful in the industry (Baca, Boldt, et al.
2015). Nonetheless, this practice seems to be in stark contrast with the Agile "cross-
functional" teams mantra. Moreover, this methodology was not proved (nor dis-
proved) to be cost-effective. It undoubtedly does prove useful for those practitioners
having to develop application with strict security requirements.

Mixing established security frameworks with Agile was the second most popu-
lar solution. The most recurring frameworks were: Microsoft SDL, Cigatel Touch-
points, CLASP principles by OWASP and the Capability Maturity Model. While the
quality of these frameworks is well established, some issues arose when these were
hybridized with Agile, mostly due to their focus on a sizable design phase. The re-
sults of the pilot-studies showed in general positive results (R. Savola, Frühwirth,
and Pietikäinen 2012) and (Choliz, Vilas, and Moreira 2015), but did not test the pro-
posed solutions presented in this study exhaustively. Further in depth testing will
be required if a comparison between the methods is to be performed. Recogniz-
ing the difficulties of integrating frameworks designed for waterfall to Agile, many
studies presented meta-tools to calculate the degree of "agilness" of the security ac-
tivities. These are listed in the table 5.1 as "Agile-process evaluation tools". Some of
these instruments, such as for instance (Sonia, Singhal, and Banati 2014), allowed the
practitioners to select dynamically the activities above a certain "agility threshold" to
best adapt to the security requirements required. Such tools, if perfected, may prove
incredibly valuable for a software company. They provide an easily tunable method
to choose security activities which does not rely on the developers’ knowhow. It
would also be highly appreciated by the management, providing a baseline idea of
the costs required to achieve a certain software trustworthiness level.

Finally, a number of additional artifacts stemming from Agile were proposed.
Some, like a the "security backlog" or the "evil user stories" were totally dedicated
to the enhancement of the security. Other researches preferred lightweight methods,
such as embedding the security requirements in the product backlog. Whichever the
approach, a standardization and refinement of these additional artifacts from one of
the main Agile processes may prove constructive. Because of their resemblance with
Agile artifacts already in use, these solutions be simple to include in the processes in
use at any company that has adopted Agile.

5.2 Limitation of this study

Every systematic literature review would be better conduced by two or more re-
searchers, to avoid personal bias. This is especially true in the planning and con-
ducting phases. The design of the research questions and the selection of the re-
search papers, in particular, should be conduced independently by each researcher,
and then the results should be confronted to establish a consensus. Due to the fact
that this SLR was a bachelor thesis, the researcher could not perform this indepen-
dent check, being the only author of the study. Moreover, every systematic literature
review is affected by the publication bias, since its findings are only based on re-
searches published in the field (Kitchenham 2004).

32 Chapter 5. Discussion

5.3 Related work

A systematic literature review with a similar focus but on a smaller scale has been
conducted by (Rindell, Hyrynsalmi, and Leppänen 2017), many beneficial security
activities for Agile are discussed. Some other systematic literature review published
on the Agile-Security topic were (Tigist Eyader Ayalew 2012) (Master thesis) and (A.
Arbain, Ghani, and Jeong 2014). A tertiary study collecting a group of systematic
literature review on the Agile software development was also produced by (Hoda
et al. 2017).

5.4 Future research

Due to the ubiquity of Agile software development methods and to the growing
necessity for secure software, the study of security focused Agile processes is only
going to get more important. In this systematic literature review, the researcher high-
lighted the endemic lack of empirical data. Thus, future works should be directed to
pilot-studies to validate the theoretical solutions proposed by the academia.

Moreover, the creation of tools to precisely evaluate the costs and benefits of
enhancing security in software products could highly increase the cost-effectiveness
of the solutions.

Finally, the studies had shown a high degree of dependability on the developers
knowhow when writing secure software. Methods to decrease this reliability on the
practitioners knowledge, such as easily accessible vulnerability-databases, should
be investigated

33

Chapter 6

Conclusions

In this thesis, the researcher presented the results of a systematic literature review
that inquired which methods were the most effective to implement security within
the Agile software development process.

The research analyzed the results from 39 research papers published between
2011 and 2018, and coded the suggestions into four different groups: additional
artifacts in Agile, human factor, addition to the Agile process and tools.

The first research question asked which solutions best addressed the problem of
creating secure software in the Agile process. The answer that shown the highest
consensus among the academic community was to improve the "human factor" by
means of training. Additions to the development team were also discussed in their
drawbacks and benefits. Subsequently, frameworks and to the Agile process were
suggested, mostly by hybridizing waterfall security development techniques with
Agile. Tools to measure the degree of agilness and to increase the security aware-
ness of the developers were then proposed. Finally, the articles that belonged to the
"artifacts for agile" group suggested new additions such as the "security backlog" or
the "evil user stories".

Extrapolating meaningful results to answer the second research question, which
asked which solutions performed best in the industry and pilot studies, resulted
challenging due to the lack of data. Only seven papers presented empirical evi-
dences, suggesting that further research is needed to validate most of the solutions
presented. Nonetheless, the results of the second research question shown mostly
positive or partially positive results. Evaluating the cost-effectiveness of the meth-
ods, thus providing an easy way to compare them, proved difficult.

For future research, the author suggests performing pilot and case studies to
increase the body of empirical knowledge, together with methods to evaluate the
cost-effectiveness of the solutions and to decrease the reliability on the practitioners’
know-how.

35

Bibliography

Adelyar, Sayed Hassan and Alex Norta (2017). “Security benefits for agile software
development”. In: 2017 7th International Workshop on Computer Science and Engi-
neering, WCSE 2017. URL: https://www.scopus.com/inward/record.uri?eid=
2-s2.0-85027882539&partnerID=40.

Alnatheer, Ahmed et al. (2013). “Agile Security Methods: an Empirical Investiga-
tion”. In: Proceedings of the IASTED International Conference, Software Engineering.
DOI: 10.2316/P.2014.810-011.

Arbain, Adila Firdaus Binti, Imran Ghani, and Wan Mohd Nasir Wan Kadir (2014).
“Agile non functional requiremnents (NFR) traceability metamodel”. In: 2014
8th. Malaysian Software Engineering Conference (MySEC), pp. 228–233. DOI: 10.
1109/MySec.2014.6986019.

Arbain, Adila, Imran Ghani, and Seung Ryul Jeong (2014). “A Systematic Literature
Review on Secure Software Development using Feature Driven Development
(FDD) Agile Model”. In: 15. DOI: 10.7472/jksii.2014.15.1.13.

Baca, Dejan, Martin Boldt, et al. (2015). “A Novel Security-Enhanced Agile Software
Development Process Applied in an Industrial Setting”. In: 2015 10th International
Conference on Availability, Reliability and Security. DOI: 10.1109/ARES.2015.45.

Baca, Dejan and Bengt Carlsson (2011). “Agile development with security engineer-
ing activities”. In: pp. 149–158. DOI: 10.1145/1987875.1987900.

Balasubramani, Uma M. et al. (2012). “Bug Bash: An Efficient Approach to Increase
Test Coverage and Ensure Product Quality in an Agile Environment”. In: 2016
IEEE International Symposium on Software Reliability Engineering Workshops (IS-
SREW). ISSN: 1097-5659;10975659. DOI: 10 . 1109 / RADAR . 2011 . 5960496. URL:
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5960496.

Bansal, Sushil Kumar and Ashish Jolly (2014). “An encyclopedic approach for real-
ization of security activities with agile methodologies”. In: 2014 5th International
Conference - Confluence The Next Generation Information Technology Summit (Conflu-
ence), pp. 767–772. DOI: 10.1109/CONFLUENCE.2014.6949242.

Barbosa, Dayanne Araujo and Suzana Cândido de Barros Sampaio (2015). “Guide
to the Support for the Enhancement of Security Measures in Agile Projects”. In:
2015 6th Brazilian Workshop on Agile Methods (WBMA), pp. 25–31. DOI: 10.1109/
WBMA.2015.9.

Bartsch, Steffen (2011). “Practitioners’ Perspectives on Security in Agile Develop-
ment”. In: 2011 Sixth International Conference on Availability, Reliability and Secu-
rity, pp. 479–484. DOI: 10.1109/ARES.2011.82.

Basili, Victor R., Richard W. Selby, and David H. Hutchens (1986). “Experimenta-
tion in software engineering”. In: IEEE Transactions on Software Engineering SE-12,
pp. 733–743. DOI: 10.1109/TSE.1986.6312975.

Beck, Kent et al. (2001). Manifesto for Agile Software Development. URL: www .
agilemanifesto.org.

Bishop, Matt (2003). “What Is Computer Security?” In: IEEE Security And Privacy 1,
pp. 67–69. DOI: 10.1109/MSECP.2003.1176998.

https://www.scopus.com/inward/record.uri?eid=2-s2.0-85027882539&partnerID=40
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85027882539&partnerID=40
http://dx.doi.org/10.2316/P.2014.810-011
http://dx.doi.org/10.1109/MySec.2014.6986019
http://dx.doi.org/10.1109/MySec.2014.6986019
http://dx.doi.org/10.7472/jksii.2014.15.1.13
http://dx.doi.org/10.1109/ARES.2015.45
http://dx.doi.org/10.1145/1987875.1987900
http://dx.doi.org/10.1109/RADAR.2011.5960496
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5960496
http://dx.doi.org/10.1109/CONFLUENCE.2014.6949242
http://dx.doi.org/10.1109/WBMA.2015.9
http://dx.doi.org/10.1109/WBMA.2015.9
http://dx.doi.org/10.1109/ARES.2011.82
http://dx.doi.org/10.1109/TSE.1986.6312975
www.agilemanifesto.org
www.agilemanifesto.org
http://dx.doi.org/10.1109/MSECP.2003.1176998

36 BIBLIOGRAPHY

Brooks, Richard R. (2013). Introduction to Computer and Network Security: Navigating
Shades of Gray. Chapman and Hall/CRC. ISBN: 9781439860717.

Caldwell, Tracey (2015). “Taking agile development beyond software - What are the
security risks?” In: Network Security. DOI: 10.1016/S1353-4858(15)30110-0.

Camacho, Cristina Rosa, Sabrina Marczak, and Daniela Cruzes (2016). “Agile Team
Members Perceptions on Non-functional Testing: Influencing Factors from an
Empirical Study”. In: 2016 11th International Conference on Availability, Reliability
and Security (ARES), pp. 582–589. DOI: 10.1109/ARES.2016.98.

Choliz, Jesus, Julian Vilas, and Jose Moreira (2015). “Independent Security Testing on
Agile Software Development: A Case Study in a Software Company”. In: 2015
10th International Conference on Availability, Reliability and Security, pp. 522–531.
DOI: 10.1109/ARES.2015.79.

CLASP principles. URL: https://www.owasp.org/index.php/CLASP_Security_
Principles.

Cohn, Mike (2009). succeeding with agile software development using scrum. Addison
Wesley.

Collabnet (2018). 12th Annual State of Agile Report, April 9, 2018. URL: https://www.
collab.net/news/press/collabnet-versionone-announces-12th-annual-
state-agile-report.

Crispin, Lisa and Janet Gregory (2009). Agile Testing: A Practical Guide for Testers and
Agile Teams. ISBN: 9780321534460.

Cruzes, Daniela Soares et al. (2017). “How is Security Testing Done in Agile Teams?
A Cross-Case Analysis of Four Software Teams”. In: Lecture Notes in Business In-
formation Processing 283, pp. 201–216. DOI: 10.1007/978-3-319-57633-6_13.

d’Agapeyeff, Alexander (1969). Software Engineering, Report on a conference sponsored
by the NATO Science Committee, pp. 15–15. URL: http://homepages.cs.ncl.ac.
uk/brian.randell/NATO/nato1968.PDF.

Dimensional research (2018). Testing trends for 2018: a survey of development and testing
professionals. 355 W Olive Ave, Sunnyvale, CA 94086, USA. URL: https://cdn.
agilitycms.com/sauce-labs/white-papers/sauce-labs-state-of-testing-
2018.pdf.

Epstein, Richard G. (2008). “Getting Students to Think About How Agile Processes
can be Made More Secure”. In: 2008 21st Conference on Software Engineering Edu-
cation and Training, pp. 51–58. DOI: 10.1109/CSEET.2008.13.

Felderer, Michael and Irdin Pekaric (2017). “Research Challenges in Empowering
Agile Teams with Security Knowledge Based on Public and Private Information
Sources”. In: SecSE@ESORICS.

Franqueira, Virginia N. L. et al. (2011). “Towards agile security risk management
in RE and beyond”. In: Workshop on Empirical Requirements Engineering (EmpiRE
2011), pp. 33–36. DOI: 10.1109/EmpiRE.2011.6046253.

Hoda, Rashina et al. (2017). “Systematic literature reviews in agile software devel-
opment: A tertiary study”. In: 85. DOI: 10.1016/j.infsof.2017.01.007.

Humphrey, Watts S. (1988). “Characterizing the software process: a maturity frame-
work”. In: IEEE Software 5 (2), pp. 73–79. DOI: 10.1109/52.2014.

Hutchinson, Damien, Heath Maddern, and Jason Wells (2011). “An agile it security
model for project risk assessment”. In: Proceedings of the 9th Australian Information
Security Management Conference).

Imran Ghani, Zulkarnain Azham and Seung Ryul Jeong (2014). “Integrating Soft-
ware Security into Agile-Scrum Method”. In: KSII Transactions on Internet and In-
formation Systems 8. DOI: 10.3837/tiis.2014.02.019. URL: http://www.itiis.
org/digital-library/manuscript/688.

http://dx.doi.org/10.1016/S1353-4858(15)30110-0
http://dx.doi.org/10.1109/ARES.2016.98
http://dx.doi.org/10.1109/ARES.2015.79
https://www.owasp.org/index.php/CLASP_Security_Principles
https://www.owasp.org/index.php/CLASP_Security_Principles
https://www.collab.net/news/press/collabnet-versionone-announces-12th-annual-state-agile-report
https://www.collab.net/news/press/collabnet-versionone-announces-12th-annual-state-agile-report
https://www.collab.net/news/press/collabnet-versionone-announces-12th-annual-state-agile-report
http://dx.doi.org/10.1007/978-3-319-57633-6_13
http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1968.PDF
http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1968.PDF
https://cdn.agilitycms.com/sauce-labs/white-papers/sauce-labs-state-of-testing-2018.pdf
https://cdn.agilitycms.com/sauce-labs/white-papers/sauce-labs-state-of-testing-2018.pdf
https://cdn.agilitycms.com/sauce-labs/white-papers/sauce-labs-state-of-testing-2018.pdf
http://dx.doi.org/10.1109/CSEET.2008.13
http://dx.doi.org/10.1109/EmpiRE.2011.6046253
http://dx.doi.org/10.1016/j.infsof.2017.01.007
http://dx.doi.org/10.1109/52.2014
http://dx.doi.org/10.3837/tiis.2014.02.019
http://www.itiis.org/digital-library/manuscript/688
http://www.itiis.org/digital-library/manuscript/688

BIBLIOGRAPHY 37

Keblawi, Feisal and Dick Sullivan (2006). “applying the Common Criteria in Systems
Engineering”. In: IEEE Security and Privacy 4, pp. 50–55. DOI: 10.1109/MSP.2006.
35.

Keramati, Hossein and Seyed-Hassan Mirian-Hosseinabadi (2008). “Integrating
software development security activities with agile methodologies”. In: 2008
IEEE/ACS International Conference on Computer Systems and Applications, pp. 749–
754. DOI: 10.1109/AICCSA.2008.4493611.

Kitchenham, Barbara (2004). “Procedures for Performing Systematic Reviews”. In:
ISSN: 1353-7776. URL: http://www.inf.ufsc.br/~aldo.vw/kitchenham.pdf.

Kumar, Upendra et al. (2012). “Dependable solutions design by Agile Modeled Lay-
ered Security Architectures”. In: Lecture Notes of the Institute for Computer Sciences,
Social-Informatics and Telecommunications Engineering, LNICST. DOI: 10 . 1007 /
978- 3- 642- 27299- 8_53. URL: https://www.scopus.com/inward/record.
uri?eid=2-s2.0-84888412062&doi=10.1007%2f978-3-642-27299-8_53&
partnerID=40&md5=c19109e41c28e2e80105e948fe7e6973.

Loser, Kai-Uwe and Martin Degeling (2014). “Security and Privacy as Hygiene Fac-
tors of Developer Behavior in Small and Agile Teams”. In: HCC. DOI: 10.1007/
978-3-662-44208-1_21.

Mackey, Tim (2018). “Building open source security into agile application builds”.
In: Network Security. ISSN: 1353-4858. DOI: 10.1016/S1353-4858(18)30032-1.

Maier, Patrik, Zhendong Ma, and Roderick Bloem (2017a). “Towards a Secure
SCRUM Process for Agile Web Application Development”. In: DOI: 10.1145/
3098954.3103171.

— (2017b). “Towards a Secure SCRUM Process for Agile Web Application Develop-
ment”. In: Proceedings of the 12th International Conference on Availability, Reliability
and Security 5. ISSN: 1084-6654. DOI: 10.1145/3098954.3103171.

McGraw, Gary (2005). “A portal for software security”. In: IEEE Security and Privacy.
DOI: 10.1109/MSP.2005.88.

— (2006). Software Security, building security in. IEEE. ISBN: 0-7695-2684-5. DOI: 10.
1109/ISSRE.2006.43.

Microsoft SDL. URL: https://www.microsoft.com/en-us/sdl.
Microsoft SDL for Agile. URL: https://www.microsoft.com/en-us/sdl/discover/

sdlagile.aspx.
Munetoh, Seiji and Nobukazu Yoshioka (2013). “RAILROADMAP: An agile security

testing framework for web-application development”. In: Proceedings - IEEE 6th
International Conference on Software Testing, Verification and Validation, ICST 2013 5.
ISSN: 1084-6654. DOI: 10.1109/ICST.2013.80. URL: https://www.scopus.com/
inward/record.uri?eid=2-s2.0-84883372117&doi=10.1109%2fICST.2013.80&
partnerID=40&md5=cef7b624f16548716a708d94a32126b4.

Othmane, Lotfi Ben et al. (2014). “Extending the Agile Development Process to De-
velop Acceptably Secure Software”. In: IEEE Transactions on Dependable and Secure
Computing 11, pp. 497–509. DOI: 10.1109/TDSC.2014.2298011.

OWASP dependency check. URL: www.owasp.org/index.php/OWASP_Dependency_
Check.

OWASP top 10 (2017). URL: www.owasp.org/images/7/72/OWASP_Top_10-2017_
%28en%29.pdf.pdf.

Oyetoyan, Tosin Daniel, Daniela Cruzes, and Martin Gilje Jaatun (2016). “An Em-
pirical Study on the Relationship between Software Security Skills, Usage and
Training Needs in Agile Settings”. In: 2016 11th International Conference on Avail-
ability, Reliability and Security (ARES), pp. 548–555. DOI: 10.1109/ARES.2016.103.

http://dx.doi.org/10.1109/MSP.2006.35
http://dx.doi.org/10.1109/MSP.2006.35
http://dx.doi.org/10.1109/AICCSA.2008.4493611
http://www.inf.ufsc.br/~aldo.vw/kitchenham.pdf
http://dx.doi.org/10.1007/978-3-642-27299-8_53
http://dx.doi.org/10.1007/978-3-642-27299-8_53
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84888412062&doi=10.1007%2f978-3-642-27299-8_53&partnerID=40&md5=c19109e41c28e2e80105e948fe7e6973
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84888412062&doi=10.1007%2f978-3-642-27299-8_53&partnerID=40&md5=c19109e41c28e2e80105e948fe7e6973
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84888412062&doi=10.1007%2f978-3-642-27299-8_53&partnerID=40&md5=c19109e41c28e2e80105e948fe7e6973
http://dx.doi.org/10.1007/978-3-662-44208-1_21
http://dx.doi.org/10.1007/978-3-662-44208-1_21
http://dx.doi.org/10.1016/S1353-4858(18)30032-1
http://dx.doi.org/10.1145/3098954.3103171
http://dx.doi.org/10.1145/3098954.3103171
http://dx.doi.org/10.1145/3098954.3103171
http://dx.doi.org/10.1109/MSP.2005.88
http://dx.doi.org/10.1109/ISSRE.2006.43
http://dx.doi.org/10.1109/ISSRE.2006.43
https://www.microsoft.com/en-us/sdl
https://www.microsoft.com/en-us/sdl/discover/sdlagile.aspx
https://www.microsoft.com/en-us/sdl/discover/sdlagile.aspx
http://dx.doi.org/10.1109/ICST.2013.80
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84883372117&doi=10.1109%2fICST.2013.80&partnerID=40&md5=cef7b624f16548716a708d94a32126b4
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84883372117&doi=10.1109%2fICST.2013.80&partnerID=40&md5=cef7b624f16548716a708d94a32126b4
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84883372117&doi=10.1109%2fICST.2013.80&partnerID=40&md5=cef7b624f16548716a708d94a32126b4
http://dx.doi.org/10.1109/TDSC.2014.2298011
www.owasp.org/index.php/OWASP_Dependency_Check
www.owasp.org/index.php/OWASP_Dependency_Check
www.owasp.org/images/7/72/OWASP_Top_10-2017_%28en%29.pdf.pdf
www.owasp.org/images/7/72/OWASP_Top_10-2017_%28en%29.pdf.pdf
http://dx.doi.org/10.1109/ARES.2016.103

38 BIBLIOGRAPHY

Poller, Andreas et al. (2017). “Can Security Become a Routine?: A Study of Organi-
zational Change in an Agile Software Development Group”. In: Proceedings of the
2017 ACM Conference on Computer Supported Cooperative Work and Social Comput-
ing. DOI: 10.1145/2998181.2998191.

Project Management Institute (2017). Pulse of the Profession. 14 Campus Boulevard
Newtown Square, PA 19073-3299 USA. URL: https://www.pmi.org/-/media/
pmi/documents/public/pdf/learning/thought-leadership/pulse/pulse-of-
the-profession-2017.pdf.

Raschke, Wolfgang et al. (2014). “Supporting evolving security models for an agile
security evaluation”. In: 2014 IEEE 1st International Workshop on Evolving Secu-
rity and Privacy Requirements Engineering, ESPRE 2014 Proceedings. DOI: 10.1109/
ESPRE.2014.6890525.

Renatus, Stephan, Clemens Teichmann, and Jörn Eichler (2015). “Method Selection
and Tailoring for Agile Threat Assessment and Mitigation”. In: 2015 10th Inter-
national Conference on Availability, Reliability and Security, pp. 548–555. DOI: 10.
1109/ARES.2015.96.

Rindell, Kalle, Sami Hyrynsalmi, and Ville Leppänen (2015). “A comparison of se-
curity assurance support of agile software development methods”. In: CompSys-
Tech. DOI: 10.1145/2812428.2812431.

— (2016). “Case Study of Security Development in an Agile Environment: Building
Identity Management for a Government Agency”. In: 2016 11th International Con-
ference on Availability, Reliability and Security (ARES), pp. 556–563. DOI: 10.1109/
ARES.2016.45.

— (2017). “Busting a Myth: Review of Agile Security Engineering Methods”. In:
ARES. DOI: 10.1145/3098954.3103170.

Rosenberg, Doug and Matt Stephens (2003). “Extreme programming refactored: the
case against XP”. In:

Royce, Winston W. (1970). “Managing the development of large software systmes”.
In: IEEE, pp. 328–388. URL: http://www-scf.usc.edu/~csci201/lectures/
Lecture11/royce1970.pdf.

Saltzer, Jerome Howard and Michael D. Schroeder (1975). “The protection of infor-
mation in computer systems”. In: Proceedings of the IEEE 63.9, pp. 1278–1308.
ISSN: 0018-9219. DOI: 10.1109/PROC.1975.9939.

Savola, Reijo M. and Petri Heinonen (2011). “A Visualization and Modeling Tool for
Security Metrics and Measurements Management”. In: 2011 Information Security
for South Africa. DOI: 10.1109/ISSA.2011.6027518.

Savola, Reijo, Christian Frühwirth, and Ari Pietikäinen (2012). “Risk-Driven Security
Metrics in Agile Software Development - An Industrial Pilot Study”. In: J. UCS
18, pp. 1679–1702. DOI: 10.3217/jucs-018-12-1679.

Schwaber, Ken and Mike Beedle (2002). Agile Software Development with Scrum. PTR
Upper Saddle River, NJ, USA: 1st Prentice Hall. ISBN: 0130676349.

Schwaber, Ken and Jeff Sutherland (2017). The Scrum Guide. URL: https://www.
scrumguides.org/docs/scrumguide/v2017/2017-Scrum-Guide-US.pdf.

Siponen, Mikko T., Richard Baskerville, and Tapio Kuivalainen (2012). “Integrat-
ing Security into Agile Development Methods”. In: Proceedings of the 38th An-
nual Hawaii International Conference on System Sciences, 185a–185a. DOI: 10.1109/
HICSS.2005.329.

Smith, Richard E. (2012). “A Contemporary Look at Saltzer and Schroeder’s 1975
Design Principles”. In: IEEE Security and Privacy. DOI: 10.1109/MSP.2012.85.

http://dx.doi.org/10.1145/2998181.2998191
https://www.pmi.org/-/media/pmi/documents/public/pdf/learning/thought-leadership/pulse/pulse-of-the-profession-2017.pdf
https://www.pmi.org/-/media/pmi/documents/public/pdf/learning/thought-leadership/pulse/pulse-of-the-profession-2017.pdf
https://www.pmi.org/-/media/pmi/documents/public/pdf/learning/thought-leadership/pulse/pulse-of-the-profession-2017.pdf
http://dx.doi.org/10.1109/ESPRE.2014.6890525
http://dx.doi.org/10.1109/ESPRE.2014.6890525
http://dx.doi.org/10.1109/ARES.2015.96
http://dx.doi.org/10.1109/ARES.2015.96
http://dx.doi.org/10.1145/2812428.2812431
http://dx.doi.org/10.1109/ARES.2016.45
http://dx.doi.org/10.1109/ARES.2016.45
http://dx.doi.org/10.1145/3098954.3103170
http://www-scf.usc.edu/~csci201/lectures/Lecture11/royce1970.pdf
http://www-scf.usc.edu/~csci201/lectures/Lecture11/royce1970.pdf
http://dx.doi.org/10.1109/PROC.1975.9939
http://dx.doi.org/10.1109/ISSA.2011.6027518
http://dx.doi.org/10.3217/jucs-018-12-1679
https://www.scrumguides.org/docs/scrumguide/v2017/2017-Scrum-Guide-US.pdf
https://www.scrumguides.org/docs/scrumguide/v2017/2017-Scrum-Guide-US.pdf
http://dx.doi.org/10.1109/HICSS.2005.329
http://dx.doi.org/10.1109/HICSS.2005.329
http://dx.doi.org/10.1109/MSP.2012.85

BIBLIOGRAPHY 39

Sonia, Archana Singhal, and Hema Banati (2014). “FISA-XP: an agile-based integra-
tion of security activities with extreme programming”. In: ACM SIGSOFT Soft-
ware Engineering Notes 39, pp. 1–14. DOI: 10.1145/2597716.2597728.

Terpstra, Evenynke, Maya Daneva, and Chong Wang (2017). “Agile practitioners’
understanding of security requirements: Insights from a grounded theory anal-
ysis”. In: Proceedings - 2017 IEEE 25th International Requirements Engineering Con-
ference Workshops, REW 2017. DOI: 10.1109/REW.2017.54. URL: https://www.
scopus.com/inward/record.uri?eid=2-s2.0-85034647916&doi=10.1109%
2fREW.2017.54&partnerID=40&md5=d5eb8e38f87efcca8dd03f97ab148ae8.

The OWASP foundation. URL: www.owasp.org.
Tigist Eyader Ayalew, Tigist Abreham Kidane (2012). “Identification and Evalua-

tion of Security Activities in Agile Projects. A Systematic Literature Review and
Survey Study”. SE - 371 79 Karlskrona Sweden: School of Computing, Blekinge
Institute of Technology.

Tigist, Ayalew, Tigist Kidane, and Carlsson Bengt (2013). “Identification and eval-
uation of security activities in agile projects”. In: Lecture Notes in Computer Sci-
ence (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics) 8208 LNCS, pp. 139, 153. DOI: 10 . 1007 / 978 - 3 - 642 - 41488 -
6_10. URL: https://www.scopus.com/inward/record.uri?eid=2- s2.0-
84890878492&doi=10.1007%2f978-3-642-41488-6_10&partnerID=40&md5=
ea75f9c1506d7d4d5f9629d0772b344f.

Wang, Chenxi and William A. Wulf (1997). “Towards a framework for security mea-
surement”. In: pp. 522–533.

Weinstock, Charles B., Howard F. Lipson, and John B. Goodenough (2012). “Arguing
Security – Creating Security Assurance Cases”. In: URL: https://resources.
sei.cmu.edu/asset_files/WhitePaper/2013_019_001_293637.pdf.

Williams, Jeff (2014). The Unfortunate Reality of Insecure Libraries. URL: https://www.
owasp.org/images/7/70/ASDC12-The_Unfortunate_Reality_of_Insecure_
Libraries.pdf.

http://dx.doi.org/10.1145/2597716.2597728
http://dx.doi.org/10.1109/REW.2017.54
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85034647916&doi=10.1109%2fREW.2017.54&partnerID=40&md5=d5eb8e38f87efcca8dd03f97ab148ae8
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85034647916&doi=10.1109%2fREW.2017.54&partnerID=40&md5=d5eb8e38f87efcca8dd03f97ab148ae8
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85034647916&doi=10.1109%2fREW.2017.54&partnerID=40&md5=d5eb8e38f87efcca8dd03f97ab148ae8
www.owasp.org
http://dx.doi.org/10.1007/978-3-642-41488-6_10
http://dx.doi.org/10.1007/978-3-642-41488-6_10
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84890878492&doi=10.1007%2f978-3-642-41488-6_10&partnerID=40&md5=ea75f9c1506d7d4d5f9629d0772b344f
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84890878492&doi=10.1007%2f978-3-642-41488-6_10&partnerID=40&md5=ea75f9c1506d7d4d5f9629d0772b344f
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84890878492&doi=10.1007%2f978-3-642-41488-6_10&partnerID=40&md5=ea75f9c1506d7d4d5f9629d0772b344f
https://resources.sei.cmu.edu/asset_files/WhitePaper/2013_019_001_293637.pdf
https://resources.sei.cmu.edu/asset_files/WhitePaper/2013_019_001_293637.pdf
https://www.owasp.org/images/7/70/ASDC12-The_Unfortunate_Reality_of_Insecure_Libraries.pdf
https://www.owasp.org/images/7/70/ASDC12-The_Unfortunate_Reality_of_Insecure_Libraries.pdf
https://www.owasp.org/images/7/70/ASDC12-The_Unfortunate_Reality_of_Insecure_Libraries.pdf

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Background
	Software Engineering
	Agile process
	Scrum
	Requirements traceability

	Security
	What is security
	Design principles
	Touchpoints
	OWASP
	Microsoft Security (Software) Development Lifecycle
	Decomposition of Security

	Research method
	Research questions
	Selection Process
	Data extraction and coding
	statistical analysis

	Results
	RQ1: Which are the latest solutions to enhance the security of the software developed using the Agile process?
	Human factor
	Solutions addressing the Agile process itself
	Tools
	New artifacts for Agile

	RQ2: Which of the solutions discussed have performed best in pilot studies?
	External consultants and workshops
	Addition of professional figures to the development team
	Frameworks hybridization
	Addition of artifacts to Agile

	Discussion
	Observations on the proposed solutions
	Limitation of this study
	Related work
	Future research

	Conclusions
	Bibliography

