
ALMA MATER STUDIORUM - UNIVERSITA DI BOLOGNA

SCUOLA DI INGEGNERIA E ARCHITETTURA

Dipartimento di Informatica - Scienza e Ingegneria - DISI
Corso di Laurea Magistrale in Ingegneria Informatica

TESI DI LAUREA

in

EMBEDDED SYSTEMS

Monocular Depth Estimation enhancement by
depth from SLAM Keypoints

CANDIDATO
Lorenzo Andraghetti

RELATORE
Prof. Stefano Mattoccia

CORRELATORI
PhD. Matteo Poggi

PhD. Alessandro Pieropan

Anno Accademico 2017/18
Sessione II

ALMA MATER STUDIORUM - UNIVERSITA DI BOLOGNA

SCUOLA DI INGEGNERIA E ARCHITETTURA

Dipartimento di Informatica - Scienza e Ingegneria - DISI
Corso di Laurea Magistrale in Ingegneria Informatica

TESI DI LAUREA

in

EMBEDDED SYSTEMS

Monocular Depth Estimation enhancement by
depth from SLAM Keypoints

CANDIDATO
Lorenzo Andraghetti

RELATORE
Prof. Stefano Mattoccia

CORRELATORI
PhD. Matteo Poggi

PhD. Alessandro Pieropan

Anno Accademico 2017/18
Sessione II

Ai miei nonni e ai miei genitori.
I miei pilastri.

Contents

1 Introduction 13
1.1 What is a depth map? . 13

1.1.1 How to get depth . 13
1.2 The unsupervised choice and SLAM exploitation 15
1.3 Application of depth sensing technology 16
1.4 Thesis Structure . 16

2 Related Work 17

3 Monodepth 21
3.1 Approach . 21
3.2 Network Structure . 23
3.3 Losses . 24
3.4 Implementation Details . 25
3.5 Post-Processing . 26

4 Experimentation 27
4.1 Employing ground truth . 27
4.2 RGBD and RGBDM models 29
4.3 Sparse convolutions models . 31

4.3.1 Sparse Convolutions 31
4.3.2 Double-Encoder model 33
4.3.3 Autoencoder models 33
4.3.4 Results . 35
4.3.5 Comparison with Monodepth 36

5

5 ORB-SLAM 39
5.1 SLAM . 39
5.2 ORB-SLAM . 39
5.3 Obtain sparse disparity maps from ORB-SLAM 40

6 Evaluation and Results 43
6.1 Evaluation Metrics . 43
6.2 Cityscapes . 45
6.3 KITTI . 46

6.3.1 KITTI 2015 . 46
6.3.2 Eigen Split . 48
6.3.3 Odometry Sequence 03 49

6.4 Evaluation on Sparse Input 50

7 Conclusions and further developments 55

References 57

A Evaluation Tools 61
A.1 Sparse Test . 61
A.2 Show Disparities . 63

B More qualitative results 65

C UVR ZED dataset 69
C.1 Creating the Dataset . 69
C.2 Fine-tuning . 71

D Demo with Pangolin Visualizer 75

6

8

Abstract

Training a neural network in a supervised way is extremely challenging since
ground truth is expensive, time consuming and limited. Therefore the best
choice is to do it unsupervisedly, exploiting easier-to-obtain binocular stereo
images and epipolar geometry constraints. Sometimes however, this is not
enough to predict fairly correct depth maps because of ambiguity of colour
images, due for instance to shadows, reflective surfaces and so on. A Simulta-
neous Location and Mapping (SLAM) algorithm keeps track of hundreds of
3D landmarks in each frame of a sequence. Therefore, given the base assump-
tion that it has the right scale, it can help the depth prediction providing
a value for each of those 3D points. This work proposes a novel approach
to enhance the depth prediction exploiting the potential of the SLAM depth
points to their limits.

9

10

Sommario

Allenare una rete neurale in modo supervisionato è estremamente impegna-
tivo poiché la ground truth è costosa in termini di spesa e di tempo ed è spesso
limitata. Si preferisce quindi allenare in modo non-supervisionato sfruttando
immagini stereo, più facili da ottenere, impiegando vincoli geometrici. Tal-
volta però, questo non è sufficiente per predizioni corrette poiché le immagini
spesso contengono ambiguità dovute ad ombre, superfici riflettenti e così via.
Un algoritmo di Simultaneous Location and Mapping (SLAM) tiene traccia
di centinaia di marcatori 3D in ogni immagine di una sequenza video. Data
l’assunzione base che abbia la scala di profondità corretta, questo algoritmo
può aiutare nella predizione delle mappe di profondità fornendo un valore
per ognuno di questi punti 3D. Questo studio propone un nuovo metodo per
migliorare la predizione delle mappe di profondità sfruttando al massimo il
potenziale dei punti provenienti da SLAM.

11

12

Chapter 1

Introduction

1.1 What is a depth map?

A depth map is an image same height and width as a photograph, but in
every pixel it’s known how many meters away an object is. Depth is crucial
when it comes to understanding the world around us, such as navigation and
mapping. That’s very helpful for sensing tasks such as composing things
like in augmented reality or robots that need to figure out how to navigate
through a scene or how to grasp an object. When the robot walks around
an object, it starts to accumulate a whole 3D shape of it, not just the depth
from one side, but actually the volume of the whole object which it is filming.

1.1.1 How to get depth

To capture depth using video cameras, normally two of them would be
needed, displaced horizontally from one another and pointing at the same
direction, like our eyes. That displacement is called baseline.

Let’s say for instance that we have a stereo camera pointing at the tree in
Figure 1.1. Left and right images will be different, showing the tree and the
person with some displacement. If it’s possibile to solve for correspondence
between these two images, then we essentially get disparity which is inversely

Figure 1.1: Disparity is simple to experience, closing one eye and then rapidly close
it while opening the other. Objects that are close will appear to jump a significant
distance while objects further away will move very little. That motion is disparity.

proportional to depth:

disparity ∝ 1

depth
(1.1)

Another option would be to have a laser scanner (e.g. Lidar), which basically
use the time of travel to estimate a depth value for every point where the
laser hits. This method is however very expensive and time consuming and
it would be moreover impossibile to have one of those systems in every car.
Since it’s dependent on laser beams, the result would be a sparse depth
map, which is not enough for navigation and mapping, especially since it has
unreliable data for moving and reflective objects. Similarly, structured light
sensor such as Microsoft Kinect have limited range and do not work well
outside.

Figure 1.2: On the left, the result of a lidar 360 depth sensing. On the right, colour
image and sparse disparity map from Velodyne Lidar data in KITTI 2015 test set.

14

The technology that we are going to present would just use a regular
colour camera. The images that could be captured from that can be turned
into depth images, which tell how far away every object on the street is. The
core of this technology is a neural network that can predict the depth from
just one image, avoiding a lot of efforts on depth sensing in various situations.

Figure 1.3: Starting from the left: RGB image, Lidar and CNN predicted disparity map.
The Lidar map is sparse and lacks the upper part on the image. The CNN disparity
map is dense but less precise than the Lidar one.

1.2 The unsupervised choice and SLAM exploita-
tion

Most of the old approaches to depth prediction are supervised regression
problems and therefore they need almost perfect ground truth depth data
during training. This task is extremely challenging and expensive, thus the
best choice is to train a neural network in a unsupervised way, exploiting
easier-to-obtain binocular stereo images and epipolar geometry constraints.
However, sometimes this is not enough to predict fairly correct depth maps
because of ambiguity of colour images due for example to shadows, reflective
surfaces and so on. A Simultaneous Location and Mapping (SLAM) algo-
rithm keeps track of hundreds of 3D landmarks1 in each frame of a sequence,
therefore if we keep the base assumption that it has the right scale, it can
help the depth prediction providing a value for each of those 3D points. This
work proposes a novel way to enhance and exploit the potential of the SLAM
depth points to their limits.

1Landmarks are features which can easily be re-observed and distinguished from the
environment.

15

1.3 Application of depth sensing technology

Self-driving cars are obviously a good application of this technology, but also
augmented reality and even the medical field. Endoscopy for instance has a
setup that is physically restrictive and there’s no room to put a stereo camera
or laser scanner at the end of the endoscope. Specifically for the self-driving
scenario, a good application of this technology might be where the cameras
are on each edge of the car and every one of them could be a depth sensor.
This system can estimate the size of an object and how far away it is. Then
the car might be able to react to that and anticipate the motion of other ve-
hicles, know when to merge, when to veer or to navigate some other direction.

1.4 Thesis Structure

This work will be presented starting from a list of all the related work in
Chapter 2, followed by a full explanation of Monodepth model by Godard et
al. [7] in Chapter 3. In Chapter 4 all the approaches to exploit sparse depth
input will be shown along with the results. In Chapter 5 will be explained
how ORB-SLAM algorithm works and how it has been possibile to get depth
from it. In Chapter 6 there will be a complete report about everything that
concerns evaluation and the results on different datasets. Chapter 7 will
present conclusions and further developments.

Appendix A shows all the tools created for evaluation.
Appendix B shows the more qualitative results on datasets.
Appendix C explains why and how the UVR ZED dataset was created.
Appendix D shows how the demo with Pangolin visualizer has been created.

16

Chapter 2

Related Work

There’s a substantial amount of papers aiming to estimate depth from a single
image. This means that the neural network should need only one image to
predict the depth. Although, it needs more informations to learn inferring
depth from images at training time.

The first approaches were supervised and they needed indeed ground
truth data to enforce the network to infer depth. Saxena et al. [20] proposed a
method to estimate the absolute scales of different image patches and inferred
the depth image using a Markov Random Field model. This approach focuses
on local context, thus it lacks global context required to generate realistic
outputs and it needs moreover to hand-tune some parameters to do so. Liu
et al. [14] trained a CNN to learn how to handle those values. Ladický et al.
[12] obtained better results incorporating semantic segmentation into their
model. Eigen et al. employed two deep network stacks: one that makes
a global prediction based on the entire image, and another that iteratively
refines this prediction locally. Unlike before, they do not rely on hand crafted
features but instead learn directly from the raw pixel values.

More recent works focus on unsupervised depth estimation with limited
resource requirement, especially because ground truth depth is hard to re-
trieve. So the research has so far focused on training only with stereo images.
Xie et al. [24] trained their Deep3D model using stereo images to do image
interpolation. Their approach is trained end-to-end directly on stereo pairs
extracted from 3D movies and consist in a image reconstruction of the right

view from the left one. Garg et al. [5] adopted the same image reconstruction
approach and generate an inverse warp of the target image using the predicted
depth and known inter-view displacement, to reconstruct the source image.
However these two methods make strong approximations which lead to poor
reconstruction quality. Kuznietsov et al. [11] kept the image reconstruction
method using warping to reproduce the right image and enforcing the depth
map to be consistent to the ground truth depth with a direct image alignment
loss.

Godard et al. [7] designed a model that learns to predict depth from
both images of a stereo pair by processing reference image only, enabling
a left-right consistency check to improve the quality of the reconstructed
image. The key of their method is that they can simultaneously infer both
disparities (left-to-right and right-to-left), using only the left input image
and obtain depths by enforcing them to be consistent with each other. The
predictions of Godard et al. appear more detailed than Kuznietsov’s which
seem to be smoother. Luo et al. [15] outperformed all the other methods by
showing that the monocular depth estimation problem can be reformulated
as two sub-problems: a view synthesis procedure, followed by stereo matching
imposing geometrical constraints explicitly during inference. However, this
method is way to complex and power greedy and it turned out to unfit our
purposes.

The aim of this thesis is to enhance the disparity prediction by giv-
ing sparse depth output of a SLAM system as input to the already well-
performing system of Godard et al. Therefore, by following the example of
Ma et al. [16] whose model learns directly from the RGB-D raw data using a
single deep regression network, it’s possibile to get more precise depth maps.
They employ however a supervised method, which is not the purpose of this
thesis.

Traditional convolutional networks perform poorly when applied to sparse
data even when the location of missing data is provided to the network, for
example using a mask. Exploiting sparse convolutions [23], which explicitly
considers the location of missing data during the convolution operation, it
was possibile to greatly increase the precision of the depth maps.

The best choice would be to use a Monocular SLAM algorithm, but since

18

there are no open source systems with fairly correct depth scale, only a stereo
SLAM system can be used. Therefore, depth points have been obtained
from ORB-SLAM2 algorithm by Raúl Mur-Artal and Juan D. Tardós [18]
employing stereo mode.

Besides using the disparity domain instead of the depth one, this work
exploits the sparse disparity in input as a basis for prediction, helping the
network with a glimpse of the scene structure.

19

20

Chapter 3

Monodepth

Godard et al. [7] designed a model that learns to predict depth from a single
image. Their goal is to learn a function f that can predict the depth d for
every pixel in the image, d = f(I). Most of the existing learning based old
approaches treat this as supervised learning problem, where the input is a
color image and the output is compared to a target depth (Figure 3.1). This
forces the network to predict globally coherent predictions. However, captur-
ing reliable depth data is both expensive and time consuming. For example,
the ground truth depth maps from lidar sensors provided in KITTI have un-
reliable data for moving and transparent objects. Therefore, unsupervised
learning becomes an essential solution to infer feasible depth maps.

Figure 3.1: Supervised approach to depth prediction task.

3.1 Approach

The key intuition is to pose depth estimation as an image reconstruction
problem at training time. Given a calibrated stereo camera, once we learn a
function that is able to reconstruct the left image from the right or viceversa,

then we have learned a glimpse of the 3D shape of the scene the camera is
pointing to. During training, the network needs Il and Ir, corresponding to
the left and right color images from a calibrated stereo pair, captured at the
same moment in time and with a known baseline. The network will predict
a left-to-right disparity map that, exploiting bilinear sampling from the left
image, can be used to artificially reconstruct a right image Ĩr. Disparity is
a scalar value per pixel that, given the baseline distance b between cameras
and the focal length f , allows to recover the depth D from it: Depth =
baseline × focal length

disparity
.

Figure 3.2: Naive sampling where the disparity map produced is aligned with the target.

As illustrated in Fig. 3.2, naively learning to generate the right image
by sampling from the left one will produce disparities aligned with the right
image (target). However, we want the output disparity map to align with the
input left image, meaning the network has to sample from the right image.
We could instead train the network to generate the left view by sampling
from the right image, thus creating a left view aligned disparity map (No LR
in 3.3).

Figure 3.3: The no-LR model which corrects the alignment between input and target,
but suffers from artifacts.

22

This approach works fairly well, but yields to ‘texture-copy’ artifacts
and errors at depth discontinuities. Therefore Godard at al. solved this by
training the network to infer the disparity maps for both views like in figure
3.4.

3.2 Network Structure

The network requires only the left image as input and exploits the right
one for the losses during training. The novel approach consists in enforcing
consistency between both disparity maps, leading to more accurate results.

Figure 3.4: The complete approach which uses the left image to produce disparities for
both images, improving quality and enforcing consistency.

Figure 3.5: Example of the four different scale
predictions. Each disparity map is employed
in the photometric loss.

They have used VggNet [21] and a
variant of ResNet50 [9] for train-
ing, thus a convolutional neural
network with encoder and decoder.
The latter uses skip connections
from the former’s activations block
in order to resolve higher resolution
details. The network outputs two
disparity maps (left-to-right, right-
to-left as in figure 3.4) at four dif-
ferent scales as shown in figure 3.5.

23

Each scale is used by the photometric loss, which is composed by L1 loss
and SSIM loss between the RGB image and the disparity.

3.3 Losses

Monodepth network is forced to infer well defined disparity maps according
to three main losses. Each scale s has a loss Cs, thus the total loss is the
sum C =

∑4
s=1Cs where CS is defined as:

Cs = αap(C
L
ap + CR

ap) + αds(C
L
ds + CR

ds) + αlr(C
L
lr + CR

lr) (3.1)

Each of the three terms is composed by the left and the right component,
but only the left image is fed to the CNN.

Appearance Matching Loss

This loss enforces the reconstructed image to appear similar to the corre-
sponding training input. It’s a sort of photometric loss composed by a com-
bination of L1 and single scale SSIM which compares the input image ILij and
its reconstruction ĨLij obtained by bilinear sampling.

CL
ap =

1

N

∑
ij

α
1− SSIM(ILij, Ĩ

L
ij)

2
+ (1− α)||ILij − ĨLij|| (3.2)

where N is the number of pixels and the SSIM is simplified by exploiting a
3x3 filter instead of a Gaussian and α = 0.85.

Disparity Smoothness Loss

This loss enforces smooth disparities exploiting an L1 penalty on the disparity
gradients ∂d. To preserve edges on disparity maps, they weight this cost with
an edge aware term using the image gradients ∂I.

CL
ds =

1

N

∑
ij

|∂xdLij|e−||∂xI
L
ij || + ∂yd

L
ij|e−||∂yI

L
ij || (3.3)

24

Left-Right Consistency Loss

This loss enforces the left and the right disparities to be consistent. They
force consistency by exploiting an L1 penalty between the left-to-right dis-
parity map and the reconstructed one which comes from sampling the right-
to-left one the same way they do with left and right images:

CL
lr =

1

N

∑
ij

|dLij − dRij+dLij
| (3.4)

3.4 Implementation Details

Godard’s implementation has been modified to suit the thesis purposes. Al-
though the model is basically the same, training and test times are different
since this study has been conducted with a Tesla K80 GPU instead of Titan
X GPU. As detailed below, this times with a VggNet are much slower on a
dataset of 30K images by 50 epochs with 256× 512 maps.

training time FPS
Titan X 25h 28
Tesla K80 46h 8

In this study, all the monodepth settings have been kept untouched:

• 50 epochs

• 8 as batch size

• Exponential Linear Units [2]

• Adam Optimizer [10] with β1 = 0.9, β2 = 0.999 and ε = 10−8

• learning rate of λ = 10−4 for the first 30 epochs, then it’s been halved
every 10 epochs.

• Data augmentation: horizontal flip of the input and color augmenta-
tion, both with with a 50% chance; random gamma, brightness and
color shifts.

25

• Loss weights: αap = 1, αlr = 1 and αap = 0.1/r where r is the down-
scaling factor of the corresponding layer with respect to the resolution
of the input image that is passed into the network.

Godard et al. constrain the output of the network to be between 0 and
dmax = 0.3. A study was conducted to find the best temperature parame-
ter, but this value is been kept untouched for fairness on evaluation. Read
Chapter 6 for more detailed description on this study.

3.5 Post-Processing

To obtain nice looking outputs, Godard et al. designed an algorithm to post-
process the maps which employs the two disparity maps that the network
outputs and a per-pixel weight map wL for dL as:

wL(i, j) =


1 ifj ≤ 0.1

0.5 ifj > 0.2

5 ∗ (0.2− i) + 0.5 else

(3.5)

where i, j are normalized pixel coordinates, and the weight map w′L for d′′L

is obtained by horizontally flipping w′L. They calculate the final disparity
as:

d = dLwL + d′′Lw′L (3.6)

Figure 3.6: From monodepth [7]. Example of a post-processed disparity map. From
left to right: The disparities dL, d′′L, d and the weight map w′L.

26

Chapter 4

Experimentation

The main idea of this work is to enhance Godard’s model with data from
SLAM algorithm. A way to do it is to get the depth from the keypoints
and convert them into disparity to match the output of the network. This
chapter presents all the experimentations on sparse inputs and it shows that
forcing the network to use those is not easy neither banal. From now on,
we will refer to monodepth model as RGB model which employs only RGB
images to infer disparity maps like in Figure 4.1

Figure 4.1: The RGB model, original monodepth model in which only RGB images are
fed to the network at test time.

4.1 Employing ground truth

The first idea to start experimenting with sparse input was to employ ground
truth depth from Lidar. KITTI [6] dataset provides either Lidar values as

BIN files and as PNG images. The former contains all the 360 degrees Lidar
measurements, while the latter is a projection of Lidar values onto the focal
plane. It’s basically a sparse map in which each value is a depth measurement
from Lidar like they come from the camera.

Since a SLAM algorithm can get hundreds of 3D landmarks on features,
200 points are sampled from the ground truth depth maps employing the
Harris Corner Detector [8]. This algorithm detects corners on RGB images in
a similar fashion as SLAM does when it searches for features. The sampling
pipeline is shown in Figure 4.2 and it starts from RGB and ground truth
depth.

Figure 4.2: Sampling pipeline based on Harris Corner Detector.

Harris Corner Detector yields to a binary map with corners, which inter-
sected with ground truth converted in disparity, leads to a sparser ground
truth disparity map with values only on corners. Subsequently, 200 points
are sampled in a random manner from that map, yielding to a potentially
good input for the network. Using ground truth for this purpose is like find-
ing an upper bound of the results which this model could ever reach with
actual points from SLAM.

Evaluating novel models

To get an idea of how good a new model is, we need to define a metric of
evaluation. Let’s define the metric ai as the percentage of predicted pixels

28

where the absolute relative error is within a threshold. Specifically:

ak =
card({Gti : max{Pri

Gti
, Gti
Pri
} < 1.25k})

card({Gti})
(4.1)

where Gti and Pri are respectively the i-th correspondent ground truth
and the prediction points, and card is the cardinality of a set. Since it’s a
percentage of good pixels, a higher ak indicates better prediction. Consider-
ing this metric, the models below were evaluated and then the last one has
been selected for all the other evaluation.

4.2 RGBD and RGBDM models

The key intuition is to concatenate the sparse disparity map from SLAM
to the RGB images as a fourth channel, yielding to a RGBD model like in
Figure 4.3.

Figure 4.3: The RGBD model which employs the sparse disparity map as fourth channel.

The only way to enforce the network to mesh this values with the output,
is to add a loss between this input and the output. This map however, needs
to be divided by the image width to be comparable to the output, otherwise
we force a wrong value into the output yielding to bad results. Inspired by
[16] we use an outer L1 loss between the input sparse disparity map Isd and
the output dense disparity map Odd only in those pixels where Isd is greater
then zero, thus where there’s an actual value:

CL1 =
1

N

∑
Isd(i,j)>0

|Isd(i, j)−Odd(i, j)| (4.2)

29

where N is the number of the actual values (e.g. 200).

This loss needed to be weighted by a αL1 term to see actual results, so
3.1 becomes:

Cs = αap(C
L
ap + CR

ap) + αds(C
L
ds + CR

ds) + αlr(C
L
lr + CR

lr) + αL1(C
L
L1) (4.3)

After some tests, the best weight was empirically found at 30. Employ-
ing a higher weight, the maps would show some artifacts on sparse points
location.

Figure 4.4: Plot of thresholded asbolute
error by loss weights.

Model αL1 δ < 1.25 δ < 1.252 δ < 1.253

RGB 0 0.846 0.942 0.978
RGBD 10 0.846 0.942 0.978
RGBD 15 0.851 0.944 0.979
RGBD 30 0.852 0.946 0.980
RGBD 40 0.849 0.944 0.978

Figure 4.5: RGB and RGBD models trained
with VGG on KITTI. RGBD had 200 sparse
disparity points in input. We can see that
the RGBD model performs slightly better
than RGB one when the loss weight is
around 30, although forcing a higher weight,
the results begin to drop.

It is, however, mandatory to use a lower weight, since ground truth points
are employed: forcing a higher loss with SLAM points could lead instead to
"bumps" on sparse points location. We want the points to enhance the global
prediction preserving a good looking map, thus we set the weight loss at 10.

Unfortunately this approach led to very little changes in the results.
Therefore we came up with the RGBDM model, like in Figure 4.6, to help
the network somehow to use the sparse points in a better way.

This approach was even worse than the original RGB model, either with
and without loss; therefore it has been discarded right away in favour of a
novel model that employs sparse convolutions.

30

Figure 4.6: The RGBDM model which employs the sparse disparity map and a binary
mask corresponding to the sparse points.

4.3 Sparse convolutions models

Regular convolution perform poorly when applied to sparse data. Sparse con-
volution [23] solve this problem, explicitly considering the location of missing
data during the convolution operation. This kind of convolution generalizes
well to novel datasets and is invariant to the level of sparsity in the data.
Therefore, it has been tested in different models.

4.3.1 Sparse Convolutions

The output of a standard convolutional layer in a CNN is computed via:

fu,v(x) =
k∑

i,j=−k

xu+i,v+jwi,j + b (4.4)

where 2k + 1 is the kernel size, w are the weights and b the biases.

Sparse convolution layers instead consider sparsity by evaluating only ob-
served pixels and normalizing the output according to a binary mask o that
denotes corresponding binary variables which indicate if an input is observed
(ou,v = 1) or not (ou,v = 0).

Thus the 4.5 becomes:

fu,v(x, o) =

∑k
i,j=−k ou+i,v+jxu+i,v+jwi,j∑k

i,j=−k ou+i,v+j + ε
+ b (4.5)

31

A small ε is added to avoid division by zero where there’s no valid input.

Figure 4.7: From [23]. Sparse convolution
operation with binary masks. � denotes
elementwise multiplication, ∗ convolution,
1/x inversion and max pool the max pool-
ing operation. The input feature can be
single-channel or multi-channel.

The layer works weighting the elements of the convolution kernel accord-
ing to the validity of the input pixels. That validity is then carried to sub-
sequent layers of the network keeping track of the visibility state and make
it available to those. Subsequent observation masks f o

u,v(o) are defined via
max pooling operation:

f o
u,v(o) = max

i,j=−k,...,k
ou+i,v+j (4.6)

which evaluates to 1 if at least one variable is visible to the filter and 0
otherwise.

Figure 4.8: From [23]. Example of sparse convolution on Lidar input.

In Figure 4.8 we can see the comparison between regular convolution and
sparse convolution. The first image from the left is the sparse input (visually
enhanced). The second image is the ground truth. The third and the fourth
are respectively the result of regular convolutions and the result of sparse
convolutions. We can see that the latter perform much better and retain the
shape of objects.

32

4.3.2 Double-Encoder model

The first attempt to implement sparse convolutions was based on creating a
second encoder only for the sparse disparity map. Thus, the network became
a double encoder system like in Figure 4.9.

Figure 4.9: The double encoder
model. The RGB encoder is a
VggNet or ResNet one, while the
SD encoder is the same, but with
sparse convolutions instead of reg-
ular ones.

This model is composed by two encoders: RGB and SD. The RGB one
performs regular convolutions on input image and the SD one performs sparse
convolutions on the sparse disparity map. The two results are concatenated
and fed to a single decoder that produce good dense disparity maps. This
model works, but doesn’t seem to substantially increase the performance and
it’s much slower to train than the RGB model.

4.3.3 Autoencoder models

To reach even better results, two autoencoder models have been created
employing the structure presented in [23] and shown in Figure 4.10.

Figure 4.10: From [23].The autoencoder structure whose
input is a sparse disparity map (yellow) and a binary ob-
servation mask (red).

Figure 4.11: A detail
of denser disparity output
from the autoencoder.

33

After several sparse convolution layers with decreasing kernel size (11×11
to 3× 3), the result is a denser disparity map (Figure 4.11). This increment
of size is due to sparse convolutions kernels. The output of the autoencoder
is concatenated to the RGB image and fed to a RGBD model (Figure 4.3).
This novel model is shown in Figure 4.12.

Figure 4.12: The autoencoder model with L1 loss between input and output.

This model led to a substantial improvement in metrics and outputs,
but a loss has been added to force the autoencoder to preserve the input on
denser disparity maps. This addition increased the percentage of good values
on lower threshold in the absolute relative error, thus it was chosen as the
best model so far that works with ground truth points. The model is shown
in Figure 4.13.

Figure 4.13: The autoencoder model with inner and outer loss.

34

The final loss has now two new terms CL
inner and CL

outer, thus 3.1 becomes:

Cs = αap(C
L
ap +CR

ap) + αds(C
L
ds +CR

ds) + αlr(C
L
lr +CR

lr) + αL1(C
L
inner +CL

outer)

(4.7)

4.3.4 Results

In Figure 4.14 we can see some results with RGB, RGBD, RGBDM and the
double-loss autoencoder model, setting the same loss weight at 10 for all the
models and with 200, 2000 and 20000 points in input.

Figure 4.14: Absolute relative error with three different thresholds for RGB, RGBD,
RGBDM and double-loss autoencoder models.

It shows that the RGBD model has no improvement, the RGBDM has
ever worse results on 20000 points, while the autoencoder model has very
high improvements proportional to the number of points in input.

In Table 4.1 we can see that the best model is the double-loss autoencoder
with loss weight at 20. We however kept experimenting with the loss weight
at 10, since forcing the output to be identical to the input will work only
with ground truth. The best model to work with inaccurate input points
from SLAM, will be the model with loss weight at 1 because it will infer
smooth maps, while the one with loss weight at 10 will have better metrics,
but slightly less smoothness in maps.

35

Model αL1 δ < 1.25 δ < 1.252 δ < 1.253

Double-Encoder 10 0.844 0.942 0.978
Single-Loss Autoencoder 10 0.846 0.943 0.979
Double-Loss Autoencoder 0 0.856 0.947 0.980
Double-Loss Autoencoder 1 0.872 0.953 0.982
Double-Loss Autoencoder 10 0.888 0.959 0.984
Double-Loss Autoencoder 20 0.891 0.961 0.985

Table 4.1: Absolute relative error with threshold on double-encoder, single-loss autoen-
coder and double-loss autoencoder with different loss weights, all with VGG.

4.3.5 Comparison with Monodepth

In Figure 4.15 and 4.16 we show some qualitative results of the autoencoder
model, compared to monodepth (RGB model).

Figure 4.15: Comparison between RGB and Autoencoder model on the same scene
taken form KITTI2015 test set.

The first row of each of the two examples shows the RGB image, while
the second row shows monodepth prediction on the left and autoencoder pre-
diction on the right. The third row shows the ground truth disparity. The
fourth row shows the L1 difference between the related prediction and the

36

Figure 4.16: Another example of better prediction on a scene from the same test set.

ground truth. You can see that the two vans are almost perfectly detected
compared to monodepth.

You can find some information about the tool used for evaluation in
Appendix A at page 61 and more results on Appendix B at page 65.

37

38

Chapter 5

ORB-SLAM

5.1 SLAM

Figure 5.1: From [17]:
Camera frames (blue),
Current Camera position
(green), slam Keypoints
(black, red) and Current
Local Keypoints (red).

The term SLAM is an acronym for Simultaneous
Localization And Mapping. It was originally devel-
oped by Hugh Durrant-Whyte and John J. Leonard
[13] and then improved and enhanced by a lot of
researchers. This algorithm allows to build a map
of an unknown environment and localize the sensor
(e.g. a camera) in the map. Cameras are cheap sen-
sors, so Visual SLAM is the most researched topic
nowadays.

5.2 ORB-SLAM

Developed by Raul Mur-Artal, J. M. M. Montiel and Juan D. Tardós [17][18],
it has been the best open source state-of-the-art SLAM algorithm for monoc-
ular, stereo and RGB-D cameras. The system works in real-time on standard
CPUs in various environments. It uses ORB [19], which are oriented multi-
scale corners with a 256 bits descriptor associated. They are extremely fast
to compute and match and they also have good invariance to viewpoint.

This system consists in three main threads that run in parallel: track-
ing, local mapping and loop closing. The tracking is in charge of localizing

the camera with every frame, inserts new Keyframes and extracts features
(MapPoints). The local mapping processes new keyframes and performs local
Bundle Adjustment [22] to achieve optimal reconstruction in the surround-
ings of the camera pose. Finally, the loop closing searches for loops with
every new keyframe and tries to achieve global consistency.

Figure 5.2: ORB-SLAM2 on Stereo Mode at Odometry Sequence 03 by KITTI.
KeyFrames (blue), Current Camera (green), MapPoints (black, red) and Current Local
MapPoints (red).

5.3 Obtain sparse disparity maps from ORB-
SLAM

ORB-SLAM2 code is available online1 and it has been used during this study
to get the depth values from Keypoints. They refer to Keypoints as Map-
Points pi, which stores the 3D position [Xi, Yi, Zi]

T in the world coordinate
system and the position on camera plane [ui, vi]

T , along with some other in-
formation like viewing direction, ORB descriptor and so on. Each Keyframe

1https://github.com/raulmur/ORB_SLAM2

40

https://github.com/raulmur/ORB_SLAM2

Ki stores the camera pose Ti, the camera intrinsics and all the ORB features
extracted.

Therefore it was possible to extract all the depth values zi from the po-
sition of the point on camera coordinate system p̃i = [xi, yi, zi], computing
a reprojection world-to-camera of every MapPoint pi employing the camera
pose Ti:  xi

yi

zi

 = Ti ×


Xi

Yi

Zi

1

 (5.1)

Finally, the i-th point used to compose the sparse disparity map in input
is:

SDi =

 ui

vi

zi

 (5.2)

Figure 5.3: O is the center of the world coordinate system, Ti is the world-to-camera
transformation and C is the center of the camera coordinate system. pi is the the point
in world coordinates, which are [Xi, Yi, Zi]

T and p̃i is the point at camera coordinates,
which are [xi, yi, zi]

T .

41

42

Chapter 6

Evaluation and Results

Evaluation, as well as training, has been done on two different datasets:
KITTI [6] and Cityscapes [3]. The monodepth code1 has been changed to
allow training and testing on any dataset as long as a proper filenames file
is provided. Evaluation is done comparing the predicted disparity map and
the ground truth provided by the datasets.

6.1 Evaluation Metrics

Evaluation is based on 8 metrics for test sets with ground truth depth maps
and one more metric is employed for the ones with ground truth disparity
maps. Every metric is computed on post-processed disparity maps resized
to the ground truth shape. Given Gti and PrRi as the ground truth and
resized-prediction correspondent points in the depth domain, G̃ti and P̃ r

R

i

in the disparity one and N as the set of non-zero points in ground truth:

Absolute Error

1

card(N)

∑
Gti∈N

|Gti − PrRi | (6.1)

1https://github.com/mrharicot/monodepth

https://github.com/mrharicot/monodepth

Absolute Relative Error
1

card(N)

∑
Gti∈N

|Gti − PrRi |
Gti

(6.2)

Squared Relative Error

1

card(N)

∑
Gti∈N

||Gti − PrRi ||2

Gti
(6.3)

Root Mean Squared Error (linear)√
1

card(N)

∑
Gti∈N

||Gti − PrRi ||2 (6.4)

Root Mean Squared Error (logarithmic)√
1

card(N)

∑
Gti∈N

|| logGti − logPrRi ||2 (6.5)

D1-all

This metric comes from [6] and is computed only on ground truth disparity
maps. It is the percentage of outliers averaged over all ground truth pixels.

100× card(Ñ)

card(N)
(6.6)

where N is the set of non-zero ground truth points G̃ti > 0 and Ñ is a
subset of N which corresponds to the following logical expression:

∑
G̃ti∈N

|G̃ti − P̃ r
R

i | ≥ 3 ∩
∑

G̃ti∈N

|G̃ti − P̃ r
R

i |
G̃ti

≥ 0.05 (6.7)

which is the set of good pixels (i.e. error < 3px and error < 5%)

Threshold

card({Gti : max{PrRi
Gti

, Gti
PrRi
} < 1.25k})

card({Gti})
(6.8)

where k is the level of the threshold. We used k = 1,2,3.

44

6.2 Cityscapes

Figure 6.1: Cityscapes’ ger-
man cities.

Cityscapes2 [3] is a large-scale dataset that con-
tains a diverse set of stereo video sequences
recorded in street scenes from 50 different ger-
man cities. We used 22972 images to train on.
This dataset brings higher resolution, image qual-
ity, and variety compared to KITTI, while having
a similar setting. This allows the CNN to infer
good disparity on vertical objects. Like [7], we
cropped the input images to only keep the top
80% of the image, removing the very reflective
car hoods from the input. Although they provide disparity maps for each
image, those are not a good ground truth compared to the Lidar one, so they
don’t provide a reliable evaluation.

Figure 6.2: Three examples of disparity prediction on Cityscapes dataset.

LOWER IS BETTER HIGHER IS BETTER
CITYSCAPES Abs Abs Rel Sq Rel RMSE RMSE log D1-all δ < 1.25 δ < 1.252 δ < 1.253

VGG Godard 10.6573 0.6760 9.1872 13.877 0.529 94.003 0.065 0.339 0.872
Ours 10.4691 0.6655 8.9863 13.706 0.523 93.961 0.063 0.366 0.887

RES Godard 10.7521 0.6853 9.4891 14.004 0.534 94.425 0.055 0.332 0.873
Ours 9.0226 0.5702 7.2518 12.205 0.472 90.739 0.140 0.546 0.904

Table 6.1: Results on KITTI2015 test set with models trained on Cityscapes. This
results are obviously bad, since the models are used to see images with a narrower
baseline than KITTI’s (0.22m rather than 0.54m), thus the scale is wrong. This table
shows however that our models perform better than Godard’s.

2https://www.cityscapes-dataset.com

45

https://www.cityscapes-dataset.com

6.3 KITTI

Figure 6.3: KITTI station wagon
used for capturing datasets.

The KITTI3 dataset [6] provides a reliable
benchmark for autonomous driving task,
such as depth prediction, stereo matching,
optical flow, visual odometry and object de-
tection. They equipped a standard station-
wagon with two grayscale and two color
cameras with a baseline of 0.54 meters. Ac-
curated ground truth data is provided by a
velodyne laser scanner and a GPS localiza-
tion system with integrated inertial measurement unit and RTK corrections.
The datasets are captured by driving in mid-sized cities, rural areas and high-
ways. In its raw form, the dataset contains 42,382 rectified stereo pairs from
61 scenes, with a typical image being 1242×375 pixels in size. We evaluated
models trained on KITTI and models pre-trained on Cityscapes and then
fine-tuned on KITTI. All evaluations are done on post-processed disparity
maps.

6.3.1 KITTI 2015

The KITTI 2015 split test is composed by 200 high quality disparity images
provided as part of the official training set. This test set is specific for depth
prediction and is much better than the reprojected velodyne laser depth
values because of some post-processing to make them reliable. They also
have CAD models inserted in place of moving cars. This means better depth
values on car positions, but they result in ambiguous disparity values on
transparent surfaces such as car windows, and issues at object boundaries
where the CAD models do not perfectly align with the images. This test set
is evaluated on all the metrics explained above, including the D1-all. It is
important to note that measuring the error in depth space while the ground
truth is given in disparities leads to precision issues. In particular, the non-
thresholded measures can be sensitive to the large errors in depth caused by

3http://www.cvlibs.net/datasets/kitti/

46

http://www.cvlibs.net/datasets/kitti/

prediction errors at small disparity values.

LOWER IS BETTER HIGHER IS BETTER
KITTI Abs Abs Rel Sq Rel RMSE RMSE log D1-all δ < 1.25 δ < 1.252 δ < 1.253

VGG Godard 2.5852 0.1175 1.2385 5.828 0.208 30.478 0.845 0.942 0.978
Ours 2.0941 0.0912 0.9734 5.204 0.177 19.121 0.890 0.959 0.984

RES Godard 2.3980 0.1069 1.0794 5.537 0.194 26.626 0.861 0.951 0.981
Ours 1.8962 0.0806 0.8211 4.848 0.161 15.836 0.903 0.967 0.987

Table 6.2: Evaluation on KITTI 2015 split with models trained on KITTI.

CITYSCAPES LOWER IS BETTER HIGHER IS BETTER
+ KITTI Abs Abs Rel Sq Rel RMSE RMSE log D1-all δ < 1.25 δ < 1.252 δ < 1.253

VGG Godard 2.1878 0.0995 0.9527 5.119 0.179 24.531 0.876 0.960 0.986
Ours 2.1570 0.0975 0.8915 5.094 0.177 24.469 0.879 0.960 0.986

RES Godard 2.1750 0.0982 0.9080 5.074 0.179 24.153 0.874 0.958 0.984
Ours 1.8355 0.0798 0.7862 4.689 0.156 15.794 0.910 0.970 0.988

Table 6.3: Evaluation on KITTI 2015 split with models pre-trained on Cityscapes and
fine-tuned on KITTI.

In Table 6.2 and Table 6.3 we can see evaluation on KITTI 2015 split on
post-processed disparity maps. On ResNet the results differ from Godard’s
original paper [7], probably because of some changes on Tensorflow versions.
Pre-training on the Cityscapes dataset improves the results over using KITTI
alone. In Figure 6.4 we can see some qualitative results on KITTI 2015 split.

Figure 6.4: Three examples of disparity prediction on KITTI 2015 split test.

47

6.3.2 Eigen Split

Inspired by [4] we use the test split of 697 images which covers a total of 29
scenes. The remaining 32 scenes contain 23,488 images from which we kept
22,600 for training and the rest for evaluation as they did in [7]. To generate
the ground truth depth images, Godard reprojected the 3D points viewed
from the velodyne laser into the left input color camera. KITTI, however,
provided already reprojected ground truth depth maps for all stereo images
solving a lot of inaccuracies, but we kept Godard’s reprojection for fairness
sake. The provided ground truth depth maps are less then the actual number
of images in the datasets. That’s because they accumulate 11 frames to create
those maps, then 5 frames are missing from the beginning and the end of each
sequence. This has brought us to exclude those images that don’t have the
relative ground truth map, since our model needs to sample from ground
truth to get the sparse disparity points. After this reduction, the Eigen split
contains 652 images. To be consistent to Godard’s evaluation, we used the
same crop as [5].

LOWER IS BETTER HIGHER IS BETTER
KITTI Abs Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

VGG Godard 2.3933 0.1121 0.9633 5.105 0.213 0.853 0.938 0.971
Ours 2.0428 0.0939 0.8182 4.737 0.193 0.882 0.951 0.977

RES Godard 2.2332 0.1030 0.8811 4.897 0.202 0.866 0.944 0.974
Ours 1.9421 0.0914 0.7388 4.525 0.188 0.890 0.954 0.979

Table 6.4: Evaluation on Eigen split with models trained on KITTI.

CITYSCAPES LOWER IS BETTER HIGHER IS BETTER
+ KITTI Abs Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

VGG Godard 2.1189 0.1001 0.8125 4.686 0.198 0.874 0.947 0.976
Ours 2.1030 0.0999 0.7969 4.660 0.196 0.875 0.949 0.976

RES Godard 2.1051 0.1006 0.8186 4.645 0.195 0.876 0.949 0.976
Ours 1.8949 0.0885 0.7064 4.449 0.184 0.892 0.955 0.979

Table 6.5: Evaluation on Eigen split with models pre-trained on Cityscapes and fine-
tuned on KITTI.

48

In Table 6.4 and Table 6.5 we can see evaluation on Eigen split on post-
processed disparity maps. Pre-training on the Cityscapes dataset improves
the results over using KITTI alone only with ResNet. It seems like VggNet
learns less than ResNet when pre-training on Cityscapes. In Figure 6.5 we
can see some qualitative results on eigen split.

Figure 6.5: Three examples of disparity prediction on Eigen split test.

6.3.3 Odometry Sequence 03

This test-set is taken from one of the 22 sequences for odometry evaluation
provided by KITTI4. Like every other sequence, it contains Lidar ground
truth depth from velodyne laser scanner. Thus we decided to exploit it to
evaluate on actual SLAM points which are obtained from ORB-SLAM as we
discussed in 5.3.

In Figure 6.6 we can see some qualitative results on the sequence.

Figure 6.6: Three examples of disparity prediction on Odometry Sequence 03 test. You
can see SLAM points with different color map overlapped to disparity maps.

4http://www.cvlibs.net/datasets/kitti/eval_odometry.php

49

http://www.cvlibs.net/datasets/kitti/eval_odometry.php

LOWER IS BETTER HIGHER IS BETTER
KITTI Abs Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

VGG Godard 2.8684 0.1461 1.4249 5.733 0.232 0.809 0.933 0.973
Ours S 2.3145 0.1098 1.0634 5.166 0.198 0.870 0.953 0.979
Ours G 2.1825 0.1060 1.0172 4.958 0.190 0.876 0.956 0.981

RES Godard 2.7487 0.1380 1.3027 5.547 0.224 0.817 0.937 0.975
Ours S 2.1217 0.1008 1.0635 4.969 0.188 0.889 0.959 0.981
Ours G 1.9955 0.0966 1.0138 4.750 0.179 0.894 0.963 0.984

Table 6.6: Evaluation on Sequence 03 with models trained on KITTI. ’Ours S’ is our
model tested with points from SLAM and ’Ours G’ is the same model but tested with
points from ground truth.

CITYSCAPES LOWER IS BETTER HIGHER IS BETTER
+ KITTI Abs Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

VGG Godard 2.6265 0.1304 1.2346 5.432 0.220 0.832 0.939 0.975
Ours S 2.6039 0.1299 1.1750 5.329 0.215 0.836 0.942 0.977
Ours G 2.5854 0.1292 1.1603 5.292 0.214 0.837 0.942 0.977

RES Godard 2.5839 0.1296 1.2024 5.304 0.215 0.836 0.944 0.977
Ours S 2.1034 0.1017 1.0479 4.883 0.187 0.888 0.960 0.981
Ours G 2.0337 0.0983 1.0145 4.772 0.182 0.892 0.963 0.983

Table 6.7: Evaluation on Sequence 03 with models pre-trained on Cityscapes and fine-
tuned on KITTI. ’Ours S’ is our model tested with points from slam and ’Ours G’ is
the same model but tested with points from ground truth.

It is easy to notice in Table 6.6 and in Table 6.7 that using pre-trained
model on cityscapes doesn’t increase the performance as much as with Go-
dard’s model. Anyway, our model still outperforms it both with points from
SLAM and ground truth.

The Odometry Sequence 03 has been used for the Pangolin Demo, whose
operation is explained in Appendix D.

6.4 Evaluation on Sparse Input

A further evaluation has been conducted on sparse input to understand how
much these points could help the network to infer better disparity maps.

50

This test has been done on KITTI 2015 test set on two Double-Loss Au-
toencoder models trained with two different loss weight αL1: 1 and 10. The
evaluation consist on plotting the mean absolute error between the ground
truth converted to disparity and resized to the input shape (256× 512), G̃t

R

i

and five different values. For sake of simplicity, we will refer to the resized
ground truth disparity G̃t

R

i as Di and to the sampled points from ground
truth before the resize to input shape as SDi.

Ground truth - prediction It is the mean absolute difference between
all the non-zero points of the ground truth and the correspondent points of
the predicted disparity map in the same positions.

1

card(N)

∑
Di>0

|Di − Pri| (6.9)

where N is the set of the ground truth points Di > 0. The same test has
been conducted with Godard’s model predictions.

Ground truth - random sampled points It is the mean absolute dif-
ference between the points belonging to a 200 points subset of the ground
truth and the correspondent points of the predicted disparity map in the
same positions.

1

card(M)

∑
Ḋi>0

|Ḋi − Pri| (6.10)

where Ḋi is the i-th sampled points from the 200 points subset of the ground
truth and M is the set of these points.

Ground truth - sampled points It is the mean absolute difference be-
tween the ground truth points in the same positions of the sparse disparity
points given as input (thus, resized to input shape) and the points of the
predicted disparity map in the same positions.

1

card(NR)

∑
SDR

i >0

|Di − Pri| (6.11)

where NR is the set of the input points resized to input shape, SDR
i > 0.

51

Ground truth - window around sampled points It is the mean ab-
solute difference between the mean of the ground truth values in a 11 × 11

window around the positions of the sparse disparity points given as input
(thus, resized to input shape) and the mean of the predicted disparity values
in a window of the same size and in the same positions.

1

card(NR)

∑
SDR

i >0

|WDi
−WPri | (6.12)

where NR is the set of the input points resized to input shape, SDR
i > 0 and

WDi
andWPri are respectively the mean of the values in the windows around

Di and Pri that are greater than zero.
In Figure 6.7, Equations 6.11 and 6.12 show that the values around the

sparse disparity points in input are similar to ground truth, while Equations
6.9 and 6.10 show that the error gets slightly higher the further we get from
the input points. This is due to the high loss weight αL1 that forces the
network to overfit those values. We can see that the errors of our model are
still lower than Godard’s model (in black).

Figure 6.7: Sparse input evaluation on the first 100 images of KITTI 2015. This image
represents the results on the Double-Loss Autoencoder model with loss weight αL1 set
at 10.

Using the loss weight at 10 yields to good looking disparity maps and
high results in metrics, but to be sure that of the good result with inaccurate

52

input points from SLAM, we should use a lower loss weight. The same test
has been conducted to a model with loss weight at 1, shown in Figure 6.8.

Figure 6.8: Sparse input evaluation on the first 100 images of KITTI 2015. This image
represents the results on the Double-Loss Autoencoder model with loss weight αL1 set
at 10.

It is easy to notice that there’s no overfit on input points, but the metrics
are slightly worse, as shown in Table 4.1. In any case, our model (blue line)
performs better than Godard’s (black line).

53

54

Chapter 7

Conclusions and further
developments

This thesis had the aim to enhance the depth maps predictions of the already
good work by Godard et al. [7] by exploiting a SLAM algorithm. The
first task was to improve the results by employing ground truth depth and
therefore several novel models have been tested. The best one is the Double-
Loss Autoencoder which uses sparse convolutions upstream, along with a
regular VggNet or ResNet downstream and it outperforms Godard’s model.

Since there isn’t an open source monocular SLAM with correct scale to
employ, Stereo ORB-SLAM algorithm has been exploited to retrieve sparse
disparity maps to input to our novel model. Several tests have been con-
ducted to find the best loss weights and also to find the best balance between
all the losses in order to obtain good looking disparity maps and high results
in metrics. All the evaluation show that our model improves the predictions
even with inaccurate points from SLAM.

Therefore, this thesis showed that employing sparse disparity in input
could enhance the predictions of dense maps. We proposed a novel model
that exploits points from a Stereo SLAM algorithm at their limits, but it
needs input with correct depth scale. Therefore the further developments
will cover a monocular SLAM with scale correction by IMU and GPS data,
to allow a monocular system to be autonomous.

The next step would be to explore the possibility of employing monocular
SLAM algorithm which has arbitrary scale for each sequence. The novel
approach would be train the network using the correct scale only at training
time to calibrate the arbitrary one from monocular. The network would be
able to scale a monocular SLAM output without any other external help.

56

Bibliography

[1] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software
Tools, 2000. 61

[2] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast
and accurate deep network learning by exponential linear units (elus).
CoRR, abs/1511.07289, 2015. 25

[3] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld,
Markus Enzweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth, and
Bernt Schiele. The cityscapes dataset for semantic urban scene under-
standing. CoRR, abs/1604.01685, 2016. 43, 45

[4] David Eigen, Christian Puhrsch, and Rob Fergus. Depth map prediction
from a single image using a multi-scale deep network. In Advances in
Neural Information Processing Systems 27: Annual Conference on Neu-
ral Information Processing Systems 2014, December 8-13 2014, Mon-
treal, Quebec, Canada, pages 2366–2374, 2014. 48

[5] Ravi Garg, Vijay Kumar B. G, and Ian D. Reid. Unsupervised CNN
for single view depth estimation: Geometry to the rescue. CoRR,
abs/1603.04992, 2016. 18, 48

[6] Andreas Geiger. Are we ready for autonomous driving? the kitti vi-
sion benchmark suite. In Proceedings of the 2012 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), CVPR ’12, pages
3354–3361, Washington, DC, USA, 2012. IEEE Computer Society. 27,
43, 44, 46

57

[7] Clément Godard, Oisin Mac Aodha, and Gabriel J. Brostow. Unsuper-
vised monocular depth estimation with left-right consistency. CoRR,
abs/1609.03677, 2016. 16, 18, 21, 26, 45, 47, 48, 55, 69

[8] Chris Harris and Mike Stephens. A combined corner and edge detector.
In In Proc. of Fourth Alvey Vision Conference, 1988. 28

[9] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep resid-
ual learning for image recognition. CoRR, abs/1512.03385, 2015. 23

[10] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. CoRR, abs/1412.6980, 2014. 25

[11] Yevhen Kuznietsov, Jörg Stückler, and Bastian Leibe. Semi-
supervised deep learning for monocular depth map prediction. CoRR,
abs/1702.02706, 2017. 18

[12] Lubor Ladicky, Jianbo Shi, and Marc Pollefeys. Pulling things out of
perspective. In 2014 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2014, Columbus, OH, USA, June 23-28, 2014, pages
89–96, 2014. 17

[13] J. J. Leonard and H. F. Durrant-Whyte. Mobile robot localization by
tracking geometric beacons. IEEE Transactions on Robotics and Au-
tomation, June 1991. 39

[14] Fayao Liu, Chunhua Shen, Guosheng Lin, and Ian D. Reid. Learning
depth from single monocular images using deep convolutional neural
fields. CoRR, abs/1502.07411, 2015. 17

[15] Yue Luo, Jimmy S. J. Ren, Mude Lin, Jiahao Pang, Wenxiu Sun,
Hongsheng Li, and Liang Lin. Single view stereo matching. CoRR,
abs/1803.02612, 2018. 18

[16] Fangchang Ma and Sertac Karaman. Sparse-to-dense: Depth prediction
from sparse depth samples and a single image. CoRR, abs/1709.07492,
2017. 18, 29

58

[17] Raul Mur-Artal, J. M. M. Montiel, and Juan D. Tardós. ORB-
SLAM: a versatile and accurate monocular SLAM system. CoRR,
abs/1502.00956, 2015. 39

[18] Raul Mur-Artal and Juan D. Tardós. ORB-SLAM2: an open-source
SLAM system for monocular, stereo and RGB-D cameras. CoRR,
abs/1610.06475, 2016. 19, 39

[19] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski. Orb: An efficient
alternative to sift or surf. In 2011 International Conference on Computer
Vision, Nov 2011. 39

[20] Ashutosh Saxena, Min Sun, and Andrew Y. Ng. Make3d: Learning 3d
scene structure from a single still image. IEEE Trans. Pattern Anal.
Mach. Intell., 31(5):824–840, May 2009. 17

[21] Karen Simonyan and Andrew Zisserman. Very deep convolutional net-
works for large-scale image recognition. CoRR, abs/1409.1556, 2014.
23

[22] Bill Triggs, Philip F. McLauchlan, Richard I. Hartley, and Andrew W.
Fitzgibbon. Bundle adjustment - a modern synthesis. In Proceedings of
the International Workshop on Vision Algorithms: Theory and Practice,
ICCV ’99, pages 298–372, London, UK, UK, 2000. Springer-Verlag. 40

[23] Jonas Uhrig, Nick Schneider, Lukas Schneider, Uwe Franke, Thomas
Brox, and Andreas Geiger. Sparsity invariant cnns. CoRR,
abs/1708.06500, 2017. 18, 31, 32, 33

[24] Junyuan Xie, Ross B. Girshick, and Ali Farhadi. Deep3d: Fully au-
tomatic 2d-to-3d video conversion with deep convolutional neural net-
works. CoRR, abs/1604.03650, 2016. 17

59

60

Appendix A

Evaluation Tools

We created two tools for evaluation and for testing the sampling from ground
truth. Both were created with OpenCV [1] and they allow to interact with
them through the keyboard to modify some configurations or change target
image.

A.1 Sparse Test

A specific tool has been created to conduct tests on finding the best config-
uration for the Harris Corner Detector based sampling. In Figure A.1 we
can see the tool sampling disparity points from ground truth which is part
of KITTI 2015 test set. It needs only the filenames file with all the paths to
RGB and ground truth and it computes the sampling as explained in Chapter
4.1. The tool consists of a view with six cells which are, from top to bottom
and from left to right: RGB image, result of Harris Corner Detector, ground
truth depth, intersection of corners and ground truth disparity, ground truth
disparity and result of random sampling from the intersection.

With keys A and D the user can change the target image and with the
keyboard numbers listed below it’s possible to change configuration selecting
from some fixed values:

1. BlockSize: neighborhood size. [2, 4, 8].

2. ksize: aperture parameter for the Sobel Kernel [3, 5, 7, 9, 11].

3. k: Harris detector free parameter. See the formula below. [10−3, 10−4,
10−5]

4. threshold: threshold of the local maxima for corners. [10−3, 10−4,
10−5]

5. Number of the sampled points

6. Select either disparity or depth to sample from.

7. Size of both image and sampling when the detector and the sampling
are computed.

We selected [2, 3, 10−5, 10−5] for the Harris Corner detector configuration
during training.

Figure A.1: Example of Sparse Test Tool

Figure A.2: Three different number of samples: 200, 500, 1000.

62

A.2 Show Disparities

We created a tool to visualize the results of the network’s test mode: a NPY
file with all the disparity maps computed using the RGB images of the test
set provided to the net. After loading the file, each map needs to be ‘resized’
multiplying it by the original width of the RGB image. Subsequently, the
ground truth is loaded from the filenames file provided along with the related
RGB images, then it is dilated with a 5 × 5 structural element. The tool
requires the NPY files of: Godard’s results either normal and post-processed,
as well as the NPY files of a different model’s results. The latter would
have NPY files for normal disparities, post-processed disparities and sparse
disparity input maps. The tool view is composed of two columns. The left
column shows Godard’s result, while the right one shows our model’s results.
Each column is composed by RGB image, prediction, ground truth disparity,
normalized L1 difference between the last two. With keys A and D the user
can change the target image and with W and S it’s possible to change the
NPY file of some other model predictions.

Figure A.3

In Figure A.3 you can see on ground truth some red labels which contain

63

the image number, the predicted disparity maps selected (Godard on the left
and ours on the right) and the type of maps that are showed: regular or
post-processed. The red labels on L1 difference image, show the percentage
of correct predicted pixel Di within three ranges: 0 < Di < 1, 1 < Di < 2

and Di > 2.
In all the eight images, the sparse disparity points that the network gets

as input are overlapped and colored by a colormap with inverted colors of
the predicted disparity maps.

With the P key, the user can activate and deactivate the post-processing
on the showed predicted disparity map. The difference can be seen in Figure
A.4

Figure A.4

With the I key, the user can hide and show the red labels and the sparse
disparity points.

The user can visually enhance the disparity maps increasing a multipli-
cation parameter with the M and lowering it with N . The effect can be seen
in Figure A.5

Figure A.5

64

Appendix B

More qualitative results

In Figures B.1 - B.5 we show some additional qualitative results from KITTI
2015.

Figure B.1

Figure B.2

Figure B.3

66

Figure B.4

Figure B.5

67

68

Appendix C

UVR ZED dataset

Since Godard’s model [7] works perfectly outside but poorly in indoor envi-
ronments, we wanted to fine-tune on a self-crafted dataset.

C.1 Creating the Dataset

Since Godard’s model needs just stereo images to train on, we created a
dataset with a ZED stereo camera1 which creates rectified stereo images and
depth from a stereo matching algorithm. We used the depth from ZED
camera as a sort of ground truth to evaluate on. It’s not reliable, but it gives
an idea of the real depth values.

Figure C.1: The ZED Stereo Camera

After creating a script that saves a pair of rectified stereo images and the
related depth map at 10fps, we shot 12 mixed scenes indoor in the office and
outdoor, around the office area, for a total of 8863 stereo pair images.

1https://www.stereolabs.com

https://www.stereolabs.com

The RGB images are 1280 × 720 PNG files, rectified and synced taken
with a baseline of 12cm. The depth maps are stored in 16 bits PNG files with
a factor of 3276.75 to allow a good precision in stored values. The camera
was set with a focal length at 671.6px.

Figure C.2: An example of outdoor shoot. On top the RGB image and below the depth
map, which is quite limited by the baseline: the maximum depth that the camera could
get is about 14 meters.

70

C.2 Fine-tuning

We trained on this new dataset for 50 epochs with same configuration as
we did for KITTI and Cityscapes and you can see on Figure C.3 that the
resulted disparity maps are really good looking already from the 20-th epoch.

Figure C.3: Prediction on UVR dataset.

With the tool presented in Appendix A, we did a comparison between a
model trained on Cityscapes and a model fine-tuned on the UVR dataset.
In Figure C.4 and Figure C.6 we can see a comparison between a model
trained on Cityscapes on the left and a model trained on Cityscapes and
fine-tuned on UVR on the right. Specifically in Figure C.4, the disparity
map predicted by the model trained on Cityscapes is good looking, but it
has the wrong scale, as we can see by the L1 difference with the depth from
the ZED camera. On the other hand, fine-tuning fixes the semantic errors,
as we can notice in Figure C.6 where the ceiling is missing completely on the
left. That’s due to a semantic overfitting by the Cityscapes images: a large
portion of the dataset contains images with sky and no one has a ceiling in it.

Some examples are briefly given below.

71

Figure C.4: Comparison Cityscapes-model and UVR-fine-tuned model.

Figure C.5: Comparison Cityscapes-model and UVR-fine-tuned model.

72

Figure C.6: Comparison Cityscapes-model and UVR-fine-tuned model.

73

74

Appendix D

Demo with Pangolin Visualizer

A dense depth map could potentially reconstruct a 3D scene just from one
image. That’s what we did with the Odometry Sequence 03 provided by
KITTI in a demo on a 3D visualizer.

Figure D.1

We processed every RGB image with our best model to get depth maps
as PNG files. With the image and the related depth map, we created a point
cloud and fed it to Pangolin1, which is a lightweight visualizer for managing

1https://github.com/stevenlovegrove/Pangolin

https://github.com/stevenlovegrove/Pangolin

OpenGL display and interaction. The user can indeed change frame using A
and D keys and interact with the point cloud using the mouse.

Figure D.2: Two different views of the same scene coming from just one image and its
depth map.

The demo goes through all the sequence, showing the point clouds of all
the frames along with the dense disparity map and the sparse disparity input
from slam. Every point cloud is created runtime and displayed instantly after
pressing either A or D to change frame.

Figure D.3: Example where the sparse disparity points from SLAM are showed.

76

Figure D.4: Example of the demo with the dense disparity map

The demo is available on YouTube at https://youtu.be/hEeQXNva2_s.

77

https://youtu.be/hEeQXNva2_s

	Introduction
	What is a depth map?
	How to get depth

	The unsupervised choice and SLAM exploitation
	Application of depth sensing technology
	Thesis Structure

	Related Work
	Monodepth
	Approach
	Network Structure
	Losses
	Implementation Details
	Post-Processing

	Experimentation
	Employing ground truth
	RGBD and RGBDM models
	Sparse convolutions models
	Sparse Convolutions
	Double-Encoder model
	Autoencoder models
	Results
	Comparison with Monodepth

	ORB-SLAM
	SLAM
	ORB-SLAM
	Obtain sparse disparity maps from ORB-SLAM

	Evaluation and Results
	Evaluation Metrics
	Cityscapes
	KITTI
	KITTI 2015
	Eigen Split
	Odometry Sequence 03

	Evaluation on Sparse Input

	Conclusions and further developments
	References
	Evaluation Tools
	Sparse Test
	Show Disparities

	More qualitative results
	UVR ZED dataset
	Creating the Dataset
	Fine-tuning

	Demo with Pangolin Visualizer

