
ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA

SCUOLA DI INGEGNERIA E ARCHITETTURA

Dipartimento di Informatica - Scienza e Ingegneria - DISI
Corso di Laurea Magistrale in Ingegneria Informatica

TESI DI LAUREA

in

COMPUTER VISION AND IMAGE PROCESSING

Ambiguity in Recurrent Models: Predicting
Multiple Hypotheses with Recurrent Neural

Networks

Candidato
Alessandro Berlati

Relatore
Chiar.mo Prof. Luigi Di Stefano

Correlatori
PD Dr. Ing. Federico Tombari1

MSc. Oliver Scheel1,2

1Technische Universität München
2BMW Group

Anno Accademico 2017/18
Sessione II

Abstract

Multiple Hypothesis Prediction (MHP) models have been introduced to deal
with uncertainty in feedforward neural networks, in particular it has been
shown how to easily convert a standard single-prediction neural network into
one able to show many feasible outcomes.

Ambiguity, however, is present also in problems where feedback model
are needed, such as sequence generation and time series classification. In
our work, we propose an extension of MHP to Recurrent Neural Networks
(RNNs), especially those consisting of Long Short-Term Memory units. We
test the resulting models on both regression and classification problems using
public datasets, showing promising results. Our way to build MHP models
can be used to retrofit other works, leading the way towards further research.

We can find many possible application scenarios in the autonomous driv-
ing environment. For example, trajectory prediction, for humans and cars,
or intention classification (e.g. lane change detection) are both tasks where
ambiguous situations are frequent.

iii

iv

Prefazione

I modelli a predizione multipla (MHP) sono stati introdotti al fine di gestire
l’incertezza nelle reti neurali feedforward, in particolare è stato dimostrato
come sia facilmente possibile convertire una rete neurale standard in una in
grado di mostrare più risultati plausibili.

L’ambiguità, tuttavia, è presente anche nei problemi in cui sono necessarie
reti neurali feedback, come la generazione di sequenze e la classificazione delle
serie temporali. Nel nostro lavoro, proponiamo un’estensione di MHP alle reti
neurali ricorrenti (RNN), in particolare quelle costituite da celle LSTM (Long
Short-Term Memory). Abbiamo testato i modelli risultanti su problemi di
regressione e classificazione utilizzando dataset pubblici e mostrando risultati
promettenti. Il nostro modo di costruire i modelli MHP può essere utilizzato
per riadattare altri lavori, aprendo la strada verso ulteriori sviluppi.

Possiamo trovare molti scenari applicativi nel campo dei veicoli a guida
autonoma. Ad esempio, la previsione delle traiettorie di pedoni e auto o
la classificazione delle intenzioni (ad esempio il rilevamento del cambio di
corsia) sono entrambi compiti in cui situazioni ambigue sono frequenti.

v

vi

Contents

1 Introduction 5
1.1 Thesis Outline . 6

2 Background 7
2.1 Machine Learning . 7

2.1.1 Supervised Learning 8
2.1.2 Unsupervised Learning 11

2.2 Neural Networks . 11
2.2.1 Parameter Optimisation 13

2.3 Recurrent Neural Networks . 15
2.3.1 Vanilla RNN . 16
2.3.2 Long Short-Term Memory Networks 18

3 Related Work 21

4 Multiple Hypothesis Prediction 25
4.1 Derivation of MHP Model . 26

4.1.1 Single Hypothesis Model 26
4.1.2 Multiple Hypothesis Model 27

4.2 Minimisation Scheme . 28

5 Problem, Methodology, Rnn extension and model(s) 31
5.1 Ambiguity in Trajectory Prediction 31
5.2 Multiple Trajectory Prediction: MHP Extension to RNNs . . . 35
5.3 Multiple Sequence Classification 38

1

6 Experiments 41
6.1 Trajectory Prediction . 41

6.1.1 Synthetic Dataset . 41
6.1.2 Implementation Details 42
6.1.3 ETH Dataset . 44
6.1.4 Stanford Drone Dataset 46

6.2 Sequence Classification . 49

7 Conclusion and Future Work 53

References 55

Acknowledgements 61

2

3

4

Chapter 1

Introduction

Time series data are sequences of data points stored in temporal order and
represent the evolution over time of a particular system. Time series may
represent, for instance, the sequence of logins to a website, the position in
the space of an object or scientific measurements.

Time series related problems are a difficult type of task that involve
sequence-like inputs. Amongst these problems we find sequence generation,
classification, regression and the contexts may be extremely different: from
trajectories prediction to financial analysis to weather forecasting.

Time series analysis can be performed with mathematical and statistical
instruments, such as linear and non-linear regression or function approxima-
tion. However, we are more interested in the context of machine learning
and in particular deep learning. In fact, in the last years, Recurrent Neural
Networks (RNNs) have been widely used for time series analysis, sequence
generation, classification and forecasting with state-of-the-art results in many
scientific papers.

In our work we focus on the ambiguity of predictions. Often a neural
network becomes overconfident in the outcomes it provides, it does not take
into consideration other possibilities that are equally valid. Other times, in
uncertain situations, the result may be the average of the possible feasible
predictions that is very far from the real one. Imagine we are analysing a
video of a person holding a glass, it is possible that this person will start
drinking in the immediate future as well as it is possible that he is about

5

to lay down the glass. Both the outcomes are equally valid and building a
system able to show the two of them is challenging.

In their work, Rupprecht et al. [48] present a framework that can be used
to convert single-prediction systems into multiple-output ones, able to show
multiple feasible outputs. We want to extend this framework to RNNs and
show that the network is capable of exploring all the feasible possibilities,
given a certain input sequence.

In the next chapters we show how it is possible to employ the same for-
mulation as [48], especially the meta-loss function, and build models that
can easily retrofit previous work. We focus especially on two problems: tra-
jectory prediction, where we present experimental results on two different
models, and sequence classification, where we extend an existing model.

1.1 Thesis Outline

In Chapter 2 we give a brief description of machine learning and neural
networks with particular focus on RNNs and their usage for time series pre-
diction and classification.

We then explore other works related to trajectories prediction, time se-
ries classification and ambiguity aware models in Chapter 3 and we describe
in detail the Multiple Hypothesis Prediction model in Chapter 4, focusing
on how a feedforward network can be changed in order to output multiple
predictions.

In Chapter 5 we describe the problem and how we want to tackle it, then
we present the recurrent multiple hypothesis models that we obtained. The
results on real datasets are discussed in Chapter 6.

The thesis in concluded with Chapter 7 where future work is also dis-
cussed,

6

Chapter 2

Background

In this chapter we introduce the fundamental techniques behind the realised
work. We begin by describing the foundations of machine learning and deep
learning. We then talk about recurrent neural networks and how they are
used for time series prediction and classification.

2.1 Machine Learning

Machine learning is the science of getting software to make a determination or
prediction generalising from data examples, improving its learning without
the need to be explicitly programmed. For instance, imagine we want to
handcraft a system that is capable of recognising a dog in an image. Dog
breeds are very different from each other. They may differ in size, colour and
length of the hair, their muzzle could have different shapes. Also, since we
are dealing with images, we need also to consider the different light condition
and the pose of the dog. It is basically impossible to implement a system
able to consider all these different factors.

In machine learning instead, the program must analyse the training data
and find a way to identify dogs. The end goal of machine learning is de-
termining a mapping f between the input X and the output Y , observing
a subset Xtrain ⊂ X. The final mapping depends on the metric we use to
measure how wrong the prediction is, often called loss function, and the
techniques employed to minimise this function. We also have different types

of problems depending on wether we know the desired output Y or not.

2.1.1 Supervised Learning

When both the inputX and the output Y are known we talk about supervised
learning. The learning process aims at minimising the error between y(i) ∈ Y
and ỹ(i) = f(x(i)) with x(i) ∈ X, the algorithm learns by comparing the
output with the target and adjusting the model in order to reduce the error.
In this case all the examples must be labeled, in case by hand, therefore
it may not be a feasible approach for every problem. Supervised learning
is very often used in visual tasks such as image or video classification or
object recognition. It is also convenient when historical data are very likely
to predict future events. Once the models are trained they can be employed
to generate labels for unseen data.
Examples of supervised learning algorithms are: Decision Trees [45], Random
Forest [8], linear regression, logistic regression, Support Vector Machines
(SVM) [24] and Artificial Neural Networks.

Regression Regression is the supervised learning problem of approximat-
ing a function f from input variables X to a continuous real-valued output
variable Y . In regression problems a quantity (amount, price, size) is pre-
dicted, therefore the model must be evaluated using an error, like the mean
squared error. Linear regression is the simplest case of regression, the goal is
to find a linear function that maps inputs and outputs. Equation 2.1 is the
formalisation of a single-variate case linear regression

wx+ b = y (2.1)

where w and b are the parameter to learn, often called weight and bias.
In Figure 2.1 the dots represent all the training examples while the blue line
is the resulting linear model trained on that particular dataset.
Multivariate regression is, however, a more common problem, but the model
is straightforwardly derived from the previous one,

K∑
k=0

wkxk + bk = wTx+ b = y (2.2)

8

Figure 2.1: Single-variate linear regression

where w and y are vectors and b is the sum of al the biases. From
Equation 2.3 we can also model a multi-variate output regression by stacking
a single output formulation for every output value, in matrix form:

WTx+ b = y (2.3)

Classification A classification problem aims at approximating a function
f mapping input variables X to discrete output variables Y that are called
classes, labels or categories. Classification models can predict the class di-
rectly (e.g. random forests) or continuous values that are then converted into
probabilities. In the last case, the class with the highest probability is the
predicted label. Since the output is discrete, the classification accuracy can
be computed and used as evaluation measure for the model. There are also
other indicators such as precision and recall (explained later). The labels are
commonly represented by one-hot encoding, a sparse binary vector with a 1

in the i -th position to indicate the actual class; an example has usually only
one class.

Logistic Regression can be used to tackle problems with only two classes,
also called binary classification problems, such problems include spam recog-

9

nition, disease detection or quality control (pass/fail) test. The resulting
class must be in the [0, 1] range, where a higher value represents a higher
probability of the input belonging to the class. The linear model (Equation
2.1) result, that we will call z, must then be bounded in the probability
range; to do so we can use a sigmoid function:

σ(z) =
ez

1 + ez
(2.4)

Figure 2.2: Sigmoid function

As we can see in Figure 2.2 if z is high the probability tends towards 1
while when z is low towards 0.

In case we need to predict multiple classes, we could train one different
classifier for every class with logistic regression and then choose the one with
the highest probability; this strategy is called One-versus-All (OvA). An
easiest approach consists in using the softmax function that transforms a
K-dimensional labels vector z of arbitrary real values into a K-dimensional
vector with each value bounded between 0 and 1, additionally the sum of all
the entries will be exactly one:

softmax(z)k =
ezk∑K
j=1 e

zj
, for k = 1, ..., K (2.5)

10

2.1.2 Unsupervised Learning

Unsupervised learning is used to infer a function that describes the structure
of unlabelled data. The aim of unsupervised learning is obtaining more
information on the input, learn more about it, for this reason it is difficult
to define a correct answer. Problems like these include:

• Cluster Analysis which is used to explore the examples in order
to find hidden patterns or grouping in data, for instance market re-
searchers may use clustering to group customers into different market
segments.

• Association Rule Learning used to discovers rules that describe
large portions of your data, this could be particularly useful for decision
about marketing activities such as pricing and product placement.

2.2 Neural Networks

Artificial Neural Networks (ANN) are computing systems composed of sim-
ple, connected components that are inspired by the way biological neural
networks work. For this reason the nodes that make up a NN are called
artificial neurones. The simplest form of NN is the Multilayer Perceptron
(MLP) and it is formed by an input layer and at least two layers of neu-
rones (also called perceptrons). MLP belongs to the so called feed-forward
networks, where the information flows in only one direction and they are
therefore characterised by the absence of loops. Initially NNs had only one
hidden layer, in fact the universal approximation theorem [26] states
that three-layer networks with a finite number of neurones could approxi-
mate every continuous function.

However, to do so, a prohibitive number of neurones is required, making
the training impossible. The deep learning paradigm has been introduced to
solve the shallow networks problem, Deep Networks have a high number of
layers with less neurones, therefore they can approximate complex functions
with a smaller number of learnable parameters. In deep networks every layer
learns a different function, deep layers abstract high level functions that
combined together can produce very complex systems.

11

Figure 2.3: A three layers MLP

A perceptron is defined as follows:

y = ϕ

(
n∑
i=1

wixi

)
(2.6)

where xi is the i-th input, wi is the associated weight, y is the neurone output
value while ϕ is the activation function.

Activation functions can be different amongst layers, we can therefore see
deep networks as compositions of functions that can be linear or non-linear.
However the composition of linear functions is a linear function as well and
cannot model non-linear behaviours, which is what hidden layers are used
for. For this reason the most used activation functions are non-linear, such
as: Sigmoid, ReLU, Leaky ReLU, ELU.

The basic layer in deep networks is the fully connected layer. In this
layer, the output of every neurone depends on all the values from the previous
layer that are usually summed and passed through a non-linear activation
function. Fully connected layer however have shortcomings:

• Highly dimensional inputs make the number of learnable parameters
explode

• Spatial information is not taken into consideration

12

(a) ReLU (b) Leaky ReLU (c) ELU

Figure 2.4: Activation Functions

Both these problem are present in case images are used as input. Convolu-
tional layers are used to overcome the limitations of fully connected layers.
Let us analyse a two dimensional convolution. Let the input image x have
size WxH and a squared convolutional filter have size NxM . The element
yi,j of the output y, considering N =M = 3, is defined as follows:

yi,j = w0,0xi−1,j−1 +w1,0xi−1,j +w2,0xi−1,j+1 +

w0,1xi,j−1 +w1,1xi,j +w2,1xi,j+1 +

w0,2xi+1,j−1 +w1,2xi+1,j +w2,2xi+1,j+1 + b

(2.7)

The same filter is used to produce the whole output y so a fixed num-
ber (N ∗M) of learnable parameters is required. Also spatial information is
considered since close inputs are processed together. Convolutions can also
be one dimensional, with N learnable parameters, and two dimensional with
channels, with N ∗M ∗ C parameters, to process multichannel inputs (i.e.
RGB images).

A convolutional layer is composed of one or more multichannel convolu-
tional filters, resulting in N ∗M ∗C∗D learnable parameters and a multichan-
nel two dimensional output. To attain non-linearity every output element yi,j
is activated with a non-linear activation function.

2.2.1 Parameter Optimisation

The training of a model aims at modifying the parameters θ in order to
minimise the error between the predictions ỹ and the ground truth y. The
error is usually defined using a loss function L(ỹ, y) that can be different

13

depending on the task. Largely used loss functions are:

• Mean Absolute Error LMAE(ỹ, y) =
1
n

∑K
k=0 |yk − ỹk|

• Mean Squared Error LMSE(ỹ, y) =
1
n

∑K
k=0 (yk − ỹk)2

• Categorical Cross Entropy Lcross = −
∑K

k=0 yklog(ỹi)

The parameters θ of a model f are considered optimal when the loss over
all the N examples is minimal:

θopt = argmin
θ

N∑
i=0

L(f(x(i); θ), y(i)) (2.8)

Gradient descent is an optimisation algorithm used to find the local
minimum of a function. It is based on the fact that a function F (x), defined
and differentiable in a neighbourhood of x0, decreases fastest in the direction
of the negative gradient −∇F (x0). This could be applied to the neural
network in order to update the parameters θ one step at a time towards the
optimum. The neural network update step can be formalised as:

θt+1 = θt − γ∇θt

(
1

N

N∑
i=0

L(f(x(i); θ), y(i))

)
(2.9)

where γ is the learning rate, a factor that influence the training speed and
accuracy. Larger learning rates yield bigger update steps decreasing the time
needed to reach convergence at the expense of the precision. Often learning
rate is dynamically decreased over time.

Computing the gradient of every weight in a neural network is however
not trivial, for this Backpropagation is used. Backpropagation gives a fast
way to compute all the partial derivatives ∂f/wi, starting from the gradient of
the loss, using the chain rule of differentiation: ∂y

∂x
= ∂y

∂u
∂u
∂x

with y = f(g(x)),
u = g(x), u differentiable in x and y differentiable in g(x). The set of partial
derivatives can be then used to perform a gradient descent update step.

Gradient Descend has one big limitation, it must see the whole dataset
before making one update step, it is consequently unfeasible to use with
big datasets. Stochastic Gradient Descent (SGD) has been introduced to
overcome this problem, it is capable of updating the learning parameters

14

just analysing a batch of the training data. After SGD many improvements
has been made, such as Momentum, and other algorithm, based on gradient
descent, has been introduced such as AdaGrad [16], RMSProp and ADAM
[31].

2.3 Recurrent Neural Networks

Recurrent neural networks (RNNs) are a family of neural networks for pro-
cessing sequential data. Convolutional neural networks are specialised in
processing grid-like values, such as images, where the spatial information is
available and useful. RNNs are instead used to process sequences of values.
Like CNNs share the same parameters across all the values, RNNs share the
same weights across several time steps. Imagine you want to generate some
text, it is important to consider the words that come before, the context of
the sentence. If you are predicting one character at a time you must take
into consideration the possible combination of letters and the punctuation.
An RNN is able to remember what it has already processed, the output is
therefore derived from what happened before. This is how a RNN typically
looks like:

Figure 2.5: Recurrent Neural Network

Since RNNs have loops they are classified as feedback networks, this allows

15

them to remember the inputs they already processed. They store informa-
tion in the hidden state which is shared amongst all the time-steps. These
loops may seem confusing at first, but if the network is unrolled (wrote out
for the complete sequence) it looks very similar to a standard neural network
in which every layer takes two inputs, one from the previous layer (hidden
state) and the traditional input .
The hidden state is the memory of the network and it is usually computed
by means of a non-linear function, such as an hyperbolic tangent (tanh), and
it is calculated based on the current input and the previous state; the output
is instead computed just based on the current state.
RNNs can be trained with the backpropagation algorithm, similarly to tradi-
tional Neural Networks, but to do so it is necessary to consider the temporal
nature of the problem. Since the parameters are shared across all time-steps
in the network, the gradient of the error must be computed not only on the
current result but also on all the previous time-steps. For example, in order
to calculate the gradient at t=10 we would need to backpropagate ten steps
and sum up the gradients.

2.3.1 Vanilla RNN

In a Vanilla Recurrent Network the repeating module has a very simple
structure, such as a single tanh layer. The current state is then computed as
a function of the previous state ht−1 and the current input xt.

ht = tanh(Wt ∗ ht−1 +Wx ∗ xt) (2.10)

Once obtained the current state we can compute the output as:

yt = Wy ∗ ht (2.11)

Gradient Problem Simple (Vanilla) RNNs have difficulties learning long-
term dependencies due to what is called the vanishing/exploding gradient
problem. We consider L as our loss (error) function, for example cross-
entropy in a classification problem, it can be computed based on targets and
prediction. The gradients of the error must then be computed to perform
the weight update. Following the Backpropagation algorithm, we can notice

16

Figure 2.6: Vanilla RNN

that to reach the end of the graph, that in this case is the unrolled RNN, we
must consider all the previous time-steps (as showed in Figure 2.7) applying
the chain rule of differentiation. This process is very similar to standard BP
but it is called Backpropagation Through Time (BPTT) to stress how the
gradients are actually computed.

1. Exploding Gradient: In RNNs (or deep networks in general), error gra-
dients can accumulate and become very large numbers resulting in big
updates to the network weights. This may eventually bring instabil-
ity to the network. At an extreme, the weights values can become so
large as to overflow and result in NaN values. The explosion occurs
by repeatedly multiplying gradients through the network layers that
have values larger than 1.0. In recurrent neural networks, exploding
gradients can result in a network that is completely unable to learn
from training data and at best a network that cannot learn over long
input sequences of data. This problem is usually solved using gradient
clipping, limiting the norm of the gradients to a certain value.

2. Vanishing Gradient: It is the opposite problem but it follows the same
mechanism. If the gradient values are small the final gradient will
shrink exponentially fast, eventually vanishing completely after a few

17

Figure 2.7: Backpropagation Through Time

time steps. Gradient contributions from farther steps become zero,
basically the state at those moments does not contribute to what the
network is learning, long-term dependencies are not learned. Vanish-
ing gradients also happen in deep feedforward Neural Networks but in
RNNs the problem is more common since they tend to be deeper.

These problems, that are deeply discussed [40], are not only present in
feedback networks but they belong to deep networks in general. However
the RNNs depth depends on the time-steps already processed and therefore
gradient problems are easier to encounter.

2.3.2 Long Short-Term Memory Networks

Long Short-Term Memory networks (LSTM) are a particular type of RNN,
capable of learning long-term dependencies. They were designed by Hochreiter
and Schmidhuber [25] to avoid the long-term dependency problem. Conse-
quently LSTM are now extensively used on a large assortment of problems.
LSTMs have the same chain structure as vanilla RNNs but the repeating
module has a more complex structure, four functions interacting instead of

18

just one.

Figure 2.8: Long Short-Term Memory Cell

The key to LSTMs is the cell state, computed following the horizontal
line running through the top of the diagram. The cell state is one of the
two hidden states that are passed through time. Using particular structures,
called gates, the LSTM has the possibility to remove or add information
to the cell state. Gates are usually composed of a sigmoid function and a
point-wise multiplication. There are three of these gates in a standard LSTM
cell:

• Forget Gate: takes ht−1 and xt as input and outputs a number between
0 and 1 for each component of the cell state Ct−1. A 1 keeps the value
while a 0 forgets it.

ft = σ(Wf ∗ [ht−1, xt] + bf) (2.12)

• Input Gate: used to update the values of the cell state, combined to a
vector of new candidate values C̃t.

it = σ(Wi ∗ [ht−1, xt] + bi) (2.13)

C̃t = tanh(WC ∗ [ht−1, xt] + bC) (2.14)

19

• Output Gate: in the same way as the other gates decides what the
network is going to output. It will be then combined with the current
state.

ot = σ(Wo ∗ [ht−1, xt] + bo) (2.15)

The new Cell State Ct and the new hidden state hy are computed as
follows

Ct = ft ∗ Ct−1 + it ∗ C̃t (2.16)

ht = ot ∗ tanh(Ct) (2.17)

LSTMs and variation of this concept solve the vanishing gradient problem
by eliminating the activation function for the cell state. The activation func-
tion is the identity which leads to a gradient of 1, removing all the possible
problems.

20

Chapter 3

Related Work

Our work is mainly focused on sequence prediction and classification. We are
particularly interested in predicting trajectories of moving objects. Standard
mathematical methods have been used for path prediction, amongst these
we find linear regression [37] , autoregressive models [3], Kalman filters [6],
time-series analysis [43] and non-linear regressions [52, 51, 46, 44].

Other papers use Recurrent Neural Networks for enhancing trajectory
prediction. RNNs, in fact, have been already successfully employed for
sequence-related task such as speech recognition [20, 10, 12, 21], image cap-
tioning [29, 53, 14, 30], video classification [38], human motion estimation
[41, 17] and machine translation [5, 9] .

In their work, Graves et al. [19] used an LSTM network for sequence gen-
eration. In their first experiment they train the network to predict text one
character at a time. They test the network on two datasets, Penntree Bank
[36] and the Hutter Prize portion of English Wikipedia [27], demonstrating
that LSTMs are capable of learning a large vocabulary of words as well as
inventing english-looking words and names. Also, they showed the network’s
capability of using punctuation, for example opening and closing parenthesis,
and formatting marks, such as XML tags. In the second experiment they
test the network’s ability to predict real-valued sequences, in particular on-
line handwriting. The input data is a sequence of (x, y) pen coordinates but
the network is trained to predict the parameters of a mixture of bivariate
Gaussians (mean, standard deviation and correlation for both coordinates).

21

The results show generated letters, strokes and short words and the ability
to generate long coherent sequences.

Alahi et al. [4] propose an Encoder-Decoder LSTM model for human tra-
jectory prediction in crowded spaces. Since humans adapt their movements
also based on the people they have around, they introduce a model that take
into consideration the neighbouring agents. The network consists in a LSTM
cell for each person in the scene and a pooling layer used to condense and
combine the hidden states of the people that are close together. The hidden
states are thought to contain information about the motion properties of an
agent with respect to its surroundings. Then, at every time-step, the LSTM
cell is fed with the pooled information to predict a new position. Lee et al.
[34] propose an Encoder-Decoder architecture, using Gated Recurrent Units
(GRU [11]), to predict socially acceptable trajectories that take into con-
sideration the path intrinsic multi-modality, using a conditional variational
auto-encoder (CVAE [9]), and the context, by means of a CNN. Gupta et
al. [22] introduce a combination of LSTM Encoder-Decoder and Generative
Adversarial Networks (GANs), a variety loss function allows them to explore
more than one hypothesis while the GAN will choose the best amongst them.
This last paper also improved the pooling layer from [4] in terms of speed
and simplicity, they use a Multi Layer Perceptron (MLP) followed by max
pooling instead of computing an occupation map for every agent and then
concatenate the hidden states.

Another interesting problem for sequence classification is intention predic-
tion for Advanced Driver Assistance Systems (ADAS). These systems alert
the driver in case of dangerous manoeuvres, therefore anticipating the driver
intentions could prevent accidents. This problem has been treated by Tran
et al. [50] using Hidden Markov Models but also using RNNs as in the case
of Jain et al. [28] and Scheel et al. [49], both these last two papers treated
the lane change problem which we will consider as well.

There are many works that address the uncertainty in neural networks and
the multiple prediction problem. Amongst the most famous models we can
find Mixture Density Networks [7] (MDNs) that are a particular type of neu-

22

ral networks that predict the parameters of a Gaussian Mixture model. If we
sample multiple times using the same parameters we can generate different
hypothesis. This model however works only in regression problems and it
lacks precision when high dimensional output are needed. Geng et al. [18]
deal with the ambiguity of age estimation introducing a label distribution
for every image, in this way a single label can influence also the learning of
other adjacent labels. The same problem, along with image classification, is
treated by Gao et al [18].
Multiple Choice Learning [23] (MCL) paradigm aims at minimising a loss
over the outputs of a set of predictors. MCL has been exploited in [13, 33]
and by Lee et al. [35] where they train a set of deep networks with a archi-
tecture and loss agnostic method. Rupprecht et al. [48] introduced a new
way to deal with the uncertainty of Neural Networks predictions, their frame-
work allows to easily convert a feedforward neural network into a multiple
prediction version (see Chapter 4) that is capable of exploring more than one
feasible outcomes in an ambiguous context. Their method can be applied on
any feedforward architecture and there is not the necessity to train multiple
networks, reducing the number of parameters with respect to MCL. Moreover
they present a general meta-loss with which training can be performed using
standard backpropagation and they also provide a mathematical explanation
of the benefits using this approach. In our work we want to extend this last
approach to RNNs. Exploiting their method we try to generate and classify
sequences in ambiguous situations, studying if feedback networks are able to
explore multiple feasible results.

23

24

Chapter 4

Multiple Hypothesis Prediction

Ambiguity is present in every kind of task. We may encounter uncertainty
in object classification problems, where salient objects are not labeled, or
in pose estimation, where ambiguous values are often predicted for occluded
elements. Future prediction is especially difficult since the task itself is un-
certain and many outcomes can be equally right. In their work, Rupprecht
et al. [48] propose a general framework for Multiple Hypothesis Prediction
(MHP) that allows to convert any single-prediction CNN architecture into a
multiple-output one. The original loss is wrapped into a novel meta-loss so
that training can be achieved by gradient descend and backpropagation. It
is shown that minimising the new problem generates a Voronoi tessellation
of the output space based on the problem loss.

Definition 1. Voronoi Tessellation Let X be a metric space with a dis-
tance function d and let P = p1, ..., pk be a set of sites in X. A Voronoi
region, or Voronoi cell, Ck associated with the site Pk is defined as follows:

Ck = {x ∈ X | d(x, Pk) ≤ d(x, Pj) ∀j 6= k}

In other words a Voronoi cell is the set of all points whose distance from
the associated site is less than the distance to any other site. The Voronoi
Tessellation of X is therefore the collection of the Voronoi cells associated to
a given set of sites.

25

(a) Euclidean distance [2] (b) Manhattan distance [1]

Figure 4.1: Voronoi tessellation using two different distances

4.1 Derivation of MHP Model

In this section we will explain the derivation of the ambiguity-aware model
from the traditional single hypothesis model. The vector space of input
variables will be indicated as X and the vector space of output variable
as Y , the joint probability density over input variables and output will be
represented by p(x, y). We also assume to have a training set made of N
tuples (xi, yi), where i = 1, ..., N

4.1.1 Single Hypothesis Model

Training a predictor fθ : X → Y , parametrised by θ ∈ Rn, in a supervised
scenario we aim at minimising the expected error:

1

N

N∑
i=1

L(fθ(xi), yi) (4.1)

In case N is large enough, Equation 4.1 provides a good approximation
of the continuous error ∫

X

∫
Y
L(fθ(x), y)p(x, y) dy dx (4.2)

that is minimised by the conditional average (see [32])

26

fθ(x) =

∫
Y
y · p(y|x) dy (4.3)

The conditional average is not always a good representation, in fact the
expected value may fall where the conditional probability density p(y|x) is
low. Imagine a system that wants to predict a value that is randomly 0 or
256, the average output will be 128. In these cases, using a model capable of
predicting multiple feasible outcomes may be a better approach.

4.1.2 Multiple Hypothesis Model

Let us consider the Voronoi tessellation of the output space Y = ∪Mi=1Yi
induced by M generators (sites) gi(x) and the loss L associated with the
problem. Every cell Yi contains all the points that are closest to the site
gi(x). In our case the vicinity depends on the loss function L.

Yj(x) = {y ∈ Y : L(gj(x), y) < L(gk(x), y) ∀k 6= j} (4.4)

The ambiguity aware model, proposed in the paper, is composed by a
single predictor, instead of multiple ones, able to output M values,

fθ(x) = (f 1
θ (x), ..., f

M
θ (x)) (4.5)

and the loss L is always computed for the closest of the M predictions.

∫
X

M∑
j=1

∫
Yj(x)
L(f jθ (x), y)p(x, y) dy dx (4.6)

Therefore, training such model in order to minimise Equation 4.6 will
induce a Voronoi tessellation of Y in M cells, generated by the predicted
hypotheses f iθ. In a regression problem L is typically the l2-loss. In case the
density p(x, y) satisfies mild regularity condition, it is equal to zero only for
a null subset, then the following theorem is valid.

Theorem 1. (Minimiser of 4.6) In order for Equation 4.6 to be minimal
it is necessary that the sites gi(x) are identical to the predictors f jθ , an both

27

correspond to a centroidal Voronoi tesselation:

gj(x) = f jθ (x) =

∫
Yj L(f

j
θ (x), y)p(y|x) dy∫
Yj p(y|x) dy

(4.7)

i.e f jθ predicts the conditional average of the Voronoi cell it defines.

Proof can be found in [48] and [15]

4.2 Minimisation Scheme

In this section we explain how Equation 4.6 can be minimised, using a neural
network and a generic dataset composed of N examples. The algorithm can
be explained in a few steps but we must take into consideration that we are
training the network with back-propagation:

1. As explained in Theorem 1, it is necessary to create M sites that cor-
respond to the predictions f jθ (xi), j ∈ {1, ...,M}. This is done for each
training sample (xi, yi) by a forward pass through the neural network.

2. Using the chosen loss function L, the examples (xi, yi) and the sites/predictions
f jθ (xi), build the Voronoi tessellation of Y .

3. Each Voronoi cell must be used to compute the back-propagation gra-
dients of the error ∂

∂θ
1
|Yi|
∑

yi∈Yi L(f
j
θ (xi), yi), with |Yi| cardinality of

Yi. If the example belongs to the cell it contributes to the error.

4. An update step is now performed taking into consideration the gradi-
ent per hypothesis computed in the previous step. At this point, if a
convergence criterion is not met we continue with Step 1.

If we consider the meta-loss in Equation 4.8, we can implement the algo-
rithm directly and without particular difficulties.

M(fθ(xi), yi) =
M∑
j=1

δ(yi ∈ Yj(xi))L(f jθ (xi), yi) (4.8)

The easiest way to convert an existing network into a MHP one is to copy
the output layer multiple times (before the initialisation). In this way it is

28

possible to generate multiple answers. At training time, for each example
we compute the loss on all the hypotheses. The one providing the lowest
error is used in the meta-loss. Since the predictors may be initialised very
far from the labels y, it is possible that all these lie in a single Voronoi cell
and therefore only one predictor gets the updates. To avoid this problem it
is necessary to relax the Kronecker delta δ: from a hard 0-1 assignment to

δ̂(c) =

1− ε if c is true
ε

M−1 else
(4.9)

In this way the closest hypothesis gets a label y and contributes to the
loss with a high weight and all the others with a small one. This framework
allows us to take an existing feedforward network (e.g CNN) with any loss,
embed the loss in Equation 4.8, replicate the output layer and train the
network to output multiple predictions.

The experiments show that MHP models outperform the associated SHP
ones. MHP models can also be used to provide the variance over the hypothe-
ses that is an additional information to assess if a situation is ambiguous or
not.

29

30

Chapter 5

Problem, Methodology, Rnn
extension and model(s)

In this chapter we first describe the ambiguity problem in trajectory predic-
tion. In Section 5.1 we provide some examples with standard neural networks
to present the issue and how predicting multiple hypotheses can help tackle
it.
In Section 5.2 we talk about extending MHP to RNN models in order to
predict multiple trajectories, while in Section 5.3 we display the multiple
classification problem and the relative MHP model.

5.1 Ambiguity in Trajectory Prediction

To explain the problem we consider a situation in which a car is approach-
ing an intersection (or equivalently a roundabout), there are three possible
outcomes: the car could proceed straight, it could turn right or it could turn
left. A single hypothesis neural network predicts always the most probable
outcome, but in case the car didn’t give any hint on the manoeuvre the re-
sult may have about the same probability as the other possibilities, in case
of classification, or might be an average trajectory in case of prediction. In
both cases the answer that the network returns in an ambiguous situation is
not satisfactory.

We try to reproduce this problem with a toy example. To do so we use a

31

(a) Left (b) Straight (c) Right

Figure 5.1: Intersection example trajectories

handmade dataset composed of trajectories, sequences of x and y real-valued
tuples, resembling a car approaching an intersection, like the ones we see in
Figure 5.1. We then model two problems:

• Classification: given a point the network should predict the end direc-
tion of the object, the three possible labels are Right, Left and Straight.

• Regression: given a point the network should predict the endpoint, x
and y coordinates, of the trajectory.

We associate a label to every point, points belonging to the same trajec-
tory share the same label, and train a simple neural network with one hidden
layer. The obtained results are consistent with our assumptions, when the
input represents an ambiguous situation the neural network does not give a
reliable answer. In the classification case, as shown in Table 5.1, the model
gives a safe answer for the first two cases but in the third one the answer is
not reliable, as well as wrong, as the probability is just slightly higher than
the other two possibilities.

Similarly, in the regression case (Figure 5.2) the model outputs a very
accurate endpoint for unambiguous inputs, while it returns a point in the
middle of the intersection in the last case. When the input may produce
different feasible outcomes the model tends to return the average between
them, resulting in a point very distant from ground truth.
It is clear that a model able to provide multiple answers may prove very
useful in exploring different feasible results and therefore be more accurate.

32

Right Straight Left

Left 0% 0% 33.36%
Straight 0% 100% 31.69%
Right 100% 0% 34.95%

Table 5.1: SHP Model Output Class Probabilities

We already know from Chapter 4 that it is sufficient to replicate the output
layer as many times as the number of hypotheses we want, with random
initialisation, to obtain an MHP version of the network. This can be further
trained embedding the previous loss in the MHP meta-loss (Equation REF).

(a) Non ambiguous (b) Ambiguous

Figure 5.2: SHP Model Regression Results - TODO

The MHP classification results show that all the hypotheses return the
same class in the non ambiguous situation (Table 5.2a) while in the other
case (Table 5.2b) every prediction is different. The difference between SHP
and MHP here is clear: the SHP model choses the highest class amongst very
similar probabilities, the MHP model understands the uncertainty and every
hypothesis gives a feasible answer with 100% probability.

The contrast between MHP and SHP in regression (Figure 5.3b) is even

33

(a) Ground Truth: Left
Left Straight Right

#1 100% 0% 0%
#2 100% 0% 0%
#3 100% 0% 0%

(b) Ground Truth: Straight
Left Straight Right

#1 2% 2% 95%
#2 94% 3% 3%
#3 3% 95% 2%

Table 5.2: Classification per Hypothesis

more evident. In the ambiguous case, instead of predicting the mean point,
every hypothesis return a feasible endpoint. We may not know which one is
the more plausible but we know that one of these is very close to the ground
truth. As in classification, in an unambiguous situation all the hypothesis
are similar, showing no uncertainty.

(a) Non Ambiguous (b) Ambiguous

Figure 5.3: MHP Regression - Blue input, Green Ground Truth, Other Predictions

The model does not take into consideration the temporal position of the
input point in the whole trajectory, but we can still show how the accu-
racy/loss vary with respect to that. In Figure 5.4 we can notice how the

34

result improve if the processed point is closer to the end of the sequence, the
model is more accurate when the input is non ambiguous.

(a) Classification Accuracy (b) Regression Loss

Figure 5.4: Accuracy and Loss related to the Point position

These simple experiments prove that MHP could be successively used in
this context, leading to more accurate predictions in ambiguous cases.

5.2 Multiple Trajectory Prediction: MHP Ex-
tension to RNNs

In this section we focus on a particular type of time series: trajectories of
objects. We want to create a recurrent architecture capable of predicting
multiple feasible future trajectories, given the sequence of previous positions
as input. To do so we want to apply the MHP method. Our goal is to
prove that MHP could be applied to recurrent models, therefore we omit
everything related to the spatial context and the social acceptability of the
predictions in order to simplify as much as possible the models. Since state
of the art papers [4, 22] take into consideration these information thanks to
an encoder-decoder architecture we decided to use that as well, in this way
it should be easier to retrofit previous single-prediction models.

Problem formulation We assume to have N trajectories composed of T
ij-coordinates (int , j

n
t), representing an object position in the space, for T

subsequent time-steps. We receive as input the position of an object from

35

time 0 to Tin and we try to predict multiple sequences of positions from
time Tin+1 to T . The goal is to obtain multiple feasible trajectories. In case
the input defines an ambiguous situation the predictions should show the
different possible outcomes; they should instead be similar in the opposite
case. We define the n-th input trajectory as Xn = (xnt) = (int , j

n
t) with

t = 0..Tin and the correspondent output trajectory as Y n = (ynt) = (int , j
n
t)

with t = 0...Tpred. We represent the K predictions as Ỹn and the k-th
hypothesis as Ỹ n

k .

Model 1 As already stated in Chapter 4, in order to transform a feedfor-
ward single-prediction model into an MHP model it is sufficient to replicate
the output layer. We want to apply this definition also to LSTMs, also main-
taining an encoder-decoder architecture.
The first model is composed of three parts. The first part is an LSTM encoder
that process the input trajectory Xn and produces an hidden state SnTin . The
internal state is then used as initial state for the LSTM decoder to generate
a sequence of high dimensional points Zn where the number of dimensions
depends on the size of the LSTM. Every element of Zn is then transformed,
through a fully connected layer, into K different (i, j) tuples. Together, the
sequences of tuples together form the different output trajectories.

Figure 5.5: Model 1

The key idea behind this model is to produce high dimensional repre-
sentation of the output space that can be converted into different tuples of

36

coordinates. The network must learn how to represent ambiguous situations
through the hidden state and also how to extract the points from the decoder
output representation.

Model 2 In the second model we want to generate directly the different
trajectories. To do so it is necessary to run the decoder multiple times with
different initialisation. We maintain the LSTM encoder to process the input
sequence and get the resulting hidden state SnTin . Then, we employ a fully
connected layer to generateK different states SnTin,h. At this point we can run
the decoder multiple times with distinct initial states generating the output
sequences. Finally, we exploit a linear transformation to convert the LSTM
output points into coordinates, thus obtaining the trajectories.

Figure 5.6: Model 2

In this model, the layer we use to generate multiple initial states must
learn when an initial situation is ambiguous and consequently output differ-
ent representations; these will be used by the decoder to predict different
trajectories.

Both the models have an encoder-decoder architecture and predict as
an output a vector of trajectories Ỹn

t . We force the predicted points to be

37

consistent with the ground truth through the whole trajectory, employing
the mean euclidean distance (L2-norm) as general loss.

Le(Y n, Ỹ n) =

Tpred∑
t=0

||ynt − ỹnt ||2 (5.1)

The final step is to embed our loss into the MHP meta-loss function
(Equation 4.8) so as to take into consideration the multiple hypothesis pre-
diction.

M(Y n, Ỹn) =
K∑
k=1

δ̂(k = c)Le(Y n, Ỹ n
k) (5.2)

c = argmin
h
Le(Y n, Ỹ n

h) (5.3)

Minimising this function yields a Voronoi tessellation of the output space,
as described in Chapter 4.

5.3 Multiple Sequence Classification

We also want to try MHP on a sequence classification problem. To do so
we exploit the architecture used by Scheel et. al [49]. In their work, they
consider the problem of assessing a situation with respect to the lane changing
problem. Basically they output if a car is about to change lane (left or right)
in every time-step of a sequence. They outperform existing methods on a
public available dataset.

For this reason we decided to use the same dataset preprocessing that
collects the car’s velocity, lateral velocity, distance from the middle of the
lane, lane position (number), information about the neighbouring vehicles
and distance from previous cars.

The simple LSTM model takes as input an embedding of the previous
information (or a subset of it), passes the result through a fully connected
layer to reduce the dimensions and finally use a softmax layer to produce the
probabilities. We use the same model, but we replicate the fully connected
layer in order to have more than one hypothesis.

38

Figure 5.7: Classification model

We also embed the standard model loss, which is cross-entropy over the
trajectory, into the MHP meta-loss as already explained in Equations 5.2
and 5.3

39

40

Chapter 6

Experiments

In this chapter we report both the quantitative and qualitative results that
we obtained testing our models.

In Section 6.1 we present the experimental results on the trajectory pre-
diction models. We confront our MHP model with the single hypothesis one
and the state-of-the-art [TODO- but explain differences!!]; we also show some
ambiguous situation where the models explore the different possibilities.

In Section 6.2 we compare accuracy, precision and recall, with the help of
a particular metric, of the multiple classification model with respect to the
standard one.

6.1 Trajectory Prediction

In this section we evaluate both our MHP models on a synthetic dataset and
two publicly available datasets: Stanford Drone Dataset [47] and ETH [42].

6.1.1 Synthetic Dataset

This dataset is the one we introduced in Section 5.1. Examples of the tra-
jectories are showed in Figure 5.1. We mainly used this dataset to derive the
two models presented in Section 5.2 and to refine the hyperparameters. On
such a simple dataset the differences between the single-prediction model and
the MHP ones are minimal, also the two different MHP models return very
similar trajectories. We therefore show only qualitative results obtained with

41

Model 2 (Figure 5.6). Nonetheless, the experiments carried out convinced us
to continue our research and test our model on real examples.

Figure 6.1: Differences between single hypothesis and multiple hypotheses in unam-
biguous situations

As we can see in Figure 6.1 the standard model and the MHP model work
fine. The situations are obviously non-ambiguous therefore the predicted
trajectories are very close to the ground truth. Also we can see how all
the hypotheses predicted by our model are similar, showing that there is no
uncertainty in the result.

In an ambiguous situation (Figure 6.2), however, we can see how the
single prediction model is not able to output a feasible trajectory. Our model,
instead, shows three the very different outcomes, highlighting also the fact
that with the given input is not possible to return a certain answer.

6.1.2 Implementation Details

In the next experiments we use the two our models (MHP1, MHP2) and a
single-prediction model (SHP) with an encoder-decoder architecture (basi-

42

Figure 6.2: Differences between single hypothesis and multiple hypotheses in ambiguous
situations

cally Model 1 with a single hypothesis). SHP loss is defined as the mean
L2-norm (Equation 5.1). All the LSTMs, both encoders and decoders, have
a fixed hidden state dimension of 64. We set the MHP ε equal to 0.15,
higher than the one used in [48], since with 0.05 the networks are not able
to learn correctly the different possibilities. We train with ADAM (learning
rate 0.0001) on 200 epochs with an early stop patience of 10. We also add a
regularisation term to prevent overfitting. All the models are implemented
in Tensorflow and trained on a single low-performance GPU.

We report the errors with two metrics, similarly to [4] and [22], that in
the MHP case are computed on the best hypothesis :

• Average Displacement Error - ADE: the average L2-norm of the differ-
ence between the predicted trajectory points and the respective ground
truth.

• Final Displacement Error - FDE: the L2-distance between the pre-

43

dicted last points and ground truth last point.

We compare ADE and FDE of the following models:

• Single Hypothesis Model SHP.

• Model 1: with three (MHP1-3), five (MHP1-5) and seven (MHP1-7)
hypotheses predicted.

• Model 2: with three (MHP2-3), five (MHP2-5) and seven (MHP2-7)
hypotheses predicted.

6.1.3 ETH Dataset

The ETH Dataset [42] is composed of two scenes (ETH and Hotel) each
containing 750 pedestrians. These dataset represent crowded scenarios, in
fact it has been previously used in order to test social modelling architectures.
The trajectories represent a pedestrian position every 0.4s. We test our
models trying to predict 12 time-steps (4.2s). In these experiments the errors
are in meters.

Model Loss ADE FDE

SHP 0.077 0.76 1.15
MHP1-3 0.075 0.87 1.28
MHP1-5 0.078 0.82 1.24
MHP1-7 0.078 0.99 1.44
MHP2-3 0.078 0.61 0.91
MHP2-5 0.093 0.82 1.38
MHP2-7 0.067 0.82 1.29

Table 6.1: Quantitative Results on ETH (lower is better)

The quantitative results show that our models are able to predict at least
as good as the single prediction model. In Table 6.1 we can see that the
MHP2-3 best hypothesis is better than SHP. In Hotel we do not outperform
the SHP model but the result are still promising. Also we can notice that

44

Model Loss ADE FDE

SHP 0.093 0.41 0.54
MHP1-3 0.95 0.50 0.66
MHP1-5 0.128 1.10 1.58
MHP1-7 0.128 1.29 1.88
MHP2-3 0.124 0.68 0.94
MHP2-5 0.124 0.82 1.22
MHP2-7 0.123 0.84 1.10

Table 6.2: Quantitative Results on Hotel (lower is better)

the errors are higher with more hypotheses, this may denote that the right
number of hypothesis is three or that the model is not able to produce more
than three trajectories.

To outperform the SHP model, however, is not the goal of this work. We
want to test if the model is able to predict multiple feasible outcomes. This
can happen only in a small subset of the whole dataset, the ambiguous scenes,
and therefore the MHP usefulness is not clearly shown by the numbers. For
this reason we now present some visual results.

In Figure 6.3 we can see how the models predict the different trajecto-
ries in one example of the ETH scene. Model 2, in particular, is able to
generate always feasible trajectories looking at the starting point and the
direction. Model 1, instead, provide trajectories that are a bit too far from
the input endpoint; some of them are completely unfeasible. For instance in
Figure 6.3b we can already see some trajectories that start from prohibitive
positions (pink, white). The same happens in Figure 6.3c, in this case the
best trajectory (grey) with respect to the ground truth is very unlikely to
be feasible. All the trajectories predicted by Model 2 are instead interesting,
some of them resemble the ground truth, others point towards another, but
still real-looking, direction.

In Figure 6.4 we can see some visual results on the Hotel scene. Quali-
tatively we can say what we already noticed on ETH, Model 2 tends to give
more plausible results, even if the errors are lower for Model 1. In fact, al-

45

(a) MHP1-3 (b) MHP1-5 (c) MHP1-7

(d) MHP2-3 (e) MHP2-5 (f) MHP2-7

Figure 6.3: Visual results on ETH dataset (Blue=Input, Green=Ground Truth,
other=Prediction

ready with five hypotheses (Figure 6.4), Model 1 outputs three sequences that
are highly unlikely. We can also notice that every model is alway predicting
at least one hypothesis that is very close to the real one. This indicates that
the others represent tentatives to explore the possibile directions, given the
examples analysed in the training set.

In this scene however the network seems more confused, one possible
answer is that the number of example is lower and the trajectories do not
follow certain predetermined paths (like ETH). Moreover, the trajectories in
this scene are extremely linear so the model may have difficulties in generating
different, but feasible, predictions.

6.1.4 Stanford Drone Dataset

This dataset contains aerial videos of pedestrians, cars, bikers and skaters
captured in the Stanford University campus. The dataset is divided in dif-
ferent scenes and for each scene there are several videos. Since the trajectories
in ETH dataset are mostly linear, we use a scene called "deathCircle" that

46

(a) SHP (b) MHP1-3

(c) MHP1-5 (d) MHP2-3

(e) MHP2-5 (f) MHP2-7

Figure 6.4: Visual results on Hotel dataset (Blue=Input, Green=Ground Truth,
other=Prediction

contains trajectories of agents approaching a roundabout. These trajectories
are not linear and most of them follow the roads or the sidewalks, we can
therefore feed the network with sequences that are ideally following some

47

rules. We can test if the models are able to generate the different outcomes
given an ambiguous input sequence. All the positions are given as the four
corner of a bounding box, we compute the actual position as the center of the
box. The resulting trajectories may be therefore segmented in some points.

We first start with a quantitative evaluation. Since there is not a con-
version between real world coordinate and pixels, ADE and FDE are shown
in pixels. As we can see in Table 6.3 both our models with five and three
hypotheses outperform the SHP model. Using the meta-loss we are able to
reach better results on the best hypothesis. On this dataset, as well as in
ETH the models predicting more hypotheses have worse performance.

With this dataset we can finally show that the model learns to predict
feasible trajectories in ambiguous situation. As we show in Figure 6.5, when
the input sequence represent a non ambiguous situation all the hypotheses
converge and are similar to the ground truth. In fact in the first image a car
exits the roundabout and there are no viable options but going straight. In
the image (b), instead, the car is entering the road circle and the predicted
trajectories split between going right or straight (and maybe eventually left).

Model Loss ADE FDE

SHP 0.109 68.45 137.60
MHP1-3 0.087 63.93 124.52
MHP1-5 0.075 63.45 127.31
MHP1-7 0.089 96.47 178.14
MHP2-3 0.086 66.66 129.57
MHP2-5 0.075 67.15 134.36
MHP2-7 0.087 79.81 150.93

Table 6.3: Quantitative Results on Stanford deathCircle video1

In Figure 6.6 we see two other interesting examples. In image (a) we
can see an input sequence of, presumably, a pedestrian crossing the road.
In this case the network learned how to model also pedestrian trajectories
in the sidewalk. In image (b), instead, we show an example in which the
network trajectories go from the road to the sidewalk. This last result is still

48

(a) Non Ambiguous (b) Ambiguous

Figure 6.5: Difference between the outputs in ambiguous an non ambiguous situations

semi-plausible since the examples are mixed because, for instance, bikers ride
both on road and sidewalk.

6.2 Sequence Classification

For the sequence classification problem we test on the same dataset as Scheel
et al. [49], the Next Generation Simulation(NGSIM) [39], that is composed
of examples from Interstate 80 Freeway Dataset (I-80) and US Highway 101
Dataset (US-101). The datasets contains the vehicles trajectories as well as
other information, such as the lane boundaries.

We compare an SHP model against our MHP model with three and five
hypotheses. We train both the models with two different sets of features:

• Set 1: Lateral velocity and distance from the middle of the lane

• Set 2: Lateral velocity, distance from the middle of the lane, heading
angle (direction), lateral acceleration, longitudinal velocity, temporal

49

(a) (b)

Figure 6.6: Visual examples of Multiple predicitons

distance from the six closest neighbouring vehicles (2 on each lane)
and lane number

We define a true prediction (tp) when the model predicts a lane change
correctly, a false prediction (fp) when a lane change is predicted but the driver
change the lane in the other direction (e.g. predicted left change but it is
right change), a false positive prediction (fpp) when we predict a manoeuvre
that will not happen and a missed prediction as mp. In order to compare the
models we use three metrics:

• Accuracy: the overall accuracy over the sequences.

• Precision: tp
tp+fp+fpp

• Recall: tp
tp+fp+mp

These metric have been introduced by Jain et al. [28] that, in their
work, use RNNs to fuse multiple sensors streams and anticipate car drivers

50

Figure 6.7: NGSIM scene, in red the considered car, in grey the neighbours and respec-
tive temporal distances

manoeuvres (lane changes, turns). Precision indicates how many of the pre-
dicted manoeuvres are correct while recall shows the amount of manoeuvres
that are correctly classified. Notice that there is no distinction between a
right lane change and a left lane change in this case.

A prediction is considered positive in case it is above a certain threshold.
The threshold is a float number between 0 and 1 in case of SHP model. In
order to define a positive prediction for MHP model it is necessary that more
than a fixed threshold T hypotheses agree on the same prediction, therefore
T must be an integer value between 1 and the number of hypotheses. We
also consider the accuracy (on the best hypothesis in MHP models) but,
since the lane changes are very rare, correctly classifying a lane change more
important than the rest of the sequence.

If we consider the accuracy, our MHP models outperform the SHP with
both features set. We could not obtain a model that is better in both precision
and recall at the same time but we still have the peak values depending
on which threshold we choose. As expected, if T is low recall is higher
but the model outputs many false positives. On the other hand, a high
threshold yields to very precise prediction, increasing the number of missed
manoeuvres.

51

Model Accuracy Threshold Precision Recall

SHP 63%
0.8 55% 90%
0.9 71% 87%

MHP3 66%
2 45% 90%
3 88% 75%

MHP5 77%
3 51% 88%
4 61% 74%
5 94% 63%

Table 6.4: Sequence Classification with Set 1 features

Model Accuracy Threshold Precision Recall

SHP 63%
0.8 49% 87%
0.9 68% 83%

MHP3 71%
2 47% 88%
3 91% 66%

MHP5 70%
3 53% 77%
4 55% 76%
5 95% 62%

Table 6.5: Sequence Classification with Set 2 features

52

Chapter 7

Conclusion and Future Work

In this thesis we first describe how the multiple hypothesis predictions mod-
els, proposed by Rupprecht et al. [48], work and how a feedforward model
can be modified to predict more than one feasible output.

Then, we exploit this framework to convert recurrent architectures into
their respective MHP version in order to generate or classify time series. We
defined two different models for regression problems that can easily retrofit
single-prediction models with an encoder-decoder architecture. We tested
these two models on public datasets and showed their ability to learn as
good as the single hypothesis models or better in many cases. We show how
the MHP models outperform the SHP one in ambiguous situations, where
they are able to generate different feasible predictions.

We also test the MHP in a classification problem showing how predicting
multiple classes increases the accuracy with respect to SHP. MHP models are
also able to reach the highest values of precision and recall in this particular
problem.

In the future we want to introduce social behaviour modelling and scene
understanding in the trajectory prediction models to compare the results
with state of the art papers, that already implement that. We also want to
test the MHP classification with more complex models, like the ones we see
in related work.

53

54

Bibliography

[1] By balu ertl [cc by-sa 1.0 (https://creativecommons.org/licenses/by-
sa/1.0)], from wikimedia commons. 26

[2] By balu ertl [cc by-sa 4.0 (https://creativecommons.org/licenses/by-
sa/4.0)], from wikimedia commons. 26

[3] Hirotugu Akaike. Fitting autoregressive models for prediction. 21:243–
247, 1969. 21

[4] Alexandre Alahi, Kratarth Goel, Vignesh Ramanathan, Alexandre Ro-
bicquet, Li Fei-Fei, and Silvio Savarese. Social lstm: Human trajectory
prediction in crowded spaces. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2016. 22, 35, 43

[5] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural ma-
chine translation by jointly learning to align and translate. 2014. 21

[6] Tamer Basar. A New Approach to Linear Filtering and Prediction Prob-
lems. IEEE, 2001. 21

[7] Christopher M. Bishop. Mixture density networks. Technical report,
1994. 22

[8] Leo Breiman. Random forests. Machine Learning, 45(1):5–32, 2001. 8

[9] Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Fethi
Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase repre-
sentations using RNN encoder-decoder for statistical machine transla-
tion. 2014. 21, 22

55

[10] Jan Chorowski, Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. End-to-end continuous speech recognition using attention-based
recurrent NN: first results. 2014. 21

[11] Junyoung Chung, Çaglar Gülçehre, KyungHyun Cho, and Yoshua Ben-
gio. Empirical evaluation of gated recurrent neural networks on sequence
modeling. 2014. 22

[12] Junyoung Chung, Kyle Kastner, Laurent Dinh, Kratarth Goel, Aaron C.
Courville, and Yoshua Bengio. A recurrent latent variable model for
sequential data. 2015. 21

[13] Debadeepta Dey, Varun Ramakrishna, Martial Hebert, and J. Andrew
Bagnell. Predicting multiple structured visual interpretations. 2015
IEEE International Conference on Computer Vision (ICCV), pages
2947–2955, 2015. 23

[14] Jeff Donahue, Lisa Anne Hendricks, Sergio Guadarrama, Marcus
Rohrbach, Subhashini Venugopalan, Kate Saenko, and Trevor Darrell.
Long-term recurrent convolutional networks for visual recognition and
description. 2014. 21

[15] Qiang Du, Vance Faber, and Max Gunzburger. Centroidal voronoi tes-
sellations: Applications and algorithms. SIAM Rev., 41(4):637–676,
1999. 28

[16] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient
methods for online learning and stochastic optimization. J. Mach. Learn.
Res., 12:2121–2159, 2011. 15

[17] Katerina Fragkiadaki, Sergey Levine, and Jitendra Malik. Recurrent
network models for kinematic tracking. 2015. 21

[18] X. Geng, C. Yin, and Z. Zhou. Facial age estimation by learning from la-
bel distributions. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 35(10):2401–2412, 2013. 23

56

[19] Alex Graves. Generating sequences with recurrent neural networks.
2013. 21

[20] Alex Graves and Navdeep Jaitly. Towards end-to-end speech recognition
with recurrent neural networks. In Proceedings of the 31st International
Conference on International Conference on Machine Learning - Volume
32, ICML, pages 1764–1772, 2014. 21

[21] Alex Graves, Abdel-rahman Mohamed, and Geoffrey E. Hinton. Speech
recognition with deep recurrent neural networks. 2013. 21

[22] Agrim Gupta, Justin Johnson, Li Fei-Fei, Silvio Savarese, and Alexan-
dre Alahi. Social GAN: socially acceptable trajectories with generative
adversarial networks. 2018. 22, 35, 43

[23] Abner Guzmán-rivera, Dhruv Batra, and Pushmeet Kohli. Multiple
choice learning: Learning to produce multiple structured outputs. In
F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, editors,
Advances in Neural Information Processing Systems 25, pages 1799–
1807. Curran Associates, Inc., 2012. 23

[24] M. A. Hearst, S. T. Dumais, E. Osuna, J. Platt, and B. Scholkopf. Sup-
port vector machines. IEEE Intelligent Systems and their Applications,
13(4):18–28, 1998. 8

[25] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory.
Neural Comput., 9(8):1735–1780, 1997. 18

[26] Kurt Hornik. Approximation capabilities of multilayer feedforward net-
works. Neural Netw., 4(2):251–257, 1991. 11

[27] Marcus Hutter. The human knowledge compression contest. 2012. 21

[28] Ashesh Jain, Hema Swetha Koppula, Shane Soh, Bharad Raghavan, Avi
Singh, and Ashutosh Saxena. Brain4cars: Car that knows before you
do via sensory-fusion deep learning architecture. 2016. 22, 50

[29] Andrej Karpathy, Armand Joulin, and Fei-Fei Li. Deep fragment em-
beddings for bidirectional image sentence mapping. 2014. 21

57

[30] Andrej Karpathy and Fei-Fei Li. Deep visual-semantic alignments for
generating image descriptions. 2014. 21

[31] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. 2014. 15

[32] A.N. Kolmogorov. Foundations of the theory of probability, pages 47-64.
Chelsea Pub. Co., 1950. 26

[33] Kimin Lee, Changho Hwang, KyoungSoo Park, and Jinwoo Shin. Con-
fident multiple choice learning. 2017. 23

[34] Namhoon Lee, Wongun Choi, Paul Vernaza, Christopher Bongsoo Choy,
Philip H. S. Torr, and Manmohan Krishna Chandraker. DESIRE: dis-
tant future prediction in dynamic scenes with interacting agents. 2017.
22

[35] Stefan Lee, Senthil Purushwalkam, Michael Cogswell, Viresh Ranjan,
David J. Crandall, and Dhruv Batra. Stochastic multiple choice learning
for training diverse deep ensembles. 2016. 23

[36] Mitchell P. Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini.
Building a large annotated corpus of english: The penn treebank. Com-
put. Linguist., 19(2):313–330, 1993. 21

[37] P. McCullagh and J.A. Nelder. Generalized Linear Models, Volume 37.
CRC Press, 1989. 21

[38] Joe Yue-Hei Ng, Matthew J. Hausknecht, Sudheendra Vijaya-
narasimhan, Oriol Vinyals, Rajat Monga, and George Toderici. Beyond
short snippets: Deep networks for video classification. 2015. 21

[39] NGSIM. “ngsimproject”, https://ops.fhwa.dot.gov/trafficanalysistools/ngsim.htm.
49

[40] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. Understanding
the exploding gradient problem. 2012. 18

58

[41] Dario Pavllo, David Grangier, and Michael Auli. Quaternet: A
quaternion-based recurrent model for human motion. 2018. 21

[42] S. Pellegrini, A. Ess, K. Schindler, and L. van Gool. You’ll never
walk alone: Modeling social behavior for multi-target tracking. In 2009
IEEE 12th International Conference on Computer Vision, pages 261–
268, 2009. 41, 44

[43] M.B. Priestley. Spectral Analysis and Time Series: Multivariate series,
prediction and control. Probability and Mathematical Statistics. Aca-
demic Press, 1981. 21

[44] Joaquin Quiñonero Candela and Carl Edward Rasmussen. A unifying
view of sparse approximate gaussian process regression. J. Mach. Learn.
Res., 6:1939–1959, 2005. 21

[45] J. R. Quinlan. Induction of decision trees. Machine Learning, 1(1):81–
106, 1986. 8

[46] Carl Edward Rasmussen. Gaussian Processes in Machine Learning,
pages 63–71. Springer Berlin Heidelberg, Berlin, Heidelberg, 2004. 21

[47] Alexandre Robicquet, Amir Sadeghian, Alexandre Alahi, and Silvio
Savarese. Learning social etiquette: Human trajectory understanding
in crowded scenes. In Bastian Leibe, Jiri Matas, Nicu Sebe, and Max
Welling, editors, ECCV, pages 549–565, Cham, 2016. Springer Interna-
tional Publishing. 41

[48] Christian Rupprecht, Iro Laina, Maximilian Baust, Federico Tombari,
Gregory D. Hager, and Nassir Navab. Learning in an uncertain world:
Representing ambiguity through multiple hypotheses. 2016. 6, 23, 25,
28, 43, 53

[49] Oliver Scheel, Loren Arthur Schwarz, Nassir Navab, and Federico
Tombari. Situation assessment for planning lane changes: Combining
recurrent models and prediction. 2018. 22, 38, 49

59

[50] D. Tran, W. Sheng, L. Liu, and M. Liu. A hidden markov model based
driver intention prediction system. In 2015 IEEE International Con-
ference on Cyber Technology in Automation, Control, and Intelligent
Systems (CYBER), pages 115–120, 2015. 22

[51] J. M. Wang, D. J. Fleet, and A. Hertzmann. Gaussian process dynamical
models for human motion. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 30(2):283–298, 2008. 21

[52] Christopher K. I. Williams. Prediction with Gaussian processes: from
linear regression to linear prediction and beyond, pages 599–621. MIT,
1999. 21

[53] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron C.
Courville, Ruslan Salakhutdinov, Richard S. Zemel, and Yoshua Ben-
gio. Show, attend and tell: Neural image caption generation with visual
attention. 2015. 21

60

Ringraziamenti

Un ringraziamento speciale ai miei genitori e ai miei nonni che mi hanno
permesso di raggiungere questo traguardo. Alla mia ragazza, Chiara, per
avermi supportato (ma soprattutto sopportato) fino ad oggi. Agli amici di
Romagna Ago, Adam, Gigi, Mazzo e Otto per le serate, le feste e le trasferte.
Gianna, Buro, Fucio, Simo per aver condiviso esami e fatiche. Gabri, Lori
e Ricky per ogni progetto preparato assieme. Bombo per esserci sempre
stato negli ultimi cinque anni, per ogni esame preparato assieme, per ogni
volta che siamo tornati a tarda notte e mi hai fatto dormire sul divano e
per aver contribuito a rendere Bologna la mia seconda casa. Grazie a tutti
quanti (anche quelli che non ho citato) per aver reso questi anni fantastici.
Ringraziamento aggiuntivo a Bombo e Lori per avermi ospitato un mese a
testa mentre non avevo un appartamento.
I would like to thank Prof. Di Stefano and Dr. Tombari for giving me the
opportunity to prepare this thesis at the TU München, Oliver for all the
ideas and the time spent helping and all the people from CAMP chair. Also
a big thank you to all the new (and old) friends from München: Alessio,
Alessandro, Steve, Michael and Ted. Last but not least: Shounak, Sam and
Pouya the crazy people i needed in Germany.
Special thanks to DESTRAGE for the music that I listened throughout these
years.

"You think you learned the rules, but instead you just narrowed
your views. Learn on your skin, not from those books. Try again,
don’t be afraid. Fail as much as you can. Who cares in the end?"

–Destrage, "Destroy Create Transform Sublimate"

61

	Introduction
	Thesis Outline

	Background
	Machine Learning
	Supervised Learning
	Unsupervised Learning

	Neural Networks
	Parameter Optimisation

	Recurrent Neural Networks
	Vanilla RNN
	Long Short-Term Memory Networks

	Related Work
	Multiple Hypothesis Prediction
	Derivation of MHP Model
	Single Hypothesis Model
	Multiple Hypothesis Model

	Minimisation Scheme

	Problem, Methodology, Rnn extension and model(s)
	Ambiguity in Trajectory Prediction
	Multiple Trajectory Prediction: MHP Extension to RNNs
	Multiple Sequence Classification

	Experiments
	Trajectory Prediction
	Synthetic Dataset
	Implementation Details
	ETH Dataset
	Stanford Drone Dataset

	Sequence Classification

	Conclusion and Future Work
	References
	Acknowledgements

