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Sommario

Lo scopo di questo progetto è quello di prendere in esame alcune estensioni del modello standard
capaci di incorporare al loro interno l’assione QCD.

Nel primo capitolo vengono analizzate da zero le motivazioni per l’introduzione del concetto
di assione. Il problema della violazione CP nelle interazioni forti è introdotto a partire dalla non
banale struttura topologica del gruppo di simmetria di colore in QCD.

Nel secondo capitolo viene studiato un particolare modello di assione, ossia quello DFSZ. Ven-
gono quindi sviluppati il suo contenuto di campi e il suo spettro di massa. In particolare, viene
considerata una versione leggermente differente di modello DFSZ, dove il termine quartico misto
del potenziale di Higgs è sostituito da un contributo cubico.

Una piccola frazione di questo lavoro è inoltre dedicata a riassumere il problema dei domain
walls. Grande importanza è data alla costruzione di modelli teorici che possano mettere al sicuro la
teoria da una catastrofe cosmologica per mezzo di una oculata scelta dell’attribuzione delle cariche
di Peccei-Quinn.

Per concludere, gli accoppiamenti degli assioni con i fermioni sono presi in esame. Grande
attenzione viene rivolta alla generalizzazione del modello richiedendo la simultanea soppressione
degli accoppiamenti assionici a protoni, neutroni ed elettroni. Una applicazione importante di
questa impostazione è la capacità di indebolire diversi vincoli astrofisici, permettendo di raggiun-
gere la cosiddetta finestra di massa pesante per l’assione. Viene argomentato come una condizione
necessaria perchè questo avvenga sia l’introduzione di una assegnazione di cariche di Peccei-Quinn
non universale per i quark e i leptoni del modello standard. A seguire, viene identificata una classe
minimale di questi assioni DFSZ, dove le proprietà di nucleofobia ed elettrofobia possono essere
implementate.
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Abstract

The aim of this project is to examine some extensions of the SM model able to embed the QCD
axion particle.

In the first chapter the motivations for the introduction of the axion concept are analyzed from
scratch. The strong CP problem is introduced starting from the non-trivial topological structure
of the color symmetry of QCD.

In the second chapter we study a particular axion model: the DFSZ model. So, its field content
and its mass spectrum are developed. In particular, we consider a slighlty different version of
DFSZ theory, where the mixed quartic term of the Higgs potential is replaced by a cubic one.

A small part of this project is also devoted to summarize the domain wall problem. Great
importance is given to how model building can save the theory from that cosmological catastrophe
through an accurate choice of the Peccei-Quinn charge pattern.

Finally, the axion couplings to fermions are taken into account. We expecially investigate a
generalization of the model requiring conditions to simultaneously suppress the axion coupling to
protons, neutrons and electrons. An important application of this setup is the relaxation of various
astrophysical bounds, which allows to reach the so-called heavy axion mass window. It is shown
that a necessary condition for that to happen is the introduction of a non-universal Peccei-Quinn
charge assignment for the standard model quarks and leptons. Next, it is identified a minimal class
of these non-universal DFSZ axions, where nucleophobia and electrophobia are feasible.
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Introduction

Nowadays, there are compelling evidences that our insight of particle physics and cosmology is
unsatisfactory and that some extensions or, even worse, gross modifications are called for. Both
theoretical requirements and experimental data suggest there is still a huge number of problems
whose solution escapes our understanding. The dark matter and dark energy existence, the baryon
asymmetry conundrum or the break of flavour symmetry are just some open questions belonging to
a long list. The path to pursue in order to improve our knowledge of nature is clearly non-unique:
it is drawn by theoretical imagination, dammed by experimental results.

In this scenario, an extremely appealing idea is the concept of axion. The introduction of this
new particle in the standard model spectrum seems to be highly motivated from a theoretical point
of view, because it will enable us to sort out two appearently unrelated issues at once: the strong
CP problem, troubling particle physics, and the dark matter puzzle, which plagues astrophysics
and cosmology at their foundation. Moreover, the axion way has all the aesthetical requirements
of simplicity and naturalness that, as Dirac said, make a theory more likely to be true.

The history of axion is quite lengthy and convoluted. Maybe, we can track back its origin in
the 1970s, when, with the development of physics of strong interactions, the U(1)A-problem shows
up for the first time. The QCD effective theory involving up and down quarks predicted the U(1)A
symmetry group to be spontaneously broken by a chiral condensate operator, just as the SU(2)A
one: for the latter, this break gives rise to some pseudo-goldstone bosons (i.e the pions), but no
particle of the QCD spectrum seems to be associated to the U(1)A group. This missing goldstone
boson was the bedrock of the problem, which was completely swept out in 1976 by ’t Hooft, who
realized the U(1)A symmetry was actually not a symmetry of QCD at all. It was understood that
the non-abelian nature of the SU(3)c color symmetry lead to highly non-trivial properties of QCD,
which could violate classical symmetries at quantum level.

Nevertheless, the solving of one problem was the beginning of a new one. The awareness of
the complex topological structure of QCD vacuum resulted in the appearence of a new term in
the Lagrangian: the so-called θ-term. In its turn, this new contribution introduced, through a
parameter θ, sources of CP violation in strong interactions, which were known to respect parity
with great accuracy. By measuring the neutron electric dipole momentum, the staggering constraint
of |θ| < 1.3× 10−10 emerged. But if the introduction of this new parameter is well justified, as it
is, how could we accept this unnatural fine-tuning of a variable, which is, in principle, free to take
its values in the whole set [0, 2π[? Until now, a conclusive answer to the strong CP problem does
not exist yet.

By the way, among a plethora of possible ways-out that were proposed, in 1977 Peccei and
Quinn suggested a pretty easy and viable possibility. They noticed how the θ parameter could
have been made unphysical and erased from the theory by simply endowing the SM Lagrangian
with an extra global and anoumalous phase symmetry. However, in 1978 Weinberg and Wilczek
figured out that this interesting path had a side-effect. Indeed, if the Peccei-Quinn symmetry had
turned out to be spontaneously broken by the VEV of a scalar operator, a new particle would have
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come out: this awareness was the real birth of axion.

From that moment on, theoretical models trying to embed axions started to thrive. Despite
that, it was immediately realized how difficult it could be to cope with phenomenology. A first
class of models (PQWW), which identified the PQ symmetry breaking scale with the electroweak
one, was quickly ruled out by experimental results and, in particular, by the tight bound B(K+ →
π+ + nothing) < 3.8× 10−8 (which an updated measurement made even stronger B(K+ → π+ +
nothing) < 7.3× 10−11). Thereby, these visible axion models were abandoned, together with their
associated axion mass window, around 10KeV . The axion should have been an even lighter and
more weakly interacting particle in order to agree with experimental outcomes. Consequently,
between 1979 and 1981, a new set of theories was designed, predicting the existence of an invisible
axion, referring to two paradigmatic classes: the KSVZ and DFSZ models. The former is probably
the easiest invisible axion model which can be thought of. Nonetheless, despite the simplicity, it
is affected by some cosmological drawbacks, requiring some more elaborated versions. The latter
is instead more involved just from the onset. In spite of that, both of them are characterized by a
new scalar field (a Higgs singlet), whose VEV defines a further energy scale, directly related to all
axion features.

After the introduction of the axion concept, it was also quickly understood how this particle,
interacting very feebly with common matter and light, could be a natural dark matter candidate.
The need for dark matter is extremely motivated by astrophysical observations: the unexpected
behaviour of rotation curve of galaxies, the mass discrepancy emerging from gravitational lensing
or the inconsistency between baryon and matter abundance measured in cosmic microwave back-
ground, just to mention some of them. Moreover, we know how cosmological data support the
idea of a flat universe, but that, at the same time, the amount of energy density that we observe is
not enough to pursue this scenario. Nevertheless, the SM does not offer any possible dark matter
particle: that was the reason why the proposal of axion to solve the strong CP problem sounded
like an interesting opportunity. It was not an ad hoc introduction, made to explain something we
can not see or understand, but a possibility stemming directly from a phenomenological quantum
field theory problem.

All of these theoretical motivations justify the great effort coming both from particle physics and
astrophysical research in order to better constrain and unveil axion properties. Of course, because
of its own nature, directly revealing axions turns out to be incredibly challenging, exactly like
the detection of neutrinos after their theoretical prediction by Pauli. An important step forwards
was done by Sikivie in 1983 with a paper of him, in which he proposed two of the most fruitful
techniques to search for invisible axions: the axion helioscope, to detect the flux of axions supposed
to be emitted from the Sun, and the axion haloscope, to probe the presence of axions from the
hypothetical DM galactic halos. However, nowadays, a great number of experiments has been
designed, including some to generate axions in laboratories, too, such as the light shining through
walls (LSW) approach or the vacuum magnetic birefringence (VMB) procedure. In 2013 a further
way of disclosing the axion mystery was advanced by Graham and Rajendran: it consisted in
employing potential fluctuations of the neutron electric dipole momentum, that might be induced
by axion background oscillations.

In the latest years a lot of data have been collected, constraining more and more the space
of parameters where axions can hide. Considerations about a hot cosmological axion population
set an upper bound on axion mass of ma < 0.8eV , while black hole superradiance phenomena
require a lower bound of ma > 10−10eV . The evolution of stars of horizontal branch of globular
clusters imposes a limit on axion coupling to photons of gaγ < 6.6 × 10−11GeV −1, which is the
strongest limit applicable to a wide range of axion masses: more severe constraints were obtained
by considering the TeV γ rays trasparency of our universe, but only for axion masses of ma <
10−7 or much lighter. An even higher sensitivity to gaγ is expected to be achieved by the next
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generation of axion helioscopes, such as IAXO and IAXO+. On the other hand, white dwarfs
and supernovae rates of cooling were employed to set a bound respectively on the axion-electron
coupling of |gae| < 2.7× 10−13 and on the axion-nucleons interaction as g2ap + g2an < 3.6× 10−19.

Furthermore, an axion particle must be embodied in a suitable extension of the standard
model, so that other constraints on axion theories will be related to the field content of these BSM
constructions. Together with the direct detection of new particles with some new generations
of accelerators (that might be able to explore the ultra-TeV region), the most powerful way of
confining the intrinsic freedom of these SM generalizations is through the electroweak precision
test. By comparing their prediction of some of the most precisely known electroweak quantities
with the corresponding experimental values, a good amount of information can be extracted.
Among the most famous and useful parameters, we have the ratio between gauge boson masses ρ,
which turns out to be ρ = 1.00037± 0.00023.

Even if little room seems to be left to axions to stay hidden, their existence is still very well
motivated. What we are going to do in this text is exactly to explore some of the residual freedom
that is left to theory to predict axion properties respecting all of experimental data. After all,
because of their growing precision, they can not be evaded or bypassed any more. That will give
us the opportunity to realize how profitable is the axion idea, which is able to relate, with a simple
concept, profoundly different research areas.
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Chapter 1

The strong CP problem

The strong CP problem is a very well-known issue in the quantum chromodynamic scenery,
naturally arising from the presence of a parity odd term inside the Lagrangian (the so-called theta
term). According to the basic principle of a quantum field approach, any kind of term respecting
the general symmetries of the theory, together with unitarity and renormalizability, enjoys the
same right to enter the Lagrangian as any other. Therefore, some particular explanation for our
incapability of detecting it (or better the consequences of it) must be given. It will be shown how
the Peccei-Quinn mechanism offers a very elegant way to emerge from this problem, but that it
has, as a side-effect, the prediction of a new kind of particle: the axion.

1.1 The U(1)A problem

Quantum chromodynamic is the theory describing the strong interaction, one of the three
elementary forces of nature that can be understood employing a quantum field theory approach.
Between those three, the strong force is also the most intense at low energy (because of the peculiar
behavior of the β-function), making any kind of perturbative calculation useless in this regime.
Moreover, it is known that, among matter fields, only quarks perceive this force, because of a
color charge that can assume three different nuances (red, blue and green), as proved by scattering
experiments. Following the general scheme of QFT, these color-charged particles will interact with
each other through the exchange of quanta of the strong field, i.e gluons.

The Lagrangian of this theory can be easily obtained starting from a free fermionic model
involving six triplets of Dirac fields ψ (just as the six known quark flavours), enjoying a SU(3)c
global symmetry of color, which mixes the three components of the triplets themselves. These
fields belong to the fundamental representation of the group, as dictated by phenomenology. Then,
following the gauge principle, this symmetry is made local through the introduction of a matrix-
valued vector field Aµ of the adjoint representation. In so doing, the most general interaction
between matter and force fields can be accounted for by the theory. These building blocks can be
put together in order to obtain all possible Lorentz invariant terms with quartic mass dimensions.
The possible list of them will be narrowed down by requiring unitarity, renormalizability and local
SU(3)c invariance. The QCD Lagrangian compatible with these requirements has the unique form

LQCD =

6∑
f=1

[ψ̄f (i /D −M)ψf ]−
1

2
tr[GµνGµν ] (1.1)

where f is a flavour index and color indeces have been clearly understood. Dµ is the matrix-valued
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8 CHAPTER 1. THE STRONG CP PROBLEM

covariant derivative operator
Dµψ ≡ (∂µ − igAaµτ

a
F )ψ (1.2)

with a the color index running from one to three and τaF the infinitesimal hermitian generators in the
fundamental representation (that is the Gell-Mann matrices λa), fulfilling the correct commutation
relation of the group. Finally, Gµν is the field strength tensor, with the well-known formula

Gµν ≡ i

g
[Dµ,Dν ] = ∂µAν − ∂νAµ − ig[Aµ, Aν ] (1.3)

Being g the strong coupling, the last term tells us that the field which mediates the strong force
is charged itself: this fact gives rise to self-interactions. For the kinetic term of the field strength
tensor the normalization tr(τaF τ

b
F ) =

1
2δ
ab has been used, where the trace acts upon color indeces.

With the introduction of a non-abelian gauge field, the SU(3)c symmetry is made local. Hence,
under a transformation Uω(x) = exp{igωa(x)τaF } of the group acting on the Dirac field triplets,
the covariant derivative will transform homogeneously as

Dµψ(x) 7−→ Uω(x)Dµψ(x), (1.4)

provided that we require the following non-linear transformation law for the gauge field

Aµ(x) 7−→ Uω(x)Aµ(x)U
†
ω(x)−

i

g
[∂µUω(x)]U

†
ω(x), (1.5)

and so
Gµν(x) 7−→ Uω(x)Gµν(x)U†

ω(x) (1.6)

Consequently, the field strength is not invariant under a gauge transformation and, as it is for any
non-abelian gauge theory, it will not be a physical object. Therefore, it is quite evident that the
concept of color magnetic and color electric field, naively imported from QED, can not be pursed
in this context (at least, not in the way we are accustomed to it).

In the expression (1.1), we have also inserted a mass term for quark fields including a six-by-six
mass matrix M . This latter will be diagonal, if we are considering the physical states of the theory
and not simply the gauge ones. In the standard model, this term will be generated by a Higgs
mechanism, starting from the Yukawa-term interactions. Anyway, one should observe that nothing
compels this mass matrix to be real and in general it will not be so.

It is worthy of note that, if we assume the compatibility with symmetries as the sole guiding
principle to guess the form of the Lagrangian, there is still some freedom in choosing LQCD.
Nevertheless, we will be able to develop this aspect better in what follows.

Once reminded the underlying non-trivial structure of the color gauge group, it will be inter-
esting to clarify how the theory enjoys some extra global symmetries. To fathom the essence of
this issue, it will be enough to analyse a low energy regime, where all quark degrees of freedom are
frozen, with the exception of the up-like and down-like ones: after all, they are the two lightest
quarks comprising the standard model. Focusing only on the quark sector of the Lagrangian, one
will get:

L = ū(/D −mu)u+ d̄(/D −md)d. (1.7)

Moreover, in most of physical applications, the very light masses mu and md can be disregarded,
too: thus, we will momentarily set them to zero. In this low energy approximation, we see that the
Lagrangian possesses an extra global U(2) symmetry mixing up and down quarks. The absence of
mass terms, which couple the right and left chiral parts, lets this U(2) group act independently on
the left and right components:

ψL =

(
uL
dL

)
7−→ ψ′

L = UL

(
uL
dL

)
ψR =

(
uR
dR

)
7−→ ψ′

R = UR

(
uR
dR

)
. (1.8)
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q̄L qR q̄R qL

Figure 1.1: On the left side, a couple of quark and anti-quark endowed with positive helicity is
shown: the net momentum and angular momentum is zero. The same is true for the couple on
the right side, whose particles have negative helicity. We remind that the match between chirality
and helicity holds solely in the null mass limit.

As usual, we will have two conserved abelian currents (jµL = ψ̄Lγ
µψL and jµR = ψ̄Rγ

µψR) and six
non-abelian ones (jµaL = ψ̄Lγ

µσaψL/2 and jµaR = ψ̄Rγ
µσaψR/2), in addition to the sixteen color

currents. They will be associated to some classical charges QL/R and QaL/R, which respect the
algebra

[QaL/R, Q
b
L/R] = iεabcQcL/R [QaL, Q

b
R] = 0 (1.9)

if εabc is the SU(2) structure constant.
We can actually parametrize transformations of the U(2) group in a pretty formal but useful

way. Indeed, we can try to decompose this global symmetry not as U(2)L × U(2)R, but with
the improper notation U(2)V × U(2)A, where U(2)V is the vector part of the group, being a
group itself. This one is obtained by choosing UL = UR and so acting in the same way on the
right and left fermions. The corresponding currents are obtained as jµV = jµL + jµR = ψ̄γµψ and
jµaV = jµaL +jµaR = ψ̄γµσaψ/2. On the other hand, U(2)A is the set of axial transformations, simply

built as U(2)A = U(2) − U(2)V (or equally well setting UL = U†
R). In this case, we can readily

write jµA = jµR− jµL = ψ̄γµγ5ψ and jµaA = jµaR − jµaL = ψ̄γµγ5σaψ/2. Of course, U(2)A will not be a
real group, because it will not be close under composition of two of its elements. This is perfectly
described by means of the associated algebra of conserved charges:

[QaV , Q
b
V ] = iεabcQcV [QaA, Q

b
A] = iεabcQcV [QaV , Q

b
A] = iεabcQcA (1.10)

Finally, if we separate U(1) phase transformations from special unitary ones, we will be able
to rewrite the original global transformation in the form SU(2)V × SU(2)A × U(1)V × U(1)A.

In this very physical limit, in which up and down quarks are massless, the Lagrangian seems to
enjoy a great number of symmetries. But the U(1)V and SU(2)V groups are actually approximate
symmetries of nature: the first one is associated with the concept of baryon number and the second
one with the isospin idea. We know, for example, how bound states of quarks can be classified in
irreducible representations of SU(2)V . The non-perfect realization of them is mainly due to the
small difference between the two masses of up and down quarks (not to their appearing in the
Lagrangian). A completely different discussion is called for while dealing with the remaining two
symmetries, for which we do not have an explicit realization in nature. If this were the case, a
SU(2)A symmetry could show up by associating to each isospin multiplet an axial counterpart of
opposite parity (because of the presence of γ5), for example.

Therefore, the first resonable idea is that the vacuum state of some scalar operator breaks
spontaneously the SU(2)A×U(1)A symmetry. As well explained in [1], this fact is attributable to
QCD vacuum properties. Just because the two quark masses are very light and the strong force
tremendously intense, the energy cost to create couples comprising a particle and an anti-particle
with zero momentum will be very little. Moreover, approaching the limit of null masses (where
particles’ energy and momentum are related by E = |p|), we know that Weyl equations hold, i.e

i∂tψL = i~σ · ~∇ψL and i∂tψR = −i~σ · ~∇ψR, from which hψL = −ψL and hψR = +ψR (with
h = ~σ · p̂ the helicity operator). So, the more energetically convinient choise is to produce a couple
of particles endowed with zero angular momentum, too, which can be approximately obtained in
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the null mass limit by creating them with equal chirality (see figure 1.1). Consequently, we can
imagine the QCD vacuum like a state swarming with particles created and immediately annihilated:
this physical situation is referred to as chiral condensate. The name is due to the fact that these
couples of particles will have a net chiral charge. Indeed, if we identify this quantum state with
the easiest scalar operator achievable in our theory, e.g ψLαiψ̄

Rαj (where the greek indeces are the
spinor ones and the latin ones are family indeces), we will readily see that its vacuum expectation
value changes under U(2)L × U(2)R as:

〈0|(ψLαiψ̄Rαj)′|0〉 = U k
Li U∗j

R m〈0|ψLαkψ̄Rαm|0〉 = −v3ψU k
Li U∗j

R mδ
m
k (1.11)

That immediately tells us how this operator is not invariant under an axial transformation, but
it is unchanged by a vector one. It turns out to be a color singlet, not to break the SU(3)c.
Furthermore, we point out how the quantity vψ must be a constant with dimensions of a mass.
Thus, the chiral part of the symmetry is spontaneously broken by chiral condensates and, according
to Goldstone theorem, we expect to find four massless goldstone bosons associated with the broken
generators of the chiral group. By looking at the mass spectrum of QCD, the experimentally lightest
particles that can be spotted are pions, coming in a triplet of SU(2)V . The idea of spontaneous
symmetry breaking applied in this context was a revolutionary one, because paves the way for the
understanding of the extremely light pion masses. Those can be explained identifing the pions
with pseudo-goldstone bosons of the broken SU(2)A symmetry (where the use of “pseudo” will be
clarified later).

Thereby, our working hypothesis is that the QCD low energy Lagrangian is SU(2)V × SU(2)A
symmetric: it is just the VEV that breaks the axial part of the group. So, we can build our
Lagragian employing the massless quark doublets ψi (i = L,R) and the quark condensate operator
ψαψ̄

α and inserting all possible terms respecting the above symmetry. Taking into account that
ψi transforms according to (1.8) and (ψαψ̄

α)′ = UL(ψαψ̄
α)U†

R, we can write [2]

Lchiral =ψ̄i/∂ψ +
1

4f2πµ
2
tr[∂µ(ψαψ̄

α)†∂µ(ψβψ̄
β)] + Vc(ψαψ̄

α)+

+ y(ψ̄L(ψαψ̄
α)ψR + ψ̄R(ψαψ̄

α)†ψL)

(1.12)

where the trace in the kinetic term is performed over flavour indeces and Vc is the chiral potential
providing the symmetry breaking scenario. It worth noticing that, for reasons of convenience, we
have introduced two new energy scales fπ and µ, which are related to vψ as v3ψ = f2πµ: fπ is
a constant associated to pion physics, that we will specify later on, and µ is a different way of
encoding quark condensate phenomena.

As first described in the Gell-Mann Levy model [3], the four degrees of freedom of the scalar
chiral operator ψLαψ̄

Rα can be parametrized in a non-linear way as

(ψαψ̄
α)(x) = f2πσ(x)Σ(x) (1.13)

Just because ψ̄ψ is a composite scalar operator, it has the non-customary dimensions of a cubic
mass, while the scalar field σ is a parity even component with simple mass dimensions. Σ is a
unitary matrix containing the pion fields. It is clear that, to recover the previous transformation law
of the condensate operator, σ must be a singlet and Σ has to belong to the adjoint representation,
i.e Σ(x) 7−→ ULΣ(x)U

†
R. This latter can be explicitly written down as

Σ(x) = exp

{
iσa

πa(x)

fπ

}
, (1.14)

In this matrix, pion fields clearly play the roles of phases multiplied by the three Pauli matrices
σa, which have been used to express the generators of SU(2). fπ is exactly a dimensional constant
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called pion decay constant, because it can be computed through the π− weak decay (i.e π− → µ−ν̄µ,
to remind the main decay channel not suppressed by the helicity contraint), getting a result of
92MeV . Nevertheless, in literature its value can change by a factor of

√
2, according to the

convention adopted.

The symmetry breaking situation described above will be mirrored here simply requiring
〈0|σ|0〉 = −µ and 〈0|Σ|0〉 = 12×2 (or 〈0|πa|0〉 = 0), achievable through a chiral invariant po-
tential of the form [2]

Vchiral(ψαψ̄
α) = −btr[(ψαψ̄α)†(ψβψ̄β)] + λ(tr[(ψαψ̄

α)†(ψβψ̄
β)])2 (1.15)

with b and λ some real positive constants, such that b/λ = 2v6ψ.

Using (1.14) and the small field fluctuation hypothesis, we can recast (1.13)

(ψαψ̄
α)(x) ≈ f2πσ(x)12×2 + fπµπ

aσa (1.16)

Under a SU(2)A rotation, we can also state

(ψαψ̄
α)′(x) = eiβ·σ/2(ψαψ̄

α)(x)eiβ·σ/2 ≈ (ψαψ̄
α)(x) + i{δβ · σ/2, (ψαψ̄α)(x)} =

= (ψαψ̄
α)(x) + if2π(δβ · σ)σ(x) + i

fπ
2
µπbδβa{σa, σb}

(1.17)

and if we match it with the variation δ(ψαψ̄
α)(x) ≈ f2πδσ(x)12×2 + fπµδπ

aσa, we eventually end
up with

δσ(x) = i
µ

fπ
δβ · π δπa = i

fπ
µ
δβaσ(x) (1.18)

These formulae clarify how pion fields are associated to the broken part of SU(2)L×SU(2)R: they
possess non-zero fluctuations around the VEV, given by δπa = i fπµ δβ

a〈σ(x)〉 = −i fπµ δβ
aµ 6= 0.

If we rewrite (1.12) in terms of this new parametrization, we obtain

Lchiral =ψ̄i/∂ψ +
f2π
2µ2

∂µσ∂
µσ +

f2π
4µ2

σ2tr[∂µΣ
†∂µΣ] + Vc(σ) + yσ(ψ̄LΣψR + ψ̄RΣ

†ψL) (1.19)

It is interesting to emphasize how the Gell-Mann Levy model predicts the existence of an
effective contribution to quark masses, even without an explicit term in the Lagrangian. As a
matter of fact, when σ and Σ settle into their VEVs, the initially massless light quarks get a mass
by means of the last term of (1.19). That turns out to be equal to meff

u = meff
d = yµ2/fπ, where

the extra factor (µ/fπ) stems from the rescaling of σ(x), used to correctly normalize its kinetic
contribution. This mass will be generated while quarks propagate through the QCD vacuum. The
up and down quarks interact with the vacuum through the same coupling y and, thereby, their
masses will be equal and SU(2)V will be preserved.

Without any claim to describing in full details this model here, we just mention that a clear
problem of this theory is the identification of the σ′ fluctuations around the VEV 〈σ〉 with some
of the known particles. Therefore, after the spontaneous breaking of the SU(2)A symmetry, the
mass of the sigma field is sent to infinity and the sigma oscillations are integrated out through
their equation of motion. If, furthermore, quark fields at low energy are hidden by confinement,
we are left with a model where only pions appear. In this new scenario, fluctuations of the chiral
operator around the vacuum will be simply given by:

〈0|(ψαψ̄α)(x)|0〉 = −v3ψΣ(x) (1.20)
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The Lagrangian involving solely the pseudo-scalar part of the quark condensate field after symmetry
breaking can be immediately read off from (1.12) to be

L =
1

4
f2πtr[∂

µΣ†∂µΣ], (1.21)

Even if we have derived it from our previous reasoning, it is worthy of note that, because of the
property Σ†Σ = 1, the only viable non-trivial terms include derivatives of Σ field.

Upon expanding Σ in powers of the pion field, we obtain kinetic and quartic interaction terms
for pions:

L =
1

2
∂µπa∂µπ

a − 1

6
f−2
π (πaπa∂µπb∂µπ

b − πaπb∂µπa∂µπ
b) + ... (1.22)

However, up to now, pions are perfectly massless goldstone bosons. Next, we can explore the
effects of introducing back the original mass term for quarks (that coming from a would-be Higgs
mechanism). We have again to consider the most general achievable contribution. A useful rule
of thumb can be to couple the Dirac fields with an external scalar source s, which transforms as
s 7−→ LsR†, and to employ it to build up an extra invariant term. Then, by setting s =M (where
M is a two-by-two mass matrix containing the up and down masses), the symmetry is correctly
broken. This new contribution turns out to be:

Lmass = (ψ̄αiL M
j
i ψRαj + h.c.) = −(M j

i ψRαjψ̄
αi
L + h.c.) = −tr[Mψαψ̄

α] (1.23)

where we made use of the grassmann nature of spinor fields in the next-to-last passage. The plus
sign in front of ψ̄αiL M

j
i ψRαj + h.c. is necessary, because that leads us to a minus in −tr[Mψαψ̄

α],
consistently with the corresponding plus of the kinetic term. It worth pointing out that the matrix
M is generally complex. With a SU(2)L × SU(2)R transformation, we can make this matrix
diagonal, but it will always survive a complex phase in the most general case. The role of it and
its consequences are the core of all this work and they will be extensively discussed later. What
it emerges from experiments is, anyway, that this complex phase should be very small or, at least,
consistent with a zero value. So, we will assume for now that M =M†. Then, if we substitute the
V EV of the theory inside the previous formula and we expand it in powers of pion field fluctuations
as before, what we get is

Lmass = v3ψtr[M(Σ + Σ†)] = −
v3ψ
f2π
tr[Mσaσb]πaπb + ... =

= −1

2

v3ψ
f2π
tr[M{σa, σb}]πaπb + ... = −

v3ψ
f2π
tr[M ]πaπa + ...

(1.24)

where we neglected the constant term in the expansion. In the last expression, clearly, a mass term
for pions shows up, given by the so-called Gell-Mann-Oakes-Renner relation:

m2
π = 2

(mu +md)v
3
ψ

f2π
. (1.25)

It is noteworthy that the contribution to pion masses (up to now equal for all of pions) comes solely
from the introduction of a small mass term for quarks, which explicitly breaks the axial SU(2)A
symmetry: this is the final reason why we speak of pions as pseudo-goldstone bosons. As already
stressed, the isospin symmetry SU(2)V will be violated just by the mass difference between the
two quarks (which renders the matrix M not diagonal any more) and by some electromagnetic
corrections (the up and down particles possess distinct electric charges). Nevertheless, there will
still be evidences of this imperfect symmetry, if these discrepancies are not too large.
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But we started our discussion speaking of four goldstone bosons associated with the breaking
of the axial part of the U(2)L ×U(2)R global symmetry of the QCD Lagrangian. The reason why
we neglected the possible boson of the U(1)A symmetry (and so an extra phase term in (1.20))
is that there are no experimental evidences for it. Indeed, the lightest pseudoscalar (JP = 0−)
mesons that have been measured are (see table 1.1): three pions, well explained by the presented
effective model and other five mesons of larger masses (K±, K0, K̄0 and η). These latter can
be theoretically understood adding the strange quark to our description and enlarging our global
group of symmetry to SU(3)L×SU(3)R. The number of mesons equals that of SU(3) generators,
so that the matrix (1.14) is suitably replaced by

Σ = exp

{
i

fπ

( 8∑
a=1

πaλa + 13×3
η0√
2

)}
with

8∑
a=1

πaλa =

π
0 + η8√

3

√
2π+

√
2K+

√
2π− −π0 + η8√

3

√
2K0

√
2K− √

2K̄0 −2 η8√
3


(1.26)

where λa are the eight Gell-Mann matrices and where the possible U(1)A singlet η0 has been
highlighted. As justified in [4], the constant fπ can still be assumed to be the pion decay constant
by convention. Of course, the assumption of a massless strange quark is less justified here, if one
considers that

md −mu

mu +md
≈ 0.29

ms

mu +md
≈ 25 (1.27)

and just that is at the origin of the higher masses of the additional mesons of the octet. The
imperfect completion of the SU(3)V symmetry is responsible for a further complication: states
with the same quantum numbers can mix with each other. Just because isospin is a pretty good
symmetry group of nature, the mixing will affect the neutral S = 0 pseudo-scalar mesons η8 and
η0: the π0 is essentially protected, because one can prove that possible mixings are proportional
to the tiny factor md −mu. The physical states η and η′ will be obtained rotating the previous
ones as (

η
η′

)
=

(
cosθm −sinθm
sinθm cosθm

)(
η8
η0

)
(1.28)

with a mixing angle θm ≈ 17◦ [5]. As a matter of fact, one should notice from table 1.1 how
the η mass slightly departs from the kaon ones. Nevertheless, the experimental mass value of the
remaining η′ is even larger: this suggests that it can not be identified with our alleged U(1)A
meson, unless something is missing in our theory. The conundrum of this expected but unobserved
golstone boson was dubbed by Weinberg U(1)A problem. Weinberg himself suggested that the
U(1)A transformation should not have been a symmetry of the low energy Lagrangian at all [6].
Then, this fact was shown by t’Hooft [7], who explained how the QCD vacuum structure should
have been more complicated than assumed. This would have made the UA(1) group not a symmetry
anymore, because of quantum corrections.

1.2 The QCD vacuum structure

We have already noticed that QCD, as a non-abelian gauge theory, is very different from the
QED counterpart: we pointed out how the field strength tensor is not gauge invariant here or how
gauge fields carry a charge themself. But there are much more subtle aspects that need to be
highlighted in QCD.

Everybody knows that a good way to build a Lagrangian is to include all terms which respect
the symmetries of the theory and its basic assumptions. So, writing down the QCD Lagrangian,
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meson state mass (MeV) strangeness

π0 ūu−d̄d√
2

134.9770± 0.0005 0

π+ ud̄ 139.57061± 0.00024 0
π− dū 139.57061± 0.00024 0
K+ us̄ 493.677± 0.016 -1
K− sū 493.677± 0.016 +1
K0 ds̄ 497.611± 0.013 -1
K̄0 sd̄ 497.611± 0.013 +1

η ∼ ūu+d̄d√
2

547.862± 0.017 0

η′ ∼ s̄s 957.78± 0.06 0

Table 1.1: List of the first lighest pseudo-scalar (JP = 0−) mesons with related masses and

strangeness number [8]. It is remarkable how the composition of the mesons η8 = ūu+d̄d−2s̄s√
6

and

η0 = ūu+d̄d+s̄s√
3

is modified into that of the states reported in this table after the mixing induced

by θm.

we have been superficial on the possible existence of an extra contribution. In both abelian and
non-abelian theories, there are two Lorentz invariant terms that can be obtained starting from
the general field strength Fµν , i.e tr[FµνFµν ] and εµνρσtr[FµνFρσ]. The first term is parity even,
while the second one parity odd, because of the presence of the pseudo-tensor εµνρσ. But one can
directly verify, after some algebraic manipulations, that the latter is a total derivative:

εµνρσtr[FµνFρσ] = ∂µ
(
4εµνρσtr[Aν∂ρAσ − 2ig

3
AνAρAσ]

)
= 2∂µJ

µ
CS (1.29)

where the four-vector JµCS is named the topological Chern-Simons current. It is known that the
Lagrangian is always defined up to a total derivative, provided that fields will go to zero at infinity
fast enough. Indeed, after a Wick rotation, just because the Euclidean action is the integral of the
Lagrangian over coordinate space, we could claim

∼
∫
d4xEεµνρσtr[F̄µνF̄ρσ] =

∫
d4xE2∂µJ̄

CS
µ =

∫
S3

dσEµ2J̄
CS
µ (1.30)

where in the last expression we are integrating over spatial infinity of the euclidean space, topolog-
ically equivalent to a 3-sphere. The ∼ symbol stands for a correction factor, due to the euclidean
transition, which will be specified later on. We remind how, in euclidean formalism, all indeces are
reported downward by convention. Moreover, we know that:

εµνρσtr[FµνFρσ] = −iεµνρσtr[F̄µνF̄ρσ] and ∂0 = i∂4 ∂i = ∂i (1.31)

and hence we can derive, by direct inspection of (1.29), the transformation for the pseudo-four-

vector J̄CSµ = (−JCS0 ,−i ~JCS) with k ∈ {1, 2, 3}.
Thus, what makes the difference is the asymptotic behavior of J̄CSµ . From QED we are accus-

tomed to set to zero this term and the theory works pretty well with this assumption. But nothing
assures us that a straightforward generalization exists for the non-abelian case. To see that, it will
be needed to go through the topic in more details.
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1.2.1 The boundary conditions

A first mathematical notion, which will prove to be useful, is that of homotopy classes, the
set of all functions connected by a continuous transformation. For example, we can write a map
S1 → U(1) ∼ S1 as gβ(θ) = exp[i(νθ + β)]. All possible maps are parametrized by means of the
two variables ν ∈ Z and β ∈ R. But all functions with different values of β belong to the same
homotopy class, because they can be transformed in each other with this homotopy:

H(θ, s) = exp[i(νθ + (1− s)β1 + sβ2)] (1.32)

which describes all maps with the same ν for varying s ∈ R. The same thing can not be done for
distinct values of ν, which therefore identifies separate homotopy classes. ν is an integer number,
named winding number, which can be directly derived from the map itself:

ν =
−i
2π

∫ 2π

0

dθg(θ)−1 dg(θ)

dθ
(1.33)

Anyway, a possible non-trivial generalization can be obtained for more complicated maps Sn →
SU(m). We will be particularly interested in the case n = 3 and m = 3, for obvious reasons. In
this situation different homotopy classes are labelled by a ν, whose euclidean formula is given by:

ν =
1

24π2

∫
d3θεijktr[(V (θ)∂iV

†(θ))(V (θ)∂jV
†(θ))(V (θ)∂kV

†(θ))] (1.34)

which is invariant under a change of coordinates and under smooth deformations of V (θ) itself.
Moreover, it is remarkable that this topological object, sometimes dubbed Pontryagin index, is
gauge invariant. It can also be noticed that, multiplying two maps each other, one gets a new map
whose winding number is the sum of the two individual winding numbers of the original maps.

This topological structure will have profound consequences on QCD. Indeed, if we go back to
our euclidean action, we can write

SE = −1

2

∫
d4xEtr[F̄µν ˜̄Fµν ] = −1

2

∫
dΩ

∫ ∞

0

drr3tr[F̄µν(r,Ω) ˜̄Fµν(r,Ω)] (1.35)

where dΩ is the angular measure in a 3-sphere. In order for this integral to be finite, we just need
that F̄µν = O(1/r3), going to zero faster than 1/r2 for large r. Keeping in mind the definition of
the field strength tensor, this entails that Āµ = O(1/r2), which therefore goes to zero at spatial
infinity more rapidly than 1/r. But it was first noticed by t’Hooft [7] that the correct boundary
condition for the four-potential should have fixed Āµ in the form of a pure gauge field, since any
gauge transformation acting on it can leave the required behaviour of the field strength untouched.
This subtlelty can be equally well understood by considering that, in (1.30), the four-divergence
of the Chern-Simons current is gauge-invariant, hence it can be included as a contribution to the
QCD Lagrangian. However, the current itself, which has a role in the boundary problem, is not.
This is a key point, which ultimately leads to the solution of the U(1)A puzzle.

Having said this, reminding that Āµ = (Ā4 = −iA0, ~A), we could state

Āi(x) −→
r→∞

i

g
V (Ω)∂iV (Ω)−1 +O(1/r2) Ā4(x) −→

r→∞

i

g
V (Ω)∂4V (Ω)−1 +O(1/r2) (1.36)

where V (Ω) is a continuous and differenziable map, which depends only on the angular variables
(V : S3 → SU(3)). Moreover, if we act on the potential through a gauge transformation U(x),
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using the inverse of the gauge transformation (1.5), we will modify the asymptotic formula of Āµ
as

Āµ(x) −→
r→∞

i

g
U(Ω)V (Ω)∂µV (Ω)−1U(Ω)−1 +

i

g
U(Ω)∂µU(Ω)−1 +O(1/r2) =

=
i

g
(U(Ω)V (Ω))∂µ(U(Ω)V (Ω))−1 +O(1/r2) (1.37)

Here is the crux of our discussion: if we were able to set U(Ω) = V (Ω)−1 at spatial infinity
using the gauge freedom, that would restore the trivial boundary condition Āµ ∼ O(1/r2). But
the problem is that this choice can not be generally pursued. Indeed, U and V are functions of
different nature. U is a customary gauge transformation, which has to be continuous and correctly
defined at each point. Hence, not to be singular, it will not depend on angular variables at the
origin, but it will assume a constant value at r = 0. Starting from this point, it is always possible to
continuously deform U while approaching r → ∞. But that means the function U(Ω) belongs to the
same homotopy class of the identity (ν = 0), which maps the spatial infinity to the unit element of
SU(3) (up to a constant). On the other hand, V is a function solely of the angular coordinates and
it can belong to any homotopy class. So, in general, we are not allowed to choose U(Ω) = V (Ω)−1,
because of four-potential configurations corresponding to non-zero winding numbers. It is just
this fact that prevents us from simply removing the term tr[FµνF̃µν ] from the Lagrangian for a
non-abelian gauge theory. In the abelian case, we have no problem of this sort: a mathematical
result states there is only one trivial homotopy class for the map S3 → U(1).

More explicitly, rewriting the expression for the Chern-Simons current, which can be read off
from (1.29), in a slightly more useful form, we will get

J̄CSµ = 2εµνρσtr

[
Āν∂ρĀσ − 2ig

3
ĀνĀρĀσ

]
= 2εµνρσtr

[
Āν
2
(∂ρĀσ − ∂σĀρ)−

ig

3
Āν [Āρ, Āσ]

]
=

= εµνρσtr

[
ĀνF̄ρσ +

2ig

3
ĀνĀρĀσ

]
−→
r→∞

2

3g2
εµνρσtr[(V ∂νV

−1)(V ∂ρV
−1)(V ∂σV

−1)] (1.38)

where we have eventually considered the asymptotic behaviour both of the field strength tensor
and of the four-potential at spatial infinity. Clearly, F̄ρσ goes to zero for r → +∞, so that the first
term in the last passage does not contribute. For Āµ we used (1.36). Now taking into account the
definition (1.34) of winding number, we can recast it as a surface integral over a surface at infinity
in four-dimensional euclidean space [9]:

ν = − 1

24π2

∫
dσEµεµνρσtr[(V (θ)∂νV

†(θ))(V (θ)∂ρV
†(θ))(V (θ)∂σV

†(θ))] (1.39)

in which the overall minus sign is due to the change of coordinates. As a matter of fact, the
jacobian factor from cartesian to spherical coordinates is given by J = −r3sinθ1sin2θ2, so that
εx1x2x3x4 = 1 and εrθ1θ2θ3 = −1.

Finally, keeping in mind that tr[F̄µν ˜̄Fµν ] = εµνρσtr[F̄µν ˜̄Fρσ]/2, one gets∫
d4xEtr[F̄µν ˜̄Fµν ] =

∫
S3

dσEµ
2

3g2
εµνρσtr[(V ∂νV

−1)(V ∂ρV
−1)(V ∂σV

−1)] = −16π2ν

g2
(1.40)

Only for the value of ν = 0, the usual disregarding of the boundary term is justifiable. But what
is the physical meaning of these gauge configurations Āµ with non-trivial boundary conditions (i.e
for which ν 6= 0)?
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1.2.2 Vacuum configurations

As well explained in [9], the interesting topological structure of non-abelian field theories has
further deep consequences. Let us consider two four-potentials obtained through two different
gauge transformations of the vacuum, e.g Aµ = i

gU∂µU
† and Ãµ = i

g Ũ∂µŨ
†. Clearly, for both

of these four-potentials, the field strength tensor equals zero all over the space. But if U and Ũ
are not smoothly deformable into each other, we will pass from Aµ to Ãµ crossing vector potential
configurations that are not gauge transformations of zero: they will not annul Fµν and there will

be non-zero energy values associated to them. That implies Aµ and Ãµ represent two different
vacuum states separated from an energy barrier, that is a physical potential.

However, the previous argument relies on the existence of field configurations which are not
equivalent under a smooth gauge transformation. Is it true that two SU(m) elements U and Ũ can
not be in general deformed into each other? Using our freedom of fixing the gauge, we can carry
out this brief analysis considering the temporal gauge in its euclidean version Ā4(x) = 0 ∀x ∈ R4.
We can readily write down

Ā4(x) =
i

g
U(x)∂4U(x)−1 = 0 Āi(x) =

i

g
U(x)∂iU(x)−1 (1.41)

The first equality implies that, for this gauge choice, U(x) is just a function of ~x ∈ R3. It can be
further proved that any function U(~x) can be smoothly deformed so as to map the spatial infinity
r → +∞ to a single constant value: topologically speaking, the infinity is identified with a point.
With this extra arrangement, U(~x) will be defined over R3 plus a point, which has the topology of
S3. Eventually, it emerges that U(~x) can always be thought as a map S3 → SU(m) and we know
from the previous paragraph that this lets us classify U(x) functions into homotopy classes with
different winding numbers (for a more detailed description on the topic look at [10]).

Consequently, there will be as many vacua as the number of non-equivalent gauge transfor-
mations, which means that QCD vacua possess the cardinality of Z. They can again be labelled
by a winding number n, defined by (1.34). For sake of clarity, we point out how, in the preced-
ing paragraph, U just refers to a small gauge transformation, connected to the identity operator
and well-defined at each point. Here we are introducing some fictitious gauge transformations,
belonging to non-trivial homotopy classes: as stressed by [11], these objects will unavoidably show
a singularity somewhere on the compactified space S3.

In principle, the presence of multiple vacuum states should not be all that novelty. A simple
spontaneously broken scalar field with a Z2 symmetry will present a couple of vacua. It is very
well known, anyway, that the probability of transition between each other is zero in practise. This
is clear by looking at the transistion probability amplitude between an in and out state separated
by a potential barrier V (see [12])

〈nout|V |nin〉 ∼ e−SE (1.42)

Of course, in the limit of infinite volume, the euclidean action increases and this matrix element
goes rapidly to zero (which means the potential barrier is raised more and more). But the situation
is now different for QCD. We can consider an inner state n−∞, coming from t → −∞, and an
outer state n+∞, going to t→ +∞. The transition probability between these two vacuum states of
different winding numbers is not zero, because the Euclidean action admits some classical solutions
which can mediate between them, allowing a tunneling even in the limit of large volume space.

To see that, we can start considering the following object

1

2
tr

[∫
d4xE(F̄µν ± ˜̄Fµν)2

]
=

∫
d4xE

(
tr[F̄µνF̄µν ]± tr[ ˜̄FµνF̄µν ]

)
≥ 0 (1.43)
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where the second equality follows from the fact that εµνρσεµναβ = 2(δραδσβ−δρβδσα), which implies
˜̄Fµν ˜̄Fµν = F̄µνF̄µν . So, one gets

−
∫
d4xEtr[F̄µνF̄µν ] ≥

∣∣∣∣ ∫ d4xEtr[
˜̄FµνF̄µν ]

∣∣∣∣ (1.44)

Just because the left-hand side is twice the euclidean action and the right-hand side can be rewritten
using (1.40), we obtain the following condition:

SE ≥ 8π2|n′|
g2

(1.45)

which tells us that in any homotopy class we have a field configuration minimizing the euclidean
action, that is a corresponding solution of the classical field equations.

If we now plug into equation (1.42) the expression of SE saturating the bound (1.45), we will
attain

〈nout|V |nin〉 ∼ exp

{
−8π2|n′|

g2

}
(1.46)

where n′ = nout − nin and the tunneling probability does not depend on volume any more. These
field configurations which mediate between different vacua are called instantons. However, one
can immediately realize that the role of instantons can be highly ruled by the gauge coupling g.
Concerning QCD, we know that at high energy g � 1, which means that we are in the perturbative
regime. Here the previous exponential is suppressed by a large factor 1/g2. The tunneling processes
will start being relevant in the non-perturbative regime.

The presence of instantons has an immediate consequence on the construction of our field
theory. Indeed, a quantum theory should be able to rely on a vacuum labelled by a time indepedent
quantity. Therefore, it is clear that the use of winding numbers is not a good choise, because of these
possible vacuum transitions. Moreover, we would like that a gauge transformation did not change
the physical vacuum state, because we know that acting with the gauge group can not have any
physical effect. We could be left, at most, with a change of phase |vacuum′〉 = eiθ |vacuum〉, which
is clearly not a problem, if we consider that a quantum state is defined as a ray in the Hilbert space.
But if we act with a large gauge transformation Ωm (a trasformation which connects states which
differ by a winding number m) on a vacuum state |n〉, we will obviously obtain Ωm |n〉 = |n+m〉
by very definition. A good vacuum state for QCD can be designed as

|θ〉 =
∑
n

einθ |n〉 (1.47)

in which θ is a real parameter. This state is properly constructed in order to be gauge invariant,
as it is evident from

Ωm |θ〉 =
∑
n

einθΩm |n〉 =
∑
n

einθ |n+m〉 = e−imθ
∑
n′

ein
′θ |n′〉 = e−imθ |θ〉 (1.48)

where we just have a harmless change of phase.
In addition, here there is no overlap between different θ-vacua

Zθ→θ′ [0] = 〈θ′out|θin〉 =
∑
n,m

eimoθ
′
oute−iniθin 〈mo|ni〉 =

=
∑
n,ν

ei(ni+ν)θ
′
oute−iniθin 〈ni + ν|ni〉 = δ(θ′out − θin)

∑
ν

eiνθin 〈ν|0〉
(1.49)
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In the last passage we used the presence of the Dirac delta function to set θout = θin. In order to
get our final result, we have put ni to zero in 〈ni + ν|ni〉, because the transition probability will
depend only on the winding number difference between two states. The δ(θ′out − θin) simply tells
us that the parameter θ does not depend on time. This latter is a very convinient aspect to define
a quantum vacuum, but it will prove to be a further problem later on.

If we now drop the delta function, that just ensures the conservation of θ, we can define

Zθ[0] =
∑
ν

eiνθ 〈ν|0〉 =
∑
ν

∫
DĀµ,νeiνθe−SE =

=
∑
ν

∫
DĀµ,νexp

{
−
∫
d4xE

(
LE +

iθg2

32π2
tr[εµαρσF̄µαF̄ρσ]

)} (1.50)

where the definition of winding number for ν has been employed. The notation
∫
DĀµ,ν stands

for an integration over all euclidean field configurations with a definite winding number (we should
clearly solely integrate over inequivalent gauge configurations, but this is another story). Now we
just need to move back to Minkowski space through an anti-Wick rotation. To do that, we have to
proceed carefully and to consider that we will get a factor i from the four space measure, an extra
−i from the singled-out time-like derivative that appears in tr[FµαF̃µα] because of the Levi-Civita
symbol, which, in its turn, contributes with an extra minus sign, due to the conversion ε4123 = −1
but ε0123 = +1.

The take-home message of this discussion is that the contribution of instantons to QCD theory
appears in an extra term in the Lagrangian, which comes as

Lθ =
θg2

16π2
tr[FµαF̃µα]. (1.51)

Thereby, we can either consider the correct quantum vacuum of QCD or go on using a simple
vacuum (possibly associated with ν = 0), but in the latter case we will have to introduce an extra
term in our description which accounts for all possible vacuum transitions. θ is a new parameter
of the theory, describing a QCD vacuum property. The field configurations Aµ that contribute to
(1.51) and impede simply to neglect it as a total derivative are the instantons: that answers the
question we left open at the end of the previous paragraph.

1.3 Chiral anomalies

The θ-term that we derived in the previous section sums up in a powerful way the non-trivial
properties of the QCD vacuum. What we want to show now is the profound connection between
this term and the problem of quantum anomalies.

It is well-known that at classical level, the symmetries of a theory are those of the Lagrangian
and to each of them it will be associated a conserved current, according to Noether theorem. Then,
conservation laws will be modified into Ward-Takahashi identities at quantum level. But nothing
assures us that a classical symmetry will still survive in a quantum framework. In a quantum field
theory approach, the really fundamental object is not the Lagrangian, but the generating functional
of correlation functions Z[J ]. For a theory with one Dirac field and an abelian four-potential, upon
setting sources to zero, we will have

Z[0] = N
∫

DAµDψDψ̄eiS (1.52)

As a consequence, for Z[0] to be invariant, we do not just need the invariance of S, but of the
functional measure, too.
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Let us consider the interesting example of an axial abelian transformation U(1)A, acting as

ψ(x) 7−→ eiαγ5ψ(x) ψ̄(x) 7−→ ψ̄(x)eiαγ5 (1.53)

By taking the γ5 matrix in the Weyl representation, where γ5 = diag(−1,1), it is easy to appreciate
how Weyl fermions of opposite chirality rotate in reverse directions. As already seen, without a
mass term in the Lagrangian mixing up the left and right parts of the spinor, we have a conserved
chiral current jµ5 = ψ̄γµγ5ψ and an associated charge Q5, which encodes the difference between
left- and right-handed particles. By adding a mass, the conservation law is modified into

∂µj
µ
5 = 2imψ̄γ5ψ, (1.54)

Therefore, a particle can change chirality during its time evolution, which is responsible for a
∆Q5 6= 0. So much for what we have in a classical approach. We can now set to zero the mass
term again and consider how Z[0] changes under a chiral transformation. To derive our result, we
will follow the customary trick of generalizing α to a function of space-time coordinates.

We know that, when dealing with path integrals, the properties of convergence are better studied
by Wick rotating our variables. In the Euclidean formulation, we will have Āµ = (A4 = −iA0, ~A),
ψE and ψ̄E will be treated as indipendent fields and for the γ-algebra it will hold that γ̄µ = γ̄†µ
(for γ̄4 = γ0 and γ̄k = −iγk). Moreover, to handle adimensional differential operator, it will prove
to be convenient the rescaling ψ′

E = iµψE , where µ is an arbitrary constant with mass dimensions.
If we consider all that, expression (1.52) can be recast as

ZE [0] = N
∫

DĀµDψEDψ̄Ee
∫
d4xE(ψ̄E( i /D

µ )ψE− 1
4 F̄µνF̄µν) =

= NA

∫
DĀµdet

∣∣∣∣∣∣∣∣ i /̄Dµ
∣∣∣∣∣∣∣∣e− 1

4

∫
d4xEF̄µνF̄µν

(1.55)

We can focus on ZA[0] = det||i /̄D/µ||, where Āµ is treated as a classical field, not to deal with gauge
fixing complications. We should take into account that a continuous Wick rotation over fermion
fields will not affect spinor indeces:

ψE(τ, ~x) = ψ(eiθt, ~x)|θ=π/2 ψ̄E(τ, ~x) = ψ̄(eiθt, ~x)|θ=π/2 (1.56)

but it will just change the phase of spatial gamma matrices, as mentioned above. As a consequence,
we can mimic the axial phase transformation (1.53) for minkowski fermions and translate it in
euclidean formalism in a direct way:

ψ′
E = eiα(x)γ̄5ψE ψ̄′

E = ψ̄Ee
iα(x)γ̄5 (1.57)

where γ̄5 = γ̄1γ̄2γ̄3γ̄4 = −γ5.
Therefore, it can be straightforwardly fathomed that, after this chiral change of variables, (1.55)

becomes:

Z ′
A[0] = det||i /̄D

′
/µ|| = N ′

ψ

∫
Dψ′

EDψ̄′
Ee

−S′
E = J−1N ′

ψ

∫
DψEDψ̄Ee−SE+

∫
d4xE∂µα(x)j

5
µ =

= J−1det||eiγ̄5α(x)(i /̄D/µ)eiγ̄5α(x)|| (1.58)

where, in the previous expression, J is the jacobian factor arising from the redefinition of spinor
fields. The power of minus one accounts for the grassmann nature of the variables we are varying.
The crux of the problem is just the evalutation of J . In contrast to what we are accustomed,
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the chirality of the transformation does not lead to a compensation between ψ’s and ψ̄’s variation
in the fermionic measure and, hence, to a trivial J = 1. Therefore, a classical symmetry will be
preserved in a quantum field theory, if the functional measure will be invariant. If not, we speak
of an anomalous symmetry, whose conservation law gets quantum corrections.

Nevertheless, the problem of anomaly is even subtler. Speaking of an anomalous contribution
is equivalent to say that the determinant of (1.55) is not invariant under a change of basis. That
sounds a bit weird in terms of customary algebra. But we know that these properties hold only if
our formulae are well-defined and convergent: the anomaly simply tells us that our initial expression
was not so and that we will need a regulator, in order for our construction to make sense. These
underlying divergences emerge from the fact that the product of eigenvalues Πjλj increases without
bound. The regularization procedure to extract a finite value from it is not unique, but the achieved
result can not depend on the way we get it.

Historically, the methodology developed by Fujikawa [13] to handle quadratic path integrals
played an important role in the process of understanding of chiral anomalies. Despite that, it was
realized later on that Fujikawa method was not reliable to deal with all kind of anomalies. A
more general technique, which has proved to be very useful, is the ζ-function method, devised by
Hawking [14] to regulate divergent jacobians of the path integral realm.

In the ζ-function regularization, the possibility of rendering divergent quantities finite is based
on the formalism of analytic continuation of ζ on the complex plane, which is an entrenched sector
of mathematics. Once we defined the ζ function associate to an hermitian or normal operator A
as

ζ(s,A) =
∑
j

λ−1
j (1.59)

where {λj , j ∈ N} is the discrete or countable set of eigenvalues of A, the key identity of this
procedure is

det(A) = exp

{
−dζ
ds

(s,A)

}
s=0

(1.60)

That gives us the possibility of assessing the jacobian factor of our problem as a difference of two
determinants, already regularized from the outset [15]:

logJ−1 =
dζ

ds

(
0, eiγ̄5δα(x)

i /̄D
µ
eiγ̄5δα(x)

)
− dζ

ds

(
0,
i /̄D
µ

)
(1.61)

A brief summary of the ζ-function technique, together with a thorough evalutation of the
previous expression, is reported in Appendix A.2. Here, we just need to quote that, after a pretty
lengthy calculation, one can obtain the formula encoding the anomalous contribution:

J−1 = exp

{
− ig2

16π2

∫
d4xα(x)εµνρσFµνFρσ

}
(1.62)

In light of this result, the effect of a chiral transformation on the generating functional will be

Z ′
A[0] = N ′

ψ

∫
DψDψ̄eiS−i

∫
d4xα(x)[∂µj

5µ(x)+ g2

16π2

∫
d4xα(x)εµνρσFµνFρσ ] (1.63)

But, after all, we act on Z[0] through nothing more than a change of variables, so that the
generating functional is expected not to depend on the arbitrary parameter α of this chiral rotation.
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Therefore, it is straightforward to see that this fact entails

δZA[0]

δα

∣∣∣∣
α=0

= 0 and so

N
∫

DψDψ̄
(
∂µj

5µ +
g2

16π2
εµνρσFµνFρσ

)
eiS−i

∫
d4xα(x)[∂µj

5µ+ g2

16π2 ε
µνρσFµνFρσ ]

∣∣∣∣
α=0

= 0

〈0|∂µj5µ(z)|0〉 = − g2

16π2
〈0|εµνρσFµν(z)Fρσ(z)|0〉

(1.64)

which shows that, even in absence of mass terms, the 4-divergence of the chiral current gets
quantum corrections. This results is known as Adler-Bardeen theorem, after the names of the first
ones who derive this formula by an attentive inspection of Feynman diagrams. It is noteworthy
that this result is exact, because equation (1.62) was derived by Fujikawa and by us in Appendix
A.2 without any use of a perturbative expansion in the parameter g. Hence, there are no additional
higher order contributions and there is no need to restrict the validity of (1.64) to a perturbative
regime. The method that we employed is based on a direct handling of path integrals, showing
the exactness of the formula (something that a diagram approach can not tell, because of its
perturbative nature).

If we now consider the corresponding charge associated to j5µ(x), it is easy to notice from the
first expression that, on account of (1.40)∫

d4xj50(x) = Q5
f −Q5

i =

∫
d4xE

g2

16π2
εµνρσF̄µνF̄ρσ = −2ν (1.65)

The amount of change of chirality is related to the winding number: even without a mass, par-
ticles change their chirality by interacting with instantons, e.g field configurations which mediate
transitions between different quantum vacua. It is fundamental to notice that the term emerging
from a chiral transformation is of the same form of that we added to the Lagrangian, to account
for the complicated QCD vacuum structure: this point will prove to be crucial later.

Up to now, we have just considered a simple abelian axial transformation. A non-abelian
generalization it is quite straightforward, but, first of all, it is worth noticing another detail. We
emphasized that, in order to have a chiral transformation, we just need to transform differently
fermions of opposite chirality. So, it is convenient to highlight the two independent roles of right
and left fermions in (1.62). This can be unambiguously done remembering that jµ = ψ̄γµψ and
j5µ = ψ̄γµγ5ψ, from which one can construct j5µL = ψ̄Lγ

µψL = (jµ− j5µ)/2 and j5µR = ψ̄Rγ
µψR =

(jµ + j5µ)/2. Taking into account that 〈0|∂µjµ(x)|0〉 = 0 even at quantum level, we can write
from (1.64)

〈0|∂µj5µL (x)|0〉 = +
g2

32π2
〈0|εµνρσFµνFρσ|0〉

〈0|∂µj5µR (x)|0〉 = − g2

32π2
〈0|εµνρσFµνFρσ|0〉

(1.66)

Therefore, we can rearrange (1.62) as

J−1
L/R = exp

{
± ig2

32π2

∫
d4xα(x)εµνρσFµνFρσ

}
(1.67)

where ± refers to left or right respectively (with half of the whole contribution presented in the
original expression). Actually, as it will be clearer in the following chapters, only the relative minus
sign between left and right particles will be relevant.
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The remaining part of the job will just be a matter of generalizing abelian to non-abelian case.
This will be done on two separate levels: both considering a non-abelian group symmetry acting
on spinors and by coupling them to non-abelian gauge fields. The new chiral transformation laws
for Weyl spinors will be:

ψ′
L = exp{iωaL(x)τa}ψL ψ′

R = exp{iωaR(x)τa}ψR (1.68)

where τa are the generators of some group (an abelian or non-abelian one). All we have to include
is an extra factor, comprising a trace over internal symmetry indeces. In our Appendix A.2, we
cover this simple problem, too, obtaining the result:

J−1
L/R = exp

{
∓ ig2

32π2

∫
d4xωa(x)ε

µνρσtr[τaFµνFρσ]
}
. (1.69)

Now, on account of the fact that Fµν = T cFc
µν , where T

c are the generators associated to gauge
symmetry, we can rewrite the trace operation in the exponent in a very interesting way

εµνρσtr[τaFµνFρσ] = εµνρσtr[τaT bT c]Fb
µνFc

ρσ =
1

2
εµνρσtr[τa{T b, T c}]Fb

µνFc
ρσ (1.70)

where we have highlighted the expression

dabc = tr[τa{T b, T c}] (1.71)

This object is the really elementary quantity that tells us if a symmetry transformation, represented
by the abelian or non-abelian generators τa and which couples to spinor fields, gets quantum
corrections. The latters stem from the presence of gauge symmetries to which fermions are sensitive
and whose infinitesimal generators appear inside the anticommutator (1.71). If dabc = 0, there are
no anomalies and a classical symmetry is still valid at quantum level; if dabc 6= 0, the current
associated to the symmetry involving τa will not be quantum conserved. It is just calculating
objects of this kind that we are able to claim that the gauge symmetry SU(3)c×SU(2)L×U(1)Y
of the standard model is anomaly free: charges and number of fermions are designed so that all
possible dabc coefficients disappear. Therefore, we are left with the remarkable result that gauge
symmetry is a real symmetry of the standard model, even at quantum level: that is a real luck,
considering how gauge invariance is a foundational principle of it!

As already said, this general expression for quantum anomalies was originally obtained by
Feynman diagram calculations. We are not going to tackle this kind of problem in this context,
but we refer to our Appendix A.1 for a direct calculation of the anomaly with a perturbative
approach. Nonetheless, it will be useful for the following development of this work to understand
the underlying diagram structure behind the anomaly term by means of a heuristic reasoning.

As a matter of fact, we know that any term in the Lagrangian must correspond to a particular
diagrammatic rule. If we rescale the action by a constant λ with dimensions of [~], the exponential
weight in Z[J ] will turn into

e
i
~S 7−→ e

i
~/λ

S
λ (1.72)

Thereby, we can spot the adimensional parameter λ̃ = ~/λ. We see that vertices will present
powers of this parameter in the form λ̃−1, while propagators (being related to the opposite of the
inverse of the Fourier transform of the kinetic term) will acquire a λ̃. So, every Feynman diagram
will come with a factor λ̃I−V , with I the number of internal lines and V that of vertices. Then, if
we take into account the topological relation I − V = L − 1, it emerges how a Feynman diagram
will be always followed by a λ̃L−1 factor, that turns out to be a loop counter.
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k

p1

p2

τa

T b

T c

Figure 1.2: A triangle diagram related to the Lagrangian term 1
2ε
µνρσtr[τa{T b, T c}]ωaFb

µνFc
ρσ

A simple tree level diagram will have a factor λ̃−1, directly linked to the contribution of propa-
gators and vertices: so L = 0. The determinant giving rise to the anomaly term will have no factor
λ̃ at all, because generated by the functional measure: therefore, L = 1. Thus, the anomaly con-
tribution introduced in the Lagrangian is associated to a loop diagram. Moreover, by inspection of
formula (1.69), we have three fields appearing in the new term, as it happens for a three-external-
legs diagram: a quadratic combination of the field strength tensor and ω(x), that here clearly
plays the role of a field. What about the number of internal verteces? Equation (1.69) has been
written down in the most general form and it can be applied to any sort of transformation acting
on fermions: of course, there will always be a coupling constant parametrizing that. Just as an
example, we could have inserted an explicit factor g in (1.68), in case of a gauge transformation
of the same kind: this would have generated a power of three in (1.69). All that suggests how the
diagram related to J−1 should be a loop with three external legs and three internal verteces, that
is to say a triangle diagram (see figure 1.2).

The loop expression associated to this diagram can be readily written down, considering again
ω(x) as a field related to a local chiral transformation ψ′ = exp{iωa(x)τaγ5}ψ. Just because
it is a phase field, its interaction with quarks will be, up to a coupling constant y, of the form
iyj∂µωq̄jγ

µqj . Consequently, the integral expression of our triangle diagram will be:

−1

2
dabc

∑
j

∫
d4l

(2π)4
tr

[
i

/l −mj

(−iyj/kγ5)
i

/l − /p1 −mj

(igγµ)
i

/l − /p1 − /p2 −mj

(igγν)

]
(1.73)

where j is a quark flavor index and g the gauge coupling. We can easily notice that the integral
is linearly divergent, as suggested by our starting reasoning on the algebraic properties of the
fermion determinant: just this ill-defined integral is at the origin of the anomalous behavior of
chiral transformations. In the path integral procedure, the divergence shows up as bad behaving
determinant, which demanded a suitable regularization scheme. Here, we have customary indefinite
integrals of perturbation theory, but with a further peculiar difficulty: the presence of one γ5

matrix. If we insist on making use of the powerful instrument of dimensional regularization to
counter this calculation, as we did in Appendix A.2, we will have to face the non-trivial issue of
extending γ5 to an arbitrary number of dimensions!
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1.4 The θ-term consequences

We have now all the tools together to understand why the U(1)A problem is not a problem at
all. We just need to consider if this global symmetry, that we examined in the first paragraph,
survives quantum corrections or not. This can be straightforwardly calculated using the expression
of dabc we derived earlier.

We can easily realize that the conservation law for the axial triplet current is unaffected by
anomalous terms. Indeed, on account of (1.64) (properly generalized), one gets

∂µj
5µa(x) = − g2

32π2
εµνρσtr[τa{T b, T c}]GbµνGcρσ (1.74)

where τa are now axial isospin generators and T b color generators, which can be expressed through
the Gell-Mann matrices. The trace is taken both over color and flavor. Using a normalization for
Gell-Mann matrices which is typical of non-abelian gauge theory (i.e tr(λaλb) = δab/2) and on
account of {λa, λb} = δab/3 + dabcλc (where dabc = 2tr[{λa, λb}λc] coincides with our previous
definition up to a factor two, which depends on matrix normalization), one gets

tr[τa{T b, T c}] = 1

3
tr[τaδbc] + tr[τadbceλe] = 0 ⇒ ∂µj

5µa(x) = 0 (1.75)

in which we fixed T a = λa and we used the property of null trace of SU(2) and SU(3) generators.
So, we obtained the anticipated result: the axial non-singlet current is only broken by the explicit
quark mass term, which is responsible for pion masses.

For the singlet current associated to U(1)A, things are different. As a matter of fact, we see
that

∂µj
5µ(x) = − g2

32π2
εµνρσtr[12×2{T b, T c}]GbµνGcρσ =

= − g2

32π2
εµνρσtr[12×2]tr

[
δbc
3

]
GbµνGcρσ = − 2g2

32π2
εµνρσGbµνGcρσ

(1.76)

where 12×2 is the infinitesimal generator of U(1)A, acting on the two flavours of our model. It
is noteworthy that the current conservation law gets a quantum correction, which directly comes
from QCD and its vacuum properties. It is just the quite tricky structure of QCD vacuum that
makes the U(1)A group not a real symmetry of the theory: after all, tr[GµνGρσ] is nothing but the
instanton topological term. Actually, we know that the same holds for SU(2)A, once we introduce
a mass term, but, nevertheless, we can still speak of pseudo-goldstone bosons. Anyway, if we could
have treated SU(2)A and U(1)A on the same footing, as symmetries violated at tree level by mass
terms, we would have expected to find an extra goldstone boson with a mass comparable to that
of pions. However, we know that this is not the case. The same problem arises while considering
the less precise SU(3) flavour symmetry, where this singlet state is still missing. Therefore, the
mass of η′ requires a different explanation, which just stems from the anomaly term. Indeed, we
can envisage that the anomalous triangle diagram, which couples to j5µ, will directly contribute to
the associated “goldstone boson” mass with some loop corrections to its propagator (remember
that jµ5 ∼ ∂µη

0). The η0 mass will be now lifted proportionally to the strong coupling constant,
resulting in a much higher contribution than that coming from an explicit symmetry breaking mass
term. After all, we have to take into account that, when we consider QCD bound states, we are
in a non-perturbative regime. After the rotation (1.28) to physical states, we understand how the
anomaly will affect both η and η′, according to the amount of η0 they contain. For some results
on theoretical predictions of the η and η′ masses, one can look for example at [16] (where they are
evalutated using lattice QCD calculations).
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But if we have sorted out the U(1)A conundrum, on the other hand a new problem appears
upon introducing this θ-term in the Lagrangian. First of all we notice that, just due to the presence
of the Levi-Civita symbol, our new contribution will not be invariant under parity and, therefore,
under CP (or equivalently time-reversal). So, we are introducing in the theory a source of CP
violation. But this is not in principle a problem: only CPT transformations are expected to be
real symmetry of the standard model. As a matter of fact, the complex phase δ of the CKM
matrix in Wolfenstein parametrization already violates the CP symmetry. Anyway, it is better to
highlight a difference: the θ-term is a contribution which directly generates parity violation at tree
level in the strong sector of the SM.

With a better inspection of the Lagrangian at energy lower than the electroweak symmetry
breaking scale, we also observe that there is another non CP-preserving term

L��CP = −(q̄iLM
j
i e

iθY qRj + h.c.) +
αsθQCD

4π
tr[Gµν G̃µν ] (1.77)

where qiR/L is a Weyl spinor, whose index i runs over quark flavours, and αs = g2strong/4π. In the
first term, we singled out a complex phase connected to the possibility of a complex mass matrix.
Of course, we can always perform a chiral transformation over spinors

qL 7−→ e−iβqL qR 7−→ eiβqR (1.78)

leading to a quantum anomaly contribution of the form

Lanomaly = +Ngβ
αs
4π
tr[Gµν G̃µν ] (1.79)

where Ng refers to the number of quarks we rotate. In so doing, θQCD transforms as θQCD 7−→
θQCD + Ngβ. If β = −θY , we could render the mass matrix real, but we would have shifted of
a corresponding angle the phase of the QCD vacuum. On the other hand, we could have rotated
fermions of a phase −θQCD/Ng, so as to annul the θ-term, but just leaving a complex quark matrix.
Thus, the two parity violating phases are not unrelated and the Lagrangian essentially depends
on a combination of them. But as already remarked earlier, this term induces a CP violation in
strong interactions: this is at the origin of an issue dubbed strong CP problem. This latter arises
from the fact that experiments suggest, with a great level of accuracy, the preservation of parity
by strong interactions. Consequently, all bound states of QCD will be eigenstates of parity in their
turn. If this is true, the neutron will not be the exception and it will be invariant under parity, too.
If we consider its electric dipole momentum, using the property of parity operator P = P† = P−1

and defining |N〉 the neutron state, we will get

〈N | ~E|N〉 = 〈N |P†(P ~EP†)P|N〉 = 〈N |(P ~EP†)|N〉 = −〈N | ~E|N〉 ⇒ 〈N | ~E|N〉 = 0 (1.80)

where ~E is clearly the electric vector field, which gets a minus sign under parity. Thereby, we
should have a neutron electric dipole momentum equal to zero, as a direct consequence of parity
invariance. But if we now perturbe our theory with this new θ parameter, which must appear in
the Lagrangian for all the reasons discussed previously, parity will not be a symmetry of the strong
theory any more: we expect to obtain a contribution to the electric dipole momentum of neutrons.
This quantity can be computed, by means of chirality techniques or in a OPE formalism [17]

dn = 2.4× 10−3θefm (1.81)

The outcome must be compared with the experimental result of |dn| < 3.0 × 10−13efm, fixing
an upper bound on the new parameter of our theory of |θ| < 1.3 × 10−10. This is clearly an
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incredibly tiny value that calls for an explanation; all the more so if we consider that this angle
arises from the addition of two different and independent phases (i.e θY and θQCD). θ can freely
vary inside the interval [0, 2π[: so, why should it assume this unnatural value compatible with
zero? Experiments seem to suggest that this parameter is actually not physical or, anyway, it does
not produce any observable result. But its introduction in the SM theory is highly justified: hence,
further justifications must be provided.

1.5 The Peccei-Quinn mechanism

Actually, a conceptually easy solution could be given just by supposing that one, among the six
quark masses, is zero. If that were the case, we could always act with a U(1)A transformation on
this fermion field: by doing so, we will be able to erase the θ-term by means of the color anomaly
developed by this operation. Of course, this will not redefine the phase of any mass term any
more. Consequently, because of the freedom of changing this fermion field, the extra term that we
introduced earlier will not be physical. Unfortunately, so long as we remain inside the SM scenary,
the hypothesis of a massless quark has been highly discouraged by experimental data: the only
reasonable candidate could be the up quark, but experiments furnished md/mu = 1.76 ± 0.13,
which obviously makes the idea of massless up quite difficult to be supported. But the existence
of a new massless quark is hard to back up, too, because of a missing phenomenology of hadron
states involving this alleged species.

A much more elegant way to escape from the strong CP problem was suggested by R.P. Peccei
and H.R.Quinn in 1977 in an important article [18]. But before exploring this solution, one
more comment regarding this θ parameter should be done. Indeed, let us consider expression
(1.50). Here we are given a formula for Zθ[0] in the euclidean formalism. On account of the deep
connection between quantum field theory in euclidean space and statistical mechanics, we know
that the generating functional Z is related to the partition function Zs, which can be written as
Zs = exp{−βF}. F is clearly the free energy, whose minimum gives us the stability conditions of
the system. If, in this context, we refer to E as the free energy density, we see from (1.50) that

e−V4E(θ) =
∑
ν

∫
DĀµ,νexp

{
−
∫
d4xE

(
1

2
tr[F̄µαF̄µα] +

iθg2

32π2
tr[εµαρσF̄µαF̄ρσ]

)}
(1.82)

where V4 is a 4-dimensional euclidean volume factor. In euclidean notation, the first term in
the exponential is clearly positive definite, while the second one is a simple phase: any value
of θ different from zero will just lower the result of the integration. Thereby, we will obtain:
E(θ) ≥ E(0), i.e the minimum of the energy is reached when the value of θ equals zero. But we
have to point out that θ is here a parameter of the theory and not a dynamical variable: its value
can not evolve over time.

That previous disequality is a direct consequence of Vafa-Witten theorem [19], stating that in
any theory devoid of sources of CP violation, parity can not be spontaneously broken and so we
must have a minimum for the QCD vacuum energy at θ = 0. Up to now, anyway, the θ-term is
a form of explicit CP-violation: hence, we can not apply this theorem to our situation. However,
we can start envisaging that, if our θ was made a dynamical field, this latter could relax itself
until reaching the minimum value of energy, corresponding to a null θ. Actually, this idea is the
cornerstone of the Peccei-Quinn mechanism.

In order to restore CP invariance, Peccei and Quinn required the existence of an extra global
U(1)PQ symmetry, dubbed Peccei-Quinn symmetry. The particular realization of this symmetry
is clearly model dependent, but what is really fundamental is that this transformation has to be
anomalous: only this way we can cancel the θ-term through a colour anomaly produced by a
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U(1)PQ rotation of fields. So, in much the same way as for the massless fermion case, we can claim
that the θ parameter is unphysical. But this is not the end of the story. Indeed, this new global
symmetry could be spontaneously broken at some energy scale: this will result in the appearence
of an extra degree of freedom in the model, i.e a goldstone boson associated with the broken
symmetry. Actually, this latter will be a pseudo-goldstone boson, being the U(1)PQ symmetry
anomalous at quantum level. But, whichever way you look at it, the Peccei-Quinn mechanism
has, as a side-effect, the prediction of a new particle, that Wilczek called axion, after a famous
detergent for its virtue of cleansing the SM out of its strong CP stain.

As it will be extensively discussed later, below the low energy breaking scale, we can write an
effective Lagrangian, including the axion field a(x) in this form

La =
1

2
∂µa∂

µa+

(
θQCD +

a

fa

)
αs
8π

Gaµν G̃µνa (1.83)

where fa is an energy scale, called axion decay constant. We can appreciate how this new pseudo-
goldstone boson plays the role of the θ-parameter: we can actually incorporate this one in the
definition of the axion field after a phase shift, which is a symmetry of all terms of the Lagrangian,
apart from this anomalous coupling to gluons. Thus, it seems that a spontaneous breaking of
U(1)PQ could threat our construction, because, after all, it introduces back in the Lagrangian
something similar to a θ contribution. However, we have to consider that now a(x) is a dynamical
field. Its VEV has exactly the some power to induce a parity violation as the original parameter
θ, but the Vafa-Witten theorem ensures us that this should not happen, because the axion field
will evolve towards the value 〈a〉 = 0. The QCD dynamic itself, eventually, provides us with the
solution to the strong CP problem and with the restoration of parity and time-reversal invariance!

The previous reasoning holds as long as the Vafa-Witten theorem can be applied. In presence
of explicit CP violation terms, the axion potential will be modified so that 〈a〉 6= 0, potentially
threatening the PQ solution. These sources of CP violation can arise from physics beyond the SM
(to explain for example the baryon-antibaryon asymmetry of the universe). However, the SM itself
presents, as already mentioned, a complex phase in the CKM matrix. Even though some new CP
violating contributions θk will prevent a perfect cancellation of dn, they should not be so large to
the point of evading the experimental bound

∑
k |θk| < 1.3× 10−10.

We want to conclude this paragraph stressing how, from a theoretical point of view, the role
of axion is twofold. Indeed, it does not only solve a highly disturbing SM problem, but because of
its properties of interacting very weakly (as it emerges from different models that will be discussed
later), it is also a lawful dark matter candidate, with all cosmological and astrophysical conse-
quences of that. In this framework (that we will be explored better in chapter 3), after that the
axion field has roled down towards the minimum of the potential, it will go on oscillating around it,
which means a = 〈a〉+ δa. Just considering that dn = dn(θQCD) and that, in the PQ solution, we
can substitute θQCD 7−→ a/fa, we will have dn = dn(a/fa) = dn(δa/fa) (where we used 〈a〉 ≈ 0).
The axion is a pseudo-scalar field, so that there are no CP violation problems in the Lagrangian
(1.83), but time oscillations of a will give rise to a time-varying neutron electric dipole momentum.
That does not clash with (1.80), which refers to the mean value of dn. This simple observation
offered, pretty recently, a new way of detecting the effects of axions, in addition to a plethora of
designed experiments [20].

1.6 The need for an extension of the SM

Before analysing a concrete example of axion model, some general aspects can be pointed out. A
first thing that must be immediately clarified is the impossibility of implementing a PQ mechanism
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in a standard model scenary. That can be noticed by looking at the well-known Lagrangian, which
presents the Yukawa terms for the first quark generation

LY = −ydq̄LφdR − yuq̄Lφ̃uR (1.84)

where qL (the left-handed quarks) and φ (the Higgs field) are SU(2)L doublets, whereas dR and uR
are the right-handed quarks (which do not couple to isospin symmetry). Then, yu and yd denote
the Yukawa couplings and, finally, φ̃ = iτ2φ

∗, employed to give mass to the second component of
q̄L, once SU(2)L × U(1)Y is spontaneously broken. But before this threshold, the PQ symmetry
will be satisfied by all terms in the Lagrangian. We remind how it is necessary to couple differently
left and right quarks, in order to get an anomalous contribution. If, under a PQ transformation,
we have

φ 7−→ eiXhαφ uR 7−→ eiXuαuR dR 7−→ eiXdαdR (1.85)

and we suppose that left quarks have no PQ charge (a choice that can always be done, as it will
be justified later on), it is straightforward to see that Yukawa terms will respect the PQ symmetry
if and only if Xu = Xh and Xd = −Xh. Therefore, the up and down PQ charges are the same up
to a sign and, upon doing a PQ transformation and trying to evalutate the anomalous term, we
realize there will be no change for the θ-term

αsθQCD
8π

Gaµν G̃µνa 7−→ αs[θQCD − α(Xu +Xd)/2]

8π
Gaµν G̃µνa (1.86)

because Xu+Xd = Xh−Xh = 0. That means we can not reabsorb the θ parameter and so we have
no chance to pursue a PQ construction. Moreover, we do not have enough freedom to introduce
an axion in our description: indeed, all phase degrees of freedom of the Higgs field around its VEV
are used to give mass to gauge bosons and there is no room to accomodate an extra axion field.
Eventually, we will have to enlarge the SM with some extra fields associated to particles which
have not been observed yet.

There is probably no need to say how our extensions should be compatible with current phe-
nomenology, which can highly limit and restrict possible developments beyond the SM. A very
important restriction on the scalar structure of the Lagrangian comes from the experimental value
of ρ = 1.00037± 0.00023 (see [8]), which is defined as

ρ ≡ M2
W

M2
Z cos2 θW

(1.87)

where θW is the Weinberg angle and MW , MZ the electroweak gauge boson masses. The exper-
imental value of ρ is increadibly close to 1: that is justified in the SM by the presence of the
so-called custodial symmetry, an accidental symmetry of the theory. This latter protects the value
of this parameter against perturbative corrections. Possible deviations from the exact value of 1
will emerge by including some non-custodial preserving terms. But let us clarify this idea a bit
better.

1.6.1 The custodial symmetry

First of all, let us write the most general mass matrix for gauge bosons, so as to be consistent
with the symmetry-breaking pattern of the SM: SU(2)L×U(1)Y → U(1)em (as described in [21]).
It turns out to be:

M =


M2
W 0 0 0
0 M2

W 0 0
0 0 M2

W m2

0 0 m2 M2
0

 (1.88)
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where the first two entries refer to W±
µ and the other ones to Wµ

3 and Bµ0 (these latters correspond
respectively to the third gauge field of the SU(2)L symmetry and the hypercharge gauge field).
The first block is clearly diagonal and endowed with two equal entries, as ensured by the residual
U(1)em symmetry, which forces the masses of the two charged Wµ to be the same. On the other
hand, in the second block we have a mixing between the two neutral fields, as very well known. It
is also clear that, if U(1)em is preserved, the neutral 2× 2 mass matrix will have a null eigenvalue
and so

detM = 0 =M2
WM

2
0 −m4 (1.89)

with the corresponding eigenvector

(
− sin θW
cos θW

)
, where θW is the Weinberg angle, defined by

cosθW = g√
g2+g′2

. Employing the algebraic definition of eigenvector, the following relation will

hold true

tan θW =
m2

M2
W

=

∣∣∣∣M0

M3

∣∣∣∣ (1.90)

where (1.89) has been utilised. In the end, being the trace defined as a sum of eigenvalues, we can
express the non-zero eigenvalue this way:

M2
Z = trM =M2

0 +M2
W =M2

W sec2 θW (1.91)

Thus, at tree-level order we are left with:

M2
W

M2
Z cos2 θW

= 1 (1.92)

In the limit g′ → 0, we obtain MW = MZ . That tells us the three gauge fields W±
µ and Zµ

transform as a triplet of SO(3) ∼ SU(2), which turns out to be an extra symmetry of the theory.
Nevertheless, the hypercharge sector slightly breaks it with a tiny g′, so that we can only speak of
an approximate global symmetry, whose effect in (1.92) is enclosed in cos2 θW . For W±

µ and Zµ to
get masses in an almost symmetric way, an accidental symmetry must reside in the scalar sector
of the SM Lagrangian, which is responsible for gauge boson masses through the Higgs mechanism.

In order to make this symmetry more manifest, it will be wiser to rewrite the Higgs sector using
the two doublets formalism. We can introduce

φ =

(
ϕ+

ϕ0

)
φ̃ = iτ2φ

∗ =

(
ϕ∗
0

−ϕ−

)
=⇒ Φ =

1√
2

(
φ̃ φ

)
=

1√
2

(
ϕ∗
0 ϕ+

−ϕ− ϕ0

)
(1.93)

with isospin Iφ = Iφ̃ = 1/2 and hypercharge Yφ = −Yφ̃ = 1. This way we can rewrite the Higgs
Lagrangian

LHiggs = (Dµφ)†Dµφ+ µ2φ†φ− λ(φ†φ)2 with Dµφ = ∂µφ− ig~τ ~Wµφ− ig′
Yφ
2
Bµφ (1.94)

in terms of the new parametrization Φ as

L′
Higgs = tr[(DµΦ)†DµΦ+ µ2Φ†Φ− λ(Φ†Φ)2] with DµΦ = ∂µΦ− ig~τ ~WµΦ+ ig′BµΦτ3 (1.95)

Of course, τ i = σi/2. It is a straightforward calculation to verify that LHiggs = L′
Higgs. Under

gauge transformations, we know that{
φ′ = ULφ φ̃′ = ULφ̃ for UL ∈ SU(2)L

φ′ = eiα/2φ φ̃′ = e−iα/2φ̃ for eiα/2 ∈ U(1)Y
(1.96)
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which can be recast for the new field Φ as{
Φ′ = ULΦ = ULφ̃ for UL ∈ SU(2)L

Φ′ = Φe−iατ3/2 for U†
R3 = e−iατ3/2 ∈ SU(2)R

(1.97)

Then, we can try to extend the gauge group SU(2)L × U(1)Y to a larger (but global) one, i.e

SU(2)L × SU(2)R ∼ SO(4), under which Φ′ = ULΦU
†
R. The potential sector of the Lagrangian

(1.95) manifestly respects this extended symmetry, which, in the old formalism, simply mixes
the four degrees of freedom of φ. On the other hand, the kinetic term partially breaks it. As a
matter of fact, (DµΦ)′ = ULDµΦ under SU(2)L, but it is not true in general that for a SU(2)R
transformation a similar relation holds, because (DµΦ)′ 6= DµΦU†

R. It is again the hypercharge

contribution that violates it, due to the fact that [U†
R3, τi] = 0 if and only if i = 3. Therefore,

(DµΦ)′ = ULDµΦU†
R under SU(2)L × SU(2)R just in the limit g′ → 0.

Below the electroweak scale, if 〈φ〉 =
(

0

v/
√
2

)
, we will obviously have 〈Φ〉 = (v/2)12×2. The

VEV of Φ breaks the global SU(2)L × SU(2)R to its subset SU(2)V , for which UL = UR. This
remaining symmetry group is dubbed custodial symmetry, which is an accidental one, because the
theory has not been explicitly required to satisfy it: it just stems from the structure of the scalar
sector. Despite that, there are phenomenological reasons to claim it is an approximate symmetry
of nature.

We said it is an approximate one, because, again, the term proportional to g′ in the covariant
derivative violates the SU(2)V symmetry. In the limit g′ → 0, the covariant derivative (DµΦ)′ =
ULDµΦU†

L will transform as a SU(2)V triplet: consequently, from tr[(DµΦ)†DµΦ] the W±
µ and Zµ

bosons will receive the same mass. It is just the presence of this residual SU(2)V symmetry that
enforces the value of ρ to be so close to one: departures from the tree level behaviour will arise
from perturbative corrections involving explicit custodial breaking terms.

The presence of custodial violation will be responsible for the experimental ∆ρ = ρexp − 1 =
3.7 × 10−4. The hypercharge sector will contribute through the non-null value of g′ inside loop
corrections to MW and MZ . However, a larger contribution will come from the quark part of the
Lagrangian. Indeed, we can write down the Yukawa sector of the SM in the form

Lyuk =

3∑
i=1

(
ūLi d̄Li

)
Φ

(
yuiuRi
ydidRi

)
(1.98)

where the custodial symmetry is restored just if yui = ydi: the mass difference between quarks
inside the same isospin doublet is another explicit SU(2)V violating source. The greatest correction
will be produced by the third generation, owning to the huge top quark mass.

Now it is clear that all possible beyond the standard model (BSM) extensions should not
clash with the phenomenological evidence of an approximate custodial symmetry: non-custodial
preserving terms can not affect ∆ρ more than ∆ρ−∆ρSM . Moreover, the scalar structure of these
BSM theories should be designed in order to give equal masses to gauge bosonsW±

µ and Zµ at tree
level (up to g′ corrections). Let us analyse how the second requirement can costrain a model, by
considering an undefined number of scalar multiplets φi of weak isospin Ii, hypercharge Yi and with
a VEV for the neutral component of 〈ϕ0i〉 = vi/

√
2. Then, upon defining the covariant derivative

acting on the φi fields as

Dµφi ≡ ∂µφi − igW a
µ τ

aφi − ig′
Yi
2
Bµφi (1.99)

we know that we can read off from the kinetic term (Dµφi)†Dµφi the masses for gauge bosons, when
the φi fields are evalutated at their own VEVs 〈φi〉. If we concentrate only on mass contributions,
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we will get

[(Dµφi)†Dµφi]gauge masses =

= −i2〈φi〉T
(
g[W 1

µτ
1
i +W 2

µτ
2
i ] + gW 3

µτ
3
i + g′

Yi
2
Bµ

)(
g[Wµ

1 τ
1
i +Wµ

2 τ
2
i ] + gWµ

3 τ
3
i + g′

Yi
2
Bµ
)
〈φi〉

(1.100)

Then, we can make use of the expressions for the charge fields W±
µ =

W 2
µ±iW

1
µ√

2
and introduce the

ladder operators τ± = τ1 ± iτ2. If we furthermore consider the existence of the unbroken electric
charge generator Qem〈φi〉 = (τ3 + Yi1/2)〈φi〉 = 0, we can write down

[(Dµφi)†Dµφi]gauge masses =

= 〈φi〉T
(
g
W+
µ τ

−
i +W−

µ τ
+
i√

2
+ gW 3

µτ
3
i + g′

Yi
2
Bµ

)(
g
W−µτ+i +W+µτ−i√

2
+ gWµ

3 τ
3
i + g′

Yi
2
Bµ
)
〈φi〉

= 〈φi〉T
(
g2

2
W+
µ W

µ
−{τ−i , τ

+
i }+ (gW 3

µ − g′Bµ)
2(τ3i )

2

)
〈φi〉+

g2

2
〈φi〉T [(W+

µ τ
−
i )2 + (W−

µ τ
+
i )2]︸ ︷︷ ︸

=0

〈φi〉+

+ 〈φi〉T
[(

g2√
2
Wµ

3 − gg′
Bµ√
2

)
W+
µ {τ−i , τ

3
i }︸ ︷︷ ︸

=0

+

(
g2√
2
Wµ

3 − gg′
Bµ√
2

)
W−
µ {τ+i , τ

3
i }︸ ︷︷ ︸

=0

]
〈φi〉

(1.101)

The last three terms we have highlighted equal zero, because of the Lie algebra of SU(2), whose
properties are independent of the representation i. Indeed, when φi is evalutated at the minimum
of the potential, it is just a constant vector in the i-dimensional representation of the group. Its
third component of isospin I3, given by τ3〈φi〉i,m = m〈φi〉i,m, will depend on the particular choise
of the VEV. It is known from the angular momentum theory that:

τ±〈φi〉i,m = 〈φi〉i,m±1

√
i(i+ 1)−m(m± 1)

〈φi〉Ti,m′〈φi〉i,m = δm,m′
(1.102)

Consequently, the last three addends of the expression (1.101) vanish, because they involve scalar
products of orthogonal states. We can employ once more a relation derived from SU(2) Lie algebra

τ±i τ
∓
i = (~τi)

2 − (τ3i )
2 ± τ3i (1.103)

to eventually get

[(Dµφi)†Dµφi]gauge masses = 〈φi〉T
(
g2W+

µ W
µ
−[(~τi)

2 − (τ3i )
2] + (gW 3

µ − g′Bµ)
2(τ3i )

2

)
〈φi〉 =

=

(
g2v2i
2

W+
µ W

µ
−[Ii(Ii + 1)− I23i] +

v2i I
2
3i

2
(gW 3

µ − g′Bµ)
2

)
(1.104)

where in the last passage we substitute the eigenvalues of isospin operators on the vacuum. If we
now add up all of the Higgs contributions, we can identify

M2
W = g2

∑
i

(Ii(Ii + 1)− I23i)v
2
i /2 M2

Z =
∑
i

I2i3v
2
i (g

2 + g′2), (1.105)
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Here we have reached the crucial point of our reasoning. In order for the ρ parameter to equal one
at tree level, we just need to impose

M2
W =M2

Zcos
2θW ⇒ (Ii(Ii + 1)− I23i) = 2I2i3 ∀i (1.106)

Therefore, equation (1.106) tells us something fundamental: if we want to preserve the experimental
value of the ρ parameter, the only way is to extend the scalar sector of the SM model with Higgs
fields whose isospin satisfies

Ii =
1

2
(−1 +

√
1 + 12I2i3) = 0,

1

2
, 3, ... (1.107)

That means singlets, doublets, septuplets ... of scalar fields are allowed, but not triplets, for
instance. Then, using again the property τ3〈φi〉 = −Yi

2 1〈φi〉, we can eventually claim [22]

ρ =

∑
i(Ii(Ii + 1)− Y 2

i /4)v
2
i∑

i Y
2
i v

2
i /2

(1.108)

Considering the values of Ii = 0, 1
2 , 3, ... , we obtain the corresponding custodial preserving

hypercharges Yi = 0, 1, 4, ... , stemming from the condition Ii(Ii + 1) = 3
4Y

2
i imposed for all i.

All these considerations have provided us with an interesting contraint on model building.

1.7 Possible implementations

One of the first model presented to host a PQ mechanism in the SM was the Peccei-Quinn-
Weinberg-Wilczek (PQWW) model [23], which adds to the original field content of the theory an
extra Higgs doublet. The Yukawa terms were modified as

LY = −ydq̄Lφ2dR − yuq̄Lφ̃1uR (1.109)

where φi develops a corresponding vacuum vi. The two vacua should reasonably satisfy the relation√
v21 + v22 = v = 246GeV , in order to reproduce the electroweak scale. In so doing, we have eight

degrees of freedom shared by two Higgs doublets and, consequently, we can introduce a non-trivial
PQ charges assignment as

φi 7−→ eiXiαφi uR 7−→ eiXuαuR dR 7−→ eiXdαdR (1.110)

in which X1 = Xu and X2 = −Xd. Problems with this model appear when it comes to dealing
with phenomenology. As it will be shown in the next chapter, the axion mass turns out to be
related to a special quantity: ma ≈ f−1

a , where fa is a constant with energy dimensions named
axion decay constant. In this simple model, where there is only one energy scale (i.e v), fa ≈ v
and consequently ma ≈ v−1. Moreover, the constant fa controls all axion couplings with SM
particles, which turn out to be proportional to 1/fa. An axion of this kind interacts too strongly
with matter if compared to current experimental results, which undoubtedly exclude it. A famous
example is the experimental bound on the branching ratio B(K+ → π+ + nothing) < 7.3× 10−11,
for which this so-called visible axion model predicts a significantly larger value. Even more directly,
astrophysical considerations impose 109GeV ≤ fa ≤ 1017GeV (as we will contextualize better later
on): an fa ≈ 246GeV grossly falls out of this range. Therefore, just because the PQ mechanism
seems to be well justified, in order to reconcile its side-effect with experiments we need to heavily
decrease the axion mass by introducing a new energy scale, that means other degrees of freedom.

This way has been pursed by different models that go under the name of invisible axion models.
One of those is the Dine-Fischler-Srednicki-Zhitnisky (DFSZ) model [24, 25], that is one of the
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main topic of this Thesis and it will be extensively described later. The essential idea of this
construction is to extend solely the scalar sector with an extra complex singlet field with respect
to the PQWW model and to require that all fields appearing in the theory enjoy a Peccei-Quinn
symmetry (excluding gauge bosons). A different approach is that followed by the Kim-Shifman-
Vainshtein-Zakharov (KSVZ) model [26, 27], where a complex singlet scalar that couples to a new
heavy quark is introduced in the SM. Here only these two extra fields are endowed with a PQ
charge and, thereby, they alone are responsible for the axion degree of freedom: the rest of the
standard model is PQ neutral.

Of course, these are only two exemplary models, but it is easy to realise that plenty of pos-
sibilities to tweak the SM can be suggested. Anyway, all of them should take into account the
experimental restrictions coming from particle physics experiments and, being the axion a dark
matter candidate, constraints from astrophysical and cosmological data.



Chapter 2

The mass spectrum of a DFSZ
model

In this chapter we are going to study in depth the degrees of freedom of a DFSZ theory and
the problem of identifying the different fields of the standard model arising from its scalar sector,
whose structure is here much more convoluted. In particular, we will concentrate on the kinetic
and the potential part of the Lagrangian, leaving momentarily aside the Yukawa terms. Following
the general procedure applicable for the calculation of the mass spectrum of a typical DFSZ model,
we will analyse a slightly different case, where the quartic c-term of the potential, that mixes the
three different Higgs fields, is replaced by a cubic one.

2.1 The DFSZ potential

As we have already anticipated in the previous chapter, in order to implement a model enjoying
a PQ symmetry, we have to enlarge the field content of the theory. To do that, a viable possibility is
that presented by the DFSZ paradigm, which leaves untouched the fermionic sector of the standard
model, but enlarges the scalar one firstly by means of a second Higgs doublet. But we have already
pointed out how this solution possesses great phenomenological problems: its prediction of axion
properties is ruled out by experiments. Thus, the DFSZ model adds an extra Higgs singlet, for
reasons that we are now going to discuss.

Indeed, we can define the two Higgs fields as

φ1 =

(
α+

α0

)
φ2 =

(
β+
β0

)
(2.1)

which are simply copies of the SM Higgs field: two SU(2)L doublets (with isospin I = 1/2)
with hypercharge Y = 1 and, consequently, with a upper charged component of Q = 1 and a lower
discharged one (according to the Weinberg relationQ = I(3)+Y/2). These two fields are responsible
for quark and lepton masses through Yukawa couplings similar to those of (1.109). Therefore, it
is clear that their VEVs, given by 〈α+〉 = 〈β+〉 = 0, 〈α0〉 = v1/

√
2 and 〈β0〉 = v2/

√
2, should be

related to the usual electroweak vacuum expectation value as v2 = v21 + v22 (with v = 246GeV ),
where we define tanβ = v2/v1.

If we now enrich the model with the extra Higgs φ, requiring it to be a SU(2)L singlet with
Y = 0, it is immediately evident that it will not take part in the gauge symmetry of the Lagrangian.
Moreover, if 〈φ〉 = vφ, we are introducing by hand a new energy scale in the theory, which has

35
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nothing to do with the electroweak one. Actually, it will be ultimately related to the axion decay
constant fa. Just thanks to this new scale, we will have enough freedom to make axions invisible.

The kinetic terms of these Higgs fields can be fixed, accordingly to their definitions, as

Lkin =
1

2
∂µφ

∗∂µφ+Dµφ†1Dµφ1 +Dµφ†2Dµφ2 (2.2)

where the covariant derivative is obviously defined this way:

Dµφi ≡ ∂µφi − i
g

2
σaW

a
µφi − i

g′

2
Y φi. (2.3)

Now, if we consider how these Higgs fields transfom under the PQ symmetry, we are free to set

φ1 7−→ eiX1θφ1 φ2 7−→ eiX2θφ2 φ 7−→ eiXφθφ (2.4)

where, up to now, the different PQ charges are unrelated. Putting aside the Yukawa terms,
which play no role in the determination of the scalar and gauge mass spectrum, we can write
down the most general potential respecting CP invariance, the gauge symmetry of the standard
model SU(3)c × SU(2)L × U(1)Y and the additional anomalous U(1)PQ transformation. It can
be readily realised that the PQ invariance requirement imposes severe constraints on the possible
terms entering the potential, that can be expressed in the following form:

V (φ, φ1, φ2) =λφ(φ
∗φ− V 2

φ )
2 + λ1(φ

†
1φ1 − V 2

1 )
2 + λ2(φ

†
2φ2 − V 2

2 )
2+

+ λ3(φ
†
1φ1 − V 2

1 + φ†2φ2 − V 2
2 )

2 + λ4
[
(φ†1φ1)(φ

†
2φ2)+

− (φ†1φ2)(φ
†
2φ1)

]
+ (aφ†1φ1 + bφ†2φ2)φ

∗φ+ cVc−term

(2.5)

In the previous expression, clearly, all of the parameters are assumed to be real. To start with, V1,
V2 and Vφ individuate the unperturbed VEVs of the theory, that is to say the individual VEVs
of the Higgs fields when all interactions have been switched off. That can be easily read off from
the first three terms. Then, we have two independent contributions parametrized by λ3 and λ4,
which display a mixing between the two Higgs doublets and, eventually, two terms which relate all
of the Higgs fields. The second-to-last coupling, just as the previous ones, does not require further
conditions on PQ charges in order for U(1)PQ to be a symmetry.

The Vc−term, which has not been made explicit yet, deserves a different kind of discussion. As
a matter of fact, it can come in two distinct versions and, thereby, it can individuate two slightly
different models:

Vc−term =

{
φ†1φ2φ

2 + φ†2φ1φ
∗2 X2 −X1 = −2Xφ

φ†1φ2φ+ φ†2φ1φ
∗ X2 −X1 = −Xφ

(2.6)

with a quartic or cubic interaction term. Next to each version, we have indicated the required
charge relation in order to make this extra contribution PQ invariant. The quartic model has
already been studied quite deeply in other works (see for example [28]). What we are going to
tackle here is to develop the consequences of introducing a cubic term in our Lagrangian in a
very similar fashion to previous approaches. Customarily, the Xφ is fixed in literature to a precise
constant value of −1/2, for reasons that will be clear later. To make use of the advantages of this
choice, we will select a value of Xφ = −1 for the cubic model, in order to obtain a completely
equivalent relation among charges.
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2.1.1 Realization of the custodial symmetry

A non-trivial issue will be to understand the roles of the different Higgs degrees of freedom in
our model, but we will take it up in following sections. Now it is important to explore the global
symmetries of this potential. As we have already motivated quite at length, there are good reasons
to think that the custodial symmetry is an approximate symmetry of the standard model. It is
obviously approximate, because it is not a symmetry of the whole Lagrangian: the Yukawa and
hypercharge sector violate it, as we have already shown. Nevertheless, we know how crucial its
presence is to account for the close values of the W± and Z boson masses. However, it is not
self-evident at all how this SU(2)L × SU(2)R symmetry (then broken to SU(2)V by the vacuum)
could be achieved in a DFSZ model.

As a first step, we need to reorganize the Higgs doublets degrees of freedom using the two
doublets formalism, to make more manifest our problem:

Φ12 =
(
φ̃1 φ2

)
=

(
α∗
0 β+

−α− β0

)
Φ21 =

(
φ̃2 φ1

)
= σ2Φ

∗
12σ2 =

(
β∗
0 α+

−β− α0

)
(2.7)

It will also prove useful to introduce the following matrices

I = Φ†
12Φ12 =

(
φ†1φ1 φ̃†1φ2
−φ†1φ̃2 φ†2φ2

)
J = Φ†

12Φ21 =

(
φ†2φ1 0

0 φ†2φ1

)
W = (V 2

1 + V 2
2 )

1
2
+ (V 2

1 − V 2
2 )
σ3
2

=

(
V 2
1 0
0 V 2

2

) (2.8)

The last one is simply a constant matrix, while the remaining ones are particular combinations of
the original fields, whose VEVs take on the form

〈I〉 =
(
v21 0
0 v22

)
〈J〉 = v1v21 (2.9)

It is noteworthy that these vacua break the SU(2)L × SU(2)R, as expected. But if we want a
residual SU(2)V symmetry, we have to impose the condition v1 = v2, rendering I proportinal to
an identity matrix, too.

If we make use of all the aforementioned notations, we can rewrite the potential as

V (φ, φ1, φ2) =λφ(φ
∗φ− V 2

φ )
2 +

λ1
4
{tr[(I −W )(1 + σ3)]}2 +

λ2
4
{tr[(I −W )(1− σ3)]}2+

+ λ3[tr(I −W )]2 +
λ4
4
tr[I2 − (Iσ3)

2] +
1

2
tr[(a+ b)I + (a− b)Iσ3]φ

∗φ+

+
c

2
tr(Jφ+ J†φ∗)

(2.10)

As usual, under a SU(2)L × SU(2)R symmetry, we will have Φij 7−→ LΦijR
† and, thus, starting

from their definitions, we can deduce

I 7−→ RIR† J 7−→ J (2.11)

where the first relation can be straightforwardly obtained, while the second can be simply computed
remembering that Uσ2 = σ2U

∗, with U unitary. Now that the transformation of the potential
under the desired symmetry has been highlighted, the constraints on our parameters in order to
satisfy the custodial symmetry can be calculated.
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Proof. It is pretty easy to notice that λφ and Vφ will not be involved in the transformation and
they will be automatically custodial preserving. Using the cyclicity property of the trace, it can
be also claimed the same thing for λ3 and c. The remaining terms deserve a bit more of caution.
We can start developing the λ1, λ2 and λ4 contributions:

λ1
4
{tr[I]− tr[W ] + tr[Iσ3]− tr[Wσ3]}2 +

λ2
4
{tr[I]− tr[W ]+

− tr[Iσ3] + tr[Wσ3]}2 +
λ4
4
tr[I2 − (Iσ3)

2]

(2.12)

We see that the only troublesome term which violates our global symmetry is tr[Iσ3], owing to
its transformation properties: tr[I ′σ3] = tr[RIR†σ3] 6= tr[Iσ3]. The idea to pursue is trying to
simplify terms of this sort, appearing in the λ1 and λ2 couplings, with those in the λ4 parenthesis.
To achieve that, we can just expand a bit more our expression as

λ1
4
{(tr[I] + tr[Iσ3])

2 + tr[W ]2 + tr[Wσ3]
2 − 2(tr[I] + tr[Iσ3])tr[W ]− 2(tr[I] + tr[Iσ3])tr[Wσ3]+

+ 2tr[W ]tr[Wσ3]}+
λ2
4
{(tr[I]− tr[Iσ3])

2 + tr[W ]2 + tr[Wσ3]
2 − 2(tr[I]− tr[Iσ3])tr[W ]+

+ 2(tr[I]− tr[Iσ3])tr[Wσ3]− 2tr[W ]tr[Wσ3]}+
λ4
4
tr[I2 − (Iσ3)

2]

(2.13)

In order to reach the compensation with the term showing up in the last bracket, we have to
start making a set of assumptions that will ultimately lead us to the identification of the custodial
preserving conditions. First of all, we have to require λ1 = λ2 = λ, so that we can write

λ

4
{(tr[I] + tr[Iσ3])

2 + (tr[I]− tr[Iσ3])
2 + 2tr[W ]2 + 2tr[Wσ3]

2 − 4tr[I]tr[W ]+

− 4tr[Iσ3]tr[Wσ3]}+
λ4
4
tr[I2 − (Iσ3)

2]

(2.14)

It is easy to see that there is no hope of simplifying a term like −4tr[Iσ3]tr[Wσ3], because the λ4
contribution does not depend on W . So, we can only require tr[Wσ3] = 0, that is achieved by
setting V1 = V2. Therefore, one gets

λ

4
{2tr[I]2 + 2tr[Iσ3]

2 + 2tr[W ]2 − 4tr[I]tr[W ]}+ λ4
4
tr[I2 − (Iσ3)

2] (2.15)

The last two terms in the first parenthesis are harmless. Thereby, we just need to impose λ4 = 2λ
to eventually obtain

λ

2
{2tr[I]2 + 2tr[W ]2 − 4tr[I]tr[W ]} (2.16)

which is now custodial preserving.
Regarding the term containing the parameters a and b, we can simply get rid of the annoying

tr[Iσ3] contribution by requiring a = b.
Finally, we can sum up the custodial preserving conditions obtained in this proof:

λ1 = λ2 = λ

λ4 = 2λ

V1 = V2 = V

a = b

(2.17)
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2.2 The field content

In this section we will go through the tricky issue of identifying the physical degrees of freedom
of the scalar sector of the model. We know that each Higgs doublet possesses four components
(a radial and three angular fluctuations), while the Higgs singlet has two of them: therefore, we
have to end up with ten possible fields. We can envisage, just from theoretical considerations, that
three of them will be eaten by the gauge bosons, contributing to their masses, exactly as in the
standard model. Nevertheless, we also expect to find a goldstone boson (i.e the axion), because
the global PQ symmetry is broken by the VEV of φ at a very high energy scale.

2.2.1 The gauge bosons

To start with, it will be extremely useful to spot the degrees of freedom eaten by the gauge
bosons of the standard model. It is immediately clear that a complication arises from the fact that
now the gauge symmetry is shared by two Higgs fields.

We know that we can write our fluctuations around the vacuum for the two doublets in a similar
fashion as

φ1 =
1√
2
exp

{
i

2
[ζ1σ1 + ζ2σ2 + ζ3(σ3 − 1)]

}(
0

v1 + h1

)
=

1√
2
E1(x)

(
0

v1 + h1

)
φ2 =

1√
2
exp

{
i

2
[η1σ1 + η2σ2 + η3(σ3 − 1)]

}(
0

v2 + h2

)
=

1√
2
E2(x)

(
0

v2 + h2

) (2.18)

where we have brought to light that σ3+1 is the unbroken generator. Here, to avoid a cumbersome
notation, we will consider ζi = ζ̃i/v1 and ηi = η̃i/v2, where ζ̃i and η̃i are fields with mass dimensions.
To see which particular combination of the phases ζ and η will be absorbed in the gauge boson fields,
we have to look at the kinetic term of the Lagrangian. Of course, we are going to individuate the
degrees of freedom gobbled up by a linearized gauge transformation: thereby, we will be interested
only in quadratic terms in gauge and goldstone fields. Using the Higgs φ1 as an example, we could
write its partial derivative explicitly as

∂µφ1 =
1√
2

{
E1(x)

(
0

∂µh1

)
+
i

2
[∂µζ1σ1 + ∂µζ2σ2 + ∂µζ3(σ3 − 1)]E1(x)

(
0

v1 + h1

)}
=

≈ 1√
2

{(
0

∂µh1

)
+
i

2

(
0 ∂µζ1 − i∂µζ2

∂µζ1 + i∂µζ2 −2∂µζ3

)(
0

v1 + h1

)}
=

=
1√
2

{(
0

∂µh1

)
+
i

2
(v1 + h1)

(
∂µζ1 − i∂µζ2

−2∂µζ3

)} (2.19)

where in the second-to-last passage we approximate E1(x) ≈ 1, because we will ultimately need
the square of this object. As a consequence, quadratic terms in goldstone bosons can be neglected,
together with all higher contributions.

Now, we can express our covariant derivative in a more explicit form as

Dµφ1 =∂µφ1 −
1√
2

i

2

(
gW 3

µ + g′Bµ gW 1
µ − igW 2

µ

gW 1
µ + igW 2

µ −gW 3
µ + g′Bµ

)
E1(x)

(
0

v1 + h1

)
=

≈ 1√
2

{(
0

∂µh1

)
+
i

2
(v1 + h1)

(
∂µζ1 − i∂µζ2

−2∂µζ3

)
− i

2
(v1 + h1)

(
gW 1

µ − igW 2
µ

−gW 3
µ + g′Bµ

)} (2.20)

where we used Y = 1 and again the approximation E1(x) ≈ 1. If we now consider the term

Dµφ†1Dµφ1, products generating mixed interactions of gauge and goldstone fields with the Higgs



40 CHAPTER 2. THE MASS SPECTRUM OF A DFSZ MODEL

field automatically simplify out. Consequently, we could claim

Dµφ†1Dµφ1 =∂µφ
†
1∂
µφ1 +

(v1 + h1)
2

8
[Wµ

1 W
1
µ +Wµ

2 W
2
µ ] +

(v1 + h1)
2

8
[gWµ

3 − g′Bµ][gW 3
µ − g′Bµ]+

+
1

8
(v1 + h1)

2[4∂µζ3(−gWµ
3 + g′Bµ)− 2∂µζ1W

µ
1 − 2∂µζ2W

µ
2 ] + . . .

(2.21)

The remaining term can be easily computed using (2.19):

∂µφ
†
1∂
µφ1 =

1

2
∂µh1∂

µh1 +
(v1 + h1)

2

2

[
(∂µζ1)

2 + (∂µζ2)
2

4
+ (∂µζ3)

2

]
(2.22)

so that, substituing in (2.21), adding also the contribution of the second Higgs doublet, we get

Dµφ†1Dµφ1 +Dµφ†2Dµφ2 =
∂µh

†
1∂
µh1

2
+
∂µh

†
2∂
µh2

2
+

(v1 + h1)
2

2

[
(∂µζ1)

2 + (∂µζ2)
2

4
+ (∂µζ3)

2

]
+

+
(v2 + h2)

2

2

[
(∂µη1)

2 + (∂µη2)
2

4
+ (∂µη3)

2

]
+
g2

8
[(v1 + h1)

2 + (v2 + h1)
2][Wµ

1 W
1
µ +Wµ

2 W
2
µ ]+

+
1

8
[(v1 + h1)

2 + (v2 + h2)
2][gWµ

3 − g′Bµ][gW 3
µ − g′Bµ] +

1

8
(v1 + h1)

2[4∂µζ3(−gWµ
3 + g′Bµ)+

− 2∂µζ1W
µ
1 − 2∂µζ2W

µ
2 ] +

1

8
(v2 + h2)

2[4∂µη3(−gWµ
3 + g′Bµ)− 2∂µη1W

µ
1 − 2∂µη2W

µ
2 ] + . . .

(2.23)

In order to obtain our result, we do not need to take into account the radial fluctuations around
the VEVs (h1 and h2): hence, we will ignore them in the following considerations. But written
in this form, equation (2.23) does not unveil the combinations of phases that can be absorbed
through a gauge trasformation of Wµ

i . It will prove to be convinient to add and subtract the

expression cβsβ(Dµφ†1Dµφ2 +Dµφ†2Dµφ1) (where we use the shorthand notation cβ and sβ , which
stand respectively for cosβ and sinβ):

Dµφ†1Dµφ2 + h.c. =
∂µh1∂

µh2
2

+
1

8
(v1 + h1)(v2 + h2)

[
∂µζ1∂

µη1 + ∂µζ2∂
µη2 + 4∂µζ3∂

µη3+

− i∂µζ1∂
µη2 + i∂µζ2∂

µη1

]
+

1

8
(v1 + h1)(v2 + h2)

[
g2(Wµ

1 )
2 + g2(Wµ

2 )
2 + (gWµ

3 − g′Bµ)2
]
+

− 1

8
(v1 + h1)(v2 + h2)

[
g(W 1

µ − iW 2
µ)(∂

µζ1 + i∂µζ2) + (−gW 3
µ + g′Bµ)(−2∂µζ3)

]
+

− 1

8
(v1 + h1)(v2 + h2)

[
g(W 1

µ + iW 2
µ)(∂

µη1 − i∂µη2) + (−gW 3
µ + g′Bµ)(−2∂µη3)

]
+ h.c. + . . .

(2.24)

and neglecting terms involving the radial Higgs fluctuations once and for all, as already suggested,
we are left with

Dµφ†1Dµφ2 + h.c. =
1

4
v1v2

[
∂µζ1∂

µη1 + ∂µζ2∂
µη2 + 4∂µζ3∂

µη3

]
+

1

4
v1v2

[
g2(Wµ

1 )
2 + g2(Wµ

2 )
2+

+ (gWµ
3 − g′Bµ)2

]
− 1

4
v1v2

[
gW 1

µ(∂
µζ1 + ∂µη1) + gW 2

µ(∂
µζ2 + ∂µη2)+

+ (−gW 3
µ + g′Bµ)(−2∂µζ3 − 2∂µη3)

]
+ . . .

(2.25)
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Now, going on with this little trick, we can rewrite the kinetic term for the Higgs doublets in
a clever manner

(c2β + s2β)︸ ︷︷ ︸
=1

Dµφ†1Dµφ1 + (c2β + s2β)︸ ︷︷ ︸
=1

Dµφ†2Dµφ2 + cβsβ(Dµφ†1Dµφ2 + h.c)− cβsβ(Dµφ†1Dµφ2 + h.c)︸ ︷︷ ︸
=0

=

=

[
c2βDµφ

†
1Dµφ1 + s2βDµφ

†
2Dµφ2 + cβsβ(Dµφ†1Dµφ2 + h.c.)

]
+

[
s2βDµφ

†
1Dµφ1 + c2βDµφ

†
2Dµφ2+

− cβsβ(Dµφ†1Dµφ2 + h.c.)

]
(2.26)

If we consider the first term in square brackets, plugging in all the aforementioned expressions, we
can obtain the following result:

c2βDµφ
†
1Dµφ1 + s2βDµφ

†
2Dµφ2 + cβsβ(Dµφ†1Dµφ2 + h.c.) =

c2βv
2
1

2

[
(∂µζ1)

2 + (∂µζ2)
2

4
+ (∂µζ3)

2

]
+

+
s2βv

2
2

2

[
(∂µη1)

2 + (∂µη2)
2

4
+ (∂µη3)

2

]
+
g2

8
[c2βv

2
1 + s2βv

2
2 ][(W

µ
1 )

2 + (Wµ
2 )

2]+

+
[c2βv

2
1 + s2βv

2
2 ]

8
(gWµ

3 − g′Bµ)2 +
c2βv

2
1

8
[4∂µζ3(−gWµ

3 + g′Bµ)− 2g∂µζ1W
µ
1 − 2g∂µζ2W

µ
2 ]+

+
s2βv

2
2

8
[4∂µη3(−gWµ

3 + g′Bµ)− 2g∂µη1W
µ
1 − 2g∂µη2W

µ
2 ]+

+
cβsβv1v2

4

[
∂µζ1∂

µη1 + ∂µζ2∂
µη2 + 4∂µζ3∂

µη3 + g2(Wµ
1 )

2 + g2(Wµ
2 )

2 + (gWµ
3 − g′Bµ)2

]
+

− cβsβv1v2
4

[
gW 1

µ(∂
µζ1 + ∂µη1) + gW 2

µ(∂
µζ2 + ∂µη2) + (−gW 3

µ + g′Bµ)(−2∂µζ3 − 2∂µη3)

]
+ . . .

(2.27)

Going on with some cumbersome algebraic passages, we can manipulate another bit the previous
lines, in order to obtain something neater and more readable:

c2βDµφ
†
1Dµφ1 + s2βDµφ

†
2Dµφ2 + cβsβ(Dµφ†1Dµφ2 + h.c.) =

=
(cβv1)

2

8

[
g2(Wµ

1 )
2 + g2(Wµ

2 )
2 + (∂µζ1)

2 + (∂µζ2)
2 − 2g∂µζ1W

µ
1 − 2g∂µζ2W

µ
2

]
+

+
(sβv2)

2

8

[
g2(Wµ

1 )
2 + g2(Wµ

2 )
2 + (∂µη1)

2 + (∂µη2)
2 − 2g∂µη1W

µ
1 − 2g∂µη2W

µ
2

]
+

+
cβsβv1v2

4

[
g2(Wµ

1 )
2 + g2(Wµ

2 )
2 + ∂µζ1∂

µη1 + ∂µζ2∂
µη2 − gW 1

µ(∂
µζ1 + ∂µη1)+

− gW 2
µ(∂

µζ2 + ∂µη2)

]
+

(cβv1)
2

8

[
(gWµ

3 − g′Bµ)2 + 4(∂µζ3)
2 − 4(∂µζ3)(gW

µ
3 − g′Bµ)

]
+

+
(sβv2)

2

8

[
(gWµ

3 − g′Bµ)2 + 4(∂µη3)
2 − 4(∂µη3)(gW

µ
3 − g′Bµ)

]
+

+
cβsβv1v2

4

[
(gWµ

3 − g′Bµ)2 + 4∂µζ3∂
µη3 − 2(∂µζ3 + ∂µη3)(gW

µ
3 − g′Bµ)

]
(2.28)
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Thus, when the smoke clears, we can eventually write down a compact and useful expression:

1

8

2∑
i=1

[
g (cβv1 + sβv2)︸ ︷︷ ︸

=1

Wµ
i − cβv1∂

µζi − sβv2∂
µηi

]2
+

+
1

8

[
(cβv1 + sβv2)︸ ︷︷ ︸

=1

(gWµ
3 − g′Bµ)− 2(cβv1∂

µζ3 + sβv2∂
µη3)

]2 (2.29)

Noticing that cβ = v1/v and sβ = v2/v, we can easily see that the chargedW± bosons get the usual
mass term mW = gv/2, where v is the electroweak scale; the same is true for the combination that

defines the Z boson in the SM, which hasmZ =
√
g2 + g′2v/2. But now we can clearly observe that

the gauge symmetry is shared by the two doublets. As a matter of fact, the gauge transformation
to apply to our bosons in order to jump into a unitary gauge must involve both of the two Higgs
phases in a non-trivial arrangement. Indeed, considering that ζi = ζ̃i/v1 and ηi = η̃i/v2, it is
evident for example that the combination θZ eaten by the zeta boson at infinitesimal order is:

Zµ 7−→ Zµ − 2∂µ

(
cβ ζ̃3 + sβ η̃3

v
√
g2 + g′2

)
(2.30)

and, so, θZ = 2(cβ ζ̃3 + sβ η̃3). In a similar fashion, for the charged gauge fields W±
µ = (W 2

µ ±
iW 1

µ)/
√
2 one gets θ± = [cβ ζ̃2 + sβ η̃2 ± i(cβ ζ̃1 + sβ η̃1)]/

√
2.

If we now consider the second part of equation (2.26), working out the various terms in a
completely similar way, one finally attains

1

8

2∑
i=1

[
g (−sβv1 + cβv2)︸ ︷︷ ︸

=0

Wµ
i − (−sβv1∂µζi + cβv2∂

µηi)

]2
+

+
1

8

[
(−sβv1 + cβv2)︸ ︷︷ ︸

=0

(gWµ
3 − g′Bµ)− 2(−sβv1∂µζ3 + cβv2∂

µη3)

]2 (2.31)

where we see that in each couple of square brackets addends proportinal to the gauge fields dis-
appear, because of −sβv1 + cβv2 = 0. As a matter of fact, these last phase combinations are just
those orthogonal to the previous ones. Therefore, there are some phase fields which survive a gauge
redefinition of vector bosons. For the neutral sector, the field orthogonal to the Z-goldstone boson
phase (2.30) is:

Ã0 = sβ ζ̃3 − cβ η̃3 (2.32)

Nevertheless, the fact that adding and subtracting a quite convoluted term lets us achieve the
correct result means something more profound. If we look again at (2.26), it is immediate to see
that this expression can be written down as

Dµ(cβφ1 + sβφ2)
†Dµ(cβφ1 + sβφ2) +Dµ(−sβφ1 + cβφ2)

†Dµ(−sβφ1 + cβφ2) (2.33)

which tells us that the real degrees of freedom can be obtained by rotating the original Higgs
doublets: only this way one can correctly spot the direction giving mass to gauge bosons. Indeed,
if we start with our doublets written in the form (2.1), then we will have

φ′1 = cβφ1 + sβφ2 =

(
cβα

+ + sββ
+

cβRe[α0] + sβRe[β0] + i(cβIm[α0] + sβIm[β0])

)
(2.34)
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where the upper component is given by the sum of the two uppers components of the original fields,
having charges Q = +1: that suggests how this phase is related to the W±-goldstone bosons; the
neutral imaginary part of the lower component, instead, exactly resembles (2.30). On the other
hand, the real part is the only one with a non-null VEV. This one can be defined as the sum of
the right VEV and a fluctuation H, because, consistently

〈v +H√
2

〉 = v√
2
+

1√
2
〈H〉︸︷︷︸
=0

and 〈cβRe[α0] + sβRe[β0]〉 =
cβ√
2
v1 +

sβ√
2
v2 =

v√
2

(2.35)

So, upon carrying out the rotation, this field combination φ′1 has exactly the standard form of the
SM Higgs. At the same time, the second orthogonal part comes as:

φ′2 = −sβφ1 + cβφ2 =

(
−sβα+ + cββ

+

−sβRe[α0] + cβRe[β0] + i(−sβIm[α0] + cβIm[β0])

)
(2.36)

Here, the charged and neutral phases just look like the fields which are not gobbled up by the
gauge fields (that we have already discussed above): the neutral one will be analysed more deeply
in the next paragraph, while the charged ones are the so-called charged Higgs H±. The real neutral
component is a scalar field S/

√
2 with a null VEV: 〈S/

√
2〉 = 〈−sβRe[α0] + cβRe[β0]〉 = 0.

2.2.2 The Z-boson and the PQ symmetry

As already stated, the only PQ charged objects in our model are the Higgs fields and fermions:
no direct PQ coupling is assumed to exist for gauge bosons. To ensure this fact, we have to
guarantee that the phases eaten by these bosons are PQ neutral.

Restricting as usual our discussion to the scalar sector, we know that, when it comes to speaking
of PQ symmetry, also the singlet field plays the game. There will be a degree of freedom associated
to the PQ transformation (that in the end will identify the axion) that we will name ω, shared by
all the Higgs fields and, hence, given by a combination of their phases. As already said, under a
PQ transformation, we have

φ1 7−→ eiX1ω(x)/vφ1 φ2 7−→ eiX2ω(x)/vφ2 φ 7−→ eiXφω(x)/vφ (2.37)

where we have made the substitution θ 7−→ ω/v. It is easy to realize that, starting from (2.18),
the first two fields can be written as

φ1 =
1√
2

(
(ζ̃2 + iζ̃1)/2

v1 + h1 + i(−ζ̃3 +
√
2ωX1v1/v)

)
φ2 =

1√
2

(
(η̃2 + iη̃1)/2

v2 + h2 + i(−η̃3 +
√
2ωX2v2/v)

)
(2.38)

For the Higgs singlet, we can instead simply claim

φ = vφ + ρ+ i(G̃φ +Xφvφω/v) (2.39)

So, we have the following transformation laws under a PQ symmetry for the neutral phases (we
see that the charged ones are untouched, as expected):

ζ̃ ′3 = ζ̃3 −
√
2ωX1(v1/v)

η̃′3 = η̃3 −
√
2ωX2(v2/v)

G̃′
φ = G̃φ +Xφω(vφ/v)

(2.40)
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We can use now the relation achieved in (2.30), which identifies the eaten Z-gauge boson phase θZ ,
in order to realize that it changes as

θ′Z = θZ − 2
√
2ω(c2βX1 + s2βX2) (2.41)

Therefore, all we have to do is just setting c2βX1 + s2βX2 = 0 to endowed θZ with the property
of being PQ neutral. This latter is our second relation among PQ charges. If we consider that
−X1 + X2 = −Xφ = 1, we readily get X1 = −s2β and X2 = c2β . Actually, this constraint on
θZ can also be considered necessary so as to diagonalize the kinetic term, avoiding expressions
as ∂µθZ(x)∂

µω(x) in the Lagrangian: if the kinetic part is not diagonal, we can not extract a
propagator, because we do not know which ones are the truly physical degrees of freedom that
propagate.

From this point of view, the problem is still open for the fields Ã0 and G̃φ which transform as{
Ã′

0 = Ã0 +
√
2ω[X2 −X1]cβsβ = Ã0 +

√
2ωcβsβ

G̃′
φ = G̃φ + ωXφ(vφ/v)

(2.42)

It is clear that this ω-degree will be a suitable combination of these two. If we now consider the
original Higgs doublets written in terms of the rotated ones (which highlight the physical fields of

the problem) and if we keep in mind the relations α+ = ζ̃2+iζ̃1
2
√
2
, β+ = η̃2+iη̃1

2
√
2

, Im[α0] = −ζ̃3/
√
2

and Im[β0] = −η̃3/
√
2 to move from one parametrization to the other (compare (2.1) and (2.18)),

we will reach these expressions, until now:

φ1 = cβφ
′
1 − sβφ

′
2 =

1√
2

(
cβ

θ+√
2
−

√
2sβH

+

(v +H − iθZ/2)cβ − sβ(S + iÃ0)

)

φ2 = sβφ
′
1 + cβφ

′
2 =

1√
2

(
sβ

θ+√
2
+

√
2cβH

+

(v +H − iθZ/2)sβ + cβ(S + iÃ0)

)
φ = vφ + ρ+ iG̃φ

(2.43)

As already mentioned, Ã0 and G̃φ are not physical fields yet. We have also set H1/2 = (−sβ ζ̃1/2 +
cβ η̃1/2)/2, H

± = (H2 ± iH1)/
√
2 and, in a similar fashion, θ± = (θ2 ± iθ1)/

√
2.

2.2.3 The axion emergence

We have already claimed how the axion component should be associated with the freedom of
carrying out PQ transformations. However, we should still individuate this massless field. There
is more than one field possessing a PQ charge and, thus, in a reasoning similar to that done for
the gauge symmetry, we need a right combinantion of phases. The remark that the axion field can
not be completely identified with the phase of φ is self-evident just by looking at our cubic term
Vc−term: here the phase of φ does not disappear from the potential and, thereby, it can not be
associated to a massless field. Indeed, any field which has place in the potential contribution of the
Lagrangian will eventually get a mass through the spontaneous symmetry breaking mechanism.

A powerful instrument to cope with this problem is the currents algebra of the theory. As a
matter of fact, if we have a symmetry associated to an internal transformation, we can define a
conserved current, whose expression will get a contribution (according to Noether theorem) solely
from the kinetic part, being the potential independent of the derivatives of fields. Employing this



2.2. THE FIELD CONTENT 45

definition, we can obtain the PQ conserved current associated to the scalar part of the Lagrangian

JPQµ =

2∑
k=1

(
δL

δ∂µφk
δφk + δφ†k

δL
δ∂µφ†k

)
+

(
δL
δ∂µφ

δφ+ δφ∗k
δL

δ∂µφ∗

)
=

=
1

2
Xφφ

∗i∂~

~

µφ+X1φ
†
1i∂
~

~

µφ1 +X2φ
†
2i∂
~

~

µφ2 + . . .

(2.44)

where dots stand for the additional part to which fermions could contribute through their kinetic
terms, if PQ charged. As we will see, this part is extremely model-dependent. However, using
our freedom of choosing the definition of a field, it will not be important in order to fix the axion
component. Anyway, this non-zero projection of the PQ current on fermions will have a crucial
role while considering axion mass and its couplings to matter.

If we now use the usual parametrization (2.18) for our fields, together with (2.43) for φ, we
notice that the piece proportional to h1, h2 and ρ simplifies out, so that we are left with:

JPQµ ≈ −Xφvφ∂µG̃φ + v(X1cβ∂µζ3 +X2sβ∂µη3) (2.45)

In the space of fields, this current is a field itself, individuating the direction associated to the PQ
transformation. If we want for a field not to couple to PQ symmetry, we just need to impose an
orthogonality condition or, in operatorial language, that the commutator between the field and the
current disappears. As a matter of fact, our previous condition c2βX1 + s2βX2 = 0 could have also

been found by requiring the two vectors ĴPQµ |0〉 and θ̂Z |0〉 to satisfy

〈0|ĴPQµ θ̂Z |0〉 = 0 or 〈0|[ĴPQµ , θ̂Z ]|0〉 = 0 (2.46)

Indeed, one has:

〈ĴPQµ (x)|θ̂Z(y)〉 =

=

(
−Xφvφ 〈∂µG̃φ(x)|+ vX1cβ 〈∂µζ3(x)|+ vX2sβ 〈∂µη3(x)|

)(
cβ |ζ3(y)〉+ sβ |η3(y)〉

)
=

= vX1c
2
β 〈∂µζ3(x)|ζ3(y)〉+ vX2s

2
β 〈∂µη3(x)|η3(y)〉 = −iv~c(X1c

2
β +X2s

2
β)∂µD(x− y)

(2.47)

which readily replicates our initial condition, provided that the orthogonality relations 〈∂µG̃φ|ζ3〉 =
〈∂µG̃φ|η3〉 = 〈∂µζ3|η3〉 = 〈∂µη3|ζ3〉 = 0 hold (being ζ3 and η3 independent fields by very definition).
Moreover, the commutation formulae [η3(x), η3(y)] = [ζ3(x), ζ3(y)] = −i~cD(x−y) (where D(x−y)
is the Pauli-Jordan distribution) will be satisfied, too, in the limit of a free field theory.

Once observed that, it should not be so difficult to be convinced that the axion direction can
be directly extracted from the PQ current itself. Indeed, we can easily see that

JPQµ ≈ −1

2
∂µ[2vφG̃φ − 2vcβsβ(−sβζ3 + cβη3)] =

= −1

2
∂µ[2vφG̃φ + 2vcβsβÃ0]

(2.48)

where we used the definition of Ã0 (2.32) and, so, we can finally claim

JPQµ ≈ −∆

2
∂µa

′
φ ⇒ a′φ =

2vφG̃φ + 2vcβsβÃ0

∆
(2.49)
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in which ∆ is a dimensional constant we need to adjust dimensions. If we want to recover the
standard normalization [aφ(x), aφ(y)] = −i~cD(x− y) for the axion field in a free-fields limit, it is
simple to show that the correct definition endowing our model with this consistency property is:

aφ =
2vφG̃φ + v sin(2β)Ã0√

4v2φ + v2 sin(2β)
(2.50)

It is noteworthy that, because of different choices of the Peccei-Quinn charges, the definition of
the axion for a cubic Vc−term theory slightly departs from the usual one, where a quartic term is
adopted: this very tiny change will have, anyway, visible effects on the mass spectrum formulae.
Moreover, we want to point out a typical aspect of these DFSZ models: even if the phase of φ does
not contribute by itself to the axion, as already enhanced, the axion field receives a substatial part
of its definition from it, because of the relation vφ � v. Until now, we did not say anything about
a numerical value of vφ, but we just required it to be a great number in order to make the axion
invisible: we will come back on this point later on.

Actually, our axion definition (2.50) individuates the rotation matrix between the last two non-
physical degrees of freedom that were left aside, i.e Ã0 and G̃φ. Hence, we can define the additional
field orthogonal to the axion simply as

A0 =
2vφG̃φ − v sin(2β)Ã0√

4v2φ + v2 sin(2β)
(2.51)

and we can eventually pin down the complete field parametrization in a compact form, employing
Φ12 and φ. The kinetic term can be written down as

Lkin =
1

2
∂µφ

∗∂µφ+ tr[DµΦ†
12DµΦ12] (2.52)

Here, we have DµΦ12 = ∂µΦ12 − ig ~WµΦ12~σ/2 + ig′BµΦ12σ3/2, in which the presence of σ3 in
the last term is justified by considering the definition Φ12 =

(
φ̃1 φ2

)
(the first component has

opposite hypercharge). Therefore, we will end up with

Φ12 =
1√
2
U

(v +H)cβ − sβ

(
S − i

2vφA0√
4v2φ+v

2s2β

) √
2cβH

+

√
2sβH

− (v +H)sβ + cβ

(
S + i

2vφA0√
4v2φ+v

2s2β

)
Ua

φ =

(
vφ + ρ− i

vs2βA0√
4v2φ + v2s2β

)
exp

{
2iaφ√

4v2φ + v2s2β

}
(2.53)

with U the matrix containing the goldstone bosons and Ua the axion field:

U = exp

{
iθkσk
2v

}
Ua = exp

{
2aφX√

4v2φ + v2s2β

}
with X =

(
sin2 β 0
0 cos2 β

)
(2.54)

where the factor two multiplying aφ is used to recover the s2β of the inverse transformation of
(2.50) and (2.51). By substituing this explicit expression inside the kinetic Lagrangian, one can
directly verify that all of the fields show up with a diagonal and standardly normalized kinetic
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term: that means we are on the right track to identify the physical degrees of freedom of the
theory.

Just to give a flavour of how things work and that everything has been correctly done until
now, we will sketch in what follows a schematic calculation of the diagolalization of the mass term
for Ã0 and G̃φ.

Proof. By using our initial parametrization (2.43), we can understand that the sole contributions
containing quadratic terms in Ã0 and G̃φ could come out from Vc−term: indeed, these fields are
phase degrees of freedom that disappear while multiplying a Higgs by its complex conjugate. So,
we can concentrate solely on this part of the potential. We can start by working out φ†1φ2:

φ†1φ2 ≈ 1

2
(v2cβsβ + . . .)exp

{
i

(
sβ
cβ

+
cβ
sβ

)
Ã0

v

}
(2.55)

and then

φ ≈ (vφ + . . .)exp

{
i
G̃φ
vφ

}
(2.56)

Consequently, we can write the expansion of the Vc−term as:

Lc-term = cφ†1φ2φ+ h.c. =
c

2
[v2cβsβ + . . .][vφ + . . .]exp

{
i

[(
sβ
cβ

+
cβ
sβ

)
Ã0

v
+
G̃φ
vφ

]}
+ h.c. =

=
c

2
[v2cβsβ + . . .][vφ + . . .]

[
1 + i

(
sβ
cβ

+
cβ
sβ

)
Ã0

v
+ i

G̃φ
vφ

− 1

2

(
sβ
cβ

+
cβ
sβ

)2
Ã2

0

v2
− 1

2

G̃2
φ

v2φ
+

−
(
sβ
cβ

+
cβ
sβ

)
Ã0G̃φ
vvφ

]
+ h.c.

(2.57)

If we retain again only the quadratic terms which enter the mass matrix, the preceding formula
will yield

Lc-term = − c
2
[v2cβsβvφ]

[(
sβ
cβ

+
cβ
sβ

)2
Ã2

0

v2
+
G̃2
φ

v2φ
+ 2

(
sβ
cβ

+
cβ
sβ

)
Ã0G̃φ
vvφ

]
=

= − c
2

[
vφ
cβsβ

Ã2
0 +

v2cβsβ
vφ

G̃2
φ + 2vÃ0G̃φ

] (2.58)

This gives rise to a two-by-two mass matrix, whose eigenvalues and eigenstates are our next goal.
The minus sign in front of this mass term enables us to understand that, in order not to deal with
tachyon particles, c has to be negative: c < 0. The associated secular equation can be immediately
read off from the previous expression as

det

(
m2 − |c| vφ

cβsβ
|c|v

|c|v m2 − |c|v
2cβsβ
vφ

)
= 0 ⇒ m

(
m− |c|

2vφ

[
4v2φ
s2β

+ v2s2β

])
= 0 (2.59)

which gives a massless solution, as expected, and a massive eigenvalue

m2
A0

=
|c|
2vφ

(
4v2φ
s2β

+ v2s2β

)
(2.60)
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Now the eigenvectors can be found very easily by identifying the correctly normalized vectors
solving the eigenvalues equation. This leads us to the orthogonal rotation matrices

O =

(
2vφ −vs2β
vs2β 2vφ

)
(2.61)

which eventually generates the axion and A0 fields of expressions (2.50) and (2.51) respectively.

2.3 The mass spectrum

Once the theory has been described in details for what concerns its field content, we have to
move onto something which lets us compare our theoretical construction with experimental results.
A first decisive step will be the calculation of the mass spectrum. Actually, this latter can tell us
if our theory is consistent with the current knowledge of nature, coming from collected data, and
if there is some hope to verify it with some future experiments.

Before proceeding, we will tweak the value of some parameters in the Lagrangian, in order to
better compare our results with the existent literature. We will rescale some of them as follows:
λ1 → 16λ1, λ2 → 16λ2, λ3 → 16λ3, λ4 → 16λ4 , a → 4a, b → 4b and finally c → 4c. This choise
arises from the fact that, in general, a different parametrization of the Higgs fields φ1 and φ2 can
be done, which departs from ours by a factor two.

We have already calculated the gauge boson masses: we saw how they remain just the same as
in the standard model at tree level (something more about what happens at higher order will be
shown later on). Then, with an explicit proof, we derived the mass of the pseudo-scalar A0: by
comparing this result with the one coming out from a quartic c-term [28]:

m2
A0(quartic)

= 8|c|
(
v2φ
s2β

+ v2s2β

)
(2.62)

we can notice two things. First of all, the mass term for A0 remains proportional to the parameter
c: as stated for example in [29], when c = 0 the PQ charges of the fields φ and φ1,2 are naturally
decoupled and so there is an additional global symmetry or, to put it another way, an enlarged
PQ symmetry U(1)PQ(1/2)×U(1)PQ(φ) (where the notation adopted is self-evident). Below the vφ
energy scale, the vacuum breaks this symmetry and we will have two goldstone bosons: the axion
and, now, A0, whose mass goes to zero with c = 0. Just to introduce some terminology, these two
neutral pseudoscalar fields comprise the 0− sector.

A second remarkable aspect is that the original numerical factor |c| in (2.62) is replaced in
(2.60) by the adimensional combination |c|/vφ, because here, in order for the Lagrangian to have
the right physical dimensions, c has to be a massive parameter. So, it seems that, from the point
of view of the mass spectrum, nothing should be substantially modified. Indeed, the role of the
missing factor φ in the Vc−term, who generally increases the spectrum of a factor vφ in the original
quartic model, is performed by the constant c.

2.3.1 The axion mass

In the classical approach developed up to now, the axion emerges as a goldstone boson with zero
mass: this is due to the fact that, classically, the PQ transformation realizes a genuine symmetry
of the DFSZ Lagrangian. Nevertheless, we already discussed at leght that, at quantum level, there
is an additional term which breaks this symmetry explicitly. In this new framework, the axion will
be a pseudo-goldstone boson and, so, it will be endowed with a mass. Being the axion, anyway,
a very light particle, its mass should arise from a theory of low energy, where all the heavier
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degrees of freedom are frozen: being quarks hidden by confinement, the only possible particles
contributing to axion mass at this energy scale will be the pseudo-goldstone bosons of QCD. The
major contribution will come from the lightest of them, i.e the pions. It is quite easy to get conviced
that, under these circumstances, the formula giving the axion mass will be model independent:
all particles whose masses could be different for our cubic model do not take part in the effective
potential which provides the axion with a mass.

After this necessary introduction, we can start going through this issue. As already shown in
(1.83), the effective Lagrangian related to axions can be expressed as

La =
1

2
∂µa∂

µa+
a

fa

αs
8π

Gaµν G̃µνa − q̄LMqqR − q̄RM
†
q qL + . . . (2.63)

where we have written down the correctly normalized kinetic contribution for the axion, the anoma-
lous axion-gluon coupling (from color anomaly) and the mass term for quarks. This latter will be
generated by a suitable Higgs mechanism through Yukawa terms (that we will describe later on).
We notice how the effective axion-gluon interaction has been written using the standard form,

which includes the more physical fa constant instead of vf =
√
4v2φ + v2s2β , explicitly appearing

in the axion phase definition: we will better analyse their relation in the next chapter. Just be-
cause we are dealing with a low energy Lagrangian, we can restrict our analysis to the up and down
quarks, considering all the heavier particles as integrated out. Incidentally, we should stress how
the color anomaly is not the only one which should appear here: we should have added additional
anomalous contributions that, anyway, are not important for the current discussion and that will
be presented in what follows.

We are now going to prove that the anomaly term is the real responsible for the axion mass: it
generates an effective potential which turns the axion into a pseudo-goldstone boson. Acting with
a well-known chiral trasformation, we can move the anomaly contribution from the gluon term to
the quark masses, getting

q =

(
u
d

)
7−→ eiγ5

a
4fa

12×2

(
u
d

)
and so La =

1

2
∂µa∂

µa− q̄LMaqR − q̄RM
†
aqL (2.64)

where the extra factor one-half in the exponential has been used to compensate for the fact that
we are transforming two quarks and where

Ma = ei
a

4fa
12×2Mqe

i a
4fa

12×2 , Mq =

(
mu 0
0 md

)
(2.65)

Now that we have redefined through a chiral transformation the two-by-two quark matrix, we can
tweak the low energy Lagrangian that we presented in (1.24) simply as

Lmass = v3ψtr[ΣM
†
a +MaΣ

†] (2.66)

in which we can not overlook the possible complex nature of the quark mass matrix any more. We
remind that

Σ(x) = exp

{
iσa

πa(x)

fπ

}
= exp

{
i

fπ

(
π0

√
2π+

√
2π− −π0

)}
(2.67)

and that vψ in (2.66) is an energy scale related to chiral condensates. Therefore, following [30], all
we have to do is to expand (2.66), considering that

ΣM†
a +MaΣ

† = exp

{
i

fπ

(
π0

√
2π+

√
2π− −π0

)}
e−i

a
2fa

12×2Mq + h.c. =

= exp

{
i

(
π0

fπ
− a

2fa

√
2π+

fπ√
2π−

fπ
−π0

fπ
− a

2fa

)}
Mq + h.c.

(2.68)
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(a) The scalar potential before the
introduction of quantum correc-
tions: the angular fluctuations move
along a flat direction of the poten-
tial, so that the goldstone boson re-
mains massless.

(b) The quantum corrections embed-
ded in V (a) bend the originally flat
direction of the scalar potential, giv-
ing a mass to axion oscillations.

Figure 2.1

Consequently, we could claim

Lmass = v3ψtr

[
exp

{
i

(
π0

fπ
− a

2fa

√
2π+

fπ√
2π−

fπ
−π0

fπ
− a

2fa

)}
Mq + h.c.

]
=

= v3ψ

(
2mu cos

(
π0

fπ
− a

2fa

)
+ 2md cos

(
π0

fπ
+

a

2fa

))
=

= 2v3ψ

([
(mu +md) cos

(
a

2fa

)]
cos

(
π0

fπ

)
+

[
(mu −md) sin

(
a

2fa

)]
sin

(
π0

fπ

)) (2.69)

and making use of some standard trigonometric formulae, we eventually obtain

Lmass = 2v3ψ(mu +md)

√
1− 4mumd

(mu +md)2
sin2

(
a

2fa

)
cos

(
π0

fπ
− φa

)
(2.70)

where

tanφa =
mu −md

mu +md
tan

(
a

2fa

)
(2.71)

To get the effective potential acting on the axion, we can integrate out the pion field by
simply noticing that the previous expression can be minimized with respect to pions by choosing
〈π0〉 = φa/fπ. Moreover, if we keep in mind the formula of pion mass (1.25), we will finally get
the form of the axion effective potential, whose effects have been plotted in figure 2.1:

V (a) = −f2πm2
π

√
1− 4mumd

(mu +md)2
sin2

(
a

2fa

)
(2.72)

The minus sign obviously comes out from the fact that the potential enters the Lagrangian with a
change of sign. This important result deserves some remarks. First of all, it is noteworthy to see
that the effective potential is minimized by 〈a〉 = 0: this is in full agreement with the already stated
Vafa-Witten theorem, which prohibits the spontaneuos violation of the discrete CP symmetry. The
axion field will find rest in a null expectation value, without giving rise to a potential source of CP
violation in QCD as the θ parameter itself.



2.3. THE MASS SPECTRUM 51

Moreover, we know from Goldstone theorem that the directions of the potential associated
to fluctuations of goldstone modes are flat, as it happens for the famous mexican hat potential.
However, we see that, in our current, case quantum corrections slightly bend this direction, so that
these fluctuations become now associated to a massive field. We can extract the axion mass from
the previous formula very easily, by simply expanding the potetial V (a) up to the quadratic order
in a

V (a) ≈ −f2πm2
π

(
1− 1

2

4mumd

(mu +md)2
sin2

(
a

2fa

))
+ . . . ≈ −f2πm2

π

(
1− 1

2

4mumd

(mu +md)2

(
a

2fa
+

− 1

6

a3

8f3a
+ . . .

)2)
+ . . . ≈ −f2πm2

π

(
1− 1

2

4mumd

(mu +md)2
a2

4f2a

)
+ . . .

(2.73)

so that we obtain the important model-independent axion mass formula

m2
a =

mumd

(mu +md)2
m2
πf

2
π

f2a
=

z

(1 + z)2
m2
πf

2
π

f2a
with z =

mu

md
(2.74)

In this result, we can appreciate that, up to this order of approximation, the axion mass is only
related to that of the neutral pion by means of some QCD parameters. An explicit outcome
involving loop contributions, computed in a chiral perturbation framework, can be found in [30].
Remarkably, even though we will discuss in the next chapter how the axion mass varies with energy
scale, formula (2.74) tells us how its change is weakly dominated by the running of quark mass
parameters. As a matter of fact, z is essentially scale indipendent, unless tiny corrections in αem
and in Yukawa couplings. Substituing the values for the quarks mass ratio z = mu/md = 0.48(3)
coming from lattice QCD simulations (evalutated at 2GeV ), for the pion mass mπ0 = 135MeV
and for the pion decay constant fπ = 92MeV , one gets

ma = 5.70µeV
1012GeV

fa
(2.75)

where, of course, the dependence on fa still remains. From here it clearly appears the essence of
invisible axion models. We can appreciate that, in the Lagrangian, the adimensional combination
a/fa necessarilly enters independently of the specific features of the model, being the axion associ-
ated to a phase transformation. Thus, we are in principle free to choose the dimensional constant
fa. By enlarging this scale, we can render the axion mass (and not just it) smaller and smaller.
This is the underlying reason for setting fa ∼ vφ, with vφ � v. Of course, we will have to give a
possible range of values for this crucial parameter in following chapters.

2.3.2 The scalar sector

The addition of extra Higgs fields to the theory necessarily introduces new parameters in the
potential with respect to the SM case: the arbitrariness of their values manifests itself in a certain
number of scenarios for the mass spectrum.

The extreme decoupling regime

To narrow down the number of variables at play, it is always possible to exploit the perturbative
minimization conditions of the potential: we will use them to eliminate the dimensionful parameters
V1, V2 and Vφ. By calculating the partial derivatives of our potential, expressed in terms of the
physical fields, and requiring just for zero order contributions to vanish, one finds trivial solutions
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while deriving with respect to the charged and pseudoscalar fields, whereas the conditions coming
from H, S and ρ provide the following system of equations:

(av2φ − 2(V2λ3 + V1(λ1 + λ3)))c
2
β + 4v2(λ1 + λ3)c

4
β + (bv2φ − 2(V1λ3+

+V2(λ2 + λ3)))s
2
β + 4v2(λ2 + λ3)s

4
β + s2β(cvφ + 2v2λ3s2β) = 0

cvφc2β − 4v2λ1c
3
βsβ +

(
(b−a)v2φ+4v2λ2s

2
β

2 + V1λ1 − V2λ2

)
s2β = 0

λφ(v
2
φ − Vφ) + 2av2c2β + 2bv2s2β +

cv2s2β
vφ

= 0

(2.76)

The values of the parameters obtained by solving this system will be employed in all of the following
calculations. Incidentally, one can also notice that, in the last equation, an expression for c can be
extracted, too, if λφ = 0, which means there is no autointeraction term for φ.

But now we are going to move onto the more difficult task of dealing with the scalar part of the
mass spectrum. Here everything will be computed by using perturbative techniques. Nevertheless,
still a quite simple result is that related to the calculation of the charged Higgs H±: their masses
can be directly derived from the Lagrangian, upon substituting our field parametrization in the
potential:

m2
H± = 8

(
λ4v

2 − cvφ
s2β

)
(2.77)

that reminds the quartic potential result. A discussion similar to that for A0 could be carried
out: again, the only modification with respect to the known case is the substitution of the second
addend inside brackets, originally cv2φ/s2β , with cvφ/s2β . For the situation we are going to analyse,

with |c| ∼ vφ, the H
± fields lie in a very high energy region, because of the proportionality to v2φ.

By looking at quadratic terms emerging from the potential after spontaneous symmetry break-
ing for the remaining three neutral fields H, S and ρ (the so-called 0+ sector, because neutral and
parity even), it is immediately evident that these latter are not mass eigenstates. As a matter of
fact, the mass matrix is

MHSρ =4v2(3(λ1 + λ2) + 8λ3 + 4(λ1 − λ2)c2β + (λ1 + λ2)c4β) −8v2s2β(λ1 − λ2 + (λ1 + λ2)c2β) 8v(avφc2β + ccβsβ + bvφs2β)

−8v2s2β(λ1 − λ2 + (λ1 + λ2)c2β) −
8cvφ
s2β

+ 4v2(λ1 + λ2)s
2
2β 4v(cc2β + (b − a)vφs2β)

8v(avφc2β + ccβsβ + bvφs2β) 4v(cc2β + (b − a)vφs2β) 4v2
φλφ −

2cv2s2β
vφ


(2.78)

Thus, a rotation is required to find correct physical states. It is important to notice that this
orthogonal transformation will not obviously modify the correctly normalized kinetic terms for
these fields. Moreover, one can pretty quickly realize that the diagonalization procedure can only
be carried out with a perturbative approach. Because v/vφ � 1, our calculations can be organized
as an expansion in powers of this very tiny parameter. We will first of all consider the general case,
where a, b take on a natural value of order O(1). In a similar fashion, we will choose |c| ∼ vφ, in
such a way that the corresponding adimensional parameter c/vφ (suggested for example by (2.60))
will be of order one, too.

The rotation matrix R that will take us in the physical basis H ′, S′ and ρ′, i.eH ′

S′

ρ′

 = R−1

HS
ρ

 (2.79)

can be chosen according to the following ansatz

R = exp

{
v

vφ
A+

v2

v2φ
B

}
(2.80)
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up to second order in v/vφ. Of course, AT = −A and BT = −B: hence, there are six unknown
factors. To determine these ones, the perturbative diagonalization proceeds by calculating the
matrix D = RTMHSρR, expanding it in powers of v/vφ and imposing for the non-diagonal entries
to be zero: that provides a set of conditions which define R completely. Indeed, we obtain A12 =
B13 = B23 = 0 and this way the rotation matrix turns out to be

R =


1− v2

v2φ

A2
13

2 − v2

v2φ

A13A23−2B12

2
v
vφ
A13

− v2

v2φ

A13A23+2B12

2 1− v2

v2φ

A2
23

2
v
vφ
A23

− v
vφ
A13 − v

vφ
A23 1− v2

v2φ

A2
13+A

2
23

2

 (2.81)

where

A13 =
2avφc

2
β + cs2β + 2bs2β
vφλφ

, A23 =
cc2β + (b− a)vφs2β

vφλφ +
2c
s2β

,

B12 =
1

2c

(
s22β + 2s22βvφ(λ1 − λ2) + s22β

2a(b− a)vφc
2
β − c(a− b)s2β + 2vφ(b− a)bs2β

λφ
+

+
c

2

(2avφc
2
β + cs2β + 2bvφs

2
β)

vφλφ

(
s4β − 2

cc2β + (b− a)vφs2β

vφλφ +
2c
s2β

)
+ 2vφ(λ1 + λ2)s

2
2βc2β

) (2.82)

We want to stress once more that, for the cubic model, c consistently has mass dimensions, so that
all formulae make sense from a dimensional point of view.

Once the R matrix is given, one can calculate the eigenvalues of the mass matrix. We provide
the results in the limit of large vφ, not to deal with cumbersome expressions and to have a much
clearer intuition of physical implications:

m2
H′ = 4v2(3(λ1 + λ2) + 8λ3 + 4(λ1 − λ2)c2β + (λ1 + λ2)c4β)

m2
S′ = vφ

(
−4c

sβcβ

)
+

2v2((a− b)2 − 2(λ1 + λ2)λφ)(c4β − 1)− 16c2/s2β
λφ

m2
ρ′ = 4v2φλφ +

8cvφ
s2β

+
8v2(c2β(a

2 − b2) + (a2 + b2)/c2β)

λφ

(2.83)

We see that, again, as expected, a light mass in the electroweak spectrum arises: thereby,
the H ′ field can naturally be identified with the Higgs boson of mass 126GeV discovered at the
LHC. Then, we have a very massive ρ′ state, whose mass is proportional to v2φ, exactly as in the
original quartic model. But the S′ state, now, thanks to the dimensionful parameter c, has a mass
proportional to vφ and not to its square. Nevertheless, in this approximation regime, we remind
that |c| ∼ vφ: the combination vφc plays in our model the role of v2φ, so that nothing changes from
a phenomenological viewpoint. Actually, this situation reproduces the extreme decoupling regime
of the original model, where only one scalar field lives in the low energy spectrum.

Case 2: a, b ∼ v/vφ and |c| ∼ v

The same diagonalization procedure, with due modifications, can be carried out for all of the
remaining cases, ending up with mass expressions which are similar to the previous ones. A first
possibility is to consider values for the coupling parameters as a, b ∼ v/vφ and |c| ∼ v. It is
important to observe that, in this scenario and in the other ones we are going to describe, the
quantities a, b and c turn out to be small: therefore, we must carry out an expansion of the mass
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matrix not only in v/vφ, but also in a and b. For c, the correct adimensional variable in which we
have to expand is c/vφ.

However, the situation of interest for this subparagraph is fairly similar to the preceding one,
from a phenomenological point of view, with only one light Higgs state. Despite that, the states
S′, H± and A0 have now masses proportional to

√
vvφ and, consequently, their existences might

be tested with some future particle accelerators.

Case 3: a, b ∼ v2/v2φ and |c| ∼ v2/vφ, with |c| � λiv
2/vφ

We can further decrease the values of the couplings and consider the case a, b ∼ v2/v2φ and

|c| ∼ v2/vφ. Even if expressions (2.83) are still valid and the ρ′ state still lies in the high energy
spectrum, the masses for H ′ and S′ are both proportional to v2, together with m2

A0
and m2

H± .
Anyway, if |c| � λiv

2/vφ (with i ∈ {1, 2, 3}), we will have m2
S′ � m2

H′ , that means a situation
which is excluded by experiments. Thus, the only viable possibilities are |c| � λiv

2/vφ (where S′

is a light state, but more massive that the SM Higgs field) and |c| ∼ λiv
2/vφ.

Case 4: a, b ∼ v2/v2φ and |c| ∼ v2/vφ, with |c| ∼ λiv
2/vφ

This case is particularly interesting, even if not so different from the aforementioned ones,
because the expressions for the two light 0+ states of case 3 can be written in a compact form.
Indeed, the mass matrix, up to second order in v/vφ, happens to be:

MHSρ =4v2(3(λ1 + λ2) + 8λ3 + 4(λ1 − λ2)c2β + (λ1 + λ2)c4β) −8v2s2β(λ1 − λ2 + (λ1 + λ2)c2β) 0

−8v2s2β(λ1 − λ2 + (λ1 + λ2)c2β) − 8cvφ
s2β

+ 4v2(λ1 + λ2)s
2
2β 0

0 0 4v2φλφ


(2.84)

so that we just need to diagonalise the two-by-two upper block. It worth noticing that the condition
|c| ∼ λiv

2/vφ just plays a role in the entry −8cvφ/s2β+4v2(λ1+λ2)s
2
2β , where the two addends are

of the same order of magnitude. The diagonalization can be pursed with the customary procedure,
getting a simplified version of the rotation matrix (2.81)

R =

cosθ −sinθ 0
sinθ cosθ 0
0 0 1

 tan(2θ) = −
(λ1c

2
β − λ2s

2
β)s2β

(λ1c2β − λ2s2β)c2β − cvφ
4v2s2β

(2.85)

The resulting spectrum will be

m2
H′/S′ = 2v2

(
−2cvφ
v2s22β

+ 8(λ1c
2
β + λ2s

2
β + λ3)∓

[
4c2v2φ
v4s22β

+
8cvφ
v2s2β

(λ1 + λ2 + 4λ3 + 2(λ1 − λ2)c2β+

+ (λ1 + λ2)c4β) + 64(λ1c
2
β + λ2s

2
β + λ3)

2 − 64s22β(λ2λ3 + λ1λ2 + λ1λ3)

]1/2)
(2.86)

which allows us to write

m2
H′ +m2

S′ = 32v2
(

−cvφ
4v2s22β

+ λ1c
2
β + λ2s

2
β + λ3

)
(2.87)

This rule is important to highlight the difference of this latter case from all the others. Indeed,
once the ratio between the two Higgs doublet VEVs (i.e tanβ) has been fixed, the mass of the
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lightest Higgs boson set to 126GeV and vφ put equal to some high energy scale, the mass spectrum
described in the previous subsections profoundly depends on three parameters. The singlet self-
coupling λφ only affects the mass of the heavy Higgs ρ′, that is, nevertheless, out of reach of LHC
experiments. Consequenty, a crucial role is that of c and λ4 (this latter entering the expressions of
the charged Higgs masses). But in this last case, when |c| ∼ λiv

2/vφ, if mH′ = 126GeV , it is clear
from (2.87) that the mass of S′ depends on a slightly different combination of parameters, whose
role, in the other situations above, is overshadowed by a large c.

Before moving onto another set of interesting cases, we would like to stress an important aspect.
As opposed to the extreme decoupling regime, where the parameter a and b are assumed to be of
order one and c is identified with the new high energy scale, in case 2, 3 and 4 a, b ∼ 10−7 − 10−10

or a, b ∼ 10−14 − 10−20 and c ∼ v or c ∼ 10−10v. Nonetheless, these extremely small values of
coupling constants do not turn out to be associated to an unnatural fine-tuning, but, as explained
in [31], they are technically natural, according to the notion of naturalness introduced by ’t Hooft
in [32]. As a matter of fact, by performing the limit a, b, c → 0, the Poincaré symmmetry of
the Lagrangian is enhanced, because the scalar doublets and the singlet decoupled: thereby, they
can be Poincaré transformed independently (there will be two separate energy-momentum tensors
obeying separate conservation laws). By setting a, b, c 6= 0, if P denotes the Poincaré group, we are
breaking an extended space-time symmetry as Pφ1/φ2 × Pφ → Pφ1/φ2+φ. Furthermore, the limit
c → 0 is also related to the possibility of enlarging the PQ phase symmetry, as already stated.
Therefore, the cases explored earlier are perfectly reasonable and justified.

The quasi-free singlet limit

Just because the mass of ρ′ is controlled by λφ, one can try to perform the limit λφ → 0. In
this situation, c does not appear in the mass matrix any more, because, as already noticed, it can
be removed starting from the minimization conditions (2.76). Working out the same calculation
for a DFSZ potential with λφ = 0, one gets for a, b ∼ O(1):

m2
H± = 8v2λ4 + v2φ

(
a

c2β
+

b

s2β

)
m2
A0

= 2(a+ b)v2 + 2(a− b)v2c2β + 4v2φ

(
a

c2β
+

b

s2β

)
(2.88)

which lie in the heavy sector and the following 0+ mass spectrum

m2
H′ = 4v2(3(λ1 + λ2) + 8λ3 + 4(λ1 − λ2)c2β + (λ1 + λ2)c4β)

m2
S′ = 16v2φ

(
ac2β + bs2β

s22β

)
+O(v2) m2

ρ′ =
4abv2s22β
ac2β + bs2β

(2.89)

where now ρ′ is proportional to the electroweak scale. Of course, one should be able to guarantee
that m2

H′ < m2
ρ′ , in order for this case to be feasible. For the same reason, we can solely consider

the situation a, b ∼ O(1). It is worth noticing that this case is the only one which is substantially
different from the quartic potential theory: in that scenario the quasi-free singlet limit was not
viable, because it was not possible to make a choise of parameters where tachyon masses were
absent. Here, instead, we just need to require a, b > 0. It is quite reasonable that the only
phenomenological discrepancy between the two models appears when λφ = 0: this parameter is
directly related to the fourth power of the high scale vφ through the operator λφ(φ

∗φ)2, which is
clearly the dominant contribution. When this latter is present, it obscures our tiny modification
of Vc-term.
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The custodial limit: tanβ 6= 1

We have already discussed the importance of custodial symmetry in the SM scenario and how
a custodial symmetric situation can be achieved in a DFSZ model before spontaneous symmetry
breaking: we just need to use the set of conditions (2.17). Below the electroweak scale, the VEV
of the theory might or might not respect the global residual SU(2)V symmetry, depending on the
relative value of v1 and v2, i.e on the value of tanβ = v2/v1. If tanβ 6= 1, the custodial symmetry
is broken into a U(1) symmetry. So, we expect to have two extra goldstone bosons, which can be
identified with the charged Higgs fields, whose masses turn out to be identically zero. Moreover,
the A0 field has light quanta:

m2
A0

= −16λv2
(
1 +

v2

4v2φ
s22β

)
(2.90)

where we can compensate for the minus sign through λ itself. Nevertheless, the scenario just de-
picted, comprising charged massless particles, is excluded by phenomenology and must be promptly
ruled out.

The custodial limit: tanβ = 1

If the custodial symmetry is preserved by the VEV of the theory, that is to say SU(2)L×SU(2)R
is broken to SU(2)V with tanβ = 1, we have

m2
H± = 8(−cvφ + 2v2λ) m2

A0
=

−2c

vφ
(v2 + 4v2φ) (2.91)

which are heavy states, even if their values can be decreased by tuning the c parameter. The mass
matrix for the 0+ sector is instead given by

MHSρ =

16v2(λ+ 2λ3) 0 4v(c+ 2avφ)
0 8(−cvφ + 2v2λ) 0

4v(c+ 2avφ) 0 −2cv2

vφ
+ 4v2φλφ

 (2.92)

so that it is clear how S is already a mass eigenstate and in particular m2
S′ = m2

H± : S and the
two charged Higgs bosons constitute a triplet of SU(2)V . The remaining two-by-two matrix can
be easily diagonalized, giving the following values for H ′ and ρ′:

m2
H′ = 4v2

(
4λ+ 8λ3 −

(c+ 2avφ)
2

v2φλφ

)
m2
ρ′ = 2

(
−cv

2

vφ
+ 2λφv

2
φ +

2v2(c+ 2avφ)
2

λφv2φ

) (2.93)

We see that, within a scenary where a, b ∼ v2/v2φ and |c| ∼ v2/vφ with c ∼ λiv
2/vφ (i.e case 4), the

matrix (2.92) is diagonal, once we drop out terms of order v3/v3φ. Moreover, four fields enter the

light spectrum: H±, S′ and A0, together with H ′. By fixing as usual mH′ = 126GeV , the light
mass spectrum mainly depends on λ and c: in fact, the λ3 dependence is entirely contained in the
SM Higgs mass, while the a = b presence in mρ′ is highly suppressed.

The quasi-custodial limit

A last interesting situation is the so-called quasi-custodial limit. Here, the custodial symmetry
is fulfilled by all parameters, as in case tanβ = 1, less than by the coupling λ4, that is not equal to
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2λ and hence breaks explicitly the symmetry. The mass spectrum is untouched, unless we consider
the fields H± and S′, whose masses now do not satisfy the equality m2

S = m2
H± , but

m2
S′ = m2

H± − 8v2λ4 + 16v2λ (2.94)

The custodial condition λ4 = 2λ restores the previous result.

2.4 Vacuum stability conditions

In order for our model to make sense, we should be able to find some conditions on the parame-
ters of our Lagrangian ensuring the vacuum stability and a bounded-by-below potential. Following
[33], we can just consider the quartic and cubic terms of (2.5)

V4(φ, φ1, φ2) =λφ(φ
∗φ)2 + (λ1 + λ3)(φ

†
1φ1)

2 + (λ2 + λ3)(φ
†
2φ2)

2 + (2λ3 + λ4)(φ
†
1φ1)(φ

†
2φ2)+

− λ4(φ
†
1φ2)(φ

†
2φ1) + (aφ†1φ1 + bφ†2φ2)φ

∗φ+ c(φ†1φ2φ+ φ†2φ1φ
∗)

(2.95)

Due to the tricky form of the potential, which is difficult to study analytically, we assume that the
couplings a, b and c are small enough not to perturb the stability conditions obtained from the rest
of the Lagrangian. This is an hypothesis on the values of these couplings in full agreement with our
previous considerations. Thereby, the singlet field disappears from the potential almost everywhere,
with the exception of the first term: here, the stability is achieved by simply requiring λφ > 0.
Moreover, we know that this last contribution λφ(φ

∗φ)2 always dominates over the quadratic and
linear terms in φ, so that we should not worry too much about how they could affect stability.

The subtleties involved in case λφ = 0 have already been discussed. In that situation the role of
a, b and c can not be neglected any more. Nevertheless, we have seen that the requirement a, b > 0
must be imposed to avoid tachyon masses. Once these conditions are provided, we see that the
term (aφ†1φ1 + bφ†2φ2)φ

∗φ is quadratic in all Higgs fields and surely dominates, asymptotically at
infinity, over the c contribution, which is linear in each of them. Independently of the way we
approach infinity in field space, a non-bounded-by-below potential will not arise.

Moving back to the most general case, we can set f = φ†1φ1, g = φ†2φ2 and e = Re(φ†1φ2),

d = Im(φ†1φ2): by doing so, we can immediately individuate a positive combinations of fields given
by fg − e2 − d2 ≥ 0. Taking this into account, it will prove to be convenient to rewrite (2.95)
(putting aside the φ-dependent parts) as

V4(φ1, φ2) = (λ1 + λ3)f
2 + (λ2 + λ3)g

2 + (2λ3 + λ4)fg − λ4(e
2 + d2) =

= [(λ1 + λ3)
1/2f − (λ2 + λ3)

1/2g]2 + [2λ3 + λ4 + 2
√
(λ1 + λ3)(λ2 + λ3)]·

· (fg − e2 − d2) + [2λ3 + 2
√
(λ1 + λ3)(λ2 + λ3)](e

2 + d2)

(2.96)

so that we get the following stability conditions:
λ1 + λ3 > 0 λ2 + λ3 > 0

2λ3 + λ4 + 2
√
(λ1 + λ3)(λ2 + λ3) > 0

λ3 +
√
(λ1 + λ3)(λ2 + λ3) > 0

(2.97)

In the quasi-custodial limit, where λ1 = λ2 = λ, they are reduced to{
λ+ λ3 > 0 4λ3 + λ4 + 2λ > 0

2λ3 + λ > 0
(2.98)
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Figure 2.2: Light spectrum of a cubic DFSZ model in the custodial limit. Once the mass of the
light Higgs state H ′ is fixed to the experimental value of 126GeV and vφ to an arbitrary large scale
(for example 1012GeV ), the mass spectrum depends only on two parameters: λ, which is contained
in m2

S′ , and c, which dictates the m2
A0

behaviour.

Considering the formulae for the masses of H±, A0, H
′ and S′ in the quasi-custodial limit

(which can be read off from the custodial expressions, with the sole trick of substituing 2λ with λ4
for H±), we can solve the system

m2
H± + 8(cvφ − λ4v

2) = 0

m2
A0

+ 8cvφ = 0

m2
H′ − 16v2(λ+ 2λ3) = 0

m2
S′ + 8(cvφ − 2λv2) = 0

(2.99)

in terms of c, λ4, λ3 and λ. For m2
A0

and m2
H′the limit vφ → ∞ has been employed, so that terms

respectively ∝ v2c/vφ and ∝ −4v2(c+2avφ)
2/(v2φλφ) have been neglected. The result can be used,

together with the last set of disequalities, in order to derive an interesting couple of constraints on
masses:

m2
H′ +m2

S′ −m2
A0

> 0 m2
H′ +m2

H± −m2
A0

> 0 (2.100)

It is evident that these conditions will hold also for the less general situation of complete
custodial symmetry, where they simply concide, because of m2

S′ = m2
H± . If mH′ = 126GeV and

v = 246GeV , we can utilize the approximate mass formulae (2.99) in (2.100) to obtain some
rough bounds for λ > −0.016 and λ4 > −0.032. Having imposed the experimental restriction
m2
H′ = (126GeV )2 = 16v2(λ+ 2λ3), if λ3 grows up, its increase must be offset by a smaller value

of λ. The latter can decrease up to the negative value of −0.016, so that λ3 < 0.016.
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As already noticed, the custodial symmetric spectrum of case 4 just depends on λ and c:
therefore, taking into account the mass disequalities for this situation, it is possible to plot the
allowed region for these two parameters (look at figure 2.2). In a custodial symmetric scenario,
there are no further constraints coming from the ρ quantity, because ∆ρBSM is exactly zero: all
custodial violating contributions will arise from the SM Lagrangian.

A custodial or quasi-custodial scenario can be pursed also in the quasi-free singlet limit: all
of previous considerations are still lawful, if supported by the additional a, b > 0 requirements.
In this simplified situation, (2.89) can be used to derive a bound on the a parameter, in order to
fulfil the hierarchy among the lighest masses of the spectrum: m2

H′ < m2
ρ′ will imply a > 0.066.

Moreover, it worth noticing how in (2.88) the roles of λ and λ4 are hidden by the large vφ scale:
even though custodial symmetry will be broken into a quasi-custodial case, the theory will not
realise it. That means departures from the tree level value of ρ, owning to DFSZ loop corrections,
will be negligible if λφ = 0, at variance with the other cases, where setting λ4 6= 2λ can have visible
falls-out on ρ.

2.5 The electroweak precision test

For sake of completeness, we want to show in this paragraph how physics at higher energy scale
can be powerfully constrained by the so-called electroweak precision test : of course, we are just
going to give a flavour of the topic.

In order to incorporate the axion field in our theory, we have been compelled to enlarge the
field content, including particles which generally lie in the high energy region. Even though they
can not be directly produced in current particle accelerators, field fluctuations in form of virtual
quanta can influence through loop corrections the value of some very precisely measured quantities.
Comparing the predictions of the DFSZ theory with experiments can in principle give an indirect
proof of axion existence.

An extremely important quantity that does this job is the already introduced ρ parameter:

ρ =
m2
W

m2
Zc

2
W

= 1 +∆ρSM +∆ρBSM (2.101)

where ∆ρSM are the deviations from the custodial preserving scenario covered by the SM: this
term includes the small corrections due to g′ 6= 0 and the larger ones related to the top quark
mass. The extra contribution ∆ρBSM will instead arise from custodial breaking effects coming
from theories which extend the SM Lagrangian. One must have ∆ρSM +∆ρBSM = 3.7× 10−4.

All terms which violate custodial symmetry will affect ρ through loop corrections to the values
of the gauge boson masses: these quantum fluctuations will enter the perturbative series of their
propagator diagrams. We will not work in the unitary gauge, where the goldstone bosons of the
H ′ field have been gobbled up by the gauge bosons, but these goldstone modes will be explicitly
retained in loop calculations. Once defined the massive vector field and the scalar goldstone field
propagators at zero order in perturbation theory respectively as

Dµν(k) =
i

k2 −m2
Wi + iε

[
−gµν +

(1− ξ)kµkν
k2 − ξm2

Wi + iε

]
Dgold(k) =

i

k2 − ξm2
Wi + iε

(2.102)

where ξ is the gauge fixing parameter, we will implement the Feynman-’t Hooft gauge setting ξ = 1

Dµν(k) =
−igµν

k2 −m2
Wi + iε

Dgold(k) =
i

k2 −m2
Wi + iε

(2.103)
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In a non-abelian gauge theory, the additional presence of some ghost fields underpins the
unitarity of the whole construction. However, we will not need to explicitly consider them: they
are allowed to interact solely with gauge fields and their associated goldstone bosons, without
blending with the scalar sector through tree level verteces. Therefore, ghost degrees of freedom
will simply enter ∆ρSM at 1-loop order.

With convention (2.103), we can write down the most general form for loop corrections to the
quantum propagator diagram of a massive vector field as

p p

Aµ Bν
= ΠµνAB(p

2) = igµνΠAB(p
2) + pµpν∆AB(p

2) =

= igµν
(
ΠAB(0) + p2

dΠAB
dp2

(0) +O
(

p2

ΛNP

))
+ pµpν∆AB(p

2) A,B =Wµ, Zµ

(2.104)

where we have expanded for small energy p2 ≈ 0, owning to our interest in studying effects of the
new physics energy scale ΛNP ∼ v2φ � p2. The particle mass is defined as the energy p2 at which
the propagator Dµν(p) exhibits a divergence: that implies quantum corrections to gauge boson
masses will be given by ΠµνAB(p

2) evalutated at p2 = m2
W/Z . Consequently, referring to tree level

masses as m2
(tree), we will have

m2
W = m2

W (tree) +ΠWW (p2 = m2
W ) ≈ g2v2

2
+ ΠWW (0)

m2
Z = m2

Z(tree) +ΠZZ(p
2 = m2

Z) ≈ (g2 + g′2)
v2

2
+ ΠZZ(0)

(2.105)

that will affect ρ as

ρ =
m2
W

m2
Zc

2
W

=
m2
W (tree) +ΠWW (0)

m2
Z(tree)c

2
W +ΠZZ(0)c2W

=

m2
W (tree)

(
1 + ΠWW (0)

m2
W (tree)

)
m2
Z(tree)c

2
W

(
1 + ΠZZ(0)

m2
Z(tree)

) =

≈
m2
W (tree)

m2
Z(tree)c

2
W

(
1 +

ΠWW (0)

m2
W (tree)

)(
1− ΠZZ(0)

m2
Z(tree)

)
≈ ρtree +

ΠWW (0)

m2
W (tree)

− ΠZZ(0)

m2
Z(tree)︸ ︷︷ ︸

∆ρ

(2.106)

Therefore, the effects of new physics will show up in

∆ρBSM =
ΠWW (0)

m2
W (tree)

− ΠZZ(0)

m2
Z(tree)

−∆ρSM (2.107)

Thus, we just need to compute the quantities ΠWW (0) and ΠZZ(0) starting from the general
computation of ΠµνXY (p

2), where now subscripts refer to particles circulating inside loops. The
diagrams contributing to it are (see figure 2.3):

• the scalar loop and tadpoles diagrams, which, nevertheless, will simplify in the difference
appearing in (2.107) at the order of correction we are going to consider. Therefore, we will
not explicitly evalutate them;

• the vacuum polaritazion diagrams;
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(a) Vacuum polarization diagram

p

Y

p+ l

X
p

W±/Z W±/Z

(b) Self-energy diagram

p

l

X

p

W±/Z W±/Z

(c) Scalar loop diagram
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(d) Tadpole diagram

Figure 2.3: Diagrams contributing to the calculation of ΠµνXY (p
2). The last diagram is a tadpole,

which can anchor itself in the gauge propagator by means of different kinds of tails (a ghost-like,
a scalar-like ...). Depending on that, the loop will host a suitable variety of virtual particles. This
large number of options has been graphically depicted with a dashed line. Together with the scalar
loop diagram, it will not directly enter our calculation of ∆ρBSM .

• the self-energy diagrams.

In what follows, it will turn out to be unnecessary to consider the physical gauge boson basis,
obtained through the Weinberg rotation: we will eventually work in the limit g′ → 0, where
cW → 1 and sW → 0. Moreover, the Feynman rules that we are going to use for our calculations
can be directly extracted expanding the kinetic term of the DFSZ Lagrangian: cubic verteces are
summarized in tables 2.1a and 2.1b, where their squares have already been taken into account for
practical purposes. Just because we are not going to compute scalar loop diagrams, Feynman rules
for quartic interactions have been left aside.

We can start evalutating the vacuum polarization loop integral IXYµν using dimensional regu-
larization, where space-time dimensions d are extended from four to 2ω, ω ∈ C. Therefore, if µ is
the ultraviolet regulator, we can write

IXYµν (p2) = −CXY µ4−2ω

∫
d2ωl

(2π)2ω
lµlν

[p2 −m2
X + iε][(l + p)2 −m2

Y + iε]
=

= −CXY µ4−2ω

∫ 1

0

dxdyδ(x+ y − 1)

∫
d2ωl

(2π)2ω
lµlν

{x[l2 −m2
X + iε] + y[(l + p)2 −m2

Y + iε]}2
=

= −CXY µ4−2ω

∫ 1

0

dx

∫
d2ωl

(2π)2ω
(l − (1− x)p)µ(l − (1− x)p)ν

[l2 −∆(x, p2) + iε]2

(2.108)

where we made use of the Feynman parameters x and y and we defined ∆(x, p2) = x(x − 1)p2 +
xm2

X+(1−x)m2
Y . Expanding the numerator of the integrand, terms proportional to lµ will vanish
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for symmetry reasons, upon integrating, and hence

IXYµν (p2) =

∫ 1

0

dx

∫
d2ωl

(2π)2ω
−CXY µ4−2ωlµlν

[l2 −∆(x, p2) + iε]2
+ pµpν

∫ 1

0

dx

∫
d2ωl

(2π)2ω
−µ4−2ω(1− x)2CXY
[l2 −∆(x, p2) + iε]2︸ ︷︷ ︸

→∆XY (p2)

=

= −CXY µ4−2ω gµν
2ω

∫ 1

0

dx

∫
d2ωl

(2π)2ω
l2

[l2 −∆(x, p2) + iε]2
+ pµpνKXY (p

2)

(2.109)

Furthermore, terms containing the gauge boson momentum pµ can be removed from the calculation,
because they never contribute in practise. Indeed, all of these diagrams are generally sandwiched
between fermion currents, so that the relation pµūr(q

′)γµus(q) = 0 holds, where we required the
vertex conservation law pµ = q′µ− qµ. Thereby, we are left with a scalar integral which contributes
to ΠXY (p

2) of expression (2.104), that is:

IXY (p2) = i
CXY
2ω

µ4−2ω

∫ 1

0

dx

∫
d2ωl

(2π)2ω
l2

[l2 − p2∆̃(x) + iε]2
(2.110)

with ∆̃(x) = x2−x+ xm2
X+(1−x)m2

Y

p2 . Now, a Wick rotation can be performed without ado, provided

that p2 is kept below the threshold of physical production of the two virtual particles appearing in
the loop. Indeed, we can check it by considering the parabola ∆̃(x), whose equation can be simply
studied as:

d∆̃(x)

dx
= 0 ⇒ x̄ =

1

2

(
m2
Y

p2
− m2

X

p2
+ 1

)
and

d2∆̃(x)

dx2
= 2 (2.111)

so that

∆̃(x̄)

{
> 0 (mX −mY )

2 < p2 < (mX +mY )
2

< 0 p2 < (mX −mY )
2 ∨ p2 > (mX +mY )

2
(2.112)

Nevertheless, there are no physical conditions providing 0 ≤ x̄(p2) ≤ 1, which corresponds to our
domain of interest, for 0 < p2 < (mX − mY )

2: therefore, we can forget about the restrictions
on ∆̃(x̄) in this interval. In addition, if we notice ∆̃(x = 0) = (m2

X/p
2) > 0 and ∆̃(x = 1) =

(m2
Y /p

2) > 0, we will be able to state that

p2∆̃(x) > 0 ⇐⇒ 0 < p2 < (mX +mY )
2 ∀x ∈ [0, 1] (2.113)

which actually confirms we can perform a Wick rotation so long as the energy is not enough to
produce resonance states.

By moving onto the Euclidean space and making use of the Mellin transform, we could write

IXY (p2) =
+CXY µ

4−2ω

2ω

∫ 1

0

dx

∫
d2ωlE
(2π)2ω

l2E
[l2E + p2E∆̃(x)]2

=

=
CXY µ

4−2ω

2ω

∫ 1

0

dx

∫
d2ωlE
(2π)2ω

l2E
Γ(2)

∫ +∞

0

dtte−t[l
2
E+∆] =

=
CXY µ

4−2ω

2ωΓ(2)

∫ 1

0

dx
1

(2π)2ω

∫ +∞

0

dtte−t∆
(
− d

dt

)∫
d2ωlEe

−tl2E =

=
CXY µ

4−2ω

2Γ(2)(4π)ω

∫ 1

0

dx

∫ +∞

0

dtt−ωe−t∆ =
CXY µ

4−2ω

2Γ(2)(4π)ω

∫ 1

0

dx
Γ(1− ω)

∆1−ω

(2.114)
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X Y Interaction term Feynman rule for ΠµνXY (p
2): CXY

S H2/1 ∓ g
2W

µ
1/2S∂

~

~

µH2/1 − g2

4 (2l + p)µ(2l + p)ν → −g2lµlν
A0 H1/2 g

vφ
vf
Wµ

1/2A0∂~

~

µH1/2 −g2 v
2
φ

v2f
(2l + p)µ(2l + p)ν → −g2 4v2φ

v2f
lµlν

G1/2 H −gWµ
1/2H∂µG1/2 −g2(p+ l)µ(p+ l)ν → −g2lµlν

G0 G2/1 ∓ g
2W

µ
1/2G2/1∂~

~

µG0 − g2

4 (2l + p)µ(2l + p)ν → −g2lµlν
H1/2 aφ −g vs2βvf

H1/2∂µaφ −g2 v
2s22β
v2f

(p+ l)µ(p+ l)ν → −g2 v
2s22β
v2f

lµlν

G2/1 Bµ ±gg′ v2W
µ
1/2BµG2/1 g2g′2 v

2

4 gµρg
ρσgσν → g2g′2 v

2

4 gµν

CXY lµlν

→ CXY gµν

(a)

X Y Interaction term Feynman rule for ΠµνXY (p
2): CXY

H1 H2
g
2W

µ
3 H1∂~

~

µH2 − g2

4 (2l + p)µ(2l + p)ν → −g2lµlν
A0 S −g vφvf W

µ
3 A0∂~

~

µS −g2 v
2
φ

v2f
(2l + p)µ(2l + p)ν → −g2 4v2φ

v2f
lµlν

G0 H −gWµ
3 H∂µG0 −g2(p+ l)µ(p+ l)ν → −g2lµlν

G1 G2
g
2W

µ
3 G1∂~

~

µG2 − g2

4 (2p+ l)µ(2l + p)ν → −g2lµlν
S aφ g

vs2β
vf

H1/2∂µaφ −g2 v
2s22β
v2f

(p+ l)µ(p+ l)ν → −g2 v
2s22β
v2f

lµlν

H Bµ gg′ v2W
µ
3 BµH g2g′2 v

2

4 gµρg
ρσgσν → g2g′2 v

2

4 gµν

CXY lµlν

→ CXY gµν

(b)

Table 2.1: The two tables show the (squared) Feynman rules, which enter the computation of

W
1/2
µ (2.1a) and W 3

µ (2.1b) mass corrections. In both of them, the first five rules on the far right,
used in the evalutation of the vacuum polarization diagram, have been stripped of linear terms in
the loop momentum lµ and of contributions proportional to the external gauge momentum pµ. In
the last rows, the metric tensor appearing gρσ in the vector boson propagator has already been
taken into account.

If we name ε = 2− ω, expanding for small ε lets us claim

IXY (p2) =
CXY
32π2

∫ 1

0

dxΓ(−1 + ε)∆

(
4πµ2

∆

)2−ω

=

≈ −CXY
32π2

∫ 1

0

dx∆

[
1

ε
+ 1− γE + ...

][
1 + εln

4πµ2

∆
+ ...

]
=

≈ −CXY
32π2

∫ 1

0

dx

[
(1 + ∆ε + lnµ2)∆−∆ln∆+ ...

] (2.115)

with ∆ε = 1/ε− γE + ln(4π) (where γE = 0.5772... is the Euler-Mascheroni constant).

If we now extract the term which is constant with respect to p2 by setting p2 = 0, we can
exactly compute the integration in x through elementary integrals:

IXY (0) = −CXY
32π2

(1 + ∆ε + lnµ2)

∫ 1

0

dx(xm2
X + (1− x)m2

Y )+

+
CXY
32π2

∫ 1

0

dx(x(m2
X −m2

Y ) +m2
Y )ln(x(m

2
X −m2

Y ) +m2
Y ) =
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= −CXY
32π2

(1 + ∆ε + lnµ2)
m2
X +m2

Y

2
+
CXY
32π2

[
m4
X ln(m

2
X)−m4

Y ln(m
2
Y )

2(m2
X −m2

Y )
− m2

X +m2
Y

4

]
=

= −CXY
64π2

{(
3

2
+ ∆ε

)
(m2

X +m2
Y )−

[
m4
X ln(m

2
X/µ

2)−m4
Y ln(m

2
Y /µ

2)

(m2
X −m2

Y )

]}
(2.116)

Actually, it will prove useful to manipulate further the term in square brackets:

m4
X ln(m

2
X/µ

2)−m4
Y ln(m

2
Y /µ

2)

(m2
X −m2

Y )
=

(m2
X −m2

Y )(m
2
X ln(m

2
X/µ

2) +m2
Y ln(m

2
Y /µ

2))

m2
X −m2

Y

+

− m2
Xm

2
Y

m2
X −m2

Y

(ln(m2
Y /µ

2) + ln(µ2/m2
X)) = m2

X ln

(
m2
X

µ2

)
+m2

Y ln

(
m2
X

µ2

)
− m2

Xm
2
Y

m2
X −m2

Y

ln

(
m2
Y

m2
X

)
(2.117)

so that we can eventually claim

IXY (0) = −CXY
64π2

{(
3

2
+ ∆ε

)
(m2

X +m2
Y )−m2

X ln
m2
X

µ2
−m2

Y ln
m2
X

µ2
+

m2
Xm

2
Y

m2
X −m2

Y

ln
m2
Y

m2
X

}
(2.118)

In a similar fashion, we can evalutate the contribution JXYµν to ΠµνXY (p
2) coming from the self-

energy diagram. According to the Feynman rules of our table, the only vector field entering this
loop is the massless hypercharge field Bµ (that coincides with the photon in the limit g′ → 0).
Therefore, we will have

JXYµν (p2) = CXY µ
4−2ω

∫
d2ωl

(2π)2ω
gµν

[p2 −m2
X + iε][(l + p)2 + iε]

=

= iCXY µ
4−2ωgµν

∫ 1

0

dx

∫
d2ωlE
(2π)2ω

1

[l2E +∆p(x)]2

(2.119)

where ∆p(x) = x(x−1)p2+xm2
X . With exactly the same procedure, we can eventually obtain the

scalar integral

JXY (p2) = +
CXY µ

4−2ω

(4π)ω

∫ 1

0

dx

∫ +∞

0

dtt−ωe−t∆p(x) = +
CXY µ

4−2ω

(4π)ω

∫ 1

0

dx
Γ(1− ω)

∆p(x)1−ω
=

≈ −CXY
16π2

∫ 1

0

dx

[
1

ε
+ 1− γE + · · ·

][
1 + εln

4πµ2

∆p
+ · · ·

]
=

≈ −CXY
16π2

∫ 1

0

dx

[
1 + ∆ε + lnµ2 − ln∆p

]
−→
p2→0

−CXY
16π2

[
1 + ∆ε − ln(m2

X/µ
2)

] (2.120)

Now that we have all the tools together to proceed, we can define the set of functions

f(m2
X ,m

2
Y ) = −CXY

64π2

{(
3
2 +∆ε

)
(m2

X +m2
Y )−m2

X ln
m2

X

µ2 −m2
Y ln

m2
X

µ2 +
m2

Xm
2
Y

m2
X−m2

Y
ln

m2
Y

m2
X

}
f(m2

X ,m
2
X)

def
= lim

m2
X→m2

Y

f(m2
X ,m

2
Y ) = −CXY

32π2

{
(1 + ∆ε)m

2
X −m2

X ln
m2

X

µ2

}
g(m2

X) = −CXBµ

16π2

[
1 + ∆ε − ln(m2

X/µ
2)

]
(2.121)
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where the limit, for the second definition, has been carried out using the simplified form (2.118)
for IXY (0). If we further introduce the vector of scalar mass eigenstates hi = (H ′, S′, ρ′), we can
simply compute ∆ρBSM using (2.107) and adding together all of the contributions given in table
2.1a and 2.1b. The result will be

∆ρBSM =
1

m2
W

[ 3∑
i=1

(R2
Sif(m

2
hi
,m2

H±) +R2
Hif(m

2
G± ,m2

hi
)) + f(m2

A0
,m2

H±) + f(m2
G0 ,m2

G±)+

+ f(m2
H± ,m2

aφ
) + g(m2

Bµ
)

]
− 1

m2
Z

[ 3∑
i=1

(R2
Sif(m

2
A0
,m2

hi
) +R2

Hif(m
2
G0
,m2

hi
)+

+R2
Sif(m

2
hi
,m2

aφ
) +R2

Hig(m
2
hi
)) + f(m2

H± ,m2
H±) + f(m2

G± ,m2
G±)

]
+∆ρtop −∆ρSM

(2.122)

We can start neglecting the g′ corrections by approximating m2
Z ≈ m2

W . Moreover, we know
that the top correction ∆ρtop, together with the contributions f(m2

G± ,m2
G±), f(m2

G0 ,m2
G±) and

g(m2
Bµ

) are already covered by the SM, so that they disappear upon subtracting ∆ρSM . By direct

inspection, one also notices that the two terms RHif(m
2
G± ,m2

hi
) and RHif(m

2
G0
,m2

hi
) exactly

simplify in the limit m2
Z ≈ m2

W (remembering that m2
G± = m2

W± and m2
G0

= m2
Z). Using the

property of rotation matrices
∑3
i=1R

2
Hi = 1, we can write

∆ρBSM =
1

m2
W

[ 3∑
i=1

R2
Si(f(m

2
hi
,m2

H±)− f(m2
A0
,m2

hi
)− f(m2

hi
,m2

aφ
)) + f(m2

A0
,m2

H±)+

− f(m2
H± ,m2

H±) + f(m2
H± ,m2

aφ
)

]
− 1

m2
Z

3∑
i=1

R2
Hig(m

2
hi
)−

( 3∑
i=1

R2
Hi

)
︸ ︷︷ ︸

=1

(
− 1

m2
Z

g(m2
HSM

)

)
︸ ︷︷ ︸

→∆ρSM

(2.123)

Just because ∆ρBSM is a measurable quantity, we expect the divergeces enclosed in ∆ε and the
unphysical and arbitrary scale µ to disappear. This can be easily achieved between the last two
addends of the previous expression, but it is by no means obvious how that can occur among
terms in square brackets. Therefore, we can focus on them and go through some cumbersome
calculations to gain a better insight of the procedure. In the interest of convenience, we further set

f̃(m2
X ,m

2
Y ) =

m2
Xm

2
Y

m2
X−m2

Y
ln

(
m2

X

m2
Y

)
. By employing our preceding definitions and the Feynman rules

to make CXY explicit, we can start considering

3∑
i=1

R2
Si(f(m

2
hi
,m2

H±)− f(m2
A0
,m2

hi
)− f(m2

hi
,m2

aφ
)) + f(m2

A0
,m2

H±)− f(m2
H± ,m2

H±)+

+ f(m2
H± ,m2

aφ
) =

g2

64π2

{(
3

2
+ ∆ε

)
m2
H± +

(
3

2
+ ∆ε

) 3∑
i=1

R2
Sim

2
hi

−m2
H± ln

m2
H±

µ2
+

−
3∑
i=1

R2
Sim

2
hi
ln
m2
hi

µ2
−

3∑
i=1

R2
Sif̃(m

2
H± ,m2

hi
)−

���������4v2φ
v2f

(
3

2
+ ∆ε

)
m2
A0

−
4v2φ
v2f

(
3

2
+ ∆ε

) 3∑
i=1

R2
Sim

2
hi
+

+

�
���

���
4v2φ
v2f

m2
A0
ln
m2
A0

µ2
+

4v2φ
v2f

3∑
i=1

R2
Sim

2
hi
ln
m2
hi

µ2
+

4v2φ
v2f

3∑
i=1

R2
Sif̃(m

2
A0
,m2

hi
)−

v2s2sβ
v2f

(
3

2
+ ∆ε

)
m2
aφ︸ ︷︷ ︸

m2
aφ

→0

+
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−
v2s2sβ
v2f

(
3

2
+ ∆ε

) 3∑
i=1

R2
Sim

2
hi

+
v2s2sβ
v2f

m2
aφ
ln
m2
aφ

µ2︸ ︷︷ ︸
m2

aφ
→0

+
v2s2sβ
v2f

3∑
i=1

R2
Sim

2
hi
ln
m2
hi

µ2
+

+
v2s2sβ
v2f

3∑
i=1

R2
Sif̃(m

2
aφ
,m2

hi
)︸ ︷︷ ︸

m2
aφ

→0

+
���������4v2φ
v2f

(
3

2
+ ∆ε

)
m2
A0

+
4v2φ
v2f

(
3

2
+ ∆ε

)
m2
H± −

4v2φ
v2f

m2
H± ln

m2
H±

µ2
+

−
�
���

���
4v2φ
v2f

m2
A0
ln
m2
A0

µ2
−

4v2φ
v2f

f̃(m2
H± ,m2

A0
)−2(1 + ∆ε)m

2
H± + 2m2

H± ln
m2
H±

µ2︸ ︷︷ ︸
−f(m2

H± ,m
2
H± )

+
v2s2sβ
v2f

(
3

2
+ ∆ε

)
m2
H±+

+
v2s2sβ
v2f

(
3

2
+ ∆ε

)
m2
aφ︸ ︷︷ ︸

m2
aφ

→0

−
v2s2sβ
v2f

m2
H± ln

m2
H±

µ2
−
v2s2sβ
v2f

m2
aφ
ln
m2
aφ

µ2︸ ︷︷ ︸
m2

aφ
→0

−
v2s2sβ
v2f

f̃(m2
H± ,m2

aφ
)︸ ︷︷ ︸

m2
aφ

→0

}

(2.124)

where we explicitly indicate where we are going to performe the invisible axion limit m2
aφ

→ 0.

All terms proportional to the squared axion mass will vanish, together with f̃(m2
aφ
,m2

X) −→
m2

aφ→0

0.

Now, the use of the vf definition will yield

3∑
i=1

R2
Si(f(m

2
hi
,m2

H±)− f(m2
A0
,m2

hi
)− f(m2

hi
,m2

aφ
)) + f(m2

A0
,m2

H±)− f(m2
H± ,m2

H±)+

+ f(m2
H± ,m2

aφ
) −→
m2

aφ→0

g2

64π2

{[(
3

2
+ ∆ε

)(
1 +

4v2φ
v2f

+
v2s2sβ
v2f

)
− 2(1 + ∆ε)

]
︸ ︷︷ ︸

=1

m2
H±+

+

((((((((((((((((((((
3

2
+ ∆ε

)(
1−

4v2φ
v2f

−
v2s2sβ
v2f

) 3∑
i=1

R2
Sim

2
hi

+
((((((((((((((((((
2−

v2s2sβ
v2f

−
4v2φ
v2f

− 1

)
m2
H± ln

m2
H±

µ2
+

+
((((((((((((((((((
4v2φ
v2f

+
v2s2sβ
v2f

− 1

) 3∑
i=1

R2
Sim

2
hi
ln
m2
hi

µ2
−

3∑
i=1

R2
Sif̃(m

2
H± ,m2

hi
) +

4v2φ
v2f

3∑
i=1

R2
Sif̃(m

2
A0
,m2

hi
)+

−
4v2φ
v2f

f̃(m2
H± ,m2

A0
)

}
(2.125)

We can finally plug this result in our initial expression (2.123), in order to get

∆ρBSM =
g2

64π2m2
W

[ 3∑
i=1

R2
Si

(
4v2φ

4v2φ + v2s22β
f̃(m2

A0
,m2

hi
)− f̃(m2

hi
,m2

H±)

)
+

−
4v2φ

4v2φ + v2s22β
f̃(m2

A0
,m2

H±) +m2
H±

]
+

g′2

16π2

3∑
i=1

R2
Hiln

(
m2
HSM

m2
hi

) (2.126)

The last addend, proportional to g′2, that we are going to drop out, too, represents an overlap
between the SM and BSM contributions. The dependence on scalar masses is only logarithmic.
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On the other hand, the completely new contributions reveal a slightly stronger dependence on
the mass variables. For example, we know that the mass splitting between S′ and H± states
(that comprise a triplet in the custodial limit) violates custodial symmetry: consistently, we find
a quadratic dependence on mH± in the ∆ρBSM formula.

In order to compare the predictions of our DFSZ axion model with experimental data, we
introduce one of the Peskin-Takeuchi parameters [34]

∆T =
∆ρBSM
αem

=
1

16πs2Wm
2
W

[ 3∑
i=1

R2
Si

(
4v2φ

4v2φ + v2s22β
f̃(m2

A0
,m2

hi
)− f̃(m2

hi
,m2

H±)

)
+

−
4v2φ

4v2φ + v2s22β
f̃(m2

A0
,m2

H±) +m2
H±

] (2.127)

where we used αem = e2/4π = g2s2W /4π.
We will just consider this parameter, among the possible others, because we are not going to

develop a detailed analysis about electroweak precision test, which can be found in abundance
in literature (see for example [35]). Furthermore, the ∆T value has been proved to be the one
dictating the more severe bounds on BSM physics, if compared to the remaining ones.

We can realize that the only difference with respect to the ∆T formula obtained in a quartic

DFSZ model resides in the four factor multiplying v2φ in the ratio
4v2φ

4v2φ+v
2s22β

: the ultimate reason

for this tiny change is due to the modified axion definition given for the cubic theory. Nonetheless,
being vφ a large energy scale, the phenomenology will be again consistent with the old results,
without great novelties. Consequently, we can claim that, from the point of view of the scalar
spectrum, a cubic DFSZ model is practically indistinguishable from a quartic one: therefore,
different subtlelties must be taken into account in order to discern between them.

By way of conclusion, we explicitly show the tight restrictions imposed by the experimental
value of ∆T = 0.09± 0.13 (measurement done by [36]) on an exemplary spectrum, i.e that of case
4 (a, b ∼ v2/v2φ and |c| ∼ v2/vφ, with |c| ∼ λiv

2/vφ). After all, this is the only one predicting

a sizeable number of light scalars, in addition to the SM Higgs: the two charged Higgs H±,
the pseudo-scalar A0 and the scalar S′. We will simply soften the custodial requirement up to
the quasi-custodial scenario, where only λ4 violates it: that will be enough to appreciate the
strong constraints arising from electroweak measurements. We will fix again mh1

= 126GeV ,
vφ = 1012GeV and the electroweak parameters will be chosen to the approximate values of v ≈
250GeV , mW ≈ 80GeV and s2θW ≈ 0.22. Now, using equations (2.100) to implement stability
and noticing how in a quasi-custodial case 4 the rotation matrix simplifies as R2

S1 = R2
S3 = 0 and

R2
S2 = 1, the ∆T formula can be explicitly written in terms of the unknown factors mH± , mA0

and λ4B = λ4 − 2λ (figure 2.4) or mH± , mA0
and mh2

(figure 2.5). Here, λ4B parametrizes the
effect of custodial breaking. We can easily move from one set of variables to the other one using
the relation m2

h2
= m2

H± − 8v2λ4B .
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Figure 2.4: The two plots illustrate the light mass spectrum of a DFSZ model (quasi-custodial
case 4) for two different values of the custodial breaking parameter λ4B . The orange region is the
viable range of masses for the couple (mA0 ,mH±) according to the ∆T = 0.09 ± 0.13 restriction;
the blue grid area excludes points forbidden by the stability conditions of the potential.
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Figure 2.5: The two plots illustrate the light mass spectrum of a DFSZ model (quasi-custodial case
4) for two different values of the pseudoscalar mass mA0

. The orange region is the viable range
of masses for the couple (mS′ ,mH±) according to the ∆T = 0.09± 0.13 restriction; the blue grid
area excludes points forbidden by the stability stability of the potential.



Chapter 3

The domain wall issue

The axion concept is an extremely fruitful idea of theoretical physics with countless applications
and consequences. Just that makes the completion of axion models an incredibly delicate task.
Theories bearing the axion as a part of their spectrum should be compatible with particle physics:
all of the fields we introduce in order to construct a consistent axion particle should deal with the
current phenomenology at the LHC, for example. Nevertheless, this new pseudo-scalar field can
potentially affect astrophysics and cosmology, too. So, there is another frontier that grossly limits
our model building freedom. The domain wall puzzle is an exemplary problem that one has to
take into account when coping with axions.

3.1 The fa and vφ relation

Until now, we have overlooked a subtle issue when dealing with the effective axion-gluon in-
teraction. We discussed how the standard form to present it is (2.63), i.e in terms of the constant
fa:

Lanomaly =
aφ
fa

αs
8π

Gaµν G̃µνa (3.1)

This is the axion decay constant, which directly parametrizes the strength of decay processes
of axions into gluons through a triangle diagram. Despite that, we can also compute this term
starting from our DFSZ model. In the next chapter, we will deeply study the possible Yukawa
contributions to our Lagrangian; what is important to consider here is that, if we take into account

a Yukawa term in the form yQ̄LΦ12qR (with QL an isospin doublet and qR =

(
uR
dR

)
a vector of

isospin singlets) and we make use of the expression (2.53) for Φ12, the phases associated to the
matrix Ua can be reabsorbed through a local chiral transformation. This procedure will generate
an axion-gluon vertex of the form

Lanomaly =
2Naφ
vf

αs
8π

Gaµν G̃µνa (3.2)

where we remind that vf =
√
4v2φ + v2s2β for a DFSZ theory with a cubic potential or vf =√

v2φ + v2s2β in presence of a quartic one. N is the color anomaly, which can be computed using

(1.71), once the PQ charges for fermions have been assigned. In this last expression, the effective
coupling constant of the interaction involves the high energy scale vf of the model, which is mainly

69
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Figure 3.1: Thermal axion sources for T > TQH during the quark-gluon plasma phase.

related, thanks to the constraint vφ � v, to the VEV of the singlet field φ. By requiring the
matching of the two expressions (3.1) and (3.2), one gets

fa =
vf
2N

−→
vφ�v

fa = −Xφvφ
N

(3.3)

where the last equality holds by considering the different vf definitions for the DFSZ models,
together with the suitable Xφ value. Indeed, Xφ = −1 for the cubic theory and Xφ = −1/2 for the
quartic one. The number linking fa and vφ is called the domain wall number : NDW = −N/Xφ.
This latter is the leading character of this chapter.

3.2 Axion and cosmology

If axion existed, they would have highly influenced the past history of the universe. In par-
ticular, they would find a place in the cosmological scenario as dark matter components. As a
matter of fact, they naturally possess a huge number of properties that a would-be dark matter
candidate should have: a tiny mass, small couplings with SM particles (as we can already see
from the suppression of the gluon vertex, due to fa), a long life-time (greater that the age of the
universe) and so on. All of these features derive solely from fa, whose range of possible values
is fixed as 109GeV ≤ fa ≤ 1017GeV [37]: the lower bound comes from supernova cooling, while
the upper limit from black hole superradiance. Through (2.75) one gets the axion mass range
5.70 × 10−11eV ≤ ma ≤ 5.70 × 10−3eV . Actually, the upper bound on axion mass is intimately
related to the properties of this particle of interacting with nucleons. Despite that, the presented
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interval can be tweaked for the better, by opening the axion mass window: how to achieve that is
the main topic of the next chapter.

Axions can take part in the history of cosmos both as hot and cold dark matter constituents. Hot
axions can be efficiently produced through different processes during the universe thermal evolution.
For temperature T higher than the TQH ≈ 200− 300MeV of the quark-hadron transition, axions
can be directly generated from gluon and quark reactions, as g+q(q̄) ↔ aφ+q(q̄), q+ q̄ ↔ aφ+g or
g+g ↔ g+aφ [38], whose Feynman diagrams are shown in figure 3.1. When the temperature drops
below TQH , we move from a quark-gluon plasma phase to a situation where gluons confine quarks
into hadrons. Here, the most relevant axion thermalization processes are due to pions and nucleons
interactions, such as π + π ↔ π + aφ and π + n↔ n+ aφ, which can be described by an effective
Lagrangian (presented in the following chapter). These reactions will be effective until the pion
recombination temperature Tπ ≈ 130MeV . The presence of a new source of relativistic components
in the universe, together with neutrinos and photons, can lead to important consequences. As
said in [39], just as massive neutrinos, axions could leave an imprint on the CMB temperature
anisotropies, could contribute to the effective number of relativistic degrees of freedom, could
influence primordial nucleosynthesis and structure formation through the free-streaming scale.

In spite of the extreme similarity between axions and neutrinos, we claimed that axion can
even constitute a cold dark matter component, which sounds pretty strange, if we consider its
generally small mass. Recent experiments showed how some neutrino species must possess a mass.
Nevertheless, this latter must be very tiny, so that, regarding the process of structure formation,
neutrinos will be hot dark matter components: they will be produced by thermal fluctuations in
the early universe and, even if they are cooled by the cosmos expansion, they will still be highly
relativistic at that epoch of structure accretion. A similar reasoning applies to axions produced
by the reactions we have previously presented. But it is now important to consider the differences
between these two light particles just by remembering the peculiarities of the axion field.

The axion is a pseudo-goldstone boson: it arises as the phase of some complex scalar field. In
one of the simplest invisible axion model, such as the KSVZ one, there is only one extra Higgs field
S enjoying a PQ simmetry, so that one can naturally set S = (vS+ s)e

iaS/vS . In our DFSZ theory,
things are much more complicated, because we have a PQ simmetry shared by three Higgs fields.
We have already studied the emergence of the axion phase, which is expressed by (2.50): by looking
at the VEV vf which normalizes this axion phase, we can envisage that the field combination Υ
acting as the KSVZ S, here, will be given by

Υ = (vf + χ)eiaφ/vf where Υ =
4vφφ+ vs2βH̃

vf
(3.4)

with H̃ = v + H, whose VEV is 〈H̃〉 = v. The Υ formula has been fixed in such a way that
〈Υ〉 = vf . Of course, we know how vφ � v, so that Υ is essentially ruled by φ. For the same
reason, the major responsible for spontaneous symmetry breaking of PQ symmetry will be just the
term proportional to λφ of (2.5). The non-perturbative vacuum Vφ itself, which can be obtained
from the potential minimization conditions (for example (2.76)), turns out to be grossly Vφ ∼ v2φ.
Despite that, axions would emerge even without a φ field, because it is not the only PQ charged
Higgs. In the same way, the symmetry breaking mechanism will occur in the quasi-free singlet limit
(λφ = 0), too, where the subleading terms of the potential related to H̃ will start contributing.

All that is of capital importance from a cosmological perspective: we will now consider the axion
field evolution (and not just its perturbation, as we did up to now). If we are in the primordial
universe, at energy higher than fa, the PQ symmetry is preserved by 〈Υ〉 = 0, which minimizes
the potential

V (Υ) ≈ λφ(Υ
∗Υ+ v2φ)

2 (3.5)
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and we have no axions. But when we drop below this scale, the PQ symmetry is broken: if our Υ
field is subjected to the simplified mexican hat potential

V (Υ) ≈ λφ(Υ
∗Υ− v2φ)

2 (3.6)

it will roll down from the false vacuum state 〈Υ〉 = 0 to one arbitrary minimum between the
infinite set of them, i.e 〈Υ〉 = vfe

iaφ/vφ , where the angular variable aφ/vφ just parametrizes each
element. The sign flip between (3.5) and (3.6), which we modified by hand, shoud be in principle
explained by the cosmological evolution of the parameters with temperature. Our energy is still
greater than ΛQCD ∼ 200MeV , below which QCD can not be treated perturbatively any more
and quarks are confined into hadrons: for the effects of asymptotic freedom, strong couplings are
weak and, clearly, pions do not exist. At these scales there is no effective potential for the axion,
which is practically massless. Nevertheless, this pretty simple mechanism must be explained a bit
better when embedded in a cosmological background.

3.2.1 Axionic strings

When the PQ phase transition occurs, we know that it will take place simultaneously in different
points of the universe: quantum fluctuations will move the Υ field to a completely casual value
of the U(1) symmetric set of vacua. Nevertheless, these values will not be the same everywhere,
because the correlation length between various universe positions can not exceed the casual particle
horizon dH , defined as usual

dH(t) = R(t)

∫ t

0

cdt′

R(t′)
(3.7)

and associated to light propagation. R is the scale factor which enters the Friedmann-Robertson-
Walker metric

ds2 = c2dt2 −R(t)

(
dr2

1− kr2
+ r2dΩ

)
(3.8)

and k the curvature constant. The process, which leads to a universe comprised of distinct patches,
is dubbed Kibble mechanism [40, 41] (sometimes known also as Kibble-Zureck mechanism). In
principle, it is possible to describe a continuous closed path on a plane in the physical coordinate
space, connecting points where the Υ field settled in different VEVs, whose phases aφ/vf run from
0 to 2π: that is legitimate just because we are dealing with a continuous symmetry. This path
can be smoothly deformed into a point, provided that a singular region where 〈Υ〉 = 0 still exists.
We can extend this discussion from plane to space, so that the simple requirement of causality
provides us with a chain of points where the PQ transition did not occur and the scalar field got
trapped in the false vacuum: these chains are the axionic strings.

Let us consider a simple axionic string, located along the z axis of a coordinate system. The Υ
field configuration describing an axionic string can be encompassed by the ansatz

S(t, ~x) = vφf(r)e
inθ (3.9)

where θ = aφ/(2vφ). We want that the field approaches the real vacuum far away from the singular
region ~x = (0, 0, z) (when the cylindrical r coordinate goes to infinity) and that it assumes the zero
value at r = 0. This constrains f(r) in such a way that{

f(r) = 1 when r → +∞
f(r) = 0 when r → 0

(3.10)
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In (3.9), n is the already introduced winding number (1.34), which tells us how many times we are
moving around the false vacuum region. We are not going to consider any time dependence, which
means S(t, ~x) = S(~x) is a topologically stable field configuration. After all, S(t, ~x) is a topological
solution of field equations, which is stable against small perturbations by very definition. If we
now consider the total energy of the system

E =

∫
d3x

[
|∂tS|2 + |∇xS|2 + V (S)

]
(3.11)

the gradient of the string will be

∇xS = vφ

[
∂rf(r)r̂ + in

f(r)

r
θ̂

]
einθ ⇒ |∇xS|2 = v2φ

[
(∂rf(r))

2 + n2
f(r)2

r2

]
(3.12)

The time derivative in (3.11) is null, according to our assumptions, so that

E = 2π

∫ +∞

−∞
dz

∫ +∞

0

drr

(
v2φ

[
(∂rf(r))

2 + n2
f(r)2

r2

]
+ λφv

2
φ(f(r)

2 − 1)2
)

(3.13)

We notice that our theory has an intrinsic length scale rc = (
√
λφvφ)

−1, which can be used to define
the location of the boundary separating regions where f(r) = 0 (the string core) and f(r) = 1
[42]. In our calculations, we will assume for simplicity a step-function form of f(r) = θ(r − rc).
Moreover, it is quite natural to introduce an ultraviolet cut-off L in the previous integral, which
otherwise would diverge: this L can be considered as the distance between neighbouring strings,
which is expected to be, from the dynamic of Kibble mechanism, of order of the horizon scale.
Thus, we can write down

E = 2π

∫ +∞

−∞
dz

(∫ rc

0

drr

[
v2φ(∂rf(r))

2 + λφv
2
φ

]
+

∫ L

rc

drrv2φ

[
(∂rf(r))

2 + n2
1

r2

])
=

≈
∫ +∞

−∞
dz

(
πv2φ + 2πn2v2φ log

(
L

rc

)) (3.14)

and, hence, we can define the linear energy density of the string µs as

µs ≈ 2πn2v2φ log

(
L

rc

)
(3.15)

where in general the contribution of the core is neglected with respect to the second one. These
string configurations are extremely related to axion field: as described in [38], string loops can
for instance recollapse or wiggle, giving rise to processes which radiate axion particles. It was
shown that this new non-thermal mechanism creates axions with such an energy that, because of
the universe expansion and the subsequent switching on of QCD potential, become non-relativistic
pretty quickly.

3.2.2 The domain walls

When the temperature drops to the energy ΛQCD, the string decay mechanism is inhibited,
because a new process plays the game. Indeed, at this epoch, pions arise, generating an effective
potential for axions of the form (2.72). This new term in the Lagrangian will break the U(1)
symmetry connecting degenerate vacua, but we still have a residual symmetry. As a matter of
fact, our axion potential is periodic in the variable a/fa: its minimum is reached for

〈 a

2fa
〉 = 0 +mπ with m ∈ Z (3.16)
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〈aφ/(2vφ)〉 = 0

〈aφ/(2vφ)〉 =
3π/4〈aφ/(2vφ)〉 =

π/4

〈aφ/(2vφ)〉 = π/2

axionic
string

Figure 3.2: A pictorial representation of a string-wall network in case of NDW = 4: it can be
appreciated how an axionic string is the boundary of four walls, which separate regions of different
vacua.

so that it seems there is only one possible VEV for the axion (a/fa is an angle and, thereby,
(a/fa) ∈ [0, 2π[). But, here, we need to introduce the vφ scale through the relation (3.3), which
gives

V

(
aφ
fa

)
7−→ V

(
aφ
vφ

)
= −f2πm2

π

√
1− 4mumd

(mu +md)2
sin2

(
NDW

aφ
2vφ

)
(3.17)

The new angular variable a/(2vφ) will minimize V (aφ/vφ) for a collection of vacua

〈 aφ
2vφ

〉 = 0,
π

NDW
, . . . ,

π(NDW − 1)

NDW
∈ [0, π[ (3.18)

given exactly by NDW values. What emerges is that the original set of U(1) symmetric vacua is
broken by quantum effects to a more restrict set of ZNDW

symmetric ones. The original vacuum
field configuration, characterized by a particular value of aφ/(2vφ), will now roll down towards one
of the new NDW vacua. The field configuration which interpolates two casually unrelated regions
is dubbed a domain wall. These walls will attach to preexisting strings, which, in turn, will be
surrounded by NDW walls (figure 3.2).

The new Lagrangian describing the axion will now appear as

La =
1

2
∂µaφ∂

µaφ −
(
V

(
aφ
fa

)
− V (0)

)
(3.19)

where we have subtracted to the potential the energy of the minimum, because, as motivated in
[37], it is customary to assume, as a solution to the cosmological constant problem, a null axion
vacuum energy. An explicit analytical form of the domain wall field configuration can be very
difficult to obtain in this specific case, but, nonetheless, we can derive some important properties
of it in a simplified situation. If we consider a wall which is located along the plane z = 0 and
which mediates between two different vacuum values, in such a way that, for instance{

aφ/vφ = 0 when z → −∞
aφ/vφ = 2π/NDW when z → +∞

(3.20)
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we can simply extract the form of the energy from the previous Lagrangian. We are looking again
for finite energy solutions, which have no dependence on time. Moreover, using the symmetry
of this simplified problem, we consider spatial variations of the field solely along the direction
perpendicular to the wall itself. With some manipulations we can write down

E =

∫
d3x

[
1

2
∂zaφ∂

zaφ +

(
V

(
aφ
fa

)
− V (0)

)]
=

=

∫
d3x

1

2

(
∂zaφ −

√
2

(
V

(
aφ
fa

)
− V (0)

))2

+

∫
d3x

√
2

(
V

(
aφ
fa

)
− V (0)

)
∂zaφ

(3.21)

where, from the first integral, we can get the equation of motion for the domain wall field

∂zaφ −

√
2

(
V

(
aφ
fa

)
− V (0)

)
= 0 (3.22)

in such a way that we are left with an explicit expression for the energy

E =

∫
dxdy

∫ +∞

−∞
dz∂zaφ

√
2

(
V

(
aφ
fa

)
− V (0)

)
=

=

∫
dxdy

∫ 2π/NDW

0

daφ

√√√√2f2πm
2
π

[
1−

√
1− 4mumd

(mu +md)2
sin2

(
NDW

aφ
2vφ

)]
=

=

∫
dxdy

(
2
√
2fafπmπ

∫ π

0

dθ

√√√√[1−√1− 4mumd

(mu +md)2
sin2 θ

])
(3.23)

From the previous formula, we can readily read off the domain wall surface energy

σW = 2
√
2fafπmπ

∫ π

0

dθ

√√√√[1−√1− 4mumd

(mu +md)2
sin2 θ

]
=

≈ 2
√
2
1 + z̃√
z̃
maf

2
a

∫ π

0

dθ

√√√√[1−√1− 4z̃

(1 + z̃)2
sin2 θ

]
≈ 8.96maf

2
a

(3.24)

where we set z̃ ≡ mu/md ≈ 0.48. In the next-to-last passage, we made use of (2.74), that gives
the mass of the axion in terms of the pion’s one. But, in a cosmological framework, we should
be careful in noticing how that relation has been obtained using chiral perturbation theory: at
low energy, the effective degrees of freedom which interact with axions are described by mesons.
Thereby, this formula is valid only for T < TQCD. For higher temperature, QCD couplings will
be suppressed by the phenomenon of asymptotic freedom, where g → 0 and perturbation theory
holds. In this regime, there will be no effective potential V (aφ/fa) and, consequently, ma → 0,
as expected for a Nambu-Goldstone boson. Nonetheless, while approaching TQCD from higher
temperatures, before pions appear at the confinement energy, the degeneracy between the U(1)PQ
vacua will start faltering because of instantons interactions: after all, we know that these ones are
non-perturbative phenomena, whose effects are relevant just when g � 1. Thus, the anomalous
constribution ∼ aφtr[Gµν G̃µν ] will generate an effective periodic potential through the axion-gluon
triangle vertex. This discussion as a whole lets us understand how the axion mass depends on



76 CHAPTER 3. THE DOMAIN WALL ISSUE

temperature and, consequently, on time, due to the modification of the effective potential, which,
in its turn, is sensitive to the active degrees of freedom. This idea is summarized in the relation

m2
a(T ) =

δ2V(aφ/fa, T )
δ2aφ

∣∣∣∣
aφ=0

=
1

f2a

d2V(θ, T )
d2θ

∣∣∣∣
θ=0

≡ 1

f2a
χtop(T ) (3.25)

where V(aφ/fa, T ) is the effective potential, which weights up quantum corrections, too. χtop(T )
is instead the so-called topological susceptibility, which encloses temperature dependence.

Thereby, up to now, we have a universe filled with a string-wall network: differently from
string configuration, where strings tend to decay by collapsing or intersecting each other, this new
network where strings are the edges of walls turns out to be pretty stable. If that were the case
and a QCD transition had really populated the cosmos of these topological structures, it is easy
to realize that domain walls would have led to a cosmological disaster. Indeed, because of Kibble
mechanism, we can estimate that there will be at least one domain wall per casual horizon, whose
dimensions can be parametrized by the age of the universe t. The contribution to the energy
density coming from domain walls will be given by ρW (t) = σW /t, so that today we would have
had

ρW (t0) =
σW
t0

& 2× 10−14 g

cm3

(
fa

1012GeV

)
(3.26)

where the age of the universe is t0 ≈ 14Gyr (and 1Gyr = 3.16 × 1016s before present). It
worth noticing that ρW (t0) � ρcrit = 1.9h210−29g/cm3, where ρcrit is the well-known value of the
energy density which separates hyperbolical from spherical universe geometry. h ≈ 0.7 is related
to the Hubble parameter. This means that the existence of a string-wall network would have
quickly dominated the universe dynamic and would have led, nowadays, to a close universe: this
is definetely inconsistent with cosmological measurements, which suggest the hypothesis of a flat
cosmos.

3.3 Possible ways out

As well summarized in [38], there are three possible solutions to the domain wall conundrum:

• the inflationary solution;

• the introducion of a small explicit PQ breaking contribution;

• the NDW = 1 scenario.

The first one clearly relies on inflation. In a similar fashion as for the solution to the high
monopole energy density, emerging from the alleged GUT phase transition, even here inflation
can save us from this anomalous concentration of topological defects. Indeed, if the PQ phase
transition occurred before the inflationary period, the axionic strings could be watered down by a
violent phase of exponential expansion of the universe. The axion field itself would be homogenized
on large scales, so that the only contribution to its mode expasion would be given by zero modes.
Around the QCD temperature, the axion quanta, which are associated to oscillations of the field,
will acquire a mass: nevertheless, this zero mode axion field will produce particles which are
practically at rest (i.e as cold dark matter). Moreover, just because the phase of the Υ field will
be initially homogeneous on large regions, the formation of domain walls will be suppressed.

A second less appealing solution is based on the idea that a small explicit breaking of the
residual ZNDW

symmetry could lift the degeneracy of the NDW vacua and lead to the decay of
wall structures. This ZNDW

breaking term will clearly affect the original PQ symmetry: if we still
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Figure 3.3: With NDW = 1 the transition below the TQCD temperature will generate a string-wall
network made of membranes, which quickly collapse under their own surface tension. The process
is expected to end up with a cold axion radiation emission.

want the PQ mechanism to work, we must require this correction to be extremely small. On the
other hand, the symmetry break can not be too tiny, because the unique true vacuum should be
able to take over before domain walls dominate the energy density of the universe. This set of
constraints grossly limits the room in parameter space for this mechanism to appear and, even if
it is completely legitimate, it does not seem one of the most attractive ways out.

A third possibility is instead to consider PQ models whose domain wall number is equal to one.
In this case, it will not be necessary to require the existence of an inflationary phase after the PQ
transition: this cosmological period can take place before it or can even be absent. The reasons
why a NDW = 1 can save us from the domain wall catastrophe can be easily understood. First
of all, it is noteworthy that, even if only a unique vacuum existed, domain walls could arise. In
fact, before breaking the degeneracy of the circle of vacua, we will unavoidably have the formation
of strings: around these chains of false vacua, the S phase can wrap with a non-trivial winding
number, exactly as before. When QCD potential switches on, field configurations characterized by
a/fa = π could move towards the minimum using two directions: decreasing their phase towards
a/fa = 0 or trying to reach a/fa = 2π, because these two values are physically identical. Therefore,
a wall will interpolate field patches whose phase difference is greater than 2π nearby it and that
quickly connect to the surrounding true vacuum region. Our rule of thumb will say that any string
will be the edge of only one wall. Thereby, our network system made of strings and walls will
degenerate into a collection of membranes and strips. We can evalutate the stability of this system
by calculating the ratio between the energy in the wall surface and that stored in the boundary.
The string energy will be given by µst, where, again, t parametrizes the typical size of the string
by means of the horizon scale; the wall energy will instead goes as σW t

2. Given that, one gets

R =
Ewall

Estring
=
σW t

µs
(3.27)

This relation tells us that, after a short period of time, where the string energy is greater than the
wall one, the wall surface energy will dominate the dynamic of the membrane, which will collapse
under its own tension. Exactly as for string decays, it is generally assumed that these short-lived
networks are sources of non-relativistic axions. Of course, this reasoning can not be applied for
NDW ≥ 2.
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This brief description of the role of axions in cosmology made it possible to understand how
important it can be to select models respecting the condition NDW = 1. It will be explicitly
computed in the following chapter that our DFSZ models do not respect this constraint. By using
the formula NDW = −N/Xφ, where N will turn out to be 3 and Xφ equals −1 or −1/2 for
the cubic or quartic potential respectively, one gets N cub

DW = 3 or N quart
DW = 6. The cubic model

seems to move towards the direction of a possible improvement of the domain wall problem, that,
nonetheless, is still present. One can try to look for different invisible axion models, as the KSVZ,
which can be proved to have exactly the desired domain wall number. But as stressed in [43], this
theory, where an extra heavy singlet quark is added, has the cosmological drawback of leaving a
stable relic population of this heavy species, which can not decay, because not coupled to the SM
sector. Of course, plenty of solutions can be explored and other viable models can be found. But if
we insist on retaining a DFSZ scenario, we will show in the next section how relaxing some implicit
conditions in these theories can also have, as a side effect, the resolution of the domain wall issue.



Chapter 4

The flavour non-universal DFSZ
axion

The Yukawa interaction terms have been put aside, up to now, because they do not enter
the discussion of the scalar mass spectrum and of the domain wall problem. Nevertheless, they
are of capital importance in order to restrict possible axion properties, while comparing them
with phenomenology. One of the most robust result of old DFSZ models was believed to be the
prediction of non-null couplings of axion to nucleons, as a consequence of interaction terms with
quarks. What will be proved in this chapter is that these non-vanishing axion-nucleon interactions
are the outcome of assuming a flavour universal PQ charge scheme. Dropping out this hypothesis,
a great amount of possible models arises, some of which enjoy the nucleophobia property, that
makes it possible to relax some astrophysical constraints on axion mass.

4.1 Universal PQ charge models

To better appreciate the novelty coming from replacing the old models (where axions couple
with the same strength to all fermion sectors), with the new ones, it will prove to be useful to
briefly introduce the less general previous cases. Pointing out that the only difference between the
two classes of models resides in the Yukawa terms, we can write down them simply as

LY uk = yuf q̄Lf φ̃1uRf + ydf q̄Lfφ2dRf +

{
yef l̄Lfφ1eRf DFSZ II

yef l̄Lfφ2eRf DFSZ I
(4.1)

where f is an index running over the three fermion sectors and with yu, yd and ye referring to
the nine different Yukawa couplings of the SM. Clearly, qL and lL are isospin doublets and uR,
dR and eR are isospin singlets, while φ̃1 = iσ2φ1 is used to give mass to the correct component of
the doublet. We finally notice that in (4.1) the possibility of having two different DFSZ versions
has been highlighted, according to whether lepton masses arise from the first or the second Higgs
doublet. If we want to ensure PQ invariance, our fermions should change accordingly under a PQ
transformation. We remind that:

φ′1 = eiX1θφ1 φ′2 = eiX2θφ2 φ′ = eiXφθφ (4.2)

and we can further assume that only right fermions are PQ charged (we will extensively discuss
later why this does not mean losing generality):

q′L = qL l′L = lL u′R = eiXuθuR d′R = eiXdθdR e′R = eiXeθeR (4.3)

79
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so that we get the following conditions:

Xu = X1 Xd = −X2

{
Xe = −X1 DFSZ II

Xe = −X2 DFSZ I
(4.4)

Now it is important to go back to the final parametrization we derived in the second chapter
(2.53), that, without explicitly reporting the goldstone boson fields, can be read as

φ1 =
1√
2

 √
2cβH

+

(v +H)cβ − sβ

(
S + i

2vφA0

vf

) exp

{−2is2βaφ

vf

}

φ2 =
1√
2

 √
2sβH

+

(v +H)sβ + cβ

(
S + i

2vφA0

vf

) exp

{
2ic2βaφ

vf

} (4.5)

for the Higgs fields that play a role in Yukawa interactions. We remind that vf =
√

4X2
φv

2
φ + v2s2β ,

as usual. The phase containing the axion will appear in (4.1): this is precisely the forerunner of
a possible complex phase for the mass term, that we already had to cope with. It is just this
imaginary exponential which gives rise to axion-fermions interactions. Indeed, we can act with a
local PQ transformation over our fermions, as in (4.3), to remove Higgs phases. The only thing to
keep in mind is that now θ will be replaced by the local axion field, that is, explicitly

u′R = e−2is2βa(x)/vfuR d′R = e−2ic2βa(x)/vf dR

{
e′R = e−2ic2βa(x)/vf eR DFSZ I

e′R = e+2is2βa(x)/vf eR DFSZ II
(4.6)

This is a chiral transformation, which will generate some anomalous contributions, in a way that
we have already seen and that we will better explore for more general models. Here we just want to
derive the peculiar form of the fermion couplings. To see that, all we have to do is to consider how
a local PQ transformation will not leave unchanged the fermion kinetic part of the Lagrangian,
because the customary partial derivative will act on the exponential. Therefore, by removing
the axion phase from Yukawa terms, we introduce a further contribution, which represents the
aforementioned fermion interaction:

Lfermion−axion = 2s2β
∂µa

vf
ūRfγ

µuRf + 2c2β
∂µa

vf
d̄Rfγ

µdRf +

{
2c2β

∂µa
vf
ēRfγ

µeRf DFSZ I

−2s2β
∂µa
vf
ēRfγ

µeRf DFSZ II
(4.7)

where, for clear reasons, only right fermions are involved. Using the up sector as an example, we
can develop our expression even more as:

2s2β
∂µa

vf
ūRfγ

µuRf = 2s2β
∂µa

vf
ūfγ

µ 1 + γ5

2
uf = 2s2β

∂µa

2vf
ūfγ

µγ5uf (4.8)

where the vectorial part of the fermion current never contributes, because it can be eliminated
using the Dirac equation

2s2β
∂µa

2vf
ūfγ

µuf = −2s2β
a

2vf
(∂µūfγ

µuf + ūfγ
µ∂µuf ) = −2is2β

a

2vf
(mf ūfuf −mf ūfuf ) = 0 (4.9)

in which the first equality holds up to boundary terms. To extract the correct coupling constants,
we refer to the usual normalization, which employs the axion decay constant fa

Lfermion−axion = Cψ
∂µa

2fa
ψ̄γµγ5ψ (4.10)
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and using the relation fa = vf/2N of (3.3), we finally end up with

Cu = s2β/3 Cd = c2β/3

{
Ce = c2β/3 DFSZ I

Ce = −s2β/3 DFSZ II
(4.11)

where the color anomaly value N = 3 (a result which will be proved in the next paragraph) has
been made explicit.

4.2 The photon coupling

As already shown, one of the corner stone of axion models is the effective axion-gluon coupling:
indeed, while acting with (4.6), we will generate an anomalous color term. Considering again as
a starting point the original DFSZ theory, the latter can be derived by using (1.69), (1.70) and
(1.71) so that

Laxion−gluon =
g2s

32π2

2aφ
vf

dabGaµν G̃
µν
b (4.12)

In particular, being the trace over different flavours, if we detone by X q
L/R the diagonal matrix

containing quark PQ charges, we can write

dab = tr[X q
L{λ

a, λb}]− tr[X q
R{λ

a, λb}] (4.13)

where we used the fact that right and left fermions contribute with opposite signs. Just the
relative sign is meaningful, here: a global change of sign will not have spill-over effects on physics,
because the effective QCD potential is an even function of the axion field. Moreover, leptons do
not couple to gluons and, so, they do not appear in the calculation. By using the already quoted
{λa, λb} = (1/3)δab + dabcλc and summing up over the three color hues, we get

dab =
δab

3

∑
colors

(∑
fL

XLf −
∑
fR

XRf

)
=
δab

3

∑
colors

(
0− 3(−s2β − c2β)

)
= 3δab (4.14)

where the factor three is the so-called color anomaly coefficient N . In the previous expression, the
fL index runs over the three quark generations, while fR over the six quark singlets.

In a similar fashion, even if without any relation to the solution of the strong CP problem,
other kinds of anomalies can be produced, according to whether dabc of (1.71) will vanish or
not. Thereby, it is legitimate to believe that axions can present an effective interaction vertex with
photons and SU(2)L field strength tensors. To start with, let us consider the case of electromagnetic
interactions. By making use of our previous formula, we can derive for the DFSZ model

d = 2
∑
colors

(∑
fL

XLfQ
2
Lf −

∑
fR

XRfQ
2
Rf

)
+ 2

(∑
lL

XLlQ
2
Ll −

∑
lR

XRlQ
2
Rl

)
=

= 6

(
3s2β

(
2

3

)2

+ 3c2β

(
−1

3

)2

+

{
(−1)2c2β DFSZ II

−(−1)2s2β DFSZ I

)
=

{
8 DFSZ I

2 DFSZ II

(4.15)

in which the second part accounts for leptonic contributions (again lL runs over the three lepton
generations, but lR only over the three charged lepton singlets, because right-handed neutrinos, if
existing, are not electrically charged). The results obtained are dubbed electromagnetic anomaly
coefficients E. Therefore, until now, the Lagrangian containing the anomalies will happen to be

Lanomaly =
αs
8π

aφ
fa

Gaµν G̃
µν
b +

α

8π

E

N

aφ
fa

FµνF̃µν (4.16)
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aφ π0

γ

γ

Figure 4.1: A diagrammatic representation of the axion-pion mixing. Because of that, the decay
π0 → 2γ (which is the major neutral pion decay channel, occuring with a fraction of (98.823 ±
0.034)% [44]) generates an additional model-independent contribution to the axion coupling to
photons.

where we have explicitly made use of N = 3 and, again, of fa = vf/2N .

All of the axion strong and electromagnetic effective interactions should be included in the just
written terms. But here we have to proceed cautiously, because it is necessary to remember how
the axion fate is severely connected to that of pions. If we consider again the effective Lagrangian
(2.66), by expanding the Ma matrix for large fa, we get

Lmass = v3ψtr[ΣM
†
a + h.c] = v3ψtr

[
Σ

(
Mq −

iaφ
fa

+ . . .

)]
(4.17)

so that a mass mixing between axion and π0 emerges, when the linear aφ term multiplies the linear
pion one stemming from the Σ expansion. This remark did not affect the calculation of axion mass,
for which pion degrees of freedom had been integrated out, but now it has important consequences.
Indeed, if a mixing exists, it means we are not dealing with the correct physical fields and, hence,
in principle, our axion field could turn into a pion while propagating. Because we know that a
π0 can decay into a couple of photons, we have an extra contribution even to the axion-photon
coupling. To assess it, we can try to eliminate at leading order the axion-pion mixing through a
different quark field definition. We can generalize the transformation (2.64) into

q =

(
u
d

)
7−→ eiγ5

aφ
2fa

Qa

(
u
d

)
(4.18)

with Qa a two-by-two matrix, which replaces the identity. If we choose trQa = 1, we have the
correct multiplicative factor which exactly cancels the gluon anomaly. From now on, we will never
consider it again in a low energy regime. This second chiral transformation acting only on up and
down quarks will modify the axion electromagnetic interaction as

Lanomaly =
α

8π

(
E

N
− 6tr[QaQ

2
q]

)
aφ
fa

FµνF̃µν (4.19)

where

Qq =

(
2/3 0
0 −1/3

)
(4.20)
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contains the quark charges. If we now move back to the expansion of (2.66) in this new general
case, where Ma = ei

a
2fa

QaMqe
i a
2fa

Qa , one gets

Lmass = v3ψtr

[
Σ

(
Mq −

iaφ
2fa

{Qa,Mq}+ . . .

)]
(4.21)

so that to remove the mixing, we just need to imposeQa =M−1
q /tr[M−1

q ]. This explicit redefinition
of quark fields lets us compute a complete form of the electromagnetic anomaly

Lanomaly =
g2

32π2

(
E

N
− 2

3

4md +mu

md +mu

)
aφ
fa

FµνF̃µν (4.22)

It is noteworthy that the first term E/N is model dependent, because directly calculated through
the PQ charges of the theory; the second one is universal and, substituing the values of quark
masses at 2GeV , gives Cγ = E/N − 1.92(4) (where the last digit is affected by an uncertainty
arising from the determination of the quak masses ratio).

If we now try to repeat the same passages for the SU(2)L gauge symmetry, we immediately
realize that dabc = 0: indeed, only left fermions can couple to the weak force and, just because in
our model they are not endowed with a PQ charge, no anomaly coefficient will arise. But let us
consider a bit better the role of the weak interaction in the anomaly scenario.

4.2.1 The electroweak parameter θEW

We saw that a supposed θ electromagnetic angle can not exist, because the term FµνF̃µν is a
total derivative and can be removed from the Lagrangian without any topological complication:
U(1)em, exactly as U(1)Y , is an abelian gauge symmetry. The same reasoning does not apply to
the rest of SM local symmetries, so that for the strong force we introduced a θQCD parameter, that
is at the origin of all this work. It can not be removed by means of any transformation, because,
as noticed in [45], it does not exist any current whose divergence contains only the strong anomaly
with no further contribution which moves the effect of the θQCD somewhere else in the Lagrangian.

For the SU(2)L anomaly this is not true. If we consider the global baryon and lepton transfor-
mations

Q 7−→ eiBαbQ l 7−→ eiLαL l (4.23)

we notice that they are classical symmetries of the theory. Nevertheless, they turn out to be
anomalous. Defining B as the baryon number (1/3 for baryons and zero for leptons) and L as the
lepton number (one for leptons and zero for baryons), we have

tr[B{λa, λb}] = tr[L{λa, λb}] = 0

tr[B{τa, τ b}] = δab

2
B
∑
colors

( ∑
left quarks

1

)
= 3δab

tr[L{τa, τ b}] = δab

2
L

∑
left leptons

1 = 3δab

tr

[
B

(
2Y 2

4

)]
=
B

2

[
18

(
1

3

)2

− 9

(
4

3

)2

− 9

(
−2

3

)2]
= −3

tr

[
L

(
2Y 2

4

)]
=
L

2
[6(−1)2 − 3(−2)2] = −3

(4.24)

and, hence, the corresponding currents are not conserved at quantum level. We underscore that
the extra factor 1/4 in the calculation of the anomaly for the abelian hypercharge symmetry comes
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from the usual parametrization of these transformations, where the hypercharge number always
appears multiplied by a factor one-half as Y/2. Upon a baryon and lepton transformation, the
weak anomalous Lagrangian will be

LθEW
=
αW
8π

(θEW − 3αB − 3αL)Wa
µνW̃µν

a (4.25)

If we set αB+αL = θEW /3, the electroweak vacuum angle disappears from the theory, which means
it is not physical. Despite that, it is noteworthy that the anomalies (4.24) obtained for baryonic
and leptonic symmetries exactly cancel each other: thus, a real symmetry of the Lagrangian, even
at quantum level, will be the so-called B-L symmetry.

4.3 The coupling to matter

We have already explored on different occasions the importance of dealing with effective theo-
ries, where only the active degrees of freedom are considered and all the heavier ones are integrated
out. To describe some situations of practical value, we will definetely need to use them.

But first of all, we have to rewrite the quark part of the Lagrangian in the new quark basis, given
by (4.18), where the gluon anomaly disappears and the axion-pion mixing is suppressed. This can
be easily achieved by considering that this phase transformation will provide a new contribution
to Yukawa terms by means of the derivative in the kinetic part. Starting from (4.10), where we
refer to cUVq as the ultraviolet axion-quark couplings at high energy scale (e.g fa ∼ 1012), we can
write

Laxion−quarks =
∂µaφ
2fa

∑
u,d,s,c,b,t

cUVq q̄γµγ5q −
∑

u,d,s,c,b,t

(q̄RMqqL + h.c.)

7−→ ∂µaφ
2fa

∑
u,d

[cUVq q̄γµγ5q − q̄γµγ5(Qa)qq] +
∂µaφ
2fa

∑
s,c,b,t

cUVq q̄γµγ5q −
∑

u,d,s,c,b,t

(q̄RMaqL + h.c.)

(4.26)

where the axion non-derivative coupling through the mass termMa has been reported, too, for sake
of completeness. The Qa matrix contains the infrared correction to up and down quark couplings:
(Qa)u = cIRu = 1/(1 + z) and (Qa)d = cIRd = z/(1 + z), with z = mu/md. Therefore, we can
redefine c̃UVu/d = cUVu/d − cIRu/d.

4.3.1 Pionphobia

As described in the previous chapter, the leading thermalization processes of axions for T > Tπ
are π + π ↔ π + aφ and π + n↔ n+ aφ (where, here, n stands for a general nucleon). These are
related to the production of possible hot dark matter axions. To have an effective theory involving
both nucleons and pions, we can not avoid to include all meson states within a mass range running
from the pion mass to that of neutrons. In so doing, the approximate symmetry group that should
guide us in building the effective Lagrangian will be the SU(3) flavour group. This symmetry
is also mirrored in the baryon sector, where the lightest states are described by an octet whose
members are collected in the matrix

B̃ =
1√
2


Σ̃0 + Λ̃0

√
3

√
2Σ̃+

√
2p̃

√
2Σ̃− −Σ̃0 + Λ̃0

√
3

√
2ñ

√
2Ξ̃− √

2Ξ̃0 −2 Λ̃0
√
3

 (4.27)
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Nevertheless, before starting our analysis, we wish to stress how these theories will be solely
useful to extract some considerations up to tree level calculation. Indeed, it has been realized how

a description including all 0− mesons and 1
2

+
baryons is unstable at loop level: that is ultimately

due to superpositions and small energy gaps separating these two SU(3) octets from the rest of
QCD spectrum. For instance, between the proton/neutron threshold (∼ 938MeV ) and the Λ0 one
(∼ 1116MeV ) all members of the 1− meson octet thrive, while within the energy gap running from

Σ (∼ 1193MeV ) and Ξ (∼ 1318MeV ) has place the first element of the 3
2

+
baryon decuplet ∆

(∼ 1232MeV ). Therefore, we can rely on the following picture just as a model.
When constructing a Lagrangian including baryons, it is much more convenient not to use the

matrix (1.26), which transfroms as Σ 7−→ ULΣU
†
R, but its squared root u:

u2 = Σ so that u′ =

√
ULΣU

†
R ≡ ULuh

−1 = huU†
R (4.28)

where h = h(UL, UR,Σ) = (ULΣU
†
R)

−1/2UL
√
Σ is named compensator field. From the previous

formula it can be noticed how h belongs to the unbroken part of SU(3)L × SU(3)R symmetry
group: it acts on the right as h−1 = h† and on the left as h, in such a way that h ∈ SU(3)V .

Moreover, a suitable representation of the baryon field B̃ can always be choosen in terms of
a B such that B 7−→ hBh−1. As a matter of fact, under a SU(3)L × SU(3)R action, the B̃

matrix will change as B̃′ = URB̃RU
†
R + ULB̃LU

†
L. But we can cleverly define a baryon matrix

B = (uPR + u†PL)B̃(PRu
† + PLu), having the desired behavior.

With u andB we have identified a particular non-linear realization of the chiral group symmetry,
because the transformation law of u and B involves a matrix h which depends on the meson
fields themselves. It can be shown that these two field representations (i.e (Σ, B̃) and (u,B)) are
equivalent, because the physics of the S-matrix elements is not affected by their interchange. As
a consequence, we can assume the B matrix as our initial object, defined as in (4.27) in terms of
entries deprived of their tilde symbols.

We can now introduce some useful objects. The first one is the chiral connection Γµ

Γµ =
1

2
(u†∂µu+ u∂µu

†) (4.29)

which transforms as Γµ 7−→ hΓµh
−1 + h∂h−1. The chiral connection can be employed to build a

covariant derivative for the baryon field with homogeneous transformation properties

DµB ≡ ∂µB + [Γµ, B] 7−→ (DµB)′ = hDµBh−1 (4.30)

The second important quantity is the chiral vielbein uµ

uµ = i(u†∂µu− u∂µu
†) (4.31)

which transforms homogeneously, too. Using uµ we can rephrase the meson kinetic part tr[∂µΣ
†∂µΣ]

as tr[uµu
µ]. Of course, all of these expressions involving derivatives of fields should be suitably

tweaked, if one needed to reproduce the gauge field couplings: nevertheless, they will not enter our
considerations.

Finally, in this non-linear representation, the standard quark mass term v3ψtr[MqΣ
† + ΣM†

q ]

(where now Mq is a three-by-three matrix) will be replaced by tr[χ+] = v3ψtr[u
†Mqu

† + uM†
qu],

which again transforms homogeneously.
We are now ready to write a pretty general effective Lagrangian, whose terms are obtained by

requiring the presence of SU(3) symmetry (with the exception of the explicit breaking contribution
of the mass term) and CP invariance, typical of strong interactions. The last requirement can be
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taken into account by remembering that mesons are pseudo-scalar states. So, under a parity
transformation, they will entail PΣP † = Σ†. That implies PuµP

† = −giµuµ and PΓµP
† = giµΓµ,

where i is a spatial index (the extra minus sign of gii comes out from the partial derivative change
under parity). Therefore, the only possible contributions will be

Leffectiveπ−n =
f2π
4
tr[uµu

µ] + tr[χ+] + tr[B̄(iγµDµ −mb)B] +
D

2
tr[B̄γµγ5{uµ, B}]+

+
F

2
tr[B̄γµγ5[uµ, B]] + Lintπ−a + Lintπ−n−a + Lintn−a

(4.32)

where mb is the bare baryon mass. The SU(3) axial couplings D ≈ 0.80 and F ≈ 0.46 can be
experimentally determined through semileptonic baryon decays [46]: they fullfil the SU(2) isospin
symmetry constraint F +B = gA = 1.26, where gA is an axial constant that controls the neutron
β-decay (see next subparagraph).

Pretty interestingly, in this SU(3) model the mass term tr[χ+] gives rise not only to a pion-
axion mass mixing (that we removed at first order), but the axion field can actually blend in with
the other neutral pseudoscalar mesons, i.e the η8 and η0. However, these mixing angles are highly
suppressed and do not significantly modify the physics: being the axion mass very tiny, the mixing
with the lightest particles will be favoured.

We can now focus on the last three terms, which contain the axion physics: they encode the
axion interactions with mesons and nucleons. We will concentrate on Lintn−a in the next subpara-
graph, where we will develop a more precise effective theory in which only protons and neutrons
are produced among QCD bound states. Thus, let us consider only interaction terms that are
peculiar of high energy scales and cosmological problems, where meson degrees of freedom can still
be excited. We can construct these terms following [47].

The axion-pion interaction

Regarding Lintπ−a, we should try to couple an external axion source to meson currents. These
ones can be obtained differentiating the meson kinetic term of (4.32) with respect to the SU(3)A
axial δA3Σ = i{λa,Σ}δθaA and U(1)A axial δA1Σ = 2iΣδθaA variations, together with the SU(3)V
vectorial δV3

Σ = i[λa,Σ]δθaV and U(1)V vectorial δV1
Σ = 2iΣδθaV ones. Nevertheless, the last two

transformations do not contribute. After all, a parity even meson current can only be associated,
for parity reasons, to vectorial external sources, which can not be built with a linear term in the
axion field. After these preparatory considerations, we can write down

Lintπ−a =
∂µaφ
2fa

ca
(
if2π
2
tr[λa(Σ∂µΣ† − Σ†∂µΣ)]

)
︸ ︷︷ ︸

axial-multiplet meson current

+
∂µaφ
2fa

c1

(
if2π
2
tr[Σ∂µΣ† − Σ†∂µΣ]

)
︸ ︷︷ ︸

axial-singlet meson current

(4.33)

where ca and c1 refer to the dependence on the ultraviolet coupling constants. If we denote by C
the diagonal matrix C = diag(c̃UVu , c̃UVd , cUVs ), we can rewrite it as

C =
1

3
tr[C]13×3 +

1

2
tr[Cλ3]λ3 +

1

2
tr[Cλ8]λ8 (4.34)

So, what enters expression (4.33) is just the projection ca = tr[Cλa]/2 of C (with a ∈ {3, 8}) on
the symmetry generators and c1 = tr[C]/3.

To get some useful results, we just need to expand the meson matrix. The leading axion
thermalization processes will comprise pion interactions: the shorter life-time of heavier mesons
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strongly suppresses collisions with axions, which become highly improbable. The current term can
be expanded as

Σ∂µΣ
† − Σ†∂µΣ = −2i

∂µ(π
e)λe

fπ
+
i

3

∂µ(π
eλe)3

f3π
− i

f3π
(πeλe)∂µ(π

bλb)2 +
i

f3π
(πeλe)2∂µπ

bλb + . . .

(4.35)

The previous linear factor in ∂µ(π
e) can be neglected in our reasoning: it is just responsible for a

pion-axion kinetic mixing, that can be reabsorbed in the normalization of the field wave functions.
In the second term, we have to carefully consider the contribution (πeλe)3: because pion fields
commute, we have to project the product of the three λ matrices into its completely symmetric
part

πaπbπcλaλbλc =
1

3!
πaπbπcλ(aλbλc) =

1

12
πaπbπc({λa, {λb, λc}}+ {{λa, λb}, λc}+ {λb, {λa, λc}})

(4.36)

Using the Gell-Mann matrices algebra of anticommutators {λa, λb} = 4δab/3 + 2dabcλc, where
we remind that debc = tr[λe{λb, λc}]/4, we can claim for instance:

{λa, {λb, λc}} =
8

3
δbcλa +

8

3
dabc + 4dbcedaefλf (4.37)

and from the complete symmetry among the dabc indeces, we can end up with

{λa, {λb, λc}}+ {{λa, λb}, λc}+ {λb, {λa, λc}} =

= 8dabc +
8

3
(δbcλa + δabλc + δacλb) + 4(dbcedaef + dabedcef + dacedbef )λf

(4.38)

Now, employing the relation dbcedaef + dabedcef + dacedbef = δbaδcf + δacδbf + δcbδaf , the (πeλe)3

term will become

i

3

∂µ(π · λ)3

f3π
=

i

36f3π
∂µ[8d

abcπaπbπc + 12(π · π)(π · λ)] =

=
i

36f3π
∂µ(8d

abcπaπbπc) +
i

3f3π
[(π · π)(∂µπ · λ) + 2(π · ∂µπ)(π · λ)]

(4.39)

To extract the pion contributions we have first of all to restrict the indeces a, b and c to the
subgroup of Gell-Mann matrices related to pion fields, i.e a, b, c ∈ {1, 2, 3}. If we consider that the
unique non-null coefficients of the symmetric tensor dabc, with at least two indeces in the subset
{1, 2, 3} [48], are d118 = d228 = d338 = 1/

√
3, the first term in the previous formula will not

contribute.
For the third addend of (4.35), we could write in a similar fashion:

− i

f3π
(π · λ)∂µ(π · λ)2 = − i

f3π

[
8

3
π · ∂µπ(πeλe) + 2dabc(∂µπ

aπb + πa∂µπ
b)πeλeλc

]
(4.40)

Again, a, b, e = i with i ∈ {1, 2, 3}, while c can just be equal to 8. Making use of the known
expression for the product of Gell-Mann matrices specialized to our case

λeλc =
2

3
δec13×3 + (ifecb + decb)λb =

2

3
δi813×3 + (if i8b + di8b)λb = dii8λi (4.41)
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we will be able to get

− i

f3π
(π · λ)∂µ(π · λ)2 = − 2i

f3π
(π · π)(π · ∂µπ) (4.42)

Calculations for the last term of (4.35) can be carried out hand in hand, so that we get

i

f3π
(πeλe)2∂µπ

bλb =
i

f3π
(π · π)∂µπ · λ (4.43)

Collecting all of these results, the building block of our axion-meson currents will happen to be

Σ∂µΣ
† − h.c =

4

3

i

f3π
[∂µπ

e(π · π)− πe(π · ∂µπ)]λe . . . (4.44)

The axial-singlet meson current can not contribute, owing to tr[λe] = 0. Furthermore, we have
to take into account that, with e ∈ {1, 2, 3}, also the index a of (4.33) is restricted to the same
subset, because of the property tr[λaλe] = 2δae. As a consequence, just because ca 6= 0 if and only
if a = 3, we will have

Lintπ−a =
∂µaφ
fa

c̃UVu − c̃UVd
3fπ

[π0(π+∂µπ
− + π−∂µπ

+)− 2π+π−∂µπ
0] (4.45)

as stated in [49].

The axion-pion-nucleon interaction

Moving onto the interaction term Lintπ−n−a, we can proceed similarly. We can extract the
Noether currents from the mixed pion-baryon terms in the Lagrangian (4.32) and couple them
to an axion external source. Terms proportional to γ5, where the chiral vielbein appears, will
contribute with a Noether current derived from a vectorial transformation for parity invariance
reasons. In this special case u′ = UuU†, just as Σ, so that δV3

u = i[λa, u]δθaV . The remaining
mixed term, represented by the contribution with the chiral connection factor, will instead enter
through an axial variation. From relations{

δA3
Σ = i{λa,Σ}δθaA = i{λa, u2}δθaA = i{λa, u}uδθaA + iu{λa, u}δθaA

δV/AΣ = δV/Au
2 = δV/Auu+ uδV/Au

(4.46)

we can guess the transformation law δV3u = i{λa, u}δθaA for the axial part. Therefore, we will
eventually obtain:

Lintπ−n−a =
∂µaφ
2fa

ca
(
−1

2
tr[B̄γµ[(u†λau− uλau†), B]]

)
︸ ︷︷ ︸

vectorial meson-baryon current

+

+
∂µaφ
2fa

ca
(
−D

2
tr[B̄γµγ5{(u†λau+ uλau†), B}]− F

2
tr[B̄γµγ5[(u†λau+ uλau†), B]]

)
︸ ︷︷ ︸

axial meson-baryon current

(4.47)

Of course, ca = tr[Cλa]/2 will still be valid. From this expression, it immediately follows that
U(1)V/A variations can not be useful in this discussion: if λa is replaced by the identity, Lintπ−n−a
will vanish. In addition, the axial meson-baryon current can not generate a linear pion term, so
that we will exclude it from our considerations. What is missing is just the expansion of the first
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contribution, in order to reproduce interaction verteces involving only pions and nucleons. As a
matter of fact, we will get

u†λau− uλau† =
i

fπ
[λa, λb]πb + . . . = − 2

fπ
fabcπ

bλc (4.48)

where fabc are the structure constants entering [λa, λb] = 2ifabcλc. In the previous formula,
the index b can be immediately restricted to the set {1, 2, 3}. To select the proton and neutron
component, while multiplying for the B matrix from the right and B̄ from the left, λc can only
have a c ∈ {1, 2, 3, 8}. Looking at the values of the structure constants [48], the only possible ones
for c are {1, 2, 3}: that fixes a to the same set. Consequently,

u†λau−uλau† = 2i(fa23π
2+ fa13π

1)λ3/fπ +2i(fa32π
3+ fa12π

1)λ2/fπ +2i(fa31π
3+ fa21π

2)λ1/fπ

a = 1 u†λ1u− uλ1u† = −(2f123π
2)λ3/fπ − (2f132π

3)λ2/fπ

a = 2 u†λ2u− uλ2u† = −(2f213π
1)λ3/fπ − (2f231π

3)λ1/fπ

a = 3 u†λ3u− uλ3u† = −(2f312π
1)λ2/fπ − (2f321π

2)λ1/fπ

(4.49)

where f123 = 1. Because only c3 6= 0, just the last line will contribute in the sum over the a index.
It can be similarly shown that the second term of the commutator, i.e B̄γµB(u†λau − uλau†),
does not give relevant contributions to our problem. Selecting solely the interesting products while
multiplying by the baryon matrices, one ultimately gets

Lintπ−n−a =
i∂µaφ
fafπ

c̃UVu − c̃UVd
2
√
2

(π−n̄γµp− π+p̄γµn) (4.50)

again in full agreement with [49]. For sake of clarity, we spell out how we used the definitions
π1 = (π+ + π−)/

√
2 and π2 = −i(π+ − π−)/

√
2, consistent with the initial form of Σ in (1.26).

What clearly emerges from the previous calculations is that reactions involving both axions
and pions are proportional to the coefficient c̃UVu − c̃UVd . This feature is fundamental, from a model
building point of view, because it suggests us a possible way of evading cosmological constraints
where dark matter interactions with pions are relevant. To suppress pions couplings, opening the
possibility for a so-called pionphobic behaviour, one should just require

c̃UVu − c̃UVd = 0 ⇒ cUVu − cUVd =
1− z

1 + z
(4.51)

in accordance with [50]. Every pionphobic model must satisfy the previous constraint.

4.3.2 Nucleophobia

When facing astrophysical problems involving the search for axions, it is often enough to con-
sider a low energy theory, where the only particles with a role are the stable ones: neutrons (with
a pretty long decay time), protons, electrons and, clearly, the axions. In this context, energies are
so low that pions are not produced, too. Being electrons elementary particles, their low energy
couplings can be readily read off from the ultraviolet Lagrangian (up to some running effects);
the previous reasoning is instead not applicable to protons and neutrons: just because they are
hadrons, that is quark bound states, their coupling constants can solely be obtained by matching
the effective theory with the ultraviolet one (look at [30]).

We would like to point out that, in this low energy scenario, we know we can rely on the
approximate global symmetry SU(2)V of isospin, which mixes neutrons and protons. We do not



90 CHAPTER 4. THE FLAVOUR NON-UNIVERSAL DFSZ AXION

need to consider a model based on the SU(3) group, because all the unstable degrees of freedom
(that we had to account for in the previous paragraph) can not be excited. In so doing, we obtain a
twofold advantage: we can use a more precise symmetry group of nature than the SU(3) one and,
furthermore, we are able to avoid the problem of loop instabilities. The second point, in particular,
makes the isospin-based model a really reliable theory.

To start with, we can try to highlight the isospin symmetry at high energy by rewriting the
first term of the Lagrangian (4.26) as

Laxion−up/down =
∂µaφ
2fa

(
ū d̄

)(c̃UVu γµγ5 0
0 c̃UVd γµγ5

)(
u
d

)
=

=
∂µaφ
2fa

(
ū d̄

) [ c̃UVu + c̃UVd
2

12×2γ
µγ5 +

c̃UVu − c̃UVd
2

σ3γµγ5
](

u
d

) (4.52)

which clearly stresses the isospin structure. If we now set cUVV = (c̃UVu + c̃UVd )/2 and cUVA =
(c̃UVu − c̃UVd )/2, we can finally obtain

Laxion−quarks =
∂µaφ
2fa

[
cUVV (ūγµγ5u+ d̄γµγ5d) + cUVA (ūγµγ5u− d̄γµγ5d)

]
+

+
∂µaφ
2fa

∑
s,c,b,t

cUVq q̄γµγ5q −
∑

u,d,s,c,b,t

(q̄RMaqL + h.c.)
(4.53)

Moving to a non-relativistic regime, the effective theory can be built up using the only existing
symmetry group: the approximate isospin symmetry SU(2)V . All terms compatible with this
symmetry enter the low energy Lagrangian:

Leffective = N̄vµ∂µN + gV N̄γ
µJVµ N + N̄γµγ5JAµ N + atr[Ma]N̄N + bN̄MaN + . . . (4.54)

where a and b are some constants and dots stand for extra terms with respect to leading order

contributions, which are not essential for our task. N =

(
p
n

)
is clearly the nucleon isospin doublet,

while vµ the nucleon quadrivelocity (a fixed four-vector, which gives the non-relativistic limit of
the γµ matrices). The presence of it can be traced back to the heavy baryon formalism, where the
momentum pµ is recast as pµ = mnv

µ + kµ (with kµ � mn a residual momentum). In this limit,
the usual Dirac propagator will be

i(/p+mn)

p2 −m2 + iε
≈ i

(
1 + /v

2

)
1

v · k
+O

(
k2

mn

)
(4.55)

in which we made use of vµvµ = 1 and where P v± = (1± /v)/2 are velocity projectors. These latters
define the velocity eigenstates

Nv = eimx·vP v+N nv = eimx·vP v−N (4.56)

In the nucleon rest frame, where vµ = (1,~0), Nv and nv coincide respectively with the large and
the small Dirac components. The nv field can be integrated out using its equations of motion, so
that, eventually, the kinetic term correctly reproducing the non-relativistic propagator (4.55) will
be N̄v(v · ∂)Nv. In the following we will remove the subscript of velocity eigenstate from Nv and
we will simply refer to it as N , remembering that only the large component plays the game in the
non-relativitic limit.

Together with the kinetic part, the Lagrangian presents two addends involving Ma, whose
expansion does not generate linear axion contributions, and two terms where the nucleon current
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is coupled to external sources. The first one includes a vector current JVµ . Nevertheless, we will

set JVµ = 0, because there is no way of getting a vectorial current linear in the axion field, which is

a pseudo-scalar particle by very definition. Then, the nucleon axial current N̄γµγ5N is associated
to the most general current respecting the isospin symmetry, JAµ , which can be decomposed in a
singlet and triplet contribution

JAµ = Jsingµ + J triplµ = gqsJ
q
sµ12×2 + gAJ

i
Aµσ

i (4.57)

Jsingµ couples the axion source to an axial-singlet nucleon current. Moreover, since we do not have

charged external currents, we need to require J
1/2
Aµ = 0. In so doing, we are left with an axial

isospin-triplet current, with which only the antisymmetric up and down combination will finally
interact, and with an axial isospin-singlet current, where the couplings of the symmetric up and
down part and of all remaining quarks will enter. Therefore, we can envisage that

Jqsµ = cQq
∂µaφ
2fa

with q = (V, s, c, b, t) J3
Aµ = cQA

∂µaφ
2fa

(4.58)

where V and A refer to the particular up and down combinations discussed above. It worth
noticing that the quark couplings, extracted from the unknown constants gqs and gA for reasons
of convenience, are here evalutated at the QCD scale Q = 2GeV . To match the two theories, we
should ultimately be able to account for the running of Yukawa couplings from the ultraviolet scale
fa to the infrared Q threshold.

To get an expression for gqs and gA we can simply compare the nucleon matrix elements of the
two Lagrangians. Remembering the basic ingredients of the isospin algebra of nucleons

[Ii, Ij ] = −εijkIk and I†i = Ii I± = (I1 ± I2)/2

I3|p〉 = +1/2|p〉 I3|n〉 = −1/2|n〉 |p〉 = I+|n〉 |n〉 = I−|p〉 〈n|p〉 = 0
(4.59)

we can write the proton matrix element for the effective Lagrangian (assessing only the interesting
terms involving the axial current) as

〈p|Leffective|p〉 = gqs〈p|N̄γµγ5(Jqsµ12×2)N |p〉+ gA〈p|N̄γµγ5(J iAµσi)N |p〉 =
= gqs〈p|p̄γµγ5(Jqsµ)p|p〉+ gqs〈n|I−n̄γµγ5(Jqsµ)nI+|n〉+ gA〈p|p̄γµγ5(J3

Aµ)p|p〉+

− gA〈n|I−n̄γµγ5(J3
Aµ)nI

+|n〉 = ∂µaφ
2fa

Sµp (g
q
sc
Q
q + gAc

Q
A) (4.60)

In the preceding expression we have defined the proton spin Sµp = 〈p|p̄γµγ5p|p〉: Lorentz and parity
invariant arguments lead us to this identification up to a constant, which can always be reabsorbed
in our unknown multiplicative factors. The same procedure is applicable to neutrons

〈n|Leffective|n〉 =
∂µaφ
2fa

Sµn(g
q
sc
Q
q − gAc

Q
A) (4.61)

where clearly Sµn = 〈n|n̄γµγ5n|n〉.
The nucleon matrix elements can now be computed for the ultraviolet theory in a similar fashion

〈p|Laxion−quarks|p〉 =

=
∂µaφ
2fa

[
cUVV 〈p|(ūγµγ5ū+ d̄γµγ5d̄)|p〉+ cUVA 〈p|(ūγµγ5ū− d̄γµγ5d̄)|p〉+

∑
s,c,b,t

cUVq 〈p|q̄γµγ5q|p〉
]
=

=
∂µaφ
2fa

[
cUVV Sµp (∆u+∆d) + cUVA Sµp (∆u−∆d) +

∑
s,c,b,t

cUVq Sµp∆q

]
(4.62)
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in which we have introduced the quark contribution ∆q to proton spin as 〈p|q̄γµγ5q|p〉 ≡ Sµp∆q.
By noticing the relation between neutron and proton matrix elements

Sµn∆u ≡ 〈n|ūγµγ5u|n〉 = 〈p|d̄γµγ5d|p〉 = Sµp∆d

Sµn∆d = Sµp∆u Sµn∆q = Sµp∆q with q = s, c, b, t
(4.63)

dictated by isospin symmetry, we can similarly get

〈n|Laxion−quarks|n〉 =
∂µaφ
2fa

[
cUVV Sµn(∆d+∆u) + cUVA Sµn(∆d−∆u) +

∑
s,c,b,t

cUVq Sµn∆q

]
(4.64)

Once the couplings of the ultraviolet Lagrangian are decreased up to the Q energy, we can compare
equations (4.60) with (4.62) or (4.61) with (4.64) in order to get

gA = ∆u−∆d gVs = ∆u+∆d gqs = ∆q with q = s, c, b, t (4.65)

All of these calculations let us rewrite the third addend of (4.54) in the form

Leffective =
∂µaφ
2fa

N̄γµγ5
[
c̃Qu − c̃Qd

2
(∆u−∆d)σ3 +

c̃Qu + c̃Qd
2

(∆u+∆d) +
∑
s,c,b,t

cQq ∆q

]
N + . . .

(4.66)

from which we can extract a first formula for nucleon couplings:

Cp = c̃Qu∆u+ c̃Qd ∆d+
∑
s,c,b,t

cQq ∆q Cn = c̃Qd ∆u+ c̃Qu∆d+
∑
s,c,b,t

cQq ∆q (4.67)

The first problem to deal with is obtaining an explicit value for ∆q. The quantity gA =
∆u − ∆d = 1.2723(23) can be measured from the β-decay with great precision, as we already
brought up in the previous subparagraph. On the other hand, some of the remaining ones can
be derived by lattice simulation: ∆u + ∆d = 0.521(53) and ∆s = −0.026(4). For the charm
contribution only an upper and lower bound is known (i.e ∆c = ±0.004). Nevertheless, this latter,
together with the bottom and top terms, can be neglected, because we expect them to enter very
little in the nucleon spin magnitude. All that gives us

Cp = 0.897(27)c̃Qu − 0.376(27)c̃Qd − 0.026(4)cQs

Cn = 0.897(27)c̃Qd − 0.376(27)c̃Qu − 0.026(4)cQs
(4.68)

The second issue is that our formula should account for the running of Yukawa couplings
between the two energy scales typical of the ultraviolet and effective theory respectively. As
a matter of fact, all of the couplings, in the previous expression, are evalutated at Q and not
in terms of the original quark Lagrangian. Going on following the discussion sketched in [30],
one should keep in mind that the QFT running phenomenon is intimately related to ultraviolet
fluctuations of virtual particles: at high energy scale all quark masses can be disregarded and an
SU(nf ) group emerges (where nf is the number of active quarks). Considering the diagonal matrix
of axion-quark couplings for this situation, we will have

C = diag(cu, cd, ..., cnf︸ ︷︷ ︸
nf

) =
1

nf
tr[C]1nf×nf

+
1

r

r∑
j=1

tr[CTj ]λj (4.69)
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where Tj are the generator of the Cartan subalgebra of SU(nf ) and r is the dimension of the
algebra itself (the rank). From this expression we can extract the coupling of the singlet current
in this context. If jµq are the individual quark currents, one can recognize the generalized axial
singlet current jµΣ =

∑
q j

µ
q . As we discussed in the first chapter, this current is anomalous: it

is not protected by conservation laws and, thereby, it acquires an anomalous dimension in the
renormalization procedure. Therefore,

∂µaφ
2fa

∑
q

jµq =
∂µaφ
2fa

[∑
q

(
cq −

∑
q′ cq′

nf

)
jµq︸ ︷︷ ︸

axial multiplet current

+

∑
q′ cq′

nf
jµΣ︸ ︷︷ ︸

axial singlet current

]
7−→

running

∂µaφ
2fa

[∑
q

(
cq −

∑
q′ cq′

nf

)
jµq + Z(Q)

∑
q′ cq′

nf
jµΣ

]
=
∂µaφ
2fa

∑
q

[
cq + (Z(Q)− 1)

∑
q′ cq′

nf

]
︸ ︷︷ ︸

cQq

jµq

(4.70)

where Z(Q) is the renormalization constant of the axial singlet current (see [51]). We would like
to relate couplings at two different energy scales, removing the bare parameters of the Lagrangian
from formulae. For two couplings at scales Q and Q0 respectively, we can writecQq = cq + (Z(Q)− 1)

∑
q′ cq′

nf

cQ0
q = cq + (Z(Q0)− 1)

∑
q′ cq′

nf

(4.71)

By summing up over q on the two sides of the second equation of the system, we will get
∑
q c
Q0
q =

Z(Q0)
∑
q′ cq′ . Subtracting the two equations and replacing the summmation over bare couplings

with the relation derived above, one can finally obtain the running formula

cQq = cQ0
q +

(
Z(Q)

Z(Q0)
− 1

)∑nf

q=1 c
Q0
q

nf
(4.72)

It is important to point out that jµΣ only renormalizes multiplicatively, so that the running process
can be pretty simplified. If we had not removed through a quark redefinition the term proportional
to ∼ GG̃, we should have had to consider its mixing with ∂µj

µ
Σ (an operator with equal dimensions

and the same quantum numbers). Moving from fa towards Q, crossing the top and bottom thresh-
olds (of mb ≈ 4.18GeV and mt ≈ 172.44GeV respectively), where the number nf significantly
changes, one can correct our preceding coupling formulae as:

Cp = −0.47(3) + 0.88(3)Cu − 0.39(2)Cd − 0.038(5)Cs − 0.012(5)Cc − 0.009(2)Cb − 0.0035(4)Ct

Cn = −0.02(3) + 0.88(3)Cd − 0.39(2)Cu − 0.038(5)Cs − 0.012(5)Cc − 0.009(2)Cb − 0.0035(4)Ct
(4.73)

where we have finally set cUVq = Cq and where the constant term derives from the infrared cor-
rections (with z = mu/md = 0.48(3)). The values of Z(Q) at different scales have been computed
in [30] from the anomalous dimension equation, i.e the differential equation satisfied by Z(Q). It
worth noticing how the main contribution to neutron and proton couplings comes from up and
down quarks, dubbed valence quarks, which determine the quantum numbers of the two hadrons.
All heavier quarks enter the expression as virtual particles produced by quantum vacuum fluctua-
tions (quarks of the sea).

But now we get all the tools together to explore an extra possibility: the nucleophobic behavior,
which means that axions interact feebly with protons and neutrons. The achievement of this result
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is not just a theoretical pastime, but it has profound consequences on some axion properties which
can be extracted from astrophysical measurements.

If we add and subtract the two previous formulae, we clearly obtainCp + Cn = 0.050(5)(Cu + Cd − 1)− 2δ

Cp − Cn = 1.273(2)

(
Cu − Cd − 1−z

1+z

)
(4.74)

where we have set δ = 0.038(5)Cs + 0.012(5)Cc + 0.009(2)Cb + 0.0035(4)Ct. From that, it is quite
evident how the requirement for Cp and Cn to simultaneously vanish is equivalent to Cp +Cn = 0
and Cp − Cn = 0, which implies

Cu =
1

1 + z
+ 2δ Cd =

z

1 + z
+ 2δ (4.75)

If we decide to neglect the tiny δ value in the previous expressions, these conditions of nucleophobia
can be recast as

Cu + Cd = 1 Cu =
1

1 + z
≈ 2

3
(4.76)

Incidentally, it worth noticing that nucleophobic conditions automatically imply pionphobia.
The requirements (4.75) directly satisfy (4.51). Moreover, this statement is untouched by our
running considerations: indeed, the difference c̃UVu − c̃UVd is the multiplicative coupling of the
non-singlet current in equation (4.66), which is free from anomalies. The conservation law of
this current protects our pionphobia constraint from renormalization. If that were not convincing
enough, one can simply observe how δ corrections coming from sea quarks simplify by subtracting
Cu and Cd in (4.75).

From here, it lucidly emerges the dire need to look for different DFSZ models, if one wishes
to endow the axion with a nucleophobic behaviour. In fact, it is straightforward to verify that
the foregoing relations do not hold for (4.11), where Cu ≤ 1/3 and Cu + Cd = 1/3. Nonetheless,
it emerges that this ubiquitous factor one third, in both relations, is ultimately related to the
number of quark generations which couple to PQ symmetry in the same way. Thereby, it can be
envisaged that the only possible way out of this situation is relaxing the hypothesis of universal
PQ coupling among the three generations (as first noticed in [52]). This will give life to a plethora
of new possible models, some of which nucleophobic.

As it will be shown, these generalized DFSZ models also offer the possibility of removing
the coupling to electrons in a very simple way, even though this is not a previlege reserved to
these theories. An axion that does not interact with electrons is dubbed electrophobic. If both
nucleophobia and electrophobia are present, we speak of an astrophobic axion.

4.4 The 2 + 1 DFSZ model

4.4.1 The PQ charge pattern

For sake of clarity, we report here our UV reference Lagrangian involving the axion:

La =
1

2
∂µaφ∂

µaφ + Lanomaly +
∂µaφ
2fa

ūiγ
µ(CVuiuj

+ CAuiuj
γ5)uj+

+
∂µaφ
2fa

d̄iγ
µ(CVdidj + CAdidjγ

5)dj +
∂µaφ
2fa

ēiγ
µ(CVeiej + CAeiejγ

5)ej

(4.77)
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where Lanomaly contains the anomalous contributions. The last three addends are the derivative
axion couplings to fermions which we want to determine: we have written down them in the most
general form by including the vectorial fermion current, too. Studying the basic DFSZ model, we
have seen how these couplings intimately depend on the PQ charge assignment, that is the only
essential aspect of the previous DFSZ theory we are going to tweak. In particular, we will explore
a next-to-minimal model with a 2+1 flavour structure, where only two generations have universal
PQ charges: this hypothesis will be enough in order to derive some interesting results.

To redefine the charge assignment of the theory, let us consider a Yukawa Lagrangian with
twelve Higgs fields given by LY uk = Lu + Ld + Ll, with:

Lu = yu33qL3uR3φA1 + yu3aqL3uRaφA2 + yua3qLauR3φA3 + yuabqLauRbφA4 + h.c. (4.78)

Ld = yd33qL3dR3φ̃A5
+ yd3aqL3dRaφ̃A6

+ yda3qLadR3φ̃A7
+ ydabqLadRbφ̃A8

+ h.c. (4.79)

Ll = ye33lL3eR3φ̃A9
+ ye3alL3eRaφ̃A10

+ yea3lLaeR3φ̃A11
+ yeablLaeRbφ̃A12

+ h.c. (4.80)

Here, we have a, b = 1, 2 running over the two families with the same PQ charges. On the other
hand, the subscript Ai can take on its value in the set {1, 2}, which means that, according to the
model, all of the twelve Higgs fields will be eventually identified with one of the two original Higgs
doublets. From the previous Lagrangian, in order to ensure PQ invariance, we can readily read
the PQ charges associated to each fermion. However, we have to consider that there is a certain
arbitrariness in the way these charges can be assigned, so that we should try to benefit from it in
the most convenient form.

First of all, due to the anomaly free B−L symmetry, we can always relate two phases between
quark and lepton fields. If q′L3 = qL3e

iXqL3
α and l′L3 = lL3e

iXlL3
α (where phases are independent

because of different PQ charges), we can act with a global B − L symmetry, which transforms
quark and lepton phases simultaneously:{

αqL3
= XqL3

α 7−→ α′
qL3

= XqL3
α+ β/3

αlL3
= XlL3

α 7−→ α′
lL3

= XlL3
α+ β

(4.81)

In order to have α′
qL3

= rα′
lL3

, where r is the ratio between the hypercharges of the two fields
(i.e r = YlL3

/YqL3
), we just need to choose β = 3(XqL3

− rXlL3
)α/(3r − 1). Then, we can use

the hypercharge symmetry U(1)Y , which is again anomaly free, to remove both of these phases
at once. This discussion, as a whole, enables us to understand how we are always free to set
XqL3

= XlL3
= 0, without loss of generality. Once fixed that, the rest of charges will be given by:

XuRa
= −XA2

, XdRa
= XA6

, XeRa
= XA10

,

XuR3
= −XA1

, XdR3
= XA5

, XeR3
= XA9

,

XqLa
= −XA1

+XA3
, XlLa

= XA9
−XA11

(4.82)

All of combinations that can be generated modifying the Ai values are collected in table 4.1. We
observe that the models presented in the table are organized in couples, whose members just differ
for the arrangement of the Higgs doublets in the leptonic sector. Moreover, some theories are
obtained from others just exchanging partially or entirely φ1 with φ2, as for M2 and M1′, where
the interchange is complete. The class of models dubbed asM1 andM2 (with all variants indicated
with a prime) is the only one where charge univerality is broken among left quarks. The variants
of M3 and M4 models differ from the rest of the theories because the universal PQ pattern is
preserved only in one sector between the right up and right down quarks ones. In the M5 class,
the universality is broken in both of them.
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A1−4 A5−8 A9−12 A1−4 A5−8 A9−12

M1 1122 2211 1122 M4′′ 1111 1212 1122
M2 1122 2211 2211 M4′′′ 1111 1212 2211
M1′ 2211 1122 1122 M4bis 2222 2121 1122
M2′ 2211 1122 2211 M4′

bis 2222 2121 2211
M3 2121 1111 1122 M4′′

bis 1111 2121 1122
M3′ 2121 1111 2211 M4′′′

bis 1111 2121 2211
M3′′ 1212 2222 1122 M5 1212 2121 1122
M3′′′ 1212 2222 2211 M5′ 1212 2121 2211
M3bis 1212 1111 1122 M5′′ 2121 1212 1122
M3′

bis 1212 1111 2211 M5′′′ 2121 1212 2211
M3′′

bis 2121 2222 1122 M5bis 1212 1212 1122
M3′′′

bis 2121 2222 2211 M5′
bis 1212 1212 2211

M4 2222 1212 1122 M5′′
bis 2121 2121 1122

M4′ 2222 1212 2211 M5′′′
bis 2121 2121 2211

DFSZ− I 2222 1111 1111 DFSZ− II 2222 1111 2222

Table 4.1: 2+1 DFSZ models in comparison with the simpler DFSZ-I and DFSZ-II structure

Using rules (4.82), one can easily derive the charge configurations for each of the twenty-eight
cases, as shown in table 4.2. From the calculation of the color anomaly, the table illustrates how
the four theories in class M5bis must be excluded due to N = 0: they are not real QCD axion
models, because, if no color anomaly exists, we can not reabsorb the θQCD parameter, making it
unphysical. The remaining models present two types of N , up to the sign. Thus, according to
(3.3), the relation between fa and vf will be fa = vf/2 for N = 1 or fa = vf/4 for N = 2. We
know that the domain wall number is a positive quantity by very definition, because it relates two
energy scales. Therefore, if the color anomaly turns out to be negative, the extra minus sign will
not enter the NDW definition. Actually, it will not be able to affect physics at all: as we said,
anomalous terms generate the effective axion potential, that is even in the axion field.

After this small clarification, we are ready to explicitly compute an expression for Lanomaly.
Differently from the basic DFSZ models, now the assignment of PQ charges also introduces an
effective coupling between axions and electroweak gauge bosons, because here left fermions are PQ
charged, too. Just as for E and N , we can define an electroweak anomaly coefficient W , which can
be assessed as

Wδab = tr[X q
L{τ

a, τ b}] + tr[X l
L{τa, τ b}] =

δab

2

(∑
colors

∑
fL

XLf +
∑
lL

XLl

)
(4.83)

where again X q
L and X l

L are the diagonal matrices containing PQ charges for quarks and leptons
respectively. Thereby, before the breaking of the electroweak scale, we will have

Lanomaly =
aφ
fa

αs
8π

Gµνa G̃aµν +
aφ
fa

αY
8π

Y

N
BµνB̃µν +

aφ
fa

αew
8π

W

N
Wµν
a W̃a

µν (4.84)

in which the second term is associated to the hypercharge anomaly Y . When we cross the energy
at which electroweak gauge bosons become massive, the only surviving symmetries are SU(3)c and
U(1)em. The field strength tensors Bµν and Wa

µν are not good degrees of freedom to describe the
theory any more. We can use instead the well-known photon Fµν and Z-boson Zµν field strength
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XuR3
XuRa

XdR3
XdRa

XqL3
XqLa

XeR3
XeRa

XlL3
XlLa

N W Y E

le
ft

q
u
a
rk

s M1 −X1 −X1 X2 X2 0 X2 −X1 X1 X1 0 X1 −X2 +1 4 −10/3 2/3
M2 −X1 −X1 X2 X2 0 X2 −X1 X2 X2 0 X2 −X1 +1 8 −16/3 8/3

M1′ −X2 −X2 X1 X1 0 X1 −X2 X1 X1 0 X1 −X2 −1 −8 16/3 −8/3
M2′ −X2 −X2 X1 X1 0 X1 −X2 X2 X2 0 X2 −X1 −1 −4 10/3 −2/3

ri
g
h
t
u
p

q
u
a
rk

s

M3 −X2 −X1 X1 X1 0 0 X1 X1 0 X1 −X2 +1 −2 2/3 −4/3
M3′ −X2 −X1 X1 X1 0 0 X2 X2 0 X2 −X1 +1 2 −4/3 2/3

M3′′ −X1 −X2 X2 X2 0 0 X1 X1 0 X1 −X2 −1 −2 4/3 −2/3
M3′′′ −X1 −X2 X2 X2 0 0 X2 X2 0 X2 −X1 −1 2 −2/3 4/3

M3bis −X1 −X2 X1 X1 0 0 X1 X1 0 X1 −X2 +2 −2 10/3 4/3
M3′bis −X1 −X2 X1 X1 0 0 X2 X2 0 X2 −X1 +2 2 4/3 10/3

M3′′bis −X2 −X1 X2 X2 0 0 X1 X1 0 X1 −X2 −2 −2 −4/3 −10/3
M3′′′bis −X2 −X1 X2 X2 0 0 X2 X2 0 X2 −X1 −2 2 −10/3 −4/3

ri
g
h
t
d
o
w
n

q
u
a
rk

s

M4 −X2 −X2 X1 X2 0 0 X2 X2 0 X2 −X1 +1 2 8/3 14/3
M4′ −X2 −X2 X1 X2 0 0 X1 X1 0 X1 −X2 +1 −2 14/3 8/3

M4′′ −X1 −X1 X2 X1 0 0 X2 X2 0 X2 −X1 −1 2 −14/3 −8/3
M4′′′ −X1 −X1 X2 X1 0 0 X1 X1 0 X1 −X2 −1 −2 −8/3 −14/3

M4bis −X2 −X2 X2 X1 0 0 X2 X2 0 X2 −X1 +2 2 10/3 16/3
M4′bis −X2 −X2 X2 X1 0 0 X1 X1 0 X1 −X2 +2 −2 16/3 10/3

M4′′bis −X1 −X1 X1 X2 0 0 X2 X2 0 X2 −X1 −2 2 −16/3 −10/3
M4′′′bis −X1 −X1 X1 X2 0 0 X1 X1 0 X1 −X2 −2 −2 −10/3 −16/3

u
R

a
n
d

d
R

M5 −X1 −X2 X2 X1 0 0 X1 X1 0 X1 −X2 +1 −2 8/3 2/3
M5′ −X1 −X2 X2 X1 0 0 X2 X2 0 X2 −X1 +1 2 2/3 8/3

M5′′ −X2 −X1 X1 X2 0 0 X1 X1 0 X1 −X2 −1 −2 −2/3 −8/3
M5′′′ −X2 −X1 X1 X2 0 0 X2 X2 0 X2 −X1 −1 2 −8/3 −2/3

M5bis −X1 −X2 X1 X2 0 0 X1 X1 0 X1 −X2 0 −2 2 0
M5′bis −X1 −X2 X1 X2 0 0 X2 X2 0 X2 −X1 0 2 0 2

M5′′bis −X2 −X1 X2 X1 0 0 X1 X1 0 X1 −X2 0 −2 0 −2
M5′′′bis −X2 −X1 X2 X1 0 0 X2 X2 0 X2 −X1 0 2 −2 0

DFSZI −X2 −X2 X1 X1 0 0 X1 X1 0 0 -3 0 -8 -8
DFSZII −X2 −X2 X1 X1 0 0 X2 X2 0 0 -3 0 -2 -2

Table 4.2: In this table the charge assignment of different 2+1 DFSZ models are shown. The theories have
been grouped according to the sector where the PQ universality is broken. In the last two rows we report
the old DFSZ models, where calculations have been done with a Yukawa Lagrangian compatible with that of
this paragraph (and slightly different from that one at the beginning of the chapter, how charges display).
In the four columns on the right, the anomaly coefficients associated to the SU(3)c color symmetry (N), to
the SU(2)L weak isospin group (W), to the U(1)Y hypercharge phase transformation (Y) and to the residual
U(1)em symmetry (E) are presented. We stress how the four hightlighted rows (running from M5bis to M5′′′bis)
must be discarded because of N = 0: they do not represent viable QCD axion models. It also worth noticing
how the simple rule E =W + Y relating different anomalies holds.
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tensors, which are related to the previous ones through

{
Bµν = −sθWZµν + cθWFµν
W(3)
µν = cθWZµν + sθWFµν

 W(2)
µν =

W+
µν+W−

µν√
2

W(1)
µν =

W+
µν−W−

µν√
2i

(4.85)

where we have also reminded the form of the charge eigenstates W±. Of course, θW is the Weinberg
angle.

By plugging these expressions into equation (4.84), one gets

Lanomaly =
aφ
fa

αs
8π

Gµνa G̃aµν +
aφ
fa

αY
8π

Y

N
(−sθWZµν + cθWFµν)(−sθW Z̃µν + cθW F̃µν)+

+
aφ
fa

αew
8π

(cθWZµν + sθWFµν)(cθW Z̃µν + sθW F̃µν) +
2aφ
fa

αew
8π

W

N
Wµν

+ W̃−
µν

(4.86)

in which we made use of the identity Wµν
+ W̃−

µν = Wµν
− W̃+

µν , thanks to the Levi-Civita symbol
property εµνρσ = ερσµν . Now, remembering that the electric charge e is related to the hypercharge
g′ (inside αY ) and the electroweak coupling g (in αew) through the relation e2 = g′2c2θW = g2s2θW ,
we can write

Lanomaly =
aφ
fa

αs
8π

Gµνa G̃aµν +
aφ
fa

αem
8π

Y +W

N
FµνF̃µν +

aφ
fa

αY s
2
θW
Y + αewc

2
θW
W

8πN
ZµνZ̃µν+

− s2θW
aφ
fa

αY Y − αewW

8πN
FµνZ̃µν +

2aφ
fa

αew
8π

W

N
Wµν

+ W̃−
µν

(4.87)

so that, comparing with the usual expression (4.16), we deduce the anomaly relation E =W + Y .
For sake of completeness, we remind that this is not the more useful anomalous Lagrangian to
employ in calculation: we have already seen how the gluon coupling can be reabsorbed in a
redefinition of the up and down quark fields, introducing an extra model-independent contribution
in the electromagnetic coupling.

We would like to emphasize that the effective interaction with the Z-boson and the mixed
axion-Z-photon vertex are not peculiar of a generalized DFSZ model: these would survive even
if W = 0. What is a really distinctive mark of these theories is the new decay mode of axion in
two charged W± bosons. Even if interesting from a theoretical point of view, this new effective
coupling with charged electroweak bosons is very unlikely to produce any testable results, being
the vertex suppressed by the tiny value of the αew constant, typical of weak interactions.

4.4.2 The fermion interactions

The most fundamental aspect of these new models resides in the derivation of fermion inter-
actions, that now we are going to develop. We have already discussed how the axion coupling to
fermions can be brought to light by means of a chiral redefinition of fermion fields, which moves
the Higgs doublet phases from the Yukawa term to the anomaly. Nevertheless, being the transfor-
mation local, a derivative axion term emerges from the kinematic part of the Lagrangian. Now, we
just have to consider that PQ charges are not universal. We will explicitly carry out the calculation
just for the M1 model of table 4.2, that will be used as an example. From the kinetic term we will
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have:

Lfermion−axion = ūRmiγ
µ∂µ

(
2iXuRmn

aφ
vf

)
uRn + ūLmiγ

µ∂µ

(
2iXuLmn

aφ
vf

)
uLn+

+ d̄Rmiγ
µ∂µ

(
2iXdRmn

aφ
vf

)
dRn + d̄Lmiγ

µ∂µ

(
2iXdLmn

aφ
vf

)
dLn+

+ ēRmiγ
µ∂µ

(
2iXeRmn

aφ
vf

)
eRn + ēLmiγ

µ∂µ

(
2iXeLmn

aφ
vf

)
eLn =

= ūmγ
µ ∂µaφ
2fa

(−XuRmn
(1 + γ5)−XuLmn

(1− γ5))un+

+ d̄mγ
µ ∂µaφ
2fa

(−XdRmn
(1 + γ5)−XdLmn

(1− γ5))dn+

+ ēmγ
µ ∂µaφ
2fa

(−XeRmn
(1 + γ5)−XeLmn

(1− γ5))en

(4.88)

where, using the definition of fa, there are no extra multiplicative factors at the coupling level,
because N = 1. But we have to remember that quarks appearing in the foregoing expression
are not mass eigenstates: one has to diagonalize the Yukawa matrix for fermions through a bi-

unitary transformation. This latter will redefine our states as u′Rm = U
(u)
mnuRn, u

′
Lm = V

(u)
mnuLn,

d′Rm = U
(d)
mndRn, d

′
Lm = V

(d)
mndLn, e

′
Rm = U

(e)
mneRn and e′Lm = V

(e)
mneLn. Taking this into account

and considering that

XuL
= XdL =

1 0 0
0 1 0
0 0 0

 = 1 −

0 0 0
0 0 0
0 0 1

 (4.89)

XeL =

−1 0 0
0 −1 0
0 0 0

 = −1 +

0 0 0
0 0 0
0 0 1

 (4.90)

we can readily write

Lfermion−axion = ū′iγ
µ ∂µaφ
2fa

(−U (u)
im XuRmn

U
(u)†
nj (1 + γ5)− V

(u)
im XuLmn

V
(u)†
nj (1− γ5))u′j+

+ d̄′iγ
µ ∂µaφ
2fa

(−U (d)
imXdRmn

U
(d)†
nj (1 + γ5)− V

(d)
im XdLmn

V
(d)†
nj (1− γ5))d′j+

+ ē′iγ
µ ∂µaφ
2fa

(−U (e)
imXeRmn

U
(e)†
nj (1 + γ5)− V

(e)
im XeLmn

V
(e)†
nj (1− γ5))e′j =

= ū′iγ
µ ∂µaφ
2fa

{(X1 − 1)δij + εuL
ij + γ5[(X1 + 1)δij − εuL

ij ]}u′j+

+ d̄′iγ
µ ∂µaφ
2fa

{(−X2 − 1)δij + εdLij + γ5[(−X2 + 1)δij − εdLij ]}d
′
j+

+ ē′iγ
µ ∂µaφ
2fa

{(−X1 + 1)δij − εeLij + γ5[(−X1 − 1)δij + εeLij ]}e
′
j

(4.91)

where we have set εuL
ij = V

(u)
i3 V

(u)†
3j , εdLij = V

(d)
i3 V

(d)†
3j and εeLij = V

(e)
i3 V

(e)†
3j . Remembering that the

diagonal vectorial part of the interaction never contributes (as we already justified previously), we
can easily extract the relevant fermion-axion couplings for the M1 model. These are reported in
4.3, together with all the other ones.



100 CHAPTER 4. THE FLAVOUR NON-UNIVERSAL DFSZ AXION

What immediately appears to be peculiar of these generalized models is the presence of flavour-
violationg couplings, which can in principle induce decays such as K± → π± + aφ, µ

± → e± + aφ
or τ± → e± + aφ, just to mention some possibilities. When these verteces appear, they are always

proportional to the misalignment factor εfLij = V
(f)
i3 V

(f)†
3j or εfRij = U

(f)
i3 U

(f)†
3j . Thus, in order to be

able to say something about these new processes, one should make some hypothesis on the form
of these objects. As described in [52], from the unitarity properties of U and V , it immediately

follows that the diagonal entries of εf satisfy 0 ≤ εfii ≤ 1 and
∑
i ε
f
ii = 1, while for the off-diagonal

ones the relation |εfi6=j | =
√
εfiiε

f
jj holds true just by the very definition. Once these constraints

are fulfilled, one can either treat these εfij as free parameters or speculate about their order of
magnitude. Given the lack of an explicit structure for U and V , for the left quark sector the only
reasonable thing we can imagine is that V (u) and V (d) are almost CKM-like. We remind that
VCKM = V (u)V (d)† and that, in the Wolfenstein parametrization, VCKM takes the form

VCKM =

 1− λ2/2 λ Aλ3(ρ− iη)
−λ 1− λ2/2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

+O(λ4) (4.92)

where λ ≈ 0.2 and A, ρ2 + η2 ≈ O(1). So, we can envisage that

ε
uL/dL
11 = V

(u)/(d)
13 V

(u)/(d)†
31 ≈ λ6 , ε

uL/dL
22 = V

(u)/(d)
23 V

(u)/(d)†
32 ≈ λ4 , (4.93)

ε
uL/dL
33 = V

(u)/(d)
33 V

(u)/(d)†
33 ≈ 1, (4.94)

ε
uL/dL
12 = ε

uL/dL
21 = V

(u)/(d)
13 V

(u)/(d)†
32 ≈ λ5 , ε

uL/dL
13 = ε

uL/dL
31 = V

(u)/(d)
13 V

(u)/(d)†
31 ≈ λ3 ,

ε
uL/dL
23 = ε

uL/dL
32 = V

(u)/(d)
23 V

(u)/(d)†
33 ≈ λ2 (4.95)

in which the last set of equalities (4.95) can equally well be estimated using the unitary relations
mentioned above for the off-diagonal misalignments.

These left misalignment parameters have a central role in the first four models of table 4.3.
Nevertheless, because of the sign of color anomalies, the photon coupling can assume only two
values and, even if fermion couplings slightly vary, there are only two classes of theories with a
different phenomenology: those with Cγ = 1.25 or with Cγ = 0.75. According to our preceding
estimation, we are being said that quark flavour violating verteces are highly suppressed by (4.95),
while diagonal couplings for the first two generations essentially depend on PQ charges, because
contributions in (4.93) are tiny corrections. If we neglect these latter, we see that the first nucle-
ophobic constraint Cu + Cd = 1 holds, while Cu ≈ 2/3 can be achieved by tuning the value of c2β
or s2β , depending on the case.

If we require electrophobia, too, all we have to impose is Ce1 = 0, which means εeL11 = c2β ≈
2/3 (for M1-like models) or εeL11 = s2β ≈ 1/3 (for M2-like cases), because of the aforementioned
nucleophobic conditions. A so large value of εeL11 could be explained by physics beyond the SM and,
in particular, by a consistently high mixing angle in the PMNS matrix, which should be related to
V (e). The remaining diagonal misalignments of the leptonic sector can be fixed by the experimental
constraint on the muon-to-electron conversion (a suppressed process in the SM scenario) and by

the condition
∑
i ε
f
ii = 1.

If we move onto the following models, we clearly observe that only three cases are phenomeno-
logically new among the huge number of displayed possibilities: these ones have Cγ = 3.25, 6.59
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Parameters Fermion couplings

NDW E/N |Cγ | CA
ui

CA
di

CA
ei

C
V/A
ui 6=uj

C
V/A
di 6=dj

C
V/A
ei 6=ej

le
ft

q
u
a
rk

s M1 −1/Xφ 2/3 1.25 c2β − εuL
ii s2β − εdLii −c2β + εeLii ±εuL

ij ±εdLij ∓εeLij
M2 −1/Xφ 8/3 0.75 c2β − εuL

ii s2β − εdLii s2β − εeLii ±εuL
ij ±εdLij ±εeLij

M1′ 1/Xφ 8/3 0.75 s2β − εuL
ii c2β − εdLii c2β − εeLii ±εuL

ij ±εdLij ±εeLij
M2′ 1/Xφ 2/3 1.25 s2β − εuL

ii c2β − εdLii −s2β + εeLii ±εuL
ij ±εdLij ∓εeLij

ri
g
h
t
u
p

q
u
a
rk

s

M3 −1/Xφ -4/3 3.25 −s2β + εuR
ii s2β −c2β + εeLii εuR

ij 0 ∓εeLij
M3′ −1/Xφ 2/3 1.25 −s2β + εuR

ii s2β s2β − εeLii εuR
ij 0 ±εeLij

M3′′ 1/Xφ 2/3 1.25 −c2β + εuR
ii c2β c2β − εeLii εuR

ij 0 ±εeLij
M3′′′ 1/Xφ -4/3 3.25 −c2β + εuR

ii c2β −s2β + εeLii εuR
ij 0 ∓εeLij

M3bis −2/Xφ 2/3 1.25 (c2β − εuR
ii )/2 s2β/2 (−c2β + εeLii )/2 εuR

ij /2 0 ∓εeLij /2
M3′bis −2/Xφ 5/3 0.26 (c2β + εuR

ii )/2 s2β/2 (s2β − εeLii )/2 εuR
ij /2 0 ±εeLij /2

M3′′bis 2/Xφ 5/3 0.26 (s2β − εuR
ii )/2 c2β/2 (c2β − εeLii )/2 εuR

ij /2 0 ±εeLij /2
M3′′′bis 2/Xφ 2/3 1.25 (s2β + εuR

ii )/2 c2β/2 (−s2β + εeLii )/2 εuR
ij /2 0 ∓εeLij /2

ri
g
h
t
d
o
w
n

q
u
a
rk

s

M4 −1/Xφ 14/3 6.59 c2β −c2β + εdRii s2β − εeLii 0 εdRij ±εeLij
M4′ −1/Xφ 8/3 0.75 c2β −c2β + εdRii −c2β + εeLii 0 εdRij ∓εeLij
M4′′ 1/Xφ 8/3 0.75 s2β −s2β + εdRii −s2β + εeLii 0 εdRij ∓εeLij
M4′′′ 1/Xφ 14/3 6.59 s2β −s2β + εdRii c2β − εeLii 0 εdRij ±εeLij
M4bis −2/Xφ 8/3 0.75 c2β/2 (s2β − εdRii )/2 (s2β − εeLii )/2 0 −εdRij /2 ±εeLij /2
M4′bis −2/Xφ 5/3 0.26 c2β/2 (s2β − εdRii )/2 (−c2β + εeLii )/2 0 −εdRij /2 ∓εeLij /2

M4′′bis 2/Xφ 5/3 0.26 s2β/2 (c2β − εuR
ii )/2 (−s2β + εeLii )/2 0 −εdRij /2 ∓εeLij /2

M4′′′bis 2/Xφ 8/3 0.75 s2β/2 (c2β − εuR
ii )/2 (c2β − εeLii )/2 0 −εdRij /2 ±εeLij /2

u
R

a
n
d

d
R M5 −1/Xφ 2/3 1.25 −c2β + εuR

ii −s2β + εdRii −c2β + εeLii εuR
ij εdRij ∓εeLij

M5′ −1/Xφ 8/3 0.75 −c2β + εuR
ii −s2β + εdRii s2β − εeLii εuR

ij εdRij ±εeLij
M5′′ 1/Xφ 8/3 0.75 −c2β − εuR

ii −s2β − εdRii c2β − εeLii εuR
ij εdRij ±εeLij

M5′′′ 1/Xφ 2/3 1.25 −c2β − εuR
ii −s2β − εdRii −s2β + εeLii εuR

ij εdRij ∓εeLij
DFSZI 3/Xφ 8/3 0.75 c2β/3 s2β/3 s2β/3 0 0 0

DFSZII 3/Xφ 2/3 1.25 c2β/3 s2β/3 −c2β/3 0 0 0

Table 4.3: The table displays the axion-fermion couplings for the different theories. The first three
columns show respectively the domain wall number NDW , the color to electromagnetic anomaly ratio
E/N and the consequent photon coupling Cγ , computed with the formula Cγ = E/N − 1.92. The
highlighted rows are those associated to models where nucleophobia is feasible. We would like to
underscore once more, that for NDW we simply applied the definition NDW = −N/Xφ. Therefore,
the domain wall number could show up under the guise of a negative quantity, on occasions, depending
on N . This unwelcome minus sign must be understood as a harmless factor, to eventually collect away
from the NDW definition: it will just affect the anomalous axion-gluon coupling, which is physically
insensitive to an overall sign redefinition.
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and 0.26. The last value is associated to M ′
3bis, M

′′
3bis, M

′
4bis and M ′′

3bis, but, for all of them,
nucleophobia is unfeasible. For the remaining cases, the situation is a bit different from the
previous ones. Indeed, to get a nucleophobic theory with Cu + Cd = 1, we just have to impose
εuR
11 = 1 or εdR11 = 1, depending on whether we are dealing with the M3 or M4 class. That is

perfectly legitimate, because, in these cases, there is no working hypothesis on the structure of εfRij
coming from electroweak considerations. The second nucleophobic condition is instead fulfilled if
s2β or c2β are suitable chosen. By fixing the β angle, we will automatically determine the εeL11 value
which ensures electrophobia exactly as we have already shown.

Before exploring the experimental falls-out of nucleophobic models, we would like to point out
that, by relaxing the PQ univerality condition, we were also able to pave the way for the solution
of another open problem: the domain wall issue. In table 4.3 the different domain wall numbers
associated to each model are presented.

A particularly appealing class is that which shows a NDW = −1/Xφ. If we consider a DFSZ
theory with a cubic potential, we readily obtain a possible solution to the flourishing of topological
defects in a post-inflationary PQ breaking mechanism. We already stressed how this one is not
the only viable solution to the problem: despite that, it is noteworthy how a cubic nucleophobic
model can be naturally endowed with interesting cosmological properties, too.

4.5 Astrophobia and phenomenology

It is pretty clear that the solution of the domain wall conundrum is just a side-effect of astropho-
bic models. The major outcome of considering theories where couplings to electrons and nucleons
are suppressed is the possibility of raising the axion mass up to the so-called heavy axion window :
20meV . ma . 200meV . We will show how axion properties can be extremely constrained by
astrophysical observations and, together with particle physics considerations, can be used to test
the astrophobic scenario as a possible candidate for physics beyond the standard model.

4.5.1 Astrophysical bounds

The astrophysical observations which can be employed to fix some limits on axion interaction
properties are a huge number and we are not going to cover all of them here. Nevertheless, for a
fairly complete discussion, we are going to take into account four of them:

• the branching ratio in globular clusters;

• the hot dark matter boundary;

• the white dwarf cooling anomalies;

• the burst duration of the supernovae neutrino signal.

The key idea of all astrophysical measurements is that, if axions existed, they would provide
a significant channel through which galactic bodies could release their energy, together with the
standard known cooling processes. The first test we have recalled is based on the observation
that the effective axion-photon coupling never disappears in our models. As described in [53],
globular clusters populating the Milky Way Galactic Halo (a nearly spherical volume of stars and
dust surrounding galaxies) can be used as a constraint for the photon coupling parameter, that
is customarily defined as gaγ = αemCγ/(2πfa). A Globular Cluster is a tightly gravitationally
bound system of stars (they are among the oldest structures of our galaxy). According to their
formation mechanism, they are expected to have the same origin and practically identical features.
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The great amount of stars they can host (a few milion of them) makes very easy to spot different
stellar evolution phases: each of them will be very well populated and simply distinguished from
the others. That provides a relevant statistical sample, which renders globular clusters good
candidates for a precise analysis. In particular, one can make out: the main sequence, related
to the core hydrogen burning phase; the red giant branch (RGB), during which the gravitational
force is balanced by the radiatio pressure, obtained by burning the hydrogen external shell; the
horizontal branch (HB), where the helium presents in the core is consumed. For a statistically
wide family of stars, the number of members of each region is related to lifetime, which, in turn,
is affected by the efficiency of all energy loss channels. Employing this observation, a boundary of
|gaγ | < 6.6 × 10−11GeV −1 was obtained by measuring for each globular cluster the R parameter,
defined as R = NHB/NRGB , i.e the ratio between the HB and the RGB stars. Indeed, the latters
are expected to be less sensitive to the axion-photon channel with respect to the formers because
of their temperature, which makes the bremsstrahlung processes a definitely more efficient cooling
mechanism.

A second boundary comes from hot dark matter axions. As we know, the majority of alleged
dark matter should be cold, according to galaxy scale considerations. Nevertheless, variations in the
fraction of hot dark matter can produce testable consequences on structure formation, anisotropy in
the cosmic microwave background (CMB) or even in the abundance of species generated during the
primordial nucleosynthesis. Both [39] and [54], for example, point out how the presence of hot axion
relic can affect the customary effective number of relativistic degrees of freedomNeff = 3.046 (given
by the three neutrino species, together with a relativistic correction of 0.046): as a consequence,
a lot of astrophysical observables should keep track of hot axions through a ∆Neff . In the early
universe, with a temperature in the interval TQCD < T < Tπ, the main thermalization mechanism
for axions is given by pion interactions. Computing the efficiency of these reactions, one can get the
axion decoupling temperature and the corresponding effective degrees of freedom at that energy:
from here, the desired information on the CMB or other astrophysical quantities can be extracted.
In particular, the presented reasoning has been used in [55] to constrain the axion mass with an
upper bound of ma . 0.8eV . In spite of that, one should consider that, in a nucleophobic model,
the axion-pion couplings will be highly suppressed, too: as stated by [56] and as we have explicitly
shown, all of pion interactions are proportional to Cu − Cd ≈ 0. This suggests that bounds from
hot dark matter considerations could be grossly relaxed (even if this will not affect our analysis).

The remaining more stringent constraints rely on interactions of axions with fermions. To
compare our models with physical data, it will prove to be much more useful to rewrite our
Yukawa Lagrangian in a slighlty different way. We can start from a general fermion contribution
and manipulate it as

Lfermion−axion = f̄ ′iγ
µ ∂µaφ
2fa

(CVfifj + γ5CAfifj )f
′
j =

= −∂µf̄ ′iγµ
aφ
2fa

(CVfifj + γ5CAfifj )f
′
j − f̄ ′i

aφ
2fa

(CVfifj − γ5CAfifj )γ
µ∂µf

′
j =

= −i aφ
2fa

f̄ ′i((mfi −mfj )C
V
fi 6=fj + (mfi +mfj )γ

5CAfifj )f
′
j

(4.96)

which explicitly shows how fermion verteces are proportional to the respective fermion masses. In
particular, the complete effective Lagrangian turns out to be

L =
∂µaφ
2fa

(Cpp̄γ
µγ5p+ Cnn̄γ

µγ5n+ Ceēγ
µγ5e) +

aφ
fa

αem
8π

CγFµνF̃µν (4.97)

which presents only diagonal terms: an useful quantity parametrizing fermion verteces will be
gaf = CAf mf/fa, as it can be readily read off from (4.96). The effective Lagrangian shown above
will be extensively satisfactory to study astrophysical processes.
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Information about the axion-electron coupling can be derived from the white dwarf luminosity
function, which describes the number of stars per unit volume and luminosity interval. The basic
idea of this experimental method, presented in [57], relies on the fact that white dwarfs (WD)
are the end products of star lifes: their evolution can not be described in terms of thermonuclear
reactions, but just as a gravothermal process of cooling. In this scenario, an additional cooling
channel involving axions could significantly affect the shape of the luminosity function itself. From
a historical point of view, the introduction of new cooling sources had been a great step forward in
an eventual insight of the so-called cooling anomaly problem, according to which stars seem to cool
faster than predicted. These studies make it possible to fix a bound for gae: as a matter of fact,
the interaction with electrons is, reasonably, the prevailing axion process here. This one manifests
itself through the bremsstrahlung reaction e + N → e + N + a, where electrons are slowed down
by the electromagnetic field of nuclei: the outgoing electron can release part of its energy through
axions production. In [58] the bound on the electron coupling has been fixed to

|gae| < 2.7× 10−13 (4.98)

Finally, we are going to consider an astrophysical phenomenon which will let us derive a limit
on the axion-nucleon coupling. As claimed in [59], an efficient measurement of it can come from
supernovae (SN). This violent event, associated to the core collape of a massive star, will be followed
by a cooling phase of the nascent neutron star, where a lot of energy is released through a neutrino
signal. Nevertheless, reactions of nucleon-nucleon axion bremsstrahlung (i.e N +N → N +N + a)
can provide an extra cooling mechanism, which will hasten the neutrino emission, leading to fewer
events over a shorter time. By computing the matrix element for the process, one notices that the
leading contribution is proportional to the non-obvious combination g2ap + g2an of the two nucleons
involved in the reactions. From that, the amount of energy loss due to axions flux can be estimated.
In [58], this procedure applied to the neutrino signal of SN 1987A (the closest observed supernovae
from the telescope invention) resulted in the constraint

g2ap + g2an < 3.6× 10−19 (4.99)

To extract some phenomenology, we are going to consider the four nucleophobic models M1,
M2, M3 and M4, the two non-universal and non-nucleophobic M3bis and M ′′

3bis theories and,
finally, the old DFSZI and DFSZII ones, to better appreciate the differences. We would like to
stress how the gaγ and hot dark matter boundaries affect all of the models in a simple way; what
should be treated case by case are constraints on matter couplings.

To start with, we are going to consider the nucleophobic class. We have already observed how
the electron coupling can be easily and completely removed by means of a right choise of β: if this
was the only constraint, we would always have enough freedom to raise the axion mass up to the
hot dark matter bound. However, a stronger limit comes from the coupling to nucleons: it can be
suppressed by nucleophobic conditions, but not removed once for all, because of the small surving
δ correction. In order to impose nucleophobia, we can set Cu = 2/3 and Cd = 1/3. Then, we can
evalutate the δ contribution using δ = 0.038(5)Cs + 0.012(5)Cc + 0.009(2)Cb + 0.0035(4)Ct. For
the M1 and M2 models, the four remaining couplings which appear in the formula can be easily
assessed using (4.93) and (4.94) for the CKM-like matrix elements; for M3 and M4, instead, we

have no hypothesis on the εfRii terms, but we know that ε
uR/dR
11 = 1 should hold true to achieve

nucleophobia. This latter, together with
∑
i ε
fL
ii = 1, requires ε

uR/dR
22 = ε

uR/dR
33 ≈ 0. From (4.74),

we can obtain some expressions for Cp and Cn, which directly enter our condition (4.99) as

(C2
pm

2
p + C2

nm
2
n)− 3.6× 10−19f2a = 0 (4.100)

where we have saturated the bound and in which, clearly, mp and mn are the proton and neutron
masses respectively. By using (2.75), one gets a relation for the maximally allowed axion mass,
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which turns out to fall into the heavy axion mass window. The results are ma = 0.20eV for
M1/M2, ma = 0.25eV for M3 and ma = 0.12eV for M4.

For the models M3bis and M ′′
3bis, the electron coupling constraint can again be evaded by

means of a prudent choise of the mixing angle in the PMNS sector. The sole bound is again the
nucleon one. Nevertheless, here the analysis is pretty different, because nucleophobia cannot be
achieved: this will result in a freedom in the β value, that, in principle, is not fixed by any other
criterion. Moreover, here, we will set εuR

11 = 0, εuR
22 = 0 and εuR

33 = 1, where the relation
∑
i ε
uR
ii = 1

must hold independently on the CKM-like form of the ε parameters. In these conditions, we have
Cn+Cp = 1/2. It can be directly verified that, by choosing the εuR

ii terms this way, we are able to
lift the axion mass the most. Proceeding like before, we will finally get trickier expressions for the
nucleon bound (4.100), which is now a function of β:

0.196 + 0.202c2β + cβ(−0.353− 0.315sβ) + 0.162sβ + 0.197s2β − 1.17× 10−5/m2
a = 0 M3bis

0.196 + 0.197c2β + cβ(−0.353− 0.315sβ) + 0.353sβ + 0.202s2β − 1.17× 10−5/m2
a = 0 M ′′

3bis

(4.101)

The plots for these two equations are shown in figure 4.2. Even if the range of β can seem to be
arbitrary, we have to remember that this value directly appears in the Lagrangian through the
Yukawa couplings, which must guarantee a perturbative expansion both at high and low energy,
as explained in [60]. We will not go through this delicate topic here, but we will assume the
benchmark interval 0.28 < tanβ < 140 [61]. This range has been obtained by computing the
β-function for the Yukawa coupling of the light Higgs of a 2HDM model and by requiring the
condition y2/4π < 1 at different energy scales. The lower bound is common to all possible 2HDM
theories, i.e type I, II, Leptonic-specific and Flipped (which vary for the position of the two Higgs
doublet in the Yukawa sector: see [62] for details). The upper bound is of tanβ < 140 just for
the Flipped model, whereas it is of tanβ < 350 for the Leptonic-specific one. Just because, as
claimed in [61], further constraints can arise requiring the perturbative unitarity of other coupling
constants, we will restrict ourselves at least to the tightest range of values between the two ones.
It can be questioned that our models are not 2HDM-like, because DFSZ theories add a complex
singlet field to the spectrum and, in addition, they impose a PQ symmetry, which prohibits the
emergence of some terms in the Lagrangian. Nevertheless, for our analysis, it will be enough to
consider this interval as a point of reference. After all, if we remember that vφ � v, the additional
heavy scalar ρ almost decouples from the calculation of the β-function corrections at energy lower
than vφ and the axion couplings are highly suppressed. In this way, DFSZ models can be considered
like a subclass of 2HDM models, without grossly affecting our benchmark range for tanβ.

Taking this into account, we can graphically derived the highest axion mass value achievable
in these theories. That turns out to show up in the limit tanβ → 0.28 for the M3bis case and for
tanβ ≈ 3.16 in M ′′

3bis, with two pretty similar results of ma ≈ 24meV .

We finally move onto the ordinary DFSZ models, in order to underscore their departure from
the new cases we have presented. The considerations done for nucleon couplings still hold in these
situations. But now we have no freedom to remove the electron coupling (unless we choose a
particular value of β), so that the bound

Ceme = 2.7× 10−13fa (4.102)
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Figure 4.2: The two plots show the axion mass dependence on the β parameter (radians) for the
M3bis model (the upper graph) and the M ′′

3bis one (the lower graph). The green grid highlights
regions of β excluded by the perturbative interval in a reference period of the function.
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must be satisfied, too. By doing that, we are led to a system of equations{
2.99× 10−11mas

2
β − 2.7× 10−13 = 0 DFSZII

0.183− 0.170c2β + 0.0397c4β − 1.17× 10−5/m2
a = 0{

2.99× 10−11mac
2
β − 2.7× 10−13 = 0 DFSZI

0.183− 0.170c2β + 0.0397c4β − 1.17× 10−5/m2
a = 0

(4.103)

whose plots are displayed in figure 4.3.
In the DFSZI case, the plot reveals how the electron coupling constraint (blue line) does not

really provide a further bound: one can just consider the best value for ma inside the unitary
interval given by the nucleon bound (red curve). The maximal axion mass compatible with this
model isma ≈ 14meV in the limit tanβ → 0.28. For the DFSZ II version, we can not rise the axion
mass up to this value of β without violating the restriction on gae: looking at the curves intersection
in the graph, one can get ma ≈ 12meV . It worth noticing that the blue curve presents some points
where it diverges: these ones correspond to the β values which annul the axion-electron coupling.
On the contrary, the red curve always has a different behaviour: there are no divergences, because
the nucleon coupling can be suppressed, but never removed, as a result of the non-vanishing δ
correction.

In figure 4.4, all of the outcomes we have quoted are summarized. Here, the different constraints
that we have described in this paragraph are considered. While plotting the |gaγ | coupling as a
function ofma, one should take into account the upper limit imposed by the R parameter and other
restrictions on axion mass. One of these comes from the model independent bound ma . 0.8eV ;
then, there are the model dependent constraints from WD and SN studies, which are graphically
displayed by colorful bullets or stars truncating the curves. The PQ non-universal models, which
do not enjoy nucleophobia, can just slighlty increase the maximal value of axion mass with respect
to the old paradigm, provided that the β parameter is properly tuned and electrophobia is required.
Hence, the really essential feature to reach the heavy axion mass window resides in the ability of
removing the nucleon coupling.

First of all, it worth noticing that the nucleophobic scenario can easily accomodate the recent
fits for gae and gaγ from a combined analysis of HB and WD [58]: ḡae = 1.5 × 10−13 and ḡaγ =
0.14× 10−10GeV −1. If these values are in tension with the SN bounds in the old DFSZ theories,
this is not true for the nucleophobic ones.

In addition, these models are very interesting from an experimental viewpoint, because to be
revealed they ask for a sensitivity to |gaγ | which is just slightly greater than the current one.
Therefore, the next generation of axion helioscopes (which employ the axion-photon interaction
to detect possible axions coming from the Sun), such as IAXO and its upgrade IAXO+, will be
crucial to constrain or discover an astrophobic axion species.
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Figure 4.3: The two plots show the axion mass dependence on the β parameter (radians) given by
the bound on gae (blue curve) and on the nucleon coupling (red curve). The upper graph refers to
the DFSZI model, while the lower one to the DFSZII theory. The green grid highlights regions of
β excluded by the perturbative interval in a reference period of the function.
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Figure 4.4: The graph presents the |gaγ | coupling as a function of the axion mass (or its decay
constant) in a double logarithmic scale. Each straight line is truncated when the upper bound on the
axion mass from gae and g2ap+ g2an is saturated. The horizontal and vertical gray regions represent
the excluded range of values obtained from the R parameter and the hot axion limit respectively. It
worth noticing how nucleophobic models are able to reach the heavy axion window, making them
testable by future experiments. The black lines highlight the sensitivity of some next-generation
axion helioscopes (i.e IAXO and IAXO+) to |gaγ | with respect to the old CAST helioscope.



110 CHAPTER 4. THE FLAVOUR NON-UNIVERSAL DFSZ AXION

µ−

γ

e−

aφ

pµ

µ−

aφ

e−

γ

pe

Figure 4.5: The two diagrams contributing to the muon decay µ− → e− + γ + aφ. They differ by
the position of the two interaction verteces and, as a consequence, by the exchange of a virtual
muon or electron respectively.

4.5.2 Precision Flavour Experiments

An unavoidable property of PQ non-universal models is the appearence of flavour changing
verteces. This feature offers a further possibility to constrain and test these theories through
precise particle physics experiments.

In the lepton sector, the strongest bound on flavour violating processes stems from the muon
to electron transition. As already mentioned, this decay is not forbidden by the SM, but highly
suppressed: a neutrino oscillation mechanism will render this process viable, but with a branching
ratio B(µ+ → e+) ≤ 10−54 [63] (extremely below current experimental bounds). On the contrary,
physics beyond the standard model could facilitate this channel: that is the case with our axion
models, which breaks family symmetry. To derive some comparable results, we need to get an
estimation for the free parameter εeL22 , which can be extracted from family violating transition
involving the second lepton generation. The muon-to-electron transition exactly fits the bill. An
upper bound on the muon decay into an electron and a pseudoscalar particle f is given in [64]
to the value of B(µ+ → e+f) ≤ 2.6 × 10−6. All pseudoscalar particles inducing flavour violation
are dubbed familons: in our generalized models, the axion is a particular kind of familon. Never-
theless, how explained in [65], this tight constraint on B(µ+ → e+f) has been derived under the
assumption of a vectorial coupling of familons to SM particles, in order to deal with some technical
complications. Just because our Yukawa Lagrangian shows both axial and vectorial couplings, this
upper limit can not be used in our reasoning.

What we can do is considering the more stringent experimental constraint B(µ+ → e++γ+f) <
1.1× 10−9, where leptons of both chiralities take part in it: this will give rise to a weaker limit on
the familon coupling for this process. This latter was obtained in [64] from the previous condition:

Fµe =
2fa√

|CVeµ|2 + |CAeµ|2
> 3.1× 109GeV (4.104)

Remembering that |CVeµ|2 = |CAeµ|2 = εeL11 ε
eL
22 , we can constrain the axion mass as

ma < 0.2eV

√
1.7× 10−4

εeL11 ε
eL
22

(4.105)

Not to have a constraint stronger than SN bounds, we can require the left-hand side of the previous
expression to be greater than the tighter bound ma < 0.25eV of the M3 model, where εeL11 should
be fixed to 1/(1 + z) (z ≈ 0.48) to reach electrophobia. This implies

εeL22 < 1.6× 10−4 (4.106)
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Figure 4.6: Diagram of the flavour changing τ+ decay: τ+ → e+ + aφ

Because of
∑
i ε
eL
ii = 1, εeL33 will be determined, too, depending on the value of εeL11 . Therefore,

we needed an experimental input to estimate all of the diagonal leptonic ε parameters: for this
purpose, we employed one of the most precisely measured process.

Once that our variables have been fixed, we can explicitly compute the branching ratio for
some interesting flavour violating decays. Let us consider the important τ+ → e+ + aφ. In order
to compare experimental results with our theory, we need to calculate the decay rate given by the
simple diagram in 4.6.

Starting from the Yukawa Lagrangian contributing to the decay

Lτ→e = ēγµ
∂µaφ
2fa

(CVeτ + γ5CAeτ )τ = −ē iaφ
2fa

((me −mτ )C
V
eτ + γ5(me +mτ )C

A
eτ )τ (4.107)

we can readily obtain the corresponding matrix element from the LSZ reduction formula

Mif = − i

2fa
v̄r(pe)α((me −mτ )C

V
eτ + γ5(me +mτ )C

A
eτ )αβvs(pτ )β (4.108)

Using the shorthand notation ∆m = (me −mτ ) and Σm = (me +mτ ), we can sum up over the
final spin polaritazions and average over the initial ones. By employing the spin sum rules for the
antiparticle spinor state vr, one gets:

1

2

∑
r,s

|Mif |2 =

=
∑
r,s

1

8f2a
v̄s(pτ )ρ(∆mC

V
τe − γ5ΣmCAτe)ρσvr(pe)σ v̄r(pe)α(∆mC

V
eτ + γ5ΣmCAeτ )αβvs(pτ )β =

=
1

8f2a
tr[(∆mCVeτ − γ5ΣmCAeτ )(/pe −me)(∆mC

V
eτ + γ5ΣmCAeτ )(/pτ −mτ )] =

=
1

8f2a
tr[(∆mCVeτ )

2(/pe/pτ ) + (∆mCVeτ )
2memτ − (ΣmCAeτ )

2γ5/peγ
5
/pτ − (ΣmCAeτ )

2memτ ] =

=
1

8f2a
[(∆mCVeτ )

2(4pe · pτ + 4memτ ) + (ΣmCAeτ )
2(4pe · pτ − 4memτ )]

(4.109)

Because of the condition (CVeτ )
2 = (CAeτ )

2, the model dependent coupling can be collected. Then,
we can proceed with some elementary kinematic manipulations. Using pτµ = (mτ , 0), we get
pe · pτ = mτEe. To compute Ee, we know that{

~pτ = ~0 = ~pa + ~pe ⇒ |pe| = |pa|
Eτ = mτ = Ee + Ea

(4.110)
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Considering both the definition Ee =
√
m2
e + p2e and the previous conservation laws, we can write

mτ −
√
m2
a + p2a =

√
m2
e + p2e ⇒

pe =

√(
m2
τ −m2

e +m2
a

2mτ

)2

−m2
a ≈ mτ

2

(
1− m2

e

m2
τ

)
Ee ≈

mτ

2

(
1− m2

e

m2
τ

) (4.111)

where the approximate formulae originate from the invisible axion limit ma → 0. In so doing, we
can state

1

2

∑
r,s

|Mif |2 =
m4
τ

2f2a
(εeL13 )

2

(
1− m2

e

m2
τ

)2

(4.112)

This expression will enter the decay rate formula (once the conservation conditions will be
taken into account by solving the four-dimensional Dirac delta):

Γ(τ+ → e+ + aφ) =
1

2mτ

∫
d3p′e

(2π)32E′
e

∫
d3p′a

(2π)32E′
a

(2π)4δ(4)(pτ − p′e − p′a)

[
1

2

∑
r,s

|Mif |2
]
=

=
4π

8mτ (2π)2

∫
d|p′e||p′e|2

E′
a(p

′
e)E

′
e

δ(0)(mτ − E′
e − E′

a(p
′
e))

[
1

2

∑
r,s

|Mif |2
]
=

=
1

8mτπ

∫
dE′

e|p′e|
E′
a(p

′
e)

δ(0)(E′
e − Ee)

|1 + Ee/Ea(pe)|

[
1

2

∑
r,s

|Mif |2
]
=

1

8mτπ

|pe|
Ee + Ea(pe)

[
1

2

∑
r,s

|Mif |2
]
=

=
m3
τ

32πf2a~
(ε11ε22)

(
1− m2

e

m2
τ

)3

(4.113)

where in the last passage we have inserted back an ~ (set to one), to recover the correct physical
dimensions. Now, making use of mτ = 1.78GeV and τ τtot = 1/Γτtot = 290.3× 10−15s, together with
me = 0.5MeV , we end up with

B(τ+ → e+ + aφ) =
m3
τ

32πf2a~
(εeL11 ε

eL
33 )

Γτtot

(
1− m2

e

m2
τ

)3

= 6.6× 10−6

(
ma

0.2eV

)2

(4.114)

in which we notice how the product ε11ε33 ≈ z/(1 + z)2 is essentially model-independent. Com-
paring it with the current bound B(τ− → e−f) < 2.6× 10−3 [64], we see that we are three orders
of magnitude below the experimental limit: thereby, such a process is still viable and not excluded
by high precision measurements. In addition, family violating transitions, such as τ− → µ− + aφ,
will be grossly suppressed by the tiny εeL22 value. One can calculate{

B(τ− → µ− + aφ) = 3.2× 10−9 for M1/M3 with εeL11 ≈ 1/(1 + z)

B(τ− → µ− + aφ) = 1.6× 10−9 for M2/M4 with εeL11 ≈ z/(1 + z)
(4.115)

where there is no doubt true that they are compatible with the bound B(τ− → µ−+f) < 4.6×10−3

[64].
Other relevant constraints can arise considering the quark sector. An important phenomenon to

take into account is the decay K− → π− + aφ (figure 4.7), which is made possible by the following
Yukawa interaction:

Ls→d = d̄γµ
∂µaφ
2fa

(CVds + γ5CAds)s (4.116)
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Figure 4.7: Diagram of the flavour violating K− decay: K− → π− + aφ

because the up quark is just a passive spectator. To get the Mif relevant for the process, we have
to evalutate the following matrix element:

〈π−, aφ|
[
d̄γµ

∂µaφ
2fa

(CVds + γ5CAds)s

]
|K−〉 (4.117)

In momentum space, the axion will just contribute with its momentum through the four-derivative.
Morever, we notice that parity invariance reasonings lead us to drop out the quark axial current.
Indeed, we know that pseudo-scalar meson states and the axion will transform as P̂ |K−〉 = −|K−〉,
P̂ |π−〉 = −|π−〉 and P̂ |aφ〉 = −|aφ〉, but the two pseudo-particles state |π−, aφ〉 will be parity even
in the simplest case of zero total orbital angular momentum. Remembering the transformation of
Dirac fermions under parity P̂ψ = γ0ψ, we can easily realise:

P̂ (∂µaφ〈π−, aφ|d̄γµγ5CAdss|K−〉) = g0i∂µ(−aφ)〈π−, aφ|d̄γ0γµγ5γ0CAdss(−|K−〉) =
= g0i∂µaφ〈π−, aφ|d̄(−g0i)γµγ5(γ0)2CAdss|K−〉 = −∂µaφ〈π−, aφ|d̄γµγ5CAdss|K−〉

(4.118)

which implies 〈π−|d̄γµγ5CAdss|K−〉 = 0.
What we need to do is just assessing the vectorial part of the matrix element. We can envisage

its most general form just by means of considerations based on Lorentz invariance:

〈π−|d̄γµs|K−〉 = (pµs + pµd )FK1 + (pµs − pµd )FK2 (4.119)

up to two form factors FK1 and FK2, which must be evalutated by numerical and non-perturbative
techniques. They can just be functions of Lorentz scalars, i.e the kaon and pion mass, together
with p2a. There are not additional independent scalars that can be built up with the three particle
momenta if one set the axion mass to zero (as we are going to do, using once more the invisible
axion limit). That said, we can move back to the evalutation of the matrix Mif , which will take
the form

Mif =
CVds
2fa

[
paµ(p

µ
s + pµd )FK1 + paµ(p

µ
s − pµd )FK2

]
(4.120)

Using the conservation law pµs − pµd = pµa and setting the axion mass approximately to zero (i.e
paµp

aµ ≈ 0), we see that the term proportional to FK2 can be removed from the calculation. The
remaining contribution can be easily written down as

Mif =
CVdsm

2
K

2fa

(
1− m2

π

m2
K

)
FK1 (4.121)

From this point on, the computation proceeds exactly as shown above, finally leading us to the
result

B(K− → π− + aφ) =
m3
K

64πf2a~
ε
dR/dL
ds

Γτtot

(
1− m2

π

m2
K

)3

= 1.1× 10−9

(
ma

0.2eV

)2(
ε
dR/dL
dd ε

dR/dL
ss

λ10

)
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where λ ≈ 0.2 is the already introduced CKM parameter. Moreover, εdRds refers to M4 and εdLds to
M1/M2. For the form factor, we have used FK1(p

2
a ≈ 0) = 1. Strictly speaking, this is correct

only for exact SU(3) flavour symmetry, but corrections to one are known to go as the ratio of
quark masses and, hence, they can be ignored at this level of approximation. For M3 we have
CVds = 0, so that the process is not allowed and the current bound B(K+ → π++aφ) < 7.3×10−11

from [66] is immediately satisfied. On the contrary, for the M4 model the previous formula fixes a
constraint on εdRss , for which there are no theoretical considerations to derive an estimation. Taking
into account that εdRdd must be approximately one and using ma ≈ 0.12eV , we get εdRss < 1.9×10−8,
which leaves us with a pretty unrealistic model. On the other hand, for the M1/M2 theories
the εdL parameters are CKM-like, so that εdLdd ε

dL
ss /λ

10 ≈ 1. This provides us with an axion mass
bound of ma < 0.05eV , comparable with the astrophysical ones. But this does not mean that the
main slice of the heavy axion mass window must be cut off. We should not forget that our model
building form of ε is just a working hypothesis: we know that the left-handed ε formulae must
be related to the CKM sector, but, in practise, we miss any explicit expression for them. These
precision flavour experiments should actually be used to measure these Yukawa couplings, instead
of further constraining the axion mass.

In a similar fashion, one can derive the branching ratio for other meson decays. For example, it
can be considered the B+ → K+ + aφ reaction, whose experimental bound is B(B+ → K+ + f) <
4.9 × 10−5 from [67]. Remembering that the meson B+ (ub̄) has a mass mB = 5279.25MeV and
a life-time τB = 1.64× 10−12s, we can evalutate its branching ratio

B(B+ → K+ + aφ) =
m3
B

64πf2a~
ε
dR/dL
bs

Γτtot

(
1− m2

K

m2
B

)3

F2
B = 3.8× 10−7

(
ma

0.2eV

)2(
ε
dR/dL
bb ε

dR/dL
ss

λ4

)
(4.122)

where FB is again the form factor defined by 〈K−|s̄γµb|B−〉 = (pµs + pµb )FB : its value is known to
be FB = 0.33. The result is clearly not ruled out by experiments even in this case. Despite that,
the less tight constraint on this decay mode will impose bounds that are less stringent than those
previously derived: for instance, for M1/M2 we obtain ma < 1.8eV , which is higher than the hot
dark matter limit.



Conclusions

The axion idea can solve two disturbing problems of contemporary physics at one shot. From
one side, it can naturally justify why strong interactions do not violate parity and time-reversal
symmetry and, therefore, it can give an answer to the strong CP problem in a pretty elegant way.
On the other hand, being stable and weakly interacting particles, axions turn out to be excellent
dark matter candidates.

Because of their light masses, just as for neutrinos, particle accelerators are not useful to directly
detect axions. Nevertheless, these new particles must be embodied in some minimal extensions of
the standard model. Hence, the particle content of these BSM theories can be potentially measured
and constrained, thus offering an indirect proof of axion existence. In Chapter 2, we revised the
famous DFSZ model, enlarging the SM with a second Higgs doublet and a Higgs singlet. In
particular, we pinned down and examined the consequences of slightly changing the quartic c-term
of the potential with a cubic one. As expected, the effects of this modification resulted in tiny
corrections of mass formulae with respect to the previous model, without any testable impact on
phenomenology at MeV scale: the high value of the vφ threshold, required to make the axion
invisible, overshadows any possible departure of the cubic model from the quartic one. Despite
that, we considered in this new setup the mass spectrum of the theory for different values of the
parameters a, b and c, which relate the Higgs doublets sector with the singlet one. As already
claimed in previous works, these scenaries are particularly appealing, because they provide a light
spectrum of particles (one of which identifiable with the SM Higgs), which could be in principle
detected at LHC or in future particle accelerators able to reach the 100TeV regime. Moreover, we
noticed the presence of an extra viable situation which was absent in the quartic model, given by
the quasi-free singlet limit. Here, the Higgs singlet self-coupling λφ is simply set to zero, opening
up the possibility for the cubic potential term to dominate. But, so far, the interest in this case is
again purely theoretical, because the majority of particle masses reside in the vφ energy region. By
way of conclusion, the realization of custodial symmetry was taken into account, too. To further
contrain the model, a brief description of the electroweak precision test was developed and the
bounds imposed by the Peskin-Takeuchi parameter T for the more interesting quasi-custodial case
were considered.

Even though the consequences on the mass spectrum are essentially negligible, as described in
Chapter 3, the replacement of the quartic c-term with the cubic interaction can affect the periodicity
conditions of the effective potential for the axion phase. We observed how that adjustment was
able to narrow down the number of degenerate vacuum states in which the axion field can settle
in after the emergence of a QCD potential around the scale TQCD ∼ 200-300MeV . Thereby, we
pointed out how a cubic DFSZ model seems to soften the domain wall cosmological puzzle.

The effects of that are even more enhanced in the generalized class of theories which we took
into account in Chapter 4. In particular, this section is devoted to a precise analysis of axion
interactions with gauge bosons, through the quantum anomaly contributions, and with fermions,
by means of the Yukawa sector. Although axion models able to erase the axion couplings to
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electrons and photons were already designed in a pretty simple conceptual framework, until now it
was thought that a well-established result of DFSZ models was the prediction of a non-vanishing
axion-nucleon coupling. What we explicitly showed is that by dropping out the hypothesis of
a family universal PQ charge pattern, the interplay between axion and nucleons can be highly
suppressed and axions can be endowed with the property of nucleophobia. Two fundamental
conditions for that to be pursued were derived: the axion verteces Cu and Cd with the up and
down quark respectively are required to satisfy the relations Cu +Cd = 1 and Cu = 2/3. Working
in a next-to-minimal non-universal 2+1 flavour structure, we derived all possible models varying
for their charge configurations. Among all them, we spotted a particular subset of theories whose
fermion couplings make nucleophobia achievable. What was observed is how for these axion models
some recent fits of ḡae = 1.5 × 10−13 and gaγ = 0.14 × 10−10GeV −1 can be much more easily
accomodate with respect to the universl DFSZ scenario. Moreover, by very definition, the bound
on protons and nucleons interactions coming from neutrino burst duration signal of supernovae
1987A of g2ap + g2an < 3.6 × 10−19 can be evaded: that discloses the possibility of reaching the
heavy axion mass window 20meV < ma < 200meV (in contrast with the previous bound of
ma < 20meV ). Thereby, the next generations of helioscopes, such as IAXO, will be crucial in
order to test nucleophobic axions.

Once we enable the PQ charge pattern to violate family symmetry, the axion becomes a par-
ticular kind of familon. Consequently, we highlighted at the end of the third chapter how a 2+1
DFSZ model can legitimate flavour changing reactions. That paves the way to the possibility of
extracting important information about axion physics not only from astrophysical observations,
but also from particle physics experiments. Indeed, the limits on the branching ratio of important
decay processes, such as B(τ− → e−f) < 2.6× 10−3 or B(K+ → π+ + aφ) < 7.3× 10−11, can be
used to constrain the strength of the flavour violating verteces, which are ultimately related to the
PMNS and CKM matrix elements.

Despite the growing precision which has been obtained by experimental measurements, this
work illustrated how there is still enough theoretical freedom to mediate between our conceptual
constructions and phenomenological outcomes. Furthermore, we can probably say that, because of
its ability of conveying together efforts coming from all conceivable research areas, like cosmology,
astrophysics, high energy frontiers or physics of flavour violation, the experimental and speculative
axion hunting remains one of the most fascinating challenge of contemporary physics.
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Appendix A

Some formal developments about
chiral anomalies

In this section we are going to analyse in some detail the derivation of the anomalous term,
showing up in chiral theories, from different but complementary points of view. The first part
aims to obtain the Adler-Bardeen theorem by explicitly assessing the triangle diagram, responsible
for the anomalous contribution. This perturbative approach to anomalies will make use of the
dimensional regularization procedure. Here, the problem of handling the γ5 matrix will be faced
by means of the self-consistent Breitenlohner-Maison prescription. The second part will counter the
anomaly issue from a non-perturbative perspective, directly dealing with quadratic fermion path
integrals. These ill-defined expressions will be regularized using the general ζ-function procedure.

A.1 The dimensional regularization viewpoint

Let us consider a quantum field theory comprising a massless Dirac spinor, which couples to a
non-abelian gauge field in the customary way:

L = −1

2
tr[GµνGµν ] + ψ̄i /Dψ (A.1)

with Dµ = ∂µ − igAaµτ
a
F and tr[τaF τ

b
F ] = δab/2. The field strength tensor is defined as usual:

Gµν = ∂µAν − ∂νAµ − ig[Aµ, Aν ]. From this Lagrangian, we can directly extract the Feynman
rules of this problem. Moreover, by means of the action principle, we can derive the equations of
motion {

[∂µδ
ab + gfabcAcµ]Gµνb = −gjνa = −gψ̄γντaFψ

i/Dψ = 0
(A.2)

We know that jνa is the fermion vector current, while the fermion axial current is defined as
jνa5 = ψ̄γνγ5τaFψ. The purely gluonic current Jνa = fabcAcµGµνb can be read off from (A.2). If
we endow our fermions with an extra non-abelian global symmetry with generators X a, we could
build a general axial current associated to it, i.e Jaν5 = ψ̄γνγ5X a

Fψ.
Actually, the perturbative approach to anomalies starts by considering the evalutation of a

peculiar matrix element: 〈k1, r; k2, s|Jaλ5 (x)|0〉. Here, k1 and k2 are the external momenta of two
quanta of Aµ, whereas r and s the respective polarization states. It is crucial to remember how,
in perturbation theory, external fields are to be considered as asymptotically free: therefore, the
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whole normal mode expansion machinery will hold true for

Ainµ (x) = lim
x0→−∞

Aµ(x) Aoutµ (x) = lim
x0→+∞

Aµ(x) (A.3)

If k1 and k2 refer to gluon momenta, we will have to project our physical situation into a high
energy regime, where g � 1.

We can start developing our object, so as to obtain the LSZ reduction formula in coordinate
space. To start with, we can notice

Maλ
k1,r;k2,s(z) = 〈k1, r; k2, s|Jaλ5 (z)|0〉 = 〈0|gr,out(k1)gs,out(k2)Jaλ5 (z)|0〉 (A.4)

For instance, we could write gr,out(k1) = (gr,out(k1)− gr,in(k1)) + gr,in(k1): factors containing one
gr,in(k1) or gs,in(k2) will vanish when the annihilation operators will act on the right vacuum state
of (A.4). In particular, making use of the inversion relation between the annihilation operator

g
in/out
r (k1) and the vector field A

in/out
µ (x), we could state:

gr,out(k1)− gr,in(k1) = −εaµr (k1)

∫
dx(eik

out
1 ·xi

↔

∂x0
Aoutaµ (x)− eik

in
1 ·xi

↔

∂x0
Ainaµ(x)) =

= −εaµr (k1)

∫
dx

(
lim

x0→+∞
− lim
x0→−∞

)
(eik1·xi

↔

∂x0
Aaµ(x)) = −εaµr (k1)

∫
d4x∂x0

(eik1·xi
↔

∂x0
Aaµ(x))

(A.5)

Therefore, equation (A.4) will become:

Maλ
k1,r;k2,s(z) = i2εbµr (k1)ε

cν
s (k2)

∫
d4xd4y∂x0

∂y0 [e
ik1·x+ik2·y〈0|

↔

∂x0
Abµ(x)

↔

∂y0A
c
ν(y)J

aλ
5 (z)|0〉] =

= −εbµr (k1)ε
cν
s (k2)

∫
d4xd4yeik1·x+ik2·y(ω2

1 + ∂2x0
)(ω2

2 + ∂2y0)〈0|A
b
µ(x)A

c
ν(y)J

aλ
5 (z)|0〉 =

= −εbµr (k1)ε
cν
s (k2)

∫
d4xd4yeik1·x+ik2·y(|k1|2 + ∂2x0

)(|k2|2 + ∂2y0)〈0|A
b
µ(x)A

c
ν(y)J

aλ
5 (z)|0〉 =

= −εbµr (k1)ε
cν
s (k2)

∫
d4xd4yeik1·x+ik2·y(−~∇2

x + ∂2x0
)(−~∇2

y + ∂2y0)〈0|A
b
µ(x)A

c
ν(y)J

aλ
5 (z)|0〉 =

= −εbµr (k1)ε
cν
s (k2)

∫
d4xd4yeik1·x+ik2·y2x2y〈0|Abµ(x)Acν(y)Jaλ5 (z)|0〉

(A.6)

Moving from second to third line, we have taken into account the mass shell relation ω2 = |k|2
for massless particles and, in the following passage, we automatically integrated by parts twice,
moving the operator ~∇2 from the plane wave function to the vector field.

If we now apply the equation of motion (A.2) for the four vector potential, we will get

〈k1, r; k2, s|Jaλ5 (z)|0〉 = −g2εbµr (k1)ε
cν
s (k2)

∫
d4xd4yeik1·x+ik2·y〈0|jbµ(x)jcν(y)Jaλ5 (z)|0〉+O(g2)

(A.7)

The gluon current Jνa, in case it contributes to (A.7), will enter higher order terms, because gluons
can only attach to fermion lines of an axial current by means of at least an extra g vertex.

Remembering that the Fourier transform of a matrix element is given by

F(〈0|jbµ(x)jcν(y)Jaλ5 (z)|0〉) = (2π)4δ4(p+ q − w)M̃abcλ
µν (p, q, w) (A.8)
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Figure A.1: Lowest order contributions to the amplitude M̃abcλ
µν (p, q, p + q), given by a fermionic

triangle A.1a and the indistinguishable process A.1b, where k1, µ, b ↔ k2, ν, c. The black square
corresponds to a γ5 matrix insertion.

where w is the axial current momentum, we can plug the previous identity in (A.7) and, hence,
after some integrations, we will end up with:

〈k1, r; k2, s|Jaλ5 (z)|0〉 = −g2εbµr (k1)ε
cν
s (k2)M̃abcλ

µν (k1, k2, w = k1 + k2)e
i(k1+k2)z +O(g2) (A.9)

The Feynman diagrams contributing to M̃abcλ
µν (p, q, w = p + q) at lower order in g are shown in

figure A.1. But if we want to derive the Adler-Bardeen theorem, as set out in (1.64), we have to
consider the four divergence of (A.9):

〈k1, r; k2, s|∂λJaλ5 (z)|0〉 = −ig2εbµr (k1)ε
cν
s (k2)(k1 + k2)λM̃abcλ

µν (k1, k1, k1 + k2)e
i(k1+k2)z +O(g2)

(A.10)

The integrals which enable us to assess the two triangle diagrams are given by:

M̃λµν
abc (p, q, p+ q) = −

∫
d4l

(2π)4
tr

[
iXa
/l − /k2

γλγ5
iτ b

/l + /k1
γµ
iτc
/l
γν +

iXa
/l − /k1

γλγ5
iτc

/l + /k2
γν
iτb
/l
γµ
]
=

= −
∫

d4l

(2π)4
tr

[
ωabc

i(/l − /k2)

(l − k2)2
γλγ5

i(/l + /k1)

(l + k1)2
γµ
i/l

l2
γν + ωacb

i(/l − /k1)

(l − k1)2
γλγ5

i(/l + /k2)

(l + k2)2
γν
i/l

l2
γµ
]
(A.11)

with ωabc = tr[X aτ bτ c] and where indeces of the fundamental representation (entering spinor
propagators) have been understood. The overall minus sign accounts for the presence of fermion
loops. To be honest, we overlooked the small imaginary part +iε, which should have accompanied
any denominators to account for mass poles: that was done just to lighten the notation.

The Breitenlohner-Maison prescription As already observed in the first chapter, this inte-
gral is linearly divergent. That means a regularization procedure is called for to give a mathematical
significance to the foregoing expression. An extremely powerful instrument turns out to be dimen-
sional regularization, which can be applied to any situation of interest, owning to its ability of
sustaining non-abelian gauge invariance, too. This procedure was employed in chiral theories in
[68], for instance. But a non-trivial issue, which one immediatly bumps into, is handling the γ5
matrix. To pin down this problem, in this paragraph we are going to work directly in euclidean
notation for matter of convenience: a Minkowski generalization, if needed, will be straightforward.

This delicate task involving γ5 was faced in [69], where it was pointed out how this matrix is
not the sole element rooted in four-dimensional space. In a dimensional regularization framework,
Lorentz covariant tensors, such as γµ, lµ, δµν . . . , are extended to d dimensions by treating them
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as formal objects with some algebraic properties. But some problems arise even when dealing with
the εµνρσ-tensors, which is genuinely 4-dimensional, as shown by

εµ1µ2µ3µ4
εν1ν2ν3ν4 =

∑
π∈S4

sgnπ

4∏
i=1

δµiνπ(i)
d = 4 (A.12)

This property can just hold in d = 4. Not to abandon the possibility of reducing products of
several ε-tensors in algebraic manipulation of integrals, Breitenlohner and Maison suggested to
recognize the special role of d = 4, while extending tensors to arbitrary d. That can be achieved by
introducing, together with d-dimensional objects, also 4- and (d − 4)-dimensional ones. Thereby,
we will decompose a d-dimensional tensor as:

lµ︸︷︷︸
d-dimensional

= l̂µ︸︷︷︸
(d−4)-dimensional

+ l̄µ︸︷︷︸
4-dimensional

(A.13)

The d-dimensional symbols γµ, lµ, δµν , εµρστ and 1 will satisfy the properties [69]:

δµν = δνµ δµρδρν = δµν δµν lν = lµ δµνγν = γµ

δµνενρστ = εµρστ {γµ, γν} = 2δµν1 1γµ = γµ1 δµµ = d tr1 = 4
(A.14)

while the (d− 4)-dimensional ones γ̂µ, l̂µ and δ̂µν are assumed to obey:

δµν δ̂νσ = δ̂µν δ̂νσ = δ̂µσ δ̂µν = δ̂νµ δ̂µν lν = l̂µ δ̂µνγν = γ̂µ

εµ1µ2µ3µ4
εν1ν2ν3ν4 =

∑
π∈S4

sgnπ

4∏
i=1

(δµiνπ(i)
− δ̂µiνπ(i)

) =
∑
π∈S4

sgnπ

4∏
i=1

δ̄µiνπ(i)

(A.15)

This set of identities suffices to prove:

δµν γ̂ν = δ̂µν γ̂ν = γ̂µ {γµ, γ̂ν} = {γ̂µ, γ̂ν} = 2δ̂µν1 δ̂µνενρστ = 0

εµ1µ2µ3µ4
= sgnπεµπ(1)µπ(2)µπ(3)µπ(4)

δ̂µµ = n− 4 trγµ = 0
(A.16)

Note how ε just exists in one version. The same is true for γ5. Actually, it can be noticed that
there are two properties that characterise the fifth gamma matrix in four dimensions:

i) tr[γ5γµγνγργσ] = 4εµνρσ ii) {γµ, γ5} = 0 (A.17)

which are incompatible for d 6= 4: just one can be used to define a d-dimensional γ5. But if we
mantain the second one, together with the reasonable cyclicity property of trace operations, we
are unavoidably led to a contradiction.

Proof. We can simply start by considering the simple object tr[γ5γµγνγργσ]. If we just make use
of the fundamental property γµγµ = δµµ = d, together with the trace cyclicity and {γµ, γ5} = 0,
our initial gamma trace can be manipulated as:

dtr[γ5γµγνγργσ] = tr[γ5γµγνγργσ(γλγλ)] = −tr[γ5γνγργσγλγλγµ] =
= −2δµλtr[γ5γνγργσγλ] + tr[γ5γνγργσγλγµγλ] = −2δµλtr[γ5γνγργσγλ]− tr[γ5γργσγλγµγλγν ] =

= −2δµλtr[γ5γνγργσγλ]− 2δνλtr[γ5γργσγλγµ] + tr[γ5γργσγλγµγνγλ] =

= −2δµλtr[γ5γνγργσγλ]− 2δνλtr[γ5γργσγλγµ]− tr[γ5γσγλγµγνγλγρ] =

= −2δµλtr[γ5γνγργσγλ]− 2δνλtr[γ5γργσγλγµ]− 2δρλtr[γ5γσγλγµγν ] + tr[γ5γσγλγµγνγργλ] =

= −2δµλtr[γ5γνγργσγλ]− 2δνλtr[γ5γργσγλγµ]− 2δρλtr[γ5γσγλγµγν ]− tr[γ5γλγµγνγργλγσ] =

= −2δµλtr[γ5γνγργσγλ]− 2δνλtr[γ5γργσγλγµ]− 2δρλtr[γ5γσγλγµγν ]− 2δσλtr[γ5γλγµγνγρ]+

+ tr[γ5γλγµγνγργσγλ]
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If we further take into account the relations {γα, γβ} = 2δαβ and tr[γ5γα, γβ ] = 0 (which is a direct
consequence of {γµ, γ5} = 0), we could finally get

2dtr[γ5γµγνγργσ] = −2tr[γ5γνγργσγµ]− 2tr[γ5γργσγνγµ]− 2tr[γ5γσγργµγν ]− 2tr[γ5γσγµγνγρ]

2dtr[γ5γµγνγργσ] = 4tr[γ5γµγνγργσ]− 2tr[γ5γργσγνγµ]− 2tr[γ5γσγργµγν ]

2dtr[γ5γµγνγργσ] = 4tr[γ5γµγνγργσ] + 4tr[γ5γργσγµγν ]

(4− d)tr[γ5γµγνγργσ] = 0

(A.18)

Therefore, if {γµ, γ5} = 0 for arbitrary d, the previous relation tells us tr[γ5γµγνγργσ] = 0 for
d 6= 4. But along with being a proof of incompatibility of the two γ5 definitions, here we are also
said that no smooth limit exists so as to recover

lim
d→4

tr[γ5γµγνγργσ] = 4εµνρσ 6= 0 (A.19)

As a consequence, {γµ, γ5} = 0 is not a good identity to extend to general d without jeopardising
the entrenched 4-dimensional γ5 properties.

Thereby, Breitenlohner and Maison realized tr[γ5γµγνγργσ] = 4εµνρσ should have been used
as the right defining relation for γ5: {γµ, γ5} = 0 just turns out to be an accident of four di-
mensions. One has to recognize γ5 is a deep-seated 4-dimensional tensor, which will not anti-
commute with d-dimensional gamma matrices. As a matter of fact, by consistently assuming
γ5 = (4!)−1εµνρσγµγνγργσ, [69] succeded in proving

{γµ, γ5} = {γ̂µ, γ5} = 2γ̂µγ5 γ25 = 1 (A.20)

The first relation will play a crucial rule in the emergence of the anomaly. Moreover, it straight-
forwardly stems from it how:

{γ̂µ, γ5} = γ̂µγ5 + γ5γ̂µ = 2γ̂µγ5 ⇒ [γ̂µ, γ5] = 0 (A.21)

Back to the integral After this brief interlude, which gave us the necessary tools to counter
the γ5 issue, we can return to our Minkowski integral (A.11), dimensionally regularized:

Iµνabc(k1, k1) = iµ4−2ω

∫
d2ωl

(2π)2ω
ωabc

tr[(/l − /k2)(/k1 + /k2)γ
5(/l + /k1)γ

µ/lγν ]

(l − k2)2(l + k1)2l2
+

+ iµ4−2ω

∫
d2ωl

(2π)2ω
ωacb

tr[(/l − /k1)(/k1 + /k2)γ
5(/l + /k2)γ

ν/lγµ]

(l − k1)2(l + k2)2l2

(A.22)

in which µ is the usual ultraviolet regulator, that we use to preserve physical dimensions and d =
2ω ∈ C. Of course, γ5 is handled as made clear in the previous paragraph (with a straightforward
translation to Minkowski formalism). We also remind how all physical momenta k1 and k2 remain
four dimensional vectors: just the loop momentum l is analytically extended to 2ω.

To reduce our integral to the really contributing part, we can rewrite (/k1 + /k2)γ
5 in the first

addend in a clever way:

(/k1 + /k2)γ
5 = (/l + /k1)γ

5 − (/l − /k2)γ
5 = −γ5(/l + /k1)− (/l − /k2)γ

5 + 2γ5(/̂l + /̂k1) (A.23)

where we used {γ̂µ, γ5} = 2γ̂µγ5 and in which:

γ̂µlµ = γαĝ
αµgµβl

β = γαĝ
αµĝµβl

β = γ̂µ l̂µ = /̂l (A.24)
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An equivalent manipulation can be pursed for the second addend, with k1, µ, b↔ k2, ν, c. Thereby,
carrying out some proper simplifications, we will have:

Iµνabc(k1, k1) =iµ
4−2ω

∫
d2ωl

(2π)2ω
ωabctr

[
− (/l − /k2)γ

5γµ/lγν

(l − k2)2l2
− γ5(/l + /k1)γ

µ/lγν

(l + k1)2l2
+

+ 2
(/l − /k2)γ

5(/̂l + /̂k1)(/l + /k1)γ
µ/lγν

(l − k2)2(l + k1)2l2︸ ︷︷ ︸
∆µν(k1,k2)

]
+ (k1, µ, b↔ k2, ν, c)

(A.25)

If we perform the change of variable l′ = l − k2 in the first addend

Iµνabc(k1, k1) =iµ
4−2ω

∫
d2ωl

(2π)2ω
ωabctr

[
−
/lγ5γµ(/l + /k2)γ

ν

l2(l + k2)2
− γ5(/l + /k1)γ

µ/lγν

(l + k1)2l2
+

+∆µν(k1, k2)

]
+ (k1, µ, b↔ k2, ν, c)

(A.26)

we can use the trace cyclicity and {γ̂µ, γ5} = 2γ̂µγ5 once more, in the second contribution, to
write:

Iµνabc(k1, k1) =iµ
4−2ω

∫
d2ωl

(2π)2ω
ωabctr

[
−
/lγ5γµ(/l + /k2)γ

ν

l2(l + k2)2
+
/lγ5γν(/l + /k1)γ

µ

(l + k1)2l2︸ ︷︷ ︸
Aµν(k1,k2)

+

−2
/lγ5γ̂ν(/l + /k1)γ

µ

(l + k1)2l2︸ ︷︷ ︸
Πµν(k1,k2)

+∆µν(k1, k2)

]
+ (k1, µ, b↔ k2, ν, c)

(A.27)

The term Aµν(k1, k2) is manifestly antisymmetric for the exchange of k1 ↔ k2 and µ ↔ ν.
Hence, by adding it to its counterpart (k1, µ, b↔ k2, ν, c), we observe

ωabctr[Aµν(k1, k2)] + ωacbtr[Aνµ(k2, k1)] = ωabctr[Aµν(k1, k2)]− ωacbtr[Aµν(k1, k2)] =

= (ωabc − ωacb)tr[Aµν(k1, k2)] = tr[X a[τ b, τ c]]tr[Aµν(k1, k2)] = f bcetr[X aτe]tr[Aµν(k1, k2)] =

= f bcetr[X a] tr[τe]︸ ︷︷ ︸
=0

tr[Aµν(k1, k2)] = 0
(A.28)

because infinitesimal generators of unitary groups have null traces. But this is true if X a and τe

belong to different internal symmetry groups, allowing us to split the trace in the second-to-last
passage. In case X a = τa, the result is unchanged:

ωabctr[Aµν(k1, k2)] + ωacbtr[Aνµ(k2, k1)] = f bcetr[τaτe]tr[Aµν(k1, k2)] =

=
f bce

2
tr[[τa, τe]]tr[Aµν(k1, k2)] =

f bce

2
faedtr[τd]tr[Aµν(k1, k2)] = 0

(A.29)

At the same time, the contribution Πµν(k1, k2) presents the following numerator:

tr[/lγ5γ̂ν(/l + /k1)γ
µ] = tr[γ5γ̂νγαγµγβ ](l + k1)αlβ = ĝνρtr[γ

5γργαγµγβ ](l + k1)αlβ =

= −4iĝνρε
ραµβ(l + k1)αlβ = 0

(A.30)

owning to the contraction property of the (d−4)-metric tensor and the four dimensional Levi-Civita
symbol.
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Taking that into account, we are left with:

Iµνabc(k1, k1) =− 2iµ4−2ωωabc

∫
d2ωl

(2π)2ω
tr[(/l − /k2)γ

5(/̂l + /̂k1)(/l + /k1)γ
µ/lγν ]

(l − k2)2(l + k1)2l2
+ (k1, µ, b↔ k2, ν, c)

(A.31)

The denominator can be disentangled by means of Feynman parameters:∫
d2ωl

(2π)2ω
1

(l − k2)2(l + k1)2l2
=

∫
d2ωl

(2π)2ω

∫ 1

0

dxdydz
2δ(x+ y + z − 1)

[x(l − k2)2 + y(l + k1)2 + zl2]3
=

=

∫
d2ωl

(2π)2ω

∫ 1

0

dxdy
2

[(l − xk2 − yk1)2 − x(x− 1)k22 − y(y − 1)k21]
3

(A.32)

Actually, one should carefully notice that:

(l − xk2 − yk1)
2 = l̂2 + (l̄ − xk2 − yk1)

2 (A.33)

because of the four dimensional nature of the external momenta. But from expression (A.32),
we can easily extract the condition legitimating a Wick rotation. As usual, we can analytically
continue our integral into euclidean space, provided that ∆ = x(x− 1)k22 + y(y − 1)k21 > 0 in the
interval x, y ∈ [0, 1]. That is ensured for k21, k

2
2 > 0. By looking at (A.10), the euclidean extension

will be given by:

ε̄rbµ(k1)ε̄
s
cν(k2)(k1 + k2)λM̃abc

λµν(k1, k1, k1 + k2) =

= −4µ4−2ωωabcε̄rbµ(k1)ε̄
s
cν(k2)

∫
d2ωle
(2π)2ω

∫ 1

0

dxdy
tr[(/l − /k2)γe5(/̂l + /̂k1)(/l + /k1)γeµ/lγeν ]

[(l − xk2 − yk1)2 + x(x− 1)k22 + y(y − 1)k21]
3
+

+ (k1, µ, b↔ k2, ν, c)

(A.34)

where we remind that γe5 = −γ5, γe0 = γ0 and γek = −iγk. The polarization vectors have been
extended to euclidean space, too, as ε̄rbµ = (ε̄rb0 = −iεrb0, εrbk): therefore, γe ·ε̄rb = −i/εrb . Nonetheless,
we are going to drop any euclidean subscript from now on, not to weight the notation: after all,
we will remain in euclidean space until the end of our calculation.

We should proceed by performing a shift redefinition of l̄′µ = (l̄− xk2 − yk1)µ. But in order to

do that, we have to analyse the structure of the numerator, noticing that /̂k1 = /̂k2 = 0 (because we
are contracting a (d− 4)-dimensional tensor with a 4-dimensional one):

tr[(/l − /k2)γ5/̂l(/l + /k1)γµ/lγν ] = tr[γ5γ̂αγβγµγδγνγρ]l̂α(l + k1)βlδ(l − k2)ρ =

= tr[γ5γ̂αγβγµγδγνγρ](l̂αlβlδlρ + l̂αk1βlδlρ − l̂αlβlδk2ρ − l̂αk1βlδk2ρ)
(A.35)

But the second and third terms will not contribute, because they lead to an integration over an odd
number of variables. The quartic term in l can be shown to vanish by simple algebraic passages.
Indeed, by projecting the trace over the symmetric part in α and β indeces:

tr[γ5γ̂αγβγµγδγνγρ]l̂αlβlδlρ = δ̂αζtr[γ5γ̂αγβγµγδγνγρ]lζ lβlδlρ =

= tr[γ5γ̂ζγβγµγδγνγρ]lζ lβlδlρ =
1

2
tr[γ5{γ̂ζ , γβ}γµγδγνγρ]lζ lβlδlρ =

= δ̂ζβtr[γ5γµγδγνγρ]lζ lβlδlρ = 4δ̂ζβεµδνρlζ lβlδlρ = 4εµδνρ l̂
2lδlρ = 0

(A.36)
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because we are contracting a symmetric tensor lδlρ with an antisymmetric one in the same couple
of indeces.

We have almost complete this lengthy procedure of reduction of the initial integral. Indeed, we
have:

Iabcµν (k1, k1) = ωabc
∫ 1

0

dxdy

∫
d2ωl

(2π)2ω
−4µ4−2ωtr[γ5γ̂αγβγµγδγνγρ]l̂αk1β(l̂δ + l̄δ)k2ρ
[(l − xk2 − yk1)2 + x(x− 1)k22 + y(y − 1)k21]

3
+

+ (k1, µ, b↔ k2, ν, c) =

= µ4−2ωtr[γ5γ̂αγβγµγδγνγρ]

∫ 1

0

dxdy

[∫
d2ωl

(2π)2ω
−4l̂α l̂δk1βk2ρω

abc

[(l − xk2 − yk1)2 + x(x− 1)k22 + y(y − 1)k21]
3
+

− 4

∫
d2ω−4 l̂

(2π)2ω−4
l̂α

∫
d4 l̄

(2π)4
l̄δ

k1βk2ρω
abc

[(l − xk2 − yk1)2 + x(x− 1)k22 + y(y − 1)k21]
3︸ ︷︷ ︸

=0

]
+ (k1, µ, b↔ k2, ν, c)

(A.37)

where the last term disappears, due to the two separate odd integrations in 4 and (d− 4) spaces.
With this last suppression, we have reached the core of the anomaly. We can extract the tensor
structure of the integral and perform the long-awaited change of variable in l̄:

I ′abcµν (k1, k1) = −4µ4−2ωωabc
δ̂αδ

2ω − 4

∫ 1

0

dxdy

∫
d2ωl

(2π)2ω
tr[γ5γ̂αγβγµγδγνγρ]l̂

2k1βk2ρ
[(l − xk2 − yk1)2 +∆]3

=

= −4µ4−2ωωabc
δ̂αδ

2ω − 4

∫ 1

0

dxdy

∫
d2ω−4 l̂

(2π)2ω−4

∫
d4 l̄

(2π)4
tr[γ5γ̂αγβγµγδγνγρ]l̂

2k1βk2ρ

[(l̄ − xk2 − yk1)2 + l̂2 +∆]3
=

= −4µ4−2ωωabc δ̂αδ
2ω − 4

k1βk2ρ

∫ 1

0

dxdy

∫
d2ω−4 l̂

(2π)2ω−4
l̂2
∫

d4 l̄

(2π)4
tr[γ5γ̂αγβγµγδγνγρ]

[l̄2 + (l̂2 +∆)]3

(A.38)

The last surviving trace can be simplified once for all:

δ̂αδtr[γ5γ̂αγβγµγδγνγρ] = −δ̂αδtr[γ5γ̂αγβγδγµγνγρ] + δ̂αδδµδtr[γ5γ̂αγβγνγρ] =

= δ̂αδtr[γ5γ̂αγδγβγµγνγρ] + δ̂αδδµδtr[γ5γ̂αγβγνγρ]− δ̂αδδβδtr[γ5γ̂αγµγνγρ] =

= δ̂αδtr[γ5γ̂αγ̂δγβγµγνγρ] + δ̂σδδµδtr[γ5γσγβγνγρ]− δ̂σδδβδtr[γ5γσγµγνγρ] =

= (2ω − 4)tr[γ5γβγµγνγρ] + δ̂σδδµδεσβνρ︸ ︷︷ ︸
=0

− δ̂σδδβδεσµνρ︸ ︷︷ ︸
=0

= 4(2ω − 4)εβµνρ

(A.39)

The contribution of the l̄ integration can be derived through a well posed Mellin transform:

∫
d4 l̄

(2π)4
1

[l̄2 + (l̂2 +∆)]3
=

1

Γ(3)

∫
d4 l̄

(2π)4

∫ +∞

0

dtt2e−t[l̄
2+(l̂2+∆)] =

=
1

Γ(3)

1

16π2

∫ +∞

0

dtt2
e−t(l̂

2+∆)

t2
=

1

32π2

1

[l̂2 +∆]3

(A.40)
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Plugging this partial result in (A.38), we can further develop our expression:

I ′abcµν (k1, k1) = −µ
4−2ω

8π2
ωabc(4εβµνρ)k1βk2ρ

∫ 1

0

dxdy

∫
d2ω−4 l̂

(2π)2ω−4

l̂2

[l̂2 +∆]3
=

= −µ
4−2ω

2π2
ωabcεβµνρk1βk2ρ

∫ 1

0

dxdy

∫
d2ω−4 l̂

(2π)2ω−4

l̂2

Γ(3)

∫ +∞

0

dττ2e−τ(l̂
2+∆) =

= −µ
4−2ω

4π2
ωabcεβµνρk1βk2ρ

∫ 1

0

dxdy

∫ +∞

0

dττ2e−τ∆
(
− d

dτ

)∫
d2ω−4 l̂

(2π)2ω−4
e−τ l̂

2

=

=
µ4−2ω

4π2

ωabc

(2π)2ω−4
εβµνρk1βk2ρ

∫ 1

0

dxdy

∫ +∞

0

dττ2e−τ∆
(
d

dτ

)(
π

τ

)ω−2

=

=
µ4−2ω

4π4−ω
(2− ω)ωabc

(2π)2ω−4
εβµνρk1βk2ρ

∫ 1

0

dxdy

∫ +∞

0

dττ3−ωe−τ∆ =

=
µ4−2ω

4π4−ω
(2− ω)ωabc

(2π)2ω−4
εβµνρk1βk2ρΓ(2− ω)

∫ 1

0

dxdy∆ω−4 =

ω→2−→ ωabc

4π2
(2− ω)εβµνρk1βk2ρ

[
1

2− ω
+ . . .

] ∫ 1

0

dxdy

(A.41)

Therefore, the Γ(2 − ω) expansion for ω → 2 exactly simplifies the vanishing (2 − ω) overall
factor. If we add the contribution I ′′µν(k1, k1), obtained from the previous result by exchanging
k1, µ, b↔ k2, ν, c, we could state:

Iabcµν (k1, k1) = I ′abcµν (k1, k1) + I ′′abcµν (k1, k1) =
1

4π2

[
εβµνρk1βk2ρω

abc + εβνµρk2βk1ρω
acb

]
=

=
1

4π2
εβµνρk1βk2ρ(ω

abc + ωacb) =
1

4π2
εβµνρk1βk2ρd

abc

(A.42)

Now substituing this outcome in the starting matrix element (A.10), we end up with:

〈k1, r; k2, s|∂λJaλ5 (z)|0〉 = (−i)2 g
2

4π2
dabcεµνβρε

bµ
r (k1)ε

cν
s (k2)k

β
1 k

ρ
2e
i(k1+k2)z +O(g2) (A.43)

where we moved back to Minkowski space, as the extra factor −i betrays. However, to have a
better insight of the right-hand side of this expression, let us consider the following matrix element:
〈k1, r; k2, s|Gbµν G̃µνc (z)|0〉. We are developing a perturbative approach, retaining only lowest order

terms in g. Therefore, we can just take into account the linearized version of Gbµν G̃µνc (z), where
the four-vector potential is treated as a free field. Hence, at zero order in g, the normal modes
expansion will hold true:

Aνb (z) =

∫
Dpενrb(p)(gr(p)e

−ipz + g†r(p)e
ipz) (A.44)

in which Dp is the usual Lorentz invariant measure. Once said that, with a final effort we can
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draw up better our matrix element as:

〈k1, r; k2, s|Gbµν G̃µνc (z)|0〉 = 1

2
εµνρσ〈k1, r; k2, s|Gµνb Gρσc (z)|0〉 =

=
εµνρσ
2

〈k1, r; k2, s|(∂µAνb∂ρAσc + ∂νAµb ∂
σAρc − ∂µAνb∂

σAρc − ∂νAµb ∂
ρAσc ) +O(g)|0〉 =

= 2εµνρσ〈k1, r; k2, s|∂µAνb∂ρAσc |0〉 =

= 2εµνρσ

∫
DpDq〈k1, r; k2, s|∂µ[ενAb(p)g

†
A(p)e

ipz + h.c.]∂ρ[εσBc(q)g
†
B(q)e

iqz + h.c.]|0〉 =

= −2εµνρσ

∫
DpDqενAb(p)ε

σ
Bc(q)p

µqρ〈0|[gr(k1), g†A(p)][gs(k2), g
†
B(q)]|0〉e

i(p+q)z+

− 2εµνρσ

∫
DpDqενAb(p)ε

σ
Bc(q)p

µqρ〈0|[gs(k2), g†A(p)][gr(k1), g
†
B(q)]|0〉e

i(p+q)z =

= −2εµνρσ

∫
dpdqενAb(p)ε

σ
Bc(q)p

µqρηrAδ
3(k1 − p)ηsBδ

3(k2 − q)ei(p+q)z+

− 2εµνρσ

∫
dpdqενAb(p)ε

σ
Bc(q)p

µqρηsAδ
3(k2 − p)ηrBδ

3(k1 − q)ei(p+q)z =

= −2εµνρσ(ε
ν
rb(k1)ε

σ
sc(k2)k

µ
1 k

ρ
2 + ενsb(k2)ε

σ
rc(k1)k

µ
2 k

ρ
1)e

i(k1+k2)z =

= −2εµνρσ(ε
ν
rb(k1)ε

σ
sc(k2) + ενrc(k1)ε

σ
sb(k2))k

µ
1 k

ρ
2e
i(k1+k2)z

(A.45)

In the third line, we set 〈k1, r; k2, s|O(g)|0〉 = 0, because there is no higher order term in g quadratic
in the gauge four-potential. In the last passage we simply rearraged indeces, by employing the
antisymmetry of εµνρσ. Nonetheless, the two addends in brackets will contribute in the same way,
owing to the complete symmetry of the dabc factor. As a consequence, we will end up with the
equality:

1

2
εµνρσ〈k1, r; k2, s|Gµνb Gρσc (z)|0〉 = −4εµνρσε

ν
rb(k1)ε

σ
sc(k2)k

µ
1 k

ρ
2e
i(k1+k2)z

1

8
εµνβρ〈k1, r; k2, s|Gµνb Gβρc (z)|0〉 = εµνβρε

µ
rb(k1)ε

ν
sc(k2)k

β
1 k

ρ
2e
i(k1+k2)z

(A.46)

in which we reorganized and renamed indeces, in order to easily individuate how to rewrite the
right-hand side of (A.43). This final remark lets us enunciate the Adler-Bardeen theorem:

〈k1, r; k2, s|∂λJaλ5 (z)|0〉 = − g2

32π2
dabcεµνβρ〈k1, r; k2, s|Gµνb Gβρc (z)|0〉+O(g2) (A.47)

where the additional factor one-half with respect to (1.64) is due to the anticommutator embed-
ded in dabc. Clearly, relation (A.47) can be obtained from (1.64) by acting with two functional
derivatives, e.g δ

δAb
µ
, while keeping treating the gauge four-potential classically. We know that

this formula is exact and it does not need higher order corrections, that we implicitly understood
in O(g2). Nevertheless, by using a procedure based on Feynman diagrams and perturbative ex-
pansion, it is formidably challenging to envisage how all perturbative corrections could vanish.
Moreover, we derived the anomalous conservation law of a chiral fermion current as a formula
valid for matrix elements. But how can we say that, for a non-abelian gauge symmetry, the four-
divergence of Jaλ5 (z) exactly equals the combination Gµν G̃µν and not just its linear part? If even
non-linear terms contributed, the matrix element 〈k1, r; k2, s; k3, t|∂λJaλ5 (z)|0〉 would not vanish,
too, by means of anomalous box diagrams [70]. The non-perturbative approach will extensively
answer these questions.
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A.2 The ζ-function approach

We have already pointed out in the first chapter of this work how divergences in determinants of
differential operators are encoded in the ill-defined expression Πjλj , which grows without control.
An extremely useful instrument to regularize this kind of formulae is the ζ-function procedure
[15, 71]. Here the regularization is enclosed in the ζ-function itself, which can be analytically
extended to a meromorphic function in the whole complex plane (or to a holomorphic one in
C − {1}). Luckily, we can relate our functional determinants to the ζ-function, to benefit from all
of its properties.

Let us suppose we are given an elliptic differential operator A of order m > 0, that means an
operator

Aψ(x) =
∑

|α|≤m

aα(x)∂
αψ(x) | ∀v ∈ Rn, v 6= 0 ⇒

∑
|α|=m

aα(x)v
α 6= 0 (A.48)

That requirement simply makes A positive semi-definite. We further assume A is invertible and
defined on a manifold without boundary M of dimension d. If A is hermitian or normal (i.e
AA† = A†A), we can define the ζ-function associated to A as

ζ(s,A) = Tr[A−s] =
∑
j

λ−sj (A.49)

which converges for Re[s] > d/m. But we anticipated how ζ(s) can be continued on C as a function
of the complex variable s: in particular, it will have a well-defined behavior on the imaginary axis
Re[s] = 0. As a matter of fact, we can write

d

ds
ζ(s,A) =

d

ds

(∑
j

λ−sj

)
= −

∑
j

(logλj)λ
−s
j (A.50)

that, evaluted at s = 0, lets us claim

detA = exp

{
− d

ds
ζ(s,A)

∣∣∣∣
s=0

}
(A.51)

Actually, formula (A.49) can be tweaked, so that we are able to associated a ζ-function also for
non-normal operators [15]. If we introduce the integral kernel K(A, x, y) of A

Aψ(x) =

∫
d4zK(A, x, z)ψ(z) (A.52)

we could generalize (A.49) as

ζ(s,A) = Tr[A−s] =
∑
k

∫
d4x

∫
d4yu∗k(x)K(A−s, x, z)uk(y) =

∫
d4xK(A−s, x, x) (A.53)

in which {uk(x)} is the set of eigenfunctions of A and where we employed the formal completeness
relation

∑
k u

∗
k(x)uk(y) = δ4(x− y). But the previous result can be used as a starting definition of

ζ, without any reference to the eigenvalues of A. Among the two remaining requirements on A of
ellipticity and invertibility, the last one can be dropped out, too, with some further considerations
[72]. Nonetheless, we will not need to be that general.

Indeed, if we consider our case of interest of chapter one, we can recall (1.58), giving the effects
of a chiral transformation on the fermionic determinant

det||i /̄D
′
/µ|| = J−1det||eiγ̄5α(x)(i /̄D/µ)eiγ̄5α(x)|| (A.54)
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In this context we had an fermionic field, interacting with an abelian four-potential. /̄D = /∂ − ig /̄A
is the covariant derivative in the euclidean formulation, where γ̄µ = γ̄†µ. µ is instead an arbitrary
constant with mass dimensions, that we need to work with adimensional operators. The factor J
is the jacobian of the chiral rotation, which can be express by means of (1.61)

logJ−1 =
dζ

ds

(
0, eiγ̄5δα(x)

i /̄D
µ
eiγ̄5δα(x)

)
− dζ

ds

(
0,
i /̄D
µ

)
(A.55)

If we now consider that, in euclidean formalism, (i /̄D)† = i /̄D, we will have (i /̄D)†i /̄D = (i /̄D)2. By
taking into account (A.51) and that logdetA = 1

2 logdetA
2, we will end up with an useful form of

(A.55):

logJ−1 =
1

2

dζ

ds

(
0, eiγ̄5δα(x)

− /̄D
2

µ2
eiγ̄5δα(x)

)
− 1

2

dζ

ds

(
0,

− /̄D
2

µ2

)
(A.56)

The advantage of having introduced /̄D
2
is that we can deal now with a hermitian, positive

semi-definite operator. We will make use of the first property later. Nonetheless, /̄D
2
still admits

null eigenvalues, which can jeopardise the definition of ζ, that is based on A−s. But primarily,
let us manipulate the previous formula a bit more. Employing the identity (A.49) and setting

∆ = − /̄D
2
/µ2, we have

logJ−1 =
1

2

d

ds

{
Tr[∆ + δα∆]−s − Tr[∆]

}∣∣∣∣
s=0

=
1

2

d

ds

{
(−s)Tr[∆−s−1δα∆]

}∣∣∣∣
s=0

=

= −1

2
Tr[∆−s−1δα∆]

∣∣∣∣
s=0

(A.57)

We can correctly determine δα∆ keeping in mind that:

eiγ̄5δα(x)
i /̄D
µ
eiγ̄5δα(x) ≈ i /̄D

µ
−
(
γ̄5δα(x)

/̄D
µ

+
/̄D
µ
γ̄5δα(x)

)
︸ ︷︷ ︸

δα(i /̄D/µ)

(A.58)

and so

δα∆ = δα

(
− /̄D

2

µ

)
=
i /̄D
µ
δα

(
i /̄D
µ

)
+ δα

(
i /̄D
µ

)
i /̄D
µ

=

= −i
(
/̄D
µ

)2

γ̄5δα(x)− 2i
/̄D
µ
γ̄5δα(x)

/̄D
µ

− iγ̄5δα(x)

(
/̄D
µ

)2
(A.59)

Therefore, we can write

logJ−1 = −i1
2
Tr

[(
/̄D
2

µ2

)−s−1(( /̄D
µ

)2

γ̄5δα(x) + 2
/̄D
µ
γ̄5δα(x)

/̄D
µ

+ γ̄5δα(x)

(
/̄D
µ

)2)]∣∣∣∣
s=0

=

= −2iT r

[(
/̄D
µ

)−2s

γ̄5δα(x)

]∣∣∣∣
s=0

= −2itr

[
trx

[
δα(x)

(
− /̄D

2

µ

)−s]
γ̄5

]∣∣∣∣
s=0

(A.60)

where in the next-to-last passage we made use of the trace cyclicity property, while in the last
one we split the total trace operation Tr into the matrix tr and integral trx trace for matter of
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convenience. We also added an extra factor (−1)−s, that can not affect the result at s = 0, but it

will prove useful later. At this point, we are just missing a more explicit form of trx[−δα(x) /̄D
2
/µ]−s,

which is equal to the ζ(s) of − /̄D
2
/µ2, considering how δα(x) is just a multiplicative function.

For this purpose, we can return to (A.53) and consider an operator A hermitian and strictly
positive. That allows us to claim

ζ(s,A) =

∫
d4xK(A−s, x, x) =

∑
n

∫
d4xλ−sn u∗n(x)un(x) =

=
1

Γ(s)

∑
n

∫
d4x

∫ +∞

0

dtts−1e−λntu∗n(x)un(x) =
1

Γ(s)

∫
d4x

∫ +∞

0

dtts−1HA(t, x, x)

(A.61)

where we relate the integral kernel of A−s to the heat kernel of A by means of a Mellin transform,
which holds because of the property of A of being positive. But if we now assume the last expression
of (A.61) as the definition of the ζ-function of A, we will be able to deal with hermitian positive
semi-definite operators, which is precisely what we need.

We remind here how the heat kernel of a hermitian, positive semi-definite operator is defined
as [73]

HA(t, x, y) =
∑
n

e−λntu∗n(x)un(y) (A.62)

with t an adimensional parameter. The heat kernel HA(t, x, y) satisfies the heat equation(
∂

∂t
+A

)
HA(t, x, y) = 0 (A.63)

with the initial condition HA(0, x, y) = δ4(x − y), owning to the completeness of {uk(x)}. A
mathematical result states that, for small t, the heat kernel expansion holds true

HA(t, x, y) =
1

16π2t2
e−

(x−y)2

4ν2t

+∞∑
n=0

an(x, y)ν
n−2tn t� 1 (A.64)

where an(x, y) are the Seeley-De Witt coefficients and ν an arbitrary constant, necessary to adjust
dimensions. The initial condition on HA(0, x, y) automatically implies a0(x, y) = 1. Plugging the
heat kernel expansion in (A.61), we get

ζ(s,A) =
1

Γ(s)

∫
d4x

(
1

16π2

+∞∑
n=0

an(x)

∫ ε

0

dtts−3+n +

∫ +∞

ε

dtts−1hA(t, x, x)

)
(A.65)

in which an(x, x) ≡ an(x). We restrict the t integration by above with an arbitrary small ε and
we represent the unknown part of the solution of the heat equation for large t with hA(t, x, y). We
are ultimately interested in the value of ζ in zero. Therefore, remembering how 1

Γ(s) ∼ s + O(s)

for s→ 0, we will have

ζ(s,A) =
1

16π2

1

Γ(s)

∫
d4x

+∞∑
n=0

an(x)
εs−2+n

s− 2 + n
+ (s+O(s))

∫
d4x

∫ +∞

ε

dtts−1hA(t, x, x)︸ ︷︷ ︸
→0

=

≈ 1

16π2
(s+O(s))

∫
d4x

+∞∑
n=0

an(x)
εs−2+n

s− 2 + n

s→0−→ 1

16π2

∫
d4xa2(x)

(A.66)
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This result allows us to rewrite (A.60) as

logJ−1 = − i

8π2

∫
d4xEtr

[
a2(x)γ̄5δα(x)

]
(A.67)

where a2(x) is the second Seeley-De Witt coefficient of the heat kernel expansion, associated to

the operator − /̄D
2
/µ2 [71, 74]. Equation (A.63) and (A.64) will happen to be

∂

∂τ
HA(t, x, y) = /̄D

2
HA(t, x, y) HA(τ, x, y) =

1

16π2
e
− (x−y)2

4(µν)2τ

+∞∑
n=0

an(x, y)(µν)
2n−4τn−2 (A.68)

in which we include the dimensionnful parameter τ = t/µ2. ν has length dimensions, that, in
natural unit, are the inverse of mass dimensions, typical of µ. Making use of the arbitrariness in
the choice of these two contants, we can set ν = 1/µ, so that the unknown factors disappear from
our description. We will use these two relations in order to assess a2(x).

We can start evalutating

∂

∂τ
HA(t, x, y) =

e−
(x−y)2

4τ

16π2

+∞∑
n=0

[
an(x, y)(n− 2)τn−3 +

(x− y)2

4τ2
an(x, y)τ

n−2

]
=

=
e−

(x−y)2

4τ

16π2

+∞∑
n=0

[
an−1(x, y)(n− 3) +

(x− y)2

4
an(x, y)

]
τn−4

(A.69)

clearly using the fact that a−n = 0 for n ∈ N. If we now consider

/̄D
2
= γ̄µγ̄νD̄µD̄ν =

{γ̄µ, γ̄ν}
2

{D̄µ, D̄ν}
2

+
[γ̄µ, γ̄ν ]

2

[D̄µ, D̄ν ]
2

= D̄µD̄µ︸ ︷︷ ︸
D

+
[γ̄µ, γ̄ν ]Wµν

4︸ ︷︷ ︸
Y

(A.70)

where Wµν = [D̄µ, D̄ν ], we will be able to compute:

/̄DHA(t, x, y) =
e−

(x−y)2

4τ

16π2

+∞∑
n=0

[
/̄Dan(x, y)τn−2 − (x− y)ν /∂(x− y)ν

2τ
an(x, y)τ

n−2

]
=

=
e−

(x−y)2

4τ

16π2

+∞∑
n=0

[
/̄Dan−1(x, y)−

(x− y)ν /∂(x− y)ν
2

an(x, y)

]
τn−3

(A.71)

/̄D
2
HA(t, x, y) =

e−
(x−y)2

4τ

16π2

+∞∑
n=0

[
/̄D
2
an−1(x, y)τ

n−3 − /̄Dan−1(x, y)
(x− y)ν /∂(x− y)ν

2
τn−4+

−
/∂((x− y)ν /∂(x− y)ν)

2τ
an(x, y)τ

n−2 − (x− y)ν /∂(x− y)ν
2τ

/̄Dan(x, y)τn−2+

+
((x− y)ν /∂(x− y)ν)

2

4
an(x, y)τ

n−4

] (A.72)

Taking into account that

/∂[(x− y)ν /∂(x− y)ν ] = /∂[(x− y)νγν ] = 4 and ((x− y)ν /∂(x− y)ν)
2 = (x− y)2 (A.73)
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the previous equation can be simplified as:

/̄D
2
HA(t, x, y) =

e−
(x−y)2

4τ

16π2

+∞∑
n=0

[
/̄D
2
an−2(x, y)− (x− y)νD̄νan−1(x, y)+

− 2an−1(x, y) +
(x− y)2

4
an(x, y)

]
τn−4

(A.74)

As a consequence, the heat equation in (A.68) will give back the recurrence relation

/̄D
2
an−2(x, y)− (x− y)νD̄νan−1(x, y)− 2an−1(x, y) = an−1(x, y)(n− 3)

⇒ /̄D
2
an̄−1(x, y) = n̄an̄(x, y) + (x− y)νD̄νan̄(x, y)

(A.75)

Our final task is to sort this relation out up to the second Seeley-De Witt coefficient.
Let us firstly take (A.75) for n̄ = 0, with a−1 = 0 and a0 = 1, and derive it for D̄µ:

/̄D
2
a−1(x, y) = 0 · a0(x, y) + (x− y)νD̄νa0(x, y)

⇒ D̄µ[(x− y)νD̄νa0(x, y)] = 0
x→y−→ D̄νa0(x) = 0

(A.76)

which automatically implies

D̄µD̄νa0(x) = 0 ⇒ δµνD̄µD̄νa0(x) = 0 ⇒ Da0(x) = 0 (A.77)

Thereby, evalutating (A.75) for n̄ = 1, we will obtain

a1(x) = /̄D
2
a0(x) = (D + Y )a0(x) = Y (A.78)

Considering again (A.75) in n̄ = 1, before appliying the limit x→ y, we can derive it for D̄µ twice:

/̄D
2
a0(x, y) = a1(x, y) + (x− y)νD̄νa1(x, y)

⇒ D̄µ /̄D
2
a0(x, y) = 2D̄µa1(x, y) + (x− y)ν∂µD̄νa1(x, y)

⇒ D /̄D
2
a0(x, y) = 3Da1(x, y) + (x− y)νDD̄νa1(x, y)

x→y−→ Da1(x) =
1

3
D /̄D

2
a0(x)

(A.79)

The relation giving the second coefficient we are interested in will be:

/̄D
2
a1(x) = 2a2(x) ⇒ a2(x) =

1

2
(D + Y )a1(x) =

1

6
D /̄D

2
a0(x) +

1

2
Y a1(x)

⇒ a2(x) = (D + Y )a1(x) =
1

6
DDa0(x) +

1

6
DY +

1

2
Y 2

(A.80)

so that we are solely left with the calculation of DDa0(x). To achieve that, we need to derive
(A.76) not once, but four times:

(x− y)νD̄νa0(x, y) = 0 ⇒ D̄αa0(x, y) + (x− y)νD̄αD̄νa0(x, y) = 0

⇒ D̄βD̄αa0(x, y) + D̄αD̄βa0(x, y) + (x− y)νD̄βD̄αD̄νa0(x, y) = 0

⇒ D̄γD̄βD̄αa0(x, y) + D̄γD̄αD̄βa0(x, y) + D̄βD̄αD̄γa0(x, y) + (x− y)νD̄γD̄βD̄αD̄νa0(x, y) = 0

⇒ D̄δD̄γD̄βD̄αa0(x, y) + D̄δD̄γD̄αD̄βa0(x, y) + D̄δD̄βD̄αD̄γa0(x, y) + D̄γD̄βD̄αD̄δa0(x, y)+
+ (x− y)νD̄δD̄γD̄βD̄αD̄νa0(x, y) = 0

(A.81)
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Evalutating the last equation on the diagonal x = y and performing two separate contractions, we
will generate:

δδγδβα(D̄δD̄γD̄βD̄α + D̄δD̄γD̄αD̄β + D̄δD̄βD̄αD̄γ + D̄γD̄βD̄αD̄δ)a0(x) = 0

⇒ (DD + D̄µDD̄µ)a0(x) = 0

δδβδγα(D̄δD̄γD̄βD̄α + D̄δD̄γD̄αD̄β + D̄δD̄βD̄αD̄γ + D̄γD̄βD̄αD̄δ)a0(x) = 0

⇒ (2D̄µD̄νD̄µD̄ν +DD + D̄µDD̄µ︸ ︷︷ ︸
=0

)a0(x) = 0

(A.82)

Then, we can exchange two derivatives of the last result

D̄µD̄νD̄µD̄νa0(x) = 0 ⇒ (D̄νD̄µD̄µD̄ν + [D̄µ, D̄ν ]D̄µD̄ν)a0(x) = 0

⇒ D̄νDD̄νa0(x) = −1

2
[D̄µ, D̄ν ][D̄µ, D̄ν ] = −1

2
WµνWµν

(A.83)

From the first contraction in (A.82), we can finally derive the desired equality:

DDa0(x) = −D̄µDD̄µa0(x) = +
1

2
WµνWµν (A.84)

As a consequence, plugging in (A.80) we get

a2(x) =
1

12
WµνWµν +

1

6
DY +

1

2
Y 2 (A.85)

Remembering the definitions in (A.70), we see that D does not contain gamma matrices, whereas
Y has two of them. Hence, substituing (A.85) inside (A.67) and keeping in mind the properties

tr[γ̄5] = 0
tr[(odd number of γ̄µs)γ̄5] = 0
tr[γ̄µγ̄ν γ̄5] = 0

the only contribution surviving the trace operation will be the third one. We will end up with:

logJ−1 = − i

16π2

∫
d4xEtr

[
Y 2γ̄5δα(x)

]
(A.86)

It worth noticing how, up to now, we did not explicitly use the fact that our chiral transformation
was abelian. If this is the case, we can simplify the foregoing formula as

logJ−1 = − i

16π2

∫
d4xE

1

4
tr[γ̄5γ̄µγ̄ν γ̄αγ̄β ]WµνWαβδα(x) = − i

16π2

∫
d4xEεµναβWµνWαβδα(x)

(A.87)

where we also used tr[γ̄5γ̄µγ̄ν γ̄αγ̄β ] = 4εµναβ . By way of conclusion, we just have to move back to
euclidean space. As already seen in this work, we will have a factor i coming from the space-time
measure and a −i from the singled-out derivative with rescpect to x4 in WµνWαβ . Moreover, there
will be a −1, stemming from the Levi-Civita symbol and an extra i2 = −1, that we need to recover
the definition Fµν = i[Dµ,Dν ]/g. By doing that, we are able to piece together the bedrock of this
work, brought up in the first chapter:

logJ−1 = − ig2

16π2

∫
d4xεµναβFµνFαβδα(x) (A.88)
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The generalization of the previous expression to non-abelian transformation is straightforward,
if we simply separate in tr[Y 2γ̄5δα(x)] traces carried out over spinor and internal indeces. That
will modify the preceding formula as

logJ−1 = − ig2

32π2

∫
d4xεµναβFµν

a Fαβ
b tr[τ c{T a, T c}]δαc(x) (A.89)

where the fundamental coefficient dcab = tr[τ c{T a, T c}] emerges.
Therefore, we were able to derive here the anomalous contribution in a completely non pertur-

bative way, making use of the extremely general method of ζ-function regularization. Nonetheless,
a by far widespread technique to assess anomalies is the Fujikawa one. But reference [15] un-
derscores an important point: Fujikawa procedure is very useful in different contexts, but it fails
when applied to more general situations, where, for example, fermions are coupled to axial vec-
tors or pseudoscalars. Thereby, the two methods coincide when the jacobian factor is associated
to a hermitian operator, but some discepancies emerge for non-hermitian ones (which are a key
ingredient in different theories, such as the Weinberg-Salam model). That lets us understand how
the ζ-function regularization still remains the most powerful and reliable instrument to handle
quadratic path integrals that we have at disposal.
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