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Abstract

Cosmic voids are large underdense regions of the Universe that, together with
galaxy clusters, filaments and walls, characterise the large-scale structure of
the Universe, the so-called cosmic web. They emerged from the negative
perturbations in the primordial Gaussian density fluctuation field, and be-
came more spherical as evolving in the mildly non-linear regime (Icke, 1984).
Analogously to galaxy clusters, their positive counterparts in the density
field, their number counts and density profiles provide powerful cosmological
probes, despite the difficulty in constructing complete and well-characterised
void catalogues. The statistical properties and evolution of cosmic voids can
be accurately investigated with numerical simulations. Recently, thanks to
the huge amount of data coming from wide galaxy surveys, large cosmic void
catalogues have been constructed and used to constrain cosmology.

The statistical description of the void size function has been developed
by Sheth and van de Weygaert (2004), and then revisited by Jennings et al.
(2013). It has been proved that these models can accurately describe the size
function of cosmic voids identified in the dark matter density field, provided
that the void sample is appropriately cleaned from spurious objects (Ronconi
and Marulli, 2017). However, to exploit voids as cosmological probes, it is
necessary to extend the models to more realistic cases, that is to describe the
underdense regions in the density distribution of galaxies which are biased
tracers. Since voids in biased tracers are systematically larger than those
identified in the dark matter field, a correction to the dark matter void size
function is necessary. A possible procedure to take into account the effect
of bias on the size distribution of cosmic voids has been proposed by Ron-
coni et al. (in preparation). This consists in modifying properly the density
threshold used to define the voids.

The scientific goals of this thesis work are the following: (i) to test the
algorithm to clean void catalogues developed by Ronconi and Marulli (2017)
on Λ-cold dark matter (ΛCDM) N-body simulations, (ii) to quantify the
accuracy of the theoretical void size function model with dark matter cata-
logues, (iii) to re-parametrise the theoretical model of the void size function



for biased tracers, and (iv) to investigate the cosmological constraining power
of cosmic void statistics.

For these purposes, we made use of large, high-resolution halo catalogues
extracted from ΛCDM N-body simulations. From these catalogues of biased
tracers we extracted void catalogues with the Void IDentification and Ex-
amination toolkit (VIDE) (Sutter et al., 2015), a widespread void detection
code. Then the VIDE void catalogues have been cleaned exploiting the al-
gorithm developed by Ronconi and Marulli (2017). This procedure removes
all the spurious voids from the catalogue and re-scales the void radii to a
defined density threshold. All the statistical analyses and the catalogue ma-
nipulations have been performed with the CosmoBolognaLib (Marulli et al.,
2016), a large set of free software C++/Python libraries that provide an effi-
cient numerical environment for cosmological investigations of the large-scale
structure of the Universe.

The main result of this thesis work is a new parameterisation of the
theoretical void size function that takes into account the effect of the tracer
bias. We found that the theoretical void number density is systematically
underpredicted if the effective bias is used to assess the density threshold
in the model. In fact, as already noted by Pollina et al. (2017, 2018), the
tracer bias inside small cosmic voids deviates from the one at large scales.
We verified this phenomenon by estimating the bias from the ratio between
the averaged void density profiles traced by dark matter and biased tracers.
In particular, the bias computed with this technique is systematically larger
than the linear effective bias of the tracers used to identify the voids. Thus,
we used the former to re-parameterise the theoretical size function, in order
to compare it to the one measured from the halo catalogues. Thanks to
this new parameterisation, that has been calibrated and tested in this thesis
work, the theoretical void size function is now fully consistent with the result
of numerical simulations. Finally, we investigate the effect of varying some
of the cosmological parameters used to compute the theoretical void size
function.



Sommario

I vuoti cosmici sono vaste regioni sottodense dell’Universo che, insieme agli
ammassi di galassie, ai filamenti e ai muri, caratterizzano la struttura su
larga scala dell’Universo, la cosidetta ragnatela cosmica. I vuoti emergono
dalle perturbazioni negative del campo primordiale gaussiano di fluttuazioni
di densità e hanno la caratteristica di diventare sempre più sferici, evolvendo
in regime lievemente non-lineare (Icke, 1984). Analogamente agli ammassi
di galassie, la loro controparte positiva nel campo di densità, i loro conteggi
e i profili di densità forniscono un potente test cosmologico, nonostante la
difficoltà nel costruirne cataloghi completi e ben caratterizzati. Le proprietà
statistiche e l’evoluzione dei vuoti cosmici possono essere analizzate accurata-
mente con simulazioni numeriche. Recentemente, grazie all’enorme quantità
di dati proveniente dalle grandi survey di galassie, è stato possibile costruire
cataloghi di vuoti cosmici sufficientemente estesi da poter essere utilizzati
per misurare accuratamente i principali parametri del modello cosmologico.

La descrizione statistica della size function dei vuoti è stata sviluppata da
Sheth and van de Weygaert (2004), e successivamente rivisitata da Jennings
et al. (2013). È stato provato che questi modelli sono in grado di descrivere
accuratamente la size function dei vuoti cosmici identificati nel campo di
densità della materia oscura (DM), a patto che il campione di vuoti sia stato
precedentemente ripulito dagli oggetti spuri (Ronconi and Marulli, 2017).
Ciononostante, per poter utilizzare i vuoti come test cosmologici, è necessario
estendere i modelli a casi più realistici, che descrivano le regioni sotto-dense
nella distribuzione di densità delle galassie, che sono traccianti con bias. Dato
che i vuoti nei traccianti con bias sono sistematicamente più grandi di quelli
identificati nel campo di DM, è necessaria una correzione alla size function dei
vuoti tracciati dalla DM. Una possibile procedura per considerare gli effetti
del bias sulle distribuzioni di grandezza dei vuoti cosmici è stata proposta da
Ronconi et al. (in preparation), e consiste nel modificare opportunamente la
soglia di densità utilizzata per definire i vuoti.

Gli obiettivi di questo lavoro di tesi sono i seguenti: (i) testare l’algoritmo
per la pulizia dei cataloghi sviluppato da Ronconi and Marulli (2017) su sim-



ulazioni N-body del modello Λ-cold dark matter (ΛCDM), (ii) quantificare
l’accuratezza del modello teorico basato sulle size function dei vuoti con cat-
aloghi di DM, (iii) riparametrizzare il modello teorico delle size function dei
vuoti per traccianti con bias, e (iv) analizzare l’efficacia della statistica dei
vuoti nel porre vincoli ai parametri cosmologici.

Per questi scopi, sono stati utilizzati grandi cataloghi di aloni ad alta
risoluzione, ottenuti da simulazioni N-body ΛCDM. Da questi cataloghi di
traccianti con bias sono stati estratti cataloghi di vuoti con il Void IDentifi-
cation and Examination toolkit (VIDE) (Sutter et al., 2015), un codice per
l’individuazione dei vuoti ampiamente utilizzato. Dopodiché i cataloghi di
vuoti ottenuti con VIDE sono stati ripuliti utilizzando l’algoritmo sviluppato
da Ronconi and Marulli (2017). Questa procedura rimuove tutti i vuoti spuri
dal catalogo e riscala i raggi dei vuoti ad una soglia di densità fissata. Tutte
le analisi statistiche e il trattamento dei cataloghi sono stati eseguiti con le
CosmoBolognaLib (Marulli et al., 2016), un insieme di librerie C++/Python
pubbliche, che forniscono un ambiente numerico efficiente per lo studio cos-
mologico di strutture su larga scala dell’Universo.

Il risultato principale di questo lavoro di tesi consiste in una nuova
parametrizzazione delle size function teoriche dei vuoti, che considera l’effetto
del bias dei traccianti. Ciò che abbiamo trovato è che la densità numerica
teorica dei vuoti è sistematicamente sottostimata quando viene utilizzato il
bias effettivo per stimare la soglia di densità nel modello. Di fatto, come
era stato già evidenziato da Pollina et al. (2017, 2018), il bias dei traccianti
calcolato in prossimità dei vuoti, devia da quello misurato a grandi scale,
almeno quando si considerano vuoti di dimensioni ridotte. Questo fenomeno
è stato verificato stimando il bias dal rapporto tra i profili medi di densità
dei vuoti definiti dalla DM e quelli ottenuti da traccianti con bias. In parti-
colare, il bias calcolato con questo metodo è sistematicamente più grande del
bias lineare effettivo dei traccianti usati per identificare i vuoti. Per questo
è stato utilizzato il primo di questi valori per riparametrizzare la size func-
tion teorica, che è stata poi confrontata con quella ottenuta dalle misure sui
cataloghi di aloni della simulazione.

Grazie a questa nuova parametrizzazione, calibrata e testata in questo
lavoro di tesi, la size function teorica dei vuoti è ora pienamente consistente
con i risultati delle simulazioni numeriche. Infine, sono state fornite previ-
sioni sui vincoli cosmologici che possono essere ottenuti utilizzando queste
statistiche sui cataloghi di vuoti delle future survey.



Introduction

The concordance ΛCDM model is currently widely accepted, and it is known
as the Standard Cosmological Model. This model is based on two funda-
mental assumptions: (i) the presence of cold dark matter, an unknown type
of non-relativistic particles that apparently seem to interact only through
gravity with the common baryonic matter; (ii) the existence of a mysterious
energy component responsible for the present accelerated expansion of the
Universe, the so-called dark energy, that in its simplest version is described by
the Cosmological Constant, Λ. The behavior of these components is, at least
up to now, far to be completely understood. Cold DM and DE constitute
the majority component of the Universe, with a percentage of abundance of
approximately 26% and 70%, respectively.

Despite the ΛCDM scenario shows a remarkably successful agreement
with most of the available observations, there are still some possible tensions
between its predictions and observations at small scales. In particular, we
can recall the abundance of satellite galaxies in cold DM haloes, the low
baryon fraction in galaxy clusters and the “cusp-core” problem for the halo
density profiles (Allen et al., 2004; LaRoque et al., 2006; Newman et al.,
2009). Moreover, the fundamental nature of cold DM particles and of the
DE component is still unknown and other issues remain still unresolved, like
the problem of coincidence (that will be analysed in section 1.5) and the
currently lack of comprehension of the physics of inflation.

In this scenario, the formation of the cosmic structures observed in the
present-day Universe starts from the gravitational collapse of the initial per-
turbations in the Gaussian primordial density field. From this initial collapse,
a hierarchical process of formation begins. First DM haloes are formed, which
are virialised, gravitationally bound structures that provide the potential
wells in which baryons can cool and condense. Then, inside the DM haloes,
the luminous objects that we can observe in the sky are born, as galaxy and
galaxy clusters.

Among these structures, organised in filaments and walls, cosmic voids
emerge as large underdense regions from which matter is pushed away as



effect of gravity and because of the action of dark energy. They represent
the result of the evolution of underdensities in the primordial density field.
As it can be seen in figure 1, cosmic voids constitute a major part of the
Universe: while galaxy clusters enclose most of the mass in the Universe,
voids are the dominant spatial component, accounting for the 90 − 95% of
the entire volume (Platen et al., 2007). Their sizes span over a wide range of
scales, from diameters of 3-5 Mpc (minivoids) to about 200 Mpc (supervoids)
(Szapudi et al., 2015; Tikhonov and Karachentsev, 2006). Voids are only
mildly non-linear objects, and tend to become more spherical as they evolve,
which suggests that their evolution should be easier to describe than that of
positive perturbations. Thanks to their relatively simple structure and shape,
voids are useful probes of a variety of cosmological parameters and have
indeed been shown to possess great potential for constraining dark energy
and testing theories of gravity (see e.g. Pisani et al., 2015; Sahlén and Silk,
2016; Pollina et al., 2016; Hawken et al., 2017).

In this thesis work we will test the theoretical model for the void statistical
distribution as a function of size proposed by Jennings et al. (2013). In
particular, we will make use of voids traced by the distribution of DM haloes.
As in the case of real data catalogues, we will have to take into account the
bias between the underlying DM distribution and the tracers used to build
the void catalogues. In order to estimate the theoretical void size function, an
accurate analysis of the halo bias will be performed. After having established
the value of tracer linear bias, b, necessary to recover the size distribution of
voids in the DM distribution, we will perform a re-parametrisation of the void
theoretical size function. Since cosmic voids are defined as spheres embedding
a fixed density contrast δNLv,tr = −0.795 (defined by the phenomenon of shell-
crossing, that will be examined in section 2.1), we will re-scale this threshold
to the value δNLv,DM = δNLv,tr/b in order to derive the equivalent one in the DM
particles distribution. This value will be then converted in the corresponding
one in the linear theory with the method described in Bernardeau (1994), and
then will be inserted in the theoretical model for the size function. The aim
of this re-parametrisation is to predict the distribution of voids traced by the
underlying DM distribution, supposing to have information only on the tracer
one. In fact, dealing with real data catalogues, it can be really challenging
to investigate the properties of the underneath total mass distribution.

We will demonstrate that, with this prescription, the measured size func-
tion of voids is fully consistent with the theoretical predictions. Moreover,
it will be possible to exploit the proposed method to derive constraints on
the cosmological parameters of the model and extend the entire procedure
to real data catalogues.

Our work is organized as follows:



• In chapter 1 we give a general introduction to the cosmological frame-
work, introducing the theoretical basis of the Standard Cosmological
Model.

• In chapter 2 we illustrate some of the general properties of cosmic voids,
focusing in particular on their definition and main statistical properties.

• Chapter 3 provides a general overview of the main algorithms and com-
putational tools we used in our work.

• Chapter 4 presents an accurate analysis of the tracer bias.

• In chapter 5 we apply the techniques previously described to halo cata-
logues extracted from N-body simulations, we compute the theoretical
size function for voids identified in the distributions of biased tracers,
and investigate the dependence of the void size function on some cos-
mological parameters of the ΛCDM model.

• Finally, in chapter 6 we summarise our results and discuss future de-
velopments of this work.



Figure 1: Two samples of galaxies obtained from the VIMOS Public Extra-
galactic Redshift Survey (VIPERS). Cosmic voids are depicted with red circles,
representing the maximal spheres embedding a fixed level of density. The black
dots are the galaxies of the sample in the given z-range, while the grey dots are
the galaxies detected as isolated, or outside the redshift range. The scales show
comoving distances in Mpc and the corresponding redshift. Credits: Micheletti
et al. (2014).



Chapter 1

Cosmological framework

In this chapter we briefly summarise the cosmological framework on which
this thesis work is built on. Our aim is to provide an overview on the basic
mathematical structure of modern cosmological models based on the Gen-
eral Theory of Relativity. In particular, we provide an introduction to the
Friedmann-Robertson–Walker metric, that describes the curvature of the hy-
persurfaces defined by the space-time. After the introduction of the Hubble
Law and the definition of redshift, we illustrate the Friedmann Equations, as
the solutions to the Einstein’s Field Equation. Then we describe the main
features of the currently adopted Standard Cosmological model. Finally, we
introduce the Jeans theory, that deals with the gravitational instability of the
primordial fluctuations and leads to the growth of the large-scale structures
of the Universe.

1.1 Fundamentals of General Relativity

The force of gravity is the predominant interaction on sufficiently large scales.
For this reason, the cosmological models are mainly based on the action of
this force. The best description of this force is given by the Theory of General
Relativity (GR), proposed by Albert Einstein (Einstein, 1915).

In the context of GR, the geometry of space-time is described by the
metric tensor gµν . The importance of the metric tensor emerges from the
following equation:

ds2 = gµνdx
µdxν (µ, ν = 0, 1, 2, 3) ,

which represents the minimum distance in the space-time between the events
labelled by xj = (t, x1, x2, x3) and xj + dxj = (t+ dt, x1 + dx1, x2 + dx2, x3 +
dx3), where xi represent the spatial coordinates and t the proper time. This
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interval can be explicitly separated as:

ds2 = g00dt2 + 2g0idx
idt+ gijdx

idxj , (1.1)

where g00dt
2 is the time component, gijdx

idxj the spatial components and
2g0idx

idt the mixed components.
The space-time metric is connected with the energy-momentum tensor

Tµν , which decribes the matter and energy content of the Universe, by the
Einstein’s Field Equation of GR:

Rνµ −
1

2
gνµR =

8πG

c4
Tµν , (1.2)

where G represents the gravitational constant and c the speed of light. Rµν

and R are the Ricci Tensor and Scalar, respectively defined using the fourth-
order Riemann Tensor Rµ

αβγ :

Rαβ ≡ Rµ
αβµ

R ≡ Rµ
µ = gµνRµν .

Considering the left-hand side of equation (1.2), we can define the Einstein
tensor Gµν as:

Gµν ≡ Rνµ −
1

2
gνµR , (1.3)

which returns information about the space-time geometry. Equation (1.2)
implies that the geometry of the Universe is determined by its content of
matter and energy. Assuming the standard Big Bang model, we can con-
sider the different energy components as perfect fluids, that are constituted
by particles having a mean free path much lower than the physical scales
of interaction. Under this hypothesis, we can write the energy-momentum
tensor for the different components as:

Tµν = −pgµν + (p+ ρc2)uµuν , (1.4)

where p represents the pressure term, ρc2 is the energy density term and ui
are the components of the 4-velocity of the fluid element.

1.2 The Friedmann-Robertson-Walker metric

All the models developed in modern cosmology are based on a fundamen-
tal assumption, the Cosmological Principle (CP), that is the hypothesis of
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isotropy and homogeneity of the Universe on sufficiently large scales (hun-
dreds of megaparsecs nowadays). Isotropy is the property of looking the
same in every direction, while homogeneity is the property of being identi-
cal everywhere in space. Once assumed the validity of this hypothesis, our
goal is to build a model of the Universe satisfying the CP. We can define a
universal time such that the spatial metric is the same at each position in
space. Thanks to the assumption of isotropy, the mixed components g0i of
the equation (1.1) have to be null. Thus we can obtain the general form of
the metric:

ds2 = c2dt2 − gijdxidxj = (cdt)2 − dl2 . (1.5)

Any point in space-time is marked with a set of three spatial coordinates
xi (i = 1, 2, 3), called comoving coordinates, which are the coordinates at
rest with the Universe expansion. In the same way, we can define the proper
time, t, as the time measured by a clock at rest with the expansion of the
Universe. To determine gij we have to find a spatial 3D metric which follows
the requirements of homogeneity and isotropy of the CP.

The geometrical properties of the space-time are described by the met-
ric. In particular, the 3-dimensional Riemann tensor Rijkl determines the
curvature of a 3-dimensional space, while the scalar curvature is given by
R = gijR

ij, obtained from the contraction of the Ricci tensor with the met-
ric gij. Thanks to the assumption of the CP, the tensor Rijkl does not depend
on the derivatives of the metric gij, while the scalar R has to be constant.
For the symmetry properties of the deriving form of the Riemann tensor, it is
possible to define the most general form of equation (1.5), in the Friedmann-
Robertson-Walker (FRW) metric:

ds2 = c2dt2 − a2(t)

[
dr2

1− κr2
+ r2(sin2 θ dφ2 + dθ2)

]
, (1.6)

where a(t) is the cosmic scale factor (or the expansion parameter), having
the dimensions of a length, and κ is the curvature parameter. The equation
(1.6) expresses the metric in spherical polar coordinates, being r, φ and θ
dimensionless comoving coordinates. Given an energy-momentum tensor,
the value of κ and the function a(t) can be derived by the Einstein’s Field
Equations.

Let us consider a free massive particle at rest at the origin of the comoving
coordinates system at a fixed instant in time. The absence of preferred
directions ensures that no acceleration can be induced on this particle by
the effect of gravity. Thanks to the required homogeneity, we can define as
geodetic each world line with xi = const.

The curvature of the space-time can be positive, zero or negative. This is
determined by the parameter κ, which can assume only three possible values:
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κ = +1 (closed universe, hyper-spherical geometry), κ = 0 (flat universe,
Euclidean geometry) and κ = −1 (open universe, hyperbolic geometry).

Let us introduce a new coordinate χ defined as:

χ ≡
∫

dr√
1− κr2

. (1.7)

By considering the three possible values of κ in the equation (1.7) we obtain:

χ =


sin−1 r for κ = +1

r for κ = 0 .

sinh−1 for κ = −1

(1.8)

Now it is possible to re-write the spatial part of the FRW metric in terms of
(χ, θ, φ):

dl2 = a2
[
dχ2 + f 2(χ)(dθ2 + sin2 θ dφ2)

]
, (1.9)

where

f(χ) =


sin(χ) for κ = +1

χ for κ = 0 .

sinh(χ) for κ = −1

(1.10)

For κ = +1 the Universe has a finite volume, analogous to the two-dimensional
case of a sphere. In this case, the equation (1.9) describes a 3D-sphere with
radius a in a four-dimensional flat space defined by:

x2
0 + x2

1 + x2
2 + x2

3 = a2 ,

where (x0, x1, x2, x3) are the Cartesian coordinates. It is also possible to
introduce the angular coordinates (χ, θ, φ), obtaining the relations:

x1 = a cosχ sin θ sinφ

x2 = a cosχ sin θ cosφ

x3 = a cosχ cos θ .

x4 = a sinχ

By expressing dxi in terms of polar coordinates the line element of the sphere

dL2 = dx2
0 + dx2

1 + dx2
2 + dx2

3

becomes:
dL2

sphere ≡ a2
[
dχ2 + sin2 χ (sin2 θ dφ2 + dθ2)

]
,

12



which is identical to the equation (1.9) with κ = +1. The space of the closed
Universe is totally covered, at a fixed time, by the following range of angles:

0 ≤ χ < π , 0 ≤ θ < π , 0 ≤ φ < 2π ,

with a (finite) volume given by:

V = a3

∫ 2π

0

dφ

∫ π

0

sin θ dθ

∫ π

0

sin2 χ dχ = 2π2a3 .

The surface of this sphere can be parameterised in terms of χ:

S = 4πa2 sin2 χ .

This surface reaches the maximum value for χ = π/2, then it decreases and
becomes null for χ = 0, π. In such a space, the sum of the internal angles of
a triangle is larger than π and the surface S(χ) is systematically larger with
respect to the one in an Euclidean geometry.

In the case of κ = −1 the geometry of the Universe is hyperbolic. In the
3D space a hyperboloid is defined by the following relation:

−x2
0 − x2

1 − x2
2 − x2

3 = a2.

Analogously to the spherical case described above, the line element is:

dL2 = dx2
0 + dx2

1 + dx2
2 − dx2

3 .

Introducing the angular coordinates (χ, θ, φ) also in this case, we obtain:
x1 = a sinhχ sin θ sinφ

x2 = a sinhχ sin θ cosφ

x3 = a sinhχ cos θ

x4 = a coshχ

and the line element becomes:

dL2
hyperboloid ≡ a2

[
dχ2 + sinh2 χ (sin2 θ dφ2 + dθ2)

]
.

The properties of a geometrical space having a constant negative curvature
are similar to those of a flat case. In fact, it represents an infinite open
Universe. The range of coordinates are the following:

0 ≤ χ <∞ , 0 ≤ θ < π , 0 < φ < 2π ,

and the surface S is defined by:

S = 4πa2 sinh2 χ .

In this particular case, the sum of the internal angles of a triangle is smaller
than π and the surface is greater than the Euclidean one.
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1.3 Hubble Law and redshift

Let us consider two points P and P ′ at a given time t. With a FRW metric,
the proper distance, dpr, between these events is:

dpr = a(t)

∫ r

0

dr′√
1− κr′2

= a(t)F (r) , (1.11)

and depends on time through the scale parameter a(t). At time t, the proper
distance is related to the present one (t = t0) by the following relation:

dc ≡ dpr(t0) = a0F (r) , (1.12)

where a0 ≡ a(t = t0). Hereafter if a variable has the subscript “0”, it will
indicate that such quantity is calculated at t = 0. The previous quantity is
called the comoving distance and remains constant with the expansion of the
Universe. The direct connection between the two definitions is given by the
equation:

dpr =
a(t)

a0

dc . (1.13)

The expansion of the Universe causes a continuous drifting apart of any two
points in the space. The radial velocity between these points can be computed
as the derivative of dpr with respect to t:

vr =
d

dt
dpr =

d

dt
[a(t)F (r)] = ȧ(t)F (r) + a(t)Ḟ (r) . (1.14)

Because of the time-independence of the term F (r), the previous relation
becomes:

vr = ȧ(t)F (r) =
ȧ(t)

a(t)
dpr = H(t)dpr , (1.15)

which is the well known Hubble Law, where we have defined the Hubble Pa-
rameter as H(t) ≡ ȧ/a. H(t) is a function of time and has the same value
across the Universe at a given cosmic time. Wang et al. (2017) performed a
recent estimate of the Hubble constant H0 ≡ H(t = t0) using the latest bary-
onic acoustic oscillations (BAO) measurements from galaxy surveys, finding
a value of:

H0 = 69.13± 2.34 km s−1Mpc−1 .

It is conventional to introduce a dimensionless parameter, h, redefining the
Hubble parameter as:

H0 ≡ 100h km s−1Mpc−1 .
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We call the global motion of objects in the Universe with respect to each
other the Hubble Flow. Being H0 expressed in units of s−1, the inverse of the
Hubble parameter may provide a rough estimate of the age of the Universe
(the most recent estimates lead to a more accurate value of 13.9 Gyr), by
taking the simplified assumption that for all its history the Universe has
expanded with the same rate.

Since on large scales all objects are affected by this expansion, their mo-
tion will result in a reddening of their observed spectrum, caused by the shift
towards longer wavelengths. The redshift is defined as the relative difference
between the observed, λobs, and emitted, λem, wavelengths:

z ≡ λobs − λem
λem

=
∆λ

λ
. (1.16)

Let us consider a source emitting a photon with wavelength λem at time
tem. An observer located at a distance d will receive the signal with wave-
length λobs at tobs. By definition photons move along null geodesics (ds2 = 0
for massless particles) during the expansion of the Universe. Taking once
again the FRW metric in polar coordinates expressed in equation (1.6) and
considering dφ = dθ = 0 for simplicity we have:

c2dt2 − a2(t)
dr2

√
1− κr2

= 0 . (1.17)

Integrating the metric along the path, the previous equation becomes:∫ tobs

tem

c dt

a(t)
=

∫ r

0

dr′2√
1− κr′2

= F (r) . (1.18)

We suppose now that a second photon is emitted from the source at t′em =
tem + δtem and reaches the observer at t′obs = tobs + δtobs. Since F (r) does not
change because of the assumption of comoving coordinates, the difference
between the two photon paths is given only in terms of time:∫ t′obs

t′em

c dt

a(t)
= F (r) . (1.19)

If the time intervals δtem and δtobs are small, a(t) can be considered almost
constant, so the equivalence between Equations (1.18) and (1.19) implies:

δtobs
a(tobs)

=
δtem
a(tem)

. (1.20)
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Since δt = 1/ν and λ = c/ν, we obtain:

1 + z =
aobs
aem

(1.21)

or, more generally, for an observer located at present time and an emitting
source at a generic instant t, we have:

1 + z =
a0

a(t)
. (1.22)

The redshift is generally exploited to measure the distance of extragalactic
sources.

1.4 Friedmann equations

Without any assumption on the geometry of the Universe, we can apply the
FRW metric (1.6) to the Einstein’s Equations (1.2). Of the resulting system
of equations only two of them are independent. The two solutions, with the
hypotheses of perfect fluid and of the CP, provide the time evolution of a(t)
and describe the dynamic growth of the Universe. They are called the First
and the Second Friedmann Equations and can be expressed as follows:

ä = −4π

3
G

(
ρ+

3p

c2

)
a , (1.23)

ȧ2 + κc2 =
8π

3
Gρa2 . (1.24)

Each of these two equations can be recovered from the other one by
applying the adiabatic condition:

dU = −pdV ,

where U is the internal energy of the Universe. Its validity persists as long
as the Universe is considered as a closed system, that expands and evolves
without losing energy. Equation (1.4) can also be expressed as follows:

d(ρc2a3) = −pda3 , (1.25)

ṗa3 =
d

dt

[
a3(ρc2 + p)

]
, (1.26)

ρ̇+ 3
(
ρ+

p

c2

) ȧ
a

= 0 . (1.27)

The density, ρ, in these equations has to be considered as the sum of all
the densities of the components of the Universe.
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1.4.1 Friedmann Models

Equations (1.23) and (1.24) were proposed by Alexander Friedmann in 1922
as solutions of Einstein’s Field Equations. Since their first proposal, they
have been studied and improved, giving birth to a set of different cosmological
models. From equation (1.23) we can deduce that the evolution of a Universe
described by this relation can not be static unless the following unphysical
condition is verified:

ρ = −3p

c2
. (1.28)

A Universe of this type is destined to collapse under the effect of this own
gravity. Since Albert Einstein was firmly convinced that the Universe should
be static, he applied the most general but simplest possible modification of
the equation (1.2) by introducing the so-called cosmological constant Λ:

Rµν −
1

2
gµνR− Λgµν =

8πG

c4
Tµν . (1.29)

As we shall see, an appropriate choice of Λ can imply a static model of the
Universe. We can also re-write equation (1.29) by modifying the energy-
momentum tensor:

Rµν −
1

2
gµνR =

8πG

c4
T̃µν , (1.30)

where the new tensor is formally given by:

T̃µν ≡ Tµν +
Λc4

8πG
gµν , (1.31)

which implies a new definition for the pressure and the density:

p̃ ≡ p− Λc4

8πG
and ρ̃ ≡ ρ+

Λc2

8πG
, (1.32)

called now effective pressure and effective density, respectively.
When Edwin Hubble finally discovered the expansion of the Universe

in 1922, Einstein regretted the introduction of the cosmological constant.
Nevertheless, models with Λ have been reintroduced at the end of the 20th
century to describe the observed accelerated expansion of the Universe. The
action of Λ is to contrast the attractive pull of gravity behaving as a repulsive
force. Nowadays, the origin of this “push” is commonly assigned to the Dark
Energy and is considered is a valid method to account for the observed cosmic
acceleration.

In order to solve the Equations (1.23) and (1.24), it is necessary to in-
troduce an equation of state (EoS) for the fluid composing the Universe.

17



Adopting the perfect fluid approximation, the EoS of such fluid can be ex-
pressed by the general form:

p = wρc2 , (1.33)

where w is defined so that the sound speed is:

cs ≡
(
∂p

∂ρ

)1/2

S

= c
√
w .

The parameter w lies in the so-called Zel’dovich interval :

0 ≤ w < 1 , (1.34)

in which cs maintains a physical sense. The value of w changes depending
on the type of the considered component. The “ordinary” components of
the Universe can be divided into two big main families: relativistic and non-
relativistic. The first case is represented by dust, having w ' 0, i.e. with
negligible pressure, while a non-degenerate and ultra-relativistic fluid has an
EoS with w = 1/3. This is the case for a radiative fluid or, more generally,
for photons and relativistic particles like neutrinos. For what concerns Λ,
it is defined to behave as a perfect fluid with w = −1 and it follows the
equation (1.29), in analogy to the other components.

With these definitions, we can write the energy-momentum tensor as the
sum of all the components i:

Tµν ≡
∑
i

T (i)
µν .

From the combination of Equations (1.25) and (1.33), it is possible to derive
the following relations:

ρw ∝ a−3(1+w) ∝ (1 + z)3(1+w) , (1.35)

which describe how the densities of the different components vary through
cosmic time. As a result of the previous relations, we can assert that different
components have dominated through the succession of the cosmic epochs,
prevailing one over the others.

Equation (1.24) can be re-written to derive the curvature of the Universe
previously inserted in the FRW metric:

κ

a2
=

1

c2

(
ȧ

a

)2(
ρ

ρc
− 1

)
, (1.36)
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where

ρc(t) ≡
3

8πG

(
ȧ

a

)2

=
3H2(t)

8πG
(1.37)

is called the critical density and corresponds to the density requested to
obtain a flat Universe (κ = 0). For ρ < ρc the expansion of the Universe
will go on indefinitely, while for ρ > ρc it will be halted and then followed by
a contraction. The critical density can be used to define the dimensionless
density parameter :

Ω(t) ≡ ρ(t)

ρc(t)
, (1.38)

which can be defined for each single component (Ωw); the total density pa-
rameter (ΩTOT ) is the sum of all of them. In a flat Universe, ΩTOT = 1,
while in open or closed universes it is ΩTOT < 1 and ΩTOT > 1, respectively.
Now it is useful to re-write the equation (1.24) in terms of Ω, H and z,
which are more representative parameters of the observable Universe. By
combining the Second Friedmann Equation with the definition of the density
parameter, the Hubble Law and the equation (1.22), we obtain:

H2(z) = H2
0 (1 + z)2

[
1−

∑
i

Ω0,wi
+
∑
i

Ω0,wi
(1 + z)1+3wi

]
, (1.39)

in which H(z) is the Hubble parameter at a generic redshift and
∑

i Ω0,wi
=

ΩTOT is the total sum of all i-th components with corresponding wi value.
The quantity 1−

∑
i Ω0,wi

≡ Ω0,κ is related to the curvature of the Universe
and it is called curvature density parameter.

Instead, re-writing the Second Friedmann Equation for a single compo-
nent by applying the equation (1.2), we obtain:

ä = −4π

3
Gρ(1 + 3w)a . (1.40)

This last equation implies that, if w belongs to the Zel’dovich interval, ä < 0
for each t. From the Hubble law we can conclude that a(t) grows monoton-
ically, given the positivity of H(t). This implies that, going back in time,
there is an instant at which a(t) is equal to zero, at some finite time in the
past. This event is currently called the Big Bang (BB). All possible models
of the Universe, assuming it is composed of a single fluid with −1/3 < w < 1,
have necessarily an instant at which a(t) vanishes, while the density and the
expansion speed diverge. Note that the expansion of the Universe emerg-
ing from the BB model is a result of the initial conditions of homogeneity
and isotropy and it is not due to pressure, which here acts to decelerate the
expansion, contrary to what we may expect.
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Generic w w = 0 w = 1/3

a(t) = a0

(
t
t0

) 2
3(1+w)

a(t) ∝ t2/3 a(t) ∝ t1/2

t = t0(1 + z)
−3(1+w)

2 t ∝ (1 + z)−3/2 t ∝ (1 + z)−2

H(t) = 2
3(1+w)

t−1 H(t) = 2
3t

H(t) = 1
2t

t0 = 2
3(1+w)

1
H0

t0 = 2
3H0

t0 = 1
2H0

ρ = 1
6πG(1+w)2

1
t2

ρ = 1
6πG

1
t2

ρ = 3
32πG

1
t2

Table 1.1: Dependencies obtained for the EdS Universe in three different cases:
for a generic component (with EoS parameter w, first column), for a matter-
dominated Universe, (with w = 0, second column) and for a radiation dominated
Universe (with w = 1/3, third column).

1.4.2 Flat, open and closed models

Since we have already demonstrated that at different cosmic epochs different
components (matter, radiation and Λ) can become dominant, we can assume
that our Universe is entirely composed by only one type of fluid, at any
time. We can consider this approximation valid in periods far from the
moments of equivalences. A generic model that includes the hypothesis of
mono-component fluid and that assumes a flat geometry (κ = 0) is called
Einstein-de Sitter Model (EdS). In this model the equation (1.39) reduces
to:

H(z) = H0(1 + z)
3(1+w)

2 . (1.41)

In Table 1.1 we reported a list of some useful dependencies derived assum-
ing the EdS model. These relations are computed both for a generic fluid
and for matter-dominated epoch and radiation-dominated epoch. The ap-
proximation of flat Universe can be considered accurate at high redshifts. In
particular, considering a critical value z∗, defined as in the following equation:

|1− Ω0| = Ω0(1 + z∗)1+3w , (1.42)

we can see that, for z � z∗, equation (1.39) reduces to:

H(z) = H0

√
Ω0(1 + z)

3(1+w)
2 .

This equation is similar to the solution found for EdS models, except for
the factor

√
Ω0. So we can conclude that our Universe behaves as an EdS
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Universe (thus with flat geometry) in young epochs. On the other hand, for
z � z∗ the potential curvature of the Universe prevails, producing effects
on the geometry of the Universe. In the case of an open model (κ = 1)
the Universe will expand asymptotically at a constant rate, since gravity is
not strong enough to stop the expansion. Therefore this type of Universe
is destined to reach the thermal death, the so-called “Big Freeze”. A closed
model (κ = −1) is instead characterised by an inversion of the expansion
that occurs at the instant tM . After this moment the scale factor a begins to
decrease, leading to the so-called “Big Crunch”. The ultimate fate of a closed
Universe is so to collapse in a second singularity, symmetrical in time with
respect to the BB. figure 1.1 shows the possible evolutions of the parameter
a for the scenarios of the Universe we have just described.

Figure 1.1: Evolution of the scale factor a as a function of time for three possi-
ble scenarios: open, flat and closed Universe. Credits to: http://sci.esa.int/

education/35775-cosmology/?fbodylongid=1706

1.5 The Standard Cosmological Model

The ΛCDM is the cosmological model commonly accepted from the beginning
of the 21st century. This model is supported by a set of observational data
and describes very well the large scale structures of the Universe. More-
over, the cosmological parameters with which it is defined are constantly
constrained by experiments. It predicts also the existence of the Cosmic
Microwave Background (CMB), which is the thermal radiation background
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with a temperature today of 2.726±0.005 K, generated after the phenomenon
of the recombination. This scenario establishes that the major components
of the present-day Universe (so at z = 0) are the cosmological constant (Λ)
and a dust component called Cold Dark Matter (CDM). The density of the
radiative fluid, composed by all the relativistic particles (like photons and
neutrinos), has a negligible contribute at z = 0. In particular, the density
parameter of photons can be estimated by the measure of the temperature of
the CMB and has a value of Ω0,r ≈ 10−5. The matter component is divided
in two main typologies: baryonic and non-baryonic matter (i.e. DM). What
discriminates between these components is their interactions. Both of them
interact gravitationally, but only the ordinary baryonic matter can interact
with observable electromagnetic radiation. Since it does not interact directly
with photons, the detection of DM is extremely difficult and its direct obser-
vation impossible with standard experiments based on the emission of light.
However, there are strong evidences of its existence, e.g. by the measures
of the rotation curves of disk galaxies (Fuchs, 2001; Bosma, 1999) and of
the velocity dispersion of elliptical galaxies (Loewenstein and White, 1998;
Mamon and  Lokas, 2005), by the gravitational anomalies found in galaxy
clusters (Bradač, 2009), by the distortion of light during the phenomenon
of gravitational lensing (Li et al., 2016; Wallis et al., 2017; Gilman et al.,
2018) and by the analysis of the CMB’s black body spectrum (Galli et al.,
2011; Natarajan, 2013). Fritz Zwicky was the first scientist that, in 1937,
proposed the existence of another kind of matter to explain the dynamics of
galaxies in the Coma cluster (Zwicky, 1937). He found a discrepancy in the
mass of the cluster estimated using luminosities and the measured velocity
dispersion of the galaxies forming the cluster, and concluded that a quantity
of DM should be present in a much greater density than luminous matter.
Since the Zwicky’s works of the 1930s, many studies have been done in order
to understand the complex and elusive nature of DM. A large list of DM par-
ticle candidates have been proposed so far. Candidates for non-baryonic DM
are hypothetical particles such as axions, sterile neutrinos, weakly interact-
ing massive particles (WIMPs), gravitationally-interacting massive particles
(GIMPs), or supersymmetric particles (Khlopov, 2017). Other candidates
of DM are the massive astrophysical compact halo objects (MACHOs) (Al-
cock, 1997; Brandt, 2016): these objects, including neutron stars, and brown
and white dwarfs, are composed of ordinary matter but do not emits signif-
icantly light. Other studies investigated new theories of modified gravity to
describe the observations without having to assume any form of “additional”
non-visible matter (for a review, see Clifton et al., 2012).

The idea of the cosmological constant was initially proposed by Albert
Einstein (Einstein, 1915), but its reintroduction in the cosmological models
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was performed only in the 1990s, with the measure of the galaxy correla-
tions on large scales (Efstathiou et al., 1990) and the final discovery of the
accelerated expansion of the Universe, making use of type Ia supernovae as
standard candles (Riess et al., 1998; Perlmutter et al., 1999). As consequence,
the model of flat matter-dominated Universe was brought into question, and
the DE component was introduced. Nowadays, the ΛCDM model is broadly
accepted, but despite the refinements and the remarkable success it achieved,
its theoretical roots still remain poorly understood. In particular, the real
nature of DE and the physical origin of the accelerated expansion are still
unknown.

To understand the effect of the cosmological constant Λ in the Universe,
let us consider again the modified Einstein’s field equation of GR, reported
in equation (1.30). If we set Tµν = 0 in equation (1.31), the remaining
term will represent the energy of vacuum, which acts as a repulsive force,
opposite to the one of the gravity. In the ΛCDM model, Λ is defined as
a constant and is described by a state parameter w = −1. From equation
(1.39) it is possible to demonstrate that matter and radiation components
have densities that evolve as ∝ (1+z)3 and ∝ (1+z)4, respectively. The value
of the contribution of the Λ component to the density parameters remains
instead constant throughout the expansion of the Universe, with a value of
ρΛ = Λc2/8πG.

Let us now define the deceleration parameter as follows:

q(t) := −a(t)ä(t)

ȧ2(t)
≡ − 1

H2(t)

ä(t)

a(t)
. (1.43)

The deceleration parameter of a mono-component matter Universe (w = 0
and p = 0), from the First Friedmann Equation, is equal to q = ΩM/2, which
implies q > 0. This corresponds to a decelerated expansion of the Universe,
in contrast to the current observations. On the other hand, considering a
multi-component model composed by matter and Λ, the First Friedmann
Equation leads to:

ä = −aH2 ΩM

2
+ aH2ΩΛ ,

with ΩΛ ≡ Λc2/3H(t)2. Now, from the definition of the deceleration param-
eter:

q =
ΩM

2
− ΩΛ .

To obtain an accelerated expansion (q < 0), we have to impose the condition:

ΩΛ >
ΩM

2
.
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Inserting in the last formula the values of the parameters currently accepted
(ΩM ≈ 0.3 and ΩΛ ≈ 0.7) we achieve a value of q ≈ −0.55, so the condition
imposed to have an accelerated expansion is satisfied. As confirmed by recent
measurements, our Universe is approximately flat. In fact, summing the
individual values of the density parameter Ω0,wi

, we obtain
∑

i Ω0,wi
' 1.

In Subsection 1.4.2 we stated that the early Universe is well described by
an EdS model, so with ä < 0. Having established now that in recent times the
Universe is experiencing an accelerated expansion, ä > 0, we must admit the
presence of a flex in the function a(z), corresponding to an inversion of the
expansion rate. It can be easily demonstrated that this change of expansion
rate occurs at zf ≈ 0.7. Instead, the moment corresponding to the equiv-
alence between matter and cosmological constant ΩM(zeq,Λ) = ΩΛ(zeq,Λ),
coincides with zeq ≈ 0.33. This result implies that DE and DM are currently
of the same order of magnitude and that the contribution of the cosmologi-
cal constant became relevant only at recent times. This is what is generally
called the cosmological Coincidence Problem.

1.6 The Jeans Theory

In 1902, Jeans demonstrated how the existence of an instability in evolving
clouds of gas can lead to the formation of galaxies and large-scale structure,
currently observed in the Universe. According to his theory (called gravita-
tional Jeans instability or simply Jeans Theory), the small inhomogeneities
present in the fluid are amplified and can evolve in time, when the internal
gas pressure is unable to counteract the gravitational pull.

From the current observations, the Universe appears to be quite inhomo-
geneous at Mpc scales and shows the characteristics of a highly non-linear
evolution. On scales of collapsed objects, fluctuations of density are on aver-
age approximately of 102. However, from the amplitude of the fluctuations
in the temperature power spectrum it is possible to derive the amplitude of
the density perturbations in the cosmic fluid at the time of recombination.
In particular:

δT

T
≈ 10−5 ,

where T is the mean black body temperature of the CMB. Therefore we can
conclude that the amplitude of the density fluctuations were very small in this
epoch and the Universe was almost homogeneous. The effect of gravity must
be such as to make the already existing perturbations grow with a sufficient
rate. The overdense regions of the Universe are capable to attract matter,
which, in turn, is evacuated from the underdense ones creating increasingly
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larger voids. The Jeans theory provides an analytical description of this
phenomenon, as long as the structures analysed remain in the linear regime.
To describe the behavior of the collapsed matter in non-linear regime, we
generally rely on the numerical simulations, since its analytical treatment
becomes very complex.

The aim of the Jeans theory is therefore to describe of how fast an initial
perturbation has to grow to reproduce the inhomogeneities observed today.
The results derived in this theory are applied to non-relativistic matter and
on scales not exceeding the cosmological horizon, that represents the sphere
that comprehends all the volume of the Universe that is casually connected
with an observer. The cosmological horizon is defined as:

RH ≡ a(t)

∫ t

tBB

c dt′

a(t′)
, (1.44)

where time tBB = 0 identifies the beginning of the expansion with the Big
Bang. The cosmological horizon separates the Universe in two different re-
gions: on scales beyond RH gravity is the only force in action and the growth
of the perturbation has to be treated with the relativistic theory, while on
smaller scales the Jeans theory provides a reliable description of this phe-
nomenon in an expanding Universe. Since on scales larger than RH there are
no relevant forces except gravity, the density fluctuations can always grow,
giving birth to collapsed structures.

The Jeans Theory describes the dynamic and the evolution of a self-
gravitating fluid. In the next section we will start studying the case of a
collisional gas in a static background and subsequently we will extend the
description to the scenario of the expanding Universe, towards the non-linear
regime.

1.6.1 Jeans instability in a Static Universe

We assume a homogeneous and isotropic background, composed by a fluid
having a constant matter density ρ(x, t) embedded in a static (non-expanding)
Universe. The equations of motion of such a fluid, in the Newtonian approx-
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imation, are the following:

∂ρ

∂t
+∇ · (ρv) = 0 continuity equation (1.45a)

∂v

∂t
+ (v · ∇)v = −1

ρ
∇ρ−∇Φ Euler equation (1.45b)

∇2Φ = 4πGρ Poisson Equation (1.45c)

p = p(ρ, S) = p(ρ) equation of state (1.45d)

dS

dt
= 0 adiabatic condition (1.45e)

where v is the velocity vector of a fluid element, Φ is the gravitational
potential, p the pressure and S represents the entropy. Let us suppose a
generic background solution for the set of Equations (1.45):

ρB = const

pB = const

ΦB = const .

v = 0

(1.46)

We can now define the dimensionless density perturbation, the so-called den-
sity contrast :

δ(x, t) ≡ δρ(x, t)

ρB
. (1.47)

Introducing a small perturbation δ in each variable of the system (1.45), thus:
ρ = ρB + δρ

p = pB + δp

Φ = ρB + δΦ

v = δv

(1.48)

and imposing δ � 1 for all perturbations we can obtain the hydrodinamic
system for a fluctuation in the density field that can be linearised. We made
the request that both the systems (1.46) and (1.48) are the solution of the ini-
tial Equations (1.45). The solving equation for density becomes a differential
equation which in Fourier space has the form:

δ̈k + (k2c2
s − 4πGρB)δk = 0 (1.49)

where k = |k| represents the absolute value of the wavenumber, δk = δk(t)
is the Fourier transform of δ(x, t) and cs =

√
∂p/∂ρ is the sound speed. The

previous differential equation has two independent solutions, with the form:

δk ∝ exp(±iωt) , (1.50)
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where
ω(k) =

√
k2c2

s − 4πGρB . (1.51)

The solutions are of two types, according to the value of the wavelength
λ = 2π/k with respect to the Jeans length:

λJ ≡
2π

k
= cs

(
π

GρB

)1/2

. (1.52)

If λ < λJ we obtain w2(k) > 0, so the perturbation propagates as a sound
wave with constant amplitude and with a phase velocity cph = ω/k, that
tends to become equal to cs for λ � λJ . On the other hand, for λ > λJ
the pulsation becomes imaginary and the solution is a stationary (non-
propagating) wave with an amplitude that increases or decreases exponen-
tially. Of these two solutions, we are interested to the increasing one, which
can lead to the collapse of the perturbation and the formation of the struc-
tures. In the end, for very large scales (λ� λJ), gravity dominates and the
fluctuation grows rapidly with an exponential behavior, tending to a free-fall
collapse with typical time τff ∼ 1/

√
Gρ0. Summarising, according to the

Jeans Theory, the density fluctuations below the Jeans scale, λJ , propagate
as a wave of constant amplitude, while the ones on sufficiently larger scales
can grow exponentially.

1.6.2 Jeans instability in an expanding Universe

Now we want to analyse the case of a perturbation embedded in an expand-
ing homogeneous and isotropic Universe. In this framework the background
density is a function of time, ρB = ρB(t), so the continuity equation (1.45a)
becomes:

ρ̇B + 3H(t)ρB = 0 . (1.53)

Moreover the velocities are no longer null, since the fluid has a peculiar
velocity and it is also subjected to the Hubble flow. Therefore we obtain a
double component velocity with the form:

u = ẋ = H(t)x + vp , (1.54)

where x indicates the position vector of the fluid. Now, introducing a fluctu-
ation in the set of Equations (1.45) in the same way described in the previous
section, it is possible to recover the solution for every Fourier mode of the
type δ = δk(t) exp(ikx):

δ̈k + 2H(t)δ̇k + (k2c2
s − 4πGρB)δk = 0 . (1.55)
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The last equation is the so-called dispersion relation, where the term 2H(t)δ̇k
is related to the Hubble friction, while the term k2c2δk accounts for the
characteristic velocity field of the fluid. Both these terms tend to dissipate
the fluctuations, hampering their growth. This is a second-order differen-
tial equation for δ(x, t) and we can separate the behavior of its solutions
depending on the scale:

λJ ' cs

(
π

GρB

)1/2

. (1.56)

For λ < λJ the fluctuation propagate as stationary waves, as we previously
found for a static Universes. On the other hand, for λ > λJ the dispersion
relation has growing and decaying mode solutions:

δ(x, t) = A(x)D+(t) +B(x)D−(t) , (1.57)

where A and B are two functions depending on the comoving coordinates,
while D+ and D− represent respectively the growing and decaying modes
and are time-dependent. Applying now the dependencies for EdS Universes
reported in Table 1.1 (with ΩM = 1) we obtain the following trends:

D+(t) ∝ t2/3 ∝ a(t)

and
D−(t) ∝ t−1 ∝ a−3/2 .

We are interested to the growing solution, since the decaying one does not
give rise to gravitational instability.

For a generic Universe, the growing solution has an integral form given
by the following equation:

D+(z) = H(z)

∫ ∞
z

dz′(1 + z′)

H3(z′)
. (1.58)

The previous integral has no analytical solution. We can provide a parametric
solution to approximate its trend:

f =
d logD+

d log a
' Ω0.55

M +
ΩΛ

70

(
1 +

1

2
ΩM

)
. (1.59)

From this formula we can see that there is a strong dependence on the quan-
tity of matter present in the Universe, while we can conclude that Λ does
not play a crucial role for the growth of the fluctuations.
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1.6.3 Primordial density fluctuations

In the previous section we have studied the linear evolution of a single pertur-
bation of the density field δ(x, t) = D+(t)δ(x). This representation is useful
because a generic perturbation can be represented in Fourier space as a su-
perposition of such plane waves, that have the advantage to be independent
during the evolution. In more realistic cases we expect fluctuations to exist
on a variety of mass or length scales, so the final collapsed structures will de-
pend on the growth of perturbations on different scales relative to each other.
This approach requires a statistical treatment of the initial perturbations.

The spatial Fourier transform of δ(x) has the form:

δ(k) =
1

(2π)3

∫
d3x−ik·xδx . (1.60)

Let us define the Power Spectrum of the density field as the variance of the
amplitudes at a given value of k:

〈δ(k)δ∗(k′)〉 = (2π)3P (k)δ
(3)
D (k− k′) , (1.61)

where δ
(3)
D is the 3-dimensional Dirac delta function and δ∗(k) = δ(-k) be-

cause of the reality of δ. The power spectrum is related via a Fourier trans-
form to its analogous quantity in the real space, the two-point correlation
function (2PCF) ξ(r):

ξ(r) =
1

(2π)3

∫
d3kP (k)eik·x , (1.62)

which quantifies the spatial clustering of the objects and it is defined as:

〈δ(x)δ(x′)〉 = ξ(|x− x′|) = ξ(r) = ξ(r) , (1.63)

where r is the comoving distance between x and x′, and ξ(r) = ξ(r) is due to
the CP. We can interpret ξ(r) also as the probability excess dP12 of finding
a pair of objects separated by a comoving distance r, in two independent
volume elements dV1 and dV2, with respect to a random uniform distribution
of objects:

dP12 = n2[1 + ξ(r)]dV1dV2 . (1.64)

According to the inflation models1, the primordial density perturbations are
generated by stochastic quantum fluctuations in a scalar field (i.e inflaton)

1The inflation theory predicts a phase of exponential expansion of the Universe, set in
the early stages after the BB. For further information, see Guth (1981).
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(Guth and Pi, 1982), therefore their amplitudes are described by a Gaussian
distribution. With this assumption, the power spectrum defines uniquely the
distribution of fluctuations. Since during the inflation there is no preferred
scale, the initial spectrum follows a power law given by:

P (k) = Akn , (1.65)

where the spectral index n is generally assumed to be close to unity (Zel-
dovich, 1972). While the shape of the power spectrum can be considered to
be fixed, the amplitude A is not and has to be constrained with observations.
In particular, the most reliable measure of A is obtained from the analysis
of the temperature fluctuations in the CMB.

Since the amplitudes of the fluctuations have a Gaussian distribution in
real space, the mean value of perturbations is statistically null by definition.
Instead, its variance σ2 is defined by:

σ2 = 〈|δ(x)2)|〉 =
∑
k

〈|δk|2〉 =
1

Vu

∑
k

δ2
k , (1.66)

where the average is taken over an ensemble of realisations of volume Vu.
By considering the limit Vu → ∞ and assuming the validity of the CP, we
obtain:

σ2 → 1

2π2

∫ ∞
0

P (k)k2dk . (1.67)

Since in the previous equation the variance is defined for each point of the
space, to measure σ2 it is necessary to reconstruct the entire density field,
which is obviously not possible in practice. Therefore it is convenient to
describe the fluctuation field “filtering” on some resolution scale R, instead
of using a punctual variance.

Let us define 〈M〉 as be the mean mass found inside a spherical volume of
radius R. In this way we can recover the density fluctuation from a discrete
distribution of tracers as:

δM =
M − 〈M〉
〈M〉

. (1.68)

Using this definition in combination with equation (1.66), we obtain the mass
variance:

σ2
M = 〈δ2

M〉 =
〈(M − 〈M〉)2〉
〈M〉2

, (1.69)

which is related to the convolution of the punctual density with a window
function W of radius R (corresponding to M):

δM(x) = δ(x)⊗W (x, R) . (1.70)
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From the last two equations and using the convolution theorem, it is possible
to express the mass variance, passing in the limit expressed by the equation
(1.67):

σ2
M =

1

(2π)3

∫
d3kP (k)Ŵ 2(k, R) , (1.71)

where Ŵ is the Fourier-transform of the window function and which is a
function of R and therefore of M . We can also note that:{

σ2
M → σ2 for R→ 0

σ2
M → 0 for R→∞ ,

(1.72)

that is, smaller is the scale R we use to filter more the variance tends to
its punctual value. On the other hand, filtering on larger scales, the density
fluctuations are more and more smoothed and the Gaussian distribution of
their amplitude tends to degenerate into a Dirac delta function, having so a
null variance. σ2

M is therefore dominated by perturbation components with
wavelength λ ' k−1 > R, since the higher values of k tend to be averaged
out within the window volume. The Zel’dovich spectrum defined in equation
(1.65) (with n = 1) is a growing function of k, which means that waves with
large λ have a small contribute.

1.6.4 Spherical evolution

In the previous sections we studied the evolution of a primordial density
perturbation. This is described by the Jeans theory, which preserves its
validity until δ(x, t)� 1. Since the large-scale structures of the Universe are
characterised by a wide range of degrees of non-linearity, the Jeans theory
fails in the reconstruction of their entire evolution. Nevertheless, analytical
solutions exist in the case of a isolated spherically symmetric perturbation.
This is the simplest approach to the non-linear evolution and it requires
the assumption that the perturbation is spherical. This treatment is not
particularly interesting for the reconstruction of the evolution of structures
like galaxies or galaxy clusters because the real fluctuations are expected to
be highly irregular and random, but it constitutes a valid model for the study
of cosmic voids (see chapter 2).

Let us consider a spherical top-hat perturbation. We can model it as a
set of concentric shells, uniform and without substructures. An important
feature of this case is that the evolution of the perturbation only depends
on the total energy embedded in the shell, on its peculiar velocity, and not
on the radial distribution of the density field inside it (Sheth and van de
Weygaert, 2004).

31



At some initial time ti, the mean density field of the background Uni-
verse determines the subdivision of the volume of the Universe in overdense
δ(x, ti) > 0, and underdense δ(x, ti) < 0 regions. We expect that, if a per-
turbation has a sufficiently high density contrast, it will decouple from the
Hubble flow and collapse. On the other hand, an underdensity is subject to a
repulsive effect of the gravity, that leads to the expansion of the perturbation,
which will be intensified by the Hubble flow. So, an underdense shell will
expand faster than the Hubble flow, evacuating the matter content outward.

Assuming one more time the validity of the CP, we can suppose that each
perturbation can be treated as an independent Friedmann Universe, until it
evolves adiabatically. So the only interaction we have to take into account is
the gravitational one.

The initial density distribution of our model can be expressed as follows:

ρ(r, ti) = ρB(ti) + δρ(ri, ti) = ρB(ti)[1 + δi(r)] , (1.73)

where δi(r) ≡ δ(r, ti) is the initial density contrast embedded in the shell.
Since we are dealing with a spherical perturbation, it is convenient to make
use of the proper radial coordinate r = a(t)|x|, where x is the comoving
coordinate.

Let us consider a concentric shell of infinitesimal thickness at distance
r from the centre. The motion of the matter included in this shell can be
described by the following equation:

d2r

dt2
= −GM

r2
= −4πG

3
ρ(1 + ∆)r , (1.74)

where

M =
4π

3
r3
i ρB(1 + ∆i) , (1.75)

∆i =
3

r3
i

∫ ri

0

δi(r)r
2dr , (1.76)

with ri the initial radius of the shell with enclosed mass M and ∆i the average
value of δi within ri at time ti. Equation (1.76) is analogous to the First
Friedmann Equation (1.23) for an Universe formed by only one component:

d2a

dt2
= −4πG

3
ρBa , (1.77)

thanks to the similarity of these two equations we can conclude that the per-
turbation evolves fundamentally like a Universe of a different mean density,
but preserving the same expansion rate.
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From equation (1.74), the first integral of motion can be written as:

1

2

(
dr

dt

)2

− GM

r
=

1

2

(
dr

dt

)2

− 4πG

3
ρB(1 + ∆)r2 = E , (1.78)

where E is the total energy of the perturbation. From the previous equation
we can conclude that the value of E determines the fate of the given mass
shell. In fact, if E < 0, r increases and ṙ will eventually become zero and later
negative. This will lead to the collapse of the perturbation. On the other
hand, if E > 0, then ṙ2 will always be positive and the shell will expand
forever, decoupling from the Hubble flow.

Analogously to what we found for before, equation (1.78) can be compared
to the Second Friedmann Equation (1.24):

1

2

(
da

dt

)2

− 4πG

3
ρBa

2 = −K
2

, (1.79)

which describes the expansion rate of the Universe. The constant K, as we
have seen in section 1.2, is the curvature parameter. Note that equation
(1.79) is obtained from the First Friedmann Equation (1.23) applying the
adiabatic condition (1.27).

Having established these similarities, we can proceed deriving the para-
metric solutions of the Friedmann equations for curved universes. The para-
metric solutions relative to a mass shell are the following:

r = A(cosh θ − 1) , t = B(sinh θ − θ) , E > 0; (1.80a)

r = A(1− cos θ) , t = B(θ − sin θ) , E < 0; (1.80b)

where the constants A and B related by:

A3 = GMB2 . (1.81)

The parameter θ is called development angle and it parameterises all the
physical relevant quantities relating to the mass shell.

Let us assume a homogeneous background has we have done in the Jeans
theory. We choose the expansion parameter a(t) = rB(t) so that it encloses
the same mass M as in equations (1.80). Therefore we obtain:

rB = AB(cosh η − 1) , t = BB(sinh η − η) , K > 0; (1.82a)

rB = AB(1− cos η) , t = BB(η − sin η) , K < 0; (1.82b)

where AB and BB are two constants related by:

A3
B = GMB2

B . (1.83)
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The solutions for the EdS Universes (equivalent to the case E = 0) are the
same we reported in Table 1.1.

We can now calculate the mean density inside a shell applying ρ =
3M/(4πr3) and substituting with the dependencies in system (1.80) and in
equation (1.83), we obtain

ρ(r, t) =


3

4πGt2
(sinh ζ−ζ)2
(cosh ζ−1)3

open
3

4πGt2
2
9

critical .
3

4πGt2
(ζ−sin ζ)2

(1−cos ζ)3
closed

(1.84)

The density contrast of a perturbation in a monocomponent Universe can be
expressed in the most general form with the following expression:

1 + ∆(r, t) =
ρ(r, t)

ρB(r, t)
=
f(θ)

f(η)
(1.85)

where θ and η are the development angles of the perturbation and of the
background Universe, respectively. We can define the cosmic density function
f(ζ) as:

f(ζ) =


(sinh ζ−ζ)2
(cosh ζ−1)3

open
2
9

critial .
(ζ−sin ζ)2

(1−cos ζ)3
closed

(1.86)

In addiction, the velocity of expansion or contraction of a spherical shell
can be expressed in terms of θ and η. Let us consider the peculiar velocity
of a shell:

vp(r, t) = v(r, t)−H(t)r(t) , (1.87)

where v(r, t) represents the total velocity of the shell and H(t) the Hubble
parameter of the background Universe. Now we define a general Hubble
parameter Hs for an unspecified shell with the following equation:

Hs(t) =
ṙ

r
=

1

r

dr

dt
=

1

t
g(ζ) , (1.88)

where g(ζ) is the cosmic velocity function and it is defined as:

g(ζ) =


sinh ζ(sinh ζ−ζ)

(cosh ζ−1)2
open

2
3

critial .
sin ζ(ζ−sin ζ)

(1−cos ζ)2
closed

(1.89)

The peculiar velocity expressed in equation (1.87) can then be rewritten
as

vp(r, t) = H(t)r(t)

[
g(θ)

g(η)
− 1

]
. (1.90)
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With the equations (1.85) and (1.90) we obtained explicit expressions
for the evolution of a spherical perturbation in FRW backgrounds, without
taking into to account the effect of the cosmological constant. In the next
sections we will analyse the case of a spherical overdense and underdense
perturbation, evolving in an EdS background Universe.

Overdensities

Let us consider the evolution of an initially overdense shell in a EdS Universe.
Such a shell will initially expand slower than the Hubble flow. Then it will
gradually halts its expansion, reaching a maximum radius rm. After this
instant, tta, it turns around and it starts to collapse. Since at the moment
of turn-around the velocity of the shell is v(rm, tta) = 0, for the closed case
equation (1.89) gives a velocity equals to:

v(r, t) = Hs(r, t)r(t) ∝
sin θ

1− cos θ
. (1.91)

From the relation in equation (1.91) we obtain that at the turn-around θta =
π, the resulting density is:

1 + ∆(rm, tta) = (3π/4)2 ≈ 5.6 , (1.92)

which is highly non-linear and implies the shell has expanded by a factor of
5.61/3 ≈ 1.8 with respect to its initial value. The last relation suggests that,
at the moment of turn-around, the collapsing region is nearly 6 times denser
than the background Universe. This corresponds to a density contrast of
∆ ≈ 4.6 which is already in the non-linear regime. Now it is useful to
calculate the corresponding value of ∆ in linear regime. For a spherical
overdensity with initial peculiar velocity vp(ti) = 0 in an EdS Universe, we
need to consider both the growing (D+ ∝ t2/3) and decaying (D− ∝ t−1)
mode, in order to describe the evolution of the density contrast:

δ = δ+(ti)

(
t

ti

)2/3

+ δ−(ti)

(
t

ti

)−1

, (1.93)

where δ±(ti) are the growing (+) and decaying (−) fraction of the initial
perturbation δi.

Now we can reasonably assume that the decaying mode will become neg-
ligible after a short time. Then the remaining perturbation is δ ≈ δ+(ti).
Therefore, in linear approximation, the turn-around density contrast is:

δta =
3

5

(
3π

4

)2/3

≈ 1.062 . (1.94)
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Full collapse is instead associated with θ = 2π and the linearly extrapolated
initial overdensity reaches the collapse density contrast at the value:

δc =
3

5

(
3π

2

)2/3

≈ 1.686 . (1.95)

Nevertheless, even though a strictly gravitational description implies that
the comoving radius of the overdensity shrinks to zero (r(2π) = 0), in reality
the matter in the collapsing object will eventually virialise. In fact, the
more at smaller radii, the approximation of independently evolving shells
can be considered valid anymore. The hydrodynamical interactions (for the
baryonic matter) or the increase of the dispersion velocity of the particles
(for the DM) within the shell will lead towards an equilibrium configuration.
Therefore, it is usual to assume that the final size of a collapsed spherical
object corresponds to its virial radius.

Underdensities

The evolution of an underdense spherical region is different from that of
its overdense counterpart. We can generally define these regions as voids.
In this case, the net radial acceleration is directed outward with respect to
the centre of the sphere and it is directly proportional to the mean density
contrast ∆(r, t) of the void. Since the inner shells are more underdense, they
are affected by a stronger outward acceleration than the outer shells.

In the case of an EdS model (Ω = 1), we can obtain the evolution of the
density from equation (1.85):

1 + ∆(r, t) =
fopen(θ)

fEdS(η)
=

9

2

(sinh θ − θ)2

(cosh θ − 1)3
. (1.96)

Once again, we want to compare this result to the corresponding linear initial
density deficit ∆L(r, t):

∆L(r, t) = ∆L(z) =
∆i

1 + z
=

1

1 + z

(
3

5
∆+,i +

2

5
∆−,i

)
≈ 3

5

∆+,i

1 + z
, (1.97)

where we considered only the growing solution ∆+,i, since the decaying so-
lution ∆−,i gradually tends to zero.

The constants in equation (1.80) are:

A =
ri

2∆i

, (1.98)

B =
3

4

ti

∆
3/2
i

, (1.99)
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where ri and ti represent the initial coordinates of the perturbation (Blu-
menthal et al., 1992). Equation (1.97), with the equations (1.98) and (1.99)
and considering also the solutions from Table 1.1, leads to:

∆L
i (θ) = −

(
3

4

)2/3
3

5
(sinh θ − θ)2/3 . (1.100)

A direct consequence of the differential outward expansion and of the radial
decrease of the expansion rate, is the accumulation of shells near the bound-
ary of the void. The density deficit ∆(r) of the void decreases as a function
of radius r and reaches its minimum at the centre. Shells that were initially
close to the centre will ultimately catch up the shells further outside, until
they eventually pass them. This marks the phenomenon called shell-crossing.
The shell-crossing defines a characteristic moment that defines the formation
of the void at a non-linear level.

For an ideal top-hat underdensity, this process also leads to the forma-
tion of an infinitely dense ridge in the outermost region of the void. From
this moment on the evolution of the void can be described by a self-similar
outward moving shell (Suto et al., 1984).

The solutions in equation (1.80) represent a family of trajectories labeled
by ri and parameterised by θ. We can find out the position and the moment in
which shell-crossing first occurs by differentiating the parametrised solutions
with respect to r and θ, and requiring that dr and dt vanish:[

A11 A12

A21 A22

] [
dr/r
dθ

]
= 0 , (1.101)

where Aij are functions of ∆i and θ (Jennings et al., 2013). The homogeneous
system of linear equations (1.101) has non-zero solutions when detA = 0, thus
the shell-crossing condition is:

sinh θsc(sinh θsc − θsc)
(θsc − 1)2

=
8

9
. (1.102)

Therefore shell-crossing first occurs at a development angle θsc ≈ 3.49. In
addiction we can note that, from equation (1.88) and from the relation
(1.102), at shell-crossing the void has a fixed excess Hubble expansion rate:
Hsc = (4/3)H(tsc).

Substituting θsc, we can now obtain all the relevant values to deal with
voids. As first, the non-linear (NL) density contrast is given by equation
(1.85):

1 + δNLv (r, t) ≈ 0.21 . (1.103)
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It follows that |δsc| ≈ 0.8 . 1, which means that a void is only nearly non-
linear. This is due to the fact that there is a physical limit, (δρ/ρ)lim = −1,
to the underdensity degree that a region can reach. An underdensity which
evolved towards shell-crossing, has expanded by a factor (1 + δNLsc )1/3 ≈ 1.72
with respect to its initial size.

In the end, from equation (1.100) we obtain the linearly extrapolated
underdensity of a void:

δv ≈ −2.71 , (1.104)

which is the underdense counterpart of the threshold found in equation (1.95).
Icke (1984) demonstrated that voids tend to assume a spherical form,

differently from collapsing objects, which tendentially evolve into filamentary
or sheet-like structures. Moreover, since the expansion of a void can be
considered as the time reversal of the collapse of an overdensity, it follows
that, in the underdense case, the eventual initial asphericities are cancelled.

1.6.5 Non-linear evolution

The cosmic structures present in today’s Universe, such as galaxies, clusters
and DM haloes, are the result of gravitational instabilities occurred through-
out the cosmological history. In order to describe the formation of these
objects the the small-perturbations approximation can not be applied any-
more, since they are characterised by a strongly non-linear regime given by
δ � 1. After the linear regime breaks down, therefore when δ becomes com-
parable to unity, the weakly non-linear (WNL) regime sets in. Already in
the WNL stage, the fluctuation distribution function starts to deviate from
the Gaussian shape. Even if some approximated analytical models have been
proposed to describe what happens during this phase, we generally rely on
N-body simulations in order to model accurately non-linear regimes.

Moreover, we have to take into account that also the spatial distribution of
baryons changes during the history of the Universe. Its evolution is different
from the DM one, because of several further phenomena. For example as
a result of hydrodynamical effects, star formation, SNe’s explosion, AGN’s
feedback. All of these phenomena make it difficult to construct a full and
solid theory. An alternative solution to the development of semi-analytical
models to describe these effects, is to assume that the discrete distribution
of objects (as galaxies, clusters or haloes) n(r) =

∑
i δ

(3)
D (r− ri) is connected

by a simple functional relationship to the underlying DM δ(r). It is generally
believed that relative fluctuations in the object number counts and matter
density fluctuations are proportional to each other, at least on sufficiently
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large scales. This is expressed by the following relation:

δn(r)

〈n〉
= b

δρ(r)

〈ρ〉
, (1.105)

where the factor b is called the linear bias parameter and it quantifies the
difference between mass and object (e.g. galaxy) clustering. Assuming this
approximation, the linear theory can be extended on large scales to relate
galaxy clustering statistics to those of the underlying density fluctuations,
by means of σ2

g = b2σ2
M .

It can be demonstrated that the effective bias has a direct dependency on
the mass and the redshift of the cosmological objects. This can be explained
by considering the decomposition of the density field of the Universe in short
and long wavelengths. In particular, the formation of the structures occurs
when a given density threshold is exceeded, therefore on those scales char-
acterized by a peak of the long wavelength. This can be interpreted as the
tendency of the more massive objects of being more clustered. Then, given
the hierarchical formation of the structures, the massive objects were rarer
in the past, they appear more clustered at higher redshifts. The accurate
prediction of the value of b as a function of the mass M and the redshift z
of the DM haloes can be obtained with analytical treatments, which lead to
the formula:

b(M, z) :=

√
ξhalo(r, z,M)

ξ(r, z)
= 1 +

1

δc

(
δ2
c

σ2
MD

2
+

− 1

)
, (1.106)

where δc = 1.686 is the critical linear overdensity, σM is the mass variance
and D+ is the growing factor, expressed in equation (1.58). (Mo and White,
1996). We will give a more complete description of these arguments in chapter
4.

1.6.6 The Zel’dovich approximation

The Zel’dovich approximation can be used to extend the linear theory to the
weakly non-linear regime (i.e. to the case of density perturbations slightly
larger than unity). It provides a good representation for structures that have
not reached the full non-linear regime yet (δ � 1), though it is based on
some strict assumptions.

A cosmological fluid can be described in the Lagrangian coordinates, trac-
ing the path of a fluid element into space and time. Given the position q of
an element at t0, its location at subsequent instants can be written in terms
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of the Lagrangian displacement field2, Ψ, as follows:

r = a(t)q + Ψ(q, t) , (1.107)

where the first term describes the expansion of the Universe. The Zel’dovich
approximation is conventionally considered as a first-order Lagrangian per-
turbations theory. It is based on the hypotesis that the position and the
time dependencies of the displacement between the initial position and the
final one are independent, so that they can be separated. Moreover, we are
supposing that particles move along straight line trajectories with a kind
of inertial motion. This approximation can be considered valid as long as
two points cross each other (shell-crossing), since their mutual gravitational
interaction is not considered in this treatment.

1.7 N-body simulations

The formation of cosmic structures can be approximated as the dynamical
evolution of a system of particles, tracers of the underlying mass distribu-
tion. The treatment of this system is generally too complicated to be studied
analytically. For this reason, N-body simulations are employed by cosmolo-
gists, in order to analyse the large scale structures (LSS) of the Universe with
numerical methods. One of the most important advantages of the numerical
simulations is the possibility of setting the cosmology-defining parameters as
the user wishes, producing theoretical results that can be compared with ob-
servations. Moreover, N-body simulations allow the study of the non-linear
regime of perturbation growth without the necessary simplifications adopted
to reach analytical solutions. Since gravity is the dominant interaction on
large scales, the LSS evolution is dominated by the effect of the DM, so at
first order it will be sufficient to analyse the behavior of this component.
However, to obtain a more realistic description of the LSS, the hydrody-
namic consequences of the presence of the baryonic matter has to be taken
into account.

The simplest kind of N-body simulations, which considers only gravita-

2The displacement field is an assignment to all the points of a region of displacement
vectors, which specify the position of a point or a particle in reference to an origin or to
a previous position.
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tional effects, solves the following dynamical equation system:
Fi = GMi

∑
i 6=j

Mj

r2ij
r̂2
ij

ẍi = dvi

dt
= Fi

Mi
,

ẋi = dxi

dt
= vi

(1.108)

where Fi is the gravitational force of the i-th particle, G is the gravitational
constant, Mi is the i-th particle mass, xi are the comoving coordinates of the
i-th particle, vi are the velocity components of the i-th particle, rij is the
comoving distance between the i-th and j-th particles, and r̂ij is the related
versor. Given the system (1.108), the Euler equation of motion in equation
(1.45) can be re-written as:

dxi
dt

+ 2
ȧ

a
vi = − 1

a2
∇Φ = −G

a3

∑
i,j 6=i

mj
xi − xj
|xi − xj|3

=
Fi

a3
, (1.109)

where a is the scale factor. Applying the Second Friedman Equation (1.24),
the Poisson Equation (1.45) becomes:

∇2Φ = 4πGρ̄(t)a2δ =
3

2
H2

0 Ω0
δ

a
, (1.110)

where ρ̄(t) is the average non-relativistic matter density of the Universe, δ the
local density contrast, H0 is the Hubble parameter and Ω0 the non-relativistic
matter density parameter.

A N-body simulation consists in the integration of the dynamical equa-
tions over discretised time steps, δt. At every time interval, the total grav-
itational force of the system, Fi, is calculated. Then, the motion equation
is evaluated by numerical integration and the new positions, xi(t± δt), and
velocities, vi(t ± δt), are obtained. At each step also the time is updated,
t = t + δt. The choice of δt has to follow a suitable criterion and it has
to be chosen the larger one from the set of possible time steps that satisfy
the requirements. There is a wide number of possible criteria that can be
suitable for different approaches. They can basically be divided into three
main categories: (i) total energy conservation, (ii) convergence of final posi-
tions and velocities and (iii) reproducibility of the initial conditions (Bagla
and Padmanabhan, 1997). The final output of a N-body simulation is a set
of snapshots, that represent at each instant the evolution of the system of
particles, as a result of the action of the gravitational force.

There are several computational techniques for developing a N-body sim-
ulation, differing in implementation, CPU efficiency, both spatial and mass
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resolutions, and more. In the following, we provide a brief description of
some of the most used techniques.

• Particle-Particle (PP): this computational technique allows to com-
pute the force acting on the i-th particle, as the sum of all the forces
generated by all the other particles of the considered system. Since the
number of required operations scales as O(N2

p ), this class of methods is
the most time consuming, but also the most accurate, due to the force
being directly computed for each particle.

• Particle Mesh (PM): this method determines the total gravitational
force of a particle system, by implementing a grid, where all the rele-
vant quantities are computed in each cell. In particular, the Poisson
Equation is solved for the grid in the Fourier domain, and the force is
applied to each particle again in the real space. This method is faster
than the PP one, but it is less accurate, due to the limited resolution
of the considered grid.

• Particle-Particle Particle Mesh (P3M): this technique is based on the
PM one, but it enhances the latter by introducing a direct-summation
of the forces (like in the PP method) within a sphere with fixed-radius
R around each particle (Efstathiou et al., 1985). This algorithm is
more accurate than the PM: particles directly interact with each other
in presence of zones with strong clustering. However, it implies an in-
creasing of computational cost, which locally tends to be proportional
to O(N2

p ). A way to reduce this problem is the implementation of an
adaptive mesh, so that it is possible to redefine the local spatial reso-
lution of overcrowded regions. The computational cost of the adaptive
P3M scales as O(Npn(R))), where n(R) is the average number of par-
ticles within R.

• Tree code: the simulation volume is divided in a hierarchical tree of
subregions characterised by a proper centre of mass. The acting force
from distant particles is then approximated to the force exerted by the
centre of mass of those regions. The total number of required operations
scales as O(Nplog(Np)).
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Chapter 2

Statistical properties of cosmic
voids

The fact that a widespread and unique definition of cosmic voids has not yet
been provided represents one of the main issues in their cosmological usage.
Moreover their identification is obviously not trivial, since their shape and
position have to be reconstructed starting from the distribution of luminous
tracers arranged mostly on their boundaries. Despite these major problems,
cosmic voids gained increasingly popularity in the last decades thanks to
some really intriguing features: voids are for their nature only mildly non-
linear and tend to become more spherical as they evolve, which suggests
that their evolution should be easier to reconstruct than that of positive
perturbations. These characteristics allow us to predict the void statistical
distribution as a function of size of voids. This property is particularly im-
portant to constrain cosmological parameters and makes voids fundamental
probes that can be exploited to improve upon current constraints on dark
energy and to discriminate between competing cosmological models (Pisani
et al., 2015).

In this section, we will discuss the void definition adopted in this work.
Then we propose a brief review of the excursion-set formalism that, in combi-
nation with the spherical collapse model, provides insights into many aspects
of halo formation and can be used to predict the DM halo abundances and
clustering. The analogous spherical expansion model can likewise be used
to make excursion-set predictions for voids (Sheth and van de Weygaert,
2004), leading to the statistical distribution of voids as a function of their
size. Finally, we overview the main features associated to the density profiles
of cosmic voids.
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2.1 Void definition

The spherical evolution model provides a complete description of the non-
linear evolution of a spherically symmetric top-hat density perturbation. One
of the main features of this model is that the evolution does not depend on
the initial size of the region, i.e. on the initial radius or on the enclosed mass,
but only on the amplitude of the initial top-hat overdensity (Jennings et al.,
2013). In the overdensity case, a halo is said to have formed in the moment its
density contrast reaches a level corresponding to either the virialisation of the
spherical perturbation (the well-known critical linear overdensity δc ≈ 1.686
(see equation (1.95)), for an EdS Universe) or, with a milder assumption,
when the perturbation reaches the turn-around (i.e. the linear density con-
trast at which a spherical perturbation inverts its expansion motion, that for
an EdS Universe happens at δt ≈ 1.06, see equation (1.94)), and detaches
from the overall expansion of the Universe. On the other hand, underden-
sities do never detach from the overall expansion, but instead they expand
with a Super-Hubble flow. The expansion rate is inversely proportional to
the embedded density, therefore shells centred around the same point are ex-
pected to expand faster as more they are close to the centre. This eventually
leads to the inner shells reaching the outer ones, causing the event called
shell-crossing. In spherically symmetric negative perturbations, we can con-
sider the evolution to be linear (|δρ/ρ| � 1) up to when shell-crossing occurs,
then it will continue its evolution in a mildly non-linear regime. From this
moment on we can assume that the void is formed.

Therefore in this work we will define voids as underdense, spherical, non-
overlapping regions, which have gone through shell-crossing, that, in linear
theory, occurs at a fixed level of density contrast (δv ≈ −2.71 for an EdS
Universe, see equation (1.105)).

Beyond the void definition adopted in this work, other methods to define
and detect cosmic voids have been proposed by the scientific community. In
particular, voids can be simply identified as regions empty of galaxies, or at
least with densities lower than a given fraction of the mean cosmic density
(Micheletti et al., 2014; Elyiv et al., 2013). Alternatively, voids can be de-
fined based on their geometry, such as as underdense geometrical structures,
composed by polyedra, spheres or tessellations (Sutter et al., 2015; Platen
et al., 2007; Neyrinck, 2008). Otherwise, we can rely on dynamical criteria in
which mass tracers (e.g galaxies) are used to reconstruct the velocity density
field (Elyiv et al., 2015; Lavaux and Wandelt, 2010; Forero-Romero et al.,
2009). In the latter case, the void centres are defined as the points from
which particles escape with the maximal velocity. These different definitions
have all been employed in the development of void finder algorithms during
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the last decades. An analysis of the different classes of void finders will be
presented in section 3.2.

2.2 Excursion-set formalism

The excursion-set formalism is built on the knowledge of the statistical prop-
erties of the linear density field. In real space, the linear density fluctuation
field smoothed on a scale R is given by:

δ(x, R) =

∫
d3k

(2π)3
δ(k)W (k, R)e−ik·x ,

where δ(k) is the Fourier transform of the density perturbation δ(x) ≡
[ρ(x) − ρm]/ρm, ρ(x) is the local density at the comoving position x, ρm is
the background matter density and W (k, R) is a window function in Fourier
space. It is common to relate the smoothing scale R to the corresponding
variance of the linear density field, computed in terms of the size of the
considered region:

σ2(R) ≡ S(R) =
1

2π

∫
dk k2P (k)|W (k,R)|2 ,

where P (k) is the matter power spectrum in linear perturbation theory. We
can refer to a trajectory δ(x, S) as a sequence of overdensities given by sub-
sequent increases in the smoothing scale by increments ∆S. When a top-hat
filter in k-space is used then δ(x, S) executes a random walk. Given an un-
derlying Gaussian distribution for the linear density field, the excursion-set
formalism allows us to associate probabilities to random walks that satisfy
a given set of criteria for the smoothing scale at which they cross various
density thresholds. For the collapse of perturbations, the spherical evolution
model in combination with the excursion-set provides a good description of
the statistics of DM haloes. As discussed in the previous section, a collapse
occurs when the linear density fluctuation reaches a critical value or barrier
δc. We can then use the excursion-set formalism to determine the fraction
of trajectories that cross this barrier for the first time, accounting for the
cloud-in-cloud process1. Then we can extend the model to underdense re-
gions in the initial density field, that are naturally associated with voids in

1In the excursion-set formulation of halo abundance and evolution, the cloud-in-cloud
problem consists in counting as haloes only those objects which are not embedded in
larger ones. With the study of random walks, we can say that when a trajectory pierces
the δc barrier more than once, only the crossing with the smallest value of σ(M) has to
be considered. For details see Sheth and van de Weygaert (2004).
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the evolved density field today. This method leads to the modelling of the
theoretical void size function, which is described in the next section.

2.3 Size function

The distribution of cosmic voids as a function of their size has been modelled
for the first time by Sheth and van de Weygaert (2004) (hereafter SvdW
model), with the same excursion-set approach used for the mass function of
DM haloes (Press and Schechter (1974); Bond et al. (1991)).

The excursion-set theory applied to underdensities (Sheth and van de
Weygaert (2004); Jennings et al. (2013)) predicts that the fraction of the
Universe occupied by cosmic voids is given by:

flnσ = 2
∞∑
j=1

jπx2 sin(jπD) exp

[
−(jπx)2

2

]
, (2.1)

where

x ≡ D
|δv|

σ ,

and

D ≡ |δv|
δc + |δv|

.

In the previous equations σ is the square root of the mass variance and
the two parameters δv and δc represent the shell-crossing threshold (fixed at
δv = −2.71) and the critical value for the collapse of an overdense shell in
an EdS Universe, respectively. The latter is expected to vary within 1.06 ≤
δc ≤ 1.686, since both the turn-around or the collapse density contrast value
can be considered acceptable assumptions.

Equation (2.1) can be simplified by applying the approximation (used in
the CBL library, see section 3.1) proposed by Jennings et al. (2013), which
is accurate at the 0.2% level or better everywhere:

flnσ(σ) =


√

2
π
|δv |
σ

exp
(
− δ2v

2σ2

)
, x ≤ 0.276

2
∑4

j=1 jπx
2 sin(jπD) exp

[
− (jπx)2

2

]
x > 0.276 .

(2.2)

With the kernel probability distribution given in Eq. (2.1), it is straight-
forward to obtain the number density distribution of voids as a function of
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their size in linear theory by applying:

dn

d ln r

∣∣∣∣
linear

=
flnσ(σ)

V (r)

d lnσ−1

d ln r
. (2.3)

In order to derive the void size function in the non-linear regime, a con-
servation criterion has to be applied. The model of the void size function
developed by SvdW relies on the assumption that, when going from linear
to non-linear, the total number of voids is conserved. While reaching shell-
crossing, underdensities are expected to have expanded by a factor a ∝ δ−3

v ,
thus a correction in radius by this factor is required:

dn

d ln r

∣∣∣∣
SvdW

=
dn

d ln(a r)

∣∣∣∣
linear

. (2.4)

The SvdW size function takes into account the void-in-cloud side effect (i.e.
the squeezing of voids that happen to evolve within larger scale overdensi-
ties). This is considered by defining D in equation (2.1) as a function of
both the overdensity and the underdensity threshold. On the other side,
the void-in-void side effect (i.e. the expansion of voids within larger scale
underdensities) is not considered in the SvdW model. Jennings et al. (2013)
argued that, since multiple countings of voids in the same region leads to
a volume fraction occupied by underdensities which is larger than the total
volume of the Universe, the SvdW is unphysical. They thus introduce a vol-
ume conserving model (hereafter Vdn model) which embeds a prescription
to account for this: it is assumed that the total volume occupied by cosmic
voids is conserved in the transition from linearity to non-linearity. Nonethe-
less, when shell-crossing is reached, voids recover the overall expansion rate,
and continue growing with the Hubble flow (Sheth and van de Weygaert
(2004), Blumenthal et al. (1992)). The conservation of volume is achieved
by applying

dn

d ln r

∣∣∣∣
Vdn

=
dn

d ln r

∣∣∣∣
linear

V (rL)

V (r)

d ln rL
d ln r

, (2.5)

where the subscript L indicates a value derived in linear theory (i.e. not
accounting for the conversion factor a). A comparison between the theoretical
void size functions computed with the models described above is reported in
figure 2.1.

The SvdW model has been tested on both simulated DM density fields
and mock halo catalogues, finding that it systematically overpredicts the
comoving number density of cosmic voids, as we can see in figure 2.2. To
overcome this mismatch the underdensity threshold δv is commonly left as
a free parameter, tuned on simulated halo catalogues. This severely affects
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Figure 2.1: Comparison between different void size function models. The Vdn
model is represented in grey, the linear model in blue, and the SvdW model
in orange. The shaded or hatched regions are obtained varying δc in the range
1.06 ≤ δc ≤ 1.686. We can note that this variation changes the abundances signif-
icantly only at reff . 1 Mpc/h. These results are obtained by exploiting the CBL
functions (see section 3.1) assuming a ΛCDM model characterised by ΩM = 0.26,
h = 0.715, σ8 = 0.8, ΩDE = 0.74, Ωb = 0.044 and ns = 0.96 (spectral index).
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the possibility of using the void size function as a cosmological probe. Jen-
nings et al. (2013) have shown that the Vdn model does not require such a
fine-tuning of the size function parameters, as long as the void catalogue is
appropriately cleaned from spurious voids. Their results obtained analysing
a large set of N-body simulations (see Table 2.3) are though limited to the
case of cosmic voids detected on simulated DM (i.e. unbiased) distributions.
In the next chapter we will extend their study to the case of samples of biased
tracers, such as mock DM halo catalogues, which are more representative of
the realistic case of galaxy surveys.

Figure 2.2: Void abundance in simulations versus predictions. The results refer to
the DM distribution in simulations for the ΛCDM model with different box sizes:
64 Mpc/h (green), 128 Mpc/h (purple), 256 Mpc/h (red) and 500 Mpc/h (cyan).
The error bars represent the scatter on the mean from eight different realizations
of this cosmology for each box size. The range in predictions cover the parameter
interval δc = [1.06, 1.686] with δv = −2.7 and are consistent with simulations for
the Vdn model (grey shaded), but not for the SVdW model (orange hatched).
Credits: Jennings et al. (2013).

In figure 2.3 we show the effects of the variation of the cosmological
parameters on the theoretical void size function computed with the Vdn
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Model ΩM h σ8 Lbox[Mpc/h] Np Nsim z

ΛCDM 0.26 0.715 0.8 64, 128, 256 2563 8 0, 0.5, 1
500 4003 1 0
500 4003 8 0

ΛCDM 0.26 0.715 0.9 64, 128, 256 2563 8 0, 0.5, 1
EdS 1 0.715 0.8 64, 128, 256 2563 8 0

Table 2.1: Relevant quantities of the cosmological simulations employed by Jen-
nings et al. (2013). These simulations were carried out at the University of Chicago
using the TreePM simulation code GADGET-2 (Springel, 2005). From left to right,
the columns represent the cosmological model, the matter density parameter, the
reduced value of the Hubble constant, the amplitude of the (linear) power spec-
trum on the scale of 8Mpc/h, the box size, the number of particles, the number of
simulations and the redshift. The other cosmological parameters are set as follows:
ΩDE = 0.74, Ωb = 0.044 and ns = 0.96.

model. In particular, we choose the WMAP7 cosmology (see Table 5.1),
performing the variation of the quantities σ8, ΩDE and ΩM . As we can
see, these changes of the cosmological parameters cause visible effects on the
theoretical size function. This method will be analysed in details in chapter
5.7.
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Figure 2.3: Effects of the variation of the cosmological parameter on the theo-
retical void size function. In the upper panel is represented the variation of σ8.
In particular, this quantity is modified with ±1σ, ±3σ and ±5σ , where σ in the
value of the uncertainty relative to that parameter in the WMAP7 cosmology. The
modifications on the size function are represented with different shades of red. In
the middle panel the parameter that we varied is ΩDE , with the same prescription
described above, this time represented with shades of blue. In the bottom panel
the parameter that we varied is ΩM , with the same prescription described above,
this time represented with shades of green.
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2.4 Void density profiles

Another fundamental quantity to describe the structure of cosmic voids in
a statistical sense is their spherically averaged density profile. Void den-
sity profiles have been studied in detail in the recent literature (e.g. Sutter
et al., 2014; Ricciardelli et al., 2014; Hamaus et al., 2016). Void profiles typi-
cally exhibit a few very characteristic features: a deep under-dense core with
central density increasing with void size, and an over-dense ridge (compensa-
tion wall) that exceeds the mean density of the Universe and then stabilises
around δ ' 0. The height of the compensation wall decreases with void
size, causing the inner profile slope to become shallower. The shape of the
spherically averaged density void profiles 〈nvt〉 can be described by a simple
empirical formula (Hamaus et al., 2016):

nvt(r)

〈nt〉
− 1 = δc

1− (r/rs)
α

1 + (r/rv)β
,

where δc is the central density contrast at r = 0, rs is a scale radius at which
the density equals the average density of tracers 〈nt〉, and α, β describe
the inner and outer slopes of the profile, respectively. Figure 2.4 shows the
stacked density profiles for voids with different mean effective radii. These re-
sult are obtained by applying VIDE to ΛCDM N-body simulations (Warren,
2013) and derived mock galaxy catalogues.
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Figure 2.4: Stacked real-space density profiles of voids at z = 0 with mean ef-
fective radii and void counts, Nv, indicated in the inset. Shaded regions depict
the standard deviation σ within each of the stacks (scaled down by 20 for visibil-
ity), while error bars show standard errors on the mean profile σ/

√
Nv. Solid lines

represent individual best-fit solutions. Credits: Hamaus et al. (2016).
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Chapter 3

Numerical tools to construct
cosmic void catalogues

In this chapter, we will explain the methodology used for the data analysis
presented in this thesis work. In particular, we will present the set of numer-
ical libraries used for all the calculations and for the statistical treatment of
the data. Finally, we will describe the numerical algorithms used to create
and to clean the void catalogues.

3.1 CosmoBolognaLib

The CosmoBolognaLib (hereafter CBL) is a large set of free software C++
/Python libraries, that provide an efficient numerical environment for cos-
mological investigations of the large-scale structure of the Universe (Marulli
et al., 2016). This software is particularly suited to handle with catalogues of
astronomical objects, both real and simulated. Thanks to the large amount
of functions recently implemented (Ronconi et al., in preparation), the CBL
offers the necessary tools to analyse void catalogues and to perform many of
the statistical analyses requested for this work. In particular we make use of
these libraries to manage the DM particle, halo and void catalogues, and to
measure and model the halo bias and the void size function.

3.2 Void finders

Since there is not general concordance in the definition of voids yet, many
different void finders have been proposed and exploited in the last decades
(see Colberg et al. (2008) for a cross-comparison of the different techniques).
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Following the strategy of Lavaux and Wandelt (2010) we can classify void
finding algorithms in three main classes, on the basis of the type of criterion
applied:

• Density criterion. These algorithms define voids as regions empty of
tracers or with local density below a fixed value (Micheletti et al., 2014;
Elyiv et al., 2013). Furthermore, tracers are divided in wall tracers
and field tracers depending on the density of the region in which they
are localised (“strongly overdense” regions and “mildly underdense”
regions, respectively).

• Geometrical criterion. This class includes void finders that identify
voids as geometrical underdense structures like spherical cells or poly-
hedra (Sutter et al., 2015; Platen et al., 2007; Neyrinck, 2008). In par-
ticular, these algorithms search for specific features in the continuous
3D distribution of cosmic tracers. Then, making use of these features,
the density field is reconstructed and the local density minima are used
to obtain the void distribution.

• Dynamical criterion. These void finders are based on dynamical crite-
ria in which tracers are not exploited to reconstruct underlying mass
distribution but are used as test particles of the cosmic velocity field.
Therefore, in these algorithms, a void is defined as a region in which
the matter is evacuated (Elyiv et al., 2015; Lavaux and Wandelt, 2010;
Forero-Romero et al., 2009).

In this thesis work, we make use of the Void IDentification and Examination
toolkit (VIDE) (Sutter et al., 2015) to construct our void catalogues. VIDE
belongs to the class of algorithms based on geometrical criteria and it imple-
ments an enhanced version of the ZOnes Bordering On Voidness (ZOBOV)
algorithm (Neyrinck, 2008). ZOBOV is a popular publicly available code
that finds density depressions in a three-dimensional set of points, without
any free parameter or assumption about the void shape. The void finding
procedure consists of three main steps:

1. As a first step, the finder reads in the tracer positions and associates to
each tracer a cell of volume that is closer to it than to any other tracer.
This procedure is referred to as Voronoi tessellation, and the resulting
cells are denoted Voronoi cells. Then the algorithm associates a density
to each Voronoi cell that is, assuming equal weights for all particles, the
inverse of the Voronoi cell volume. In this way a well-defined density
field is obtained.
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2. As a second step, local density minima are found and their surround-
ing basins identified. Density minima are defined as the cells whose
density is lower than the density of every other adjacent cell. Then,
starting from these density minima, the surrounding Voronoi cells are
merged consecutively if their individual density is above the one of the
previously merged cell. The process of merging is stopped once a cell
of lower density is encountered. The result of this procedure in the
creation of local density basins, called zones. A representation of this
procedure is reported in figure 3.1.

Figure 3.1: Natural Neighbours of a point. The black dot represents the central
point, the open circles its Natural Neighbours. The solid edges mark the Voronoi
cell surrounding the central point, along with the connecting Voronoi edges. Cred-
its: Platen et al. (2007)

3. Finally, zones are merged to become voids making use of the so-called
watershed algorithm (e.g. Platen et al. 2007). This method , illustrated
in figure 3.2, consists of rising a density threshold starting from each
zone’s local density minimum. During the raising, all the surrounding
regions, that have a value of density lower than the threshold, are
added to the basin of a starting minimum. As long as shallower zones
are added to the original zone, the final void consists of all such merged
zones, which are still recorded as its sub-voids. When a deeper zone is
encountered, the process is stopped.
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Figure 3.2: Principle of the watershed technique represented in three panels. The
left panel shows the shape of the density field. Starting from the local minima,
the surrounding basins of the surface start to flood as the water level continues to
rise (dotted plane initially below the surface). Where two basins meet up near a
ridge of the density surface, a “dam” is erected (central frame). Ultimately, in the
right frame the entire surface is flooded, leaving a network of dams which defines a
segmented volume and delineates the corresponding cosmic web. Credits: Platen
et al. (2007)

Therefore, the set of voids created with this technique is naturally organised
with a hierarchical structure of nested voids. Each of the voids found with
VIDE has its centre defined as volume-weighted barycentre, X, of the N
Voronoi cells that define the void,

X =

∑N
i=1 xiVi∑N
i=1 Vi

,

where xi are the coordinates of the i-th tracer of that void, and Vi the volume
of its associated Voronoi cell. The effective void radius, rv, is calculated from
the total volume of the void, Vv. It is defined as the radius of a sphere having
the same volume:

Vv ≡
N∑
i=1

Vi =
4π

3
r3
v .

This centre does not necessarily coincide with the position of a tracer.
In order to make a comparison between different void finders, that will

presented in section 3.4 we present also the algorithm developed by Can-
narozzo et al. (in preparation), which is already implemented in CBL. This
void finder is based on dynamical criteria and can divided in three steps:

1. The aim of the first step is to reconstruct dynamically the displacement
field of cosmic tracers. This is performed exploiting the Zel’dovich
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Approximation (see Subsection 1.6.6), to reconstruct the initial tracers
Lagrangian positions by randomising the Eulerian coordinates. The
random distribution is then used to obtain a displacement field, that
approximates the velocity field of cosmic structures.

2. The second step consists in performing several reconstructions of the
density field, that are then averaged by using a Gaussian filter. Making
use of the watershed technique, the code finds the local density min-
ima, corresponding to the sources of maximum displacement. There-
fore, cosmic voids are considered as sinks in the reverse streamlines of
tracers.

3. Finally, once all subvoids are identified, the algorithm provides a void
catalogue, in which are reported centres and radii of the voids.

In this algorithm the void centre is identified as the absolute minimum value
of the divergence field within a void:

rvoid = min(∇ · v)void (3.1)

This type of procedure has the advantage of employing Lagrangian coor-
dinates, which considerably reduces the shot noise problem, caused by the
discrete mass tracers. In fact, this algorithm does not need to perform the
reconstruction of the density field. This void finder has been tested by Can-
narozzo on a DM halo catalogue extracted from the DEMNuni (Dark Energy
and Massive Neutrino Universe) simulations (Castorina et al., 2015), finding
a reasonable agreement between the theoretical size function computed with
the Vdn model and the measured size distribution of voids, once the voids
have been opportunely re-scaled by the cleaning correction method proposed
by Ronconi and Marulli (2017), that will be analysed in the next section.

3.3 Cleaning algorithm

As said, many different definitions of cosmic voids have been proposed dur-
ing the years. It is thus particularly important to adopt the same definition
when detecting voids and modelling their statistics or, alternatively, to clean
properly the void catalogues detected with standard methods. This latter
approach is the one that we choose to follow. As widely described in Ronconi
and Marulli (2017), a new algorithm has been recently implemented in the
CBL environment to clean void catalogues and make them directly compa-
rable to model predictions. It is important to highlight that the cleaning
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procedure is totally independent of the void finder adopted to build the cat-
alogue, since it makes use only of the positions of void centres. The cleaning
algorithm can be divided in three main steps:

• The spurious voids are removed from the catalogue, with the following
criteria: (i) voids whose effective radius do not belong to a selected
range [Rmin, Rmax] and (ii) voids whose central density is higher than
(1+δNLv )ρ, where δNLv is a given non-linear underdensity threshold, and
ρ is the mean density of the sample.

• The effective radius of voids is re-scaled: the algorithm reconstructs
the density profile of each void and, treating the void as a growing
sphere located at its centre, the value of the radius is increased until
the sphere reaches the shell-crossing density threshold δsc = −0.795.

• Check for overlaps: when two voids do overlap, the one of them with
higher density contrast is rejected, avoiding double countings.

The effect of these steps on a void catalogue built with VIDE is reported in
figure 3.3. The sample of voids is extracted from a ΛCDM N-body simulation
with 2563 DM particles and box side of length 128Mpc/h. This procedure
provides a set of spherical voids that enclose the shell-crossing density con-
trast, as requested by the spherical evolution model. This is crucial in order
to standardize the outcome of void finders of different types, aligning the def-
inition of voids to the one employed to derive the theoretical size function.

This methodology has been tested systematically by Ronconi et al. (in
preparation), applying it on a set of N-body simulation snapshots. The
DM simulations analysed, whose characteristics are reported in Table 3.1,
have different resolution and boxside length; different redshifts have been
considered. The results of these tests are shown in figure 3.4. The coloured
symbols mark the void size distribution measured in the simulation snapshots
while the grey shaded region represents the model prediction. We can see
that the size distribution of voids is fully consistent with the theoretical
predictions.
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Figure 3.3: The effect of the different steps of the cleaning algorithm on the void
size function. The theoretical one is reported as black solid line and represents the
Vdn model predictions for the cosmological model here considered (ΛCDM with
cosmological parameters defined in Table 5.1). The blue dots show the distribution
of voids detected by VIDE from a ΛCDM N-body simulation. The green triangles,
the red upside-down triangles and the orange squares are the size distribution
of voids after the application of the first, the second and the third steps of the
cleaning procedure, respectively. Credits: Ronconi and Marulli (2017)

Lbox Np m.p.s. mass
[Mpc/h] [Mpc/h] [1010 M�/h]

500 2563 ≈ 2.00 56.06
256 2563 1.00 7.52
128 2563 0.50 0.94
64 2563 0.25 0.12
1000 2 · 10243 1.00 5.84

Table 3.1: Relevant quantities of the cosmological simulations employed by Ron-
coni et al. (in preparation). From left to right, the columns report the box size, the
number of particles, the mean particle separation (m.p.s.) and the mass resolution
of each simulation.
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Figure 3.4: Theoretical void size function computed with the Vdn model (gray
shaded region) at four different redshifts (panels) compared with the distribution
of cosmic voids after having applied the cleaning procedure. Lower part of each
panel: Logarithmic difference between the Vdn model prediction and the measured
distribution. All the catalogues employed are extracted from ΛCDM simulations
with cosmology defined in Table 5.1. Credits: Ronconi et al. (in preparation).
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3.4 An application of the void finder and clean-

ing methods

Here we present a comparison between the size functions of void catalogues
detected with two different void finders: VIDE and the dynamical CBL void
finder (see section 3.3). The halo catalogue is build with the method that
will be described in section 5.1, assuming the ΛCDM cosmology, with the
parameters defined in Table 5.1. Then we apply the cleaning algorithm
described in section 3.3 to the voids belonging to both the catalogues. With
this procedure, the different void definitions adopted by the two void finders
are made uniform to a specific criterion.

As we can see from figure 3.5, the two methods are consistent, except
for small radii. The reason of this apparent discrepancy will be accurately
examined in a forthcoming future project. In the following analysis we will
make use of the catalogues created applying the VIDE algorithm.

Figure 3.5: Comparison between the results of two different void finders applied to
the same distribution of biased tracers. Red dots represent the void size function
obtained for a void catalogue built with VIDE, while the blue triangles represent
the size function of voids extracted with the void finder implemented in the CBL.
The void finder algorithms are applied to halo catalogues built as described in
section 5.1, with the cosmological parameters reported in Table 5.1. Both the
catalogues are cleaned with the algorithm described in section 3.3.
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Chapter 4

Cosmic voids in the
distribution biased tracers

The tracer bias must be taken into account in order to extract robust cos-
mological constraints from the number counts of cosmic voids detected in
galaxy redshift surveys (see e.g. Pollina et al., 2017). In fact, the size and
the comoving number density of voids traced by the DM distribution are
significantly different with respect to the ones of the voids traced by a biased
DM halo density field. To handle with this problem, the bias trend inside
cosmic voids has to be taken into account. On small scales the bias is scale-
dependent. On the other hand, at large scales density fluctuations are in the
linear regime, so the tracer bias behaves as a simple constant offset in the
clustering amplitude. The latter is known as the linear bias and it depends
on a number of properties of the tracers, one of the most important being
the mass of its host haloes: more massive halos exhibit a higher clustering
bias (see e.g. Marulli et al., 2013, and references therein).

4.1 Correlation function

The 2PCF measures the degree of clustering of a tracer population. The
probability that a tracer A in the volume dVA is separated from another
tracer B in the volume dVB by a comoving distance r is given by:

d2P = 〈nA〉〈nB〉[1 + ξAB(r)] dVAdVB , (4.1)

where 〈nA〉 and 〈nB〉 are the mean comoving densities of the two kind of
tracers. The spatial 2PCF, ξAB(r), is thus the deviation of such probability
from that expected from a random distribution of tracers (Peebles, 1980).
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When we compare tracers of the same population, we refer to ξ as the auto-
correlation function while, if we compare two kinds of tracers, we refer to ξ as
the cross-correlation function. In the linear regime, the bias can be derived
in terms of the auto-correlation function as follows:

b =
√
ξtt/ξmm , (4.2)

or, in terms of the cross-correlation function as:

b = ξtm/ξmm , (4.3)

where ξmm is the matter auto-correlation function, ξtm is the tracer-matter
cross-correlation function, and ξtt is the tracer auto-correlation function.

4.2 Ratio of density contrasts as bias estima-

tors

The density contrast, δ, can be obtained by dividing the number density
within a given sphere (top-hat filter) by the mean number density of the
sample:

δ =
n(r)

〈n〉
− 1 . (4.4)

If we assume that the tracer density contrast, δt = f(δ), is a linear function
of the underlying DM density contrast on some scale, then we can define the
linear tracer bias, b, as the ratio between the mean overdensity of tracers and
the mean overdensity computed on the dark matter field :

b =
δt(r)

δm(r)
. (4.5)

This value is equivalent to the ratio of the void-tracer cross-correlation
function (ξvt) relative to the corresponding void-matter cross-correlation func-
tion (ξvm), with void positions identified by their centres (e.g Pollina et al.,
2017):

b =
ξvt
ξvm

=

nvt(r)
〈nt〉 − 1

nvm(r)
〈nm〉 − 1

. (4.6)

So we can conclude that the void-tracer cross-correlation function encodes
the same information as the void density profile.
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4.3 Theoretical bias

The effective bias of DM haloes with masses in a given range and at a given
mean redshift can be computed as:

beff (z) =

∫Mmax

Mmin
dM b(M, z)Φ(M, z)∫Mmax

Mmin
dM Φ(M, z)

, (4.7)

where Φ(M, z) is the halo mass function, and Mmin and Mmax are the lowest
and largest masses in the sample, respectively. In chapter 5 we will make
use of specific models to compute the mass function Φ(M, z) and the bias
b(M, z) in order to evaluate the theoretical bias of halo catalogues. In par-
ticular, in our work equation (4.7) is estimated with the CBL, using the
Code for Anisotropies in the Microwave Background (CAMB, http://camb.info)
to compute the matter power spectrum and mass variance, and the Tinker
et al. (2008) and Sheth et al. (2001) (SMT) models to compute the halo
mass function and linear bias, respectively. Specifically, the mass function is
computed as follows:

Φ(M, z)T inker =
dn

dM
= A

[(σ
b

)−a
+ 1

]
ρm(z)

M

dln(σ)−1

dM
, (4.8)

where ρm is the mean density of the Universe, σ is the square root of the
variance and a, A, b are parameters calibrated using N-body simulations
Viceversa the linear bias is computed as:

b(ν)SMT = 1 +
1√
aδc

√
a(aν2) +

√
ab(aν2)1−c

− (aν2)c

(aν2)c + b(1− c)(1− c/2)
,

(4.9)

where a = 0.707, b = 05, c = 0.6 are parameters tuned to work in N-body
simulations.

Figure 4.1 reports the trend of bias as function of the halo mass, compar-
ing the results obtained with simulations with the theoretical bias computed
with different analytical methods.

4.4 Estimating the tracer bias

In order to estimate the tracer bias from the 2PCF of the DM haloes of
our simulations, we follow the prescription described in Marulli et al. (2018),
which makes use of functions implemented in the CBL.
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Figure 4.1: Halo bias as a function of mass, at three different redshifts, compared
to the theoretical predictions obtained with different models. The squares show
the bias measurements from the Millennium Simulation (Springel, 2005), assuming
the following cosmology: ΩM = 0.25, Ωb = 0.045, h = 0.73, ΩΛ = 0.75, n = 1
and σ8 = 0.9. Dashed lines show the analytic model of Sheth et al. (2001) (see
equation 4.8), dashed-dotted lines correspond to the Tinker et al. (2010) model,
and dotted lines are the analytic model of Mo and White (1996). The redshift
values are represented with different colours, as specified in the labels. Credits:
Pujol and Gaztañaga (2014).
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In this work we measure the angle-averaged 2PCF ξ̂(r) using the Landy
and Szalay (1993) estimator, which is expressed by the following equation:

ξ̂(r) =
NRR

NCC

CC(r)

RR(s)
− 2

NRR

NCR

CR(s)

RR(s)
+ 1 , (4.10)

where CC(r), RR(r); and CR(r) are the binned numbers of object-object,
random-random, and object-random pairs with distance r±∆r, while NCC =
NC(NC−1)/2, NRR = NR(NR−1)/2 andNCR = NCNR are the total numbers
of object-object, random-random, and object-random pairs in the sample,
respectively. The Landy and Szalay (1993) estimator provides an unbiased
estimate of the 2PCF in the limit NR →∞, with minimum variance.

In order to estimate the 2PCF with equation 4.10, we need to construct
a random catalogue, with the same geometry of the halo catalogue. Once
the random catalogue is built, we compute the covariance matrix Ci.j, which
measures the variance and correlation between the different bins of the 2PCF.
The covariance is defined as follows:

Ci,j = F
NR∑
k=1

(ξki − ξi)(ξkj − ξj) , (4.11)

where the subscripts i and j run over the 2PCF bins, while k refers to the
2PCF of the k-th of NR catalogue realisations, and ξ̂ is the mean 2PCF of
the NR samples. F is the normalisation factor, which takes into account the
fact that the NR realisations might not be independent (see Norberg et al.,
2009).

Finally, we perform a Bayesian statistical Markov chain Monte Carlo
(MCMC) analysis of the 2PCF. We make use of the commonly used likelihood
function L, defined as:

− 2lnL =
N∑
i=1

N∑
j=1

(ξdi − ξmi )C−1
i,j (ξdj − ξmj ) , (4.12)

where C−1
i,j is the inverse of the covariance matrix estimated from the data, N

is the number of comoving separation bins at which the 2PCF is estimated,
and the superscripts d and m stand for “data” and “model” respectively.
The 2PCF model, ξm(s), is computed as follows:

ξm(r) = b2
effξDM(r) , (4.13)

where ξDM(r, z) is the DM 2PCF, which is estimated by Fourier transform-
ing the power spectrum, PDM(k, z), computed with CAMB. By sampling
the posterior distribution of the effective bias parameter, beff , we obtain an
accurate estimate of its best-fit value and uncertainty.
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Chapter 5

The size function of cosmic
voids

With the knowledge acquired in the previous chapters, we are now ready
to extend the treatment of the void size function to cosmic voids selected
in the distribution of biased mass tracers. This is the first time that the
theoretical model of the size function is applied to voids identified in the
mass distribution of cosmic tracers. The scientific research carried out until
now has validated the theoretical predictions of the void size function only
using DM catalogues, thus extracting voids from the total distribution of
the DM particles. Having a reliable model to take into account the effect
of bias on void catalogues is mandatory in order to extract cosmological
constraints from the statistics of cosmic voids in real surveys. In fact, dealing
with real data catalogues, the distribution of luminous tracers (e.g. galaxies,
galaxy clusters, etc.) does not represent a perfectly faithful description of
the underlying DM distribution. In order to predict the statistics of the total
mass distribution, the value of the effective bias has to be estimated (e.g with
the methods proposed in chapter 4). In this chapter we will demonstrate that
this value is different inside cosmic voids, with respect to its value on large
scales. Therefore, in order to compute a re-parametrisation of the void size
function, the value of the bias that has to be taken in to account is the one
measured inside voids. With this prescription, we are able to modify the
theoretical size function model, according to the bias of the void tracers.
Thanks to the achievements of this thesis work, we can now proceed towards
the full exploitation of the proposed method on real data.

In this chapter we will describe the analysis performed on a set of DM halo
mock catalogues, having different values of bias, from which void catalogues
are extracted. We will compute the density profiles both in the distribution
of haloes and in the underlying DM particle density field, calculating the
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h0 ΩCDM Ωb ΩΛ As ns

0.7 0.226 0.0451 0.7289 2.194 · 10−9 0.96

Table 5.1: Fiducial WMAP7 cosmological parameters used in this work.

density contrast starting from the void centres. In this way we will be able
to compare the theoretical bias to the one obtained with equation (4.5). Once
the estimate of the bias has been performed, we will compare the theoretical
size function to the one derived from the cleaned void catalogue. Finally,
we will investigate the effect of varying some of the cosmological parameters
used to compute the theoretical void size function.

5.1 Building the mock void catalogues

For this analysis, we make use of mock halo catalogues extracted from the
Coupled Dark Energy Cosmological Simulations (CoDECS) (Baldi, 2012), a
set of high resolution N-body simulations that cover a volume of 1(Gpc/h)3.
Specifically, the simulation considered follows the dynamical evolution of
2·(1024)3 particles: half of them are DM particles and constitutes the haloes,
the other half is composed by non-collisional gas particles. Only DM par-
ticles will be considered in the following analysis. The halo catalogues are
built from the CoDECS with a FoF algorithm. The void catalogues are
extracted using the code VIDE (see section 3.2), then cleaned with the algo-
rithm described in section 3.3. For this study we assume the standard ΛCDM
cosmology, with WMAP7 parameters (Komatsu et al., 2011), the same with
which the CoDECS simulations are built (see Table 5.1). This analysis is
performed only with catalogues at z = 0. In order to inspect different bias
values, 3 different mass cuts are applied to the halo catalogues: 2·1012, 5·1012

and 1013 M�/h.
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5.2 Estimating the tracer bias

To measure the effective bias of the tracers (i.e. DM haloes) used to detect the
cosmic voids, we model the tracer 2PCF by performing a MCMC posterior
sampling technique, as described in section 4.4. We also compute the effective
bias by simply estimating the mean of the ratio between the tracer and DM
2PCFs at large scales, as described in equation 4.2.

The two bias measurements are compared to the theoretical halo bias
given by equation (4.7). The latter is estimated with the CBL, using CAMB

to compute the matter power spectrum and mass variance, and the Tinker
et al. (2008) and Sheth et al. (2001) models to compute the halo mass function
and linear bias, respectively.

Figure 5.1 compares our bias estimates with theoretical predictions. As it
can be seen, at scales larger than 10 Mpc/h, the bias is almost constant. The
measured values are consistent with the theoretical predictions. Moreover,
the bias estimate obtained with the ratio between the tracer and DM 2PCFs
is perfectly in agreement with the value obtained with the full MCMC mod-
elling of the 2PCF. For the following analysis, we choose to rely on the latter
estimate, that is more accurate.
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Figure 5.1: Comparison between different bias values of DM halo catalogues with
different mass cuts: 2 · 1012 M�/h (upper panel), 5 · 1012 M�/h (central panel)
and 1013 M�/h (lower panel). The shaded areas show the bias value computed
with the MCMC modelling, fitting in a range of radii of [15 − 40] Mpc/h and
considering an error of 5σ. The black solid line shows the value of the theoretical
effective bias, computed with equation (4.7). The red line represents the trend of
the ratio between the 2PCF of DM haloes and the theoretical one computed for
DM.
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5.3 Bias inside voids

To estimate the tracer bias inside the detected cosmic voids in the simulation,
we divide each void sample, extracted from the different halo catalogues, in
80 radial bins, from Rmin to Rmax, that is the minimum and the maximum
values of Reff in each catalogue. We analysed only the Reff bins with more
than 20 voids, to have enough statistics. For each considered radial bin,
the spherically averaged density contrasts of DM, δDM , and haloes, δhalo, are
computed as a function of the void radius. All the profiles inside each radial
bin are then averaged. The radius of each void is then re-scaled, dividing it
by the average effective radius, 〈Reff〉, of the considered bin. For this reason,
the size of the bins has to be narrow enough, in order to re-scale the radii
properly, but at the same time wide enough to contain a sufficient number of
voids. Finally, errors are computed as the standard deviation from the mean
density profile. For this analysis, the DM catalogues have been diluted to 1%
to avoid too long computing time, and because of the large amount of memory
required by the adopted algorithm (that is optimised with a parallel chain-
mesh code (Marulli et al., 2017)). Figure 5.2 presents the density contrast
profiles obtained for voids traced by haloes and DM particles, computed from
the void centres. The density profiles for each accepted effective radial bin,
are shown with corresponding errors. In figure 5.3 we report again the density
profiles (this time without error bars for clarity reasons) and the values of
the ratio δhalo/δDM for each radial bin, comparing the slope with the bias
value predicted by the theory.

These plots show a clear discrepancy between the theoretical effective
bias measured at large scales, and the one computed as δhalo/δDM inside the
detected cosmic voids. To shed light on this phenomenon, we investigate the
trend of δhalo(δDM) for each mass cut and for each radial bin, measuring the
slope with a weighted fit. From now on, we consider the bias value estimated
with the MCMC modelling technique.
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Figure 5.2: Comparison between halo and DM density contrast profiles con-
sidering halo catalogues with different mass cuts: 2 · 1012 M�/h (upper panel),
5 · 1012 M�/h (middle panel) and 1013 M�/h (lower panel). In the left panels the
halo and DM density contrast profiles are represented as a function of the distance
from the void centre, in units of the effective void radius in the bin. Each profile
is plotted with the corresponding error bars, computed as the standard deviation
on the mean value in the bin. In the right panels the same profiles, but averaged
considering all the profiles of the same type (red for DM and blue for haloes), are
shown. The shaded regions correspond to the mean errors.
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Figure 5.3: Comparison between halo and DM density contrast profiles con-
sidering halo catalogues with different mass cuts: 2 · 1012 M�/h (upper panel),
5 · 1012 M�/h (middle panel) and 1013 M�/h (lower panel). In the left panels we
report the halo and DM density contrast profiles divided by the mean effective void
radius. In the right panels the values of δ computed for haloes and DM are plotted
one against each other. Since the slope represents the bias, also the theoretical
bias predictions are shown.
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Figure 5.4: δhalo vs δDM obtained for halo catalogues with a minimum of 2 ·
1012 M�/h. In each panel we show the results obtained from the profiles belonging
to a specific bin of Reff (the corresponding 〈Reff 〉 is reported above each plot)
with errors computed as standard deviation. We also show the comparison between
the weighed fit and the slope assessed from the modelling of the 2PCF.
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Figure 5.5: Same as figure 5.4, but for halo catalogues cutted to a minimum of
mass of 5 · 1012 M�/h.
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Figure 5.6: Same as figure 5.4, but for halo catalogues cutted to a minimum of
mass of 1013 M�/h.
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5.4 Comparison between different bias esti-

mates

Now it is important to highlight some of the main properties emerging from
the previous plots:

• the ratio δhalo/δDM shows a well defined linear relation;

• the theoretical slope, i.e. the effective large-scale linear bias of the
tracers, differs from the one obtained with a weighed fit (bslope);

• for every mass cut, the value of the slope of the fit seems to remain
almost constant when the effective void radius is varied.

The latter point constitutes a quite unexpected result. Unfortunately, for
each mass cut only 4 bins of effective radii are available, so we can not
deduce reliable results from this analysis. Anyway, we can suppose that the
trend of bslope is independent of Reff , at least in the restricted Reff range
considered. This is supported by figure 5.7, where we present the trend of
bslope as a function of Reff for each mass cut, fitting the data with a constant.
Except for the lower panel of figure 5.7, that shows a point deviating from
this trend, bslope seems to be almost constant with Reff .

bslope is the value we have to use to compute the theoretical void size
function. When dealing with real catalogues, we usually have no access to
the underling DM distribution, so we are not able to compute the bias as
the ratio between the density contrasts of tracers and DM. For this reason,
it is mandatory to find a relation between the linear effective bias (beff ),
measurable from the 2PCF at large scales, and the bias inside cosmic voids
(bslope). Figure 5.8 shows the mean value of bslope as a function of beff for
the three mass selections. The data have been fitted with a first-order poly-
nomial. This represents a preliminary study that we plan to extend in the
near future using a larger set of mock catalogues to accurately calibrate the
relation. We will also investigate how this relation depends on redshift and
on the cosmological parameters.
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Figure 5.7: Trend of bslope as a function ofReff for each mass cut: with a minimum
of 2 · 1012 M�/h (upper panel), with a cut to a minimum of 5 · 1012 M�/h (middle
panel) and 1013 M�/h (lower panel). The shaded area represents a 5σ error (i.e.
5 times the error obtained fitting the data). The black solid line indicates the
value of the weighted fit, while the grey dashed one represents the value of the
bias obtained from the theoretical modelling.
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Figure 5.8: The behaviour of bslope as a function of beff for each mass cut. The
data are fitted with a first-order polynomial, weighting the data with the reciprocal
of the errors (red dashed line).
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5.5 Tests with uncleaned catalogues

Now we want to perform the same procedure described in the previous sec-
tions but applied, this time, to the void catalogues that have not been pro-
cessed with the cleaning algorithm. In this way we want to check if the
application of the cleaning procedure has unexpected consequences on the
estimate of the bias inside voids.

First, we compute the mean density profiles for the uncleaned void cat-
alogues extracted from the halo distribution with the following mass-cuts:
(i) with a minimum of 2 · 1012 M�/h, (ii) with a cut to a minimum of
5 · 1012 M�/h) and (iii) 1013 M�/h. The results are showed in figure 5.9. As
we can see from these plots, also in this case the profiles have a well-defined
shape, as predicted by Hamaus et al. (2016). The main difference with re-
spect to the profiles obtained with the cleaned catalogues is the value of the
effective void radius. When the cleaning algorithm is applied, the radius of
the voids extracted from the halo catalogues matches the density contrast
of the shell-crossing δsc = −0.795. Instead, analysing the profiles obtained
with the uncleaned catalogues, we can see that the values of the void radii
are shifted towards the compensation wall.

Figure 5.10 compares the DM and halo density constrast profiles in the
two analysed cases, to make a direct comparison between the void profiles in
cleaned and uncleaned void catalogues.

Finally, analogously to what we have done with the cleaned void cata-
logues, we estimated the tracer bias inside the cosmic voids extracted from
the uncleaned catalogue, making use of equation (4.6). In this case, since the
cleaning procedure has not been applied, there are more voids in the cata-
logues and their radii reach greater values. Therefore, we are able to evaluate
the value of bslope on larger ranges of radii. As we can see from figure 5.11,
the trend of bslope is still independent of the mean effective void radii, even
in this larger radial range analysed. Also in this case, we found that bslope is
systematically larger than beff .
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Figure 5.9: Comparison between halo and DM density contrast profiles obtained
with uncleaned halo catalogues with different mass cuts: 2 · 1012 M�/h (upper
panel), 5 · 1012 M�/h (middle panel) and 1013 M�/h (lower panel). In these plots
we show the halo (blue) and DM (red) mean density contrast profiles as a function
of the radius, divided by the effective void radius. The shaded regions show to the
errors on the mean.
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Figure 5.10: Comparison between halo and DM density contrast profiles obtained
with cleaned and uncleaned halo catalogues, for different mass cuts: 2 ·1012 M�/h
(upper panel), 5 · 1012 M�/h (middle panel) and 1013 M�/h (lower panel). The
profiles computed for the cleaned catalogues are represented in blue and in red for
the haloes and DM distribution, respectively. Instead, the profiles obtained from
the uncleaned catalogues are represented in orange and violet for the haloes and
DM distribution, respectively.

83



25 30 35 40 45 50 55
Reff

1.0

1.2

1.4

1.6

1.8

2.0

b s
lo

pe

Fit with a constant: y = x + 1.452(+/ 0.005)
bmod =  1.129
bslope

30 35 40 45 50 55 60 65
Reff

1.2

1.4

1.6

1.8

2.0

2.2

b s
lo

pe

Fit with a constant: y = x + 1.595(+/ 0.009)
bmod =  1.265
bslope

35 40 45 50 55 60
Reff

1.2

1.4

1.6

1.8

2.0

2.2

2.4

b s
lo

pe

Fit with a constant: y = x + 1.808(+/ 0.013)
bmod =  1.441
bslope

Figure 5.11: Trend of bslope as an function of Reff for uncleaned halo catalogues
with the following mass cuts: 2 · 1012 M�/h (upper panel), 5 · 1012 M�/h (middle
panel) and 1013 M�/h (lower panel). The shaded area represents a 5σ error (i.e.
5 times the error obtained by fitting the data). The black solid line indicates the
value of the weighted fit, while the grey dashed one represents the value of the
bias obtained from the theoretical modelling.
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5.6 Size function of voids from biased tracers

After this deep analysis of the tracer bias, both in the entire data sample and
inside the cosmic voids, we are now ready to re-parametrise the theoretical
void size function, in order to predict the size distribution of voids identified
in the distribution of biased tracers. First, it is useful to remember the
effect of the cleaning algorithm (see section 3.3) on the void catalogues. This
procedure re-scales the void radii to a fixed threshold δsc = −0.795, related
to the phenomenon of the shell-crossing, which identifies the formation of a
void. This value is predicted by the spherical evolution model (see section
1.6.4) but it refers to voids identified in the DM distribution. So, applying
the cleaning algorithm on voids extracted from catalogue of biased tracers,
the void radii will be re-scaled to the density contrast defined for the DM.
This fact does not constitutes an inconsistency, as long as the theoretical size
function is computed with this parameter.

Assuming the validity of the Vdn model (see section 2.3), we have to
re-scale the density contrast threshold used to define the voids in the DM
distribution. We have demonstrated that the DM density field within voids,
δNLv,DM, is linearly related to the density field defined by some biased tracer,
δNLv, tr, by a specific value of b (assumed to be a simple multiplicative constant):

δNLv, tr = b δNLv,DM , (5.1)

where the superscripts indicate that the values are computed in the non-
linear theory. Therefore, dealing with catalogues of biased tracers, we have
to re-scale the threshold density employed in the Vdn model following this
relation. Since the Vdn model is computed with the density contrast in linear
theory, we have to recover the linearly extrapolated value δLv, tr. To do this,
we use the fitting formula provided by Bernardeau (1994), which combined
with equation (5.1), gives:

δLv, tr = C
[
1− (1 + b δNLv,DM)−1/C] , (5.2)

with C = 1.594.
An alternative procedure to what we proposed in this section is the follow-

ing. Instead of re-parametrise the Vdn model by ensuring that it predicts the
size function of voids identified in biased tracers, we could re-scale properly
the void radii making use of the cleaner algorithm. In particular, assuming
that δsc = −0.795 is the density contrast that defines the formation of a void
in the DM distribution, we could simply change this threshold consistently
with the bias value. In practice, we could find the density contrast at which
a void extracted from the distribution of biased tracers reaches the same
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radius value of a void identified in the DM distribution. The problem with
this method is that the density threshold we have to give to the cleaning
algorithm should be computed as δNLv,tr = −0.795 b which, for high values of b
(b & 1.258), leads to δNLv,tr < −1. Since this implies a negative density within
the void, this value is obviously not physical. It actually implies that we
have reached a limit under which the tracers in the biased catalogue are not
enough to give a reliable estimate of the density field. Thus, with this alter-
native method we could just give an upper limit to the void effective radii in
samples with a bias value greater than 1.258. Therefore, re-parameterising
the void size function is the only viable way to proceed in order to take into
account the effect of bias in the size distribution of voids. The schematic
procedure of these two different approaches is represented in figure 5.12.

Having re-parametrised the model in this way, we can now plot the size
function of voids extracted from the halo catalogues, as described in section
2.3. The size functions are compute both with bslope and with beff in order
to make a comparison. The final results are reported in Figures 5.13, 5.14
and 5.15.

What clearly emerges from these plots is that bslope represents a much
more appropriate bias value in void environments. The theoretical size func-
tions computed with this value is fully consistent with the measured size
distribution of voids, contrary to the one computed with beff .
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Figure 5.12: In the upper panel we show the procedure we applied in our work. It
consists in rescaling the value of the void radii in order to match the density con-
trast corresponding to the value of the shell-crossing δNLv,tr = −0.795, represented
by a black dotted line. In order to recover the size distribution of voids, the theo-
retical size function has then to be re-parametrised using b. In the bottom panel we
show the alternative procedure that we discarded. In this case the void catalogue
is cleaned to match the density contrast corresponding to δNLv,tr = −0.795 b. In
this way the model of the size function does not need a re-parametrisation, but,
as it can be seen in this plot, for large values of b the density contrast can reach
unphysical values (i.e. δ < −1).
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Figure 5.13: Size function of voids extracted from halo catalogues with a minimum
mass of 2 · 1012 M�/h. The yellow dots represent the measured size function of
voids in the catalogue, with relative uncertainties. Voids with Reff < 2.5 times
the mean inter-particle separation are rejected from the analysis. The green and
red shaded areas represent the value of the theoretical size function computed with
bslope and with beff respectively, both with errors of 5σ.
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Figure 5.14: As figure 5.13, but for voids extracted from halo catalogues with a
minimum mass of 5 · 1012 M�/h.

5.7 Effects of the main cosmological parame-

ters on the void size function

Finally, we investigate the effect of the main cosmological parameters on the
void size function, paving the way for a forthcoming cosmological exploitation
on real data. In particular, in this preliminary study, we consider three
cosmological parameters of the ΛCDM model, σ8, ΩDE and Ωm, investigating
the effect of the variation of each of these quantities taken individually. The
WMAP7 model is taken as the reference cosmological model for this analysis
(see Table 5.1).

Figures 5.16, 5.17, 5.18 show the effect of varying these cosmological
parameters in the void size function model by ±1σ, ±3σ and ±5σ. Specif-
ically, we show the size function of the cosmic voids detected from the DM
halo mock catalogue with a minimum mass cut of 2 · 1012 M�/h. Voids
with Reff < 2.5 times the mean inter-particle separation are rejected from
the analysis. The Vdn model shown is re-parametrised with bslope assuming
WMAP7 cosmological parameters.

As these plots demonstrate, the variation of ΩM produces more relevant
differences on the theoretical size function, while the variation of σ8 and ΩDE
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Figure 5.15: As figure 5.13, but for voids extracted from halo catalogues with a
minimum mass of 1013 M�/h.

causes comparable effects. Overall, the theoretical void size function is quite
sensitive to the variation of the cosmological parameters considered. This
statistics thus provides a powerful cosmological probe that will be exploited
to put constraints to these parameters, and possibly to discriminate among
alternative cosmological frameworks.
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Figure 5.16: The size function of the cosmic voids detected from the DM halo
mock catalogue with a minimum mass cut of 2 · 1012 M�/h. The yellow dots
represent the measured void size function, with relative uncertainties. Voids
withReff < 2.5 times the mean inter-particle separation are rejected from the
analysis. The black dashed line represents the Vdn model re-parametrised
with bslope (considered without uncertainties), assuming WMAP7 cosmolog-
ical parameters, while the shaded regions show the predictions obtained by
varying σ8 by ±1σ, ±3σ and ±5σ , where σ is the WMAP7 estimated un-
certainty.
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Figure 5.17: Same as figure 5.16, but for ΩDE.
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Figure 5.18: Same as figure 5.16, but for ΩM .
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Chapter 6

Discussion and conclusions

In this chapter we report the outline of this thesis work, recalling the scientific
background on which it is based and depicting the importance of cosmic voids
as cosmological probes. Then we summarise the obtained results, highlight-
ing how they constitute a breakthrough and a development of the already
existing methods to inspect the voids statistics. Finally, we propose some
possible developments for our work, that will be extended also thanks to the
new advancements that the future surveys will provide.

6.1 The scientific problem

The currently accepted flat-ΛCDM Standard Cosmological Model (described
in section 1.5) is based on the solution of the Einstein’s Field Equations,
assuming the validity of the cosmological principle (see section 1.2). This
model predicts the accelerating expansion and the flatness of the Universe
and accounts for the existence of two major components, the cold DM and the
dark energy. Despite the theoretical framework of the Standard Cosmological
Model is well defined and generally accepted by the scientific community,
there are still unresolved issues. They span from the understanding of the
nature of DM and DE, to the physical description of the inflationary models
and of the accelerated expansion.

The Standard Model is characterised by a set of cosmological parameters,
which are constrained by constantly improving experiments. These parame-
ters describe the energy content of the Universe and the primordial density
fluctuation distribution, determining the characteristics of present-day large
scale structures. Being galaxy clusters among the largest virialised struc-
tures of the Universe, their statistical properties can be effectively exploited
to put constraints on the main cosmological parameters. This is generally
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performed by studying number counts, density profiles and clustering.
Analogously to galaxy clusters, it is possible to exploit cosmic voids as

cosmological probes. In particular, voids emerge from the troughs of the
primordial Gaussian field of density fluctuations and are among the largest
structures of the Universe (with radii up to tens of Mpc). Their great po-
tential for constraining DE and testing theories of gravity has already been
widely demonstrated (see e.g. Pisani et al., 2015; Sahlén and Silk, 2016; Pol-
lina et al., 2016; Hawken et al., 2017). The identification of voids is obviously
not trivial because they are substantially underdense regions, so their centres
and dimensions have to be derived from the discrete density field traced by
luminous sources (e.g. galaxies and galaxy clusters). On the other hand, the
cosmological exploitation of voids provides some relevant advantages with
respect to the galaxy cluster one. In particular, voids are for their nature
only mildly non-linear, since they are physically limited by a minimum of
density contrast given by δ = −1. This suggests that their evolution should
be easier to reconstruct than the one of their positive counterparts, which can
reach extremely non-linear amplitudes instead. Moreover, voids tend to be
more spherical as they expand (Icke, 1984), so that the spherical evolution
approximation should optimally describe their development. Despite their
recently-gathered popularity in the scientific community, a gap of knowledge
between the theoretical modelling of voids and their effective exploitation as
cosmological probes still remains. In fact, though the model of size function
proposed by Jennings et al. (2013) (see section 2.3), combined with the clean-
ing procedure developed by Ronconi and Marulli (2017) (see section 3.3), is
able to predict accurately the void number counts in DM particle simula-
tions, it fails in case cosmic voids are selected using biased mass tracers.
This undermines the possibility of applying voids to real data (like galaxy
catalogues), since they are naturally affected by a bias connecting the dis-
tribution of objects to the one of the underlying total mass. The aim of
this thesis work is to develop a re-parametrisation of the existent theoretical
void size function in order to correctly predict the size distribution of voids
extracted from tracer catalogues. This procedure consists in re-scaling prop-
erly the density contrast threshold of the theoretical model in relation to the
value of the linear effective bias of the tracers used to detect the voids. This
constitutes the fundamental basis to extend the cosmological exploitation of
voids to real data catalogues.
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6.2 Procedure and results

In our work we made use of high-resolution N-body simulations, from which
DM halo catalogues are extracted with a friend-of-friend algorithm. We
applied different mass cuts in order to build halo catalogues composed by DM
haloes with different values of the parameter bias. Among all the available
void finders, we chose to employ VIDE, which identifies void centres as the
minima of the density field. Our void catalogues have then been cleaned
with the technique described in section 3.3. This procedure has the aim of
removing from the the catalogues the spurious voids and re-scale void radii
to a defined density threshold, in order to make them directly comparable to
the model predictions.

Once the void catalogues are built and cleaned, we estimated the bias of
the halo catalogues with different methods. Specifically, we made use of the
functions implemented in the CBL in order to evaluate the linear effective
bias, beff . Since the different techniques tested produced results consistent
with each other, we chose to rely on the estimate of bias obtained with
the modelling of the redshift-space 2PCF. We performed a MCMC posterior
sampling technique in order to assess an accurate measure of the bias and
of its statistical error. With these results we performed a re-parametrisation
of the Vdn model, re-scaling the density contrast threshold according to
the value of the effective bias. What we found with this prescription is
an under-prediction of the size distribution of voids. In fact, according to
Pollina et al. (2017, 2018), the value of the bias measured inside cosmic
voids differs from the linear effective bias, for the small voids analysed in this
work. In particular, we computed the bias inside voids as the ratio between
the density contrasts of halos and the one of the underlying DM particles
(we called this parameter bslope, as in Pollina et al. (2018)), founding that
this value is systematically larger than beff . Using the bias computed inside
voids, we verified that the re-parametrised theoretical size function is fully
consistent with the void size function measured in our simulations, for all the
halo catalogues analysed.

The method proposed has then been exploited to investigate the cosmo-
logical constraining power of the void size function. In particular, varying
the cosmological parameters with which the theoretical size function is com-
puted, we could determine their effect on the void statistics. Finally, we
searched for a relation between beff and bslope, performing a weighted fit of
our data. Having an accurately calibrated relation between these parameters
is crucial in the perspective of extending this methodology to the real case.
In fact, dealing with real data catalogues, it can be challenging to measure
the value of bias inside voids, since it is not easy to investigate the underlying
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DM distribution. On the other hand, the effective bias can be accurately esti-
mated from clustering. Therefore, having an accurate relation between these
parameters, we will be able to compute the theoretical void size function
once the linear effective bias has been estimated from the theory.

6.3 Future perspectives

We are now ready to exploit the proposed method to derive cosmological
constraints from void catalogues extracted from real data. In the next fu-
ture, we will use larger and higher resolution simulations to investigate more
accurately the relation between beff and bslope. We will extend our work to
different tracer catalogues with different redshifts, examining also alternative
cosmological scenarios. Finally, we will exploit this technique on real void cat-
alogues, such as the SDSS DR12 BOSS Void Catalogue (Mao et al., 2017), to
improve current cosmological constraints, and possibly discriminate between
alternative cosmological frameworks. Moreover, we will also provide forecasts
for future missions, like Euclid (Laureijs et al., 2011; Amendola et al., 2013,
2018) and Large Synoptic Survey Telescope (LSST) (Graham et al., 2018;
Ivezić, 2017; Abate et al., 2011).
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G. Yepes, and S. Gottlöber. The Large-scale Bias of Dark Matter Halos:
Numerical Calibration and Model Tests. Astrophys. J., 724:878–886, Dec.
2010. doi: 10.1088/0004-637X/724/2/878.

105



C. G. R. Wallis, J. D. McEwen, T. D. Kitching, B. Leistedt, and A. Plou-
viez. Mapping dark matter on the celestial sphere with weak gravitational
lensing. ArXiv e-prints, Mar. 2017.

Y. Wang, L. Xu, and G.-B. Zhao. A Measurement of the Hubble Constant
Using Galaxy Redshift Surveys. Astrophys. J., 849:84, Nov. 2017. doi:
10.3847/1538-4357/aa8f48.

M. S. Warren. 2HOT: An Improved Parallel Hashed Oct-Tree N-Body Algo-
rithm for Cosmological Simulation. ArXiv e-prints, Oct. 2013.

Y. B. Zeldovich. A hypothesis, unifying the structure and the entropy of the
Universe. Mon. Not. R. Astron. Soc., 160:1P, 1972. doi: 10.1093/mnras/
160.1.1P.

F. Zwicky. On the Masses of Nebulae and of Clusters of Nebulae. Astrophys.
J., 86:217, Oct. 1937. doi: 10.1086/143864.

106


	Abstract
	Sommario
	Introduction
	Cosmological framework
	Fundamentals of General Relativity
	The Friedmann-Robertson-Walker metric
	Hubble Law and redshift
	Friedmann equations
	Friedmann Models
	Flat, open and closed models

	The Standard Cosmological Model
	The Jeans Theory
	Jeans instability in a Static Universe
	Jeans instability in an expanding Universe
	Primordial density fluctuations
	Spherical evolution
	Non-linear evolution
	The Zel’dovich approximation

	N-body simulations

	Statistical properties of cosmic voids
	Void definition
	Excursion-set formalism
	Size function
	Void density profiles

	Numerical tools to construct cosmic void catalogues
	CosmoBolognaLib
	Void finders
	Cleaning algorithm
	An application of the void finder and cleaning methods

	Cosmic voids in the distribution biased tracers
	Correlation function
	Ratio of density contrasts as bias estimators
	Theoretical bias
	Estimating the tracer bias

	The size function of cosmic voids
	Building the mock void catalogues
	Estimating the tracer bias
	Bias inside voids
	Comparison between different bias estimates
	Tests with uncleaned catalogues
	Size function of voids from biased tracers
	Effects of the main cosmological parameters on the void size function

	Discussion and conclusions
	The scientific problem
	Procedure and results
	Future perspectives

	Bibliography

