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by Giovanni AMBRUOSO

This dissertation aims at analyzing the Unmanned Aerial Vehicles (UAVs)
involved in aerial manipulation strictly related to the surrounding environ-
ment. In order to extend as much as possible the entire operating flying time,
the main focus is on energy consumption. The dissertation takes into ac-
count the architecture characterized by a quad-rotor drone with two over
four tilting propellers. There is a comparison between the energy and power
consumption of this new architecture with a traditional quad-rotor structure
with fixed-propeller. The comparison mainly focused on two energy aspects:
the instant power spent by all four motors in both cases, and the cost func-
tion involved during the control of both structures. Cost functions values are
extracted by an optimal control problem setting in the two different cases.
Advantages and disadvantages were proved concerning the tilting rotor so-
lution in terms of energy consumption and involved dynamics.
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Chapter 1

Introduction

1.1 State of the art

The applications of Unmanned Aerial Vehicles (UAVs) widely diversified
during the last years. The main task of UAVs is to provide a mobile exten-
sion of human perceptions. It gives security to the user (soldiers [1], police-
man [2], cameraman [3]) and it also gathers informations such as images or
video, locations coordinates, weather conditions [4], etc., for either online or
offline analysis. However, there are missions whose task is to go beyond the
capabilities of conventional UAVs designs since they require not only flight
endurance capabilities but also object manipulating skills through physical
interaction with the environment. In [5] a helicopter had success in grasping
an unknown object while hovering and then reach flying stability; in [6] a
quad-rotor is able to grasp a moving object; in [7] a quad-rotor is equipped
with a robotic arm able to exert known pulling forces on the environment.
In particular quad-rotor UAVs have also recently proven to be an effective
platform for aerial manipulation and inspection: in [8] it is showed that a
quad-rotor can inspect and analyze industrial plants, so basically it is able
to be involved in an unknown environment. A good example of transporta-
tion and cooperation between a group of UAVs is showed in [9] in which is
designed a fleet of drones able to build a cubic architecture grasping and as-
sembling primary elements.
In this wide set of applications some researches introduced a new design for
multi-rotor drones to increase maneuverability in manipulation tasks. It is
based on tilting rotors, i.e multi-rotor drones with propellers which can tilt
their own rotation axis. This new concept of quad-rotor is treated in [10]
where is showed the increasing of degrees of freedom in terms of position
and orientation introducing tilting propellers. In [11] the same design has
been applied to an exa-rotor drone in order to study two different controls in
cascade concerning position and attitude. In [12] a great result was obtained



2 Chapter 1. Introduction

in term of decoupling position and attitude problem allowing the drone to
hover keeping its body in a vertical position. It could be an useful skill for
manipulating tasks.
Despite good results in maneuverability, in evaluating tilting rotors literature
it appeared that no one focused enough on power consumption of this solu-
tions. This latter aspect is crucial in development of quad-rotors, or drones in
general, and deserves to be analyzed with carefulness. Moreover, the over-
all flying time is another aspect strictly related to the energy consumption
during manipulation tasks. Some solutions in this direction have been in-
troduced in [13] by perching the quad-rotor on a smooth surface in order
to switch off the motors increasing the entire operational time from minutes
to hours. The same behavior is described in [14] also providing an explicit
remaining flight time estimation. With the aim of reducing the amount of en-
ergy spent during flight some researchers developed an algorithm that can
estimate the best energy saving trajectory of a fixed-propeller quad-rotor [15].
In order to save energy, some researches focalized their attention on strictly
mechanical aspects and designs. In [16] and [17] an innovative scheme was
tested to improve mechanical efficiency and increase flight time. They real-
ized a quad-rotor with overlapped propellers’ areas in order to improve not
only the energy saving but also the payload capacity. In [18] and [19] they
focused on a general concept of efficiency on a fixed-propellers quad-rotor.
They mainly treated mechanical aspects as propellers’ aerodynamical shape,
blade’s pitch angles, and electronics energy consumption.
In conclusions it emerged that very few of analyzed studies and papers fo-
cused on evaluating energy consumption of a tilting rotor architecture. To
assert appreciable advantages in aerial manipulation of this new design and
justify this constructive solution, a study in this direction is needed.

1.2 Main goals

This dissertation aims at study a solution which merges skills required for
aerial manipulation with energy saving during flight. The attention was put
on the evaluation of effective advantages in terms of efficiency using tilt-
ing rotors in aerial manipulation tasks. It was simulated a quad-rotor struc-
ture with two over four tilting propellers. In order to determine whether
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a tilting rotors architecture is an endurance and power conservative solu-
tion, the entire study is presented following the perspective of energy sav-
ings. According to this purpose it is analyzed within Matlab/Simulink en-
vironment the overall power consumption of a model of a tilting propellers
quad-rotor drone during some sample situations. In the same environment
it was also simulated a fixed-propeller quad-rotor drone. In conclusion both
architectures’ simulations are compared obtaining considerable results. Fur-
thermore, an optimal control problem was set to compare the total amount
of energy spent during control in both cases. As before, cost functions re-
sults are compared and discussed. Moreover, mechanical torque power is
calculated and compared with cost functions’ values.

1.3 Chapters overview

The dissertation is divided into the following chapters:

• Chapter 1 - Introduction
It was presented an overview of related works conducted in other projects
and researches. Some papers which treated similar topics was ana-
lyzed. The dissertation project was exposed with motivations and goals.
In the end a chapters overview is listed.

• Chapter 2 - Mathematical models and Simulink implementation
In this chapter, non linear mathematical models of tilting and fixed pro-
pellers quad-rotor drones are exposed. They derived from analysis of
Euler’s equations. Afterwards, a Matlab/Simulink model implementa-
tion derived from equations of mathematical model is presented. Fur-
thermore it is treated the PID control tuning for position and attitude
controls.

• Chapter 3 - Simulations and results
Matlab/Simulink simulation results are discussed in this chapter fo-
cusing on both simulated architectures. Dynamics, power and energy
consumption are compared in order to assert energy saving.

• Chapter 4 - Cost Function and Optimal Control
In this chapter an optimal control problem is set in order to evaluate
cost function values in different cases. Both architectures are tested on
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this point of view. Even in this chapter, new dynamics and energy con-
sumptions are evaluated and compared. In the end results from analy-
sis are exposed and discussed.

• Chapter 5 - Conclusions
A conclusion about the whole project is reached here; the observations
about the overall results and possible future works are listed in this
chapter.
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Chapter 2

Mathematical models and
Simulink implementation

The common architecture for a quad-rotor drone is characterized by fixed
propellers, i.e. described by four rotation axes all parallel to each other.
In this dissertation this common structure is compared with another struc-
ture equipped with two over four tilting propellers. In order to simulate the
dynamical behavior of physical architectures, it’s necessary to define their
mathematical model. In this chapter a mathematical model is developed con-
cerning both simulated architectures. In section 2.1 the fixed propellers struc-
ture will be analyzed in all its characteristics starting from physical laws; in
section 2.2 will be treated the unusual tilting propeller architecture describ-
ing its differences with the fixed propellers structure.

2.1 Fixed propellers structure

The drone sample structure is the quad-rotor. As shown in Fig. 2.1, it is made
of four arms at the end of which there is a propulsion unit. Each propulsion
unit is composed by a brushless motor and a propeller linked to it (Fig. 2.2).
In the model considered in simulations, every propulsion unit is identified
by a number from 1 to 4, and it is characterized by a local reference frame
centered on each motor.

2.1.1 Propulsion unit working principles

As a result, each propeller produces two main effects: a thrust force Fi ex-
pressed by the equation (2.1), and a reaction torque τi expressed by the equa-
tion (2.2).
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FIGURE 2.1: The simplified structure of a drone analyzed to
obtain the model

Fi = k ·ω2
i (2.1)

Where Fi is the thrust force exerted by the i-th propeller, k is an aerody-
namic coefficient which depends on propeller diameter, fluid density, flight
velocity and others parameters. To simplify the process, any detail about this
coefficient is omitted. In the end, ωi is the angular velocity of the i-th pro-
peller.
The thrust force of each propulsion unit is directed along its own z-axis. In
order to hover in a steady point in the space, all the thrust forces applied to
the body of the quad-rotor needs to counteract the overall weight P.

The second main effect produced by rotation of propellers is a reaction
torque transmitted from the motor to the frame of the drone. It is due to drag
forces developed by a propeller rotating in a fluid; its formula is exposed in
(2.2).

τi = ±b ·ω2
i (2.2)
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FIGURE 2.2: Representation of forces and torque expressed by
a propeller

Where τi is the drag torque produced by the i-th propeller; b is a drag
coefficient, which depends from propeller’s dimensions and angle of attack,
air density, and other aerodynamical parameters; ωi is the angular velocity
of the i-th propeller.
Reaction torque τi is always counter rotating compared to the angular speed
direction. Thus the sign in (2.2) is decided following this rule. Furthermore,
to balance all the reaction torques, propellers must rotate alternatively in
clockwise and counterclockwise direction (Fig. 2.1).

2.1.2 Roll, Pitch and Yaw

As in Fig. 2.1, two main reference frames were considered. The inertial frame,
or world reference frame, is represented in purple and has its origin in Ow.
The body fixed frame is represented in orange and its origin Ob is fixed in
the center of gravity of the structure. The latter reference frame is used to
define body rotations described by the three Euler angles of roll, pitch and
yaw. A vector rotation in a three-dimensional space is always represented
by 3x3 matrix. In particular, roll (φ) is a rotation around x-axis of body fixed
frame and it is defined in (2.3); pitch (θ) is a rotation around y-axis in body
fixed frame defined in (2.4); and yaw (ψ) is a rotation around z-axis in body
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fixed frame defined in (2.5). The rotation of each Euler angle follows the
right-hand rule and it is based on corresponding axis direction.

R(φ) =

1 0 0
0 cos(φ) − sin(φ)
0 sin(φ) cos(φ)

 (2.3)

R(θ) =

 cos(θ) 0 sin(θ)
0 1 0

− sin(θ) 0 cos(θ)

 (2.4)

R(ψ) =

cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

 (2.5)

The roll, pitch, and yaw rotations can be used to place the body in any
orientation in three-dimensional space. Therefore, a single rotation matrix
can be obtained by multiplying the roll, pitch, and yaw rotation matrices.

R(ψ, θ, φ) = R(ψ)R(θ)R(φ)

=

CψCθ CψSθSφ−SψCφ CψSθCφ+SψSφ

SψCθ SψSθSφ+CψCφ SψSθCφ−CψSφ

−Sθ CθSφ CθCφ

 (2.6)

Where, for the sake of simplicity, Cx represents cosine of x and Sx repre-
sents sine of x. As in any matrices multiplication, the order is important even
concerning the roll-pitch-yaw notation. It implies that the first rotation ap-
plied to a vector is on the right, the last on the left.
The quad-rotor can perform this three main rotations by properly changing
the angular speeds of each propeller. In Fig. 2.3 is represented how each
single rotation can be expressed adapting angular speeds and consequently
changing forces and torques following (2.1) and (2.2).
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(A) Roll (B) Pitch

(C) Yaw

FIGURE 2.3: A representation of how to perform roll, pitch and
yaw changing propellers angular speeds ωi

To achieve a positive roll rotation (Fig. 2.3a) motors number 2 and 3 needs
to increase the angular speed of their own propeller, increasing thrust forces
and drag torques. Conversely, motors 1 and 4 act contrariwise, they decrease
angular speed to reduce corresponding forces and torques allowing the body
to rotate around the xb-axis. The pitch rotation around yb-axis (Fig. 2.3b) is
performed in a similar way. The motors which produce greater forces are 1
and 2, instead 3 and 4 decrease their thrusts and torques.
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To rotate around zb-axis according to its direction, it is required to increase the
angular speeds of those motors which have counterclockwise drag torque di-
rection (Fig. 2.3c). In the considered figures these motors are numbered 1 and
3. At the same time, motors number 2 and 4 decrease their angular speeds
and consequently their clockwise drag torques reduce too.

2.1.3 Euler’s equations

In this subsection the Euler’s equations are exposed in order to analyze dy-
namics involved in the fixed propeller quad-rotor simulation. Forces and
torques dynamics are treated in two different paragraphs. In Fig. 2.4 is rep-
resented the considered three-dimensional model.

FIGURE 2.4: Representation of simulated translation movement
to counteract an external force
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Forces

In order to simplify simulations, it is considered only one external force par-
allel to the xw-axis, but oriented in opposite direction (Fext in Fig. 2.4). The
result is represented in (2.7), where there are all external forces applied to the
quad-rotor body.

Ftot =

−Fext

0
P

 =

−Fext

0
−mg

 (2.7)

Where m is the overall mass of the quad-rotor and g gravity acceleration.
A friction force FD which behaves as viscous damping is considered within
the model. It is represented by a three dimensional vector and it has the
same damping coefficient kd along all three inertial reference frame axes. It is
exposed in (2.8).

FD =

−kdẋ
−kdẏ
−kdż

 (2.8)

As dumping forces, FD is proportional to each velocity along each axis of
inertial reference frame. Its negative sign is related to dissipative behavior of
this force. To counteract these negative forces, the quad-rotor needs to exert
a positive action through its propulsion units.

~FRES =
4

∑
i=1

~Fi = k

 0
0

∑4
i=1 ω2

i

 (2.9)

FRES is obtained by summing all the single propellers thrust forces de-
scribed in (2.1). Because of propulsion units are fixed to the quad-rotor body,
this resultant force has components only along zb-axis. To exert linear forces
in an inertial frame, a fixed propellers quad-rotor must tilt its entire body
following roll and pitch rotation. Hence, to refer FRES to world reference
frame, it must be multiplied by roll-pitch-yaw rotation matrix described in
(2.6). Therefore −Fext and P are counterbalanced by FRESx and FRESz respec-
tively, as shown in Fig. 2.4. The final Euler’s equation for linear dynamics is
written in (2.10).

M~̈X = R(ψ, θ, φ) ~FRES + ~FD + ~Ftot (2.10)
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Where ~̈X is the quad-rotor three-dimensional linear acceleration vector
referred to inertial frame, and M is the mass matrix defined in (2.11).

M =

m 0 0
0 m 0
0 0 m

 (2.11)

Torques

To properly analyze torques involved in quad-rotor dynamics, it is necessary
to convert roll-pitch-yaw from body-referenced rotations to world-referenced
rotations. The idea is to consider small changes in each of roll, pitch and yaw
angles, and determine the effects. Recalling multiplication order in (2.6), the
first angle undergoes two rotations, the second angle only one rotation, and
the last angle no additional rotations. Thus (2.12) is obtained.

~Ω = R(ψ)R(θ)

 0
0

dφ/dt

+ R(ψ)

 0
dθ/dt

0

+

dψ/dt
0
0

 (2.12)

Where ~Ω expresses body angular velocities referred to the inertial frame.
Solving (2.12) and simplifying equation form, it becomes (2.13).

~Ω =

1 0 -Sθ

0 Cφ CθSφ

0 -Sφ CθCφ

 ~̇Θ (2.13)

Where ~̇Θ represents roll, pitch and yaw velocities vector.
Each propulsion unit, as presented in 2.1.1, delivers a thrust force and a drag
torque which produce effects on the overall torque on quad-rotor body.
As can be noticed in Fig. 2.1, all thrust forces exert a torque around xb-axis.
In particular, F2 and F3 produce a positive revolution opposed to F1 and F4,
which apply a negative momentum. Considering thrust forces expression
(2.1), torque around xb-axis is (2.14).

τx = L · cos
(π

4

)
· k(−ω2

1 + ω2
2 + ω2

3 −ω2
4) (2.14)

Where L is distance between each propulsion unit and Ob. To obtain the
distance between propulsion units and xb-axis, it is sufficient to multiply L
by cos(π

4 ). Same approach is used to determine torque around yb-axis.
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τy = L · cos
(π

4

)
· k(+ω2

1 + ω2
2 −ω2

3 −ω2
4) (2.15)

The only differences between (2.14) to (2.15) are forces directions.
Around yb-axis, F1 and F2 bring positive contribution while F3 and F4 turn
in opposite direction. Momentum around zb-axis is determined only by drag
torques described in (2.2). Its expression is (2.16).

τz = b · (ω2
1 −ω2

2 + ω2
3 −ω2

4) (2.16)

Thus, a single resultant vector can be defined for torques exerted on the
quad-rotor body.

~τRES =

τx

τy

τz

 (2.17)

At this point the final form of Euler’s equation for rotational dynamics
can be written.

I~̇Ω = ~τRES − ~Ω× (I~Ω) (2.18)

Where ~̇Ω is quad-rotor body angular acceleration referred to the inertial
frame; I is the matrix of moments of inertia which is defined in (2.19)

I =

Ixx 0 0
0 Iyy 0
0 0 Izz

 (2.19)

In particular, Ixx, Iyy and Izz are quad-rotor body moments of inertia re-
spectively around xb, yb and zb-axis. Hence, the ultimate set of Euler’s equa-
tions which models the fixed propellers quad-rotor is given by (2.10) and
(2.18).

2.1.4 Control scheme and Simulink power calculation

A control system in a quad-rotor architecture aims at controlling its position
and attitude. As shown in Fig. 2.5, the result is achieved performing two
feedback loops. The innermost loop controls attitude, i.e. the roll, pitch and
yaw reference following; the external loop controls quad-rotor position track-
ing following its reference.
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FIGURE 2.5: Common block diagram to control a quad-rotor

Attitude Control

In order to control the quad-rotor, it is necessary to identify input signals to
the drone model. In this fixed propeller quad-rotor case, the four propulsion
units angular speeds ωi are considered as inputs. To define them clearly, a
mapping block is necessary between the attitude controller and the drone
model block (Fig. 2.5). Through the mapping block, inputs ωi are defined as
function of control laws ui.
Control laws depend on PID controller which produces a regulated torque
vector τCTRL defined in (2.20).

τCTRL =

τφ

τθ

τψ

 =

 Ixx(Katt
p eφ + Katt

i
∫ T

0 eφ dt + Katt
d ėφ)

Iyy(Katt
p eθ + Katt

i
∫ T

0 eθ dt + Katt
d ėθ)

Izz(Katt
p eψ + Katt

i
∫ T

0 eψ dt + Katt
d ėψ)

 =

Ixxuφ

Iyyuθ

Izzuψ

 (2.20)

Where Katt
p , Katt

i , and Katt
d are control gains of PID attitude regulator; T is

the overall simulation time; eφ, eθ and eψ are respectively error on roll (φ),
pitch (θ) and yaw (ψ) defined in (2.21).

eφ = φ∗ − φ

eθ = θ∗ − θ

eψ = ψ∗ − ψ

(2.21)

Where φ∗, θ∗ and ψ∗ are reference values of roll, pitch and yaw respec-
tively. To map angular speeds from controlled torque, it is required to match
τRES in (2.17) with τCTRL in (2.20) obtaining (2.22). For the sake of concise-
ness, we will intend the square of propulsion unit angular speeds as γi.L · cos

(
π
4

)
· k(−γ1 + γ2 + γ3 − γ4)

L · cos
(

π
4

)
· k(γ1 + γ2 − γ3 − γ4)

b · (γ1 − γ2 + γ3 − γ4)

 =

Ixxuφ

Iyyuθ

Izzuψ

 (2.22)
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It is a system with three equation in four unknowns. To make it solvable,
it is necessary to introduce a fourth equation, where vertical components of
overall thrust forces need to be equal to the quad-rotor weight P.

k(γ1 + γ2 + γ3 + γ4) · cos(φ) · cos(θ) = mg (2.23)

Thus the system’s final form is described in (2.24).


L · cos

(
π
4

)
· k(−γ1 + γ2 + γ3 − γ4)

L · cos
(

π
4

)
· k(γ1 + γ2 − γ3 − γ4)

b · (γ1 − γ2 + γ3 − γ4)

γ1 + γ2 + γ3 + γ4

 =


Ixxuφ

Iyyuθ

Izzuψ
mg

k·cos(φ)·cos(θ)

 (2.24)

Extracting the ~γ vector the equation becomes (2.25).
− kL√

2
kL√

2
kL√

2
− kL√

2
kL√

2
kL√

2
− kL√

2
− kL√

2

b −b b −b
1 1 1 1




γ1

γ2

γ3

γ4

 =


Ixxuφ

Iyyuθ

Izzuψ
mg

k·cos(φ)·cos(θ)

 (2.25)

Hence, the controlled inputs ~γ given to the model are extracted in (2.26)
considering substitutions expressed in (2.27) and (2.28).

~γ = A−1~U (2.26)

A =


− kL√

2
kL√

2
kL√

2
− kL√

2
kL√

2
kL√

2
− kL√

2
− kL√

2

b −b b −b
1 1 1 1

 (2.27)

~U =


Ixxuφ

Iyyuθ

Izzuψ
mg

k·cos(φ)·cos(θ)

 (2.28)

Position Control

Position control acts similarly to attitude control. It is a PID controller which
defines position control laws as exposed in (2.29).
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ux

uy

uz

 =

(K
pos
p ex + Kpos

i

∫ T
0 ex dt + Kpos

d ėx)

(Kpos
p ey + Kpos

i

∫ T
0 ey dt + Kpos

d ėy)

(Kpos
p ez + Kpos

i

∫ T
0 ez dt + Kpos

d ėz)

 (2.29)

Where Kpos
p , Kpos

i , and Kpos
d are control gains of PID position regulator; T

is the overall simulation time; ex, ey and ez are respectively errors on xw, yw

and zw directions defined in (2.30).

ex = x∗ − x
ey = y∗ − y
ez = z∗ − z

(2.30)

Where x∗, y∗ and z∗ are reference values of x, y and z respectively.
In the fixed propeller case, position on xw/yw plane depends on roll and pitch.
Consequently, in order to move the body in both horizontal directions, posi-
tion control defines roll and pitch reference angles.
To simplify exposition, in this simulated case it is assumed the body moves
mainly along a xw-axis parallel direction, thus pitch is the most considered
reference angle. A geometric approach, shown in Fig. 2.6, is formulated in
order to define a reliable pitch reference angle.

Following used geometric approach, reference pitch angle is defined in
(2.31).

θ∗ = atan

(
ux

F f ix
vert

)
(2.31)

Where F f ix
vert is a constant vertical fictitious force parallel to zw-axis; ux is

the position control law along a direction parallel to xw-axis. As for the ref-
erence pitch angle calculation, it is required a roll reference angle, in order to
preserve overall stability. It is defined in (2.32).

φ∗ = atan

(
−uy

F f ix
vert

)
(2.32)

The position control law uy is considered negative because signs of roll
angle and yb-axis direction are opposite. Thus, to move positively along yb-
axis, roll angle must be negative and viceversa.
The altitude control which regulates position along zw-axis has no relation
with roll, pitch and yaw; thus it doesn’t act on attitude control. Its action is
directly included in angular speeds mapping block. Recalling (2.23), a new
fourth mapping equation can be written.
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FIGURE 2.6: Geometric scheme to determine reference pitch an-
gle θ∗

4

∑
i=1

γi =
mg

k · cos(φ) · cos(θ)
+ uz (2.33)

Power Calculation

In order to evaluate the entire power consumption, it is important to focus
on which are the main consumptive parts and areas of the drone. In the con-
sidered model, parts that absorb the largest amount of energy are the elec-
tric motors; hence aerodynamical losses and controllers electric consumption
are neglected. Concerning calculation of instant power spent by motors, the
mechanical power of each propulsion unit was considered and measured as
shown in (2.34).

Pf ix =
4

∑
i=1

Pi =
4

∑
i=1

τiωi =
4

∑
i=1

b γiωi =
4

∑
i=1

bω3
i (2.34)
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Where τi and ωi are i-th motor’s drag torque (defined in (2.2)) and angular
speed respectively. The given angular speeds are considered as mapping
block output as shown in Fig. 2.7.

FIGURE 2.7: Power calculation block position

2.2 Tilting propellers structure

In this section it will be described the second type of quad-rotor architecture,
in order to compare it in simulations with the fixed propellers structure pre-
viously described in section 2.1.
The presented tilting rotor architecture is obtained starting from the fixed
propellers structure, allowing propulsion units number 1 and 2 to change
direction of their zi-axis, already shown in Fig. 2.2. Addition of tilting pro-
pellers increases the entire amount of reachable positions in space. In partic-
ular, introducing two over four tilting propellers, a difference between under-
actuated and full-actuated architectures needs to be defined.
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FIGURE 2.8: Representation of simulated translation movement
along xb-axis tilting rotors to counteract an external force Fext

2.2.1 Under/Full actuated systems

Introducing tilting propellers, it is important to give proper definitions for
full-actuated and under-actuated systems. This definitions pass through the
concept of degrees of freedom. An under-actuated system is defined as a
system that cannot be commanded to follow arbitrary trajectories in space.
In other words the system has less actuators than degrees of freedom. In
fixed propellers drone architectures (described in 2.1) there are 4 actuators
(i.e. propulsion units) and 6 degrees of freedom (3 rotations and 3 transla-
tions in a three-dimensional space), thus they are classified as under-actuated
systems. An effect of under-actuation in fixed propeller quad-rotors is the
unavoidable binding between pitch angle and translation along xb-axis.
Different from under-actuated systems, a full-actuated system has the same
number of actuators and degrees of freedom. In simulated tilting rotors
architecture it is introduced another actuator in order to tilt two over four



20 Chapter 2. Mathematical models and Simulink implementation

propulsion units. Thus the overall architecture with 5 actuators and 6 de-
grees of freedom is still considered as under-actuated, but full-actuated along
xb-axis. In this configuration pitch angle is isolated from translation along
xb-axis.

2.2.2 Tilt angle

To represent the tilt angle α introduced in propulsion units number 1 and 2, a
local reference frame is considered on each of them as shown in Fig. 2.9. The
tilt angle α is defined as a rotation of this local frame around its own yi-axis.
The angle α is forced to be the same for unit 1 and 2, as represented in Fig. 2.8.

(A) Tilt angle α (B) Forces and Torques

FIGURE 2.9: A representation of reference frames on a generic
i-th tilting rotor (2.9a); forces and torques scheme on propeller

number 2 (2.9b).

Being angle α a rotation around y-axis, it can be defined by a matrix sim-
ilar to pitch rotation presented in (2.4). This new matrix which represents α

rotation is defined in (2.35).

R(α) =

 cos(α) 0 sin(α)
0 1 0

− sin(α) 0 cos(α)

 (2.35)
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The tilt angle doesn’t influence roll, pitch and yaw angles, which are still
valid because they fully define the quad-rotor body orientation in space. But
direction of forces and torques, related to units number 1 and 2, changes with
α. This effect is analyzed in Euler’s equations.

2.2.3 Euler’s Equations

Dynamics of tilting rotors structure are determined by Euler’s equations as
in the fixed propellers case. The only difference is the introduction of rotation
matrix R(α). To apply α rotation to forces and torques of motors number 1
and 2, they will be multiplied by R(α). Forces and torques dynamics repre-
sented in Fig. 2.10 will be analyzed separately in the following sections.

Forces

In forces dynamics, keeping (2.7) and (2.8) still valid, the first overall Euler’s
differential equation is still described in (2.10) but with a different ~FRES de-
fined in (2.36).

~FRES = R(α)
2

∑
i=1

~Fi +
4

∑
i=3

~Fi (2.36)

Where rotation matrix R(α) is applied only to F1 and F2, in order to de-
compose both thrust forces in horizontal and vertical components.

Torques

There is a geometrical approach to define torques applied to drone body in
tilting rotors case. Since some forces orientation changes referred with body
fixed frame, each forces and drag torques will be analyzed related to their
application point position. It is assumed that forces and torques’ application
points are placed in correspondence of propulsion units. Reminding that L
represents the drone’s arm length, application points positions can be written
as in (2.37).
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(A)

(B)

FIGURE 2.10: Representation of torques (2.10a) forces (2.10b) in
tilting rotor case.

O1 =
[
−L · cos π

4 −L · sin π
4 0

]T

O2 =
[
−L · cos π

4 +L · sin π
4 0

]T

O3 =
[
+L · cos π

4 +L · sin π
4 0

]T

O4 =
[
+L · cos π

4 −L · sin π
4 0

]T

(2.37)

Each drag torque can be represented in a vector form. Remembering (2.2),
a generic i-th drag torque can be written as in (2.38).
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~τi =

 0
0

±b ·ω2
i

 (2.38)

The sign is decided based on rotation direction of corresponding i-th pro-
peller. Each propulsion units’ thrust force is already defined in (2.9). To cal-
culate momentum produced by each of thrust forces, it is applied a vector
product between propulsion unit position Oi, related to body fixed frame Ob,
and forces exerted by each propellers. Thus, total torque applied to a tilting
rotors body can be calculated as in (2.40).

~τRES =
2

∑
i=1

[R(α)~τi + Oi × R(α)~Fi] +
4

∑
i=3

[~τi + Oi × ~Fi] (2.39)

It is possible to obtain the second overall Euler’s differential equation sub-
stituting the (2.40) in the (2.18), which remains still valid also for tilting pro-
pellers structure.

2.2.4 Control scheme and Simulink power calculation

As in section 2.1.4, the total control scheme in tilting rotors case is composed
by two feedback loops. In Fig. 2.11 can be noticed how in this case the exter-
nal position control loop is slightly different from previous. In the following
sections it will be analyzed in details.

FIGURE 2.11: Total control scheme in tilting rotors case
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Attitude Control

Introducing tilting propellers, pitch angle is no longer connected to lateral
translation along xb-axis. The attitude control is largely similar to the previ-
ous case. The attitude reference set externally, instead of being decided by
position control, is a difference between the two cases. Even in this context,
to follow attitude reference, a PID regulator is adopted. Because of this, being
a general form of attitude control, (2.20) is still valid. In order to map regu-
lated angular speeds, it is necessary to equal the controlled torques vector to
new resultant torques vector obtained in (2.40).

2

∑
i=1

[R(α)~τi + Oi × R(α)~Fi] +
4

∑
i=3

[~τi + Oi × ~Fi] =

Ixxuφ

Iyyuθ

Izzuψ

 (2.40)

The fourth equation is obtained following the same approach used be-
fore. With tilting propellers, the requisite to keep the drone floating, is barely
different from (2.23). In addition to the vertical forces F3 and F4, it contains
only vertical components of F1 and F2 as shown in (2.41).

k(γ1 cos(α) + γ2 cos(α) + γ3 + γ4) · cos(φ) · cos(θ) = mg (2.41)

At this point, we can deduced that the mapping system to extract the
propellers’ controlled speeds is identical to (2.26), but using a different A
matrix defined in (2.42).

A =


b sin(α)− kL√

2
cos(α) −b sin(α) + kL√

2
cos(α) kL√

2
− kL√

2
kL√

2
cos(α) kL√

2
cos(α) − kL√

2
− kL√

2

b cos(α) + kL√
2

sin(α) −b cos(α)− kL√
2

sin(α) b −b

cos(α) cos(α) 1 1

 (2.42)

It can be noticed how effects of tilting rotors come out in the first two
columns as sum of drag torques and thrust forces components. On the other
hand, third and fourth columns are the same represented in (2.27).
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Position Control

As figured in Fig. 2.11, position control is divided in two sections: altitude
control and tilting angle control.

FIGURE 2.12: Geometric scheme to determine α

The altitude control consists in a PID regulator which determines the cor-
rect control law ualt to be added in (2.41) obtaining equation (2.43).

2

∑
i=1

γi cos(α) +
4

∑
i=3

γi =
mg

k · cos(φ) · cos(θ)
+ ualt (2.43)

Where ualt is a common PID control law defined in (2.44).

ualt = Kpos
p ez + Kpos

i

∫ T

0
ez dt + Kpos

d ėz (2.44)

Where the same position error ez defined in (2.30) is considered.
The tilting angle control regulates the angle α, which, as shown in Fig. 2.11,
is handled in mapping block (eq. (2.41), (2.42)) and drone model block (eq.
(2.36), (2.40)). For this control it is adopted a geometrical approach analogous
to (2.31). The α angle represented in Fig. 2.12 is determined by (2.45).
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α = atan

(
ux

Ftilt
vert

)
(2.45)

Where ux is defined even in this case by a PID controller. The tilt angle α is
the same for both tilting propulsion units, thus only one controller is adopted
and tuned.

Power and efficiency calculation

The hypothesis by which electric motors are the most consumptive parts,
here is still valid. To calculate power spent instantly by tilting propellers
structure, the same method shown in (2.34) is adopted.

Ptilt =
4

∑
i=1

bω3
i (2.46)

Block scheme is identical to previous, even in this case to calculate me-
chanical power, angular speeds are considered as mapping block output. Re-
sults from power blocks represented in Fig. 2.7 are compared in a power
saving rate estimation block.

FIGURE 2.13: Power saving rate calculation scheme

In the power saving block shown in Fig. 2.13, an instant power saving
rate ηpow is defined following (2.47).

ηpow = 1−
Pf ix

Ptilt
(2.47)
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Where Pf ix is instant power consumption of fixed propellers structure,
and Ptilt is instant power consumption of tilting propellers structure. Simu-
lation results are analyzed in the next chapter.
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Chapter 3

Simulation and results

Matlab/Simulink simulation results are discussed in this chapter focusing
on both simulated architectures. Dynamics and power consumption will be
compared in order to assert energy saving. To simulate both architecture, it
is necessary to assign numerical values to parameters, as in (3.1).

L = 0, 225 [m];

m = 0, 55 [Kg];

Ixx = 5 · 10−3 [Kg m2];

Iyy = 5 · 10−3 [Kg m2];

Izz = 8, 9 · 10−3 [Kg m2];

g = 9, 8 [m/s2];

b = 0, 001;

kd = 0, 1;

k = 0, 01;

(3.1)

Physical parameters (as arm length L, mass m and moments of inertia Ixx,
Iyy, Izz) are defined by dimensions similar to middle range quad-rotor. These
parameters have the same value in both simulations of tilting and fixed pro-
pellers structure.
Controllers’ gains need to be declared too. They are all tuned by a trial-and-
error method to obtain a reasonable behavior by the system. Tilting architec-
ture controllers represented in Fig. 2.11 have gains listed in (3.2).

Tilting angle α control : Kp = 83000; Ki = 16000; Kd = 130000;

Altitude control : Kp = 100000; Ki = 32000; Kd = 130000;

Attitude control : Kp = 8500; Ki = 2000; Kd = 400;

(3.2)
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Gains of controller in fixed propeller case represented in Fig. 2.5 are de-
fined in (3.3).

Position control : Kp = 3500000; Ki = 1650000; Kd = 550000;

Attitude control : Kp = 8500; Ki = 2000; Kd = 400;
(3.3)

Recalling (2.31), (2.32) and (2.45) vertical components values are required.
As controller’s gains, vertical components are carried out by consecutive at-
tempts until a reasonable performance is reached.

Ftilt
vert = 10000;

F f ix
vert = 2000000;

(3.4)

3.1 Simulation Setting

To analyze simulation results, test settings must be declared. The simulation
consists in applying an external force Fext which changes its magnitude dur-
ing the test. It is applied only along the xb-axis, as figured in Fig. 2.4 and Fig.
2.8. It changes following a trapezoidal profile assuming values between 0 N
to 100 N as represented in Fig. 3.1.

FIGURE 3.1: External forces shape during simulation.

As represented along the Ob, reference for position and attitude is set to
zero in both cases.
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~X∗ =
[
0 0 0

]T

~Θ∗ =
[
0 0 0

]T (3.5)

It suggests that the body reference frame Ob is set in the same center of
world reference frame Ow. This implies that the simulated drone is controlled
to hold its position, staying in a floating condition, while the external force is
applied.

3.2 Position and attitude results

In Fig. 3.2 results in terms of position, attitude and tilting angle α are rep-
resented for both the cases. In the first part of figure, under the action of
external forces, both architectures drift 1, 5 m away from reference point on
xw-axis . This behavior occurs only when the external force is not constant.
As soon as the external force becomes constant, the control action is able to
bring quad-rotor back to the reference position. Furthermore, controllers are
able to keep the reference position along yw-axis and zw-axis. Watching at
dynamics of position, the only difference between tilting rotor’s and fixed
rotor’s structures is velocity of drifting from reference point.
Concerning attitude behavior, in the central frame of Fig. 3.2, it can be no-
ticed how in tilting rotor’s simulation, the attitude is perfectly maintained on
the reference point while angle α reaches the maximum amplitude of 88,6◦.
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FIGURE 3.2: Position and attitude results during simulation.

As figured in Fig. 2.9, it is important to notice that the angle α is measured
with respect to vertical zb-axis. Differently, to counteract external forces’ ac-
tion in fixed rotor simulation, the control system lets the entire drone pitch
around its yb-axis. This is due to the under-actuated behavior of a fixed pro-
pellers structure, where pitch and lateral translation are linked together. In
this case the maximum pitch angle reached is 86, 7 ◦.
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3.3 Power consumption and saving rate results

FIGURE 3.3: Representation of power saving rate during simu-
lation with a comparison between powers instantly spent

In Fig. 3.3 it is represented the power instantly spent by both architectures
during simulation. Plotted value represents the power spent by the entire
structure, i.e by all four propulsion units. Both architectures spend the max-
imum amount of power during application of force Fext, when it takes the
maximum value of 100 N. The architecture of tilting rotors is clearly more
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consumptive in this phase. Tilting rotors’ solution reaches a maximum con-
stant power spent of 711 W, compared with fixed propellers’ structure which
absorbs 501 W.
During the entire simulation, a power saving rate is measured in real time
following (2.47). When the external force is applied, as in Fig. 3.3, the quad-
rotor with fixed propellers saves 29, 7 % of energy compared to fixed rotor
structure.

At this point it is possible to claim the overconsumption of the tilting so-
lution. The only advantage which derives from using it, is a more stable
attitude completely divided from lateral translation, that is a good attribute
in aerial manipulation. But this utility is paid with about 30 % more power
than the common quad-rotor structure. The overconsumption of tilting ar-
chitecture can be easily translated in a shortest amount of flying time which
is a bad feature for a drone with manipulating tasks.
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Chapter 4

Linear Optimal Control Test

In this chapter a linear optimal control problem is set in order to evaluate
cost function values in different cases. Both architectures are tested on this
point of view. In the end results from analysis are exposed and discussed. An
energy efficiency calculation will be proposed through an optimal control ap-
proach. Particular attention will be paid to the minimal possible control effort
necessary to maintain the drone balanced on the axis’ origin. As presented
in section 3.1 the experiment includes lateral disturbances. A fixed propeller
architecture was simulated as a tilting propeller case, therefore hypothesiz-
ing a null α.
In order to apply this control algorithm, the system was downgraded from
a six degrees of freedom to a three degrees of freedom model, becoming a
planar system. In addition, a linearization was applied to obtain the opti-
mal control algorithm. Considering this approach, energy consumption was
measured in terms of mechanical power spent by motors in the non-linear
model.

4.1 Model simplification and Linearization

The model presented in 2.2.3 was simplified to obtain planar dynamics and
for easier calculations. This physical planar model will be analyzed below to
obtain the subsequent non-linear model in the state-space representation. As
this is a non-linear planar model, it develops three degrees of freedom.

The three dynamics equations expressed in (4.1) are directly derived from
the representation of forces shown in Fig. 4.1.
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FIGURE 4.1: A simplified planar structure for a new drone
model

mẍ = F1 sin(α + θ) + F2 sin(θ)− kd ẋ

mz̈ = F1 cos(α + θ) + F2 cos(θ)− kdż−mg

Iyyθ̈ = L cos
(π

4

)
F1 cos(α)− L cos

(π

4

)
F2

(4.1)

Considering F1 and F2 as the forces produced by propellers along their
own axis; and m, g, L, kd, Iyy as the same parameters already described in
(3.1). The non-linear model in the state-space representation can be deduced
turning (4.1) into an ordinary differential system of first-order. To obtain this
result, it is necessary to apply the substitutions described in (4.2), involving
state variables and inputs.

x(t) =



x1(t)
x2(t)
x3(t)
x4(t)
x5(t)
x6(t)


=



x(t)
ẋ(t)
z(t)
ż(t)
θ(t)
θ̇(t)


u(t) =

u1(t)
u2(t)
u3(t)

 =

F1(t)
F2(t)
α(t)

 (4.2)
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From this point onward, x(t) will be considered as the state variables vec-
tor and not simply a translation along x-axis. Substituting the parameters
taken from (3.1), the non-linear state-space representation can be expressed
as (4.3).

ẋ1 = x2

ẋ2 = 1.8 u1 sin(u3 + x5) + 1.8 u2 sin(x5)− 0.18 ẋ2

ẋ3 = x4

ẋ4 = 1.8 u1 cos(u3 + x5) + 1.8 u2 cos(x5)− 0.18 ẋ4 − 9.8

ẋ5 = x6

ẋ6 = 31.8 u1 cos(u3)− 31.8 u2

(4.3)

The time dependency was omitted for clarity reasons but it remains valid.
To obtain an akin linear model to the one described in (4.4), a first-order Tay-
lor linearization process around an equilibrium point (xe, ue) is applied.

ẋ(t) = A x(t) + B u(t) (4.4)

A and B are the Jacobian matrices of the state functions described in (4.3)
as derivatives of x(t) and u(t) respectively. Thus, the equation (4.5) is valid.

A =


∂ f1
∂x1
· · · ∂ f1

∂x6
... . . . ...

∂ f6
∂x1
· · · ∂ f6

∂x6


(xe,ue)

B =


∂ f1
∂u1

· · · ∂ f1
∂u3

... . . . ...
∂ f6
∂u1

· · · ∂ f6
∂u3


(xe,ue)

(4.5)

The linearization equilibrium point (xe, ue) is defined in (4.6).

xe =



0
0
0
0
0
0


ue =


m g
2

m g
2

0

 (4.6)

This equilibrium point was selected to have x2, x4, x6 velocities all null.
The coordinate x and z can take any value, null in this case. A null value
was assigned as well to the α angle, represented as u3, to obtain an equilib-
rium point valid for both fixed and tilting architecture. As a consequence, the
pitch angle x5 must be null, and the two remaining inputs, u1 and u2, must be
sufficiently large as to counteract the overall weight. A fundamental choice
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in the linearization process is the equilibrium point setting, because this is
the point around which the system is locally asymptotically stable. The sim-
ulated disturbances and reference values must be assigned in line with this
locality property, so as to stay in the system’s attraction neighborhood.
The A and B matrices’ numerical value was obtained by substituting the
equilibrium point value in the Jacobian matrices. They are represented in
(4.7).

A =



0 1 0 0 0 0
0 −0.181 0 0 9.8 0
0 0 0 1 0 0
0 0 0 −0.181 0 0
0 0 0 0 0 1
0 0 0 0 0 0


B =



0 0 0
0 0 4.9
0 0 0

1.818 1.818 0
0 0 0

31.82 −31.82 0


(4.7)

In order to even the constant disturbance, the linear system in (4.4) is
reinforced by an additional term, as shown in (4.8).

ẋ(t) = A x(t) + B u(t) + D w (4.8)

D is a matrix describing the way disturbances w influence the state equa-
tion ẋ(t). As described in section 3.1, to consider the horizontal disturbances,
a constant horizontal force was modeled. On the contrary, disturbances due
to modeled mass uncertainties m̃ were considered as a vertical constant force.
The D matrix and the disturbances vector w are defined in (4.9).

D =



0 0
1 0
0 0
0 1
0 0
0 0


w =

[
−Fx

−m̃g

]
(4.9)

To remove the effects of constant disturbances acting on the system, mak-
ing it more robust, it is necessary to introduce an integral action on the state
x(t). To produce this result, a C matrix must be defined and, according to
its content, it will determine the state vector’s component on which integral
action is applied. Adding one more equation to the system (4.8), it becomes
(4.10).
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ẋ(t) = A x(t) + B u(t) + D w

η̇(t) = C x(t)− x∗
(4.10)

x∗(t) is the reference point where the state x(t) is steered despite the dis-
turbance’s action. Disturbances were applied on ẋ2 and ẋ4, so that the C
matrix can be accurately described as (4.11).

C =

[
1 0 0 0 0 0
0 0 1 0 0 0

]
(4.11)

The final expression of the linear system is (4.12)

ẋ(t) = A x(t) + B u(t) + D w

η̇(t) = C e(t)
(4.12)

Where e(t) is the position error defined in (4.13).

e(t) =

[
x̃1(t)
x̃3(t)

]
=

[
x1(t)− x∗1
x3(t)− x∗3

]
(4.13)

4.1.1 Extended Model

To define the optimal control law u(t) for a system like (4.12), an extended
form of the system is needed, therefore considering the latter as a single ma-
trix equation system. To derive this extended system, new extended distur-
bances and state variable vectors are defined as in (4.14). Moreover, new
system’s matrices are obtained from the previous ones, as in (4.15).

xext(t) =

[
x(t)
η(t)

]
wext =

[
w
−x∗

]
(4.14)

Aext =

[
A 06×2

C 02×2

]
Bext =

[
B

02×3

]
Dext =

[
D 06×2

02×2 I2×2

]
(4.15)

The matrix equation that characterizes the overall extended system is
(4.16).

˙̃xext(t) = Aext x̃ext(t) + Bext ũext(t) + Dext wext (4.16)

Where ũext(t) is the optimal control law described in (4.17), and repre-
senting the control law governing the error. It is driven by the Kext matrix
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extracted through an optimal control algorithm that will be defined in the
next section.

ũext(t) = Kext x̃ext(t) (4.17)

Thus, the final control law is indicated by the equation (4.18).

uext(t) = ũext(t) + u∗ext (4.18)

u∗ext depends on the equilibrium point (4.6) around which the lineariza-
tion is centered.

4.2 Optimal control definitions and problem set-

tings

Optimal control deals with the problem of finding a control law for a given
system such that a certain optimality criterion is achieved. It is a set of differ-
ential equations describing the paths of the control variables that minimize
the cost function, e.g what defines the optimality criterion. This optimality
criterion is driven by a cost function that can be set depending on the frame-
work. In this specific case, it is defined as in (4.19).

J =
∫ ∞

t0

x̃T
ext(t) Q x̃ext(t) + ũT

ext(t) R ũext(t)dt (4.19)

Where Q and R matrices are positive-semidefinite and positive-definite
respectively. This is a infinite-horizon case because the final time value is set
at infinite. For this reason, Q and R matrices are also constant. These matrices
are used to determine the different relations among all system’s components,
such as state variables and inputs, that influence its internal dynamics. To
minimize the functional cost J, the control law u(t) must be determined as in
(4.17), meaning Kext as in (4.20).

Kext = −R−1 BT
ext S∞ (4.20)

Where S∞ is a solution for a continuous-time algebraic Riccati equation
(4.21).

AT
ext S + S Aext − S Bext R−1 BT

ext S + Q = 0 (4.21)

The Kext matrix can be split in two sub-matrices as shown in (4.22).
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Kext =
[
K1 K2

]
(4.22)

Clarifying (4.17) control law in (4.23), it is possible to highlight that K1

governs a x(t) state dynamics, while K2 governs the integral’s dynamic on
the position error η(t), removing all disturbances.

uext(t) = K1 x(t) + K2 η(t) (4.23)

Thanks to these hypothesis, the control law in (4.17) is the best possible
law. According to this, the feedback matrix (Aext + BextKext) is a stabilizing
Hurwitz matrix, with all negative real part eigenvalues. In line with these
features, the linearized extended system is asymptotically stable around the
equilibrium point (xe, ue) shown in (4.6).

4.2.1 Simulation Settings

Both tilting and fixed rotor architectures’ simulation is set in terms of optimal
control. Each architecture has a different pair of Q and R matrices, therefore
defining different cost functions. The elements of these matrices were tuned
according to a precise dynamics expressed by each architecture. Thanks to
this tuning, all the simulations developed the same dynamics. It was possible
with this result it to better compare each architecture’s energy consumption.
In both cases, the Q matrix is squared and diagonal, with (n + p) dimension,
where n is the state vector x(t) dimension, and p is the disturbances vector
η(t) dimension. The R matrix is also squared but its dimension is m, with as
many inputs as u(t).

In the tilting rotor case, these matrices are expressed in (4.24) and (4.25).

Qα = diag[1, 1, 1, 1, 80′000, 0.005, 1, 50] (4.24)

Rα = diag[1, 1, 100] (4.25)

The values appearing on the matrices’ diagonal Qα e Rα influence the
variables to which they are linked. The higher the value, the more the related
state variable is penalized in the minimization process of the cost function
described in the (4.19). Looking at the Qα elements, and keeping in mind
the state variables’ order in (4.2) and (4.14), what can be noticed is how pe-
nalized the pitch movement is, when multiplied by a coefficient of 80’000.
On the contrary, the coefficient influencing the pitch velocity is relatively
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small to guarantee a quick response against the disturbances along the x-
axis. The last two Qα diagonal elements are coefficients by which the integral
actions along x-axis and z-axis are multiplied. Considering more intense dis-
turbances along the x-axis, Q7,7 is smaller than Q8,8 in order to prevent the
occurrence of an overshoot when reaching the set-point on x. In conclusion,
to favor the α angle opening, R3,3 is set to 100 as a compromise to obtain a
sufficiently fast x̃1(t) dynamics without a too high overshoot on α dynamics.

In the fixed propeller architecture, the right approach to define a correct
dynamics where the disturbances’ effects are removed, is completely the op-
posite to the tilting case. According to this, Qθ and Rθ matrices are described
in (4.26) and (4.27).

Qθ = diag[1, 1, 1, 1, 100, 0.005, 0.65, 50] (4.26)

Rθ = diag[1, 1, 80′000] (4.27)

What can be noticed is that the coefficients for x5 pitch and the tilting an-
gle u3 are reversed. In this case, the integral coefficient on the x was slightly
reduced to the value of 0.65 to obtain the closest possible value to x̃1 in the
previous case.

A third hybrid case was also analyzed. Its matrices are Qhyb and Rhyb,
defined in (4.28) and (4.29).

Qhyb = diag[1, 1, 1, 1, 100, 0.005, 0.5, 50] (4.28)

Rhyb = diag[1, 1, 100] (4.29)

Here, the pitch and α dynamics are equally weighted to allow the opti-
mal control algorithm to use both in order to counter the disturbances. The
integral coefficient on the x was further reduced to the value of 0.5 to obtain
a dynamics as close as possible to all the previous ones.
The same wext is adopted in each simulation.

wext =


−10
−0.001

0
0

 (4.30)

In (4.30) can be noticed that the disturbance force along x-axis has a value
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of −10 N. This model was adopted for being relatively precise despite un-
certainties on the mass value considering a disturbance of −0.001 N on the
z-axis. In conclusion, the target position on the (x, z) plane is set to the axis
origin (0, 0).

4.3 Results

The domains in which results were obtained are the following: the first is a
linear domain where a cost function value and a matrix Kext were defined
after a linearization process and an optimal control problem setting. A dif-
ferent cost function value and Kext matrix were reached for each simulated
architecture. The second domain is a non-linear environment in which the
previously obtained Kext matrices are applied to the system. The resulting
dynamics are then read and commented. Moreover, in this domain, the me-
chanical power delivered by motors is determined according to inputs u1 and
u2.

4.3.1 Linear system

All possible scenarios in the linear domain were simulated: in particular,
they are a tilting rotor structure, a fixed rotor structure, and a hybrid one in
between the previous two.
First is the tilting rotor case, in which a Riccati equation is resolved, given Qα

and Rα, exposed in (4.24) and (4.25). Thus, following (4.20), an optimal gain
matrix is defined as in (4.31).

Kα =

−0.1 −0.1 −4.1 −1.6 −200.0 −2.5 −0.0 −5.0
0.1 0.1 −4.1 −1.6 200.0 2.5 0.0 −5.0
−0.2 −0.3 −0.0 −0.0 −0.0 −0.0 −0.0 −0.0

 (4.31)

All Kα eigenvalues have a negative real part, therefore producing a stabi-
lizing action on the system.

λα =


(−79.7903± 79.7586i)2

(−0.4969± 0.6316i)2

−0.7605 + 0.0000i
(−1.4862± 1.9156i)2

−3.0929 + 0.0000i

 (4.32)
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The functional cost is determined as in (4.19) after substituting Qα and Rα.
To obtain a finite functional cost (4.33), the final time value must be different
from infinite, but it must be wide enough to complete the transient dynamics.
For this reason it is set to 30 seconds.

Jα = 11245.52 (4.33)

The same method was applied to find the optimal gains’ matrices for the
other two architectures. In the fixed propeller case gains matrix was defined
as in (4.34) and its eigenvalues are exposed in (4.35).

Kθ =

−1.5 −1.6 −4.1 −1.6 −8.1 −0.5 −0.5 −5.0
1.5 1.6 −4.1 −1.6 8.1 0.5 0.5 −5.0
−0.0 −0.0 0.0 −0.0 −0.0 −0.0 −0.0 0.0

 (4.34)

λθ =


(−15.0760± 14.9233i)2

(−0.7061± 0.6275i)2

−0.8855 + 0.0000i
(−1.4862± 1.9156i)2

−3.0929 + 0.0000i

 (4.35)

The same method used to determine Jα was applied to measure the func-
tional cost for a fixed propeller architecture dynamics. The time interval con-
sidered was between 0 and 30 seconds.

Jθ = 3940.86 (4.36)

The hybrid case is discussed below. In this architecture, both angles, θ

and α, have the same penalizing coefficient as shown in (4.28) and (4.29). The
same method used in the two previous cases is applied here. The gain matrix
Khyb, its eigenvalues λhyb and the functional cost Jhyb are expressed in (4.37),
(4.38) and (4.39) respectively.

Khyb =

−1.2 −1.2 −4.1 −1.6 −7.8 −0.5 −0.4 −5.0
1.2 1.2 −4.1 −1.6 7.8 0.5 0.4 −5.0
−0.1 −0.1 −0.0 −0.0 −0.0 −0.0 −0.0 −0.0

 (4.37)
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λhyb =


(−15.0760± 14.9233i)2

(−0.7640± 0.5727i)2

−0.8498 + 0.0000i
(−1.4862± 1.9156i)2

−3.0929 + 0.0000i

 (4.38)

Jhyb = 3242.79 (4.39)

Particular attention was paid to the final functional cost J in all three sim-
ulated cases. It is possible to notice that the functional cost Jhyb is really low
compared to all the other costs. This means that largely different control
costs are generated by penalizing or easing θ and α angles. In order to turn
this result in an explicit energy-saving effect, non-linear dynamics needed to
be analyzed when different Kext matrices are applied.

4.3.2 Non-Linear system

In this subsection, what will be discussed are the results derived from simula-
tions in a Matlab/Simulink environment of the non-linear system described
in (4.3), revised with the integral action exposed in (4.10). The Kext matrices
previously calculated, expressed in (4.31), (4.34) and (4.37), were substituted
in the non-linear model in three consecutive simulations. As can be noticed
in Fig. 4.2, the control law ũext was added to the term u∗ following the (4.18).
The total simulation time in this case was 10 seconds. This is a sufficient time
to complete the transient dynamics despite disturbances’ action.
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FIGURE 4.2: Scheme of a Simulink model for non-linear system

In the following paragraphs, the dynamics expressed by each of the simu-
lated architectures are presented. The results are grouped according to differ-
ent architectures’ simulations. For each simulation, the x and z translational
dynamics, the α and θ evolution, and the total power consumption, are dis-
cussed.

Tilting propeller structure

Fig. 4.3 shows the tilting rotor structure’s translational dynamics under the
action of disturbances. At time instant t0, disturbances w were applied to the
drone which started drifting from the origin where it was initialized. The
widest displacement achieved along x-axis was around−2.74 m, while along
the z-axis it was −42 cm. From this point on, the integral action effect is dis-
tinguishable. The control action was tuned trying to reach a trade-off among
overshoot presence, severe evolution dynamics, and reasonable settling time,
which can be considered around 10 seconds.
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FIGURE 4.3: Translational dynamics in tilting rotor structure

FIGURE 4.4: Angles’ dynamics in tilting rotor structure

The dynamics of both angles involved, α and θ, is shown in Fig. 4.4. It
is possibile to notice that α settled on a value of +64.07 ◦, after a maximum
value of +70.76 ◦ was reached. On the contrary, the pitch angle θ stabilized
on a value of −0.34 ◦ after reaching a −0.56 ◦ peak. This equilibrium point
was possible because this tilting rotor architecture was full-actuated along x
direction. This means that pitch and translation along x-axis are not linked
together. Looking at the configuration in Fig. 4.1, to obtain any admissible
equilibrium point, the couple (α , θ) must fulfill the equation in (4.40).
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2 cos(α) sin(θ) + cos(θ) sin(α) = 0 (4.40)

This latter equation was obtained resolving the system in (4.3) in an equi-
librium condition, i.e. considering null derivatives.
The last plot printed related to this architecture inspects the energy consump-
tion based on the optimal inputs u1 and u2. As presented in (4.2), these are
forces from which it is possible to extract the angular velocity ω following
(2.1). Thus, knowing angular velocity, it is possible to calculate mechanical
power consumption following the same approach as in (2.46). Taking into
consideration the modulus of power consumption, results are printed in Fig.
4.5.

FIGURE 4.5: Instant power consumption evolution in tilting ro-
tor structure

It is evident how tilting motor number 1 consumes 15.16 W in steady con-
dition, as opposed to fixed motor number 2 which needs 4.3 W. In steady
condition, they both develop an instant power of 19.55W after a peak of
28.54W.

Fixed propeller structure

An analogous approach can be used to describe the fixed propellers architec-
ture. Fig. 4.6 highlights the similarities between fixed translational dynam-
ics and tilting rotors’ ones. As presented in section 4.2.1, this is due to the
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tuning criterion for optimal Q and R matrices. They were tuned trying to ob-
tain a dynamics as coincident as possible for all the architectures. Because of
this, displacements are very close to the previous case. Along the x-axis the
maximum displacement was −2.94 m, while on the z was −33 cm. However,
a striking difference between these two cases is that in the fixed rotor case
dynamics are much more oscillating than in the previously analyzed tilting
rotor case.

FIGURE 4.6: Translational dynamics in fixed structure

FIGURE 4.7: Angles’ evolution in fixed rotor structure
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The tilting and pitch angles evolution during elapsing time is presented
in Fig. 4.7. The penalization on the α angle opening was rather effective.
An evidence of this can be found on the α value steadied at 0.06 ◦. On the
contrary, pitch angle θ reached a steady value of 45.42 ◦, after passing a peak
of 54.65 ◦. Analogously to the previous power analysis, Fig. 4.8 presents the
evolution of instant power consumption for each motor involved.

FIGURE 4.8: Instant power consumption evolution in fixed ro-
tor structure

To counteract disturbances’ effects, the two fixed motors tend to consume
the same amount of energy. Overall, the instant power consumed in steady
condition was 15.08 W, reaching an overshoot of 22.52 W. This result was
achieved adding both powers, which at steady condition have a value of
7.53 W each.

Hybrid Tilting/Fixed propeller structure

The last simulated scenario was the hybrid case. Angles α and θ were equally
penalized by coefficients of the same value in Qhyb and Rhyb matrices. In this
case, the optimal control algorithm was used to set the best values for the
angles in order to minimize the cost function Jhyb in (4.39). Translational dy-
namics along vertical and horizontal axes are shown in Fig. 4.9. The maxi-
mum displacement reached −2.86 m on x-axis and −33 cm along z-axis.
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FIGURE 4.9: Translational dynamics in hybrid structure

FIGURE 4.10: Angles’ evolution in hybrid controlled structure

In this case, both angles assumed a value largely different from zero. The
pitch angle had a maximum value of 41.20 ◦ then stabilizing at 34.73 ◦. The
tilting angle α reached an equilibrium value of 20.81 ◦ after a peak of 23.77 ◦.
In Fig. 4.11 the evolution of instant power consumption is presented. It can
be noticed that, in term of power consumption, the first motor settled to a
value of 8.13 W after a peak of 11.8 W. At the equilibrium point, the second
motor reached a value of 7.34 W, after a maximum of 10.57 W.
This result is similar to what was seen in the tilting rotor case, in which the
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tilting motor was more consumptive than the fixed one. On the contrary,
the overall consumed power is lower than that in the tilting case. In steady
condition it is 15.47 W, passing a maximum of 22.38 W.

FIGURE 4.11: Instant power consumption evolution in hybrid
controlled structure

Noticeably, the lowest power consumption can be achieved with a fixed
rotor architecture. This result was obtained despite the fixed case’s func-
tional cost value. The lowest functional cost value is reported in the hybrid
case, which depends on the content of Qhyb and Rhyb. Despite this, the fixed
rotors architecture simulation grants the best energy saving outcome. The
table 4.1 summarizes these results and the differences among all simulated
architectures.

Variable Tilting Fixed Hybrid
Functional Cost J 11245.52 3940.86 3242.79
Peak Power P̂tot 28.54 W 22.52 W 22.38 W

Steady Power P̄tot 19.55 W 15.08 W 15.47 W

TABLE 4.1: Summary of consumptions

The differences among functional costs can be attributed to the optimal
control matrices which represents some of the possible degrees of freedom
during the tuning process. For this reason, the functional cost can’t be as-
sumed as an objective tool to evaluate energy consumption. In order to do
achieve a reliable evaluation of energy consumption, a mechanical power
consumption had to be estimated, as presented in section 2.2.4. In the latter
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section, the overall powers show widely different values from the ones ob-
tained here. One of the causes is the different magnitude of disturbances. In
these last three simulations, the disturbances taken into account were around
10 times lower than in the simulations in Chapter 3. This substantial reduc-
tion is caused by a linearization restriction. Moreover, the system dimen-
sion’s reduction, from 6 to 3 degrees of freedom, led to a lower number of
actuators, therefore lowering the total values of power consumption.
Despite the restrictions caused by simplifications, the results obtained in this
Chapter corresponds to those obtained in Chapter3. Even through this op-
timal control approach, the over-consumption of a tilting rotors architecture
is confirmed. As already analyzed in the introduction, this is a considerable
and remarkable limitation in terms of overall flight time. This is a fundamen-
tal variable which needs to be kept in due consideration when dealing with
aerial manipulation tasks.
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Chapter 5

Conclusions

In previous the chapters of this dissertation, a structure of a quad-rotor equipped
with a combination of fixed and tilting propellers was described. A scenario
in which a quad rotor is involved has been simulated adopting a variable
force application. The results of testing a one-direction full-actuated quad-
rotor, prove that this is not a good solution in terms of power and energy
saving. Previous works and papers analyzed in my preliminary research,
exposed in Chapter 1, didn’t show tests in this direction. According to this
study’s results, tilting rotors consume more energy. In some cases, internal
forces can also be produced, which has no sense in terms of energy consump-
tion for aerial manipulating tasks.
A tilting rotor architecture designed as the one in this dissertation, can fur-
nish high performances only during tasks which require low operative time
and a very precise attitude specifications. To obtain a more general-purpose
solution, a new architecture needs to be analyzed. Standing on what has
been described in Chapter 2, in which thrust force is proportional to the sec-
ond power of angular speed, and to refine the results obtained in this dis-
sertation, a future work should introduce two additional tilting rotors. Fur-
thermore, we can even formulate a new hypothesis: they could all be tilt-
ing together following parallel directions (as in the fixed rotor case) to avoid
generating internal forces. In order to counteract external forces, a structure
with all tilting rotors can deliver more equalized forces from its propulsion
units. Acting in this direction, each mechanical power can be lower when
compared to what showed in only two tilting rotors structure. An effect of
this structural improvement could be to obtain an inferior, or at least equal,
overall power consumption compared to fixed propeller structure. This en-
ergy advantage can be combined to the second advantage described before,
i.e. controlling attitude disjointed by lateral translation during aerial manip-
ulation. Still acting in this direction, operational time could be large enough
to complete long time tasks while also saving energy.
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