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ABSTRACT

The increasingly massive collection of data from various types of sensors installed on vehicles
allows the study and reconstruction of their dynamics in real time, as well as their archiving
for subsequent analysis. This Thesis describes the design of a numerical algorithm and its
implementation in a program that uses data from inertial and geo-positioning sensors, with
applications in industrial contexts and automotive research. The result was made usable through
the development of a Python add-on for the Blender graphics program, able to generate a three-
dimensional view of the dynamics that can be used by experts and others. Throughout the
Thesis, particular attention was paid to the complex nature of the data processed, introducing
adequate systems for filtering, interpolation, integration and analysis, aimed at reducing errors
and simultaneously optimizing performances.

La raccolta sempre più massiccia di dati provenienti da sensori di varia natura installati sui
veicoli in circolazione permette lo studio e la ricostruzione della loro dinamica in tempo reale,
nonché la loro archiviazione per analisi a posteriori. In questa Tesi si descrive la progettazione di
un algoritmo numerico e la sua implementazione in un programma che utilizza dati provenienti
da sensori inerziali e di geo-posizionamento con applicazioni a contesti industriali e di ricerca
automobilistica. Il risultato è stato reso fruibile tramite lo sviluppo di un add-on Python per il
programma di grafica Blender, in grado di generare una visualizzazione tridimensionale della
dinamica fruibile da esperti e non. Durante tutto il lavoro di Tesi, particolare attenzione è stata
prestata alla complessa natura dei dati trattati, introducendo adeguati sistemi di filtraggio,
interpolazione, integrazione ed analisi, volti alla riduzione degli errori e alla contemporanea
ottimizzazione delle prestazioni.
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I’m personally convinced that
computer science has a lot in
common with physics. Both are
about how the world works at a
rather fundamental level. The
difference, of course, is that while
in physics you’re supposed to figure
out how the world is made up, in
computer science you create the
world. Within the confines of the
computer, you’re the creator. You
get to ultimately control everything
that happens. If you’re good
enough, you can be God. On a
small scale.

Linus Torvalds
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1
INTRODUCTION

Vehicle dynamics reconstruction is a topic with much interest in automotive companies,

car manufacturers and especially insurance makers. Being able to analyze car behavior in real

time can give an enforced picture about driving style, road assessment, car occupancy and so

on. Besides, the case of very important events, like a car crash, to have a clear picture of the

dynamics prior to the accident can help determine responsibilities and liabilities. With the tool i

will describe in this thesis, dynamics of a car can be represented visually using data coming from

a vehicle black box. This thesis will in fact analyze techniques for dynamic reconstruction based

on inertial and GNSS data used in a related software project.

The Physics of the City Laboratory inside the Physics of Complex Systems Group has been

involved for years in the development of solutions related to human mobility, based both on

pedestrian and means of transport. For this reason, collaborations have been opened with

numerous Italian companies: in the insurance business (for example Unipol Gruppo S.p.A.),

in the telematics branch (for example Octo Telematics Ltd), and in the industrial branch (for

example Meta System S.p.A. and TEXA S.p.A.). From these collaborations, various activities were

born: inertial sensors development and validation, product integration for the creation of “black

boxes” for cars and study of techniques for the validation of collected data and reconstruction of

the dynamics through the recorded data itself.

My thesis work has been inserted in the activities carried out by the group for these last two

points. The data come in fact from prototype devices made by Meta System and collected directly

on-board via a serial connection between the devices themselves and a system based on Raspberry

Pi.

The whole on-board processing chain, serial transmission and registration on RPi device has been

validated by the group during the years of activity and has led to the development of numerous

tools used indirectly in this Thesis.
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CHAPTER 1. INTRODUCTION

The data collected and used for the project can be distinguished in these classes:

• inertial data was created by accelerometers and gyroscopes, which measures respectively

linear accelerations and angular velocities in a local reference frame.

• GNSS (Global Navigation Satellite System) was created by an electronic receiver. GNSS

receivers provide latitudes, longitudes and altitudes. One of the most famous GNSS is the

American GPS (Global Positioning System) but during experiments also Russian GLONASS

and Chinese BeiDou signals were received.

All these sensors can be bundled in a box, as in our case, and fitted on a vehicle. This box

transmits data to a remote server using conventional cellular networks.

Figure 1.1: One of the sensor box used to collect data

The experimental work will consist of verifying the possibility of creating a software capable of

recreating a vehicle dynamic visually realistic. The validation of results will be, in a first initial
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phase where effectiveness of the program will be low, exclusively visually empiric, because of the

need of rapid development and testing times. In a second and later phase, when quality of output

will become more difficult to evaluate empirically, results will be compared to pictures and video

footages captured in the data acquisition phases.

Aspiring software solution may face some challenges: sensor data gathering and transmission,

correction of bad alignment, integration numerical error, precision reinforcement with multiple

sensor fusion, representation of reconstructed trajectory.

Input date format is specified in a Physycom(PHYsics of COMplex SYstem) group’s Github

online repository 1.

I searched for an universal standard file format for inertial and GNSS data but I didn’t find

previous work.

Briefly formats supported by the software are all the following combinations:

inertial inertial+GNSS
interpolated inertial fullinertial
non interpolated unmodified-inertial unmodified-fullinertial

The full-inertial format is the more complete one, containing both accelerometer, gyroscope and

GNSS data. Indeed, the program will give a better output when provided with a full-inertial

input file, as it has more data to improve reconstruction. Records can be interpolated, in this case

have always data from all sensors, instead of only from one of them, as they can have different

frequencies.

In the case input data isn’t interpolated, the software will take care of doing it.

The following table shows full-inertial data format in the order in which it is presented in

the input files.

1https://github.com/physycom/file_format_specifications/blob/master/formati_file.md
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CHAPTER 1. INTRODUCTION

Dataset
Column
Index

Name Type
Unit

of
measure

Notes

0 Timestamp Float Seconds From 1/1/2000 UTC+1
1 Latitude Float Degrees From -90 to +90
2 Longitude Float Degrees From -180 to +180
3 Altitude Float Meters from sea level

4 Heading Float Degrees
Measured from magnetic

north, from 0 to 360
5 Speed Float Km/h
6 Acceleration X Float g-unit Inertial
7 Acceleration Y Float g-unit Inertial
8 Acceleration Z Float g-unit Inertial

9 Angular speed X Float Degrees/Second
right-handed

reference system

10 Angular speed Y Float Degrees/Second
right-handed

reference system

11 Angular speed Z Float Degrees/Second
right-handed

reference system
12 Acceleration module Float g-unit
13 Relative time Float Seconds From first record

I decided to visualize the reconstructed trajectory animated on the 3D modeling software Blender.

The decision is motivated by the fact that Blender is a popular open source software and has

an API to interact with. Additionally, it’s already used inside the research group and one of its

member is a 3D-artist specialized on it.

Road vehicle crashes reconstruction has already been a case study, with both inertial and GNSS

data, for example in the work of S. Tadic [10].

None of the work I found ever dealed with computational problems, neither provided a 3D visual-

ization of the reconstruction.

This Thesis consists of 9 chapters: after this introduction, in chapter 2 we will look to some

mathematical notions necessary to comprehends techniques used in the project, then in chapter

3 I will write about what programming language I decided to use and what libraries

The chapters that follow are a description of the principal code parts: error reduction, vehicle

rotation, numerical integration and the Blender add-on. Then in chapter 6 I included a part about

software engineering practice I followed during the development of this project.

Finally, there’s a conclusion chapter, with a recap of all the topics covered and a description of

possible future improvements.
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2
MATHEMATICAL BACKGROUND

In this chapter I will introduce some mathematical and physics notion used in the project. The

first part of the chapter deals with numerical integration, a technique used to computationally

calculate the integral of physics quantities like acceleration and velocity to get the trajectory

traveled by the vehicle. The second part deals with quaternion, a number system useful to handle

rotations in tridimensional spaces, more efficient when dealing with multiple composition of

rotations than rotation matrices.

2.1 Numerical integration

Records in input dataset may not be equally spaced, which means that if ti is a timestamp of a

record at position i, then ∃k, (tk − tk−1) 6= (tk+1 − tk).

This implies that I can’t use Simpson integration method, because it’s a Newton-Cotes quadrature

rule and it assumes that data points are equally spaced. [3]

Using a similar approach, interpolating with a second grade polynomial, I implemented an

algorithm suitable for irregularly spaced data. [2]

Let’s considering these consecutive points (t1, y1), (t2, y2), (t3, y3) and a finite space of real functions,

with its base of representation φ0,φ1, ...,φn. Each function of the space can be defined as a linear

combination of the basis:

φ(x)=
n∑

i=0
aiφ(x)

Let’s also consider the canonic form, where the basis are monomial φi = xi ∀n
i=0

Indeed, every polynomial can be represented as a linear combination of monomials.

What follows is a linear equation system that requires a polynomial in the form y= ax2 +bx+ c

5



CHAPTER 2. MATHEMATICAL BACKGROUND

to pass through the points (ti, yi). 
at2

1 +bt1 + c = y1

at2
2 +bt2 + c = y2

at2
3 +bt3 + c = y3

a

b

c




t2
1 t1 1

t2
2 t2 1

t2
3 t3 1

=


y1

y2

y3




a

b

c

=


t2
1 t1 1

t2
2 t2 1

t2
3 t3 1


−1 

y1

y2

y3


Once a,b, c are found the integral of the parabola can be calculated as:∫ t3

t1

y(x)dx =
∫ t3

t1

ax2 +by+ cdx =
[

a
3

x3 + b
2

x2 + cx
]t3

t1

= a
3

(t3 − t1)3 + b
2

(t3 − t1)2 + c(t3 − t1)

Unlike classic Simpson method, this allow us to calculate also half of the area bound by the

parabola, simply evaluating integral
∫ t2

t1
y(x)dx or

∫ t3
t2

y(x)dx instead of
∫ t3

t1
y(x)dx

2.2 Quaternions

Quaternions are an extension of complex numbers usually represented in the form:

q = a+ xi+ y j+wk

where a, x, y,w are real numbers and i, j,k are called quaternion units.

with the property (i jk)=−1

a is called scalar or real part of the quaternion, while x, y,w is the tridimensional vector or

imaginary part. [6]

Quaternions have been formalized by the Irish mathematician William Hamilton in 1843.

If the scalar part is equal to zero then the quaternion is called pure.

2.2.1 Vector rotations with quaternions

Given a point v ∈R3, its rotation around versor x= {ax,ay,az} by an angle θ can be obtained in

the following way:

p′ = qpq

where:

6



2.2. QUATERNIONS

• p is a pure quaternion with the vector part equal to v

• q is a quaternion representing rotation q = e
θ
2 (ax i+ay j+azk) = cos

(
θ
2
)+(ax i+ay j+azk)sin

(
θ
2
)

• q is the conjugation of quaternion q definied as

q = (s,−v)= s− xi− y j−wk = e−
θ
2 (ax i+ay j+azk) = cos

(
θ
2
)− (ax i+ay j+azk)sin

(
θ
2
)

• p′ is a pure quaternion with its vector part equal to vector v rotated

2.2.2 Product of quaternions

Given two quaternion q1 and q2 defined as:

q1 = (s1,v1)= s1 +a1 i+b1 j+ c1k

q2 = (s2,v2)= s2 +a2 i+b2 j+ c2k

then their product can be defined as:

q1q2 = (s1s2 −v1 ·v2, s1v2 + s2v1 +v1 ×v2)

2.2.3 Quaternion product isn’t commutative

q1q2 6= q2q1

is equivalent to

(s1s2 −v1 ·v2, s1v2 + s2v1 +v1 ×v2)

6=

(s1s2 −v1 ·v2, s1v2 + s2v1 +−(v1 ×v2))

by the anticommutative property of vector product [6]

a×b =−(b×a)

2.2.4 Comparison with rotation matrices

Matrices can be used to perform rotation. [5] A quaternion can be associated with a rotation

matrix and vice versa. [6]

Aside from memory usage, where quaternions are more efficient, the time complexity must take

into account the conversion between rotation representations, as from axis-angle in our case, and

actual context of usage as explained in the following.

Performance can be evaluated at a high-level by counting the number of operations needed to

perform conversions and rotations. Operations like additions or subtractions, multiplications,

divisions and trigonometric function like sines and cosines.

In the following analysis I will leave out performance optimization that computer systems can

apply in some situations, like for example the simultaneous calculations of sine and cosine

7



CHAPTER 2. MATHEMATICAL BACKGROUND

performed by modern machine. Just looking at number of operations should give a general idea

of difference between rotation representations.

Axis-angle to matrix conversion requires 13 additions, 15 multiplications and 2 trigonometric

calls.

Axis-angle to quaternion conversion requires 4 multiplications and 2 trigonometric calls.

Rotating a vector using a rotation matrix requires 5 additions and 9 multiplications.

Rotating a vector using a quaternion, optimizing considering its scalar part zero, requires 17

additions and and 24 multiplications.

So it results that rotation matrix are more efficient in rotating a vector, but the real advantage

of quaternions are rotation compositions. Indeed, composing two quaternions require only 12

additions and 16 multiplications while matrices, would have required 18 additions and 27

multiplications.

What follows is a comparison analysis of the number of operations required to rotate n vectors

by a cumulative n angles represented as axis-angle notation. Those abbreviations are used: A:

Additions / subtractions, M : Multiplications, F: trigonometric Functions

• rotation matrices: ((13A+15M+2F)+ (5A+9M)+ (18A+27M))n = (36A+51M+2F)n

• quaternions: ((4M+2F)+ (17A+24M)+ (12A+16M))n = (29A+44M+2F)n

8
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3
PROGRAMMING LANGUAGE AND LIBRARY CHOICES

3.1 Python

For this project, the Python programming language was chosen. [9]

Python is increasingly being used by the scientific community for its large collection of packages.

It allows to link normal Python code to C / C++ extension when performance optimization is

critically important.

In addition, Blender only offer a Python API.

All benchmarks showed are based on standard Python implementation CPython.

3.2 Python scientific stack

• Numpy is a data structure library for n-dimensional arrays. Instead of creating an object

for each integer like vanilla Python, with related garbage collector overhead, it handles

array in contiguous memory space like C. Another big performance advantage is through

vectorized operations, that permit to modify multiple array elements with a syntax like they

were a single value. For example, if arr is an array of n elements, to multiply each element

for the constant value 3, one doesn’t need to use a cycle that iterate on array, but can just

write arr * 3. This is not just syntactic sugar, but it offers to the interpreter additional

informations, like that the operation would be on all elements without interruption from

side effects, implying a performance improvements thanks to of optimized cache usage.

• Pandas is a package for data analysis. Its main data type is called DataFrame and repre-

sents a two-dimensional dataset.DataFrame can be easily created from csv files, offering

various methods. It is possible to complete a project like this only with pandas, as it uses

9



CHAPTER 3. PROGRAMMING LANGUAGE AND LIBRARY CHOICES

numpy underneath, but it offers a very expressive interface that needs a lot of logic beneath

with a non negligible overhead. For this reason I reduced the Pandas usage and called it

only when strictly necessary.

• Scipy offers many mathematical routines on top of numpy arrays. I used mainly trigono-

metric functions like arctangent, cosine and sine. It has big precision constant for example

for Pi and offers vectorized routines for cross and dot products.

• Matplotlib is the most used python plotting library, most of the other plotting libraries

are based on it trying to abstract and elevate its complex interface. Nevertheless one can

create very appealing charts also with low-level Matplotlib methods, especially it offers full

customization.

3.3 Quaternion libraries

My Project initially started with numpy-quaternion [1] but then moved to pyquaternion [11]

because of the following reason:

• moble/quaternion didn’t work on Windows 1, as stated in the readme. This was a blocking

issue because the 3D artist of the group was using a Windows workstation.

• pyquaternion has a better documentation and more high-level methods

On the downside, pyquaternion has performance disadvantages. As an example the following

code using numpy-quaternion

from numpy_quaternion import quaternion as Quaternion

quaternions = np . array (

[np . exp ( Quaternion (*np . asarray ( delta_theta ) ) / 2) for delta_theta in delta_thetas ]

)

runs in 0.665 milliseconds

while the following code using pyquaternion

from pyquaternion import Quaternion

quaternions = np . array (

[ Quaternion . exp ( Quaternion ( vector=delta_theta ) / 2 ) for delta_theta in delta_thetas ]

)

runs in 24.6 milliseconds, both with an array of 100 records

1 as per commit 03d627 the library works on Windows but it was fixed too late for this work

10
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4
INPUT DATA CLEANING

Input data from sensors doesn’t represent real measurement of vehicle physics quantities. Instru-

ments have a measuring error, each one with different possible reasons. This chapter deals with

techniques used in the project to reduce that error, whether it was experimental or systematic.

4.1 Stationary time detection

Most of the solutions used to remove errors are based on the assumption of a vehicle state, in

particular the stationary one.

This can’t be detected by a near zero acceleration along all axis because vehicle could be moving

with constant speed. So integrated speed should be used, but integrating acceleration vectors

that need corrections can bring next code logic to make mistakes as well as being a waste of time,

because integration should be recalculated after having applied corrections.

One solution can be to use non-directional speed from GNSS data by the measure device in

the box. But this speed is under effect of Kalman filters to avoid measurement errors The filter

is implemented directly inside box firmware, but reacts late to changes. One can differentiate

numerically the GNSS positions to get a more precise speed and, on top of that, calculate

stationary times. The choice of using speed subject to Kalman filters or the one derived should be

based on GNSS sensor precision. Especially when vehicle is stopped, its error can be relevant as

showed in the following picture.

11



CHAPTER 4. INPUT DATA CLEANING

Figure 4.1: Green points represent GNSS positions. On top-left GNSS error can be noticed in a
situation where vehicle was stopped during experiment

To try to handle input data where vehicle never really stops, the algorithm for stationary time

detection searches into dataset with an increasing threshold, until enough periods are found.

4.2 Gyroscope drift

Gyroscopes have a drift and an offset that is unavoidable. [4]

Offsets and their drifts can be measured when vehicles are stationary. Average value of angular

velocities in stationary moments is an approximation of gyroscope offset. During motion, a gyro-

scope exposed to heat increases its drift. So I made sure drift removal was applied continuously

at each stationary time, removing the drift detected onwards.

12



4.3. NOISE REDUCTION

Figure 4.2: Data from stopped vehicle. Linear speed is near zero but gyroscope detects a non
negligible angular speed

4.3 Noise reduction

Sensors are subject to noise both electronic (from the board itself or the electric supply) and

mechanical (from their setup and the vehicle). In the data analyzed for this project I found spikes

without any correlation to real events. There are various techniques to remove them, the one I

used is the rolling average.

Given a series s, the centered rolling average with a window size w is defined as:

vi = 1
w

w
2∑

j=0
v j

w∑
j= w

2

v j

where vi is the element of series s′, that is s with centered rolling average applied. The choice of

a value for window size is important. A value too small can lead to a noise left too high, while a

windows size too large value can lead to flattening and reduction of measured value. For example

with a value too high, an acceleration can be measured even before it actually started and overall

highest value will be lower than in reality.

4.4 Correction of vertical alignment

Box vertical unalignment is corrected by looking at gravitational acceleration on stationary times.

Since g is always presented by the accelerometer, it can be used to determine vertical axis. This

13



CHAPTER 4. INPUT DATA CLEANING

technique only works assuming the vehicle rest on a flat surface.

Figure 4.3: Axes shows a sensor bad vertical alignment

Once obtained the rotation angle, the program rotates both local acceleration and angular

velocities. After having done that, if in a following stationary time a bad vertical alignment is

still found, the program prints a warning on the console to notify that the box become misaligned

during motion.

14



4.5. CORRECTION OF HORIZONTAL ALIGNMENT

4.5 Correction of horizontal alignment

Box horizontal unalignment is corrected by looking for situations where ax > 0, ay > 0,ωz = 0. If

this state exists, then the car is sliding on ice without rotating on itself or there is an unalignment

on the xy plane. The latter is more likely.

On unaligmnent, for example, an acceleration forward will be measured with both positive

accelerations along x and y axis. Still in the situation described, the misalignment can be

measured and corrected, still by rotating both local accelerations and angular velocities.

15
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5
ROTATION WITH QUATERNIONS

This chapter deals with the usage of quaternions for rotations and in general with all of the

project parts related to the transformation from a local frame of reference to a laboratory one.

5.1 From local to laboratory

The program calculates the change of angular positions by integrating angular velocities, which

are described in a local reference frame. This means that for calculating angular position at time

ti+1 we must take into account angular position at time ti, so that it is reconstructed iteratively.

Figure 5.1: Angle composition in vehicle motion

17



CHAPTER 5. ROTATION WITH QUATERNIONS

One of the first error I committed was to consider the rotation composition as the sum of angles

on each axis. I was using the same integration routine used for linear dimensions, which performs

the cumulative sum on each axis independently, i.e. the sum of the areas. When composing

multiple rotations, for example when having a rotation around vertical versor ẑ by an angle

θz, besides adding θz to the vertical rotation, one must move rotation axes that belongs to the

horizontal xy plane.

So I divided the integration routine in two functions, one that returns an array of areas, the other

that calls the first and then does the cumulative sum of the array of areas. I’ve done this also for

keeping compatibility with others modules that were using the previous single function.

Then, once I had the angle variation vector 〈∆θx,∆θy,∆θz〉 the associated quaternions can be

created and multiplied together. Essentially, the two quaternion libraries I used in the project

overload mathematical operators so compositions and rotations become more straightforward.

For quaternion composition, initially I was using numpy.cumprod() [8] but this function was

performing multiplications in reverse order, with respect to what I needed for my application. For

example, calling cumprod() on a vector 〈a,b, c,d〉 will result in 〈a,ab,abc,abcd〉 while I needed

〈a,ba, cba,dcba〉

So I wrote some custom code to make quaternion composition, using functools.reduce(), since

it’s faster than using a for cycle.

quaternions = reduce (lambda array , element : [* array , element * array [ −1] ] ,

quaternions ,

[ in i t ia l_quaternion ] )

The reason is that lambda use local scoped variables, that can be kept in register and cache, and

that interpreter can preload next items.

5.2 World frame of reference

There exists an additional frame of reference, similar to the laboratory one described before but

with an additional rotation in the horizontal plane. This frame of reference has y-axis oriented

towards geographical north and x-axis to east. This is critically important for mixing GNSS data

that is already in this frame of reference, with integrated inertial data.

To find the angle between GNSS positions and east, the program finds the first position that is at

least 10 meters away from the initial one, then calculates the angle of this vector.

Assuming that the first motion of the vehicle is in the forward, direction given the previous

calculated angle, all accelerations should be rotated.

Instead of rotating all accelerations and angular positions, the program sets only the initial
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position with respect to the world frame of reference. Since the following angular positions are

calculated from the first, no additional operations are needed, preventing the execution of O(n)

operations, i.e. the rotation of all records.
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6
TRAJECTORY INTEGRATION

Initially I coded both the square, the trapezoid and the parabola method, to analyze better suited

my necessities. [3] The last one, from now on, will be called PaIS (Parabola integrator for Irregular

Spaced data),

A quadrature formula of grade n provides the exact integral value of a polynomial of grade ≤ n,

which means that it isn’t always necessary to use a formula with a high grade.

I verified experimentally the difference in error between integration methods by creating synthetic

trajectories.

Figure 6.1: Trajectory created to evaluate integration error
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then I compared the integrated one with the analytical.

Figure 6.2: Absolute error from analytical trajectory

Numpy offers a compact way to write operation even on large arrays. This is for example the

trapezoid method in one line.

def trapz_integrate_delta ( times , vector ) :
return ( ( ( vector [ : , : −1 ] + vector [ : , 1 : ] ) * ( times [1: ] − times [ : −1 ] ) ) * 0 . 5 ) . cumsum( )

Difference between PaIS and trapezoid can be seen after integrating for 40 thousands steps.

Figure 6.3: Difference between trapezoid and PaIS method on real world data

I decided to use the PaIS integrator because measures in discrete time produce a C0 function,

while physical quantities of a vehicle in continuous time are at least C1.
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The errors were still too large, the integrated trajectory diverges after some time by moving

away too much from the real trajectory. So I improved integrated trajectory using GNSS data,

which is more precise but has lower frequency and has difficulties on finding orientation. In this

way, the output trajectory benefits from both measures, using their respective advantages and

reducing each other disadvantage. Accelerometer and gyroscope are really good in small time

frames, but due to integrated quantities have precision problems on long time spans. On the

other hand commercial GNSS sensors don’t have very precise positioning but they keep working

steady for much times. I started from resetting the integrated position to the GNSS one every

t times, but this was causing an edgy and irregular behavior that wasn’t realistic. I proceeded

to implementing a contiguous weighted average, so that GNSS component is always present in

the output trajectory but its impact is limited. Especially when GNSS signal is low,the position

completely wrong, in the order of tens of meters. Giving a low weight to GNSS, like 1 on 99, avoid

problems caused by low signals but still helps with correcting numerical integration error.

Figure 6.4: Path traveled by a car with a box installed, in a Bologna parking
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Figure 6.5: The same path from data registered by sensors and elaborated by the program

Figure 6.6: Particular showing smoothness of integrated trajectory in respect of GNSS one
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Figure 6.7: Note that GNSS and integrated path are distant on vertical axis. This is because
altitude from GNSS system is extremely unreliable to determine vertical position. In my algorithm
i Decided to neglect this information and only use the integrated accelerometer information.
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7
BLENDER ADD-ON

Blender has a Python Application Programming Interface (API). Through the API, one can create

a Python module and package it as Blender add-on. Add-ons are extension of Blender basic

functionality, managed by a section of Blender settings and installable by file. As alternative to

add-on to interact programmatically with Blender is possible to create a Python script and load it

into the built-in text editor (and execute it) or give it as parameter while launching Blender from

the command line. Add-ons provide versioning and authoring, remain activated between Blender

files and don’t need to be loaded each time.

7.1 Blender API

All the operations are made through bpy Python module. bpy can be subdivided additionally into:

• bpy.context: access to current active scene and elements.

• bpy.data: access to all objects in Blender document.

• bpy.types: built-in Python classes, usually extended.

• bpy.props: abstraction of a variable properties, having type bpy.types.*Property; if

registered in bpy.props, it can be modified by graphical interface.

From bpy.types other classes used in the projects are:

• Operator: essentialy a function to manipulate objects. Every action that the user can do in

Blender is coded like an Operator: like moving, modelling and sculpting objects.

• Panel: a section of the graphical interface.
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7.2 Blender add-on anatomy

An add-on can be a single Python file or a zip containing an __init__.py file and other comple-

mentary files.

In both cases, the main Python file must have a register() and unregister() function imple-

mented.

The unregister() takes care of calling bpy.utils.unregister_class(), for each class that

needs to be loaded into Blender.

When loading a class, Blender performs sanity checks, making sure all required properties and

functions are found, that properties have the correct type and that functions have the right

number of arguments. register() function of registered class are called recursively and, for

example, Panels are drawn on user interface at this moment.

The unregister() have a totally opposite task compared to register().

It should call bpy.utils.unregister_class() on every register call. It’s preferable to make the

calls in the reverse order compared to register().

Other objects defined in the Python add-on are:

• subclass of Panel for user-interface, a button to open a file system explorer dialog to select

input dataset, an editable text field showing input dataset path and a button to launch

dynamic reconstruction.

• StringProperty for storing input dataset file path and to share it between operators.

• subclasses of Operator for reaction to buttons clicks on user interface and calling related

project functions.

Finally, a Python dictionary called bl_info is defined with add-on metadata as name, version

and author. Those data are displayed in the list of add-ons in Blender settings.

7.3 Installation of dependencies

One particular challenge I faced was to have project library dependencies installed in blender

internal interpreter.

There are three solution to this problem. Two solutions were discarded:

• Removing the Blender Python folder and Blender will fallback to system interpreter. But

API supported Python version can be different to the system one and doing this is dangerous.

• Changing Scripts path inside Blender setting, to look to another directory with a specific

structure. This directory must contains add-ons, modules and startup directories. Project

dependencies should be installed in modules directory. There are various problems to this

solution: it can be easily made non-working by a Blender update, removing the possibility
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of changing Scripts path, also it can be against the final Blender user will, requiring all

previous installed add-ons to be moved to new directory.

The solution I decided to follow and implement is to increase Blender interpreter capabilities by

installing the pip package manager on it and then using pip to install the dependencies listed in

the requirements.txt file. The whole process can be labeled as bootstrapping, as we start from

a very small capability and we use it to have more at each step.

First step is to download a Python script which has pip binary included inside. To do this it is

very useful the get-pip.py script. [7] Then, get-pip.py must be run by the Blender interpreter

so it will be linked to it.

In the Blender Python directory a pip executable will emerge so project dependencies can be

installed with it and modules will be linked to.

Including the code to do this process in the add-on is crucial to have a single zip to distribute

and increase final user experience.

This part has been a bit tricky due to differences between operating system; both for file system

structure and operating system interfaces to execute programs.
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8
SOFTWARE ENGINEERING CONSIDERATION

This chapters deals with software engineering (SWE) topics: software design, quality measure

and process management.

During SWE course I followed was focused on object oriented software design, that doesn’t

really fit for this project. The domain doesn’t contain many objects to model and python classes

introduce an overhead which is incompatible with performance required, taking into account

input dimensions.

Anyway, even if I used a more functional approach, I still divided the codebase into modules using

responsibility-driven design.

8.1 Requirements

After several discussions with my supervisor, I modeled the following functional requirements:

1. the software will support inputs in the format specified in the introduction chapter;

2. the software will use Blender API to animate a vehicle so that its linear and angular

positions reflect the one from which the input data is measured;

Non functional requirements are:

1. performance: the software must at least elaborate a dataset of 100.000 records in less than

five minutes;

2. user experience: the software must be easy to use also from a 3D artist point of view;

3. operating systems. the software must support of Windows and GNU/Linux ;
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8.2 Structure

Satisfying functional requirement 1 is the main challenge of the project. Recreating a perfect

reconstruction is very hard and requires many techniques as showed in the previous chapter.

Following the methods previously illustrated the responsibilities of the software are:

1. input loading;

2. input parsing;

3. input format auto-detection;

4. noise reduction;

5. gyroscope offset drift reduction;

6. correction of vertical bad alignment;

7. correction of vertical bad alignment;

8. derivation of GNSS speed and acceleration;

9. moving from local to laboratory reference frame;

10. moving from laboratory to world reference frame;

11. integrate accelerations;

12. integrate velocities;

13. timestamps normalization;

14. dependencies auto-installation;

15. blender user-interface handling;

16. creation of animation in Blender;
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8.3. DEPENDENCY MANAGEMENT

Figure 8.1: UML diagram showing project modules and their dependencies. The numbers nears
each modules states responsabilities assigned to it.

8.3 Dependency management

Current software development practices suggest to don’t reinvent the wheel and re-use as much as

existing software as possible. Project stability is related to its dependencies’ stability. Delegating

responsibilities to other trusted programmers reduce project risks and increase overall quality.

Specifying explicitly project dependencies is useful both for the programmer and for the user, in

particular specifying which version of each dependency the software is assured to work. Python

has various tools to handle this, the most popular are pip+virtualenv and Conda.

Virtual environments allow to isolate Python packages on which the project depends on from the

global system ones. This allows to use different packages version.

Pip (Pip Install Packages) can install packages from a the PyPi repository, the largest one

containing more than 143 hundred packages, parsing a list file containting dependencies.

Conda is a package manager designed for every language, instead virtualenv is only for Python.

It was created from the PyData community to overcome Pip limitations and doesn’t use only
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PyPi to retrieve packages. Instead it has customized version of python scientific packages like

numpy, scipy and pandas, optimized for performance as Conda can work on a lower-level in target

machine.

Initially, I was using Conda and I noticed a better performance, but when I created the Blender

add-on code part that auto install dependencies I had to move back to virtualenv+pip because it

was easier to install.

8.4 Unit testing

On the project I applied the principles of unit testing. I tried to create a test for every function

I’ve written, sometimes even before the code itself to be tested, to make it minimal.

During this process I prepared a tool to produce syntetich trajectories, to overcome specific

requirements of some tests. The tests I’ve written are incremental, some verify only small func-

tionalities, others verify more overall features that use the small functionalities underneath.

For example, I created a test with a complex trajectory similar to the one of a spring, to test

integrator precision, then I created a circular trajectory, where body also rotate like a car in a

roundabout to test, angular position integration and body rotation. In this way it is easier when

a breaking change is introduced to debug and fix the problem.

Right now the test coverage, which is the percentage of code lines that are executed by automatic

tests, of project’s principal modules is 86%.
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9
CONCLUSIONS

Thus thesis presented a software to reconstruct vehicle dynamics from inertial and GNSS

data. I developed an algorithm to integrate physical quantities with a technique suitable also

for not equally time separated records. Both acceleration and angular velocity are integrated;

angular position is composed using quaternion performance advantages. Trajectory obtained

from accelerometer and gyroscope is improved additionally by GNSS data, leading to a more

precise and smooth path. The project has been implemented in Python, mainly take advantage of

Numpy and Pyquaternion libraries functionalities. I created a standalone Blender add-on which

auto-installs its dependencies and offers a graphical interface. Most of the code has been checked

with automated testing.

9.1 Future Development

Several improvements can be implemented in following releases:

• the angular position reconstruction can still be improved significantly using some inference

techniques (fusing data from other sensors, refining the analytical model of the dynamics)

and also it tends to drift away due to numerical error. Cross-validating vehicle angular

positions with accelerometer and GNSS can provide a better assessment on the error it has

been accumulated and that must be corrected. Moreover, online maps API can be used to

have an approximation of road slope;

• gyroscope offset can be additionally analyzed through unused data coming from the tem-

perature sensor. In fact, it is well known that this erroneous behavior is strongly correlated

with the sensor’s thermal state;
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• vertical positioning can be strongly improved by using barometer;

• data from sensors installed on different positions in the same vehicle can be merged, at the

beginning using their known relative positions, and later even by self-calculating them;

• usage of approximation instead of interpolation for GNSS precise positioning can be used

to reduce error when vehicle is in a stationary regime;

• to improve integration algorithm stability it is possible to explore different change of basis

of second grade polynomial used;

• implementation of symplectic integration schemes which, due to their non-dispersive nature,

can help improving the reconstruction;

• implementation of a new file format, based on HDF, to drastically improve I/O performances

• parallelize execution, expecially in delta integration routine where it can be distributed on

an large number of cores.
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