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Abstract

In this work we introduce the Wishart Distributed Matrices Multiple Or-
der Classification (WISDoM) method. The WISDoM Classification method
consists of a pipeline for single feature analysis, supervised learning, cross
validation and classification for any problems whose elements can be tied to
a symmetric positive-definite matrix representation. The general idea is for
informations about properties of a certain system contained in a symmetric
positive-definite matrix representation (i.e covariance and correlation matri-
ces) to be extracted by modelling an estimated distribution for the expected
classes of a given problem.

The application to fMRI data classification and clustering processing fol-
lows naturally: the WISDoM classification method has been tested on the
ADNI2 (Alzheimer’s Disease Neuroimaging Initiative) database. The goal
was to achieve good classification performances between Alzheimer’s Dis-
ease diagnosed patients (AD) and Normal Control (NC) subjects, while re-
taining informations on which features were the most informative decision-
wise. In our work, the informations about topological properties contained
in ADNI2 functional correlation matrices are extracted by modelling an es-
timated Wishart distribution for the expected diagnostical groups AD and
NC, and allowed a complete separation between the two groups.
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Introduction

In recent years, the interest of the scientific community on brain interactions
modelling has greatly increased. The advent of the fMRI functional magnetic
resonance imaging technique, a non-invasive procedure which provides good
balance between temporal and spatial resolution, has opened an entire new
field of anatomical and functional analyses. The discovery of the importance
of the resting state of the brain, which is far from being characterised by the
mere statiscal noise of an unperturbed system, togheter with the discovery of
the Default Mode Networks, has brought forth several new questions about
the underlying mechanisms of human cognition. Studying the resting state is
impossible with the traditional subtraction technique, therefore new methods
have been implemented.

The use of graph theory to model the brain topological and dynami-
cal properties, based on Functional Correlation Matrix analysis, has also
achieved great results. Comparative studies of different brain disorders diag-
nosed subjects, have highlighted the role of different default mode networks
in global and local information processing capacity. The characteristic dis-
ruption of topological properties induced by brain disorders takes on a de-
cisive role in brain region landmarking, thus offering a great possibility for
preventive diagnostic and classification studies.

As a matter of fact, these type of analyses are all bound to undergo
ceratin issues tied to the processing of high-throughput data. The usual high
dimension of functional correlation matrices may indeed lead to convergence
problems in Liner Discriminant Analysis or Principal Component Analyisis
based methods, preventing an efficient feature selection from being obtained.

On the other end, with the ever increasing computational power available,
machine learning and heuristic statistical methods like the one introduced in
this work, can be of great help in feature selection and classification perfor-
mance enhancement. In our work, the informations about topological prop-
erties contained in functional correlation matrices are extracted by modelling
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vi INTRODUCTION

an estimated distribution for the expected classes of a given problem. Specif-
ically, a Wishart distribution for symmetric positive-definite matrices is used,
being his probability density function of closed algebraic form. Furthermore,
algebraic properties of symmetric positive-definite matrices are taken into
account in order to define single feature transformations. The features are
transformed according to the weight they are assigned in assessing the clas-
sification decision, with respect to one class or another. Doing so, we gain
informations about a feature’s significativity in characterizing the correlation
properties of a system.

The methdod introduced in this work, the Wishart Distributed Matrices
Multiple Order Classification, consists of a pipeline for single feature analy-
sis, cross validation and classification for any problems whose elements can
be tied to a symmetric positive-definite matrix representation. The applica-
tion to fMRI data classification and clustering processing follows naturally,
it has indeed been tested on the ADNI2 (Alzheimer’s Disease Neuroimag-
ing Initiative) database. The goal was to achieve good classification perfor-
mances between Alzheimer’s Disease diagnosed patients (AD) and Normal
Control (NC) subjects, while retaining informations on which features were
the most informative decision-wise. In this way, informations about signi-
ficative anatomical areas and underlying structure might be extracted.

This work is structured as follows:

• Chapter 1: the state of art of fMRI resting state studies is presented,
while an overview on MRI physical bases are also outlined. An overview
on the importance of the default mode networks’ properties in brain
disease studies is presented, then the physics of Blood Oxygen Signal is
defined. The final part of the chapter is an excursus on the most com-
mon data preprocessing procedures and the computation of Functional
Correlation Marices.

• Chapter 2: the Wishart distribution and its applications are defined.
A closed probability density function for the symmetric positive-definite
matrices case is derived. The importance of the Wishart distribution
in Bayesian conjugate prior analysis is then outlined.

• Chapter 3: The WISDoM Multiple Order Classification Method is
described in both an analytical and technical way. Feature transfor-
mation based on symmetric positive-definite matrices’ properties are
defined. A generalization for different orders of said transformations
is then derived. The general implemented. pipeline and the Snake-
Make environment are then presented and described. The final section



vii

of the chapter is an overview on possible classification and clustering
methods, to be used on the Snakemake section of the pipeline outputs.

• Chapter 4: The ADNI2 study is presented and classification and clus-
tering results are discussed. A network growth approach is also pre-
sented for comparison purposes.
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Chapter 1

An Introduction to Brain Imaging

In this section, a resume of different important aspects in brain modelling and
imaging is presented. Starting from an overview on resting state studies, the
importance of the study of the deafult mode network is underlined especially
as far as the disruption of its topological and dynamical properties in several
forms of brain disease are concerned.

Then, an introduction to fMRI and BOLD signal analysis techniques is
made in order to define the framework of the data used to train the model
proposed to solve the classification problem treated in this thesis.

1.1 The resting State

1.1.1 Earlier Studies

Many definitions have been brought forth as far as brain’s resting state is
concerned [4]: a sign of the increasing interest of the scientific community
over the years, after the obsversations of its properties. As a matter of facts,
unlike the equilibrium state of an unperturbed noisy physical system, the
spontaneous state of the brain does not show a meaningless random activity,
as expected by the scientists until two decades ago. Since the early studies
of cerebral metabolism it has been noted that, although the human brain
amounts to just 2% of the total body mass, it consumes 20% of the body’s
energy; these meaurements were made over brains in resting state.

This has led to asking a crucial question: whether cerebral metabolism

1



2 CHAPTER 1. AN INTRODUCTION TO BRAIN IMAGING

changes globally when one goes from a quiet rest state to performing a chal-
lenging arithmetic problem. Surprisingly, metabolism remained constant;
the local changes were too small (usually less than 5% compared with the
resting energy consumption) to be detected by methods designed to measure
the energy consumption of the brain as a whole [1]. For several years though,
spontaneous brain activity has been systematically overlooked.

As a matter of facts, neuroimaging practices were largely based on the
assumption that ongoing activity is sufficiently random and can be averaged
out in statistical analysis. As all the efforts of the scientific community were
focused on understanding cognitive behaviour, scans of resting state brain
activity were often acquired across these studies for mere control compari-
son and noise averaging practices, but researchers routinely began noticing
that some brain regions showed more activity in resting state condition than
during the execution of tasks.

A major step in defining the importance of resting state’s studies has
been made by the series of pubblication of Raichle, Gusnard and collagues in
2001 [2]. In this study they isolate a set of brain regions, the Default Mode
Network (DMN), characterized by surprisingly high metabolic rate during
rest, and, on the other hand, by the greatest deactivation during externally
imposed cognitive tasks. Their work propose that DMN is to be studied as
a foundamental neurobiological system, like the motor system or the visual
system. It contains a set of interacting brain areas that are tightly functionally
connected and distinct from other systems within the brain.

An example of DMN anatomy studied via BOLD (blood oxygen level
dependant) signal is shown in fig.(1.1).

After this discovery, other patterns of activities were found, leading to the
definition of many resting state networks (RSNs) [4].

Different RSNs found by subsequent studies are visible in figure(1.2).

The resting state can thus be defined as a cognitive state in which a subject
is quietly awake and alert but does not engage in any specific cognitive or
behavioural task [5].
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Figure 1.1: Regions of a single subject’s brain that are correlated (positive
values) and anticorrelated (negative values) during resting fixation in a func-
tional MRI study. Source: Fox et al (2005). [3]

Figure 1.2: Different Resting State Networks found in literature and summa-
rized by Van Den Heuvel et colleagues, 2010 [4]
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1.1.2 The Resting State in Brain Disease

Most, if not all, physiological and psychiatric diseases have been found to
have disrupted large-scale functional and/or structural properties. This fact
opens a wide array of possibilities as far as characterization, modelling and
predictive studies are concerned for different types of disease. Disorders like
autism, schizophrenia and Alzheimer’s disease have all been correlated to
resting state network’s alterations.

In example, Alzheimer’s disesase diagnosed subjects have been found to
have enhanced local network properties while having disrupted global prop-
erties with respect to non-diagnosed subjects [6]. Results of these type, based
on the observations of altered topological properties of functional networks,
are shown in fig.(1.3).

Figure 1.3: Change of network parameters as a function of connection density
(Cost). Clustering coefficient (A), shortest path length (B), global efficiency
(C) and local efficiency (D) of the Alzheimer’s Disease (green line) and Nor-
mal Control (red line) groups as a function of Cost. Clustering coefficient
(E), shortest path length (F), global efficiency (G) and local efficiency (H) of
the AD ApoE4+ (black line), AD ApoE4- (blue line) and NC ApoE4- (red
line) groups as a function of Cost. The error bars correspond to the standard
error of the mean. Source: Xiaohu Zhao , Yong Liu et al. 2012 [6]
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We can see that clustering coefficients, the shortest path length, local ef-
ficiency, and connection density are all enhanced in Alzheimer’s disease di-
agnosed patients, whereas global efficiency is lower. As a matter of fact,
Cp is a measure of local network connectivity: it reflects the local efficiency
and error tolerance of a network. Higher network clustering coefficients in-
dicate more concentrated clustering of local connections and stronger local
information processing capacity [5]. The Cp of brain functional networks was
found to be higher in Alzheimer’s disease diagnosed patients, indicating that
these patients have stronger local information processing capacity [6]. The
average shortest path length (Lp) of a network reflects how the network con-
nects internally. In brain networks, the shortest path ensures the effective
integration and fast transmission of information between distant brain areas.

If the average shortest path of the brain functional networks in Alzheimer’s
disease diagnosed patients is significantly greater than that in non-diagnosed,
it can be stated that the long distance information integration and transmis-
sion capacity of neurons is reduced in Alzheimers disease diagnosed patients.
Together with the lower global efficiency in Alzheimer’s disease diagnosed
subjects, these results may suggest that information transfer between brain
regions is more difficult for these subjects [6].

Looking at which brain’s regions show a significant variation in topological
functional newtork parameters, all of the typical default mode network can
be identified as shown in fig.(1.4).

This and many other studies relating to different types of disorders, show
how investigating and modeling the default mode networks is of great impor-
tance in classification and preventive diagnosis methods implementation.
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Figure 1.4: Surface rendering of the distribution of altered nodes at a connec-
tion density of 22%. Colored bars indicate differences in network properties
between the NC and AD groups. Blue indicates regions showing an increase
in the AD group but not the NCs. Yellow indicates regions showing a decrease
in the AD group but not the NCs. In the AD group, the regions showing sig-
nificant increases in Cp, Lp and Elocal are widely distributed across the brain,
especially in default mode network regions such as the ACC, PCC, MPFC,
HIP and IPL. Source: Xiaohu Zhao , Yong Liu et al. 2012 [6]
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1.2 Investigating the Resting State

1.2.1 The fMRI Technique

The magnetic resonance imaging (MRI) is a non-invasive method largely used
to obtain images of inner structures such as the human body. The method
is based on the magnetic properties of materials composed of nuclei having
a non-zero spin. Such nuclei, when placed in a magnetic field B0, arrange
themselves over energetic levels according to the Boltzmann distribution,
with the total magnetization characterizing the order.

After introducing a perturbating pulse, which has to satisfy the resonance
condition of the system, the magnetization tends to realign itself with B0

after a characteristic time, in which nuclei make transitions to set back the
equilibrium. The MRI follows the evolution of the system during the return
to the equilibrium, obtaining informations about a system’s properties and
components via their characteristic time.

Let us consider an atomic nucleus with a non-zero total nuclear spin
−→
I ;

the relation between the magnetic moment µ and the spin is:

µ = γ}I (1.1)

where γ is the magnetogyric ratio, which is tied to each nuclear isotope.
Thus, the component along the z direction of the magnetic moment is:

µz = γ}m (1.2)

where m can take one of the 2I + 1 values in the interval [−I, I].

For I = 1
2
, an homogeneous applied external magnetic field B0 induces a

splitting of the nuclear spin energy level:

∆E = γ}B0 (1.3)

Replacing the Planck-Einstein relation ∆E = hν in the latter equation,
the Larmor resonance frequency is obtained:

ν0 =
γ

2π
B0 (1.4)
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The corresponding pulsation ω0 is given by:

ω0 = γB0 (1.5)

The collective motion of a set of N nuclei can then be observed by means
of the total magnetization

−→
M = N〈−→µ 〉.

The evolution in time of the magnetization of a set of nuclei placed a
magnetic field B0 is:

d
−→
M

dt
= γ
−→
M ×B0 (1.6)

The equation describes the precession of
−→
M around

−→
B0 at the angular

velocity ω0, when
−→
M is not aligned with

−→
B0.

At the equilibrium, the total magnetization of a paramagnetic material
placed in a magnetic field

−→
B0, shares the same direction of

−→
B0 as stated by

Curie’s law :

−→
M0 = C

−→
B0

T
(1.7)

where T is the absolute temperature and C is the Curie costant that tied
to material characteristics.

For the sake of simplicity
−→
B0 and

−→
M0 are considered aligned with the z

axis.

Applying a magnetic field
−→
B1 orthogonal to

−→
B0 with frequency ν0 causes

the magnetization vector to move away from the z axis; the angle between
the z axis and the new position of the magnetization vector depends on the
duration of the radio frequency (RF) field

−→
B1 applied, generated by a coil. At

the end of the pulse application, the spin precession on the transverse plane
induces an oscillatory electromotive force in the coil by electromagnetic in-
duction, thus originating a current in the probe. The detectable signal is
called Free Induction Decay (FID), which has an oscillating trend with ex-
ponential decaying, and it is originated by photons in the radio-wave range
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emitted by the set of nuclei getting back to equilibrium. After the RF pulse,
the deacy of the NMR signal is analyzed in terms of two separate processes,
the longitudinal one and the trasverse one, each with their own time con-
stants. The underlying process that leads the longitudinal component of the
magnetization (along z) to reach its equilibrium value M0, is the redistri-
bution of nuclear spin populations according to the Boltzman distribution;
such process takes place by energy exchanges between the nuclei and the
surroundings.

The longitudinal component of the magnetization decreases in time, as
defined by:

dMz(t)

dt
= −(Mz(t)−M0)

T1
(1.8)

and thus:

Mz(t) = Mz(0)e
− t
T1 +M0(1− e−

t
T1 ) (1.9)

The underlying process that leads the trasverse component of the mag-
netization to reach its equilibrium value, i.e. zero, is the decoherence of
the transverse nuclear spin magnetization. Random fluctuations of the local
magnetic field lead to random variations in the instantaneous NMR preces-
sion frequency of different spins. As a result, the starting phase coherence of
the nuclear spins is lost and the total xy magnetization is null.

The transverse component of the magnetization decays to zero in time
according to:

dMxy(t)

dt
= −(Mxy(t)

T2
(1.10)

and thus:

Mxy(t) = Mxy(0)e
− t
T2 (1.11)

1.2.2 The BOLD Signal

The Blood Oxygen Level Dependant signal is a measure of the amount of
the oxygen contained in blood flowing towards neural regions. To function
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Figure 1.5: Evolution in time, after the RF pulse,
of the longitudinal magnetization (left) and of the trans-
verse magnetization (right) in the rotating frame. Source:
https://warwick.ac.uk/fac/sci/physics/research/condensedmatt

properly, the brain needs energy in the form of Adenine-TriPhosphate (ATP),
which is in turn produced through a chemical reactions involving glucose and
oxygen. As neither glucose nor oxygen are stored in the brain by default,
they need to be carried to the brain via circuclatory system. Oxygen is
transported by haemoglobin, in a chemical form known as oxy-haemoglobin,
in contrast to deoxy-haemoglobin, the form haemoglobin assumes when it
releases the transported oxygen.

These two molecular forms differ by their magnetic properties: oxy-haemoglobin
is paramagnetic, whereas deoxy-haemoglobin is diamagnetic (fig.(1.6)).

Figure 1.6: Deoxy-haemoglobin is trongly paramagnetic due to 4 un-
paired electrons at each iron center. Source: mriquestion.com/bold-
contrast.html
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When energy is required in a particular area, or in other terms a partic-
ular cerebral area is activated due to a given cognitive task, the amount of
incoming oxygen (oxyhaemoglobin) is much higher than the oxygen being
consumed to form ATP. As a result these areas show an increase in signal
intensity. More precisely, since the deoxyhemoglobin is paramagnetic, it is
able to reduce the NMR signal in T2 weighted images: indeed the rate of
loss of proton spin phase coherence, measured through T2, can be modulated
by the presence of intravoxel deoxyhaemoglobin. On the contrary, being the
oxyhemoglobin diamagnetic, it does not modify the NMR signal.

Thus, during the neural activation of a brain area, an higher incoming
blood flux is observed with respect to the blood incoming during rest; in
such area blood vessels expand and the transported oxygen rate is higher
than oxygen consumed rate in burning glucose.

Therefore, although paradoxical, in the active brain region the concentra-
tion of oxygenated blood increases, and the concentration of deoxygenated
blood decreases with respect to the neighbour inactive brain areas. Such
process is shown in fig.(1.7).

Figure 1.7: BOLD signal formation process

It has to be pointed out, however, that the oxygen influx iunderlying the
BOLD signal is not an immediate consequence of neural activity;they are
rather parallel processes. In factGlutamate-generated Calcium influx releases
many vasodilators. Blood flow is related more to local field potentials than
individual neurons spiking [7]; it can therefore be statede that the signal is
increased over an area larger than the one with specific neuronal activity.

Given the high number of processes underlying global blood flow changes,
a model tying BOLD signals to neural activity is required for those fMRI
aplications whose goal is to observe and characterize neural processes. The
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link between the the BOLD signal and the effective neural signal lies in the
haemodynamic response function (HRF). Formally, the BOLD signal can be
interpreted as a convolution between the actual neural signal and the HRF;
the system’s response to the stymulus is in ths way obtained.

If we take N(t) as the neural activity signa and h(t) as HDF we have:

B(t) = N(t) ∗ h(t) =

∫ t

0

N(τ)h(t− τ)dτ (1.12)

In order for eq.(1.12) to be true, the assumption that the system’s response
is linear and time invariant has to be made. We then define the neural signal
as:

N(t) =

∫ ∞
t=0

δ(t− τ)nτdτ (1.13)

Given that the BOLD function is a function of neural activity B(t) =
f(N(t)), linearity implies that:

f(

∫ ∞
t=0

δ(t− τ)nτdτ) =

∫ ∞
t=0

f [δ(t− τ)]nτdτ (1.14)

thus proving eq.(1.7).

Although many evidences indicate that BOLD signal is non-linear, devia-
tions from linearity are often small and linearity assumptions are quite valid
in many cases and apllications. As the HRF depends on the ways oxygen is
consumed when energy is required by neurons, it is complex to model as a
function. Even though eq.(1.7) holds true, most of the possible issues derive
from N(t) and h(t) being both unknown in a large number of problems. As a
result, the HRF is often estimated in order to be able to calculate the neural
signal. Many of the commonly used estimation methods rely upon recording
the response to a given neural input, deconvolving eq.(1.7) while assuming
a model for N(t), or trying to guess the function and smooth it with some
kind of parameter fitting.

Whichever the technique employed, one main feature of the HRF Must
be taken into account for the consequences it induces on the BOLD signal
B(t): h(t) has a low response, due to oxygen being quite slow (approximately
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10 seconds) to reach its maximum value after neural activation. As a con-
sequence, for short and close neural impulses, the BOLD response does not
have the chance to decrease, because of the convolution with the HRF. It
thus can be stated that BOLD always smooths the real underlying neural
signal.

1.2.3 Data Preprocessing

The aim of data preprocessing is to reduce the statistical noise, in order
to better extract the true signal. This is most important for resting state
analysis, given that there is no peak in the time series compared to the
average value of the entire series. Looking at fig.(1.2) in example, we can see
that, as a matter of facts,changes in BOLD signal rarely exceed the 1%.

A resume of the most common preprocessing practices for fMRI studies
is done in the following section.

• Slice-timing correction: All fMRI data are collected in slices, which
in turn contain arrays of voxels.

The Repetition Time TR is the time which separates the onsets of
consecutive whole brain scans; thus is the time needed to collect data
from all the brain voxels at a given point in time. This causes some
problems to arise, i.e. not all the brain voxels in a given TR are acquired
simultaneously: a TR time is needed to take all the slices between the
first and the last. The bias is dependent on the order in which slices
are taken. The most common approach to deal with such an issue is
a form of temporal interpolation, which can be linear, spline, or sinc.
Linear interpolation is good when data do not vary much rapidly from
one time acquisition to the other. This approach simply consists of
estimating a continuous BOLD function from the discrete sampling;
when using a linear function, a simple line is estimated between two
points, and the value at the point of interest is taken.

• Head motion correction: It is probably the most important prepro-
cessing step.

During task studies, a movement of 5mm can increase activation values
by a factor of 5, and it can completely mix up signal from different
voxels in resting state studies. All the corrections are based on the
assumption that during movements the brain does not change size or
shape; as a result, the only changes are due to rigid body movement. As
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a matter of fact, the movement can be characterised by six parameters,
3 translational and 3 rotational, as described by classical mechanics.
Voxels are defined by their position within the scanner,rather than by
position within the subject’s brain. To correct for this a rigid body
registration is performed.

• Normalization: each individual presents morphologically different
brains, with different global size and different local regions sizes too.

This leads to many problems while studying if a signal observed in one
region is observed in the same region in another patient. Moreover,
when performing group analyses, brains have to be overlapped, in order
to increase the signal to noise ratio and the statistical significance of the
analysis. However, if we overlap two significally different regions, the
signal is quite likely to average out. Therefore, warping one subject’s
structural image to a standard brain atlas is a required step. The most
common reference system is the MNI space, developed by the Montreal
Neurological Institute [8].

• Coregistration: functional data have to be mapped onto structural
data in order to as- sess the exact region the signal is coming from.

These is not straightforward due to the two images being taken with
different spatial resolutions. Given that functional images have to be
taken within a few seconds, as a consequence of a speed-accuracy trade-
off, they often have poor spatial resolution. Structural images, on the
other hand, can take up to 10 minutes in order to be acquired if a precise
mapping of every region is to be obtained. This results in different voxel
sizes: a typical fMRI voxel is (3× 3× 3.5)mm, whereas sMRI can have
voxels with sizes down to (0.86.86 × 0.89)mm. After coregistration,
however, structural resolution can be employed to improve functional
resolution. Early methods aimed at identifying key landmarks in the
two different images and then trying to align them, but given the scarce
automation reliabiity of this process most methods now relies upon the
minimisation of mutual information between histograms of the images.

• Data smoothing: intensity values from individual voxel have an em-
bedded component of noise.

In order to reduce this noise spatial smoothing is needed; basically
the intensity value of a voxel is replaced with a weighted average of
the values of neighbouring voxels, through the convolution between the
voxels and a function representing the neighbourhood known as kernel.
In this way, close voxels contribute much more than distant voxels.
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Other than increasing SNR, this process is useful since, as explained
by the central limit theorem, it allows the distribution of intensities to
become normal thus helping the multiple comparison analysis in task
studies.

1.2.4 The Functional Connectivity Matrix

One of the most common approaches in resting state studies gravitates around
the notion of Functional Connectivity. Functional Connectivity is defined as
the statistical association or dependency among two or more anatomically
distinct time-series [9].

In FC analyses, there is no inference about coupling between regions; that
is it does not tell how regions are coupled. In fact, it only tests some form of
correlation against the null hypothesis. FC is however useful to discover pat-
terns (which regions are coupled), and compare patterns, especially between
groups. In practice FC can be represented by a matrix whose entry aij is a
correlation between the intrinsic activity of neural source i and neural source
j.

Common examples of correlations measures computed on time-series data
types are the cross-correlation and cross-coherence [9]. Cross correlation
between regions 1 and 2 with a time delay t is given by:

R(t) =
cov(s1, s2 + t)√

var(s1) + var(s2 + t)
(1.15)

Cross-coherence can be defined as equivalent to cross-correlation but in
the frequency domain. It is defined as follows:

Coh(f) = | (Ψ1,2)
2

((ψs1(f))ψs2(f))
| (1.16)

Where Ψ1,2 is the cross-spectral density ; ψs1,2 are the spectral density of
regions 1 and 2. Coh(f) varies between 0 and 1 and is defined for different
frequency bands f .
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Chapter 2

The Wishart Distribution

2.1 Definition

The wishart distribution Wp(n,Σ) is a probability distribution of random
nonnegative-definite p× p matrices that is used to model random covariance
matrices.

The parameter n is the number of degrees of freedom, and Σ is a nonnegative-
definite symmetric p× p matrix, called the scale matrix.

Def. Let X1...Xn be Np(0,Σ) distribuited vectors, forming a data matrix
p × n, X = [X1...Xn]. The distribution of a p × p, M = XX ′ = Σn

i=1XiX
′
i

random matrix is a Wishart distribution. [10]

We have then by definition:

M ∼ Wp(n,Σ) ∼ Σn
i=1XiX

′
i Xi ∼ Np(0,Σ) (2.1)

so that M ∼ Wp(n,Σ) is the distribution of a sum of n rank-one matrices
defined by independent normal Xi ∈ Rp with E(X) = 0 and Cov(X) = Σ.

In particular, it holds for the present case:

E(M) = nE(XiX
′
i) = nCov(Xi) = nΣ (2.2)

17
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2.2 PDF Computation for Invertible Σ

In general, any X ∼ N(µ,Σ) can be represented as

X = µ+ AZ, Z ∼ N(0, Ip) (2.3)

so that
Σ = Cov(X) = ACov(Z)A′ = AA′ (2.4)

The easiest way to find A in terms of Σ is the LU-decomposition, which
finds a unique lower diagonal matrix A with Aii > 0 such that AA′ = Σ.

Then by 2.1 and 2.4, with µ = 0 we have:

Wp(n,Σ) ∼
n∑
i=1

(AZi)(AZi)
′ ∼ A(

n∑
i=1

ZiZ
′
i)A

′ ∼ AWp(n)A′ (2.5)

where Zi ∼ N(0, Ip) and Wp(n) = Wp(Ip, n).

Assuming that n ≥ p and Σ is invertible, the density of the random p× p
matrix M in 2.1 can be written 1 :

f(M,n,Σ) =
1

2
np
2 Γp(

n
2
)‖Σ‖n2

‖M‖n−p−1
2 exp[−1

2
trace(Σ−1M)] (2.6)

so that f(M,n,Σ) = 0 unless M is symmetric and positive-definite. [11]

Note that in 2.6 we define Γp(α) as the generalized gamma function:

Γp(α) = π
p(p−1)

4

p∏
i=1

Γ(
2α + 1− i

2
) (2.7)

2.2.1 Visualizing the Wishart Distribution

The Wishart distribution is a generalization to multiple dimensions of the
chi-squared distribution, or in the case of non-integer degrees of freedom, of
the gamma distribution.
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Figure 2.1: Monodimensional Wishart Distribution and χ2(n) distribution
comparison

We show in fig.2.1 that for a 1-dimensional and equal to 1 Σ scale matrix,
the Wishart distribution W1(n, 1) is equivalent to the χ2(n) distribution.

Save for this simple case, being the Wishart a distribution over matrices, it
is a generally hard task to visualize it as a density function. We can however
sample from it and use the eigenvectors and eigenvalues of the resulting
sampled matrix to define an ellipse.

An example of this technique is shown in fig.2.2. A set of five sampled
matrices is drawn for each plot. While the parameter n = 2 (degrees of
freedom) is the same for both the samplings shown, a different scale matrix
Σ is used for each plot. Note that for Σ = I2 (left plot in fig.2.2) the sample

would look on average like circles. For the right plot we took Σ =

[
4 3
3 4

]

Figure 2.2: Plot of eigenvalue and eigenvectors defined ellipses, drawn from
different scale matrix defined by a Wishart-sampled distribution.

1Note: ‖Σ, N‖ = det(Σ,M)



20 CHAPTER 2. THE WISHART DISTRIBUTION

2.3 The Wishart Distribution in Bayesian Con-
jugate Prior Analysis

An important use of the Wishart distribution is as a conjugate prior for
multivariate normal sampling. We now recall some basics concepts about
Bayesian inference and prediction in order to show the application of the
Wishart in those fields.

2.3.1 Bayesian Inference and Priors Distributions

The distinctive feature of the Bayesian approach underlies in its way of defin-
ing probability.

Probability is treated as belief and not as frequency, thus introducing a
fundamental difference between the Bayesian and the frequentist approach
and shifting the goal toward the analysis and statement of a belief [12].

We can sum up the process of Bayesian inference as follows:

• A probability density called prior distribution π(θ) is chosen, expressing
the beliefs about a parameter θ before any data are seen.

• A statistical model p(x | θ) is chosen, which must reflect the beliefs
about x given θ.

• After observing the data Dn = [X1...Xn], the beliefs is updated and
the posterior distribution p(θ | Dn) is computed.

By Bayes’ theorem the posterior distribution can be written as

p(θ | X1...Xn) =
p(X1...Xn | θ)π(θ)

p(X1...Xn)
=
Ln(θ)π(θ)

cn
∝ Ln(θ)π(θ) (2.8)

where Ln(θ) =
∏n

i=1 p(Xi | θ) is the likelihood function and the normaliz-
ing constant cn is defined as follows:

cn = p(X1...Xn) =

∫
p(X1...Xn | θ)π(θ)dθ =

∫
Ln(θ)π(θ)dθ (2.9)

the normalizing constant is also called the evidence.
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We now define the general properties of a conjugate prior. If, for a given
problem, the posterior distribution p(θ | X1...Xn) and the prior π(θ) belong
to the same family of distribution, they’re called conjugated distributions
and the prior is said to be a conjugate prior for the given likelihood function
Ln = p(X1...Xn | θ). Note that in order for this to be a meaningful notion,
the family of distribution should be sufficiently restricted, and is typically
taken to be a specific parametric family. Complete characterization of the
conjugate priors exists only for general exponential family models [12].

Considering the general problem of inferring a distribution for a parameter
θ given some observations Dn = [X1...Xn] and referring to theorem 2.8,
by which we let the likelihood function be considered fixed as it is usually
well-determined from a statement of the data-generating process, it is clear
that different choices of the prior distribution π(θ) may make the integral
in 2.9 more or less difficult to compute. The product Ln(θ)π(θ) will also be
influenced, gaining the possibility to take one algebraic form or another.

If for certain choices of the prior the posterior has the same algebraic
form as the prior, those choices are said to yield a conjugate prior. It is then
possible to state that a conjugate prior is an algebraic convenience giving a
closed-under-sampling-form expression for the posterior.

A classical example concerns the Gaussian Distribution: the Gaussian
family is conjugate to itself (or self-conjugate) with respect to a Gaussian
likelihood function: if the likelihood function is Gaussian, choosing a Gaus-
sian prior over the mean will ensure that the posterior distribution is also
Gaussian [13].

2.3.2 The Wishart Conjugate Prior

We now show how theWishart Distribution is correlated to theInverse Gamma
Distribution in a multidimensional setting, by considering a Gaussian model
with known mean µ, so that the free parameter is the variance σ2, as in
[12]. By doing so, we justify the use of the Wishart distribution in modelling
estimated distribution under the assumption of Multivariate Gaussian dis-
tributed data scenarios. This kind of assumption is indeed generally good for
a wide range of problems. Furthemore, the use of the average of one class’s
covariance matrix to compute the scale matrix for the class estimated dis-
tribution will be proved to be a good approximation of a complete Bayesian
model.
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The likelihood function is defined as follows:

p(X1...Xn | σ2) ∝ (σ2)−
n
2 exp(− 1

2σ2
n(X − µ2)), (X − µ2) =

1

n

n∑
i=1

(Xi−µ)2

(2.10)

The conjugate prior is an inverse Gamma distribution. Recall that θ has
an inverse Gamma distribution with parameters (α, β) when 1

θ
∼ Gamma(α, β).

The density is then bound to take the form

πα,β(θ) ∝ θ−(α+1)e−
β
θ (2.11)

Using this prior, the posterior distribution of σ2 is given by

p(σ2 | X1...Xn) ∼ InvGamma(α +
n

2
, β +

n

2
(X − µ2)) (2.12)

An alternative way of parameterization of the prior is given by the Inverse
Scaled χ2 Distribution, whose density is defined as

πν0,σ2
0
∝ θ−(1+

n0
2
)exp(−ν0σ

2
0

2θ
) (2.13)

Under this kind of parameterization of the prior, the posterior takes the
form

p(σ2 | X1...Xn) ∼ ScaledInvχ2(ν0 + n,
ν0σ

2
0

ν0 + n
+
n(X − µ2)

ν0 + n
) (2.14)

In the multidimensional setting, the inverse Wishart takes the place of the
inverse Gamma.

It has already been stated that the Wishart distribution is a distribution
over symmetric positive semi-definite d × d matrices W . A more compact
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form of the density is given by

πν0,S0(W ) ∝| W | (ν0−d−1)
2 exp(−1

2
trace(S−10 W )), | W |= det(W ) (2.15)

where the parameters are the degrees of freedom ν0 and the positive-
definite scale matrix S0.

If W−1 ∼ Wishart(ν0, S0) we can then state that W has an Inverse
Wishart Distribution, whose density has the form

πν0,S0(W ) ∝| W |− (ν0+d+1)
2 exp(−1

2
trace(S0W

−1)), | W |= det(W )

(2.16)

LetX1...Xn beN(0,Σ) distributed observed data. Then an inverse Wishart
prior multiplying the likelihood p(X1...Xn | Σ) yields

p(X1...Xn | Σ)πν0,S0(Σ) ∝

| Σ |−n2 exp(−n
2
trace(SΣ−1) | Σ |− (ν0+d+1)

2 exp(−1

2
trace(S0Σ

−1))

=| Σ |− (ν0+d+n+1)
2 exp(−1

2
trace((nS + S0)Σ

−1))

(2.17)

where S is the empirical covariance S = 1
n

∑n
i=1XiX

T
i .

Thus, a posterior with the form

p(Σ | X1...Xn) ∼ InvWishart(ν0 + n, nS + S0) (2.18)

is obtained.

Analogally, it can be stated that for the inverse covariance (precision)
matrix Σ−1 the conjugate prior is a Wishart distribution.
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Chapter 3

The WISDoM Multiple Order
Classification

In this section, the classification method implemented and used on the ADNI2
database is described, both in an analytical and technical way.

TheWishart Distributed Matrices Multiple Order Classification is a method
that allows both classification and feature selection for any classification prob-
lem whose elements can be tied to a symmetric positive-definite matrix rep-
resentation (i.e. covariance and correlation matrices). The measure used to
train the classifier is defined as well as the feature transformation undergone
by the each of the subject analyzed. The general pipeline and the valida-
tion pipeline are then discussed while also introducing an example of possible
parallelization for performance enhancing.

3.1 Wishart Sampling

Considering what has been said in the last section, using the Wishart distri-
bution to model and sample the elements of a wide range of problems follows
naturally.

As a matter of fact, every calssification problem whose elements take the
form of symmetric positive-definite matrices can be approached with the
method we are about to discuss. The main idea for the WISDoM Classifier
is to use the free parameters of the Wishart distribution (the scale matrix
S0 and the number n of the degree of freedom, as shown in 2.6) to compute
an estimation of the distribution for a certain class of elements, and then

25
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assign a single element to a given class by computing some sort of "distance"
between the element being analyzed and the classes.

Furhermore, if we assume that the matrices are somehow representative of
the features of the system studied (i.e. covariance matrices might be taken
into account), a score can be assigned to each feature by estimating the
weight of said feature in terms of Log Likelihood Ratio. In other words, a
score can be assigned to each feature by analyzing the variation in terms
of LogLikelihood caused by the deletion of it. If the deletion of a feature
causes significant increase (or decrease) in the LogLikelihood computed with
respect to the estimated distributions for the classes, it can be stated that
said feature is highly representative of the system analyzed.

It is now clear that the simplest usable objects to estimate the distribution
for a class and to represent its elements is the covariance matrix. Further
proofs for this statement will be given later on. Thus, the aim of the WISDoM
classifier is not only to assign a given element to the optimal class, but also
to identify the features with the highest "weights" in the decision process.

3.1.1 Computing the Estimated Distribution

Let us briefly recall the parametrization of the Wishart Distribution in order
to clearly define the application conditions for classification problems.

Let X1...Xn be independent Np(0,Σ) distributed vectors, forming a data
matrix p × n, X = [X1...Xn]. The distribution of a p × p, M = XX ′ =
Σn
i=1XiX

′
i random matrix is a Wishart distribution with parametersWp(n, S0).

In the previous chapter (2.6) it has been proved that for normal distributed
data, for S0 = Σ, a distribution of random covariance matrices is obtained.
In a similar fashion, if a good choice for the scale matrix S0 is made for a
given class, a representative distribution for the class can be estimated and
samples can be drawn from it.

Covariance matrices are a good choice, although not limiting as long as the
matrices are symmetric and positive-definite, both for the way they represent
a system and for the property that the mean of a set of covariance matrices
is a covariance matrix.

If each element of a given class C is represented by a covariance matrix Σ
of its features, this property allows us to estimate a distribution for the class
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by choosing

S0 = Σ̂C =
1

N

N∑
i=1

Σi (3.1)

The other necessary parameter for the estimation is the degrees of freedom
n.

Assume that an Xi = (x1, ..., xp) vector of p features is associated to each
element i of a given class, while having n observation of said vector. The
covariance matrix Σi computed over the n observations will represent the
"interactions" between the features of element i. The degrees of freedom
n of the Wishart distribution are then given by the number of times Xi is
observed.

Let us introduce an example tied to functional MR brain imaging in order
to further clarify the concepts being introduced.

An image of patient i’s brain is acquired; as usual these images are divided
in a certain number p of zones (voxel, pixel etc.), each zone being sampled
n times over a given time interval in order to observe a certain type of brain
activity and functionality. It is now clear that the features contained in
vector Xi = (x1, .., xp) associated to patient i are indeed the zones chosen
to divide i’s brain image, each zone having been sampled n times during
an acquisition interval. The correlation p × p matrix Σi computed for i’s
observation is then representative of the functional correlation between the
p zones of i’s brain. Repeating this procedure for N patients belonging to a
known class C (i.e. a diagnostic group) and computing the Σ̂C scale matrix
for the class as stated before, will allow us to estimate a wishart distribution
for that class correlation matrices and draw samples from it.

The module used for Wishart generation and sampling by the WISDoM
calssifier is the SciPy.Stats.Wishart module of the SciPy Python3.6 library.
Further details on the generation and sampling algorithm used by the module
can be found in [14].

Some samples drawn from Wishart distributions computed with different
5× 5 scale matrices and degrees of freedom are shown in fig.3.1.
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Figure 3.1: Various sampling from different wishart distribution. A diverging
heatmap has been chosen to visualize the values of each sample’s elements.

3.2 Log-Likelihood Ratio Measure

After the definition of the role of the Wishart distribution in symmetric posi-
tive definite matrices’ modeling, it is necessary to define some sort of distance
between the estimated distribution for a class C and its hypotetical elements.
As stated before, this will be done in terms of both entire matrices and sin-
gle features, in order to achieve optimal classification and exract information
about a system’s most meaningful components.
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3.2.1 Complete Matrix Measure

The scoring system used by the WISDoM Classifier relies on the logpdf func-
tion from the SciPy.Stats.Wishart module in order to compute the LogLike-
lihood of a matrix Σi with respect to the Wishart distribution estimated for
a class C, using Σ̂C as the scale marix. If a problem concering two given
classes CA and CB is taken into account, the score assigned to each Σi upon
which the classification decision is based, can be defined as follows:

scorei = logPW (Σi | n, Σ̂A)− logPW (Σi | n, Σ̂B) (3.2)

Where Σ̂A,B are the scale matrix computed for the classes A,B and
logPW (Σi | n, Σ̂A,B) can be seen as the logarithm of the probability of Σi

belonging to the Wishart distribution estimated for one of the two classes
A,B.

3.2.2 Single Feature Measure and Multiple Order Re-
duction

The aim of the WISDoM classifier is to further increase the informations
obtained about the system’s features during the classification.

To do this it is then necessary to introduce some matemathical properties
of the symmetric positive deifnite matrices, upon which the method relies.
It will be shown that it is indeed possible to access different orders of infor-
mation by scaling a matrix A to its principal submatrices.

Def. Let A be an n × n matrix. A k × k submatrix of A formed by
deleting n−k rows of A, and the same n−k columns of A, is called principal
submatrix of A. The determinant of a principal submatrix of A is called a
principal minor of A.

Note that the definition does not specify which n − k rows and columns
to delete, only that their indices must be the same.

Let us introduce a 3× 3 example.
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For a general matrix A3×3

A =

a11 a12 a13
a21 a22 a23
a31 a32 a33

 (3.3)

there are three first order principal minors :

• | a11 | formed by deleting the last two rows and columns

• | a22 | formed by deleting the first and third rows and columns

• | a33 | formed by deleting the first two rows and columns

There are three second order principal minors :

• |
[
a11 a12
a21 a22

]
| formed by deleting column 3 and row 3

• |
[
a11 a13
a31 a33

]
| formed by deleting column 2 and row 2

• |
[
a22 a23
a32 a33

]
| formed by deleting column 1 and row 1

There’s one third order principal minor, namely | A |.

For the sake of completion, we also recall the following definition.

Def. Let A by an n× n matrix. The kth order principal sub-matrix of A
obtained by deleting the last n − k rows and columns of A is called the kth
order leading principal submatrix of A, and its determinant is called the
kth order leading principal minor of A.

An imporant property for the principal submatrices of a symmetric posi-
tive definite matrix is that any (n− k)× (n− k) partition is also symmetric
and positive definite.

It is now clear that such properties can be used to reduce both a class
scale matrix Σ̂C and any Σi matrix, in order to study its deviation from a
class’s estimated Wishart distribution derived from the deletion of one of its
components (the features conatined in vector Xi = (x1, ..., xp) from which
the matrix Σi,p×p is computed).
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Iterating this process over all the features, or in other terms analyzing all
of the (p− 1)× (p− 1) principal submatrices of Σi and Σ̂C , will allow us to
assign a score to each feature, representing its weight in the decision for Σi

to be assigned to one class or another.

Note that for such an order of principal submatrices, the process will
reduce the Σi,p×p matrix to a score vector of length p for each element i
undergoing the classification.

Let us now introduce the following notation in order to define the score
assigned for each of the xp features of the vector Xi = (x1..., xp).

Let Σj be a principal submatrix of order (p−1), of the matrix Σ computed
on the observation of Xi = (x1, ..., xp) for subject i, obtained by the deletion
of the jth row and the jth column, with 1 ≤ j ≤ p.

Let Σ̂Cj be a principal submatrix of order (p − 1), of the matrix Σ̂C

computed for the class C obtained by the deletion of the jth row and the jth
column, with 1 ≤ j ≤ p.

The score assigned to each feature of Xi = (x1, ..., xp) is then given by
eq.(3.4).

Scorej(C) = ∆logPWj(C) = logPW (Σ, n | Σ̂C , n)− logPW (Σj, n | Σ̂Cj, n)
(3.4)

In other terms, each partition Σj represents the matrix Σ without the
elements tied to feature xj (the elements in row j and column j of Σ). Com-
puting the variation in terms of log-likehood between the estimated wishart
distribution for the class and the estimated wishart distribution for the class
without component j, allows us to gain informations about which feature
weighs more on both subject i’s cassification and the general system struc-
ture.

Note that this kind of scoring is class-dependent. Computing this score
vector with respect to all the classes C1..Cn of a given problem and performing
some sort of score ratio will allow the subject i, after a suitable training, to
be assigned to the most likely of the classes while retaining informations on
which features are the most determinant, decision wise.
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Let us introduce a 2-classes example in order to show how this kind of
result might be obtained.

Let C1 and C2 be the two classes of a given problem.

Let a set of N matrices Σi be a set of correlation matrices computed for
N subjects i whose class is known.

Let Σ̂C1 and Σ̂C2 be the scale matrices computed as seen in eq.(3.1), used
to estimate the Whishart distribution for each one of the two classes C1 and
C2, and Σ̂C1j and Σ̂C2j their (p− 1) order partitions, as in eq.(3.4).

If from each matrix Σi the score vector is computed as in eq.(3.4) with
respect to each one of the two classes C1, C2, an inter-class log-likelihood ratio
vector can be obtained by assigning to each feature a score defined as follows:

Ratioj = ∆logPWj(C1)−∆logPWj(C2) (3.5)

Training a classificator on a set of N subjects whose classes are known,
after each matrix Σi (and as a consequence each feature vector Xi) has un-
dergone the transformations defined in eq.(3.4) and (3.5), yields a significant
improvement in performance for certain classes of problems, as it will be
shown later.

A new subject will be, as a matter of fact, classified according to its
transformed ratio vector given by eq.(3.5), thus simultanesously retaining
information about its class’s most significant features: the score assigned to
each feature is a measure of how much the deletion of said feature weighs, in
terms of log-likelihood variation, on the decision to assign each matrix Σi to
one class or another.

The entire process can be seen as a feature transformation, which leads to
a feature selection, whose effect is, for certain types of problems, to enhance
the classification performance.

3.2.3 Generalizing to (p− n) Order Transformations

As seen in the last section, transforming all the (p − 1) × (p − 1) principal
submatrices of Σi by eq.(3.4), yields a vector of score of length p for each
element i.
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Anyway, for any n < p, a number of principal submatrices of Σi can be
obtained. These kind of submatrices can be used to gain informations about
the weight of n simoultaneously deleted features on the system structure and
classification. Let us introduce an example for (p− 2) order submatrices.

Let Σjk be a principal submatrix of order (p− 2), of the matrix Σi com-
puted on the observation of Xi = (x1, ..., xp) for subject i, obtained by the
deletion of the jth row and the jth column and the kth row and the kth column
, with 1 ≤ j, k ≤ p.

Let Σ̂Cjk be a principal submatrix of order (p − 2), of the matrix Σ̂Cjk

computed for the class C obtained by the deletion of the jth row and the jth
column and the kth row and the kth column , with 1 ≤ j, k ≤ p.

Then, eq.(3.4) becomes:

Scorejk(C) = ∆logPWjk(C) = logPW (Σ, n | Σ̂C , n)− logPW (Σjk, n | Σ̂Cjk, n)
(3.6)

in this case, a score is assigned to each coupling of the features j, k, and
transformation (3.6) will yield not a vector, but a p×p matrix with diagonal
elements equals to the scores obtained by (3.4), being the iteration with j = k
the coupling the jth feature with itself. Non-diagonal elements represent the
score of the coupling of feature j with feature k.

A notable characteristic of (p − 2) order transformations for correaltion
matrices, is that the informative content after such an order of transformation
is comparable to that of the original correlation matrix. It can thus be stated
that the (p− 2) order transformed correlation matrix seems to be equivalent
to the original correlation matrix under an affine transformation.

3.3 Pipeline

In this section we discuss each step of the feature transformation and classi-
fication process.
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Given the recursive nature of the method just described, a crucial issue
concerning computational time is the strong dependence between it and the
analyzed matrix size. A rough visualization of the entity of such a dependence
can be found in fig.(3.2)

Figure 3.2: Matrix Size dependence for (p − 1) order transformations. The
jump between the 125-150 size range maybe due to upcoming cache storing
processes.

Iterating the (p − 1) order transformation described in eq.(3.4) over a
large N of observations of size p × p of a given database, while introducing
some kind of cross-validation routine may lead to abysmal computational
time-wise performances.

A possible solution to this problem is to introduce a high level of automa-
tization for each step, followed by the indroduction of a highly parallelizable
overall structure of the pipeline.

3.3.1 The Snakemake Environment

The main tool used to achieve such results is the Snakemake Workflow
Management System, described in [15], a Python-based interface created to
build reproducible and scalable data analyses and machine-learning routines.
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To briefly some up the the advantages of using such tools and structures,
the Snakemake Workflow can be described as rules that denote how to cre-
ate output files from input files. The workflow is implied by dependencies
between the rules that arise from one rule needing an output file of another
as an input file [15].

A rule definition specifies :

• a name, used by the main rule instance rule all and main execution
environment for identification

• any number of input and output files ; tipically one rule’s output is an-
other rule input, linking the rules alla the way up to main rule instance.

• either a shell command or Python code; containing the creation of the
output from the input

Input and output files may contain multiple named wildcards, whose values
are inferred automatically from the files desired by the user.

To further clarify the role of the wildcards, let us introduce a brief exam-
ple. Let’s say that our aim is to train a classifier over two classes of elements
C1, C2. The training part of the database is then divided in two files, each
one containing the name of its elements’ class in the filename. Setting a rule
to load these files while expecting a wildcard tied to the class name in the
filename, will allow the entire set of rules of the pipeline to be executed auto-
matically for class C1 and class C2. Considering this example, the real power
of the parallelization capabilities offered by the Snakemake environment are
quite clear.

With a simple syntax, looking at the example just proposed, each one of
two cores of a server where our hypothetical pipeline is running can be set
to work indipendently on each subset of data belonging to class C1 or class
C2. Building a pipeline whose rules are easily iterable over a set of different
wildcards will lead to natural and efficient parallelization and automation.
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3.3.2 The WISDoM Pipeline

Figure 3.3: General pipeline workflow.

In figure (3.3) the main steps required by the WISDoM Multiple Order
Classification are reported.

We will now go through each step in detail in order to show how train and
test splitting are interpreted for the WISDoM pipeline.

• Database loading and class splitting
rules: case_wrap, seqs_store ; in this section of the pipeline, data are
loaded and divided into the classes defined by the wildcards and main
rule instance’s inputs. An info sheet containing the classification labels
for each observation is needed as an input for this step.

In order to achieve fast reading/writing perfomances for big data, the
matrices are stored as the sequence of elements belonging to the upper
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triangle for each matrix (in .hdf format). Being symmetric, the entire
matrix can be easily reconstructed when needed. At this step, the files
containing observations for each class are created.

• Train-Test split index creator
rules: split_gen, tt_gen; in this section of the pipeline, each file con-
taining one class’s observations is divided into train-test batches. The
total number of train-test folds is defined by wildcards and main rule
instance’s inputs.

First, each dataset is divided into sections, then each section is further
splitted intoa number of user-specified train-test folds.

• Class Scale Matrix computation and feature transformation
rules: map_gen; this is the core section of the pipeline, where the
features are transformed according to eq.(3.4).

Train-test split files for each class are passed as inputs; the train sets
of each batch are used to compute the scale matrix Σ̂C as in eq.(3.1).
The estimated Wishart for the class is then computed and the features
of each test-set element are transformed.

In order to compute the Ratio described in eq.(3.5), the above process
is repeated for each class with respect to each other. A map containing
each transformed feature in term of quantiles is also created.

• Test splits merging and tidy datasets creation
rules: t_join, q_join; in the final step of the pipeline, all of the trans-
formed feature test batches are merged into tidy datasets. This type of
data sturcture will allow an easy computation of the ratio in eq.(3.5)
for each feature; furhtemore, once such dataset is obtained, evertything
needed for the transformed observations to undergo any classification
pipeline and/or model selection is ready.

A graphic representation of the plan of rules execution can be obtained
by using a directed acyclic graph (DAG), as shown in figure (3.4).
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Figure 3.4: Directed Acyclic Graph representation of the WISDoM pipeline
for the observations of ADNI database. Here we have 2 type of subject, labeled
AD and NC, undergoing a 3 fold train-test split. This split has been chosen
for visualization purposes; for the real analysis a 10-folds split has been used.
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3.3.3 Classification Methods

The last steps of the pipeline are tied to clustering, classification and cross-
validation on the dity dataset returned by the Snakemake section of the
pipeline. We now present a brief excursus on the methods used on the ADNI2
database.

Note that once the tidy dataset [21] is obtained, a wide range of methods
might be implemented in order to achieve clustering, classification, cross-
validation and feature selection. The methods we used are thus just a narrow
selection of all the possibilities.

Hierachical Clustering

In order to assess informations about classification performance and to find
those feature whose weights are the most significant in assigning one element
to a class or another, a hierchical clustermap might be used as a fast and
informative visualization. The tool chosen is the clustermap function of the
Seaborn python 3.6 module, as described in:
seaborn.pydata.org/generated/seaborn.clustermap.html.

As in [20], hierarchical clustering’s performances are metric and linkage
functions dependent.

For the ADNI2 database clustering, metric used is a L1 City Block, defined
as

k∑
j=1

| aj − bj | (3.7)

between two k dimensional points a, b.

In this way, the effect of a large difference in a single dimension is damp-
ened (since the distances are not squared) [19]. As far as linkage functions
are concerned, we used a Nearest Point Algorithm.

Suppose there are | u | original observations (u[0], ..., u[|u| − 1]) in cluster
u and |v| original objects (v[0], . . . , v[|v| − 1]) in cluster v. Let v be any
remaining cluster in the forest that is not u.

The Nearest Point Algorithm assigns:

d(u, v) = min(dist(u[i], v[j])) (3.8)
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for all points i in cluster u and j in cluster v.

Other possible linkage alghorithm are [20]:

• Farthest Point Algorithm or Voor Hees Algorithm, assigns:

d(u, v) = max(dist(u[i], v[j])) (3.9)

for all points i in cluster u and j in cluster v.

• UPGMA algorithm, assigns:

d(u, v) =
∑
ij

d(u[i], v[j])

(|u| ∗ |v|) (3.10)

for all points i, j where |u|, |v| are the cardinalities of clusters u, v re-
spectively.

Further weighted methods are described in [20].

Support Vector Machine Classification

Another one of the methods used for classification and cross-validation is a
classic Support Vector Machine. The tool used is from the SKLearn Python
3.6 module. More details can be found at:
scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html

In general, a support vector machine can be seen as a generalization of
linear decision boundaries for classification. In other terms, is a method to
assess optimal separating hyperplanes for non completely separable classes
problems [22]. This is done by producing nonlinear boundaries by construct-
ing a linear boundary in a large, transformed version of the feature space.

A comparison of how a support vector classifier operates to solve non-
separable problems is reported in fig.(3.5)



3.3. PIPELINE 41

Figure 3.5: Support vector classifiers. The left panel shows the separable
case. The decision boundary is the solid line, while broken lines bound the
shaded maximal margin of width 2M = 2

||β|| . The right panel shows the
nonseparable (overlap) case. The points labeled ξ∗j are on the wrong side of
their margin by an amount ξ∗j = Mξj; points on the correct side have ξ∗j = 0.
The margin is maximized subject to a total budget

∑
ξi ≤ C. Hence

∑
ξ∗j

is the total distance of points on the wrong side of their margin. Source:
Trevor Hastie, Robert Tibshirani, Jerome Friedman [22].

Logistic Regression

A method used to asses informative content of single features is the Logistic
Regression Once again, a SKlearn Logistic Regression classifier is used. De-
tails can be found at:
scikit-learn.org/stable/modules/generated/sklearn.linear/.

Logistic regression, is a regression model whose dependent variable is cat-
egorical. It can be stated that logistic regression is used to predict the risk
of observing a given binary outcome; for example, patients survive or die,
have heart disease or not, a condition is present or absent while taking into
account observed characteristics of the patient. In general, the logistic re-
gression model arises from the desire to model the posterior probabilities of
the K classes via linear functions in x, while at the same time ensuring that
they sum to one and remain in [0, 1]. When K = 2, this model is espe-
cially simple, since there is only a single linear function. It is widely used in



42CHAPTER 3. THE WISDOM MULTIPLE ORDER CLASSIFICATION

biostatistical applications where binary responses (two classes) occur quite
frequently [22].

The model has the form:

log
p(G = (1, ..., K − 1)|X = x)

p(G = k|X = x)
= β(1,...,K−1)0 + βT(1,...,K−1)x (3.11)

Logistic regression models are usually fit by maximum likelihood, using
the conditional likelihood of G given X. Since p(G|X), G = (1..., K − 1, K)
completely specifies the conditional distribution, the multinomial distribu-
tion is appropriate.

The log-likelihood for N observations is:

l(θ) =
N∑
i=1

logpgi(xi, θi) (3.12)

where pk(xi, θ) = p(G = k|X = xi; θ).

ROC AUC Score

The score used to asses informative content and classification capabilities
for each feature’s logistic regression is the Receiver Operating Characteristic
Area Under the Curve score. To grasp the meaning of the Receiving Operating
Characteristic score, we can think as follows.

A ROC curve is created by plotting the true positive rate (TPR) against
the false positive rate (FPR) of a classifier at various threshold settings. It is
thus a plot of the sensitivity (or probability of detection) as a function of the
fall-out (or probability of false alarm). Examples of ROC curves are reported
in fig.(3.6).

If the Area Under the Curve is computed when using normalized units, we
obtain a value tied to the informative power of a classifier, with a completely
uninformative classifier (i.e a classifier based on completely random choices)
yielding a value of 0.5 [23].
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Figure 3.6: Sample ROC curves. A completely ran-
dom classifier will be located at point (0.5, 0.5) while a
perfect classification would be located at (0, 1). Credits:
https://docs.eyesopen.com/toolkits/cookbook/python/plotting/roc.html
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Chapter 4

Results of The WISDoM Multiple
Order Classification

As stated in previous chapters, the chance to use the Wishart distribution
to estimate covariance matrices distributions makes it extremely suitable
for treating brain fMRI data and modelling problems. Thus, to test WIS-
DoM capabilities on feature selection and classification performances, a major
database of functional brain imaging data, the ADNI2 database, has been ex-
plored and analyzed. These database offers a good number of p×p correlation
matrices ; one for each of the subjects that have undergone the baseline ob-
servations, as well as detailed labelling of different diagnostical groups. The
ADNI2 database contains observations about Alzheimer’s disease diagnoses
and over-time conversions from mild cognitive impairment.

Data are thus fed to a WISDoM pipeline and a classification is attempted,
while looking for the most significative features in classes’ separation. Fur-
thermore, for comparison purposes, a class separation is attempted using a
Network-Growth method, while observing the growth of random Wishart-
generated networks in order to test the quality of the null-hypothesis.

45
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4.1 The ADNI2 Database: Study and Results

ADNI, Alzheimer’s Disease Neuroimaging Initiative, is an ongoing, longitu-
dinal, multicenter study designed to develop clinical, imaging, genetic, and
biochemical biomarkers for the early detection and tracking of Alzheimer’s
disease (AD). The ADNI study began in 2004 and included 400 subjects di-
agnosed with mild cognitive impairment (MCI), 200 subjects with early AD
and 200 elderly control subjects.

The major goals of ADNI2 are to [16]:

• Determine the relationships among clinical, imaging, genetic, and bio-
chemical biomarker characteristics of the entire spectrum of Alzheimer’s
Disease (AD), as the pathology evolves from normal aging through very
mild symptoms, to mild cognitive impairment (MCI), to dementia.

• Inform the neuroscience of AD, identify diagnostic and prognostic mark-
ers, identify outcome measures that can be used in clinical trials, and
help develop the most effective clinical trial scenarios.

• Develop improved methods which will lead to uniform standards for
acquiring longitudinal multi-site MRI and PET data on patients with
AD, MCI, and elderly controls.

• Perform longitudinal clinical, cognitive, MRI, PET (18F-AV-45 and
FDG), and blood and CSF biomarker studies on 550 newly enrolled
subjects in four diagnostic categories – cognitively normal (CN), early
MCI (EMCI), late MCI (LMCI), and mild AD.

• Collect blood samples for DNA and RNA extraction. Newly enrolled
subjects will also have samples collected for Cell Immortalization and
APOE genotyping.

• Validate the clinical diagnoses and imaging and biomarker surrogates
through neuropathological examination of ADNI1, GO and ADNI2 par-
ticipants who come to autopsy.

A resume of how the clicnical data are collected for 54 months after the
baseline is reported in fig. (4.1)
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Figure 4.1: Timeline of clinical data collection procedures. Source:
http://adni.loni.usc.edu/data-samples/clinical-data/

4.1.1 Data Exploration and Selection for WISDoMClas-
sification

As a preliminar analysis, the conversion rate of MCI to AD has been checked
in order to find correspondence with literature. As in [17], [18] , we expect
to find a maximum of the conversions’ distribution over time at around 18
months. This period of time is, as a matter of fact, the cut-off for what has
been defined long-term survival, after which prediction results for conversion
significantly lose stability [18]. As shown in figure (4.2), the maximum for
the distribution stands at around 18 months. Two different fits are reported
for comparison in terms of log-likelihood.

Of the 403 total subjects available, only 232 were selected for the final
WISDoM Classification run. The main reason of such a selection is the fact
that two distinct data group can be found inside the datasets.

As shown in fig.(4.3), two distinct peaks are obtained if a standard devi-
ation distribution for the diagnostic groups is taken into account. While no
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Figure 4.2: Conversion distribution over time. As expected, we find a maxi-
mum at around 18 months. Two different fits (Gamma and Log-normal) are
reported for comparison.

difference in distribution can be found amongst the three different diagnostic
groups, the second peak can be a sign of two indipendent data normalization
procedures in the dataset.

To support this hypothesis, if we look at the standard deviation distri-
bution by gender in fig.(4.4), we can see that there are two different gender
labelling (M-F and Male-Female) generating two distinct peaks. More pre-
cisely, the ratio of the average standard deviation for the two groups is ∼

√
2;

in other terms, one group’s variance is two times the variance of the other
group, meaning that one group of data could be the average of two separate
observations. This fact leads to the hypothesis that two distinct datasets,
whose subjects have been examined with silghtly different procedures, might
have been merged into a single one.

Given that the Male-Female labelling occurs for the first 98 entries, the
remaining 305 entries have been chosen for the final run, being the biggest
group with homogeneous data normalization. Of these 305 entries, 7 have
been discarded due to wrong or missing labelling. Of the remaining entries,
subjects of the Mild Cognitive Impairment (MCI) diganostic group have been
excluded. This choice has been made in order to train the classifier exclusively
on the Normal Control (NC) group, and Alzheimer’s Disease (AD) diagnostic
groups.
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Figure 4.3: Standard deviation for different diagnostic groups. As shown,
different diagnostic groups yields no signficative difference while the second
peak at ∼ 0.27 might be due to different normalizations in data.

Figure 4.4: Standard deviation distribution by gender. The two distinct peak
are a sign of different normalization for data whose gender is labelled with
M-F and Male-Female.

In this way, the conversion component is excluded form the analysis, whose
aim is to classify and select significative features for the NC and AD diag-
nostic groups. Of the 232 subjects remaninig, the 63% belongs to diagnostic
group AD and the remaining 37% belongs to diagnostic group NC.
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Data Structure and Preprocessing

We had acess to a database in which each subject’s image raw data had been
preprocessed and divided into 549 macrovoxels, whose topological correlation
has been computed with respect to each other. Each of the 549 macrovoxels
being defined over an ensemble of 3 · 103 voxels.

Thus, 232 N × N , N = 549 matrices have been used for training and
calssification with the WISDoM classifier.

An example of such a corelation matrix can be seen in fig.(4.5).

Figure 4.5: Divergent heatmap representation of a subject’s correlation ma-
trix.

4.1.2 Results

Several types of analyses and classifications have been conducted on the out-
puts of the WISDoM method’s features transformations defined in eq.(3.2),
eq.(3.4) and eq.(3.5).

First of all, a separation of the two classes AD and NC based on complete
matrix distance (eq.(3.2)) is attempted. Then, single feature distances as in
eq.(3.4, 3.5) are computed for all the subjects and various clusterings and
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calssifications are attempted. Lastly, a network-growth separation based on
transformed features ranking is attempted for comparison.

Complete Matrix Measure Separation

As a first approach to classification, a score based on simple log-likelihood
distance is assigned to each subject’s correlation matrix. In fig.(4.6) is re-
ported the attempt to separate the two diagnostic groups AD and NC by
computing the measure in terms of log-likelihood from each class’s estimated
Wishart distribution.

As seen before, one class’s WIshart distribution can be estimate by com-
puting the scale matrix as in eq.(3.1). In this case the parameter degrees of
freedom n is given by the number of voxels belonging to each macrovoxel.
Thus, we take n = 3 · 103.

Figure 4.6: Complete matrix log-likelihood score distribution, separation per-
formance is abysmal.

Then, a complete matrix ratio score as in eq.(3.2) is assigned to each
matrix for classifficiation.

Results for this type of process are shown in fig.(4.7).
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Figure 4.7: Complete matrix log-likelihood ratio score distribution, separation
performance is abysmal.

At this stage, it is clear that separation performances are inadequate and
single feature analysis is needed.

Single Feature Ratio Separation

For each one of the 232 subject, the (p − 1) order feature transformation is
computed according to eq.(3.4); this is done thanks to the WISDoM Classi-
fication pipeline described by figure (3.3).

We set the pipeline to compute the estimated Wishart distribution for
the classes from each train batch in a 10-fold cross validation process ; test
elements’ feature are then transformed and the score vector for order (p− 1)
transformation is computed. This leads to a 90% − 10% train-test splitting
for each batch. After the score vector is computed with respect to each class
for each subject, scores defined by eq.(3.5) are computed and the vectors
merged into a single tidy dataset. Various classification processes are then
attempted.

To compare separation performances after single feature analysis, in a
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way similar to what has been done for complete matrix distance separation
described in fig.(4.6, 4.7), the distribution of single scores assigned for each
subject is computed. This is simply done via a sum of the single feature ratio
score vector for each subject.

Results can be seen in fig.(4.8).

Figure 4.8: Distribution of the sums of single feature ratio score vector for
each subject. In this way, a vector of scores is reduced to a single score.
Looking at the distributions we can see that classes are already well separated
with this simple reduction.

Comparing the results shown in fig.(4.8) with the results for complete
matrix disatnce separation in fig.(4.6, 4.7), we can state that the (p−1) order
feature transformation and ratio score already give a significant separation
perfomance enhancement at this stage.

Clustering

In order to obtain information about which features are the most significative
in classification, a hierachical clustering, described in [19], [20], is performed.

Such a clustermap, shown in fig.(4.9), offers a representation of the clas-
sification capabilities and weights of single features. As a matter of facts,
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features on the left part of the map are seen as the most significative in
clustering performance.

We can also state that a clustering made on (p − 1) order transformed
features yields a good performance for the groups NC (in green) and AD (in
red). Only a few subjects tends to be assigned to clusters far from their true
classes’ main clusters.

Figure 4.9: Hierarchical Clustering visualization over an L1 City Block Met-
ric. Features on the left part of the map have the biggest influence in clus-
tering decision. Color green is assigned for NC subjects and red for AD
subjects.

SVM Classification and Single Feature Logistic Regression Ranking

Given the results obtained with scores’ sum distributions and clustering, a
classification with a C-Support Vector Machine has been attempted. Using a
linear kernel and taking the penalty parameter for error term C = 1, a 10 fold
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stratified cross-validation is performed. Note that the use of a stratified cross-
validation means that the relative proportions of the classes are preserved for
each train-test batch, as in [22]. Such a classification yields an accuracy score
of 100%.

Again, given the results, a single feature logistic regression classifier has
been tested, in order to observe each feature classification performances and
produce a feature ranking.

This is done by computing a logistic regression classification for each one
of the 549 transformed features of each subject and computing the average
cross-validation ROC AUC score for each feature. At this stage, a logistic
regression classification is attempted using a single feature for each iteration.
Then a 10-folds cross validation is computed and the average ROC AUC score
is assigned to each feature, as an indicator of classification performance.

A plot of the classification capabilities, in terms of ROC AUC score, over
features’ ranking is reported in fig.(4.10).

Figure 4.10: ROC score over ranking. Note that by definition a ROC score of
0.5 means a completely random classification. We can see that classification
capabilities rapidly decrease after the first 300 rankings.

If the Area Under the Curve is computed when using normalized units, we
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obtain a value tied to the informative power of a classifier, with a completely
uninformative classifier (i.e a classifier based on completely random choices)
yielding a value of 0.5 [23].

Thus, computing a regression for each feature and the relative ROC AUC
score will tell how informative a classifier based on that single feature is. To
visualize the informative content of the highest ranking features and take
a look at their classification capabilities, we attempted to separate the two
classes in the first two highest ranked features’ space. Results are shown in
fig.(4.11).

Figure 4.11: Scatterplot in the first two highest ranked features’ space. While
the elements of each class are far from being completely separate, we can
observe some kind of separation. Label 1 is assigned to class AD while label
0 is assigned to class NC.

While the separation is obviously not comparable to results obtained and
shown by fig.(4.8) or fig.(4.9), we can state that reducing the classification
to the first two highest features (in other terms, reducing the problem to two
dimensions) doesn’t cause the classification to be completely uninformative.
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Network Growth Separation for Non-Transformed Features

In order to emphasize the importance of the features’ transformation defined
in eqs.(3.4, 3.5) in classification performance enhancement, we attempted to
obtain some separation results on non.transformed features via a threshold-
based network growth process.

First, all matrices have been standardized. Then a ranking of absolute
correlation values is made, in order to obtain a sorted edges list upon which
the networks’ growth is based and nodes are created. At this point, a network
is observed in terms of number of nodes, number of connected components, size
of the biggest connected component while adding an edge for each iterations.

In this way, the strongest connections in terms of correlations between
features are the first to generate nodes in the network for each iterations.
The goal is to establish if Alzheimer’s diagnosed subjects network of corre-
lations grows at a slower rate than normal control subjects’ networks. Each
network’s growth is observed for a range of 3 · 103 edges. Besides observing
networks for the two diagnostical groups AD and NC, growth of Erdos-Reniy
random networks and Random Wishart sampled networks is also reported for
comaprison. Results are shown in fig.(4.12). The Wishart random sampling
networks are generated using the average of all ADNI2’s subjects matrices
as the scale matrix.

By looking at fig.(4.12), we see that no significative separation is shown
for the two classes. On the other side, we can see that the growth trend of
Wishart-generated random networks is comparable with that of real AD and
NC observations, thus validating the model used for the generation of the
estimated distributions.
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Figure 4.12: Networks growth observed in terms of Number of Nodes, Num-
ber of Connected Components and Size of largest Connected components. 4
subjects are plotted for each category in order to give an idea of variability.
While separation performances are abysmal, we can see that the Wishart null
hypothesis is well suited, as its trend is comparable with AD and NC subjects’
trend.
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To get a more accurate idea of inter-class growth’s average behaviour,
a Lowess Regression [24] as been computed on 50 subjects for each of the
diagnostic group AD and NC. As shown in fig.(4.13), there is significative
separation between the two classes in the range of [2 · 103, 3 · 103] observed
links.

An issue with fig.(4.13) is that the tool used to compute the Lowess did
not allow the visualization of a confidence interval.

Figure 4.13: Lowess regression on 50 subjects-per-class growth. Significant
separation is only yielded in the range of 2 · 103, 3 · 103 observed links. The x
axis has been binned into 40 values to enhance visualization.



60CHAPTER 4. RESULTS OF THE WISDOM MULTIPLE ORDER CLASSIFICATION



Conclusions

In this work, we introduced the WISDoM Multiple Order Classification
method. We showed how the Wishart Distribution is well suited as a null-
hypothesis for random sampling in problems concerning Symmetric Positive-
Definite matrices. We discussed how characterizing the distribution of a class
of symmettric positive-definite matrices using a Wishart distribution, allows
us to define a set of different orders tranformations over matrices’ entries.

Furthermore, these estimation processes and entries transformation are
inserted into a machine learning pipeline, in order to properly train esti-
mation models while avoiding overfitting. In this way, a wide range of su-
pervised learning methods and techniques can be applied in order to obtain
final results, thus allowing natural cross-validation and model selection. The
implementation of such a pipeline also allows to mitigate the high computa-
tional cost of single feature analysis. While the computational time is indeed
strongly matrix-size dependent, a pipeline environment offers the chance to
build an effective parallelization of the processes.

The application of feature transformation and class distribution estima-
tion offered by the WISDoM Multiple Order Classification method, find their
natural environment in the field of fMRI Brain Functional Connectivity anal-
ysis.

Many studies have indeed underlined the importance of resting state and
Default Mode Networks analysis for brain disorders diagnostic and classifi-
cation purposes. The disruption of topological and dynamical properties of
default mode networks induced by a great number of disorders, allows the
introduction of measures derived from graph theory to asses informations
about the anatomical structures underliyng the damaged areas.

Good results have been in example obtained for neurodegenerative dis-
eases such as the Alzheimer’s disease [6]. Subjects have been separated and
classified ont the base of the global-local efficiency trade-off for Alzheimer’s
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disease diagnosed patients, allowing to assess informations about the un-
derlying roles of differnet default mode networks areas, especially as far as
different ranges of brain’s information processing are concerned.

With the WISDoM Multiple Order classification we propose an approach
based on the statistical modelling of the same two classes of patients (AD,
Normal Controls), using data from the ADNI2 database. The Functional
Correlation Matrices that can be computed from the images of the database
offer a good test environment for the WISDoM method, while offering the
possibility of a fast interpretation of the results. The (p − 1) order trasfor-
mation introduced thanks to the properties of symmetric positive-matrices
lets us define a score tied to the informative content of each feature. This
allows us not only to achieve good classification performances, but also to
asses informations about which features are the most relevant in the decision
processes. With a suitable computational power, such informations could be
further extended to interaction between groups of features, given the possi-
bility to generalize them up to (p− n) orders.

Quantifying the informative content of each feature may thus lead to a
great improvement in feature selection and dimensionality reduction prob-
lems, while introducing the possibility to avoid problems tied to high dimen-
sional data exploring and classification (i.e collinearity, which may cause Lin-
ear Discriminant Anlaysis based methods not to converge). Mapping such
informations on anatomical atlases such as those of brain funcional areas,
may lead to further expand the informations acquired on the role of default
mode networks on human cognition.

It must however be noted that the WISDoM Multiple Order Classification
is not limited to fMRI data and problems. Every problem whose elements can
be represented by a symmetric positive definite matrix while retaining some
sort of physical significance is, in fact, are eligible for the kind of approach
proposed.



Appendix A:Using SciPy.Stats for
Wishart Sampling

The scipy.stats.wishart function used for estimation and sampling by the
WISDoM pipeline is based on the closed probability density function defined
as1:

f(M,n,Σ) =
1

2
np
2 Γp(

n
2
)‖Σ‖n2

‖M‖n−p−1
2 exp[−1

2
trace(Σ−1M)] (1)

Two mandatory parameters must be passed to the function: the df, degrees
of freedom and the scale, scale matrix.

• Degrees of freedom: must be greater than or equal to dimension of
the scale matrix

• Scale Matrix: Symmetric positive definite scale matrix of the dis-
tribution. Must be symmetric positive definite in order for the L-U
decomposition used for scale matrix inversion to converge.

An important thing to be noted is that in order to obtain sampled matrix
elements proportional to the scale matrix element, the samples drawn with
the .rvs method must be normalized by the degrees of freedom. Otherwise,
sample matrices elements will be proportional to the degrees of freedom of
the distribution, as in usual χ2 statistics.

Furthermore, creating a frozen Wishart distribution instance and then ap-
plying methods from the scipy.stats.wishart module will significally increase
computational performances.

1Note: ‖Σ, N‖ = det(Σ,M)
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